Assessment of factors affecting accuracy of standardised uptake values in positron emission tomography

Loading...
Thumbnail Image
Date
2015-01
Authors
Du Toit, Petrus Daniel
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: Positron emission tomography (PET) is an imaging method that uses tracers labelled with positron emitting isotopes for the monitoring and evaluation of in vivo molecular processes. Semi-quantitative determination of tracer uptake in a lesion is accomplished by calculating the standardised uptake value (SUV), an index that represents the amount of uptake in a given volume-of-interest (VoI) in relation to the average uptake throughout the body. The SUV is influenced by biological and physical factors that determine the uptake or detectability of the tracers which may result in false results. Changes in SUV of small lesions or lesions with low activity uptake cannot be determined with enough certainty and precision to be used for decision-making and it is therefore necessary to investigate the factors affecting the SUV. The aim of this study was to assess the relative importance of the physical factors that affect the accuracy of a single SUV measurement using Monte Carlo modelling. Phantom studies were performed to determine the influence of the partial volume effect due to spatial resolution using a PET scanner. Comparative Monte Carlo simulations were performed on a computer cluster using a voxelised version of the same phantom. The XCAT anthropomorphic phantom was used to assess the influences on SUV in a human-like configuration and was set-up to simulate movement in the thorax during breathing. SUVs were calculated using simulations of the phantom in 2D and 3D modes to assess the influence of the partial volume effect by variation of the size of the lesions, by variation of the contrast ratios and by placing the lesions in different areas in the lungs during. Influence of activity from outside the field-of-view (FoV) was also assessed as well as the impact the various coincidence types have. Statistical methods were used to compare the difference in data for statistical significance. It was found that the partial volume effect was present when evaluating the SUVs of the activity in the spheres of the phantom when scanned on a PET/CT scanner as well as when performing Monte Carlo simulations. Statistically there were no significant differences between the two scanning modes. The mean SUV increased as the voxel sizes became smaller. The choice of matrix influenced the amount of partial volume effect. The relative contributions of true-, scatter- and random coincidences demonstrated that the true coincidences were the major contributor when assessing the data from this phantom. The relative contribution of the trues-to-total coincidences decreased with a decrease in lesion size and contrast ratio whereas the relative contributions of the scattered- and random coincidences increased. The contributions of scatters and randoms increased during the 3D acquisition mode compared to 2D mode. The contribution of the trues-to-total coincidences decreased with an increase in VoI size and consequently caused a decrease in the mean SUV. The location of the lesion made a difference in SUV when the same size lesions are compared to each other. Apical lesions experienced the least amount of motion during breathing, were distorted less and had the least amount of variation in SUV. By moving the phantom partly outside the FoV, significant effects on the SUVs of objects still inside the FoV were found. An increase in the SUVs was observed when the true coincidences were used for the calculation. A decrease in true SUVs was found at the right basal lesion. In conclusion, partial volume effects play a significant role when determining the SUV of objects based on their size and contrast ratio; the location of pulmonary lesions affects SUV calculation during breathing; and activity outside the field-of-view of the scanner contributed to a change in SUV in particular to the central and basal regions of the lung.
Afrikaans: Positron-emissietomografie (PET) is ’n beeldingsmetode wat gebruik maak van spoorders gemerk aan positron-uitstralende isotope vir die monitering en evaluering van in vivo molekulêre prosesse. Semi-kwantitatiewe bepaling van spoorderopname in ’n letsel word bereik deur die gestandaardiseerde opnamewaarde (GOW) te bereken, ’n indeks wat die hoeveelheid opname in ’n bepaalde volume-van-belang (VvB) verteenwoordig, in verhouding met die gemiddelde opname in die res van die liggaam. Die GOW word beïnvloed deur biologiese en fisiese faktore wat die opname of waarneembaarheid van die spoorders bepaal en wat kan veroorsaak dat onjuiste resultate ontstaan. Veranderinge in GOW van klein letsels of letsels met ’n lae opname, kan nie met genoegsame sekerheid of presisie bepaal word nie en daarom is dit nodig om die faktore wat die GOW beïnvloed, te ondersoek. Die doel van die studie was om die relatiewe belangrikheid van die fisiese faktore wat die akkuraatheid van ’n enkele GOW-meting beïnvloed, te bepaal met behulp van Monte Carlo modellering. Fantoomstudies is gedoen om die invloed te bepaal van die parsiële volume-effek wat bestaan weens ruimtelike oplosvermoë, deur gebruik te maak van ’n PET-skandeerder. Vergelykende Monte Carlo simulasies is uitgevoer by ’n rekenaarbondel met ’n digitale weergawe van dieselfde fantoom. Die XCAT antropomorfiese fantoom is opgestel om beweging in die borskas te simuleer tydens asemhaling en is gebruik om die invloed op GOW in ’n mens-konfigurasie te ondersoek. GOWs is bereken na simulasies van die fantoom in 2D- en 3D opname modusse gedoen is om die invloed van die parsiële volume-effek te bepaal deur verandering in letselgrootte, in kontrasverhouding en deur die letsels in verskillende gebiede in die longe te plaas. Invloed van aktiwiteit wat buite die gesigsveld voorkom is ook ondersoek asook die impak wat die verskillende koïnsidensie-tipes uitoefen. Statistiese metodes is gebruik om die verskille in data vir statistieke beduidendheid te toets. Daar is gevind dat die parsiële volume-effek teenwoordig is met die evaluering van die GOWs van die aktiwiteit in die sfere van die fantoom wat op die PET/RT skandeerder gebeeld is asook wanneer die simulasies uitgevoer is. Die gemiddelde GOW het verhoog as die voxelgroottes kleiner geword het. Die matriks-keuse beïnvloed die grootte van die parsiële volume-effek. Met die analise van die relatiewe bydrae van die egte-, verstrooide en ewekansige koïnsidensies uit data van hierdie fantoom, is gevind dat die egte koïnsidensies die hoofbydraende gebeurtenis was in die beeldvorming. Die relatiewe bydrae van die egtetot- totale koïnsidensies het afgeneem met ’n verkleining van letselgrootte en kontrasverhouding terwyl die relatiewe bydraes van die verstrooide en ewekansige koïnsidensies toegeneem het. Die bydraes van verstrooide en ewekansige koïnsidensies het verhoog tydens 3D opname vergeleke met 2D opname. Die bydrae van die egtes-tottotale koïnsidensies het afgeneem met ’n vergroting in VvB en gevolglik ’n verlaging in GOW veroorsaak. Die ligging van die letsels het ’n verskil gemaak in GOW wanneer dieselfde grootte letsels met mekaar vergelyk is. Apikale letsels het die minste beweging ondervind gedurende asemhaling, is die minste vervorm en het die kleinste variasie in GOW getoon. Deur die fantoom gedeeltelik buite die gesigsveld te plaas, is beduidende effekte in die GOW van die voorwerpe wat steeds binne die gesigsveld geleë was, ondervind. ’n Verhoging in GOW is bespeur as die egte koïnsidensies gebruik is in die berekening. ’n Verlaging in egte GOWs is gevind by die regter basale letsel. Gevolglik speel parsiële volume-effekte’n beduidende rol by die bepaling van GOW van voorwerpe, gebaseer op die groottes en kontrasverhoudings; die ligging van die pulmonêre letsels affekteer die GOW tydens asemhaling; en die aktiwiteit buite die gesigsveld dra by tot ’n verandering in GOW, veral by die sentrale en basale gedeeltes van die long.
Description
Keywords
Positron emission tomography, PET, Standardised uptake value, SUV, True coincidences, Scattered coincidence, Random coincidence, Partial volume effect, Breathing, Lesion size, Contrast ratio, Tomography, Radioactive tracers, Thesis (Ph.D. (Medical Physics))--University of the Free State, 2015, Emission
Citation