Stibine and phosphite mixed ligand rhodium vaska-type complexes

Loading...
Thumbnail Image
Date
2005-11
Authors
Hennion, Clare Elizabeth
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: The aim of this study was to synthesise simple rhodium stibine complexes and to react them with a range of phosphite ligands in order to determine the rate constants and reaction mechanism for the substitution reactions. The phosphites were selected in order to provide a range of sterically demanding incoming ligand systems, as determined by their Tolman cone angles. Spectroscopic investigation revealed there were two different reaction mechanisms evident for the reaction of the stibine system, trans-[Rh(Cl)(CO)(SbPh3)2] with the larger and smaller cone angle phosphites. Low temperature 31P NMR indicated that the reaction of trans-[Rh(Cl)(CO)(SbPh3)2] with small cone angle phosphites resulted in a series of addition and elimination reactions to form a range of four and five coordinate mixed stibine and phosphite intermediate species. These reactions appeared to be in equilibrium and were terminated by the formation of a phosphite analogue of Wilkinson’s catalyst, [Rh(Cl){P(OR)3}3]. The bulky phosphites, however, reacted by two consecutive substitution reactions to form firstly a mono-stibine mono-phosphite intermediate, trans- [Rh(Cl)(CO)(SbPh3){P(OR)3}] followed by a bis-phosphite complex, trans- [Rh(Cl)(CO){P(OR)3}2]. While attempting to characterise the mixed stibine/phosphite complexes crystallographically, a single crystal was obtained. This was subsequently solved as the Rh(III) complex, trans-mer-[Rh(Cl)2(Ph)(SbPh3)3].2CH2Cl2. This system appears to form through oxidative addition and phenyl migration of triphenylstibine onto rhodium(I). This Rh(III) complex was reacted with triphenylphosphine and single crystals of [Rh(Cl)2(Ph)(PPh3)2] were collected. The six coordinate stibine system crystallised from dichloromethane in the triclinic space group, Pi with Z = 2, while the five coordinate phosphine complex crystallized in the monoclinic space group, C2/c with Z = 4. Both complexes contain a rhodium center with two trans chloride atoms and a metal bound phenyl ring. The stibine system contains two trans triphenylstibine molecules, with a third stibine trans to the phenyl. The phosphine system contains two triphenylphosphine groups bound to the metal. A kinetic study was conducted to investigate the reaction of trans-[Rh(Cl)(CO)(SbPh3)2] with the bulky phosphite, tris(2,4-di-tbutylphenyl)phosphite (2,4-TBPP). Stopped-Flow spectrophotometry showed two consecutive reactions at 310nm, a fast first reaction followed by a slower second reaction. The kinetic investigation was conducted in two different solvents, namely, dichloromethane and ethyl acetate, to determine the effect of solvent polarity and donicity on the reaction rates. It soon became evident that the first reaction was too fast to follow under standard first order conditions and excess tripehenylstibine was added to the system to introduce the five coordinate tris-stibine complex, trans-[Rh(Cl)(CO)(SbPh3)3]. This had the desired effect of slowing down the reaction and the kinetic data for the first reaction could be calculated from the derived rate law. The first order rate constants, k12, for the reaction to form trans- [Rh(Cl)(CO)(SbPh3)(2,6-TBPP)] from trans-[Rh(Cl)(CO)(SbPh3)2] are 5.2(1) M-1.s-1 and 4.2(3) M-1.s-1 for DCM and ethyl acetate, respectively. While the first order rate constants, k13, forming trans-[Rh(Cl)(CO)(SbPh3)(2,6-TBPP)] from trans- [Rh(Cl)(CO)(SbPh3)3] are 3.3(9) M-1.s-1 and 4(8) M-1.s-1 for DCM and ethyl acetate, respectively. The second reaction step to form [Rh(Cl)(CO)(2,4-TBPP)2] from [Rh(Cl)(CO)(SbPh3)(2,4-TBPP)] was investigated in order to determine the thermodynamic data for the reaction step. The first order rate constants, k2 at 298 K, are 33.0(8) M-1.s-1 and 719(16) M-1.s-1 for the reaction in DCM and ethyl acetate respectively. The corresponding activation parameters are DH† = 22.6(6) kJ.mol-1 and DS† = -214(2) J.mol-1.K-1 for DCM and DH† = 27.8(5) kJ.mol-1 and DS† = -171(2) J.mol-1.K-1 for ethyl acetate. The significantly negative entropy calculated indicates an associative pathway forming the transition state, as has been found for many stibine systems that readily form five coordinate complexes. Scheme 1 gives the predicted reaction mechanism. See Scheme in full text.
Afrikaans: Die doel van die studie was die sintetisering van eenvoudige rhodium stibienkomplekse en ‘n kinetiese studie van die stibienkomplekse met ‘n reeks fosfiete ligande. Sodoende is die tempokonstantes en die reaksiemeganisme van die substitusiereaksies bepaal. Die fosfiet ligande is gekies om ‘n reeks inkomende ligande daar te stel met verskillende steriese invloede op die metaalsenter gebaseer op die Tolman konushoek. 'n Spektroskopiese studie het getoon dat daar twee verskillende reaksiemeganismes gevolg word vir die reaksie van die stibiensisteem, trans-[Rh(Cl)(CO)(SbPh3)2], met groot en klein konushoek fosfiete. Lae temperatuur 31P KMR dui daarop dat reaksie met klein konushoek fosfiete lei tot ‘n reeks van addisie- en eliminasie-reaksies, en dus ‘n gemengde reeks van vier- en vyf-gekoödineerde stibien en fosfiet intermediëre spesies tot gevolg het. Die ewewig is getermineer met die vorming van Wilkinson se katalis se fosfiet analoog. Die meer steriese fosfiet ligande reageer in ‘n twee-stap substitusiereaksie en vorm eerstens ‘n mono-stibien mono-fosfiet intermediër, trans- [Rh(Cl)(CO)(SbPh3){P(OR)3}], gevolg deur ‘n bis-fosfiet kompleks, trans- [Rh(Cl)(CO){P(OR)3}2]. Pogings om enkelkristalle van die gemengde stibien/fosfiet komplekse te isoleer het misluk. Enkelkristal data is afgeneem, maar op die Rh(III) kompleks, trans-mer- [Rh(Cl)2(Ph)(SbPh3)3] met twee dichlorometaan oplosmiddel molekules is geisoleer. Die sisteem vorm blykbaar deur oksidatiewe addisie en fenielmigrasie vanaf trifenielstibien na die rhodium(I) senter. Die Rh(III) kompleks is gereageer met trifenielfosfien en enkelkristalle van [Rh(Cl)2(Ph)(PPh3)2] is verkry. Die sesgekoödineerde stibien sisteem kristalliseer vanuit CH2Cl2 in die trikliniese ruimtegroep Pi, met Z = 2, terwyl die vyfgekoödineerde fosfien kompleks kristalliseer in die monokliniese ruimtegroep C2/c, met Z = 4. Albei komplekse bevat ‘n rhodium senter met twee trans georienteerde chloried ligande en ‘n metaal gebonde fenielring. Die stibien sisteem bevat twee trans trifenielstibien ligande, met ‘n derde stibien trans teenoor die fenielring. Die fosfien sisteem bevat twee trifenielfosfien ligande gebind aan die metal. ‘n Kinetiese studie is uitgevoer om die reaksie tussen trans-[Rh(Cl)(CO)(SbPh3)2] en die meer steriese fosfiet, tris(2,4-di-tbutielfeniel)fosfiet (2,4-TBPP) te bestudeer. ‘n Tweestap reaksie is gevolg met behulp van die Stop-Vloei spektrofotometer by ‘n golflengte van 310 nm. Die kinetiese studie is uitgevoer in twee verskillende oplosmiddels, naamlik, dichlorometaan en etiel asetaat, om die effek van die oplosmiddel polariteit en donerings verskille op die reaksie tempo te bestudeer. Daar was gevind dat die eerste reaksie stap te vinning is om gevolg te word onder standaard eerste orde reaksie kondisies. Dus is ‘n oormaat trifenielstibien bygevoeg om so die vyf gekoördineerde tris-stibien kompleks, trans-[Rh(Cl)(CO)(SbPh3)3] te verkry, wat dan die reaksie vertraag. So kon die kinetiese data van die eerste reaksie stap bereken word vanaf die afgeleide tempowet. Die eerste orde tempo konstantes, k12, vir die reaksie om trans-[Rh(Cl)(CO)(SbPh3)(2,6-TBPP)] te vorm vanaf trans-[Rh(Cl)(CO)(SbPh3)2] is 5.2(1) M-1.s-1 en 4.2(3) M-1.s-1 vir CH2Cl2 en etiel asetaat onderskeidelik. Terwyl die eerste orde tempo konstantes, k13, vir die vorming van trans-[Rh(Cl)(CO)(SbPh3)(2,6- TBPP)] vanaf trans-[Rh(Cl)(CO)(SbPh3)3]: 3.3(9) M-1.s-1 en 4(8) M-1.s-1 vir CH2Cl2 en etiel asetaat, onderskeidelik is. Die tweede reaksiestap, die vorming van trans-[Rh(Cl)(CO)(2,4-TBPP)2], vanaf trans- [Rh(Cl)(CO)(SbPh3)(2,4-TBPP)] is gevolg en die termodinamiese data vir die spesifieke reaksiestap bepaal. By 298 K is die eerste-orde tempokonstantes, k2, bepaal as 33.0(8) M- 1.s-1 en 719(16) M-1.s-1 vir reagering in CH2Cl2 en etiel asetaat onderskeidelik. Ooreenkomstig is die aktiveringsparameters as volg bereken: DH† = 22.6(6) kJ.mol-1 en DS† = -214(2) J.mol-1.K-1 (CH2Cl2),en DH† = 27.8(5) kJ.mol-1 en DS† = -171(2) J.mol-1.K-1 (etiel asetaat). Die negatiewe entropie dui op ‘n assosiatiewe pad vir die forming van die oorgangsstadium, soos voorheen gevind vir ander stibiensisteme waar die vyf gekoördineerde komplekse maklik vorm. Skema 1 gee die voorgestelde reaksie meganisme. Sien Skema in volteks.
Description
Keywords
Rhodium systems, Stibine systems, Phosphite systems, Reaction kinetics, Crystal structure determination, Ligand substitution reactions, trans Effect and trans influence, Solvent effects, Phenyl migration, Synthesis, Chemical reactions, Complex compounds, Dissertation (M.Sc. (Chemistry))--University of the Free State, 2005
Citation