Self-regulated learning and time perspective as predictors of academic performance in undergraduate economics studies

dc.contributor.advisorViljoen, M. C.
dc.contributor.authorKeyser, J. N.
dc.date.accessioned2015-08-31T06:45:41Z
dc.date.available2015-08-31T06:45:41Z
dc.date.copyright2013-11
dc.date.issued2013-11
dc.date.submitted2013-11
dc.description.abstractEnglish: The goal of this study was to research the hypotheses that self-regulated learning and a future time perspective separately and simultaneously predict academic performance in second year Economics studies. The study also investigated whether self-regulated learning and future time perspective are related. In the theoretical underpinning self-regulated learning as related to learning theories, future time perspective and the learning of Economics were explored. The effect of the confounding variables(age, gender, ethnicity and the psycho-social wellbeing of students), on the dependent variable (academic performance in second year Economics studies), were built into the design and analysed. Data was analysed using descriptive, correlation and regression analysis. The multiple regression analysis indicated that self-regulated learning and a future time perspective predict academic performance in second year Economics studies. A correlation matrix revealed that a relationship exists between self-regulated learning and a future time perspective. Regarding the confounding variables, the one with the most significant influence on the dependant variable was ethnicity. In conclusion the study recommended that teaching and assessment methods should be used to empower students to apply self-regulated learning strategies. This could greatly enhance their academic performance.en_ZA
dc.description.abstractAfrikaans: Die doel van hierdie studie was om 'n ondersoek in te stel na die hipotese dat selfregulerende leer en 'n toekomsgerigte tydsperspektief apart en gesamentlik akademiese prestasie in tweede jaar Ekonomie studies kan voorspel. Die studie het ook ondersoek ingestel om te bepaal of selfgereguleerde leer en toekomsgerigte tydsperspektief korreleer. In die teoretiese begronding is die verwantskap van selfregulerende leer aan leer teorieë, toekomsgerigte tydsperspektiewe en die leer van Ekonomie ondersoek. Die effek van die steuringsveranderlikes (ouderdom, geslag, etnisiteit en die psigososiale welstand van student) op die afhanklike veranderlike (akademiese prestasie in die tweedejaar Ekonomie studies) is in die ontwerp ingebou en geanaliseer. Data is geanaliseer met behulp van beskrywende, korrelasie en regressieanalise. Die meervoudige regressie-analise het uitgewys dat self gereguleerde leer en 'n toekomsgerigte tydsperspektief voorspellers van akademiese prestasie in die tweedejaar Ekonomie studies is. 'n Korrelasie matriks het getoon dat daar 'n verwantskap bestaan tussen selfregulerende leer en 'n toekomsgerigte tydsperspektief. Rakende die steuringsveranderlikes was die een met die grootste invloed op die afhanklike verandering, etnisiteit. Ten slotte beveel die studie aan dat onderrig en assesserings metodes behoort gebruik word om studente te bemagtig om selfregulerende leer strategieë toe te pas. Dit kan hulle akademiese prestasie grootliks verbeter.af
dc.identifier.urihttp://hdl.handle.net/11660/1084
dc.language.isoenen_ZA
dc.publisherUniversity of the Free Stateen_ZA
dc.rights.holderUniversity of the Free Stateen_ZA
dc.subjectThesis (Ph.D. (Higher Education Studies))--University of the Free State, 2013en_ZA
dc.subjectMotivation in educationen_ZA
dc.subjectAcademic achievementen_ZA
dc.subjectEconomics -- Study and teaching (Higher)en_ZA
dc.subjectMultiple regressionen_ZA
dc.subjectPsycho-social wellbeingen_ZA
dc.subjectPerspectiveen_ZA
dc.subjectFuture timeen_ZA
dc.subjectSelf-regulated learningen_ZA
dc.subjectAcademic performanceen_ZA
dc.titleSelf-regulated learning and time perspective as predictors of academic performance in undergraduate economics studiesen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KeyserJN.pdf
Size:
927.13 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: