Positional match statistics in Currie Cup and Super Rugby competitions between winning and losing teams
Loading...
Date
2016-11
Authors
Schoeman, Riaan
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: Background
Rugby union (here after referred to as rugby), as most other team sports, is becoming more aware of statistics as a reliable method to evaluate players and match variables during match play. This non-invasive evaluation method provides coaches and conditioning coaching with much needed information regarding player attendance to match situations and the successful execution of these match situations. Winning and losing teams from all levels of competitions use statistics to not only evaluate the team’s performance, but to determine which variables might be responsible for the outcome of the game. It is accepted that teams from a winning side might perform better in certain areas of play than losing teams, and players from higher levels of participation can execute certain skills more effectively. Previous research has been conducted on various teams from different participation levels on the physiological differences, mental toughness and match variables. The increased professionalism of rugby players may also indicate an increased ability of players from one season to the next. The ability of players will also vary from one position to the next and may be approximately exposed to certain match variables.
Aims
The first aim of this study was to determine the tackle and collision count for Super Rugby players during the 2013 competition. The second was to analyse the passing and kicking statistics that discriminate between winning and losing teams during the
2014 Super Rugby season. Thirdly, the study attempted to differentiate between the Super Rugby competition and the Currie Cup competition according to the occurrence of match activities and lastly to evaluate the evolution of the Super Rugby competition from 2011 to 2015 by the use of regression statistics.
Method
Sample
The first aim consisted of conducting an analysis of 1,900 players from 30 games played during the 2013 Super Rugby competition. Two games from each of the participating franchises were used and selected in regards to number of matches available and balance of the sample. The second aim included an analysis of 1298 players from the 2013 Super Rugby season, whilst the third aim involved 1800 players with n=900 players from Super Rugby and n=900 players from the Currie Cup competition. Furthermore, aim 4 consisted of 4500 players and included n=900 from each of the Super Rugby seasons from 2011 to 2015.
Measuring instruments
Data was supplied by the Cheetahs Super Rugby Franchise, Bloemfontein, South Africa, using the Verusco TryMaker Pro. Verusco has provided Super Rugby teams with TryMaker Pro since the year 2000. TryMaker Pro is the most advanced analysis system custom-made for rugby, and it is the preferred system for the professional teams using Verusco. The Verusco coding centre codes all the games for registered teams and delivers high-detail, high-speed analysis within hours of the game having been played.
Data analysis
All data were captured in Microsoft Excel 2007 and subsequently converted into an SAS data set.
For aim 1 the following analysis was done: The GLIMMIX procedure of the SAS Version 9.22 statistical software package was used for further statistical analysis (SAS, 2009). Means and standard deviations were used for numerical data. Individual tackle counts for each position, team and game were analysed using a generalised linear mixed model (GLIMM) with position and team as fixed effects, the natural
logarithm of individual time played in minutes as offset, and position-by-team and game-by-team interaction terms as random effects. Regarding the fitted random effects, it seemed reasonable to allow for correlation between tackle counts for a specific individual across several games (modelled by the position-by-team random effect), and for correlation between tackle counts across players in a given team and game (modelled by the team-by-game random effect).
Furthermore, the GLIMM was specified with Poisson error distribution and the natural logarithm as link function. Individual collision counts for each position, team and game were analysed in the same manner. In both cases – tackle counts and collision counts – the model fitted the data well and there was no evidence of residual over-dispersion. Based on the GLIMM, the mean rate of tackles and mean rate of collisions per 80 minutes (that is, normalised to a full-length rugby game) were estimated for each playing position, with 95% confidence intervals (CIs) of the mean rates. Similarly, in order to compare the mean rates of tackles and collisions between different playing positions, rate ratios (that is, the ratio of tackle and collision rates between playing positions) were estimated, with 95% CIs for the rate ratios.
Aim 2 included the following statistical analysis: Means and standard deviations were used for numerical data. Individual tackle counts for each position, team and game were analysed using a generalised linear mixed model (GLIMM) with position and team as fixed effects, the natural logarithm of individual time played in minutes as offset, and position-by-team and game-by-team interaction terms as random effects. Regarding the fitted random effects, it seemed reasonable to allow for correlation between tackle counts for a specific individual across several games (modelled by the position-by-team random effect), and for correlation between tackle counts across players in a specific team and game (modelled by the team-by-game random effect). Furthermore, the GLIMM was specified with Poisson error distribution and the natural logarithm as link function. Team rates for passing and kicking were analysed in the same manner. In both cases, passing and kicking rates, the model fitted the data well and there was no evidence of residual over-dispersion. Based the GLIMM, the mean rate of passing and mean rate of kicking per 80 min were estimated for each team, with 95% confidence intervals (CIs) of the mean rates.
Aim 3 consisted of each count variable (number of lineouts, scrums, rucks, mauls etc.) to be analysed using a generalised linear mixed model (GLIMM) with season (2011 versus 2015) as fixed effect, and both winning team and losing team as random effect. (The fitting of the variables winning team and losing team as random effects allowed for correlation between the counts in question for a given team across several games.) Furthermore, the GLIMM was specified with Poisson error distribution and the natural logarithm as link function; residual over-dispersion was allowed for in the model. Based on the GLIMM, the mean rates of lineouts, scrums, rucks, mauls etc. per game were estimated for the 2011 and 2015 seasons. Similarly, in order to compare the mean rates between the 2011 and 2015 seasons, ratios of lineout rates etc. between the 2015 and 2011 seasons were estimated, together with 95% CIs for the rate ratios.
The above analyses were carried out separately for the data of the winning teams, for the data of the losing teams, and for the data of two teams involved in each game combined (that is, for the game). The analysis was carried out using SAS procedure GLIMMIX (SAS, 2013).
Aim 4 used descriptive statistics for the count and percentage data calculated for the 2011 to 2015 seasons. Descriptive statistics were calculated per season for the winning teams, for the losing teams, and for the two teams involved in each game combined (that is, for the total count per game).
Each count variable (number of lineouts, scrums, rucks, mauls etc.) was analysed using a generalised linear mixed model (GLIMM) with Season (2011 versus 2015) as fixed effect, and both winning team and losing team as random effect. (The fitting of the variables winning team and losing team as random effects allowed for correlation between the counts in question for a given team across several games.) Furthermore, the GLIMM was specified with Poisson error distribution and the natural logarithm as link function; residual over-dispersion was allowed for in the model. Based on the GLIMM, the mean rates of lineouts, scrums, rucks, mauls etc. per game were estimated for the 2011 and 2015 seasons. Similarly, in order to compare the mean rates between the 2011 and 2015 seasons, rate ratios, that is, ratios of lineout rates etc. between the 2015 and 2011 seasons were estimated, together with 95% CIs for the rate ratios. The above analyses were carried out separately for the data of the winning teams, for the data of the losing teams, and for the data of two teams involved in each game combined (that is, for the game).
Percentage territory and percentage possession of the winning team in each game were analysed using a linear mixed model with Season as fixed effect, and both Winning Team and Losing Team as random effects. Based on the linear mixed model, the mean percentage territory (and possession) was estimated for each season, together with a 95% CI for the mean percentage. Similarly, in order to compare the mean percentage between the 2011 and 2015 seasons, mean differences, that is, differences of mean percentage territory and possession between the 2015 and 2011 seasons were estimated, together with 95% CIs for the mean differences. The analysis was carried out using SAS procedure MIXED (see SAS, 2013).
Results
The results from aim one underlined the importance of specific demands on the various playing positions regarding the tackles and collisions sustained by Super Rugby players. Clearly, loose forwards (6: = 16.65 tackles/80 min; 7: = 17.30 tackles/80 min; 8: = 14.68 tackles/80 min) had the highest tackling rates, followed by the locks (4: = 13.74 tackles/80 min; 5: = 14.07 tackles/80 min). Amongst the backs, the inside centre (12: = 12.89 tackles/80 min) was the player with the highest tackling rates, followed by the outside centre (13: = 9.96 tackles/80 min). The results showed that the open-side flanker (7) had the highest tackle rate of all playing positions (17.30 tackles/80 min). The open-side flank (7) was involved in the most collisions (50.91), followed by the blind-side flank (6), loosehead lock (4) and eighthman (8), with collision rates of 46.08, 44.81 and 43.03 respectively, per 80 minutes collision count per game. The results showed significant differences between positional groups for tackles, except for the front row players and the second row (1, 2, 3 vs 4, 5; p=0.0715 to p=0.6324). Within a positional group, namely the backline players, the tackling rate of the inside centre differed significantly from the tackling rate of the other backline players (9 vs 12, p=0.0029; 10 vs 12, p=0.0045; and 12 vs 13, p=0.0100).
Aim two indicated that losing teams tend to pass the ball more (157.41) than winning teams (127.02). The results illustrated a significant difference between winning teams and losing teams regarding total passes, bad passes, and good passes (p=<0.05).
Winning teams tend to kick the ball more (25.77) than losing teams (20.23). Results indicated a significant difference between winning teams and losing teams regarding total kicks, long kicks, short kicks, and kicking metres (p=<0.05). Winning teams kicked more long kicks (18.55) than losing teams (14.19). Winning teams also used the short kick (7.22) more effectively and more often than losing teams (6.04). Losing teams gain a mean total of 660.01m per game in comparison to winning teams who gain 901.4m per game.
In the third aim it was discovered that, when the two competitions are compared, it is evident that only two variables can be distinguished. The mauls and tackles missed are the only two variables that show remarkable difference, with 3.23 mauls and 8.9 tackles missed per game more in Currie Cup competition than the Super Rugby. The results of this study underline the importance of measuring and analysing specific performance indicators on a regular basis as these performance indicators can increase or decrease as the level of competition change. The greatest increase occurred with rucking, as this variable increased from 139.63 in Currie Cup to 143.13 in Super Rugby. Super Rugby teams lose fewer lineouts, and have less missed tackles, while Currie Cup teams utilise mauls more as an offensive weapon.
Aim 4 identified playing time, lineouts lost, scrums, scrums lost, tackles and penalties decreased from 2011 to 2015, while lineouts, mauls and the number of missed tackles increased. The results of this study underline the importance of measuring and analysing specific performance indicators on a regular basis as these performance indicators can increase or decrease in a short time frame. From 2011 to 2015 winning teams consistently lost fewer lineouts than losing teams, even with an overall increase in the number of lineouts per game. The study indicates a slight decrease in the number of tackles, but still supports the fact that winning teams have higher tackle rates than losing teams.
Conclusions
The results of the study show that there are significant differences between individual playing positions within the same positional group with regard to tackling and collision rates sustained during match play. The study confirms that losing teams pass more than winning teams and that winning teams kick more than losing teams during match
play. The study also discovered a greater distance gained through kicks by winning teams. The higher or lower numbers of performance indicators performed by teams over competitions emphasise the different physiological demands for teams. The study concluded that playing time, lineouts lost, scrums, scrums lost, tackles and penalties decreased from 2011 to 2015, while lineouts, mauls and the number of missed tackles increased. The findings may be important for future research as they indicate a constant shift in statistics and outcomes of teams over seasons within a particular competition.
Afrikaans: Agtergrond Soos die meeste ander spansporte begin rugby die waarde van statistiek besef as ’n betroubare metode om spelers en wedstrydveranderlikes gedurende wedstryde te evalueer. Hierdie nie-indringende evaluasiemetode voorsien waardevolle inligting aan afrigters en kondisioneringsafrigters rakende spelerbetrokkenheid by spelpatrone en die suksesvolle uitvoering van spelpatrone. Alle spanne, hetsy wen- of verloorspanne wend statistiek aan, nie slegs om die span se werksverrigting en prestasie te evalueer nie, maar ook om die veranderlikes te bepaal wat verantwoordelik is vir die speluitslag. Daar word geglo dat wenspanne in sekere areas beter presteer as verloorspanne en dat spelers met hoër vlakke van deelname sekere vaardighede meer effektief kan uitvoer. Vorige navorsing op verskeie spanne van verskillende vlakke van deelname het die fisiologiese verskille, geestelike uithouvermoë en wedstrydveranderlikes bepaal. Toenemende professionalisme onder rugbyspelers mag ook toenemende kundigheid van een seisoen na ’n volgende aandui. Die spelers se vermoë sal ook van een posisie tot ’n ander verskil en mag as gevolg van sekere wedstrydveranderlikes, meer of minder blootstelling ontvang. Doelwitte Die eerste doelwit van die studie was om die duik- en kontaktelling van Super Rugbyspelers tydens die 2013 kompetisie te bepaal. Die tweede doelwit was om die uitgee- en skopstatistieke van beide wen- en verloorspanne te analiseer. Derdens het die studie ook ten doel om te probeer differensieer tussen die verspreiding van wedstrydaktiwiteite van Super Rugby- en die Curriebekerkompetisie. Die laaste doelwit is om die evolusie van die Super Rugbyreeks van 2011 tot 2015 te evalueer. Metode Deelnemers Vir doelwit een is 900 spelers ontleed wat in 30 wedstryde gespeel het tydens die 2013 Super Rugbyreeks. Vir doelwit twee is 1298 spelers wat ook tydens die 2013 Super Rugbyreeks gespeel het, ontleed. Vir doelwit drie is 1800 spelers ontleed, waarvan n=900 spelers vanuit die Super Rugbyreeks en n=900 spelers vanuit die Curriebekerkompetisie. Doelwit vier het 4500 spelers ontleed wat n=900 spelers vanuit elk van die Super Rugbyreekse vanaf 2011 tot 2015 ingesluit het. Meetinstrumente Data is ingesamel deur van die Verusco TryMaker Pro gebruik te maak en is deur die Cheetahs Super Rugby Maatskappy, Bloemfontein, Suid-Afrika, aan die navorser verskaf. Verusco het sedert 2000 Super Rugbyspanne van TryMaker Pro voorsien. TryMaker Pro is ’n uiters gevorderde ontledingstelsel wat spesiaal vir rugby ontwerp is. Dit is ook die voorkeurstelsel vir professionele spanne wat Verusco gebruik. Die Verusco koderingsentrum kodeer al die wedstryde vir geregistreerde spanne en binne ure nadat die wedstryd gespeel is, word topgehalte detail-, asook hoëspoed-analises gelewer. Data analise Alle data is met Microsoft Excel 2007 verwerk en daaropvolgend na ’n SAS data sisteem omgeskakel. Vir doelwit een is gebruik gemaak van SAS 9.2 statistiese sagteware pakket se GLIMMIX metode vir verdere statistiese ontleding (SAS, 2009). Vir die numeriese data is spesifieke en standaardafwykings gebruik. Individuele duikslagtellings in elke posisie, span en wedstryd, is ontleed deur van die algemene linieëre gemengde model (GLIMM) gebruik te maak, met posisie en span as vaste effekte, terwyl die natuurlike logaritmes van individuele tyd gespeel in minute as die aanvang, en posisie-in-span en wedstryd-deur-span interaksies as lukrake veranderlike effekte. Met betrekking tot die geskikte veranderlike effekte is dit net redelik om die korrelasie tussen duiktellings van gegewe individue, versprei oor verskeie wedstryde, (gemoduleer op posisie-in-span lukrake veranderlike effek) en duikslagtelling tussen spelers in gegewe span en wedstryd (gemoduleer op wedstryd-deur-span lukrake veranderlike effek) toe te laat. Verder is die GLIMM gespesifiseer met die Poisson foutverspreiding en natuurlike logaritmes as skakelfunksie. Individuele kontaktellings vir elke posisie, span en wedstryd is op dieselfde manier geanaliseer. In beide gevalle, naamlik die duik- en kontaktellings, het die model die data goed gepas en was daar geen bewyse van residuele oorverspreiding nie. Gebaseer op GLIMM is die gemiddeldes van duikslae en gemiddeldes vir kontak per 80 minute (aangepas soos in ’n vollengte rugbywedstryd) bepaal, vir elke speler posisie, met ’n 95% vertrouensinterval (VI) van gemiddeldes. Insgelyks, ten einde die gemiddelde duikslag en kontak tussen verskillende spelposisies te vergelyk, is die verhoudingskoerse (dit is, die verhouding van duikslae en kontaksyfers tussen onderskeie speelposisies) geskat, met 95% VI vir die verhoudingskoerse. Doelwit twee het die volgende statistiese analise ingesluit deur spesifieke en standaard afwykings vir numeriese data te gebruik. Individuele duikslagtelling vir elke posisie, span en wedstryd is ontleed deur van die algemene lineêre gemengde model (“generalised linear mixed model” – GLIMM) gebruik te maak, met posisie en die span as vaste effekte en die natuurlike logaritme van individuele tyd gespeel in minute as afwyking en posisie-deur-span en wedstryd-deur-span interaksies as lukrake veranderlike effekte. Met betrekking tot die geskikte veranderlike effekte is dit net redelik om die korrelasie tussen duikslae van gegewe individue in verskeie wedstryde (gemoduleer op posisie-deur-span lukrake veranderlike effek) en duikslae tussen spelers in ’n gegewe span en wedstryd (gemoduleer op die wedstryd-deur-span lukrake veranderlike effek) te analiseer. Verder is GLIMM met die Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus. Spanwaardes vir die aangee en skop is op dieselfde manier geanaliseer. In beide gevalle, naamlik aangee- en skopwaardes, het die model die data goed gepas en was daar geen bewyse van residuele oorverspreiding nie. Gebaseer op GLIMM is die gemiddelde syfers van aangee en skop per 80 minute vir elke span met 95% VI van gemiddelde syfer bepaal. Doelwit drie het die ontleding van elke veranderlike (dit wil sê, die aantal lynstane, skrums, losskrums, en losgemale ens) ingesluit, deur van GLIMM gebruik te maak, met seisoen (2011 versus 2015) as vasgestelde effek en beide wenspan en verloorspan as veranderlike effekte. (Die inpas van die veranderlikes van die wenspan en verloorspan as lukrake veranderlike effek, laat korrelasie toe tussen die telling vir ’n gegewe span dwarsdeur verskeie wedstryde). Verder is GLIMM met Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus wat residuele oorverspreiding vir die model toegelaat het. Gebaseer op GLIMM is die gemiddeldes vir lynstane, skrums, losskrums, losgemaal ens, per wedstryd vir die 2011 tot 2015 seisoene bepaal. Insgelyks, ten einde die gemiddelde verhoudings tussen die 2011 en 2015 seisoene te vergelyk, is die verhoudings van lynstaankoerse ens tussen die 2011 en 2015 seisoene geskat met ’n 95% VI vir die verhoudingskoers. Bogenoemde analises is afsonderlik uitgevoer op data van die wenspanne asook die data van die verloorspanne en ook vir die twee spanne betrokke in elke wedstryd gekombineerd (met ander woorde vir die wedstryd). Analise is uitgevoer deur van die SAS prosedure GLIMMIX (SAS, 2013) gebruik te maak. Doelwit vier gebruik beskrywende statistieke om die getelde en persentasie data vir die 2011 tot 2015 seisoene te bereken. Beskrywende statistieke is per seisoen vir die wenspanne, verloorspanne en die twee spanne betrokke by elke wedstryd bereken (dit is vir die totale telling per wedstryd). Elke syferveranderlike (getal lynstane, skrums, losskrums, losgemale ens.) is geanaliseer deur van die algemene liniêre gemengde model (GLIMM) gebruik te maak, waar seisoen (2011 vs 2015) as vaste effek en beide wenspan en verloorspan as lukrake veranderlike effek gebruik is. Die toepassing van die wenspan en verloorspan as lukrake veranderlike effekte het tot gevolg dat korrelasie tussen die telling ter sake vir ’n gegewe span oor verskeie wedstryde toegelaat kan word. Verder is die GLIMM spesifiek met die Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus, wat residuele oorverspreiding in die model toelaat. Gebaseer op GLIMM is gemiddelde waardes vir lynstane, skrums, losskrums, losgemaal ens. per wedstryd vir die 2011 tot 2015 seisoene bepaal. Insgelyks, om die gemiddelde verhoudings tussen die 2011 en 2015 seisoene te vergelyk is verhoudingskoerse tussen die 2015 en 2011 seisoene geskat – met ander woorde die lynstaanverhoudings ens. – met ’n VI van 95%. Bogenoemde analises is afsonderlik uitgevoer op data vir die wenspanne, data vir die verloorspanne en data vir die twee spanne betrokke in elke wedstryd gekombineerd (met ander woorde vir die wedstryd). Die persentasie gebiedsvoordeel en balbesit van die wenspan in elke wedstryd is geanaliseer deur die liniêre gemengde model (GLIMM) te gebruik met seisoen as vaste effek en beide wenspan en verloorspan as lukrake veranderlike effekte. Gebaseer op die liniêre gemengde model (GLIMM) is die vasgestelde persentasie gebiedsvoordeel en balbesit bepaal vir elke seisoen met 95% VI vir die ware persentasie. Insgelyks is die ware persentasie, dit is verskille tussen ware persentasie gebiedsvoordeel en balbesit vergeleke tussen die 2015 en 2011 seisoene bepaal met ’n 95% VI vir die ware verskille. Die analise is uitgevoer deur van die SAS prosedure MIXED (sien SAS, 2013) gebruik te maak. Resultate Die resultate van doelwit een onderstreep die belangrikheid van spesifieke vereistes vir die verskeie speelposisies met betrekking tot duikslae en kontak deur Super Rugby-spelers. Dit is duidelik dat losvoorspelers (6 = 16.65 duikslae per 80 minute; 7 = 17.30 duikslae per 80 minute) die hoogste duikslagtempo het, gevolg deur die slotte (4 = 13.74 duikslae per 80 minute; 5 = 14.07 duikslae per 80 minute). In die agterlyn het die binnesenter (12 = 12.89 duikslae per 80 minute) die hoogste duikslagtempo gehad gevolg deur die buitesenter (13 = 9.96 duikslae per 80 minute). Die resultate toon aan dat die oopkantflank (7) die hoogste duikslagtempo van al die speelposisies het (17.30 duikslae per 80 minute). Die oopkantflank (nommer 7) was ook in die meeste kontakspel betrokke, gevolg deur die steelkantflank (nommer 6), loskopslot (nommer 4) en die agsteman (nommer 8) met kontaktempo’s van 46.08, 44.81 en 43.03 onderskeidelik per 80 minute kontaktelling per wedstryd. Die resultate dui op betekenisvolle verskille tussen posisionele groepe vir duikslae, behalwe vir die voorry en die slotte (1,2,3 vs 4,5; p = 0.0715 tot p = 0.6324). Binne ’n posisionele groep, naamlik die agterspelers, verskil die duikslae van die binnesenter beduidend van ander agterlynspelers (9 vs 12, p = 0.0029; 10 vs 12, p = 0.0045; en 12 vs 13, p = 0.0100). Doelwit twee dui aan dat verloorspanne meer geneig is om die bal uit te gee as wenspanne (127.02 aangeepogings per 80 minute). Die resultate toon ’n beduidende verskil tussen die wenspanne en verloorspanne aan met betrekking tot totale aangeepogings, swak aangeepogings en goeie aangeepogings (p = <0.05). Wenspanne neig om die bal meer te skop (25.77) as verloorspanne (20.23). Resultate toon ’n beduidende verskil tussen wenspanne en verloorspanne met betrekking tot totale skoppe, langskoppe, kortskoppe en meters geskop (p = <0.05). Wenspanne het meer langskoppe (18.55) as verloorspanne (14.19) geskop. Wenspanne het ook die kortskop (7.22) meer effektief gebruik en dit was ook meer effektief as dié van die verloorspanne (6.04). Verloorspanne het ’n gemiddelde totaal van 660.01 meter per wedstryd behaal in vergelyking met die wenspanne, met 901.4 meter per wedstryd. Met die derde doelwit is bevind dat wanneer die twee kompetisies met mekaar vergelyk word, daar slegs twee veranderlikes onderskei kan word. Losskrums en duikslae gemis is die enigste twee veranderlikes wat opvallend verskil het: In die Curriebeker is 3.23 meer losskrums en 8.9 meer duikslae per wedstryd, as in die Super Rugbykompetisie verbrou. Die resultate in die studie onderstreep weereens die belangrikheid van meting en ontleding van spesifieke prestasie-aanwysers op ’n gereelde basis, omdat hierdie aanwysers na gelang van die vlak van kompetisie kan verander. Die grootste toename het in die skrums plaasgevind, waar hierdie veranderlike in die Curriebeker van 139.63 tot 143.13 in die SuperRugbyreeks toegeneem het. SuperRugby spanne het minder lynstane verloor, asook minder duikslagpogings gemis, terwyl Curriebekerspanne die losskrum meer as ’n aanvalswapen gebruik het. Doelwit vier het geïdentifiseer dat speeltyd, lynstane verloor, skrums, skrums verloor, duikslae en strafskoppe vanaf 2011 tot 2015 afgeneem het, terwyl lynstane, losskrums en aantal duikslae gemis, toegeneem het. Die studie se resultate bevestig weereens die belangrikheid van meting en analise van spesifieke prestasie-aanwysers op ’n gereelde basis omdat hierdie prestasie-aanwysers in ’n kort tydsverloop kan toeneem of afneem. Vanaf 2011 tot 2015 het die wenspanne konsekwent minder lynstane as die verloorspanne verloor, selfs met ’n algehele toename in die aantal lynstane per wedstryd. Hierdie studie toon ’n minimale afname in die aantal duikslae, maar ondersteun steeds die feit dat wenspanne ’n hoer duikslagtempo as verloorspanne het. Gevolgtrekkings Die resultate toon aan dat daar ’n beduidende verskil tussen individuele spelpatrone in dieselfde posisionele groepe is ten opsigte van duikslae en kontaktempo’s gehandhaaf tydens wedstrydspel. Verloorspanne gee meer as wenspanne uit en wenspanne skop meer as verloorspanne. Die studie het ook bevind dat wenspanne groter afstand deur skoppe verkry het. Die hoër of laer syfers van die prestasie-aanwysers wat deur die spanne tydens die kompetisies behaal is, beklemtoon die verskillende psigologiese vereistes wat aan spanne gestel word. ’n Gevolgtrekking kan ook gemaak word dat speeltyd, lynstane verloor, skrums, skrums verloor, duikslae en strafskoppe vanaf 2011 tot 2015 verminder het. Die bevindinge mag ook belangrik wees vir verdere navorsing, omdat dit die konstante verskuiwing in die gedrag van spanne oor seisoene binne spesifieke kompetisies aantoon.
Afrikaans: Agtergrond Soos die meeste ander spansporte begin rugby die waarde van statistiek besef as ’n betroubare metode om spelers en wedstrydveranderlikes gedurende wedstryde te evalueer. Hierdie nie-indringende evaluasiemetode voorsien waardevolle inligting aan afrigters en kondisioneringsafrigters rakende spelerbetrokkenheid by spelpatrone en die suksesvolle uitvoering van spelpatrone. Alle spanne, hetsy wen- of verloorspanne wend statistiek aan, nie slegs om die span se werksverrigting en prestasie te evalueer nie, maar ook om die veranderlikes te bepaal wat verantwoordelik is vir die speluitslag. Daar word geglo dat wenspanne in sekere areas beter presteer as verloorspanne en dat spelers met hoër vlakke van deelname sekere vaardighede meer effektief kan uitvoer. Vorige navorsing op verskeie spanne van verskillende vlakke van deelname het die fisiologiese verskille, geestelike uithouvermoë en wedstrydveranderlikes bepaal. Toenemende professionalisme onder rugbyspelers mag ook toenemende kundigheid van een seisoen na ’n volgende aandui. Die spelers se vermoë sal ook van een posisie tot ’n ander verskil en mag as gevolg van sekere wedstrydveranderlikes, meer of minder blootstelling ontvang. Doelwitte Die eerste doelwit van die studie was om die duik- en kontaktelling van Super Rugbyspelers tydens die 2013 kompetisie te bepaal. Die tweede doelwit was om die uitgee- en skopstatistieke van beide wen- en verloorspanne te analiseer. Derdens het die studie ook ten doel om te probeer differensieer tussen die verspreiding van wedstrydaktiwiteite van Super Rugby- en die Curriebekerkompetisie. Die laaste doelwit is om die evolusie van die Super Rugbyreeks van 2011 tot 2015 te evalueer. Metode Deelnemers Vir doelwit een is 900 spelers ontleed wat in 30 wedstryde gespeel het tydens die 2013 Super Rugbyreeks. Vir doelwit twee is 1298 spelers wat ook tydens die 2013 Super Rugbyreeks gespeel het, ontleed. Vir doelwit drie is 1800 spelers ontleed, waarvan n=900 spelers vanuit die Super Rugbyreeks en n=900 spelers vanuit die Curriebekerkompetisie. Doelwit vier het 4500 spelers ontleed wat n=900 spelers vanuit elk van die Super Rugbyreekse vanaf 2011 tot 2015 ingesluit het. Meetinstrumente Data is ingesamel deur van die Verusco TryMaker Pro gebruik te maak en is deur die Cheetahs Super Rugby Maatskappy, Bloemfontein, Suid-Afrika, aan die navorser verskaf. Verusco het sedert 2000 Super Rugbyspanne van TryMaker Pro voorsien. TryMaker Pro is ’n uiters gevorderde ontledingstelsel wat spesiaal vir rugby ontwerp is. Dit is ook die voorkeurstelsel vir professionele spanne wat Verusco gebruik. Die Verusco koderingsentrum kodeer al die wedstryde vir geregistreerde spanne en binne ure nadat die wedstryd gespeel is, word topgehalte detail-, asook hoëspoed-analises gelewer. Data analise Alle data is met Microsoft Excel 2007 verwerk en daaropvolgend na ’n SAS data sisteem omgeskakel. Vir doelwit een is gebruik gemaak van SAS 9.2 statistiese sagteware pakket se GLIMMIX metode vir verdere statistiese ontleding (SAS, 2009). Vir die numeriese data is spesifieke en standaardafwykings gebruik. Individuele duikslagtellings in elke posisie, span en wedstryd, is ontleed deur van die algemene linieëre gemengde model (GLIMM) gebruik te maak, met posisie en span as vaste effekte, terwyl die natuurlike logaritmes van individuele tyd gespeel in minute as die aanvang, en posisie-in-span en wedstryd-deur-span interaksies as lukrake veranderlike effekte. Met betrekking tot die geskikte veranderlike effekte is dit net redelik om die korrelasie tussen duiktellings van gegewe individue, versprei oor verskeie wedstryde, (gemoduleer op posisie-in-span lukrake veranderlike effek) en duikslagtelling tussen spelers in gegewe span en wedstryd (gemoduleer op wedstryd-deur-span lukrake veranderlike effek) toe te laat. Verder is die GLIMM gespesifiseer met die Poisson foutverspreiding en natuurlike logaritmes as skakelfunksie. Individuele kontaktellings vir elke posisie, span en wedstryd is op dieselfde manier geanaliseer. In beide gevalle, naamlik die duik- en kontaktellings, het die model die data goed gepas en was daar geen bewyse van residuele oorverspreiding nie. Gebaseer op GLIMM is die gemiddeldes van duikslae en gemiddeldes vir kontak per 80 minute (aangepas soos in ’n vollengte rugbywedstryd) bepaal, vir elke speler posisie, met ’n 95% vertrouensinterval (VI) van gemiddeldes. Insgelyks, ten einde die gemiddelde duikslag en kontak tussen verskillende spelposisies te vergelyk, is die verhoudingskoerse (dit is, die verhouding van duikslae en kontaksyfers tussen onderskeie speelposisies) geskat, met 95% VI vir die verhoudingskoerse. Doelwit twee het die volgende statistiese analise ingesluit deur spesifieke en standaard afwykings vir numeriese data te gebruik. Individuele duikslagtelling vir elke posisie, span en wedstryd is ontleed deur van die algemene lineêre gemengde model (“generalised linear mixed model” – GLIMM) gebruik te maak, met posisie en die span as vaste effekte en die natuurlike logaritme van individuele tyd gespeel in minute as afwyking en posisie-deur-span en wedstryd-deur-span interaksies as lukrake veranderlike effekte. Met betrekking tot die geskikte veranderlike effekte is dit net redelik om die korrelasie tussen duikslae van gegewe individue in verskeie wedstryde (gemoduleer op posisie-deur-span lukrake veranderlike effek) en duikslae tussen spelers in ’n gegewe span en wedstryd (gemoduleer op die wedstryd-deur-span lukrake veranderlike effek) te analiseer. Verder is GLIMM met die Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus. Spanwaardes vir die aangee en skop is op dieselfde manier geanaliseer. In beide gevalle, naamlik aangee- en skopwaardes, het die model die data goed gepas en was daar geen bewyse van residuele oorverspreiding nie. Gebaseer op GLIMM is die gemiddelde syfers van aangee en skop per 80 minute vir elke span met 95% VI van gemiddelde syfer bepaal. Doelwit drie het die ontleding van elke veranderlike (dit wil sê, die aantal lynstane, skrums, losskrums, en losgemale ens) ingesluit, deur van GLIMM gebruik te maak, met seisoen (2011 versus 2015) as vasgestelde effek en beide wenspan en verloorspan as veranderlike effekte. (Die inpas van die veranderlikes van die wenspan en verloorspan as lukrake veranderlike effek, laat korrelasie toe tussen die telling vir ’n gegewe span dwarsdeur verskeie wedstryde). Verder is GLIMM met Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus wat residuele oorverspreiding vir die model toegelaat het. Gebaseer op GLIMM is die gemiddeldes vir lynstane, skrums, losskrums, losgemaal ens, per wedstryd vir die 2011 tot 2015 seisoene bepaal. Insgelyks, ten einde die gemiddelde verhoudings tussen die 2011 en 2015 seisoene te vergelyk, is die verhoudings van lynstaankoerse ens tussen die 2011 en 2015 seisoene geskat met ’n 95% VI vir die verhoudingskoers. Bogenoemde analises is afsonderlik uitgevoer op data van die wenspanne asook die data van die verloorspanne en ook vir die twee spanne betrokke in elke wedstryd gekombineerd (met ander woorde vir die wedstryd). Analise is uitgevoer deur van die SAS prosedure GLIMMIX (SAS, 2013) gebruik te maak. Doelwit vier gebruik beskrywende statistieke om die getelde en persentasie data vir die 2011 tot 2015 seisoene te bereken. Beskrywende statistieke is per seisoen vir die wenspanne, verloorspanne en die twee spanne betrokke by elke wedstryd bereken (dit is vir die totale telling per wedstryd). Elke syferveranderlike (getal lynstane, skrums, losskrums, losgemale ens.) is geanaliseer deur van die algemene liniêre gemengde model (GLIMM) gebruik te maak, waar seisoen (2011 vs 2015) as vaste effek en beide wenspan en verloorspan as lukrake veranderlike effek gebruik is. Die toepassing van die wenspan en verloorspan as lukrake veranderlike effekte het tot gevolg dat korrelasie tussen die telling ter sake vir ’n gegewe span oor verskeie wedstryde toegelaat kan word. Verder is die GLIMM spesifiek met die Poisson-foutverspreiding en natuurlike logaritmes as skakelfunksie toegerus, wat residuele oorverspreiding in die model toelaat. Gebaseer op GLIMM is gemiddelde waardes vir lynstane, skrums, losskrums, losgemaal ens. per wedstryd vir die 2011 tot 2015 seisoene bepaal. Insgelyks, om die gemiddelde verhoudings tussen die 2011 en 2015 seisoene te vergelyk is verhoudingskoerse tussen die 2015 en 2011 seisoene geskat – met ander woorde die lynstaanverhoudings ens. – met ’n VI van 95%. Bogenoemde analises is afsonderlik uitgevoer op data vir die wenspanne, data vir die verloorspanne en data vir die twee spanne betrokke in elke wedstryd gekombineerd (met ander woorde vir die wedstryd). Die persentasie gebiedsvoordeel en balbesit van die wenspan in elke wedstryd is geanaliseer deur die liniêre gemengde model (GLIMM) te gebruik met seisoen as vaste effek en beide wenspan en verloorspan as lukrake veranderlike effekte. Gebaseer op die liniêre gemengde model (GLIMM) is die vasgestelde persentasie gebiedsvoordeel en balbesit bepaal vir elke seisoen met 95% VI vir die ware persentasie. Insgelyks is die ware persentasie, dit is verskille tussen ware persentasie gebiedsvoordeel en balbesit vergeleke tussen die 2015 en 2011 seisoene bepaal met ’n 95% VI vir die ware verskille. Die analise is uitgevoer deur van die SAS prosedure MIXED (sien SAS, 2013) gebruik te maak. Resultate Die resultate van doelwit een onderstreep die belangrikheid van spesifieke vereistes vir die verskeie speelposisies met betrekking tot duikslae en kontak deur Super Rugby-spelers. Dit is duidelik dat losvoorspelers (6 = 16.65 duikslae per 80 minute; 7 = 17.30 duikslae per 80 minute) die hoogste duikslagtempo het, gevolg deur die slotte (4 = 13.74 duikslae per 80 minute; 5 = 14.07 duikslae per 80 minute). In die agterlyn het die binnesenter (12 = 12.89 duikslae per 80 minute) die hoogste duikslagtempo gehad gevolg deur die buitesenter (13 = 9.96 duikslae per 80 minute). Die resultate toon aan dat die oopkantflank (7) die hoogste duikslagtempo van al die speelposisies het (17.30 duikslae per 80 minute). Die oopkantflank (nommer 7) was ook in die meeste kontakspel betrokke, gevolg deur die steelkantflank (nommer 6), loskopslot (nommer 4) en die agsteman (nommer 8) met kontaktempo’s van 46.08, 44.81 en 43.03 onderskeidelik per 80 minute kontaktelling per wedstryd. Die resultate dui op betekenisvolle verskille tussen posisionele groepe vir duikslae, behalwe vir die voorry en die slotte (1,2,3 vs 4,5; p = 0.0715 tot p = 0.6324). Binne ’n posisionele groep, naamlik die agterspelers, verskil die duikslae van die binnesenter beduidend van ander agterlynspelers (9 vs 12, p = 0.0029; 10 vs 12, p = 0.0045; en 12 vs 13, p = 0.0100). Doelwit twee dui aan dat verloorspanne meer geneig is om die bal uit te gee as wenspanne (127.02 aangeepogings per 80 minute). Die resultate toon ’n beduidende verskil tussen die wenspanne en verloorspanne aan met betrekking tot totale aangeepogings, swak aangeepogings en goeie aangeepogings (p = <0.05). Wenspanne neig om die bal meer te skop (25.77) as verloorspanne (20.23). Resultate toon ’n beduidende verskil tussen wenspanne en verloorspanne met betrekking tot totale skoppe, langskoppe, kortskoppe en meters geskop (p = <0.05). Wenspanne het meer langskoppe (18.55) as verloorspanne (14.19) geskop. Wenspanne het ook die kortskop (7.22) meer effektief gebruik en dit was ook meer effektief as dié van die verloorspanne (6.04). Verloorspanne het ’n gemiddelde totaal van 660.01 meter per wedstryd behaal in vergelyking met die wenspanne, met 901.4 meter per wedstryd. Met die derde doelwit is bevind dat wanneer die twee kompetisies met mekaar vergelyk word, daar slegs twee veranderlikes onderskei kan word. Losskrums en duikslae gemis is die enigste twee veranderlikes wat opvallend verskil het: In die Curriebeker is 3.23 meer losskrums en 8.9 meer duikslae per wedstryd, as in die Super Rugbykompetisie verbrou. Die resultate in die studie onderstreep weereens die belangrikheid van meting en ontleding van spesifieke prestasie-aanwysers op ’n gereelde basis, omdat hierdie aanwysers na gelang van die vlak van kompetisie kan verander. Die grootste toename het in die skrums plaasgevind, waar hierdie veranderlike in die Curriebeker van 139.63 tot 143.13 in die SuperRugbyreeks toegeneem het. SuperRugby spanne het minder lynstane verloor, asook minder duikslagpogings gemis, terwyl Curriebekerspanne die losskrum meer as ’n aanvalswapen gebruik het. Doelwit vier het geïdentifiseer dat speeltyd, lynstane verloor, skrums, skrums verloor, duikslae en strafskoppe vanaf 2011 tot 2015 afgeneem het, terwyl lynstane, losskrums en aantal duikslae gemis, toegeneem het. Die studie se resultate bevestig weereens die belangrikheid van meting en analise van spesifieke prestasie-aanwysers op ’n gereelde basis omdat hierdie prestasie-aanwysers in ’n kort tydsverloop kan toeneem of afneem. Vanaf 2011 tot 2015 het die wenspanne konsekwent minder lynstane as die verloorspanne verloor, selfs met ’n algehele toename in die aantal lynstane per wedstryd. Hierdie studie toon ’n minimale afname in die aantal duikslae, maar ondersteun steeds die feit dat wenspanne ’n hoer duikslagtempo as verloorspanne het. Gevolgtrekkings Die resultate toon aan dat daar ’n beduidende verskil tussen individuele spelpatrone in dieselfde posisionele groepe is ten opsigte van duikslae en kontaktempo’s gehandhaaf tydens wedstrydspel. Verloorspanne gee meer as wenspanne uit en wenspanne skop meer as verloorspanne. Die studie het ook bevind dat wenspanne groter afstand deur skoppe verkry het. Die hoër of laer syfers van die prestasie-aanwysers wat deur die spanne tydens die kompetisies behaal is, beklemtoon die verskillende psigologiese vereistes wat aan spanne gestel word. ’n Gevolgtrekking kan ook gemaak word dat speeltyd, lynstane verloor, skrums, skrums verloor, duikslae en strafskoppe vanaf 2011 tot 2015 verminder het. Die bevindinge mag ook belangrik wees vir verdere navorsing, omdat dit die konstante verskuiwing in die gedrag van spanne oor seisoene binne spesifieke kompetisies aantoon.
Description
Keywords
Tackle rates, Collision rates, Passing, Kicking, Super Rugby, Currie Cup, Performance indicators, Match activities, Metres gained, Rugby football, Thesis (Ph.D. (Exercise and Sport Sciences))--University of the Free State, 2016