Genetic management of the baboon population in the Suikerbosrand Nature Reserve

Loading...
Thumbnail Image
Date
2012-10-12
Authors
Bubb, Annesca
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
Genetic management has become a critical part of the overall management of nonhuman primate populations. This dissertation describes a genetic analysis of the chacma baboon population at the Suikerbosrand Nature Reserve. The aim of this study was to apply genetic data as a credible tool to contribute to the conservation and management of chacma baboons at Suikerbosrand Nature Reserve. The specific objectives included individual identification, determining genetic relationships and levels of gene flow within- and among the fourteen troops, and to construct a genetic database with individual genotypes of the whole population. A secondary objective of this study was to determine whether it would be feasible to extract DNA from fecal samples collected from a sleeping site and then use the genetic profiles to determine the number of individuals in that specific troop. The current population is estimated to be between 611 and 764 animals. The sleeping site of the Diepkloof troop was used for this part of the study. A panel of eleven human microsatellite markers was used for DNA analysis. DNA profiles from all the blood samples were successfully constructed and could be used to estimate genetic relationships. The level of genetic diversity in the Suikerbosrand baboon population did not differ significantly from that in the outgroup. Thus, the reintroduction of new individuals into the population to maintain acceptable levels of diversity is not an immediate priority. High levels of gene flow were observed between the troops, especially the troops located in the central part of the reserve. In order to ensure high DNA quality from fecal samples collected at the sleeping site, the collection method for fecal samples were optimized (A manuscript based on the work in this section has been accepted for publication in the European Journal of Wildlife Research). The profiles obtained from the fecal samples that were collected at the Diepkloof site corresponded with two of the thirteen profiles from the reference database. The estimated size of the Diepkloof troop is thirty seven individuals. The results show that non-invasive sampling could be a promising alternative for future research on the reserve, as the samples can be used to determine individual profiles. The genetic data collected can be combined with ecological and behavioral information collected form future research to further understand the population structure of the Suikerbosrand chacma baboons and changes that might occur in the population.
Description
Keywords
Dissertation (M.Sc (Genetics))--University of the Free State, 2010, Baboons -- Research, Baboons -- Conservation and management, Baboons -- Genetic engineering -- Suikerbosrant Nature Reserve (South Africa), Genetic engineering, Suikerbosrant Nature Reserve (South Africa), Troop size, Fecal samples, Individual identification, Non-invasive sampling, Gene flow, Genetic relationships, Human microsatellite markers, Genetic management, Chacma baboons
Citation