A crystallographic and mechanistic study of Mn triad complexes as model radiopharmaceuticals

dc.contributor.advisorVisser, Hendrik
dc.contributor.advisorBrink, Alice
dc.contributor.authorMokolokolo, Petrus Pennie
dc.date.accessioned2016-11-23T08:59:08Z
dc.date.available2016-11-23T08:59:08Z
dc.date.issued2015-02
dc.description.abstractA series of fac-manganese(I) tricarbonyl complexes were synthesized and analysed to better understand the chemical properties of the group 7 radiopharmaceutical model complex. Five new complexes containing N,O’, N,N’,O and O,O’ donating functionalities were successfully synthesized. The Schiff base ligands, SalH-mTol = 2-(m-tolyliminomethyl)phenol, SalH-cyHex = 2-(Cyclohexyliminomethyl)phenol and 5Me-SalH-Hist = 2-(2-imidazol-4-yl)ethyliminomethyl-5-methylphenol are derived from a salicylidene backbone. The O,O’ are the β-diketone ligands (acetylacetone= AcacH and trifluoroacetylacetone = TfacacH). The ligands were strategically selected to ensure systematic variation in electronic and steric effects. The synthesis of complexes fac-[Mn(Sal-mTol)(CO)3]2, fac-[Mn(Sal-CyHex)(CO)3]2, fac-[Mn(4-Me-Sal-Hist)(CO)2], fac-[Mn(Acac)(CO)3(OHCH3)] and fac-[Mn(Tfacac)(CO)3(OHCH3)] is reported and all the complexes were characterised by IR, NMR, UV-Vis and single crystal X-Ray diffraction to better understand the solid and solution state. All complexes afford an octahedral environment around the metal centre with the chelating ligands and three carbonyl ligands in facial arrangement. The octahedron is satisfied by a bridging oxygen atom in the dimeric complexes fac-[Mn(Sal-mTol)(CO)3]2 and fac-[Mn(Sal-CyHex)(CO)3]2, and a methanol molecule in complexes fac-[Mn(Acac)(CO)3(OHCH3)] and fac-[Mn(Tfacac)(CO)3(OHCH3)] Substitution kinetics of the coordinated methanol molecule in complexes fac-[Mn(Acac)(CO)3(OHCH3)] and fac-[Mn(Tfacac)(CO)3(OHCH3)] by a neutral imidazole ligand was evaluated. The negative values obtained for the activation entropy parameter, Δ𝑆��≠ [-88(1) J K-1 mol-1 and -18(6) J K-1 mol-1], in both complexes is suggestive of an associative type mechanism. As anticipated, the overall rate of methanol substitution in complex fac-[Mn(Acac)(CO)3](OHCH3)] is faster than in fac-[Mn(Tfacac)(CO)3(OHCH3)] as indicated by the overall larger k1 and K1, due to the presence of electron withdrawing fluorine atoms on the ligand backbone.en_ZA
dc.description.sponsorshipUniversity of the Free State (UFS)en_ZA
dc.description.sponsorshipNational Research Foundation (NRF)en_ZA
dc.identifier.urihttp://hdl.handle.net/11660/4763
dc.language.isoenen_ZA
dc.publisherUniversity of the Free Stateen_ZA
dc.rights.holderUniversity of the Free Stateen_ZA
dc.subjectManganeseen_ZA
dc.subjectTricarbonyl complexen_ZA
dc.subjectSalicylidene Schiff baseen_ZA
dc.subjectSubstitution kineticsen_ZA
dc.subjectDissertation (M.Sc. (Chemistry))--University of the Free State, 2015en_ZA
dc.titleA crystallographic and mechanistic study of Mn triad complexes as model radiopharmaceuticalsen_ZA
dc.typeDissertationen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MokolokoloPP.pdf
Size:
6.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Item-specific license agreed upon to submission
Description: