Synthesis, kinetic and computational chemistry of thiopene-containing beta-diketonato complexes of rhodium(I) and rhodium(III)

Loading...
Thumbnail Image
Date
2007-01
Authors
Conradie, Marrigje Marianne
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: Thienyl-containing β-diketones of the type ThCOCH2COR, with R = Th (Hdtm), C6H5 (Hbth), have been prepared. The group electronegativity of the thienyl group is 2.107 (Gordy scale) as inferred from a linear methyl ester IR carbonyl stretching frequency - group electronegativity relationship. A single crystal X-ray determination of the structure of ThCOCH2COPh indicates, that the enolization in a direction away from the thienyl group, always dominates. Assymetric enolisation, in the direction furthest from the thienyl group, was also observed for ThCOCH2COR, with R = Th or CF3 (Htta). This finding is considered to be the result of resonance driving forces rather than inductive electronic effects of substituents on the pseudo-aromatic β-diketone core. By increasing the temperature of the solvent (CDCI3) from 0 to 50°C, the percentage keto isomer at equilibrium of Htta (4.2 - 7.1%), Hbth (5.3 - 9.5%) and Hdtm (14.8 - 21.9%) increased. Slow conversion kinetics from the keto to the dominant enol isomer was monitored in CDCI3 solution for Hbth and Hdtm. The keto-enol conversion for Htta was found to be too fast to measure. pKa' values of the thienyl-containing β-diketones ThCOCH2COR were determined to 6.49 (Htta), 9.01 (Hbth) and 8.89 (Hdtm). Synthetic routes to prepare new thienyl-containing β-diketones rhodium(I) complexes of the type [RhI(ThCOCHCOR)(CO)2], [RHI(ThCOCHCOR)(CO)(PPh3)] and [RhIII(β-diketonato)(CO)CPPh3)(Me)(I)] with Th = thienyl and R = C6H5 (Ph), Th and CF3 have been developed. The crystal structure of [Rh(dtm)(CO)2] was also solved. From 1H and 31P NMR studies, it is clear that for complexes of the type [RhI(β-diketonato)(CO)(PPh3)] and [RhIII(β-diketonato)(CO)(PPh3)(Me)(I)], with an unsymmetrical β-diketonato ligand, at least two main isomers exist in solution. The equilibrium constant, Kc, which relates these two isomers in an equilibrium reaction, is concentration independent but temperature dependent for [RhI(tta)(CO)(PPh3)]. ∆rG, ∆rH and ∆rS values for this equilibrium have been determined. However, changes in the temperature (-30 to 55°C in CDCl3) or concentration had little influence on the equilibrium constant of [RhI(bth)(CO)(PPh3)] and the [RhIII(β-diketonato)(CO)(PPh3)(Me)(I)] complexes of tta and bth. The chemical kinetics of the oxidative addition reaction of CH3I to [Rh(ThCOCHCOR)(CO)(PPh3)] have been studied in detail utilizing IR, UV/vis, 1H NMR, 19F NMR and 31P NMR techniques. The NMR studies revealed that the rate of oxidative addition of iodomethane to the different [Rh(ThCOCHCOR)(CO)(PPh3)] isomers were the same. Three definite sets of reactions, involving at least two Rh(III)-alkyl (two isomers each) and two Rh(III)-acyl species (two isomers each), as shown in the reaction sequence below, were observed. Action sequence in PDF full text. A quantum computational chemistry study, by means of Density Functional Theory (DFT) calculations was done on the thienyl-containing rhodium(I) and rhodium(III) complexes involved in the above reaction scheme. Excellent results, in agreement with experimental results were obtained on the geometry optimization of Hdtm and [Rh(ThCOCHCOCF3)(CO)(PPh3)]. By comparng the relative energies of the optimized geometries of the 12 possible rhodium(III)-alkyl and 6 possible rhodium(III)-acyl products,, the stereochemistry of the different alkyl1, alkyl2, acyl1 and acyl2 products in the above reaction scheme was proposed. Experimental results obtained on the stereochemistry of the selected alkyl1 and alkyl2 reaction products, by means of 1H NOESY, were consistent with the stereochemistry proposed by quantum chemistry calculations.
Afrikaans: Tiëniel-bevattende β-diketone van die vorm ThCOCH2COR, met R =Th (Hdtm), C6H5 (Hbth) is berei. Die groep-elektronegatiwiteit van die tiëniel-groep is as 2.107 (Gordy-skaal), bepaal vanaf 'n linieêre verband tussen die metiel ester IR karboniel strekkingsfrekwensie en die groep-elektronegatiwiteit. 'n Kristallografiese X-straal bepaling van die struktuur van ThCOCH2COPh het aangetoon dat enolisasie in 'n rigting weg van die tiëniel-groep domineer. Asimmetriese enolisasie in die rigting verste van die tiëniel-groep is ook waargeneem vir ThCOCH2COR, met R = Th of CF3 (Htta). Dit word geïnterpreteer as die resultaat van 'n resonansdryfkrag, eerder as die induktiewe elektroniese effek van die substituente op die pseudoaromatiese β-diketoon kern. 'n Toename in die temperatuur van die oplosmiddel (CDCl3) vanaf 0 na 50°C, toon 'n toename in die persentasie keto-isomeer by ewewig vir Htta (4.2 - 7.1%), Hbth (5.3 - 9.5%) en Hdtm (14.8-21.9%). Die stadige omsetting van die keto na die dominante enol-isomeer is in 'n CDCl3 oplossing gemonitor vir Hbth en Hdtm. Die keto-enol omsetting van Htta was te vinnig om te meet. pKa' waardes van tiëniel-bevattende β-diketone, ThCOCH2COR, is bepaal as 6.49 (Htta), 9.01 (Hbth) en 8.89 (Hdtm). Sintese roetes is ontwikkel om nuwe tieniel-bevattende β-diketonatorodium(I)komplekse, van die vorm [RhI(TbCOCHCOR)(CO)2], [RhI(ThCOCHCOR)(CO)(PPh3)] en [RhIII(β-diketonato)(CO)(PPh3)(Me)(I)] met Th= tiëniel en R = C6H5 (Ph), Th en CF3 te berei. Die kristalstruktuur van [Rh(dtm)(CO)2] is ook opgeklaar. 1H en 31P KMR-studies van die komplekse [RhI(β-diketonato)(CO)(PPh3)] en [RIII(β-diketonato)(CO)(PPh3)(Me)(I)], wat 'n asimmetriese β-diketonato-ligand bevat, het aangetoon dat daar minstens twee isomere van hierdie komplekse in oplossing bestaan. Die ewewigskonstante, Kc, tussen die twee isomere by ewewig, is konsentrasie-onafhanklik maar temperatuur-afhanklik vir [RhI(tta)(CO)(PPh3)]. ∆rG, ∆rH en ∆rS is vir hierdie ewewig bereken. Verandering in temperatuur (-30 tot 55°C in CDCl3) of konsentrasie het 'n minimale invloed op die ewewigskonstante van die [RhI(bth)(CO)(PPh3)]- en die [RhIII(β-diketonato)(CO)(PPh3)(Me)(I)]-komplekse van tta en bth gehad. Die chemiese kinetika van die oksidatiewe addisie-reaksie tussen CH3I en [Rh(ThCOCHCOR)(CO)(PPh3)] is deur middel van IR, UV/sigbaar, 1H KMR, 19F KMR en 31P KMR-spektroskopie ondersoek . Die KMR studies het aangetoon dat die tempo van oksidatiewe addisie van metieljodied tot die verkillende [Rh(ThCOCHCOR)(CO)(PPh3)]-isomere dieselfde was. Drie reaksiestelle, wat minstens twee Rh(III)-alkielspesies (twee isomere elk) en twee Rh(III)-asielspesies (twee isomere elk) bevat, soos aangetoon in die onderstaande reaksieskema, is waargeneem. Reaksieskema in PDF volteks. 'n Kwantum berekeningschemie-studie, met behulp van DFT ("Density Functional Theory") berekeninge, is op die tiëniel-bevattende rodium(I)- en rodium(III)-komplekse betrokke in die bogenoemde reaksieskema uitgevoer. Uitstekende resultate, in ooreenstemming met eksperimentele resultate, is verkry vir die geoptimiseerde geometrie van Hdtm en [Rh(ThCOCHCOCF3)(CO)(PPh3)]. 'n Vergelyking van die relatiewe energieë van die geoptimiseerde geometrieë van die 12 moontlike rodium(III)-alkiel en 6 moontlike rodium(III)asiel produkte het dit moontlik gemaak om die stereochemie van die verskillende alkiell-, alkiel2-, asiell- en asiel2-produkte in bogenoemde reaksieskema te voorspel. Eksperimentele resultate, met behulp van 1H NOESY uitgevoer op geselekteerde alkiell en alkiel2 reaksieprodukte, stem ooreen met die stereochemie wat voorspel is deur die kwantum chemie berekeninge.
Description
Keywords
β-diketone, Rhodium(I), Rhodium(III), Oxidative, Stereochemistry, NOESY, Computational, DFT, Rhodium compounds -- Synthesis, Synthesis, Chemical reactions, Dissertation (M.Sc. (Chemistry))--University of the Free State, 2007
Citation