Simulating future rangeland production in central South Africa

Loading...
Thumbnail Image
Date
2018
Authors
Odendaal, Catherine
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: A large part (69%) of South Africa’s surface is suitable for grazing resulting in livestock farming being the largest agricultural sector in the country. Rangelands are an important resource for a stock farmer as it provides a cheap food source for the livestock midst it is in a good condition. In order to feed an ever-increasing population, better rangeland management practices are needed to ensure food security. Adaptation strategies should address climate variability and change, which is already suspected to be the main cause for variable crop yields and rangeland production. It is therefore imperative to investigate what the effect of climate change will be on rangeland production in the long run. Thus, the main aim of this study was to assess the historical and future rangeland production in the Bloemfontein area of South Africa, which falls within the dry Themeda-Cymbopogon veld type and is deemed representative of the central grassland biome. Observed climate data was sourced from the South African Weather Service (SAWS) station at Bloemfontein Airport for the historical base period (1980/81 – 2009/10). Simulated climate data was also obtained for the base and three future periods (i.e. current period (2010/11 – 2039/40), near future (2040/41 – 2069/70) and distant future (2070/71 – 2098/99)) from five Global Climate Models (GCMs) using two Representative Concentration Pathways (RCPs). Here RCP 4.5 and 8.5 respectively represented intermediate and high greenhouse gas emission pathways. Measured rangeland production data was obtained from the Sydenham Experimental Farm outside Bloemfontein for the historical base period. PUTU VELD (PV) was used to simulate rangeland production for the base and future time periods. Inputs included rainfall (mm), minimum and maximum temperature (°C), sunshine hours (h) and evapotranspiration (mm.d-1) at daily intervals, where the latter was estimated using the Hargreaves-Samani method. PV outputs included maximum dry matter production (DMPmax), the date of occurrence of DMPmax (Dtp) and the number of moisture stress days (MSD). Results showed a weak positive trend in measured DMPmax over the historical base period. It should be stressed that the results of this study should not be interpreted or extrapolated outside the context of this document since the validation of PV over the historical base period yielded poor results (R2 = 0.28), revealing possible serious overfitting issues. PV was also found to generally underestimate DMPmax when using GCM data as input when compared to runs employing SAWS data. Dtp showed a weak negative trend, implying a tendency for Dtp to occur slightly earlier in the season with time, while MSD revealed weak linear trends over the base period. Using 3-month running means of the Niño 3.4 anomalies as predictor of standardized DMPmax showed real promise as approximately 17.5% of the variation in DMPmax could be explained by the variation in the July-August-September (JAS) Niño 3.4. With respect to the future periods, the results showed that on average DMPmax will decrease slightly over time under RCP 4.5, while it will increase under RCP 8.5. In terms of grazing capacity, both RCPs revealed that more land will be needed per animal for sustainable farming. The Dtp showed a general shift to later in the growing season under both RCPs. It was also noted that although both RCPs had more MSDs when compared to the base period, there were larger differences observed under RCP 8.5. It was suggested that active monitoring and good rangeland improvement techniques be utilised by livestock farmers to ensure a good rangeland condition with adequate food supply for livestock. Future work should focus on evaluating other rangeland production models for this region.
Afrikaans: ʼn Groot deel (69%) van Suid-Afrika se oppervlakte is geskik vir weiding, met die gevolg dat veeboerdery die grootste landbousektor in die land is. Weiveld is ʼn belangrike hulpbron vir ʼn veeboer aangesien dit ʼn goedkoop voedselbron vir vee kan wees mits dit in ʼn goeie toestand is. Om aan die toenemende bevolking voedsel te verskaf, word beter veldbestuurspraktyke benodig om voedselsekerheid te waarborg. Aanpassingstrategieë behoort klimaatveranderlikheid en -verandering aan te spreek, wat reeds aangevoer word as die hoofoorsaak vir veranderlike gewasopbrengste en weidingproduksie. Dit is dus noodsaaklik om ondersoek in te stel na die langtermyn uitwerking van klimaatsverandering op weidingproduksie. Die hoofdoel van hierdie studie was dus om die historiese en toekomstige veldproduksie in die Bloemfontein-gebied van Suid-Afrika, wat binne die droë Themeda-Cymbopogon-veldtipe val en as verteenwoordigend van die sentrale graslandbioom beskou word, te evalueer. Waargenome klimaatdata was verkry vanaf die Suid-Afrikaanse Weerdiens (SAWS) se stasie op Bloemfontein Lughawe vir die historiese basistydperk (1980/81 – 2009/10). Gesimuleerde klimaatdata is ook verkry vir die basis en drie toekomstige tydperke (d.w.s. huidige tydperk (2010/11 – 2039/40), nabye toekoms (2040/41 – 2069/70), en verre toekoms (2070/71 – 2098/99)) vanaf vyf globale klimaatmodelle (GKM’e) deur gebruik te maak van twee verteenwoordigende konsentrasiepaaie (VKP’s). Hier verteenwoordig VKP 4.5 en 8.5 onderskeidelik intermediêre en hoë kweekhuisgasvrystellings. Gemete weidingproduksiedata is verkry van die Sydenham Proefplaas buite Bloemfontein vir die historiese basistydperk. PUTU VELD (PV) is gebruik om weidingproduksie te simuleer vir die basis en toekomstige tydperke. Insette sluit in reënval (mm), minimum en maksimum temperatuur (°C), sonskynure (h) en evapotranspirasie (mm.d-1), waar laasgenoemde volgens die Hargreaves-Semani-metode geraam is. PV uitsette sluit in maksimum droëmateriaalproduksie (DMPmax), die datum van die voorkoms van DMPmax (Dtp) en die aantal vogstremmingsdae (VSD). Resultate het ʼn swak positiewe tendens in gemete DMPmax oor die historiese basistydperk getoon. Dit moet egter beklemtoon word dat die resultate van hierdie studie nie buite die konteks van hierdie dokument geïnterpreteer en geëkstrapoleer moet word nie, aangesien die validering van PV oor die historiese basistydperk swak resultate opgelewer het (R2 = 0.28), wat moontlike ernstige oorpassingsprobleme toon. Daar was ook gevind dat PV oor die algemeen DMPmax onderskat wanneer GKM-data as insette gebruik word in vergelyking met lopies wat SAWS-data gebruik. Dtp het ʼn swak negatiewe neiging getoon, wat daarop dui dat Dtp mettertyd effens vroeër in die seisoen plaasvind, terwyl VSD ʼn swak lineêre tendens oor die basistydperk getoon het. Die gebruik van 3-maand lopende gemiddelde van die Niño 3.4-anomalieë as voorspeller van gestandaardiseerde DMPmax het werklike belofte getoon, aangesien ongeveer 17.5% van die variasie in DMPmax verklaar kon word deur die variasie in die Julie-Augustus-September (JAS) Niño 3.4 Met betrekking tot die toekomstige tydperke het die resultate getoon dat DMPmax oor die algemeen mettertyd sal afneem onder VKP 4.5, terwyl dit onder VKP 8.5 sal toeneem. Wat weidingskapasiteit betref, het beide VKPs getoon dat meer grond per dier benodig word vir volhoubare boerdery. Die Dtp het ʼn algemene verskuiwing tot later in die groeiseisoen onder beide VKPs getoon. Daar is ook opgemerk dat hoewel beide VKPs meer VSDs gehad het in vergelyking met die basistydperk, was daar groter verskille waargeneem onder VKP 8.5. Daar is voorgestel dat aktiewe monitering en goeie veldverbeteringstegnieke deur veeboere aangewend moet word om ʼn goeie veldtoestand te verseker met voldoende voedselvoorsiening vir vee. Toekomstige werk moet fokus op die evaluering van ander weidingproduksiemodelle vir hierdie streek.
Description
Keywords
Climate change, Global climate models, PUTU VELD, Rangeland production model, Themeda-Cymbopogon veld, Dissertation (M.Sc.Agric. (Soil, Crop and Climate Sciences))--University of the Free State, 2018
Citation