The description of physico-chemical processes in coal mine spoils and associated production of acid mine drainage

Loading...
Thumbnail Image
Date
2007-05
Authors
Fourie, Petrus Johannes
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: In the first part of this study the typical physico-chemical processes involved in Acid Mine Drainage (AMD) generation were discussed. This included a detailed description of mineralogical reactions, oxygen migration processes and heat conduction typically found in coal mine wastes. In the second part of the study the mineralogy as well as the AMD generation potential of coal mine spoils and discard in South Africa was assessed. A geochemical model of the AMD generation at a rehabilitated backfilled open-cast mine was constructed that simulated the oxygen diffusion process. Coal mine wastes produce Acid Mine Drainage (AMD) due to the ingress of oxygen and the subsequent oxidation of pyrite in the waste rock. As coal mine wastes consume oxygen, oxygen molecules will spontaneously diffuse into the coal mine waste rock along the concentration gradient. Oxygen migration into coal mine wastes also occurs through the passive process of advection. Mechanisms for advection include 1) air convection due to heat differences or changes in gas composition, 2) barometric pumping or 3) changes in water saturation. Heat is generated in coal mine waste mostly through pyrite oxidation and spontaneous combustion of coal. Heat flow occurs by means of conduction, convection, radiation and latent heat. Heat has an indirect influence on every aspect of Acid Mine Drainage (AMD) including microbial activity, gas migration, the rate of chemical reactions etc. Coal discard analysed in this study showed a high net acid generation potential, whether subjected to spontaneous combustion or not. Overall it can be concluded that coal discard has a high potential to generate AMD in South Africa. In spoil material it was found that some trace to dominant minerals were present that were also identified in other studies. These minerals include quartz, kaolinite, calcite, dolomite, mica, K-feldspar, plagioclase, siderite, pyrite, illite/smectite, smectite and anatase. The average pyrite content decreased from coal samples to carbonaceous clastic rocks to non-carbonaceous clastic rocks. The net acid generation potential was found to increase upwards from the No. 1 to the No. 4 coal seam. In the case study, one dimensional modelling of oxygen diffusion through waste material was performed using the PYROX 3 model of the University of Waterloo. The interaction between the gas, mineral and water phases was modelled using The Geochemist’s Workbench 6 (GWB). Consumption of oxygen by pyrite resulted in a decrease in oxygen concentration towards the bottom of the pit. Oxygen was however present in the saturated zone at the bottom of the pit and oxygen migration into the unsaturated zone was therefore not seen as the rate limiting step for the overall pyrite oxidation process. The pyrite oxidation rate was determined in PYROX after calibrating the oxygen concentration in the model to field conditions. By adjusting the reactive pyrite surface area in GWB the pyrite oxidation rate was calibrated to the rate modelled in PYROX. In the geochemical mass model seven scenarios were run that modelled closed, open and intermediate systems with regard to the oxygen and CO2 buffer. It was found that the geochemical system was nearly open to atmospheric oxygen and CO2, which can be attributed to the shallowness of the pit (average depth of 12 m). During the first few years a near neutral stage (pH 5.5 - 7.5) existed where calcite and dolomite buffered the solution. After depletion of the carbonate minerals an acidic stage (pH 3.0 - 4.0) followed where silicate minerals consumed some of the acidity. These two stages had a significant influence on the mineral reactions in the waste material and the ion concentrations in the pit water. The abiotic rate of pyrite oxidation by oxygen is positively dependent on the dissolved oxygen activity and negatively dependent on the hydrogen activity. As the pH decreased over the model time, the pyrite oxidation rate also decreased. The concentrations of all the major parameters and of iron in the pit water were modelled. It was observed that sulphate reached its peak concentration during the near neutral stage just before the acidification of the pit water and thereafter it decreased steadily before reaching a long-term concentration. During the neutral stage Fe(OH)3 had the highest activity of all iron species. Fe(OH)3 became undersaturated while Fe(OH)2+ and Fe(OH)2+ were the dominant species during the acidic stage. Oxidation of pyrite by ferric iron did however not occur as the ferric iron activity became only high enough at pH levels of below pH 3. This study showed that the AMD process can be successfully modelled using numerical modelling. In South Africa the number of operating coal mines have declined significantly over the past two decades and numerous coal discard dumps are present throughout coalfields. Modelling of AMD at coal mining sites will become increasingly more important for management decisions as more mines close in the Witbank and Highveld coalfields.
Afrikaans: In die eerste gedeelte van hierdie studie is die fisies-chemiese prosesse wat ‘n rol speel in die produksie van suur-mynwater bespreek. Hierdie gedeelte sluit ‘n gedetaileerde beskrywing van die mineralogiese reaksies, die suurstofmigrasie prosesse en die hitte-generasie wat tipies gevind word in steenkoolmyn afvalprodukte. In die tweede gedeelte van hierdie studie word die mineralogie sowel as die suur-mynwater produksie potensiaal van die steenkoolmyn afvalprodukte in Suid-Afrika ondersoek. ‘n Geochemiese model van die suur-mynwater produksie by ‘n gerehabiliteeerde oopgroefmyn is gebruik om die diffusie van suurstof in die myn in te simuleer. Steenkoolmyn afvalprodukte genereer suur-mynwater weens die infiltrasie van suurstof en die gevolglike oksidasie van piriet in die afvalmateriaal. Soos wat die materiaal suurstof verbruik sal suurstofmolekules spontaan diffundeer in die material in, in reaksie op die konsentrasiegradiënt wat geskep word. Suurstofinfiltrasie kan ook passief plaasvind naamlik deur adveksie. Meganismes van adveksies sluit in 1) lugkonveksie weens hitte- of lugsamestellingsverskille, 2) barometriese drukking of 3) veranderinge in waterversadiging. Hitte word geproduseer in steenkoolmyn afvalmateriaal deur die oksidasie van piriet, en deur die spontane verbranding van steenkooluitskot. Hittevloei vind plaas deur geleiding, konveksie, radiasie en latente hitte. Hitte het ‘n indirekte invloed op elke aspek van die produksie van suur-mynwater, insluitend mikrobiese aktiwiteit, gasmigrasie, chemiese reaksie tempo’s ens. Steenkooluitskot van die veredelingsproses het in hierdie studie ‘n hoë potensiaal getoon om suur-mynwater te genereer. Dit was selfs ook die geval vir steenkooluitskot wat onderhewig was aan spontane verbranding. In steenkoolmyn afvalgesteentes is spoor tot dominante minerale teenwoordig wat ook in ander studies geïdentifiseer was. Hierdie minerale sluit in kwarts, kaoliniet, kalsiet, dolomiet, mika, K-veldspaat, plagioklaas, sideriet, piriet, illiet/smektiet, smektiet en anataas. Die gemiddelde piriet inhoud neem af vanaf steenkool na koolstofhoudende klasties gesteentes na nie-koolstofhoudende klastiese gesteentes. Dit is gevind dat die netto suur-mynwater produksie potensiaal toegeneem het opwaarts vanaf die Nr. 1 na die Nr. 4 steenkoolsoom. In die gevallestudie is een-dimensionele suurstofdiffusie deur die steenkoolmyn afvalmateriaal gemodelleer met behulp van die PYROX 3 model van die Universiteit van Waterloo. Die interaksie tussen die gas-, mineraal- en waterfase is gemodelleer met The Geochemist’s Workbench 6 (GWB). Verbruik van suurstof deur piriet lei tot ‘n afname in die suurstofkonsentrasie nader aan die vloer van die myn. Suurstof was wel gevind in die waterversadigde sone op die vloer en suurstofmigrasie in die onversadigde sone is dus nie beskou as die tempobepalende stap vir suurmynwater produksie nie. Die piriet oksidasietempo is bepaal in PYROX deur dit met die gemete suurstofkonsentrasie in die versadigede sone te kalibreer. Die reaktiewe piriet oppervlakarea in GWB was aangepas totdat die piriet oksidasietempo gekalibreer was met dié van PYROX. In die geochemiese massamodel was sewe scenarios uitgevoer om geslote, oop en intermediëre sisteme ten opsigte van suurstof en CO2 buffers te modelleer. Dit is bevind dat die geochemiese sisteem amper oop was vir atmosferiese suurstof en CO2, wat toegeskryf kan word aan die feit dat die myn redelik vlak is (gemiddelde diepte 12 m). Gedurende die eerste paar jare in die model het ‘n ampere neutrale-fase (pH 5.5 - 7.5) voorgekom waarin kalsiet en dolomiet in kontak met die oplossing as buffers opgetree het. Na die totale verbruiking van die karbonaatminerale het ‘n suurfase (pH 3.0 - 4.0) gevolg waarin silikaatminerale van die suur begin verbruik het. Hierdie twee fases in die geochemiese model het ‘n betekenisvolle invloed gehad op die mineraalreaksies in die afvalmateriaal en die ioonkonsentrasies in die gemodelleerde mynwater. Die tempo van die abiotiese oksidasie van piriet deur suurstof is positief afhanklik aan die suurstof aktiwiteit en negatief afhanklik aan die waterstof aktiwiteit in die oplossing. Soos die pH oor die gemodelleerde tyd afneem sal die piriet oksidasietempo ook afneem. Die konsentrasies van al die hoof parameters asook die van yster in die mynwater is gemodelleer. Sulfaat bereik sy piek konsentrasie gedurende die neutrale-fase voor versuring van die mynwater plaasvind. Gedurende die suurfase neem die sulfaatkonsentrasie geleidelik af totdat dit stabiliseer en ‘n langtermyn konsentrasie bereik. Gedurende die neutrale-fase het Fe(OH)3 die hoogste aktiwiteit bereik van al die ysterspesies. Fe(OH)3 word egter onderversadig terwyl Fe(OH)2+ and Fe(OH)2+ die dominante spesies is gedurende die suurfase. Volgens die model vind die oksidasie van piriet deur Fe3+ nie plaas aangesien Fe3+ se aktiwiteit eers hoog genoeg is onder pH vlakke van pH 3. Hierdie studie het getoon dat die prosesse wat ‘n rol speel in die produksie van suur-mynwater suksesvol numeries gemodelleer kan word. In Suid-Afrika het die hoeveelheid operasionele steenkoolmyne betekenisvol afgeneem gedurende die afgelope twee dekades en talle steenkooluitskothope is ook teenwordig in die steenkoolvelde. Soos wat meer steenkoolmyne sluit sal die modellering van suurmynwater by steenkoolmyne toenemnd meer belangrik word vir bestuursbesluitneming.
Description
Keywords
Acid mine drainage, Geochemical modelling, Physico-chemical processes, Coal mine spoil, Coal discard, Diffusion, Advection, Coal mineralogy, Mineral dissolution, Kinetic mineral, Coal mines and mining, Coal mine waste, Acid mine drainage -- South Africa, Dissertation (M.Sc. (Geohydrology))--University of the Free State, 2007
Citation