A solid state and mechanistic study of multidentate ligand zirconium(IV) halido complexes

Loading...
Thumbnail Image
Date
2014-02
Authors
Steyn, Maryke
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: Zirconium and hafnium, the chemical twins in the titanium triad of the periodic table, are chemically very similar, but exhibit a significant difference in their nuclear properties, and also most noteworthy, their application in industry. Zirconium, with its very low affinity for thermal neutrons (radioactive energy), high thermal stability and exceptional anti-corrosive properties, is widely used as cladding material for nuclear reactor fuel rods. Hafnium, on the other hand, with its very high affinity for thermal neutrons is most often employed as control rods, used for regulating the rate of fission in nuclear reactors. For this application alone, it is apparent why the separation of these metals to their chemically pure state, is so important. Even the smallest impurity of one metal in the other would seriously degrade the ability of the metal to function in its particular role in a nuclear reactor. In this study, the solid state and solution behaviour of zirconium(IV) coordination compounds, containing N- and O-donating multidentate ligands, is investigated. A detailed description of the synthesis of 25 zirconium(IV) complexes with three ligand families – O,O’-donating, oxines and pyridines – are reported and characterised by means of IR, UV/Vis and NMR (1H & 13C) spectroscopies. Furthermore, the solid state structural characterisation, by means of single crystal X-Ray Diffraction spectroscopy, of eight of these synthesised complexes is described in detail. Six novel oxine-type complexes – [Zr(diClOx)4]∙2DMF, [Zr(5-ClOx)4]∙2DMF, [ZrCl(CliOx)2(DMF)2O]2∙DMF, [Zr(diMeOx)4] ∙2DMF, [Zr(5-NO2Ox)4] and [Zr(Pic)4]∙2H2O – are discussed and compared with regard to the intimate geometric environment around the zirconium(IV) metal centre [where 5,7-Dichloro-8-hydroxyquinoline (diClOxH), 5-Chloro-8-hydroxyquinoline (5-ClOxH), 5-Chloro-7-iodo-8-hydroxyquinoline (CliOxH), 5,7-Dimethyl-8-hydroxyquinoline (diMeOxH), 5-Nitro-8-hydroxyquinoline (5-NO2OxH), 2-Picolinic acid (PicH)]. It is shown here that these structures also exhibit the classic square antiprismatic coordination polyhedra as expected for the O,O’-donating acetylacetone-type complexes of zirconium(IV). The redetermination for the structures [Zr(Trop)4]∙DMF and [Zr(DBM)4] is also included and further discussed in detail [Tropolone (TropH), Dibenzoylmethane (DBM)]. In these examples, it is shown and concluded that zirconium(IV) complexes exhibit a natural tendency to form tetrakis- or eight-coordinate crystalline products, as preference, with a square antiprismatic chelation environment around the metal centre in most of the cases. From these findings it was postulated that, for this metal centre, the susceptibility of chelation geometry to intermolecular forces seems greater than that of ligand internal geometry and is primarily governed by the zirconium(IV) centre itself. In addition, a solution kinetic study (utilizing UV/Vis Absorbance spectroscopy) on the formation mechanism of three oxine complexes synthesised and crystallographically characterised, is also included. The rudimentary findings for [Zr(diClOx)4], [Zr(5-ClOx)4] and [Zr(diMeOx)4] (from ZrCl4 as reactant) is shown to correspond well with that of the [Zr(ox)4] complex evaluated in the preliminary M.Sc. study. The entering ligands were selected to span a range of increasing donor ability utilising both chloro and methyl substituents on the oxine backbone. In all cases the same general intricate process of bidentate ligand coordination was observed. This process involves a fast initial reaction, followed by three slower multi-phase reaction steps wherein it is assumed that the chloride ligand is liberated as HCl (H+ from oxH) in the ring-closing step in each of the four processes. In total, the reactions span about a five order-of-magnitude range, indicating a huge change in affecting all four the chlorido ligands to be substituted to form the corresponding tetrakis-oxine complexes. Where the first step showed an increase by more than 30 times as the donor ability of the entering ligand increased, the subsequent following three reactions indicated approximately one order-of-magnitude decrease in ligation rate. Equilibrium suppression studies were also performed by means of stepwise increasing the concentration of the leaving ligand, in this case Cl-, by the addition of a spectator organic salt, PPh4+Cl-. The findings in this case show that all four reaction steps for all three zirconium(IV) complexes are significantly affected and restrained by this equilibrium manipulation process. Next, theoretical optimization, by means of computational chemistry techniques, of two different families of zirconium(IV) complexes was performed and the subsequent results evaluated by comparison with the structural data obtained from single crystal studies. The two families in question, the tetrakis(acetylacetonato-κ2O,O’)zirconium(IV)- and tetrakis(oxine-κ2N,O)zirconium(IV) type examples, were each selected to represent the O,O- and N,O- coordination environments of the metal polyhedron. Fair correlation is observed for the [Zr(Acac)4] type complexes, that is [Zr(acac)4], [Zr(hFacac)4] & [Zr(DBM)4], with their optimized counterparts. However, for [Zr(acac)4] a different coordination isomer was obtained from the optimization. This observation can be attributed to the fact that theoretical optimization of molecular structures assumes a gas phase environment, without inter- or intramolecular forces governing lattice stabilization/packing. It can therefore be postulated with more certainty that zirconium(IV)complex structures experience a more significant influence from these interactions than previously considered. Finally, the optimization of three zirconium(IV) oxine complexes– [Zr(ox)4], [Zr(diMeOx)4] & [Zr(diClOx)4] – was also accomplished to elucidate whether or not these ligands, with a more rigid frame and packing placement, would show similar optimisation. This was consequently illustrated to an acceptable accuracy with good correlation between crystallographically characterised structures and their theoretically optimised counterparts.
Afrikaans: Sirkonium en hafnium, die chemiese tweeling in die titaangroep van die periodieke tabel, is chemies baie soortgelyk, maar toon 'n betekenisvolle verskil in hul kerneienskappe, en veral tov hul toepassing in die industrie. Sirkonium, met sy baie lae affiniteit vir termiese neutrone (radio-aktiewe energie), hoë termiese stabiliteit en uitsonderlike antikorrosie-eienskappe, word algemeen gebruik as dekmateriaal vir kernreaktorbrandstof. Hafnium daarteenoor, met sy hoë affiniteit vir termiese neutrone, word dikwels gebruik as beheerstawe in die kernbrandstof, wat gebruik word vir die temporegulering van die kernreaksie binne-in die reaktore. Deur bloot hierdie toepassing in aanmerking te neem blyk dit duidelik waarom die effektiewe skeiding van hierdie metale in hul chemiese suiwer toestand krities belangrik is. Selfs klein onsuiwerheid van een metaal in die ander kan die vermoë van die ander een betekenisvol negatief in 'n kernreaktor beïnvloed. In hierdie studie is die vastetoestand- en oplossinggedrag van sirkonium(IV) koördinasieverbindings, met N- en O-elektrondonor multidentaatligande ondersoek. 'n Volledige beskrywing van die sintese van 25 sirkonium(IV)komplekse met drie reekse ligandgroepe – O,O’-donoratome (asetielasetonaattipe), sowel as beide oksien en piridien (d.w.s. O- en N-donoratoomligande) – word gerapporteer en is gekarakteriseer deur middel van IR, UV / Vis en KMR (1H en 13C) spektroskopie. Die vastetoestandstrukture van agt van hierdie gesintetiseerde komplekse, soos bepaal deur middel van enkelkristal X-straaldiffraksie, word in detail beskryf. Ses nuwe oksien-tipe komplekse, nl. [Zr(diClOx)4]∙2DMF, [Zr(5-ClOx)4]∙2DMF, [ZrCl(CliOx)2(DMF)2O]2∙DMF, [Zr(diMeOx)4]∙2DMF, [Zr(5-NO2Ox)4] en [Zr(pic)4]∙2H2O, word bespreek en die koördinasiepolihedra rondom die Zr(IV) vergelyk [met 5,7-Dichloro-8-hidroksiekinolien (diClOxH), 5-Chloro-8-hidroksiekinolien (5-ClOxH), 5-Chloro-7-iodo-8-hidroksiekinolien (CliOxH), 5,7-Dimetiel-8-hidroksiekinolien (diMeOxH), 5-Nitro-8-hidroksiekinolien (5-NO2OxH), 2-pikoliensuur (PicH)]. Dit word ook illustreer dat al hierdie strukture die klassieke vierkantige antiprismatiese geometrie, met duidelike koördinasiemultivlakke soos verwag vir die O,O’-skenkende asetielasetoontipe komplekse van sirkonium(IV), vertoon. Die herbepaling van die strukture [Zr(Trop)4]∙DMF en [Zr(DBM)4] [Tropoloon (TropH), Dibensoielmetaan (DBM)] m.b.v. enkelkristal X-straaldiffraksie is ook ingesluit en verder in detail bespreek. In hierdie voorbeelde word dit geillustreer dat sirkonium(IV) komplekse 'n natuurlike neiging toon om by voorkeur die tetrakis- of agt-gekoördineerde produkte, met 'n vierkantige antiprismatiese chelering omgewing rondom die metaal-sentrum in die meeste gevalle, te vorm. Dit is gevolglik voorlopig hieruit geformuleer dat die sirkonium(IV) metaalsenter se finale geometrie tot 'n groter mate deur intermolekulêre kragte as dié van ligande se interne eienskappe is en dus hoofsaaklik deur die metaalsentrum beheer word. Die ondersoek het ook 'n oplossing kinetiese studie (m.b.v. UV/Vis absorbansie spektroskopie) van die vormingsmeganisme van drie oksienkomplekse soos gesintetiseer en kristallografies gekarakteriseer, ingesluit. Die basiese bevindings vir [Zr(diClOx)4], [Zr(5-ClOx)4] en [Zr(diMeOx)4] (van ZrCl4 as reaktant) toon goeie ooreenstemming met dié van die [Zr(ox)4] komplekse soos geëvalueer in die voorlopige M.Sc. studie. Die inkomende ligande is gekies om 'n sistematiese reeks van toenemende elektronskenkervermoë te verteenwoordig deur van beide chloor- en metielsubstituente op die oksienruggraat gebruik te maak. In alle gevalle is dieselfde algemene ingewikkelde proses van bidentate ligand koördinasie waargeneem. Hierdie proses behels 'n vinnige aanvanklike reaksie, gevolg deur drie multi-fase reaksiestappe waarin dit aanvaar word dat die chloridoligand stapsgewys gesubstitueer word as HCl (H+ uit oxH) in die ring-sluiting stap in elk van die vier prosesse. In geheel strek die reaksies ongeveer oor ‘n vyf ordegrootte reeks, wat dui op ‘n betekenisvolle verandering in al vier die chloridoligande wat wat verplaas word om die ooreenstemmende tetrakis-oksienkomplekse te vorm. In die geval van die eerste stap is daar ‘n toename van meer as 30 keer gevind, in ooreenstemming met die toename in elektrondoneervermoë van die inkomende ligand. Daarteenoor toon die daaropvolgende drie reaksies ‘n afname van een ordegrootte in substitusietempo vir die ooreenstemmende reaksies. Ewewig onderdrukkingstudies is ook uitgevoer deur middel van stapsgewyse verhoging van die konsentrasie van die verlatende ligand, in hierdie geval Cl-, deur die byvoeging van 'n toeskouer organiese sout, PPh4+Cl-. Die resultate in hierdie geval toon dat al vier reaksiestappe vir al drie sirkonium(IV) komplekse beduidend beïnvloed en onderdruk word deur die ewewig manipulasieproses. Die doktorale studie het ook teoretiese optimisering van twee verskillende families van sirkonium(IV)komplekse, deur middel van berekeningschemie, uitgevoer en die gevolglike resultate geëvalueer deur met die strukturele data vanaf die enkelkristal diffraksiestudies, te vergelyk. Twee reekse komplekse is ondersoek en geoptimiseer, nl. die tetrakis(asetielasetonato-κ2O,O')sirkonium(IV)- en die tetrakis(oksien-κ2N,O)sirkonium(IV) tipe, is elk gekies om die O,O- en N,O-koördinasie omgewings van die metaal poliheders te verteenwoordig. 'n Redelike goeie korrelasie is verkry tussen die kristalstruktuurstudies van die [Zr(Acac)4] tipe komplekse, d.w.s. [Zr(acac)4], [Zr(hFacac)4] en [Zr(DBM)4], met hul geoptimiseerde eweknië. Vir [Zr(acac)4] egter, is 'n ander koördinasie-isomeer teoreties verkry. Hierdie waarneming kan toegeskryf word aan die feit dat teoretiese optimisering van molekulêre strukture in 'n gasfase omgewing verkry word, sonder inter-of intramolekulêre kragte wat roosterstabilisering/pakking beheer of beïnvloed. Hierdie waarneming dui aan dat sirkonium(IV)komplekse in die vaste toestand 'n meer beduidende invloed ervaar van hierdie eksterne interaksies. Ten slotte, die optimisering van die drie sirkonium(IV) oksien komplekse, [Zr(ox)4], [Zr(diMeOx)4] en [Zr(diClOx)4], is gedoen om te bepaal of dit vir hierdie ligande, met 'n meer stewige raam- en kristalpakkingplasing, ooreenstemmende teoretiese optimisering gedoen kan word. Dit is gevolglik geïllustreer tot 'n aanvaarbare akkuraatheid met 'n goeie korrelasie tussen kristallografiese gekarakteriseerde strukture en hul teoreties berekende eweknieë.
Description
Keywords
Theoretical optimization, Kinetic mechanistic study, Crystallographic characterisation, Synthesis, N- and O-donating ligands, Zirconium, Zirconium compounds -- Synthesis, Hafnium compounds -- Synthesis, Solid state chemistry, Thesis (Ph.D. (Chemistry))--University of the Free State, 2009
Citation