Soil-plant carbon stocks in the weatherley catchment after conversion from grassland to forestry

Loading...
Thumbnail Image
Date
2012-06
Authors
Lebenya, Relebohile Mirriam
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: Soil and vegetation play a vital role in the global C cycle because C exchange is affected by both. Thus a change in land use may result in either a loss or gain of C in the soil-plant system. This study was conducted in the Weatherley catchment in the northerly Eastern Cape Province, a former grassland area. Approximately half of the 160 ha in the catchment was afforested with three tree species, viz. P. elliottii, P. patula, and E. nitens in 2002. Before afforestation, a baseline study (Le Roux et al., 2005) on soil organic matter was conducted on the areas designated for the above mentioned tree species. Therefore, this study was a continuation of the mentioned study with the aim to quantify the soil and biomass C stocks (in some instances N stocks also) eight years after afforestation. For comparable purposes the same 27 sites studied by Le Roux et al. (2005) were investigated, viz. 25 afforested sites and two control sites. Soil samples were collected in 2010 at various depths from the 27 sites: 0-50, 0-100, 0-150, 0-200, 0-250, 0-300, 0-400, 0- 500, 0-600, 0-700, 0-800, 0-900, 0-1000, 0-1100, and 0-1200 mm and analysed for organic C and total N as organic matter indices. At each site, three sub-samples were taken per depth interval and mixed together to give a composite sample. The procedure was replicated four times at each site. At each of the 27 sites, fallen litter and undergrowth were collected simultaneously with the soil sampling, also in four replicates. After being dried in a glasshouse, the litter was milled and analysed for C and N contents. A year after soil and litter sampling, when trees were eight years old, the height and diameter at breast height of 12 trees were measured at each of the 25 afforested sites. The measured data were used to calculate the utilisable stem volume, and hence the tree C stocks. Afforestation of the former grassland areas influenced soil organic matter in the upper 300 mm layer, resulting in either increases or decreases in soil C stocks, N stocks and C:N ratios. Soil C stocks decreased by 0.9 Mg ha-1 at site 235 (Katsptuit soil with grass) to 23.6 Mg ha-1 at site 232 (Katspruit soil with P. elliottii trees). The rate of decrease ranged between 0.11 and 2.95 Mg C ha-1 yr-1. The soil C stocks increased by 0.9 Mg ha-1 at site 244 (Pinedene soil with P. patula trees) to 11.3 Mg ha-1 at site 242 (Longlands soil with P. patula trees). The rate of increase ranged from 0.11 Mg C ha-1 yr-1 to 1.41 Mg C ha-1 yr-1. Soil C stocks decreased significantly by 5.5 Mg ha-1, 10.0 Mg ha-1, and 12.4 Mg ha-1 for grass, E. nitens, and P. elliottii areas, respectively. Soils under P. patula showed an increase in C stocks of 1.9 Mg ha-1. When soils were grouped according to mapping units, drainage classes or first subsoil (B1 or E1) horizons there was generally a significant decrease in soil C stocks due to afforestation. The soil N stocks to a large extent behaved like the soil C stocks. The aboveground biomass C stocks were obtained by adding the litter C stocks and the tree C stocks together. These aboveground biomass C stocks varied from 3.71 Mg ha-1 at site 209 (Katspruit soil with grass) to 167.2 Mg ha-1 at site 246 (Pinedene soil with E. nitens trees). On average the aboveground biomass C stocks for the 27 sites was 64.9 Mg ha-1. However, aboveground biomass C stocks averaged 69.7 Mg ha-1 for the 25 afforested sites and only 4.8 Mg ha-1 for the two control sites. The aboveground biomass C stocks varied significantly from 4.8 Mg C ha-1 for the grass to 41.2 Mg ha-1 for the P. elliottii and 67.3 Mg ha-1 for the P. patula and 113.2 Mg ha-1 for the E. nitens areas. Based on the soil mapping units, aboveground biomass C stocks varied from 45.6 Mg ha-1 for the C soil group to 83.3 Mg ha-1 for the A soil group. In the drainage class soil group, the aboveground biomass C stocks varied significantly from 44.1 Mg ha-1 for the poorly drained soils to 81.8 Mg ha-1 for the moderately drained soils and 74.4 Mg ha-1 for the freely drained soils. The aboveground biomass C stocks varied significantly from 44.7 Mg ha-1 for the G horizon soils to 86.2 Mg ha−1 for the red apedal B horizon soils. In general, the tree C stocks contributed the greatest portion to the aboveground biomass C stocks, which in turn contributed more to the total C stocks in the catchment. The C (undifferentiated hydromorphic), poorly drained, and G horizon soil groups had the lowest aboveground biomass C stocks because the conditions in these soil groups limited tree growth and hence C sequestration. Total C stocks in the catchment before afforestation were estimated to be 7 209 Mg. After eight years of afforestation C stocks were estimated to be 11 912 Mg. Therefore the trees added 4 702 Mg C to the catchment, at a rate of 588 Mg C yr-1 or 3.67 Mg C ha-1 yr-1. The rate of C sequestration in the afforested areas was 7.74 Mg ha-1 yr-1.
Afrikaans: Grond en plantegroei speel ‘n belangrike rol in die globale C siklus omdat C uitruiling deur beide beïnvloed word. ‘n Verandering in die landgebruik kan dus n wins of verlies van C in die grond-plant sisteem veroorsaak. Hierdie studie is in die Weatherley opvanggebied in die noordelike Oos-Kaapprovinsie, wat voorheen deur gras bedek was, uitgevoer. Ongeveer die helfte van die 160 ha in die opvanggebied is in 2002 met drie boomspesies, te wete P. elliottii, P. patula, en E. nitens geplant. Voor boomaanplanting is ‘n basislynstudie (Le Roux et al., 2005) uitgevoer om die grondorganiese materiaal in die gebiede wat vir bosbou geoormerk is te bepaal. Hierdie studie is dus ‘n opvolg van die bogenoemde studie met die doel om die grond en biomassa C voorraad (en in sommige gevalle ook N voorraad) agt jaar na die aanvang van bosbou te bepaal. Vir vergelyking is dieselfde 27 punte wat deur Le Roux et al. (2005) bestudeer is, te wete 25 bosboupunte en twee kontrole punte, ondersoek. Grondmonsters is in 2010 op verskeie dieptes by die 27 punte ingesamel: 0-50, 0-100, 0-150, 0-200, 0-250, 0-300, 0-400, 0-500, 0- 600, 0-700, 0-800, 0-900, 0-1000, 0-1100, en 0-1200 mm en vir organiese C en totale N, as indikatore van organiese materiaal, ontleed. By elke punt is drie submonsters per diepteinterval geneem en gemeng om ‘n saamgestelde monster te gee. Die proses is vier keer by elke punt herhaal. By al 27 punte is die plantreste en ondergroei tydens grondmonsterneming, ook in vier herhalings, geneem. Na droging in die glashuis is die materiaal gemaal en vir C- en Ninhoud ontleed. ‘n Jaar na grond en plantreste versamel is, toe die bome agt jaar oud was, is die hoogte en borshoogte diameter van 12 bome by elk van die 25 bosboupunte gemeet. Hierdie data is gebruik om die bruikbare stamvolume en dus boom C voorraad te bereken. Bosbou in die grasgebiede het die grondorganiese materiaal in die boonste 300 mm laag beïnvloed. Dit het tot ‘n verhoging of ‘n verlaging in die C voorraad, N voorraad en C:N verhouding gelei. Grond C voorraad het met van 0.9 Mg ha-1 by punt 235 (Katspruit grond met gras) tot 23.6 Mg ha-1 by punt 232 (Katspruit grond met P. elliottii bome) afgeneem. Die tempo van afname het tussen 0.11 en 2.95 Mg C ha-1 j-1 gevarieer. Die C voorraad het met tussen 0.9 Mg ha-1 by punt 244 (Pinedene grond met P. patula bome) tot 11.3 Mg ha-1 by punt 242 (Longlands grond met P. patula bome) toegeneem. Die tempo van toename het dus vanaf 0.11 Mg C ha-1 j-1 tot 1.41 Mg C ha-1 j-1 gevarieer. Grond C voorraad het betekenisvol met 5.5 Mg ha-1, 10.0 Mg ha-1, en 12.4 Mg ha-1 vir onderskeidelik die gras, E. nitens, en P. elliottii areas afgeneem. Gronde met P. patula het ‘n toename in C voorraad van 1.9 Mg ha-1 gehad. Nadat die gronde volgens karteereenhede, dreineringsklasse of die eerste ondergrondhorison (B1 of E1) gegroepeer is, was daar oor die algemeen ‘n betekenisvolle afname in grond C voorraad as gevolg van bosbou. Die grond N voorraad het min of meer soos die grond C voorraad reageer. Die bogrond biomassa C voorraad is bereken deur die plantreste C voorraad en die boom C voorraad bymekaar te tel. Die bogrond biomassa C voorraad het van 3.71 Mg ha-1 by punt 209 (Katspruit grond met gras) tot 167.2 Mg ha-1 by punt 246 (Pinedene grond met E. nitens bome) gevarieer. Die gemiddelde bogrond biomassa C voorraad vir die 27 punte was 64.9 Mg ha-1. Aan die ander kant was die gemiddelde bogrond biomassa C voorraad 69.7 Mg ha−1 vir die 25 bosboupunte en slegs 4.8 Mg ha-1 vir die kontrole punte. Die bogrond biomassa C voorraad het betekenisvol vanaf 4.8 Mg C ha-1 vir die gras, 41.2 Mg ha-1 vir die P. elliottii, 67.3 Mg ha-1 vir die P. patula tot 113.2 Mg ha-1 vir die E. nitens areas verskil. Volgens die karteringseenhede het bogrond biomassa C voorraad vanaf 45.6 Mg ha-1 vir die C grond groep tot 83.3 Mg ha-1 vir die A grond groep gevarieer. In die dreineringsgroepering het die bogrond biomassa C voorraad betekenisvol vanaf 44.1 Mg ha-1 vir die swak gedreineerde gronde tot 81.8 Mg ha-1 vir die matig gedreineerde gronde en 74.4 Mg ha-1 vir die goed gedreineerde gronde gevarieer. Die bogrond biomassa C voorraad het betekenisvol vanaf 44.7 Mg ha-1 vir die G horison gronde tot 86.2 Mg ha-1 vir die rooi apedale B horison gronde verskil. Oor die algemeen het boom C voorraad die grootste bydrae tot die bogrond biomassa gemaak, wat op sy beurt weer die grootste bydrae tot die C voorraad in die opvanggebied gemaak het. Die C (ongedifferensieerde hidromorfe), swak gedreineerde, en G horison grond groepe het die laagste bogrond biomassa C voorraad omdat die toestande in die gronde boom groei en daarom C vaslegging beperk het. Totale C voorraad in die opvanggebied voor bosbou is op 7 209 Mg geraam. Na agt jaar van bosbou is die C voorraad op 11 912 Mg geraam. Die bome het dus 4 702 Mg C tot die opvanggebiedg teen ‘n tempo van 588 Mg C j-1 of 3.67 Mg C ha-1 j-1 by gedra. Die tempo van C vaslegging in slegs die bosbou gebiede was 7.74 Mg ha-1 j-1.
Description
Keywords
Soils -- Carbon content -- South Africa -- Eastern Cape, Soils -- Nitrogen content -- Eastern Cape, Soils -- Organic compound content -- South Africa -- Eastern Cape, Afforestation -- South Africa -- Eastern Cape, Dissertation (M.Sc. (Soil, Crop and Climate Studies))--University of the Free State, 2012, Soil organic matter, Nitrogen stocks, Carbon stocks, Biomass
Citation