• Login
    View Item 
    •   KovsieScholar Home
    • Natural and Agricultural Sciences
    • Zoology and Entomology
    • Research Articles (Zoology and Entomology)
    • View Item
    •   KovsieScholar Home
    • Natural and Agricultural Sciences
    • Zoology and Entomology
    • Research Articles (Zoology and Entomology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High rates of biochar soil amendment cause increased incidences of neurotoxic and oxidative stress in Eisenia fetid (oligochaeta) exposed to glyphosate

    Thumbnail
    View/Open
    Dlamini_High_2022.pdf (812.7Kb)
    Date
    2022
    Author
    Dlamini, Nomasonto Portia
    Otomo, Patricks Voua
    Metadata
    Show full item record
    Abstract
    Despite several known beneficial attributes, biochar is suspected to cause harm to soil organisms when present in relatively high quantities in the soil. To determine the potential detrimental effects of biochar, for 96 h, we exposed the earthworm Eisenia fetida to 0, 2, 4 and 8 mg glyphosate (GLY) per kg in non-amended and biochar-amended soil at rates of 5, 10 and 15%. The results indicated that in non-amended soil, survival was significantly decreased in the highest GLY concentration. Although no median lethal concentration (LC50) could be computed due to the lack of sufficient mortality, in the absence of biochar, a lethal concentration 10% (LC10) of 5.540 mg/kg and a lethal concentration 20% (LC20) of 7.067 mg/kg were calculated. In the biochar-amended soil, no mortality occurred in the control and GLY treatments for all three biochar amendment rates. Biomass results showed significant biomass loss in the highest GLY treatment in the absence of biochar, with an effective concentration of 10% (EC10) of 5.23 mg/kg and an effective concentration of 20% (EC20) of 6.848 mg/kg. In the amended soil, overall, slight non-significant increases in biomass were recorded and no effective concentrations could be calculated due to the lack of significant biomass loss. The assessment of neurotoxicity via the activity of acetylcholine esterase (AChE) showed no change in AchE due to GLY in all the non-amended treatments. However, in the biochar-amended treatments, statistically high levels of AchE occurred (p < 0.05) even in the control (in the absence of GLY). The assessment of oxidative stress through catalase (CAT) activity, showed similar results with no significant effects of GLY alone on CAT activity, but rather dramatic increases in activity in the control and GLY treatments in the biochar-amended soil, with one significant increase in the 10% amended in 8 mg GLY/Kg (p < 0.05). Such significant increases in both AChE and CAT were only observed in soil amended with 10 and 15% biochar. Our findings show that although seemingly beneficial for whole body endpoints, biomarker responses indicate that a biochar amendment higher than 5% adds considerable additional stress to earthworms and should be avoided.
    URI
    http://hdl.handle.net/11660/11815
    Collections
    • Research Articles (Zoology and Entomology)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
     

     

    Browse

    All of KovsieScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback