Research Articles (Afromontane Research Unit)
Permanent URI for this collection
Browse
Browsing Research Articles (Afromontane Research Unit) by Issue Date
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Soil fertilization synergistically enhances the impact of pollination services in increasing seed yield of sunflower under dryland conditions(Cambridge University Press, 2021) Adelabu, Dollop Bola; Bredenhand, Emile; Van der Merwe, Sean; Franke, Angelinus CorneliusTo exploit the potential of ecological intensification during sunflower cropping, it is crucial to understand the potential synergies between crop management and ecosystem services. We therefore examined the effect of pollination intensification on sunflower yield and productivity under various levels of soil fertilization over two seasons in the eastern Free State, South Africa. We manipulated soil fertility with fertilizer applications and pollination with exclusion bags. We found a synergetic effect between pollination and soil fertilization whereby increasing pollination intensity led to a far higher impact on sunflower yield when the soil had been fertilized. Specifically, the intensification of insect pollination increased seed yield by approximately 0.4 ton/ha on nutrient poor soil and by approximately 1.7 ton/ha on moderately fertilized soil. Our findings suggest that sunflower crops on adequate balanced soil fertility will receive abundant insect pollination and may gain more from both synergies than crops grown in areas with degraded soil fertility.Item Open Access The nature, causes and extent of land cover changes in Gamtoos River Estuary, Eastern Cape Province, South Africa: 1991-2017(MDPI, 2022) Ndude, Mhlanganisi Africa; Gwena, Kudzanai Rosebud; Hamandawana, HamisaiMulti-date remotely sensed SPOT images of 1991, 2000, 2009 and 2017 were used to reconstruct changes in land cover in the Gamtoos River Estuary, Eastern Cape province, South Africa. These images were complemented by near-anniversary aerial photographs and Google Earth images that were used as ancillary sources of ground truth. The long-term trend direction of change was determined by calculating percentage changes and performing linear trend analysis. The magnitude of change was established by calculating Sen Slope estimates (SSE) and the influence of climate change on changes in land cover tested by correlating changes in rainfall and different cover types. The greatest and lowest changes were for noncultivated land and surface water (−7.94%, y = −1.2032x + 21.275, SSE = −0.292, and 0.44%, y = −0.4261x + 9.657, SSE = 0.007, respectively). Correlations between rainfall and all cover types were weak and ranged between 0.453816 and −0.643962. Rainfall exhibited a significant decrease (p = 0.0411, σ 0.05; y = −7.175x + 734.55, SSE = −11.130) that was highly correlated with changes in surface water distribution (0.813709, Critical R = 0.805). Overall, the results of this investigation point to the combined influence of climate change and human agency, with the latter tending to play a more prominent role by exerting increasing pressure on the environment’s natural supporting potentials. We therefore urge the scientific community to continue exploring actionable interventions that can be used to enhance the sustainability of this ecosystem and others elsewhere