Heterosis and combining ability of iron, zinc and their bioavailability in maize inbred lines under low nitrogen and optimal environments
Loading...
Date
2023
Authors
Akhtar, Sajjad
Mekonnen, Tesfaye Walle
Mashingaidze, Kingstone
Osthoff, Gernot
Labuschagne, Maryke
Journal Title
Journal ISSN
Volume Title
Publisher
Cell Press
Abstract
Iron (Fe) and zinc (Zn) nutrient enrichment of staple crops through biofortification can contribute to alleviating micronutrient deficiency in sub-Saharan Africa. A line × tester mating design was used to determine the general combining ability (GCA), specific combining ability (SCA) and heterosis for grain yield, iron, Zn and phytic concentration of six lines crossed with three testers. Lines and testers were selected for high, intermediate and low mineral content. The F1 hybrids and parental lines were evaluated under low nitrogen (N) and optimum conditions across four environments over two seasons. Under low N conditions, Fe and Zn concentration in grain, and grain yield of genotypes were reduced by 9%, 9%, and 59%, respectively. However, phytic acid concentration in grain was increased by 10% under low N conditions. Both additive and non-additive gene effects were important in controlling Fe, Zn and phytic acid concentration in grain and grain yield of maize under both N conditions. The preponderance of GCA effects indicates the importance of additive gene effects in the inheritance of grain yield. Line GCA effects were more sensitive to N conditions across the environments than the tester GCA. High and significant positive SCA effects for grain yield, Fe and Zn content under low N conditions, would be a good indicator of possible heterosis in these traits. Hybrid CBY101 LM-1600 × CBY358 LM-1857 had high and significant positive SCA for grain yield under low N conditions and is a promising candidate for production in low N environments. CBY358 LM-1857 (tester) and CBY102 LM-1601 (line) are a good general combiners for Fe, Zn and GY can be used as parents in future maize hybrid breeding programs to develop high-yielding maize genotypes with high Fe and Zn content.
Description
Keywords
Bioavailability, Combining ability, Heterosis, Maize, Micronutrients
Citation
Akhtar, S., Mekonnen, T. W., Mashingaidze, K., Osthoff, G., & Labuschagne, M. (2023). Heterosis and combining ability of iron, zinc and their bioavailability in maize inbred lines under low nitrogen and optimal environments. Heliyon, 9, e14177. https://doi.org/10.1016/j.heliyon.2023.e14177