The carbon footprint and embodied energy of construction material: a comparative analysis of South African BRT stations

Loading...
Thumbnail Image
Date
2014
Authors
Hugo, Jan
Barker, Arthur
Stoffberg, Hennie
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: This article describes strategic design decisions that architects can make during the initial stages of a project to minimise the use of construction materials, reduce carbon emissions and increase energy efficiency. A proposed prototypical Bus Rapid Transit (BRT) station Switch is used as a case study. The investigation focuses on minimising the use of construction materials through an iterative design and assessment process. This article extends an earlier study which analysed existing BRT stations in South Africa by conducting comparative life-cycle analyses (LCA). The earlier study by Hugo, Stoffberg & Barker (2012) identified a series of guidelines to inform the design of low-carbon and embodied energy BRT stations and determined a specific station, the MyCiti station, as the most efficient in terms of its carbon footprint and embodied energy intensity. As a result, the MyCiti station was identified as benchmark for future LCAs of station designs. The Switch prototypical BRT station is purpose designed for the Tshwane1 context and uses the identified guidelines (Hugo, Stoffberg & Barker, 2012) as well as carbon footprint (CF) and embodied energy (EE) of construction systems and materials as design informants generated from a study conducted by Jones (2011b). These informed material choices, use of low-carbon structural systems and integration of multifunctional station components. A cradle-to-gate2 life-cycle assessment compares the CF and EE of the Switch station and an existing South African precedent, the MyCiti station in Cape Town. The Switch station is 35% and 34% (4.08 GJ/m2 & 378.6kgCO2/m2 vs 6.28 GJ/m2 & 574.7kgCO2/m2) more efficient than the existing MyCiti station, in terms of respective embodied energy intensity and carbon-footprint intensity. This prototype is proposed as a benchmark for prospective life-cycle analyses to inform the material choice and design of future BRT stations in South Africa.
Afrikaans: Hierdie artikel bespreek strategiese besluite wat argitekte kan neem tydens die aanvanklike ontwerpsfase van ‘n projek om die gebruik van konstruksiemateriaal te verminder, by te dra tot die mitigasie van klimaatsverandering en energiedoeltreffendheid te verbeter. Deur gebruik te maak van ‘n voorgestelde ‘Bus Rapid Transit’ (BRT) stasie Switch, as gevallestudie, fokus die studie op die vermindering van konstruksie-materiaal verbruik deur iteratiewe ontwerps- en hersieningsprosesse. Die artikel brei uit op ‘n vorige studie waarin bestaande BRT-stasies in Suid- Afrika geanaliseer is. Deur gebruik te maak van ‘n vergelykende lewenssiklusanalise (LSA) het die studie deur Hugo, Stoffberg & Barker (2012) ‘n reeks riglyne geïdentifiseer wat die ontwerp van ‘n lae koolstof en ingeslote energie BRT‑stasie kan inlig. Verder het die studie ook ‘n spesifieke stasie, die MyCiti-stasie, geïdentifiseer as die mees effektiewe stasie in terme van sy koolstofinhoud en ingeslote energie intensiteit. Hierdie stasie is as normtoets vir toekomstige LSA’s van stasie-ontwerpe geïdentifiseer. Die Switch prototipiese stasie is spesifiek ontwerp vir die Tshwane-konteks3 en maak gebruik van spesifieke riglyne (Hugo et al., 2012) sowel as die koolstofinhoud en ingeslote energie van konstruksie-materiaal en -sisteme as ontwerpsinvloede. Hierdie koolstofinhoud en ingeslote energiewaardes bereken van ‘n studie onderneem deur Jones (2011b) was die bepalende faktor vir die materiaal keuse, gebruik van lae koolstofkonstruksiesisteme en die integrasie van veeldoelige stasiekomponente. Die ‘cradle-to-gate’-LSA4 vergelyk die koolstofinhoud en ingeslote energie van die Switch-stasie met ‘n bestaande Suid-Afrikaanse stasie, naamlik die MyCitistasie in Kaapstad. Die navorsing (Hugo et al., 2012) onthul dat die Switch-stasie onderskeidelik ‘n 35% en 34% (4.08 GJ/m2 & 378.6 kgCO2/m2 vs. 6.28 GJ/m2 & 574.7 kgCO2/m2) laer ingeslote energie en koolstofinhoudintensiteit het as die bestaande MyCiti-stasie. Hierdie prototipe fokus daarop om as normtoets vir toekomstige lewensiklusanalises, die materiaal keuse en ontwerp van daaropvolgende BRTstasies te begelei.
Description
Keywords
Bus Rapid Transit stations, Carbon footprint, Climate change, Embodied energy, Life-cycle assessment, Construction materials
Citation
Hugo, J., Barker, A., & Stoffberg, H. (2014). The carbon footprint and embodied energy of construction material: A comparative analysis of South African BRT stations. Acta Structilia, 21(1), 45-78.