Research Articles (Geography)
Permanent URI for this collection
Browse
Browsing Research Articles (Geography) by Subject "Machine learning"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Fine-scale classification of urban land use and land cover with PlanetScope imagery and machine-learning strategies in the City of Cape Town, South Africa(MDPI, 2022) Lefulebe, Bosiu E.; Van der Walt, Adriaan; Xulu, SifisoUrban land use and land cover (LULC) change can be efficiently monitored with high-resolution satellite products for a variety of purposes, including sustainable planning. These, together with machine learning strategies, have great potential to detect even subtle changes with satisfactory accuracy. In this study, we used PlaneScope Imagery and machine learning strategies (Random Forests, Support Vector Machines, Naïve Bayes and K-Nearest Neighbour) to classify and detect LULC changes over the City of Cape Town between 2016 and 2021. Our results showed that K-Nearest Neighbour outperformed other classifiers by achieving the highest overall classification of accuracy (96.54% with 0.95 kappa), followed by Random Forests (94.8% with 0.92 kappa), Naïve Bayes (93.71% with 0.91 kappa) and Support Vector Machines classifiers with relatively low accuracy values (92.28% with 0.88 kappa). However, the performance of all classifiers was acceptable, exceeding the overall accuracy of more than 90%. Furthermore, the results of change detection from 2016 to 2021 showed that the high-resolution PlanetScope imagery could be used to track changes in LULC over a desired period accurately.Item Open Access Mapping vegetation species succession in a mountainous grassland ecosystem using Landsat, ASTER MI, and Sentinel-2 data(Public Library of Science, 2022) Adagbasa, Efosa Gbenga; Mukwada, GeofreyVegetation species succession and composition are significant factors determining the rate of ecosystem biodiversity recovery after being disturbed and subsequently vital for sustainable and effective natural resource management and biodiversity. The succession and composition of grasslands ecosystems worldwide have significantly been affected by accelerated environmental changes due to natural and anthropogenic activities. Therefore, understanding spatial data on the succession of grassland vegetation species and communities through mapping and monitoring is essential to gain knowledge on the ecosystem and other ecosystem services. This study used a random forest machine learning classifier on the Google Earth Engine platform to classify grass vegetation species with Landsat 7 ETM+ and ASTER multispectral imager (MI) data resampled with the current Sentinel-2 MSI data to map and estimate the changes in vegetation species succession. The results indicate that ASTER MI has the least accuracy of 72%, Landsat 7 ETM+ 84%, and Sentinel-2 had the highest of 87%. The result also shows that other species had replaced four dominant grass species totaling about 49 km2 throughout the study.