Masters Degrees (Computer Science and Informatics)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Computer Science and Informatics) by Subject "Brain mapping"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Assessing the use of a Brain-Computer Interface (BCI) in mathematics education: the case of a cognitive game(University of the Free State, 2015) Verkijika, Silas Formunyuy; De Wet, LizetteEnglish: South Africa currently faces a huge shortage of mathematics skills, a problem commonly referred to as the “math crisis”. Researchers in South Africa have attributed the growing “math crisis” to the lack of cognitive functions among learners. However, existing solutions to address the problem have overlooked the role of cognitive functions in improving mathematics aptitude. Moreover, even though cognitive functions have been widely established to have a significant influence on mathematics performance, there is surprisingly little research on how to enhance cognitive functions (Witt, 2011). Consequently, this study had as primary objective to explore the impact of a BCI-based mathematics educational game as a tool for facilitating the development of cognitive function that enhance mathematics skills in children. The choice of a BCI-based solution for enhancing cognitive functions stems from recent neuroscience literature that highlights the potential of BCIs as tools for enhancing cognitive functions. Existing neuroscience, psychological and mathematical education research have established a number of cognitive functions (working memory, inhibitory control, math anxiety, and number sense) that affect mathematics education. This study combined these existing paradigms with the BCI device to provide a technological solution for enhancing the basic cognitive functions that foster mathematics learning. Following these assertions, a BCI-based mathematics educational game was developed taking into account the target population (children from the ages from 9-16) and the important role of digital educational games in improving education (in this case mathematics education in particular). Using a within-subjects short-term longitudinal research design, this study established that a BCI-based mathematics educational game could be used to significantly enhance four basic cognitive functions (working memory, inhibitory control, math anxiety, and number sense). These four cognitive functions have been widely acknowledged as significant fundamental aspects of mathematics education. As such, adopting such a technological solution in South African schools can go a long way to address the current “math crises” by enabling educators and learners to address the issue of low cognitive functions. This study culminated with practical recommendations on how to address the “math crisis” in South Africa.