Doctoral Degrees (Mathematical Statistics and Actuarial Science)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Mathematical Statistics and Actuarial Science) by Author "Raghunathan, T. E."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Extending the reach of sequential regression multiple imputation(University of the Free State, 2015-06) Von Maltitz, Michael Johan; Raghunathan, T. E.; Schall, R.; Van der Merwe, A. J.English: The purpose of this thesis is twofold. Firstly, it reviews a signi cant portion of literature concerning multiple imputation and, in particular, sequential regression multiple imputation, and summarises this information, thereby allowing a reader to gain in-depth knowledge of this research eld. Secondly, the thesis delves into one particular novel topic in sequential regression multiple imputation. The latter objective, of course, is not truly possible without the former, since the deeper the review of multiple imputation, the more likely it will be to identify and solve pressing concerns in the sequential regression multiple imputation sub eld. The literature review will show that there is room in imputation research for work on a robust model for the sequential regression multiple imputation algorithm. This thesis pays particular attention to this robust model, formulating its estimation procedure within the context of sequential regression multiple imputation of continuous data, attempting to discover a statistic that would show when to use the robust model over the regular Normal speci cation, and then implementing the robust model in another estimation algorithm that might allow for better imputation of ordinal data. This thesis contributes to `extending the reach of sequential regression multiple imputation' in two ways. Firstly, it is my wish for users of public data sets, particularly in South Africa, to become familiar with the (now internationally standard) topics presented in the rst half of this thesis. The only way to start publicising sequential regression multiple imputation in South Africa is to lay out the evidence for and against this procedure in a logical manner, so that any reader of this thesis might be able to understand the procedures for analysing multiply imputed data, or tackle one of the many research problems uncovered in this text. In this way, this thesis will extend the reach of sequential regression multiple imputation to many more South African researchers. Secondly, by working on a new robust model for use in the sequential regression multiple imputation algorithm, this thesis strengthens the sequential regression multiple imputation algorithm by extending its reach to incomplete data that is not necessarily Normally distributed, be it due to heavy tails, or inherent skewness, or both.