Doctoral Degrees (Mathematical Statistics and Actuarial Science)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Mathematical Statistics and Actuarial Science) by Author "De Waal, D."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access On the use of extreme value theory in energy markets(University of the Free State, 2007-05-09) Micali, V.; De Waal, D.English: The thesis intent is to provide a set of statistical methodologies in the field of Extreme Value Theory (EVT) with a particular application to energy losses, in Gigawatt-hours (GWh) experienced by electrical generating units (GU’s). Due to the complexity of the energy market, the thesis focuses on the volume loss only and does not expand into the price, cost or mixes thereof (although the strong relationship between volume and price is acknowledged by some initial work on the energy price [SMP] is provided in Appendix B) Hence, occurrences of excessive unexpected energy losses incurred by these GU’s formulate the problem. Exploratory Data Analysis (EDA) structures the data and attempts at giving an indication on the categorisation of the excessive losses. The size of the GU failure is also investigated from an aggregated perspective to relate to the Generation System. Here the effect of concomitant variables (such as the Load Factor imposed by the market) is emphasised. Cluster Analysis (2-Way Joining) provided an initial categorising technique. EDA highlights the shortfall of a scientific approach to determine the answer to the question at when is a large loss sufficiently large that it affects the System. The usage of EVT shows that the GWh Losses tend to behave as a variable in the Fréchet domain of attraction. The Block Maxima (BM) and Peak-Over-Threshold (POT), the latter as semi and full parametric, methods are investigated. The POT methodologies are both applicable. Of particular interest is the Q-Q plots results on the semiparametric POT method, which yielded results that fit the data satisfactorily (pp 55-56). The Generalised Pareto Distribution (GPD) models well the tail of the GWh Losses above a threshold under the POT full parametric method. Different methodologies were explored in determining the parameters of the GPD. The method of 3-LM (linear combinations of Probability Weighted Moments) is used to arrive at initial estimates of the GPD parameters. A GPD is finally parameterised for the GWh Losses above 766 GWh. The Bayesian philosophy is also utilised in this thesis as it provides a predictive distribution of (high quantiles) the large GWh Losses. Results are found in this part of the thesis in so far that it utilises the ratio of the Mean Excess Function (the expectation of a loss above a certain threshold) over its probability of exceeding the threshold as an indicator to establish the minimum of this ratio. The technique was developed for the GPD by using the Fisher Information Matrix (FIM) and the Delta-Method. Prediction of high quantiles were done by using Markov Chain Monte Carlo (MCMC) and eliciting the GPD Maximal Data Information (MDI) prior. The last EVT methodology investigated in the thesis is the one that uses the Dirichlet process and the method of Negative Differential Entropy (NDE). The thesis also opened new areas of pertinent research.