Research Articles (Genetics)
Permanent URI for this collection
Browse
Browsing Research Articles (Genetics) by Author "Gryzenhout, Marieka"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Characterization of the endophytic mycobiome in cowpea (Vigna unguiculata) from a single location using illumina sequencing(MDPI, 2022) Kinge, Tonjock Rosemary; Ghosh, Soumya; Cason, Errol D.; Gryzenhout, MariekaCowpea is an important crop for small-scale farmers in poor areas but is also being developed for commercial agriculture as a possible substitute for commercial legumes. Endophytic fungi are omnipresent and play crucial but diverse roles in plants. This study characterized the endophyte component of the cowpea mycobiome from leaves, main and crown stems and roots using Illumina MiSeq of the ITS2 region of the ribosomal operon. Ascomycetes exhibited the highest diversity, with Molecular Operational Taxonomic Units (MOTUs) assigned as Macrophomina, Cladosporium, Phoma, Fusarium and Cryptococcus, among the most dominant genera. Certain MOTUS showed preferential colonization patterns for above or below ground tissues. Several MOTU generic groups known to include phytopathogenic species were found, with relative abundances ranging from high to very low. Phylogenetic analyses of reads for some MOTUs showed that a level of identification could be obtained to species level. It also confirmed the absences of other species, including phytopathogens. This is the first study that adopted a holistic metagenomic typing approach to study the fungal endophytes of cowpea from a single location, a crop that is so integral for low-income households of the world.Item Open Access Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons(Frontiers, 2023) Ghosh, Soumya; Rusyn, Iryna; Dmytruk, Olena V.; Dmytruk, Kostyantyn V.; Onyeaka, Helen; Gryzenhout, Marieka; Gafforov, YusufjonThis review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.Item Open Access Fusarium casha sp. nov. and F. curculicola sp. nov. in the Fusarium fujikuroi species complex isolated from Amaranthus cruentus and three weevil species in South Africa(MDPI, 2021) Vermeulen, Marcele; Rothmann, Lisa A.; Swart, Wijnand J.; Gryzenhout, MariekaTrials are currently being conducted in South Africa to establish Amaranthus cruentus as a new pseudocereal crop. During recent surveys, Fusarium species were associated with weevil damage in A. cruentus fields. Preliminary studies showed that some of these Fusarium species grouped into two distinct clades within the F. fujikuroi species complex. The aim of this study was to characterize these isolates based on the morphology and phylogeny of the translation elongation factor 1 (TEF1 ) gene region, ß-tubulin 2 (ßT) gene region and RNA polymerase II subunit (RPB2), and to determine if these isolates are pathogenic to A. cruentus. Phylogenetic and morphological studies showed that these two clades represent two novel species described here as F. casha and F. curculicola. Both species were shown to have the potential to be pathogenic to A. cruentus during routine greenhouse inoculation tests. While isolations indicate a possible association between these two species and weevils, further research is needed to understand this association and the role of weevils in disease development involving F. casha and F. curculicola in A. cruentus.Item Open Access Global species diversity and distribution of the psychedelic fungal genus Panaeolus(Elsevier, 2023) Strauss, Dominique; Ghosh, Soumya; Murray, Zurika; Gryzenhout, MariekaPsychedelic fungi have received considerable attention recently due to their promising treatment potential of several psychiatric disorders and medical conditions, both in clinical settings but also as a nutraceutical. Besides research, a growing number of companies are developing capacity to conduct research and clinical trials where these fungi and their products can be used, and to provide these fungi to the public market that are rapidly becoming legal across the world. Whereas Psilocybe species are better known as psychedelic fungi, species in Panaeolus are also reputed to contain the psychedelic compound psilocybin and used recreationally. For the novice, there is no contemporary scientific summary of all the species in this genus that are known to be psychedelic, compared to those that are not. The global distribution and species diversity of these brown to white, often inconspicuous mushrooms are also not summarised, nor is it known to what extent DNA sequence data that are needed for identification have been generated for all of the species in this genus. However, psychedelic Panaeolus species are used and moved across the world. This lack of data makes it difficult to regulate bioexploitation and apply law enforcement of these fungi and the compounds they contain, especially seen in the light of the rapid development of the related markets. The aim of this review is to summarise current scientific data and knowledge on the species biodiversity, geographical distribution, extent of sequence data for identification purposes, and the psychedelic potential of species, based on published results. The review revealed where species are mostly known from, while also indicating areas seriously lacking such biodiversity data. A significant degree of study across the world is still needed to confirm which of these species are truly psychedelic and exactly what compounds they can produce.