Research Articles (Chemistry)
Permanent URI for this collection
Browse
Browsing Research Articles (Chemistry) by Author "Brink, Alice"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Substitution reactivity and structural variability induced by tryptamine on the biomimetic rhenium tricarbonyl complex(Royal Society of Chemistry, 2021) Jacobs, Frederick J. F.; Venter, Gertruida J. S.; Fourie, Eleanor; Kroon, Robin E.; Brink, AliceA series of seven fac-[Re(CO)3(5Me-Sal-Trypt)(L)] complexes containing tryptamine on the N,O 5-methylsalicylidene bidentate ligand backbone and where L is MeOH, Py, Imi, DMAP, PPh3 coordinated to the 6th position have been studied, including the formation of a dinuclear Re2 cluster. The crystallographic solid state structures show marked similarity in structural tendency, in particular the rigidity of the Re core and the hydrogen bond interactions similar to those found in protein structures. The rates of formation and stability of the complexes were evaluated by rapid time-resolved stopped-flow techniques and the methanol substitution reaction indicates the significant activation induced by the use of the N,O salicylidene bidentate ligand as manifested by the second-order rate constants for the entering nucleophiles. Both linear and limiting kinetics were observed and a systematic evaluation of the kinetics is reported clearly indicating an interchange type of intimate mechanism for the methanol substitution. The anticancer activity of compounds 1–7 was tested on HeLa cells and it was found that all compounds showed similar cytotoxicity where solubility allowed. IC50-values between ca. 11 and 22 mM indicate that some cytotoxicity resides most likely on the salicylidene–tryptamine ligand. The photoluminescence of the seven complexes is similar in maximum emission wavelength with little variation despite the broad range of ligands coordinated to the 6th position on the metal centre.Item Open Access Trends in coordination of rhenium organometallic complexes in the Protein Data Bank(IUCr, 2022) Brink, Alice; Jacobs, Francois J. F.; Helliwell, John R.Radiopharmaceutical development has similar overall characteristics to any biomedical drug development requiring a compound's stability, aqueous solubility and selectivity to a specific disease site. However, organometallic complexes containing 188/186Re or 99mTc involve a d-block transition-metal radioactive isotope and therefore bring additional factors such as metal oxidation states, isotope purity and half life into play. This topical review is focused on the development of radiopharmaceuticals containing the radioisotopes of rhenium and technetium and, therefore, on the occurrence of these organometallic complexes in protein structures in the Worldwide Protein Data Bank (wwPDB). The purpose of incorporating the group 7 transition metals of rhenium/technetium in the protein and the reasons for study by protein crystallography are described, as certain PDB studies were not aimed at drug development. Technetium is used as a medical diagnostic agent and involves the 99mTc isotope which decays to release gamma radiation, thereby employed for its use in gamma imaging. Due to the periodic relationship among group 7 transition metals, the coordination chemistry of rhenium is similar (but not identical) to that of technetium. The types of reactions the potential model radiopharmaceutical would prefer to partake in, and by extension knowing which proteins and biomolecules the compound would react with in vivo, are needed. Crystallography studies, both small molecule and macromolecular, are a key aspect in understanding chemical coordination. Analyses of bonding modes, coordination to particular residues and crystallization conditions are presented. In our Forward look as a concluding summary of this topical review, the question we ask is: what is the best way for this field to progress?