Doctoral Degrees (Soil, Crop and Climate Sciences)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Soil, Crop and Climate Sciences) by Author "Bello, Zaid Adekunle"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Characterization and modelling of water use by amaranthus and pearl millet(University of the Free State, 2013-01) Bello, Zaid Adekunle; Walker, SueAmaranthus (Amaranthus spp) and pearl millet (Pennisetum glaucum [L.] R. Br.) are drought tolerant crops with much potential that has not been well exploited as they can be cultivated under semi-arid climatic conditions. This study was carried out to characterize their water use and model their growth and yield in response to water. Experiments were carried out under a field line source sprinkler irrigation system for both crops for two seasons, as well as in a greenhouse with a pot experiment for amaranthus and in the lysimeter facility for pearl millet studies, each for one growth cycle. One genotype of amaranthus (Amaranthus crentus ex Arusha) and two lines of pearl millet (GCI 17, improved line and Monyaloti, local variety) were used in the trials with these crops in a semi-arid area near Bloemfontein, South Africa. The influence of water application on growth of amaranthus was contrary to the expectation that fully irrigated plants will perform better than the plants receiving less water. Fully irrigated plants produced shorter plants with less leaves and branches. However, irrigation improved the plant height in both lines of the pearl millet. A large amount of irrigation resulted in taller plants for both lines while the shortest plants were found in the rainfed plots. Another millet crop parameter that was affected by irrigation was flower emergence. Flower emergence was earlier in irrigated plots of both lines of pearl millet and during the two seasons. In both lines of pearl millet, irrigation increased leaf area index and biomass accumulation during both seasons. The two crops were able to exhibit the ability to tolerate water stress with different coping mechanisms and this influenced their water uptake and invariably also water use. Amaranthus was able to manage water stress in rainfed plots through the closure of stomata in the field and during the pot trials. Stomatal closure reduces water loss as a response to water deficit in the soil-crop-atmosphere continuum. Daily water use of amaranthus ranged from 1.2 to 6.5 mm day-1 while the seasonal water use was 437 mm for the first season and 482 mm for the second season. Higher water use in the second season was attributed to higher atmospheric evaporative demand recorded during the second amaranthus growing season compared to the first. It was observed that while water application can increase the production of amaranthus, it should also not be too much or it could have a detrimental effect on biomass production of the crop. This conclusion is due to the fact that the lowest irrigated plots produced higher fresh and dry mass of amaranthus during both seasons while production in the fully irrigated plots was low for the two seasons. The response of pearl millet to water deficit stress was to lower the leaf water potential (more negative) and also gradually decrease the leaf stomatal conductance. Pearl millet demonstrated a response to the water stress condition by closing of the stomata as leaf water potential declined (towards more negative) so as to conserve water and prevent water loss. This minimized water loss through transpiration when the soil water available is limited. The crop adjusted to severe water stress conditions by maintaining a leaf water potential that keeps the leaf turgid in order to avoid wilting when the stomata closes so as to prevent excessive water loss. The daily evapotranspiration of the two lines of pearl millet for the two seasons were between 2 and 8 mm day-1 for the first season and 1 and 6 mm day-1 for the second season. The difference could also be attributed to a higher atmospheric evaporative demand in the first pearl millet growing season than the second season. Overall, the improved (GCI 17) and the local variety (Monyaloti) of pearl millet had water use of 309 and 414 mm in 2008/2009 season. The water use for the two lines was higher in the 2009/2010 season with GCI 17 having water use of 401 mm and Monyaloti 457 mm which was probably due to high availability of water. High soil water content coupled with a higher amount of rainfall in the second season than the first season could be the reason for difference of the water use of the two lines of pearl millet for the two seasons. However, the water use of the plants of the two lines of pearl millet from the rainfed plots and water stressed treatments showed that the crop was able to reduce water use under water stress conditions as a coping mechanism and hereby increase water use efficiency of the crop. With the aid of the data from the field experiment, greenhouse and lysimeter trials, calibration and validation of AquaCrop crop model was performed successfully for both crops. Simulation of biomass production and cumulative evapotranspiration of both crops were performed adequately. The good performance in simulating these crop parameters were illustrated with a high index of agreement that was higher than 0.9 except for 2 cases of CC excluding the soil water comparisons. However, it was observed that more effort is needed to accurately simulate early canopy cover in amaranthus and also the soil water content and depletion patterns for both crops. Following successful validation, the model was also applied to predict the performance of both crops under a range of proposed planting dates and choice of varieties in pearl millet as possible adaptation strategies under two climate change scenarios. The model was able to predict the production of the two crops under predicted climate change for the period between the year 2046 and 2065 and the most appropriate adaptation strategy as a recommendation is to delay planting for two months until the first half of January for both crops under the two future climate change scenarios (A2 and B1). In conclusion, the two crops under investigation can adjust to water limited conditions but through different mechanisms. Amaranthus can avoid water stress through restricting growth, while the pearl millet crop escapes water stress through speedy completion of growth stages before the water stress condition sets in. It was also revealed that there are possibilities of cultivating these crops in central South Africa. However, more studies should be carried out on the effect of interaction of nutrient and irrigation on amaranthus production to reveal the reasons for the unexpected response of amaranthus to water application. Studies on root development of the two crops are hereby recommended to aid in accurate simulation of water balance of the two crops in the field situations. The calibration and validation of AquaCrop for these two crops can also be improved by using datasets of more varieties or genotypes of the crops and from other agro-ecological regions. In general, underutilised crops provide means of food security and source of income for farmers. Due to the fact that they are drought tolerant, they require minimum amount of input which is a desirable quality for low resource farmers and can be used as alternative crops in semi-arid areas.