Bayesian analysis of process capability indices for single and multiple sources of variability
Abstract
English: Process capability index (process performance index) -relates the specification limits to
the performance of a process, it reduces complex information about the performance of a
process to a single number. A capability index is a dimensionless measure of relative
variability. In this thesis, Bayesian statistics is employed to simulate and estimate most of
the widely used process capability indices.
In Bayesian analysis, we assume that we have prior knowledge or information or opinion
about parameters of a statistical distribution and very often in practice we do. We then
attach a distribution to this belief. Parameters do not really have a distribution, parameters
are constants, and so a prior distribution is a way of expressing our belief or opinion on
our parameters. A posterior distribution is the belief distribution of the parameters after
the outcomes of experiments (data) have been observed. There is now an updated belief
distribution in light of the information from the data.
Bayesian inference is shown to have a number of advantages. A full Bayesian analysis
provides a natural way of taking into account all sources of uncertainty in the estimation
of the parameters. Uncertainty about the true value of the process capability index is
incorporated into the analysis through the choice of a prior distribution. The most familiar
element of the Bayesian school is the use of the non-informative (objective) prior
distribution, designed to be minimally informative in some sense. The most famous of
these is the Jeffrey’s-rule prior and is utilised throughout the thesis. Scientists hold up
objectivity as the ideal of science. Reference priors are a refinement of the Jeffrey’s-rule
priors for higher dimensional problems that have proven to be remarkably successful. The
probability matching prior is recommended because it is designed to produce posterior
credible intervals which are asymptotically identical to their frequentist counterparts.
The Bayesian simulation procedure employs the posterior distribution of the parameters
in doing the simulations. The procedure is also shown to be useful and comparable to
existing classical statistical procedures in solving the supplier selection problem.
Data arising from multiple sources of variability are very common in practice. Virtually
all industrial processes exhibit between-batch and within-batch components of variation.
In some cases the between-batch (or between subgroup) component is viewed as part of
the common-cause-system for the process. A process capability index in more general
settings is developed using Cpl as a point of reference. Cpl is a single variance index and
is adapted to give 2 and 3 variance components indices. The variance component model
proves to be suitable for handling multiple sources of variability capability indices.
Again, Bayesian simulation methods prove to be useful in handling these multiple
sources of variability indices.
Results show that the Bayesian simulation approach is just as good if not better than the
standard classical statistics approach in assessing the capability of an industrial process.
The added advantage of the Bayesian approach is that, from the posterior distribution of
the capability indices, we are in a position to obtain quantiles, credible regions and
perform other inferential tasks. Afrikaans: Prosesgeskiktheidsanalise verwys na die moontlikheid om die Bayes-simulasiebenadering
toe te pas op prosesgeskiktheidsindekse soos onder andere Cp , Cpk , Pp en Ppk . In hierdie
verhandeling word Bayes-statistiek gebruik om die meeste van die
prosesgeskiktheidsindekse te simuleer en te beraam.
In Bayes-analise neem ons aan dat ons prior kennis of inligting of ‘n opinie het
aangaande parameters van ‘n statistiese verdeling, soos die geval dikwels in die praktyk
is. ‘n Verdeling kan dan aan hierdie oortuiging gekoppel word. Parameters is konstantes
en het nie regtig ‘n verdeling nie, dus is ‘n priorverdeling ‘n manier om ons opinie of
oortuiging aangaande parameters uit te druk. ‘n Posteriorverdeling is ‘n
oortuigingsverdeling van die parameters nadat die uitkomste of eksperimente (data)
waargeneem is. Daar is nou ‘n opgedateerde oortuigingsverdeling in die lig van die
inligting uit die data bekom.
Bayes-inferensie het ‘n hele aantal voordele. ‘n Volledige Bayes-analise voorsien ‘n
natuurlike manier om alle bronne van onsekerheid met die beraming van die parameters
in ag te neem. Onsekerheid oor die werklike waarde van die prosesgeskiktheidsindeks
word in die analise ingesluit deur middel van die keuse van ‘n priorverdeling. Die mees
bekende element van die Bayesskool is die gebruik van die objektiewe priorverdeling,
wat ontwerp is om minimale inligting in ‘n sekere sin te gee. Die mees gewildste een is
die Jeffreys-reël prior wat deurgaans in die verhandeling gebruik word. Wetenskaplikes
hou objektiwiteit as die ideaal van wetenskap voor. Verwysingspriors is ‘n verfyning van
die Jeffreys-reël priors vir hoër dimensionele probleme wat reeds as suksesvol beskou
word. Die waarskynlikheidsgepaste prior word aanbeveel omdat dit ontwerp is om
posterior kredietwaardigheidsintervalle te lewer wat assimptoties identies is aan hulle
frekwentistiese teenpartye.
Die Bayes-simulasieprosedure gebruik die posteriorverdeling om die simulasies uit te
voer. Die prosedure het getoon dat dit geskik en vergelykbaar is met bestaande klassieke
statistiese procedures om die verskaffer-seleksieprobleem op te los.
Data wat uit meervoudige bronne van variasie voortspruit is baie algemeen in die
praktyk. Letterlik alle industriële prosesse toon tussengroep en binnegroep komponente
van variasie. In sommige gevalle word die tussengroepkomponent beskou as deel van die
algemeen-oorsaak-sisteem van die proses. ‘n Prosesgeskiktheidsindeks in meer algemene
omstandighede is ontwikkel deur Cpl as ‘n puntverwysing te gebruik. Cpl is ‘n enkel
variansie-indeks en is aangepas om 2 en 3 variansiekomponentindekse te gee. Daar is
bewys dat die variansiekomponentmodel geskik is vir die hantering van meervoudige
bronne van variasiegeskiktheidsindekse. Weereens kan bewys word dat Bayessimulasiemetodes
geskik is vir die hantering van hierdie meervoudige bronne van
variasie-indekse.
Resultate toon dat die Bayes-simulasiebenadering net so goed, indien nie beter nie, is as
die standaard klassieke statistiekbenadering om die vermoë van die industriële proses te
assesseer. ‘n Bykomende voordeel van die Bayesbenadering is dat, vanuit die
priorverdeling van die geskiktheidsindekse, die moontlikheid geskep word om kwantiele
en kredietwaardigheidsintervalle te bekom, asook om ander inferensiële take uit te voer.