'n Ondersoek na die segregasie van fosfor en ander onsuiwerhede in 3Cr12 vlekvrye staal
Abstract
English: One of the main reasons for temper embrittlement in steel is the segregation
of impurities like P to the grain boundaries. Segregation can be defined as
the diffusion of atoms from the bulk to the surface and grain boundaries in
such a way that the total Gibbs free energy is minimized. This means that
segregation can take place against the concentration gradient, from a low
concentration in the bulk to a high surface concentration. The chemical
potential gradient is the driving force behind segregation.
The aim of this study is to investigate the segregation behaviour of P and
other impurities like S and Sn in 3Cr12 steel.
A background theory is founded by using:
(i) The semi infinite solutions to the Fick equations
(ii) t½ and modified t½ models
(iii) the modified Darken model.
One of the advantages of the Darken model is that it supported both
segregation kinetics and equilibrium behaviour. The multi component
model for ternary alloys could be expanded to quaternary alloy
systems in this study.
Segregation kinetics as well as the equilibrium was described by
making use of constant and linear temperature heating.
Auger electron spectroscopy was used to investigate the S, P, Cr, N,
and Sn segregation behaviour in a Fe matrix. A personal computer
was used to control the Auger spectrometer as well as the constant and
linear heating runs.
Three commercial 3Cr12 samples was investigated during the study.
They were numbered according to their P contend as 26P for the
sample with 0.026wt% P, 32P for 0.032wt% P and 62P for the sample
containing 0.062wt% P. The constant temperature runs indicate that
Sn competes with Cr, N and Pin sample 26P. A definite correlation is
visible between Cr and N in sample 32P while Sn and S compete with
P in sample 62P.
The constant and linear heating Darken simulation model was used to give a
qualitative description of the experimental segregation behaviour. The
behaviour of two segregating species were simulated in a Fe matrix, from
which the influence of the segregation parameters could be demonstrated,
namely.
If the surface concentration of species 1 is higher than that of species 2
during segregation kinetics, it can be said that the diffusion coefficient of
species 1 is higher than that of species 2. If the surface concentration of
species 1 is less than that of species 2, then the diffusion coefficient of
species 1 is less than that of species 2.
If the surface concentration of species 1 is less than that of species 2 at
equilibrium, then the segregation energy of species 1 is less than that of
species 2. If the equilibrium surface concentrations are equal, the
segregation energies are equal. When the surface concentration of species 1
is higher than that of species 2, then the segregation energy of species 1 is
higher than that of species 2.
It is possible to sort the segregation parameters in order of magnitude from
the results of the experimental work and the constant and linear heating
simulations. The diffusion coefficients of the species could be arranged from
high to low (DN > DP > DSn = DS). The segregation energies of samples
26P and 32P could be arranged in the same order, namely
?GS < ?GS n< ?GP <?GN while that of 62P is ?GS < ?GN< ?GP< ?GSn.
In consideration of the bulk concentrations of the samples it is evident that
62P has the highest P concentration. Therefore it’s diffusion coefficient DP
is the highest, the segregation rate is higher and it has a higher maximum P
enrichment.
From the comparison of the P profiles of the different samples it is evident
that the maximum surface concentration shift to higher temperatures and that
the temperature interval for a certain P concentration increase with an
increase in P bulk concentration. Afrikaans: Die segregasie van onsuiwerhede, soos P, na die korrelgrense in stale,
word as een van die hoof oorsake van temperverbrokkeling gesien. Die
definisie van segregasie is die diffusie van atome na oppervlakke en
korrelgrense op só 'n wyse dat die totale Gibbs vrye-energie van die
kristal geminimeer word, wat beteken dat segregasie nie altyd van 'n hoë
na 'n lae konsentrasie plaasvind nie, maar soms juis van laer
bulkkonsentrasie na 'n hoër oppervlakkonsentrasie. Die dryfkrag van
segregasie is die chemiese potensiaalgradiënt.
Die doel van die studie is om die segregasie gedrag van P en ander
onsuiwerhede soos byvoorbeeld S en Sn in 3Cr12 staal te ondersoek.
In die teorie gedeelte is die agtergrond gevorm met behulp van:
(i) Die semi-oneindige oplossing van die Fick vergelykings. (ii) t½ en
aangepaste t½ modelle. (iii) Gemodifiseerde Darken model. Een van die
voordele van die gemodifiseerde Darken model is dat dit die segregasie
kinetika sowel as ewewig beskryf. Daar is daarin geslaag om die
segregasie model wat vir multikomponent sisteme tot en met ternêre
sisteme bestaan, in hierdie studie uit te brei na kwaternêre sisteme.
In die studie is van konstante en lineêre temperatuur verhitting gebruik
om segregasie kinetika sowel as ewewig te beskryf.
Augerelektronspektroskopie is gebruik in die ondersoek na die segregasie
gedrag van S, P, Cr, N en Sn in 'n Fe matriks. Die Augerspektrometer is
met behulp van 'n persoonlike rekenaar beheer. Dieselfde rekenaar is
gebruik in die beheer van die linieêre en konstante verhittings lopies.
Drie komersiële 3Cr12 monsters is ondersoek wat onderskeidelik 0.026,
0.032 en 0.062 gew% P bevat. Die monsters is na aanleiding van hul P
konsentrasie genommer as 0.026 gew% - 26P,0.032 gew%- 32P en 0.062
gew% - 62P. Die konstante temperatuur lopies het getoon dat Sn
kompeteer met Cr, N en P in monster 26P. In monster 32P is 'n duidelike
verband tussen Cr en N merkbaar terwyl Sn en S met P kompeteer in
monster 62P.
In 'n poging om die eksperimentele gedrag kwalitatief te bespreek is
konstante en linieêre verhitting Darken model simulasies van 'n ternêre
sisteem gebruik. Twee segregerende spesies se gedrag is in 'n Fe matriks
gesimuleer. Uit die simulasies kon die invloed wat die verandering in die
segregasie parameters op die profiele het, beskryf word, naamlik:
Wanneer die oppervlakkonsentrasie van spesie 1 groter is as die
oppervlakkonsentrasie van spesie 2 tydens segregasie kinetika, dan is die
diffusie koeffisiënt van spesie 1 groter as dié van spesie 2. As die
oppervlakkonsentrasie van spesie 1 kleiner as die van spesie 2 tydens die
segregasie kinetika is, is die diffusie koeffisiënt van spesie 1 kleiner as
dié van spesie 2
Gestel die oppervlakkonsentrasie van spesie 1 is kleiner as die van spesie
2 tydens ewewig, dan is die segregasie energie van spesie 1 kleiner as die
van spesie 2. As die oppervlakkonsentrasies van die spesies gelyk is by
ewewig, dan is die segregasie energie van die spesies gelyk. Wanneer die
oppervlakkonsentrasie van spesie 1 groter is as die van spesie 2, by
ewewig, is die segregasie energie van spesie 1 groter as die van spesie 2.
Uit die bevindings van die linieêre en konstante verhitting simulasies en
eksperimentele resultate is die segregasie parameters in volgorde van
grootte gerangskik, nl:
Die diffusie koeffisiënte van al drie monsters se volgorde, van groot na
klein is: DN > DP > DSn = DS.
Monsters 26P en 32P se segregasie energieë kon in dieselfde volgorde
geskryf word naamlik ?GS < ?GSn< ?GP <?GN. Die volgorde van
segregasie energie vir monster 62P is ?GS < ?GN< ?GP <?GSn. Na
aanleiding van die bulkkonsentrasies van die monsters is dit duidelik dat
monster 62P die grootste P inhoud bevat wat ‘n groter diffusie koeffisiënt
DP, hoër P segregasie tempo en ‘n hoër maksimum P bedekking tot gevolg
het.
Uit die vergelyking tussen die verskillende monsters se P profiele is dit
ook duidelik dat die maksimum bedekking verskuif na hoër temperature
en dat die temperatuur interval vir ‘n sekere P konsentrasie op die
oppervlak vergroot met ‘n verhoging in P bulkkonsentrasie.