Inheritance of root rot resistance in maize (Zea Mays L.)
Abstract
English: Root rot is an important disease of maize (lea mays l.). Colonization of roots
by fungi has been studied to a limited extent in field soils because of difficulty of
visibility and quantification. Several fungal species are involved in maize root rot,
occurring in a complex of causal fungi separated by time and space. Different
fungal species occur throughout the season on and in the roots, making it
difficult to determine the primary pathogens. In addition, fungi associated with
roots differ between localities. Root rot therefore, requires study at more than
one locality and the spectrum of fungi involved is to be determined (Chambers,
1987). According to him pathogenicity tests should include different plant
growth stages. Mixtures of fungi should also be used, as well as different
environmental stresses factors.
Although very little attention has been given to the study of root rots of maize,
one of the major areas requiring urgent attention is the quantification of root rot
of maize. The primary criteria used to measure root rot are root discolouration
and root development. The use of these criteria is however, questionable since
other factors may affect root discolouration and development. Furthermore,
maize plants have a considerable ability to compensate for injury to root
systems. A further complication is that general symptoms such as early
senescence and lodging, only occur with extremely severe infection, or late in
the season when the plants have reached physiological maturity. Normally the
disease is characterized by an absence of distinct above ground symptoms, and
subtle yield losses. A possibility also exists that fungal toxins may be involved in
the root rot complex. Control of root rot has received limited attention.
Interactions between practices and root rot incidence seem promising and need
to be investigated with regard to developing a disease control system. The
possibility of pesticides such as chlorpyrifos, which degrade to release a
fungicidal component, should also be studied.
Breeding for resistance is a long term control measure for root rot disease.
Breeding for resistance to specific pathogens rather than to a complex of fungal
species will ease control of genetic manipulation as well as enable the stability of
resistance to be quantified particularly with regard to isolate differences or races.
The inheritance of resistance in maize is not stable and the fact that the
resistance is quantitative rather than qualitative suggests that there are many
genes involved. Resistance has also been associated with many different
resistance mechanisms and factors.
In order to understand the principal aspects related to the root rot of maize, a
literature survey concerning to the host range, host-pathogen interactions,
control and economic importance of the disease was conducted. Furthermore,
different methods of disease management are reviewed, with emphasis on
genetic control.
To determine pathogenic variability and the heritance of resistance for root rot
eight inbred lines were crossed and planted in a 8 x 8 full diallel (Modeil)
during the 1999/2000 season. The plants were infected with root rot isolate
Fusarium oxysporum. Root rot discolouration, plant length, root volume, root
efficiency and yield were measured. A diallel analysis was used to analyse the
data and determine the combining abilities, genetic correlations, heritabilities and
correlated response.
Significant differences in F l-hybrids for root discolouration, plant length, root
volume, effective root volume and yield were found. Effective root volume was
highly significantly correlated with root volume and plant length and a similar
correlation was recorded between root volume and plant length. Root rot
discolouration was positively but not significantly correlated with plant length,
root volume, effective root volume and yield.
Analyses of variance were done for GCA and SCA effects. Non-significant GCA
and SCA effects existed for root rot discolouration. Highly significant GCA
effects were found for plant length, root volume, effective root volume and high
significant SCA effects existed for plant length and yield. Highly significant SCA
effects were found for root volume and effective root volume.
Highly significant genetic correlations were found between root volume and
effective root volume and between root volume and plant length. Genetic
correlations between effective root volume and plant length were also significant.
Yield was genetically negatively correlated with plant length, root volume and
effective root volume and positively correlated with root rot discolouration.
To assess field resistance to root rot in maize, 34 hybrids were planted and
evaluated over five environments at Bethlehem and Potchefstroom from 1997
to 2000. The Additive Multiplicative Interaction (AMMI) statistical model was
used to describe genotype x environment (G X E) interactions. Highly
significant G X E interactions were recorded for root discolouration and yield.
No significant G X E interactions were found for root volume and effective root
volume.
Additive main effects and multiplicative interaction (AMMI) model analysis
clearly showed that different genotypes were identifiable with low potential
environments predominating and other were identifiable with high potential
environments predominating for root rot disease. The AMMI model can
summarise patterns and relationships of genotypes and environments
successfully, as well as provide a valuable prediction assessment of disease
resistance.
In general, stability of root rot is very complex due to numerous fungal species
associated with infection of maize roots. Breeding for resistance to specific
pathogens rather than to a complex of fungal species should ease control of
genetic manipulations as well as enable the stability of resistance to be quantified
particularly with regard to isolates and different races. This study will hopefully
serve as an important source of information for future research or root rot
resistance in maize. Afrikaans: Wortelvrot is 'n belangrike siekte by mielies (lea mays L.). Weens probleme met
sigbaarheid en kwantifisering, is kolonisering van wortels deur swamme min
bestudeer. Verskeie swamspesies wat in 'n kompleks voorkom, is
verantwoordelik vir wortelvrot. Hierdie patogene is in tyd en ruimte verspreid.
Verskillende swamspesies kom deur die seisoen op en in wortels voor wat dit
moeilik maak om die primêre patogene te bepaal. Swamme wat met wortels.
geassosieer is, verskil ook oor lokaliteite. Dus is dit belangrik dat wortelvrot by
meer as een lokaliteit bestudeer word om die spektrum van swamme te bepaal.
Volgens hom behoort patogenisiteitstoetse verskeie plant groeistadiurns in te
sluit. Mengsels van swamme en omgewingsstremmings behoort ook ingesluit te
word.
Weens die feit dat wortelvrotstudies by mielies min aandag geniet het, blyeen
van die belangrikste studievelde dié van kwantifisering van wortelvrot. Die
hoofkriteria om wortelvrot te meet is wortelverkleuring en wortelontwikkeling.
Die gebruik van hierdie kriteria word bevraagteken aangesien verskeie ander
faktore wortelverkleuring en ontwikkeling kan beïnvloed. Mielieplante het ook
'n aansienlike vermoë om te kompenseer vir wortelskade. Wortelvrotstudies
word ook bemoeilik deurdat simptome, soos vroeë afsterwing en omval net by
besondere strawwe besmettings of laat in die seisoen na fisiologiese rypheid,
voorkom. Gewoonlik is duidelike bogrondse simptome afwesig en verliese is baie
subtiel. Dit is ook moontlik dat swamtoksiene by die wortelvrotkompleks
betrokke is. Beheer van wortelvrot het min aandag geniet. Interaksies tussen
produksiepraktyke en wortelvrot behoort ondersoek te word met die doe I om
beheerstelsels te ontwikkel. Die moontlikheid om insekdoders soos chlorpyrifos
wat afbreek om 'n swamdoderkomponent vry te stel te gebruik behoort ook
bestudeer te word.
Weerstandsteling is 'n langtermyn beheermaatreël vir wortelvrot. Deur vir
weerstand teen spesifieke patogene te teel eerder as vir 'n kompleks, sal
genetiese manipulasie vergemaklik word asook die bepaling van
weerstandsstabiliteit teenoor spesifieke isolate of rasse.
Oorerwing van weerstand is nie vas nie en weens die feit dat weerstand
kwantitatief eerder as kwalitatief is, dui aan dat heelwat gene betrokke is.
Weerstand gaan ook gepaard met verskeie weerstandsmeganismes en faktore.
Om die hoofaspekte van wortelvrot te bepaal, is 'n literatuuroorsig uitgevoer oor
gashere, gasheer-patogeen interaksies, beheer en die ekonomiese belangrikheid
van die siekte. Aandag is ook gegee aan verskillende metodes van siektebestuur
met die klem op genetiese beheer.
Agt ingeteelde lyne is onderling gekruis en in 'n 8x8 volledige diallel tydens die
1999/2000 seisoen geplant om patogeniese variasie en die oorerwing van
weerstand teen wortelvrot te bepaal. Plante is met Fusarium oxysporum besmet.
Wortelverkleuring, plantlengte. wortelvolume, effektiewe wortelvolume en
opbrengs is gemeet. Oiallelanalise is gebruik om kombineervermoë, genetiese
korrelasies, oorerwing en gekorreleerde reaksies te bepaal.
Betekenisvolle verskille in F1 basters is gevind vir wortelverkleuring, plantlengte.
wortelvolume, effektiewe wortelvolume en opbrengs. Effektiewe wortelvolume
was hoogs betekenisvol gekorreleerd met wortelvolume en plantlengte en In
soortgelyke korrelasie is tussen wortelvolume en plantlengte verkry.
Wortelverkleuring was positief maar nie betekenisvol met plantlengte.
wortelvolume, effektiewe wortelvolume en opbrengs gekorreleerd nie.
Variasie-analieses is uitgevoer vir AKV en SKY. AKV en SKY effekte vir
wortelverkleuring was nie betekenisvol nie. Hoogs betekenisvolle AKV effekte is
vir plantlengte. wortelvolume en effektiewe wortelvolume gevind, en hoogs
betekenisvolle SKY effekte het vir plantlengte en opbrengs voorgekom. Hoogs
betekenisvolle SKY effekte is vir wortelvolume en effektiewe wortelvolume
verkry.
Hoogs betekenisvolle genetiese korrelasies is verkry tussen wortelvolume en
effektiewe wortelvolume en tussen wortelvolume en plantlengte. Genetiese
korrelasies tussen effektiewe wortelvolume en plantlengte was ook betekenisvol.
Opbrengs is geneties negatief gekorreleerd met plantlengte, wortelvolume en
effektiewe wortelvolume en positief gekorreleerd met wortelverkleuring.
Om veldweerstand teen wortelvrot by mielies te bepaal, is 34 basters vanaf
1997 tot 2000 oor vyf omgewings op Bethlehem en Potchefstroom geplant.
Die "Additive Multiplicative Interaction" (AMMI) statistiese model is gebruik
om genotipe x omgewing interaksies te bepaal. Hoogs betekenisvolle G x 0
Interaksies Is bepaal vir wortelverkleuring en opbrengs. G x 0 interaksies vir
wortelvolume en effektiewe wortelvolume was nie betekenisvol nie.
ie "Additive main effects and multiplicative interaction (AMMI)" model het
duidelik getoon dat verskeie genotipes aanpasbaarheid is vir lae siektepotensiaal
omgewings wat domineer het, terwyl enkeles geidentifiseer is wat meer aangepasis
vir hoë wortelvrotpotensiaal omgewings. Die AMMI model kan patrone en
verhoudings tussen genotipes en omgewings dus suksesvolopsom asook In
voorspelling voorsien van siekteweerstand.
In geheel is die stabiliteit van wortelvrot baie ingewikkeld as gevolg van die groot
aantal swamspesies wat betrokke is by die besmetting van mieliewortels. Teling
vir weerstand teen spesifieke patogene, eerder as In kompleks van swamspesies
behoort genetiese manipulasies te vergemaklik asook die bepaling van die
stabiliteit van weerstand soos deur isolate en rasse beïnvloed. Hierdie studie sal
hopelik dien as In belangrike bron van inligting vir toekomstige navorsing oor
wortelvrotweerstand by mielies.