• Login
    View Item 
    •   KovsieScholar Home
    • Electronic Theses and Dissertations
    • All Electronic Theses and Dissertations
    • View Item
    •   KovsieScholar Home
    • Electronic Theses and Dissertations
    • All Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Aspects of Bayesian change-point analysis

    Thumbnail
    View/Open
    SchoemanAC.pdf (10.80Mb)
    Date
    2000-11
    Author
    Schoeman, Anita Carina
    Metadata
    Show full item record
    Abstract
    English: In chapter one we looked at the nature of structural change and defined structural change as a change in one or more parameters of the model in question. Bayesian procedures can be applied to solve inferential problems of structural change. Among the various methodological approaches within Bayesian inference, emphasis is put on the analysis of the posterior distribution itself, since the posterior distribution can be used for conducting hypothesis testing as well as obtaining a point estimate. The history of structural change in statistics, beginning in the early 1950's, is also discussed. Furthermore the Bayesian approach to hypothesis testing was developed by Jeffreys (1935, 1961), where the centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is one-half. According to Kass and Raftery (1993) this posterior odds = Bayes factor x prior odds and the Bayes factor is the ratio of the posterior odds of Hl to its prior odds, regardless of the value of the prior odds. The intrinsic and fractional Bayes factors are defined and some advantages and disadvantages of the IBF's are discussed. In chapter two changes in the multivariate normal model are considered. Assuming that a change has taken place, one will want to be able to detect the change and to estimate its position as well as the other parameters of the model. To do a Bayesian analysis, prior densities should be chosen. Firstly the hyperparameters are assumed known, but as this is not. usually true, vague improper priors are used (while the number of change-point.s is fixed). Another way of dealing with the problem of unknown hyperparameters is to use a hierarchical model where the second stage priors are vague. We also considered Gibbs sampling and gave the full conditional distributions for all the cases. The three cases that are studied is (1) a change in the mean with known or unknown variance, (2) a change in the mean and variance by firstly using independent prior densities on the different variances and secondly assuming the variances to be proportional and (3) a change in the variance. The same models above are also considered when the number of change-points are unknown. In this case vague priors are not appropriate when comparing models of different dimensions. In this case we revert to partial Bayes factors, specifically the intrinsic and fractional Bayes factors, to obtain the posterior probabilities of the number of change-points. Furthermore we look at component analysis, i.e. determining which components of a multivariate variable are mostly responsible for the changes in the parameters. The univariate case is then also considered in more detail, including multiple model comparisons and models with auto correlated errors. A summary of approaches in the literature as well as four examples are included. In chapter three changes in the linear model, with (1) a change in the regression coefficient and a constant variance, (2) a change in only the variance and (3) a change in the regression coefficient and the variance, are considered. Bayes factors for the above mentioned cases, multiple change-points, component analysis, switchpoint (continuous change-point) and auto correlation are included, together with seven examples. In chapter four changes in some other standard models are considered. Bernoulli type experiments include the Binomial model, the Negative binomial model, the Multinomial model and the Markov chain model. Exponential type models include the Poisson model, the Gamma model and the Exponential model. Special cases of the Exponential model include the left truncated exponential model and the Exponential model with epidemic change. In all cases the partial Bayes factor is used to obtain posterior probabilities when the number of change-points is unknown. Marginal posterior densities of all parameters under the change-point model are derived. Eleven examples are included. In chapter five change-points in the hazard rate are studied. This includes an abrupt change in a constant hazard rate as well as a change from a decreasing hazard rate to a constant hazard rate or a change from a constant hazard rate to an increasing hazard rate. These hazard rates are obtained from combinations of Exponential and Weibull density functions. In the same way a bathtub hazard rate can also be constructed. Two illustrations are given. Some concluding remarks are made in chapter six, with discussions of other approaches in the literature and other possible applications not dealt with in this study.
    URI
    http://hdl.handle.net/11660/6272
    Collections
    • All Electronic Theses and Dissertations
    • Doctoral Degrees (Mathematical Statistics and Actuarial Science)

    Related items

    Showing items related by title, author, creator and subject.

    • Die verband tussen konserwatisme en kognitiewe buigsaamheid by Suid-Afrikaanse adolessente 

      Greeff, Sandri; Beukes, Roelf; Esterhuyse, Karel (University of the Free State, 2004)
      English: The recent democratisation of South Africa has led to many changes in the political, economic and social systems. Consequently adolescents, as members of society, find themselves in a context of change and adjustment. ...
    • Farmer strategies towards climate variability and change in Zimbabwe and Zambia 

      Mubaya, Chipo Plaxedes (University of the Free State, 2010-04)
      English: There is wide scientific consensus that concentrations of greenhouse gases in the atmosphere are increasing due to human activities, causing global climate change. Climate change exerts significant pressure on the ...
    • Improving the climate change resilience of informal settlements in mountainous regions of Africa: comparative case studies of Qwaqwa in South Africa and Konso in Ethiopia 

      Melore, Tamirat Wangore (University of the Free State, 2017-02)
      The aim of this study is to search for the strategies to improve climate change resilience of informal settlements in mountainous regions of Africa. The multidimensional and dynamic fea-tures of resilience require the use ...

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
     

     

    Browse

    All of KovsieScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback