Old yellow enzymes from extremophiles: finding and characterizing potential biocatalysts
Abstract
English: The old yellow enzyme (OYE) family is a diverse group of flavoenzymes that catalyse the
asymmetric reduction of activated C=C bonds of a wide variety of α/β-unsaturated carbonyl
compounds. OYEs are attractive as biocatalysts due to the ability to perform transhydrogenation
with high stereospecificity (Stuermer et al., 2007). The number of functionally
and structurally characterised OYEs has grown over the past decade, as have the enzyme
family’s substrate spectrum.
Vital in the search for new industrial biocatalysts among the OYE family is the structural and
functional characterisation of new OYE homologues (Oberdorfer et al., 2011; Toogood et al.,
2010; Williams and Bruce, 2002). This study investigated the sequence-based evolutionary
relationship among the vast number of OYE homologues in the Proteobacteria, Firmicutes
and Archaea, with particular attention paid to two substrate-binding residues in the catalytic
site and a single residue implicated in the modulation of the redox potential of enzymebound
FMN. A strong correlation was identified between grouping of OYE homologues
through advanced maximum likelihood evolutionary analysis, and the grouping of OYEs into
subgroups through the identity of the above-mentioned three target residues.
Two OYE homologues were selected for cloning, heterologous expression and subsequent
characterisation. The first OYE (CmOYE) was selected from the mesophile Cupriavidus
metallidurans CH3 and belongs to the previously identified “thermophilic-like” subclass of
OYEs (Toogood et al., 2010), which includes mainly OYEs from thermophiles, but also
OYEs YqjM from B. subtilis (Kitzing et al., 2003) and XenA (P. putida; Griese et al., 2006)
from mesophiles. CmOYE was regarded as an ideal target, as it adds to the short list of
mesophilic OYEs from the subclass. The second OYE (SsOYE) was selected form the
hyperthermophile Sulfolobus solfataricus P2 and belongs to an as-yet uncharacterised
subclass of OYEs. SsOYE was regarded as an ideal target due to its potentially high
thermal stability (an ideal characteristic in biocatalysts) and unconventional OYE structure
(bearing high similarity to the two-domain enoyl-CoA reductase from E. coli, as revealed with
the aid of homology modelling form the translated nucleotide sequence).
Both targeted OYEs were successfully cloned and heterologously expressed in E. coli as
both unmodified and modified (with addition of N-terminal His6-tag). Due to the presence of
rare codons in the gene sequence of SsOYE, the protein was expressed in E. coli in the
presence of the plasmid pLySSRARE2. Purification of CmOYE and SsOYE through IMAC
and size-exclusion chromatography provided homogenous protein solutions and revealed
that CmOYE and SsOYE are present in solution as a monomers, with the monomeric nature
of SsOYE possibly due to the presence of a second domain. Temperature and pH profiles
of the two OYEs revealed an optimum temperature and pH for CmOYE that corresponds
well to the optimum growth conditions of the source organism. The optimum catalytic
temperature of SsOYE was identified to be significantly lower than that of the source
organism, while the optimum catalytic pH was higher than the optimum growth pH of S.
solfataricus P2.
Steady-state kinetics performed for both CmOYE and SsOYE with 2-cyclohexenone as
substrate revealed that catalytic efficiency and affinity differed vastly between the two OYE
homologues. While the Km for CmOYE was found to be comparable with the close
homologue from Thermus scotoductus SA-01 (CrS; Opperman et al., 2010), catalytic
efficiency for both CmOYE and SsOYE was revealed to be significantly lower than that
observed for the close homologues YqjM, XenA and CrS.
SsOYE revealed a more limited substrate scope compared to CmOYE. Maleimides were
identified as good substrates for both, corresponding to activities reported for YqjM, XenA
and CrS. No conversions were observed for cyclic enones with methyl substitutions on the
Cβ position. However, certain compounds previously reported to act well as substrates for
YqjM and XenA were not accepted as substrates by either CmOYE or SsOYE, or resulted in
significantly lower conversion as reported. Neither CmOYE nor SsOYE exhibited activity
towards citral, an enal with a methyl group on Cβ that has been reported to act as substrate
for YqjM and XenA but not for CrS. CmOYE exhibited marginal activity towards the Cα
methyl-substituted 2-methylcyclopentanone and none towards 2-methylcyclohexenone, two
compounds for which conversions have been reported for YqjM. Two isomers of carvone
were successfully reduced by both CmOYE and SsOYE, an activity not exhibited by XenA.
Ketoisophorone, a known substrate for YqjM, resulted in marginal conversion for both
SsOYE and CmOYE, with SsOYE exhibiting almost double the conversion observed for
CmOYE.
CmOYE catalysed the conversion of carvones and 2-cyclohexenone in the absence of
nicotinamide cofactor, but in conjunction with a light-driven cofactor regeneration approach.
Utilisation of this cofactor-regeneration approach failed to produce any positive results in
SsOYE. Further functional characterisation involved investigating the enzymes’ ability to
catalyse the dehydrogenation of saturated ketones. This phenomenon has been reported
for the OYE from the thermophile Geobacillus kaustophilus (Schittmayer et al., 2011) in the
absence of nicotinamide cofactor and utilizing only molecular oxygen, but has been
attributed to elevated reaction temperatures (70°C). Although not successful for SsOYE,
CmOYE catalysed the conversion of cyclohexanone and (+)-dihydrocarvone to their
corresponding unsaturated compounds at 25°C.
Lastly, crystallisation of CmOYE was performed for the collection of X-ray crystallographic
data for future structural characterisation. The enzyme was successfully crystallised and
diffraction data collected at a resolution range of 57.99 - 1.93Å.
The study demonstrated that predicting functional characteristics from sequence data
remains problematic for members of the OYE family. Although the use of three catalytically
important target residues as fingerprint is useful for elucidating the evolutionary relationship
among the vast number of OYE homologues, these groupings do not necessarily result in
the clustering of OYEs with similar functional characteristics. The need for more functional
and structural data of OYE homologues (especially OYE homologues belonging to yet
uncharacterised subgroups) remains if correlation between sequence similarity and
functional similarity among OYE homologues is to be elucidated. Afrikaans: Die ‘old yellow enzyme’ (OYE) familie is 'n diverse groep flavo-ensieme wat die
asimmetriese reduksie van geaktiveerde C=C verbindings van 'n wye verskeidenheid α/β-
onversadigde karbonielverbindings, kataliseer. OYEs is gesogte biokataliste as gevolg van
die vermoë om trans-hidrogenasie met 'n hoë stereoselektiwiteit uit te voer (Stuermer et al.
2007). Die aantal funksioneel- en struktureel gekarakteriseerde OYEs het oor die afgelope
dekade gegroei, en so ook die ensiem-familie se substraat spektrum.
Die strukturele en funksionele karakterisering van nuwe OYE homoloë (Oberdorfer et al,
2011; Toogood et al, 2010; Williams en Bruce, 2002) is noodsaaklik in die soektog na nuwe
industriële biokataliste onder die OYE familie is. Hierdie studie het die
aminosuuropeenvolging-gebaseerde evolusionêre verband tussen die groot aantal OYE
homoloë in die proteobakterieë, firmikiete en archaea, ondersoek. Besondere aandagis
gegee aan twee substraat-bindende residu’s in die katalitiese setel, asook 'n enkele
residuwat in die regulering van die ensiem-gebonde FMN se redokspotensiaal, geïmpliseer
is. 'n Sterk korrelasie tussen die groepering van OYE homoloë deur middel van gevorderde
maksimum waarskynlikheid evolusionêre analise, en die groepering van OYEs in die
subgroepe deur die identiteit van die bogenoemde drie teiken-residu’s, is geïdentifiseer.
Twee OYE homoloë is gekies vir klonering, heteroloë uitdrukking en die daaropvolgende
karakterisering. Die eerste OYE (CmOYE) is gekies uit die mesofiel Cupriavidus
metallidurans CH3 en behoort aan die voorheen geïdentifiseerde "termofiel-agtige" subklas
van OYEs (Toogood et al, 2010), wat hoofsaaklik OYEs van termofiele, maar ook OYEs
YqjM uit B. subtilis (Kitzing et al., 2003) en XenA (P. putida; Griese, et al., 2006) van
mesofiele, insluit. CmOYE is beskou as 'n ideale teiken, omdat dit bydra tot die min
voorbeelde van mesofiele OYEs in hierdie subklas. Die tweede OYE (SsOYE) van die
hipertermofiel Sulfolobus solfataricus P2 behoort aan 'n tans ongekarakteriseerde subklas
van OYEs. SsOYE is beskou as 'n ideale teiken as gevolg van die potensiële hoë termiese
stabiliteit (ʼn ideale kenmerk in biokataliste), asook die onkonvensionele OYE struktuur
(soortgelyk aan die twee-domein enoiel-KoA reduktase van E. coli, soos blootgelê met die
hulp van homologie modellering vanaf die aminosuur opeenvolging).
Beide OYEs is suksesvol gekloneer en heteroloog uitgedruk in E. coli as beide
ongemodifiseerde en gemodifiseerde (met die byvoeging van die N-terminale His6-tag)
proteïen. As gevolg van die teenwoordigheid van seldsame kodons in die
basispaaropeenvolging van SsOYE, is die proteïen in E. coli uitgedruk in die
teenwoordigheid van die plasmied pLySSRARE2. Homogene proteïen-oplossings is verkry
deur suiwering van CmOYE en SsOYE deur IMAC en uitsluitingskromatografie. Die
laasgenoemde suiweringstegniek het ook aangedui dat CmOYE as 'n monomeer bestaan.
SsOYE as ook ʼn monomeer in oplossing teenwoordig is, moontlik as gevolg van die
teenwoordigheid van die tweede domein. Temperatuur en pH profiele van die twee OYEs se
aktiwiteit het aangedui dat CmOYE 'n optimale temperatuur en pH het wat ooreenstem met
die optimum groeitoestande van die bron organisme. Die optimum katalitiese temperatuur
van SsOYE blyk aansienlik laer as dié van die bron organisme te wees, terwyl die optimum
katalitiese pH hoër is as die optimum groei pH van S. solfataricus P2.
Gestadigte-toestand kinetika is uitgevoer vir beide CmOYE en SsOYE met 2-sikloheksenoon
as substraat wat aangedui het dat die katalitiese doeltreffendheid en affiniteit aansienlik
tussen die twee OYE homoloë verskil. Terwyl die Km vir CmOYE vergelykbaar met die van
die OYE vanaf Thermus scotoductus SA-01 (CrS; Opperman et al, 2010) is, is die katalitiese
doeltreffendheid vir beide CmOYE en SsOYE beduidend laer is as wat vir die homoloë
YqjM, Xena en CRS waargeneem is
SsOYE toon aktiwiteit teenoor ʼn meer beperkte omvang substrate as CmOYE. Maleimiedes
is as goeie substrate vir beide geïdentifiseer, wat ooreenstem met die aktiwiteite
gerapporteer vir YqjM, XenA en CrS. Geen omskakelings is waargeneem vir sikliese enone
met metiel-vervangings op die Cβ posisie nie. Sekere verbindings wat voorheen as
goeiesubstrate vir YqjM en XenA beskou is, is egter nie as substrate deur CmOYE óf
SsOYE geïdentifiseer nie, of het gelei tot beduidend laer aktiwiteite as wat vir homoloë
gerapporteer is. Nie CmOYE of SsOYE toon aktiwiteit teenoor sitral nie, 'n enal met 'n
metielgroep op Cβ wat wel as substraat vir YqjM en XenA optree, maar nie vir CrS nie.
CmOYE toon marginale aktiwiteit met die Cα metiel-gesubstitueerde 2-metielsiklopentanoon
en geen aktiwiteit met 2-metielsikloheksanoon nie, twee substrate waarvoor aktiwiteit met
YqjM gerapporteer is. Twee isomere van karvoon is suksesvol deur beide CmOYE en
SsOYE omgeskakel, 'n aktiwiteit wat nie vir XenA gerapporteer is nie. Beide SsOYE en
CmOYE het baie lae aktiwiteit met ketoisoforoon, ʼn bekende substraat vir YqjM, getoon. Vir
SsOYE is byna dubbel die omskakeling as wat vir CmOYE waargeneem is, met
ketoisoforoon getoon.
CmOYE het die omskakeling van karvoon en 2-sikloheksenoon in die afwesigheid van ʼn
nikotienamied kofaktor, maar in samewerking met 'n lig-gedrewe kofaktor
regenereringsmetode, gekataliseer. Gebruik van hierdie kofaktor-regenereringsbenadering
het geen positiewe resultate met SsOYE geproduseer nie. Verdere funksionele
karakterisering is gedoen deur die ensieme se vermoë om die dehidrogenasie van
versadigde ketone te kataliseer, te ondersoek. Hierdie verskynsel is vir die OYE van die
termofiel Geobacillus kaustophilus (Schittmayer et al,. 2011) in die afwesigheid van
nikotienamied ko-faktor en met die gebruik van slegs molekulêre suurstof, gerapporteer.
Hierdie verskynsel is egtertoe geskryf aan verhoogde reaksie temperature (70°C). Hoewel
geen sukses met SsOYE behaal is nie, het CmOYE die omskakeling van sikloheksanoon en
(+)-dihidrokarvoon na die ooreenstemmende onversadigde verbindings by 25°C
gekataliseer.
Laastens is die kristallisasie van CmOYE vir die versameling van X-straal kristallografiese
data vir toekomstige strukturele karakterisering, uitgevoer. Die ensiem was suksesvol
gekristalliseer en diffraksie data is versamel by 'n resolusie van 57.99-1.93 Å.
Dié studie het getoon dat die voorspelling van funksionele eienskappe vanaf
aminosuuropeenvolging steeds problematies vir lede van die OYE familie is. Hoewel die
gebruik van die drie geïdentifiseerde teiken-residue as vingerafdruk nuttig is vir aanduidings
van die evolusionêre verhouding tussen die groot aantal OYE homoloë, kom hierdie
groeperinge nie noodwendig ooreen met die groepering van OYEs met soortgelyke
funksionele eienskappe nie. Die behoefte vir meer funksionele en strukturele data van OYE
homoloë (veral OYE homoloë wat aan tans ongekarakteriseerde subgroepe behoort) bly
groot as 'n korrelasie tussen aminosuuropeenvolging en funksionaliteit tussen OYE homoloë
gevind wil word.