Modelling the colonisation of sorghum grain by the Fusarium graminearum species complex and concomitant mycotoxin production
Abstract
English: Sorghum is the fifth most grown cereal worldwide, and is a staple food in 30
countries that sustains 500 million people in the semi-arid tropics. Sorghum grain
mold (SGM) is the one of the most important pre-harvest biotic constraints in
sorghum production. Over 40 genera of pathogenic fungi occur on sorghum grain
and cause SGM. Fusarium graminearum, a causal agent of SGM, is responsible for
the majority of economically and medically important mycotoxins associated with the
disease. This, however, is not an individual pathogen, but a complex of species or a
combination of related Fusarium species and is referred to as the Fusarium
graminearum species complex (FgSC). The FgSC formed the focus of this study.
Grain from nine sorghum cultivars, harvested over three seasons at Cedara and two
seasons at Alma, was evaluated for grain mold severity, mycotoxin contamination
and the stability of the grain mold response over changing environmental conditions.
Lower visual threshed grain disease ratings and total fungal biomasses, determined
using ergosterol analysis, were observed in grains with an elevated tannin content.
However, no correlation between threshed grain disease ratings and ergosterol
content was observed indicating that the former criterion is not a reliable measure of
grain colonisation by grain mold fungi. Quantitative PCR analysis indicated a FgSC
DNA content in grain over a range of 5.52 ng.μl-1 in PAN8625 to 55.43 ng.μl-1 in
PAN8806 with significant differences between cultivars. Only three of the 162 grain
samples had deoxynivalenol (DON) concentrations that exceeded 10 μg.kg-¹ and
DON was therefore excluded from further analysis. However, nivalenol (NIV) and
zearalenone (ZEA) were present in all but four and two samples, respectively.
Additive Main Effect and Multiplicative Interaction (AMMI) analysis of FgSC DNA,
NIV and ZEA concentrations indicated a relatively stable response in cultivars to
changing environments with most cultivars yielding an IPCA1 score <1. Robust
regression was applied to quantify the relationship between NIV and ZEA
accumulation in grain relative to the FgSC DNA concentration and indicated that host
genotype influences mycotoxin production despite similar colonisation levels. Results
indicate the need for the inclusion of environmental variation in the screening and selection for resistance to SGM in sorghum genotypes, to ensure quality grain and
human and animal health.
The development of an epidemiological model which quantifies the risk of grain
molds and mycotoxins in sorghum production areas could enable producers to
ensure that timely management decisions are made to reduce FgSC infection and
mycotoxin contamination. Sorghum grain collected over two seasons from 18 South
African sorghum production areas were analysed for FgSC colonisation and DON,
NIV and ZEA contamination. FgSC colonisation and concomitant mycotoxin
accumulation coincided with weather conditions during early-post flowering, 82-95
days after planting (d.a.p.) and soft dough stage, 92-115 d.a.p., which are the critical
periods for grain colonisation and mycotoxin accumulation. FgSC development and
colonisation were significantly, positively correlated with maximum relative humidity
82-95 d.a.p. and significantly inversely correlated with maximum temperature and
evapotranspiration 82-95 d.a.p. DON, NIV and ZEA accumulation were significantly
positively related to FgSC DNA concentration. DON had borderline significant
positive relationship with maximum temperature 101-115 d.a.p., however NIV and
ZEA had significant inverse relationship with minimum temperature 91-104 and 100-
113 d.a.p., respectively. Preliminary models based on stepdown multiple regression
analysis were developed. Future studies could include localities with more available
and accurate weather data to further calibrate and validate the models developed.
A range of commercial sorghum grain samples were collected from a sorghum
processing company as well as two finished products were taken from storage. In
addition a total of 180 sorghum grain samples consisting of four cultivars from three
localities in South Africa (Greytown, Standerton and Potchefstroom) were collected
during one production season and decorticated using a tangential abrasive dehulling
device (TADD) for five time periods. Ergosterol concentrations were highest in
sorghum bran and lowest in 22% dehulled grain, indicating that a high proportion of
fungal contamination lies in the outer grain layers. In contrast, FgSC DNA
concentrations were detected at lowest levels in sorghum bran and at highest levels
in 22% dehulled grain. The assumption was therefore, made that FgSC infections
were deep-seated within the grain endosperm. Furthermore, controlled decortication
by TADD only resulted in a significant reduction in FgSC DNA content after four minutes i.e. 35% decortication. The assumption is further supported by NIV
concentrations in both commercial and controlled samples which were relatively high
in sorghum bran and 4% dehulled grain, but reduced to 0.00 μg.kg-1 in both the 22%
dehulled grain and grain from the six minutes decortication. In contrast with NIV,
ZEA and DON, were removed from grain by short periods of decortication. The
assumption can be made that ZEA and DON are associated with superficial FgSC
infections and accumulate in the outer layers of the grain while NIV is associated
with pathogenesis in the deeper endosperm layers. Cultivars differed in hardness
and variation in hardness of grains was associated with prevailing weather
conditions at each locality, as well as endosperm texture with lower colonisation and
mycotoxin levels in the harder grain. The highest FgSC DNA concentrations and
DON, NIV and ZEA accumulation was recorded in grain from Greytown where
weather conditions during the critical grain development stages promoted infection
and the contamination of grains by mycotoxins. Understanding the effects of
decortication on FgSC DNA concentrations and the accumulation of DON, NIV and
ZEA could assist commercial processors to make the best management decisions
for the removal of these harmful mycotoxins. Afrikaans: Sorghum is wêreldwyd die vyfde mees geplante graan en in 30 lande vir 500 miljoen
mense in die semi-aride gebiede. Tydens produksie is sorghum graanskimmel
(SGS) een van die belangrikste voor-oes biotiese stremmings faktore en meer as 40
genera patogeniese swamme word op graan aangelief. Fusarium graminearum, ‘n
veroorsakende organisme van SGS is verantwoordelik vir die belangrikste
ekonomise en medise mikotoksiene wat met die siekte geassosieer word. Dit is nie ʼn
enkel patogeen nie, maar ʼn kompleks van individuele spesies of ʼn kombinasie van
verwante Fusarium spesies en word na verwys as die Fusarium graminearum
spesies kompleks (FgSK). Die FgSK was die basis van hierdie studie.
Graan van nege sorghum kultivars, wat oor drie seisoene op Cedara en twee
seisoene op Alma geoes is, is geëvalueer vir graan skimmel strafheid, mikotoksien
produksie en die stabiliteit van die graan skimmel reaksie oor veranderende
omgewingstoestande. Minder visuele sikte waarnemings en totale fungus biomassa,
soos bepaal met ergosterol analise, is in grane met ʼn hoër tannien inhoud
waargeneem. Geen korrelasie is tussen visuele siekte lesings en ergosterol inhoud
waargeneem nie wat daarop dui dat eersgenoemde nie ʼn betroubare maatstaf is vir
die bepaling vir graan kolonisering nie. Kwantatiewe PCR analise het betekenisvolle
verskille tussen kultivars aangedui, waar die FgSK DNA inhoud van graan vanaf
5.52 ng.μl-1 in PAN8625 tot 55.43 ng.μl-1 in PAN8806 varieer het. Slegs drie van 162
graan monsters het meer as 10 μg.kg-¹, deoksinivalenol (DON) bevat dus is geen
verdere DON analises gedoen nie. Nivalenol (NIV) en zearalenone (ZEA) was
deurgaans teenwoordig met die uitsondering van vier by NIV en twee by ZEA.
“Additive Main Effect and Multiplicative Interaction (AMMI)” ontledings van FgSK
DNA, NIV en ZEA konsentrasies het relatief stabiele waarneem op kultivars teen
veranderende omgewingstoestande aangedui met “IPCA1” tellings <1 in meeste van
die kultivars. Onsensitiewe regressie is toegepas om die verhouding tussen NIV en
ZEA produksie in graan teenoor die FgSK DNA konsentrasie te kwantifiseer wat ‘n
aanduiding is dat gasheer genotipe mikotoksien produksie beïnvloed ongeag
eweredige kolonisasie vlakke. Resultate dui aan dat dit belangrik is om
omgewingstoestande as ʼn veranderlike in te sluit tydens weerstandseleksie van SGS om sodoende kwaliteit graan te produsêer en menslike- en dieregesondheid te
verseker.
Die ontwikkeling van ʼn epidemiologiese model om die risiko van graan skimmel en
mikotoksiene in die sorghum produksie areas te kwantifiseer, kan produsente in
staat stel om bestuurspraktyke aan te pas om FgSK infeksie en mikotoksien
produksie te verminder. Sorghum graan is oor twee seisoene in 18 produksie
gebiede versamel en vir analises FgSK kolonisering, DON, NIV en ZEA produksie
gedoen. Resulte van FgSK kolonisering en gepaardgaande mikotoksien produksie
ooreenstem met die twee kritiese tye (vroë blom, 82-95 dae na plant (d.n.p) en sagte
deeg stadium, 92-115 d.n.p.) en mikotoksien akkumulasie. Weerstoestande is
belangrik deurdat FgSK kolonisering van wat betekenisvol gekorreleer is met
maksimum relatiewe humiditeit, 82-95 d.n.p. en betekenisvol negatief gekorreleerd is
met maksimum temperatuur en verdamping, 82-95 d.n.p. Produksie van DON, NIV
en ZEA is betekenisvol gekorreleer met FgSK DNA konsentrasie bepalings. DON het
ʼn betekenisvolle positiewe verwantskap aangedui met maksimum temperatuur, 101-
115 d.n.p., terwyl NIV en ZEA ‘n betekenisvolle negatiewe verwantskap met
minimum temperatuur 91-104 en 100-113 d.n.p. Voorlopige modelle gebaseer op
stapsgewyse regressie analise is onwikkel. Verdere studies, wat lokaliteite insluit
waar betroubare weerdata oor tyd beskikbaar is word benodig om die modelle verder
te verfyn en te bekragtig.
Verder is ʼn aantal kommersieel goeste sorghum graan monsters in ʼn sorghum
verwerkings maatskappy versamel en twee stoor produkte is ingesluit vir ontledings.
ʼn Addisioneel is 180 sorghum graan monsters, wat vier kultivars vanaf drie lokaliteite
(Greytown, Standerton en Potchefstroom) insluit versamel gedurende een
produksieseisoen en met ʼn “tangential abrasive dehulling device (TADD)" vir vyf tyd
periodese ontdop. Sorghum semels het die hoogste ergosterol konsentrasies
aangedui en 22% bewerkte graan die laagste, wat daarop dui dat die meeste fungus
kontaminasie op die buitenste graanlaë van die saad voorkom. Die teenoorgestelde
is aangedui deur FgSK DNA konsentrasies waar die laagste vlakke in sorghum
semels en die hoogste konsentrasies by 22% TADD bewerkte graan waargeneem is.
Die aanname dat FgSK binne die endosperm voorkom, was gemaak. Beheerde
bewerking van graan met TADD het eers na vier minute d.w.s. op 35% ʼn betekenisvolle afname in FgSK voorkoms aangedui. Die aanname word verder
ondersteun deur NIV produksie in albei kommersiële en beheerde monsters wat
relatief hoë konsentrasies in sorghum semels en 4% TADD bewerkte graan en die
afname na 0.00 μg.kg-1 in beide 22% en in die ses minute TADD bewerkte graan. In
vergelyking met NIV, was DON en ZEA deur kort TADD bewerkings periodes vanaf
die graan verwyder. Die aanname kan dus gemaak word dat ZEA en DON produksie
met oppervlakkige infeksies van FgSK gepaardgaan, terwyl NIV met patogenese in
die dieper endosperm lae gepaardgaan. Kultivars verskil in hardheid en herdie
variasie word geassosier met weerstoestande van die onderskeie lokaliteite sowel as
endosperm tekstuur. Laer koloniserings en mikotoksien vlakke is bepaal in die
harder graan, die hoogste FgSK konsentrasies en DON, NIV en ZEA produksie is in
graan vanaf Greytown waargeneem. Dit word toegeskyfaan gunstige
weerstoestande tydens die kritiese graan ontwikkelings stadiums wat infeksie en
ontwikkeling van die patogeen kompleks en dus kontaminasie deur mikotoksiene
bevoordeel het. Kommersiële verwerkers kan die beste bestuurs besuite maak
waneer hulle die invloed van TADD bewerkings effek op FgSK DNA konsentrasies
en die produksie van DON, NIV en ZEA verstaan om sodoende die skadelike
miktoksiene vanaf graan te verwyder.