• Login
    View Item 
    •   KovsieScholar Home
    • Electronic Theses and Dissertations
    • All Electronic Theses and Dissertations
    • View Item
    •   KovsieScholar Home
    • Electronic Theses and Dissertations
    • All Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-regulated learning and time perspective as predictors of academic performance in undergraduate economics studies

    Thumbnail
    View/Open
    KeyserJN.pdf (927.1Kb)
    Date
    2013-11
    Author
    Keyser, J. N.
    Metadata
    Show full item record
    Abstract
    English: The goal of this study was to research the hypotheses that self-regulated learning and a future time perspective separately and simultaneously predict academic performance in second year Economics studies. The study also investigated whether self-regulated learning and future time perspective are related. In the theoretical underpinning self-regulated learning as related to learning theories, future time perspective and the learning of Economics were explored. The effect of the confounding variables(age, gender, ethnicity and the psycho-social wellbeing of students), on the dependent variable (academic performance in second year Economics studies), were built into the design and analysed. Data was analysed using descriptive, correlation and regression analysis. The multiple regression analysis indicated that self-regulated learning and a future time perspective predict academic performance in second year Economics studies. A correlation matrix revealed that a relationship exists between self-regulated learning and a future time perspective. Regarding the confounding variables, the one with the most significant influence on the dependant variable was ethnicity. In conclusion the study recommended that teaching and assessment methods should be used to empower students to apply self-regulated learning strategies. This could greatly enhance their academic performance.
     
    Afrikaans: Die doel van hierdie studie was om 'n ondersoek in te stel na die hipotese dat selfregulerende leer en 'n toekomsgerigte tydsperspektief apart en gesamentlik akademiese prestasie in tweede jaar Ekonomie studies kan voorspel. Die studie het ook ondersoek ingestel om te bepaal of selfgereguleerde leer en toekomsgerigte tydsperspektief korreleer. In die teoretiese begronding is die verwantskap van selfregulerende leer aan leer teorieë, toekomsgerigte tydsperspektiewe en die leer van Ekonomie ondersoek. Die effek van die steuringsveranderlikes (ouderdom, geslag, etnisiteit en die psigososiale welstand van student) op die afhanklike veranderlike (akademiese prestasie in die tweedejaar Ekonomie studies) is in die ontwerp ingebou en geanaliseer. Data is geanaliseer met behulp van beskrywende, korrelasie en regressieanalise. Die meervoudige regressie-analise het uitgewys dat self gereguleerde leer en 'n toekomsgerigte tydsperspektief voorspellers van akademiese prestasie in die tweedejaar Ekonomie studies is. 'n Korrelasie matriks het getoon dat daar 'n verwantskap bestaan tussen selfregulerende leer en 'n toekomsgerigte tydsperspektief. Rakende die steuringsveranderlikes was die een met die grootste invloed op die afhanklike verandering, etnisiteit. Ten slotte beveel die studie aan dat onderrig en assesserings metodes behoort gebruik word om studente te bemagtig om selfregulerende leer strategieë toe te pas. Dit kan hulle akademiese prestasie grootliks verbeter.
     
    URI
    http://hdl.handle.net/11660/1084
    Collections
    • All Electronic Theses and Dissertations
    • Doctoral Degrees (School of Higher Education Studies)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
     

     

    Browse

    All of KovsieScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback