Physics
Permanent URI for this community
Browse
Browsing Physics by Subject "Adsorbates"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Growth of antimony on copper : a scanning tunneling microscopy study(University of the Free State, 2012-01) Ndlovu, Gebhu Freedom; Hillie, K. T.; Roos, W. D.English: The thesis deals with adsorption, self–assembly and surface reactions of Sb atoms on solid Cu(111) substrates. It is of genuine interest in materials science and technology to develop strategies and methods for reproducible growth of extended atomic and molecular assemblies with specific and desired chemical, physical and functional properties. When the mechanisms controlling the self-organized phenomena are fully disclosed, the self-organized growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials. The experimental technique used to study ordered phases and phase transitions of Sb on Cu(111) substrates was the Scanning Tunneling Microscopy (STM) – an outstanding method to gain real space information of the atomic scale realm of adsorbates on crystalline surfaces. It is a general trend to conduct studies on well known structures before one begins working on complicated systems. Therefore, in this study, Si(111) Cu(111) and HOPG surfaces were studied in atomic detail to confirm the calibration and the resolution capabilities of the instrument. The acquired data were comparable to the reported theoretical and experimental data in literature. The investigated Cu(111) – Sb system is characterized by a complex interplay between adsorbate interactions and adsorbate substrate interactions which in this study manifests through self–assembly processes. Both low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were utilized to determine the substrate cleanliness prior to the growth of a submonolayer Sb coverage (0.43 ± 0.02 ML Sb as calculated from the acquired STM data). The freely diffusing Sb adatoms on the copper surface were thermally excited from a random distribution of Sb atoms after growth to a finally rearrangement to more energetically stable configuration. The experimental results illustrated the presence of a surface alloy after annealing at ~360°C. The Cu – Cu spacing increased from 0.257 ± 0.01 nm (atomically clean Cu(111)) to 0.587 ± 0.02 nm after annealing at 360°C. At that temperature, the STM images showed the surface protrusions of different sizes and contrast, attributed to Cu and Sb atoms. In addition to the conventional ( 3 × 3)R30°–Sb structural phase acquired at ~400°C, new metastable structural phases: (2 3 × 2 3) R30°–Sb and (2 3 × 3)R30°– Sb were obtained for the first time after annealing at 600°C and 700°C, respectively. STM data after annealing at 600°C and 700°C was best described by a structural model involving an ordered p(2×2) and p(2×1) overlayer structures superimposed onto the ( 3 × 3)R30°–Sb surface, respectively. At elevated temperatures LEED showed ring shaped diffraction patterns composed of twelve equidistant spots which are consistent with the growth of a hexagonal film forming three equivalent rotational domains. All the superstructures were found to favour a structural model based on Sb atoms occupying substitutional rather than overlayer sites within the top Cu(111) layer. Other than the dissolution of Sb onto Cu(111), the study report also on the segregation of Sb on Cu together with STS measurements. The surface chemical reactivity on an atom–by–atom basis of the Cu sample surface was studied by current imaging tunneling spectroscopy (CITS). The local density of states (LDOS) were derived from dI/dV maps at low tunneling voltages by a simultaneous measurement of high resolution topographic micrographs. The use of surface sensitive techniques (LEED, AES, STM, STS) in studying the surface alloy in question has enabled more precise statements to be made about the surface structure of the system at various temperatures. Based on the experimental results, a comprehensive study of the adsorption and segregation behaviour of Sb on Cu(111), including the mechanisms for phase formation at the atomic scale is presented in this study.