Masters Degrees (Institute for Groundwater Studies (IGS))
Permanent URI for this collection
Browse
Browsing Masters Degrees (Institute for Groundwater Studies (IGS)) by Subject "Analytical calculations"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Comparing model calculated groundwater volumes with alternative methods in a mining enviroment(University of the Free State, 2012-09) Boshoff, Elida; Van Tonder, Gerrit; Dennis, IngridEnglish: A new opencast coal mining operation is proposed in the Belfast region in Mpumalanga, South Africa. This proposed operation is the study site that was investigated in this thesis. The Belfast opencast operation is expected to be operational for 29 years and coal from mainly the number 2 and 3 seams will be mined. The inflow rate of the groundwater was determined by using both analytical and numerical groundwater methods. The rate at which groundwater flows into the mine voids are important to estimate before mining commence since this will determine at what rate groundwater needs to be pumped from the mining pits to ensure dry and safe working conditions. In order to obtain site specific data for the study area, several field investigations have been conducted. These investigations include a geophysical survey, drilling of monitoring boreholes and pump testing of the monitoring boreholes. These investigations are done to obtain a better overview of the aquifer conditions in the study area. For the study area a numerical groundwater flow model was constructed and the groundwater inflow was determined by making use of a water budget function. The analytical approach to determining the inflow included four different methods. A sensitivity analysis was done on the recharge with the numerical and analytical methods. The results from the numerical and analytical approaches were compared to determine whether the analytical approach is in fact a good way of obtaining values that relates with the numerically obtained results. If there is a good correspondence between the analytical and numerical results, the analytical approach can be regarded as a save and representative way to obtain groundwater related values. Especially during the early stages of mine planning analytical methods would be supportive to quickly determine mine related issues as this will assist in decision making and related cost estimates. From the results obtained in this thesis it can be concluded that the analytical approaches used during this study, although giving close to numerical answers, cannot be used in an effective manner in determining groundwater inflows during the early planning of mining. The fact that the analytical approaches did not reveal representative values for the groundwater inflows and also do not correlate with the numerical model results, does not mean that this will be the case at another site with different geohydrological characteristics. It is important to note that assumptions are always made in analytical methods. It is suggested that further research be conducted in relation with analytical and numerical modelling of opencast mines. Research should be performed at several mines to determine whether the relation between the numerical and analytical approaches display similar trends than was found during this study. These mines should preferably be on similar geological areas to compare with each other. The only way to determine whether the analytical methods can in fact be used to get a representative result is by repetition on several mining sites and also comparing these values with the numerical model results and also the actual inflow rates from the mine once mining has started.Item Open Access Decant calculations and groundwater: surface water interaction in an opencast coal mining environment(University of the Free State, 2010-11) Du Plessis, Johannes Lodewiekus; Dennis, I.English: Acid mine drainage is by far the most significant long term groundwater quality impact associated with both opencast and underground coal mining, in both a local and international context. The modern day geohydrologist has access to numerous tools, which can be used to determine important decant issues – issues ranging from when decanting will begin to occur, and the volumes of water that are expected to decant. The continuous development and improvement of numerical groundwater flow models is steadily leading to an increasing dependence on them. The main aim of the thesis was to determine whether there exists any correlation between modern day numerical groundwater flow models and analytical calculations, and the presentation of a toolbox of tools that may be used for decant related issues. The following conclusions were drawn after numerous numerical and analytical scenarios and statistical correlations were performed: • Given the amount of uncertainty regarding aquifer heterogeneity, there do exist a good correlation between the numerical and analytical groundwater decant volume estimations, • An increase in the effective porosity of the backfilled opencast pits cause an increase in the time-to-decant, as more water is required to fill the pits to their decant elevations, • An increase in the effective aquifer recharge cause an increase in the decant volumes and a decrease in the time-to-decant, because more water is available to fill the pits to their decant elevations, • The effective aquifer recharge is a very sensitive parameter (more so than specific yield, storage coefficient, and transmissivity), as significant decreases in the time-to-decant were simulated with an increase in the aquifer recharge, as were significant increases in decant volumes simulated with an increase in recharge, • The volumes of groundwater decant are more sensitive to variations in the transmissivity of the surrounding aquifer/s compared to the transmissivity of the backfilled opencast pits, • During the numerous flow model scenarios it was found that the groundwater contribution to pit water is far less compared to the recharge component. The above conclusions prove that there are still applications for analytical calculations in modern day geohydrology, despite the continuous development of numerical groundwater flow models. Based on experience in similar coal mining operations within the Mpumalanga coal fields, the results of both the analytical decant volume and time-to-decant estimations correspond well with actual figures. One must however understand and master the various equations and keep in mind that an aquifer is a highly heterogeneous system. The results of both numerical groundwater flow model simulations and analytical calculations are only as good as the understanding of the geohydrological environment and the data they are based on.