Doctoral Degrees (School of Mathematics, Natural Sciences and Technology Education)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (School of Mathematics, Natural Sciences and Technology Education) by Author "Du Toit, E. R."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access 'n E-onderwysgebaseerde benadering tot die implementering van die Nasionale Kurrikulumverklaring vir fisiese wetenskappe: 'n didaktiese perspektief(University of the Free State, 2012-11-11) Van Breda, Jacobus; Du Toit, E. R.English: Since the South African government decided in 1997 to replace traditional education with outcomes-based education, curriculum transformation has as yet for various reasons not realised in the Physical Sciences classroom, thus resulting in poor marks in Physical Sciences. This study was prompted by the above realities and the fact that education reform in South Africa cannot occur in isolation from globalisation and the demands of 21st-century teaching-and-learning. The overarching aim of the study thus was to propose guidelines for an ICT-integrated approach to teaching and for a learning environment that can lead to the successful implementation of the Physical Sciences curriculum in the classroom. In order to achieve this aim, the research had, on the one hand, to focus on those aspects against which successful curriculum implementation can be measured and, on the other, be directed at the contribution which the use of digital technology could make in curriculum implementation. The above led to a comprehensive literature study during which Physical Sciences curriculum documents and other teaching-and-learning literature were investigated within the context of UGO, constructivism as well as effective principles of learning. Ultimately eleven so-called “implementation principles” were identified (see 2.7.1). Thereafter it was established how different ICT usages can be practically and feasibly used in order to contribute to the realisation of the implementation principles in the Physical Sciences classroom. Due to the fact that today’s learners belong to the Y generation, with their unique needs, as well as the fact that over 80% of all South African learners are taught Science in a language that is not their home language (see 1.2.2.2), much attention was paid to these aspects in this study. A quantitative research design was used and data were collected by means of a questionnaire, as measuring instrument. Although multi-choice and binary-type questions were also used, the questionnaire mainly consisted of five-point Likert-type questions (see 4.10). The questions in the various sections of the questionnaire dealt with “daily ICT applications”, learners’ home environment, language of teaching-andlearning, the availability and use of ICT in the school environment, learners’ experience of the ICT Laboratory (see 1.2.3) as learning environment as well as their experience of ICT applications in the Laboratory. The test sample consisted of 110 Physical Sciences learners who visited the ICT Laboratory regularly. The Statistical Processing unit of the ICT services at the University of the Free State processed the questionnaires by means of the SPSS computer package. The information gleaned from the literature study as well as the empirical research enabled the researcher, from a didactical perspective, to propose guidelines for an e- Education-based approach to the implementation of the National Curriculum Statement for Physical Sciences (see 6.4). The study emphasises the essential role of the teacher in identifying suitable ICT applications that can be used to the benefit of teaching-and-learning within a 21stcentury learning environment and in service of the implementation of a Physical Sciences curriculum.