
Source code comprehension: Decoding the
cognitive challenges of novice programmers

by

Pakiso Joseph Khomokhoana

Thesis submitted in fulfilment of the requirements for the
degree

Philosophiae Doctor in Computer Information Systems

(PhD Computer Information Systems)

Three-article option

in

The Faculty of Natural and Agricultural Sciences

Department of Computer Science and Informatics

Bloemfontein - South Africa

January 2020

Promoter: Prof L Nel

Declaration

I, Pakiso Joseph Khomokhoana, hereby declare that the thesis titled ‘Source code

comprehension: Decoding the cognitive challenges of novice programmers’ is the

result of my own independent investigation and that all the sources I have used or

quoted have been indicated and acknowledged by means of complete references. I

further declare that the work is submitted for the first time at this university/faculty

towards the Philosophiae Doctor degree in Computer Information Systems and

that it has never been submitted to any other university/faculty for the purpose of

obtaining a degree. I also cede copyright of this product in favour of the University of

the Free State.

 12 February 2020

……………………………. ……………………………

Signature Date

Acknowledgments

 “A journey of a thousand miles begins with a single step”

Lao Tzu

Had my promoter not genuinely and intellectually guided me to move step by step on

this research journey, would it have been possible for me to complete this thesis?

Definitely a big “NO”. So what? She deserves my sincere appreciation, heartfelt

gratitude, and unlimited thanks. I will forever be grateful to Prof L Nel – I could not

have imagined a better adviser, counsellor, mentor and promoter for my PhD. She

was always resolutely available to provide insightful comments and/or ideas;

necessary resources; constructive criticism; some words of encouragement during

dark days; and any other relevant information for this project to materialise. She used

to say, “don’t work yourself too hard”, and in response I would say, “I will try not to”.

What I actually wanted to say was, “you don’t know that you are giving me motivation

to work harder”. At times she would say, “I never thought you would produce this kind

of work”, and I would simply respond by saying, “Thank you”. All the support she

provided, coupled with her verbal statements, as well as the ‘warm, but hot’ meetings

we had, were some of the key pillars that carried me through this research project.

I am also very grateful to the following:

• The Department of Computer Science and Informatics at the University of the

Free State (UFS), not only for an all-embracing welcome and interactions, but

also for all the resources available to me while I conducted this research study.

• The UFS Postgraduate School for a series of workshops that were eye-opening

and informative.

• The UFS for a tuition-fee bursary allocated to me for each year of the three

years I spent at the university.

• All my family members (Joalane, Shaun, Gavin, and parents) – this thesis is

dedicated to you all.

• Mrs Elize Gouws for language editing the manuscript; and Mrs S Opperman for

language editing an article which forms one chapter of this thesis.

• Third-year students who agreed to take part in a questionnaire survey;

instructors who agreed to take part as interviewees in a decoding interview; and

the selected students from a third-year class who agreed to take part in the

think-aloud interviews. Everyone was of great assistance in collecting data for

this research project. Their contributions were immense and cannot go

unnoticed, because a research project like this can never exist without data.

• All colleagues and fellow postgraduate students who assisted me with the pilot

studies and decoding interviews.

• Prof AC Wilkinson for the critical review and constructive feedback on the three

articles forming three chapters of this thesis.

• Our Almighty Father for his everlasting and enduring love and for having been

good to me throughout this journey (1 Chronicles 16:34).

i

Table of Contents

List of Figures ... iv

List of Tables ... v

Summary ... vi

Chapter 1 – Introduction ... 1

1.1 Background to the study .. 1

1.1.1 Challenges in teaching computer programming 1

1.1.2 Challenges in learning computer programming 2

1.2 Problem statement ... 6

1.3 Aim and research questions .. 8

1.4 Research design and methodology ... 9

1.5 Research Contexts .. 10

1.5.1 Professional context .. 10

1.5.2 Organisational context .. 11

1.5.3 National context .. 11

1.5.4 Theoretical context .. 12

1.6 Scope of research .. 12

1.7 Presentation of the thesis .. 14

Chapter 2 – Theoretical Background... 16

2.1 Introduction .. 16

2.2 Source code comprehension strategies ... 16

2.2.1 General reflection on the nature of SCC strategies 20

2.2.2 Novice versus expert comprehension strategies 22

2.3 Challenges impacting the development of SCC skills 25

2.3.1 Lack of prior knowledge .. 26

2.3.2 Lack of problem-solving skills ... 27

2.3.3 Lack of strong mental models ... 29

2.4 Cognitive practices .. 30

2.4.1 Knowledge acquisition and retention .. 30

2.4.2 Metacognition .. 32

2.5 Summary ... 37

Chapter 3 – Research Design and Methodology .. 38

 Introduction .. 38

ii

 Research design .. 38

 Research methodology .. 41

3.3.1 Characteristics of FraIM .. 42

3.3.2 Data collection in FraIM .. 43

3.3.3 Justification for using FraIM .. 44

 Details of empirical study ... 46

3.4.1 Phase 1 ... 46

3.4.2 Phase 2 ... 48

3.4.3 Phase 3 ... 58

 Trustworthiness ... 62

3.5.1 Credibility .. 62

3.5.2 Transferability ... 63

3.5.3 Dependability .. 63

3.5.4 Confirmability .. 65

3.5.5 Integrity ... 65

 Ethical considerations .. 66

 Summary ... 67

Chapter 4 – (Article 1) Decoding source code comprehension:
Bottlenecks experienced by senior Computer Science students 69

Chapter 5 – (Article 2) Decoding the explicit cognitive strategies of
expert instructors: Mental scaffolding techniques for efficient source
code comprehension .. 80

Chapter 6 – (Article 3) Narrowing the gap between expert and novice
thinking: A step-by-step framework for efficient source code
comprehension .. 113

Chapter 7 – Conclusions and Recommendations 140

7.1 Introduction .. 140

7.2 Synthesis of findings .. 141

7.2.1 Literature review ... 141

7.2.2 Empirical findings .. 143

7.2.3 Summary ... 147

7.3 Contributions of the study .. 149

7.4 Limitations of the study .. 150

7.5 Recommendations for future research ... 151

7.6 Conclusion ... 153

List of References ... 155

iii

Appendix A – Questionnaire for Senior Students (Phase 1) 181

Appendix B – Aggregate Performance of Phase 1 participants 193

Appendix C – Invitation Letter to Senior Students (Phase 2) 194

Appendix D – Case Study Protocol for Senior Students (Phase 2) 195

Appendix E – Decoding Interview Protocol (Phase 3 - Experts) 196

Appendix F – Ethical Clearance Approval .. 198

Appendix G – Participant Information Sheet (Phase 2 - Senior Students)
... 199

Appendix H – Participant Information Sheet (Phase 3 - Experts) 202

Appendix I – Participant Consent Form (Phases 1, 2 & 3) 205

iv

List of Figures

Figure 1.1 – Seven steps of the DtDs framework ... 6

Figure 1.2 – Conceptual framework for this study .. 13

Figure 2.1 – Comprehension Search Cycle Model ... 19

Figure 2.2 – Metacognitive Process Cycle ... 35

Figure 3.1 – The FraIM ... 41

Figure 3.2 – Question 3 .. 51

Figure 3.3 – Question 6 .. 52

Figure 3.4 – Question 8 .. 53

Figure 3.5 – A think-aloud technique demonstrating question 54

v

List of Tables

Table 3.1 – Narrative Data Analysis Framework .. 55

Table 3.2 – Research questions covered by articles .. 68

vi

Summary

After four decades of research investigations, source code comprehension (SCC)

continues to be challenging to undergraduate Computer Science (CS) students. CS

instructors, on the other hand, do not generally have any problems to comprehend

source code. The Decoding the Disciplines (DtDs) philosophy is based on the premise

that each discipline has its own unique set of mental operations. In many cases, these

operations have become invisible to instructors, as they tend to perform them

automatically based on years of experience. If the nature of these operations is not

made explicit to students, it is likely that they will develop learning ‘bottlenecks’ which

could prevent them from mastering key disciplinary practices (such as SCC). Better

understanding of the nature of the cognitive processes and related strategies

employed by experts during SCC could ultimately be utilised to expose these ‘hidden’

mental steps.

The overall aim of this study was to explore how a systematic decoding approach can

be used to uncover cognitive strategies for efficient SCC by novice programmers. The

research findings are presented in the format of three interrelated articles:

Article 1 reports on a study aimed at uncovering common SCC bottlenecks

experienced by senior CS students. Thematic analysis of the collected data revealed

eight common SCC difficulties specifically related to arrays, programming logic, and

control structures. The identified difficulties, together with findings from existing

literature, as well as personal experiences were then used to formulate six usable SCC

bottlenecks. The identified bottlenecks point to student learning difficulties that should

be addressed in introductory CS courses. This article intends to create awareness

among CS instructors regarding the role that a systematic decoding approach can play

in exposing the mental processes and bottlenecks unique to the CS discipline.

Article 2 describes a study that employed decoding interviews, followed by thematic

data analysis, to uncover a variety of explicit cognitive processes and related

strategies utilised by a select group of experienced programming instructors during a

vii

SCC task. The insights gained were then used to propose a set of mental scaffolding

techniques for efficient SCC. It is foreseen that programming instructors could use

these techniques as an SCC teaching aid to convey expert ways of thinking more

explicitly to their students. Insight into the general cognitive strategies utilised by

expert programmers is also an important step towards further exploration of the more

detailed step-by-step procedures followed by experts during SCC.

One of the key bottlenecks identified in the CS discipline, relates to students’ inability

to reliably work their way through the long chain of reasoning necessary to

comprehend source code. In an attempt to narrow the existing gap between expert

and novice thinking in this regard, Article 3 describes a study in which decoding

interviews with five expert programmers (who were also experienced programming

instructors) were utilised to systematically deconstruct the explicit mental techniques

and reasoning strategies necessary for efficient SCC. Thematic analysis of the mental

operations performed by these experts during an SCC activity, led to the identification

of 11 key strategies. Knowledge of these strategies as well as the related explicit

mental operations were then used to devise a step-by-step framework for efficient

SCC. The main purpose of this framework is to create awareness among CS

instructors regarding the explicit mental operations required for efficient SCC, and to

serve as a source of further research and refinement. Moreover, within the realm of

the DtDs philosophy, this framework can also serve as a starting point for devising

explicit strategies to model these mental operations to students, and to help them

master each of the identified strategies.

Keywords: Source code comprehension, decoding the disciplines, decoding

interview, student-learning bottlenecks, cognitive processes, cognitive strategies,

undergraduate programming, Computer Science Education, novice programmers,

expert programmers.

1

Chapter 1 – Introduction

1.1 Background to the study

In the global world of Computer Science (CS), it is well documented that learning to

program poses a challenge to many students. As such, several efforts have been

undertaken to assist entry-level CS students overcome programming-related

challenges. Most of these challenges are rooted in students’ inability to effectively and

efficiently read, comprehend, and modify source code (Lister et al., 2004; McCracken

et al., 2001). This is evidenced by the struggle students encounter when they have to

modify source code that they did not write themselves (Mishra & Mohanty, 2012;

Singh, Pollock, Snipes & Kraft, 2016; Cimitile, Tortorella & Munro, 1994). Several

authors (Perscheid, 2011; Soh, Khomh, Gueheneuc & Antoniol, 2013; Standish, 1984;

Tiarks, 2011; Von Mayrhauser, Vans & Howe, 1997) are in agreement that students

(as programmers) devote most of their time to the process of reading and

understanding source code in order to modify it. This process is commonly referred to

as source code comprehension (SCC).

Source code comprehension is widely recognised as central to programming

(Bednarik & Tukiainen, 2006; Shaft & Vessey, 1995). It is also regarded as a

precondition for any type of modification to occur in a computer program (Alam &

Padenga, 2010). In computer programming courses, instructors must address an

assortment of programming aspects that could help enhance students’ ability to

understand source code. These aspects may be the various small challenges of

computer programming that, if overlooked, may ultimately hamper the SCC ability of

students. Therefore, inherent challenges experienced by instructors in teaching

computer programming and difficulties encountered by students in the learning of

computer programming are considered next.

1.1.1 Challenges in teaching computer programming

Although teaching is a complex activity, courses in various disciplines are normally

taught by instructors who have not received formal training in pedagogy, but who are

2

experts in the courses they teach. Consequently, these instructors tend to follow

methods and strategies that were used on them when they were students (Ambrose,

Bridges, DiPietro, Lovett & Norman, 2010). The teaching of computer programming is

not an exception to this practice. Hence, computer programming instructors are faced

with challenges, including the following:

• Devising instructional strategies that would adequately reach all students

(Lahtinen, Ala-Mutka & Järvinen, 2005) due to factors such as high enrolment

rates and diversity in students’ prior knowledge.

• Retaining and graduating most of the enrolled students, due to the fact that

learning to read and write source code is generally considered hard (Eranki &

Moudgalya, 2016).

• Using effective pedagogical strategies and methods that will help students to

learn programming maximally (Oroma, Wanga & Ngumbuke, 2012; Sentance

& Csizmadia, 2016).

If teaching computer programming poses challenges, it can be inferred that

programming students also have to deal with discipline-specific challenges.

1.1.2 Challenges in learning computer programming

Of all the students enrolled in computer programming courses, the entry-level students

are normally the most challenged (Kinnunen, 2009). Literature (Busjahn & Schulte,

2013; Fisler, 2014; Lee & Ko, 2015; Pope, 2016) commonly refers to entry-level

programming students as ‘CS1/CS2 students’. One fundamental reason that could be

attributed to the fact that CS1/CS2 students are the most challenged, is that they must

first learn to ‘speak’ a new (programming) language. In addition, they also have to face

the following challenges:

• Thinking analytically and reasoning logically in solving computer programming

problems (Butler & Morgan, 2007; Ismail, Ngah & Umar, 2010).

• Decomposing a problem description into sub-problems, implementing these

sub-problems, and putting the pieces together into a complete solution (Lister

et al., 2004).

3

• Translating a manually solved problem into an equivalent computer program

(Soloway, Ehrlich & Black, 1983).

• Making a transition from an understanding of separate program statements to

the tasks that are to be achieved by groups of statements (Liffick & Aiken,

1996).

• Dividing program functionality into procedures (Piteira & Costa, 2013).

• Understanding programming concepts to be applied in solving problems or in

developing computer programs (Lister et al., 2004; Sentance & Csizmadia,

2016).

• Mapping what is in the code or program back into the original software

specifications or requirements (concept assignment problem) (Biggerstaff,

Mitbander & Webster, 1993).

All of the stated challenges could have a negative impact on the SCC abilities of

students. If students are unable to fully comprehend and master source code, their

software maintenance abilities may be hampered in future. To identify specific

challenges with SCC, several techniques have been suggested and used. These

include showing source code to students and giving them a task to solve in a controlled

environment to determine their level of source code understanding (Siegmund,

Kástner, Apel, Brechmann & Saake, 2013); and using think-aloud techniques or

protocols (Anderson, Bachman, Perkins & Cohen, 1991).

By applying the aforementioned techniques, differences between strategies used by

experienced and novice programmers to understand source code have been

identified. These include the fact that experienced programmers pay attention to

meaningful areas of the source code and complex statements, while novice

programmers visually concentrate on the comments and comparisons (Busjahn,

Schulte & Busjahn, 2011; Crosby & Stelovsky, 1990; Von Mayrhauser & Vans, 1995b).

The experienced programmers also need little working memory when solving SCC-

related problems, because they readily identify the procedural nature of the source

code – which is not the case with novice programmers (Wiedenbeck, Fix & Scholtz,

1993).

4

In close examination of such strategies, deficiencies inherent in novice programmers

are exposed. To help them overcome these challenges, a myriad of strategies and/or

techniques have been suggested and used. These include using programming plans

(stereotype source code fragments that represent known action sequences) (Davies,

1990; Gilmore & Green, 1988; Green & Navarro, 1995; Rist, 1986; Soloway & Ehrlich,

1984); developing tools with search capabilities (Singer, Lethbridge, Vinson &

Anquetil, 1997); syntax highlighting (Sarkar, 2015); cognitive load reduction (Sweller,

1988; Sweller, Van Merrienboer & Paas, 1998); pair-programming (Braught, Wahls &

Eby, 2011; Cronje, 2013); bottom-up comprehension strategy (Basili & Mills, 1982;

Shneiderman, 1976; Shneiderman & Mayer, 1979); and top-down comprehension

strategy (Brooks, 1999).

In addition to the above-mentioned strategies, another angle that could be considered

to help CS students (as novice programmers) understand source code better, is the

cognitive perspective. Reasons for considering this perspective are twofold: First, SCC

is regarded as a highly cognitive task (Praveen, 2016). Second, for students to better

comprehend source code, they need to acquire a mental model of the structure and

function of the source code (Bednarik & Tukiainen, 2006). The mental model refers to

students’ understanding of the source code during the comprehension process

(Letovsky, 1987).

Using the cognitive perspective, several studies have attempted to provide insights

regarding the strategies used by programmers of various expertise levels, including

novice programmers, to comprehend source code (Burkhardt, Détienne &

Wiedenbeck, 2002; Ko & Uttl, 2003; Littman, Pinto, Letovsky & Soloway, 1987;

Letovsky, 1987; Soloway, Lampert, Letovsky, Littman & Pinto, 1988; Von Mayrhauser

& Vans, 1996). These investigations have mostly been based on verbal protocols

(capturing the thought-processing). Similar investigations based on non-verbal

protocols used eye-movement tracking (Bednarik & Tukiainen, 2006; Crosby &

Stelovsky, 1990) and neuro-imaging methods (Siegmund et al., 2014). Some other

interventions were to carry out simulations of the source code that is being maintained

(Soloway, 1986).

5

Most of the previous research studies that considered the mental processes involved

in understanding source code, employed cognition models as their theoretical lenses.

Considerable research (Basili & Mills, 1982; Brooks, 1983; Letovsky, 1987; Littman et

al., 1987; Shneiderman & Mayer, 1979; Soloway, Adelson & Ehrlich, 1988) on

developing these models has been conducted from the late 1970s throughout the

1980s. Von Mayrhauser and Vans (1993; 1995b) even developed an integrated code

comprehension model which is based on many of these cognition models.

However, an approach from a different theoretical lens could be considered. Decoding

the Disciplines (DtDs) is a framework that could be usable due to its multidisciplinarity

and pedagogical nature. This seven-step framework was devised by Joan Middendorf

and David Pace (Middendorf & Pace, 2004). Within this framework, the challenges

experienced by students are normally referred to as bottlenecks. These are defined

as specific points where the learning of a significant number of students gets

interrupted (Diaz, Middendorf, Pace & Shopkow, 2008; Middendorf & Pace, 2004).

Bottlenecks usually come to the fore when students do not have the knowledge of how

to deal with a situation or problem, and hence resort to unsuitable strategies (Pace,

2017a).

DtDs presents an all-embracing framework within which these bottlenecks can be

addressed. One of the fundamental principles of this framework is that each discipline

has its own unique ways of thinking (Middendorf & Pace, 2004). Students who are

unable to master the required ways of thinking are unlikely to succeed in their higher-

level studies. Within the DtDs framework, instructors are therefore encouraged to

identify discipline-specific learning bottlenecks that could prevent students from

mastering the basic disciplinary ways of thinking (Step 1). After identifying the

bottlenecks, the crucial mental operations required to overcome such bottlenecks are

uncovered with the assistance of disciplinary experts (Step 2). These operations are

then modelled explicitly to students (Step 3). After this, instructors create opportunities

for students to practise these operations or skills and get feedback on their mastery of

the skills (Step 4). In the process, motivational strategies or principles are applied to

assist students in effectively learning the imparted skills (Step 5). Eventually, an

assessment is made of how well the undertaken efforts help students to master the

intended learning content (Step 6). As part of the final step (Step 7), instructors are

6

encouraged to share (formally or informally) their experiences from this process

(Middendorf & Pace, 2004; Pace, 2017a). The seven distinct steps of the DtDs

framework, as described above, are presented in Figure 1.1. Despite the recent uptake

in decoding research conducted in other disciplines (Shopkow, 2017; Verpoorten et

al., 2017), limited information regarding DtDs research in the CS discipline is available

in the public domain.

[Source: Middendorf & Pace, 2004, p. 3)

Figure 1.1 – Seven steps of the DtDs framework

1.2 Problem statement

Despite numerous efforts undertaken since the early 1980s (Siegmund, 2016) to

assist students in improving their SCC skills and generally performing well in

programming courses, many CS students continue to struggle with SCC. This is

evidenced by the findings of several studies (Lister et al., 2004; Mccartney, Boustedt,

Eckerdal, Sanders & Zander, 2013; McCracken et al., 2001; Utting et al., 2013;

Whalley et al., 2006). Most of these studies have reported students’ struggles when

7

they have to read, interpret, and/or comprehend given pieces of code. The

continuation of the struggle can be attributed to the fact that, of all the initiatives

undertaken, there is no consensus among researchers, educational developers, and

instructors on how to address this issue best. This happens irrespective of the

seemingly better strategies used by programming experts themselves.

To some extent, most CS instructors can be regarded as experts in their discipline.

Despite their ‘expert’ skills, these instructors often struggle to explain source code and

its underlying concepts to their students (as novice programmers) in such a way that

these novices understand it in the same way they (the instructors) do. The problem

emanates from the constantly confirmed hypothesis termed ‘expert blind spot’

(Grossman, 1990; Nathan & Petrosino, 2003; Shulman, 1986). This hypothesis was

developed from the works of Nathan and his colleagues (Nathan & Koedinger, 2000;

Nathan, Koedinger & Alibali, 2001). It states that instructors:

“with advanced subject-matter knowledge of a scholarly discipline tend to use

the powerful organising principles, formalisms and methods of analysis that

serve as the foundation of that discipline as guiding principles for the students’

conceptual development and instruction, rather than being guided by

knowledge of the learning needs and developmental profiles of novices”

(Nathan & Petrosino, 2003, p. 906).

Therefore, it can be deduced from this hypothesis that an expert blind spot refers to

vital operations that have become so natural to the experts that they omit crucial steps

when explaining concepts and procedures to others.

Hence, these expert blind spots, coupled with ways in which instructors teach source

code comprehension, could lead to students developing mental blocks when it comes

to SCC. It may, therefore, be essential to pay further attention to the cognitive

perspective of this problem. Coupling this perspective with the fundamental elements

of students’ thinking and doing to facilitate effective learning and understanding, as

suggested by Middendorf and Pace (2004), it is essential that novice programmers

are:

8

• Made aware of the intrinsic cognitive processes or steps that experts follow

while comprehending source code. This can be used as a comprehension

strategy to obtain new knowledge, as suggested by Von Mayrhauser and Vans

(1995a; 1995b);

• Engaged in practising the models (being motivated in the process); and

• Provided with effective feedback in order to see how they can better

comprehend source code.

It is, for example, strongly believed that students must think and do for learning to

happen (Herbert, as cited in Ambrose et al., 2010, p. 1). Students are more likely to

remember what they do than what they are being told to do. Accordingly, students

should be engaged in the modelling and practising of the models in order for them to

learn. On feedback issues, Brookhart (2008) alludes to various factors such as timing,

amount (content) of feedback, mode, and audience as fundamental in providing

feedback to students.

If CS1/CS2 instructors are able to put appropriate pedagogical interventions (in the

form of a pedagogical process) in place and effectively tap into students` cognitive

blocks, this could help students to systematically overcome the identified blocks. As

part of this process, students should be helped to improve and/or refine their mental

actions in understanding source code in a classroom setting (naturally occurring

context) (Lewin, 1951; Sagor, 2000; Stringer, 2014).

1.3 Aim and research questions

Based on the problem statement (as described in Section 1.2), this study is set out to

explore how a systematic decoding approach can be used to uncover cognitive

strategies for efficient SCC by novice programmers. In order to address this aim, the

research study attempted to answer the following main research questions:

RQ1: What are the SCC challenges experienced by novice programmers?

RQ2: How can a systematic decoding approach be used to devise cognitive

strategies that could be used to address these challenges?

9

For the purpose of answering the aforementioned two main research questions, the

following nine subsidiary research questions were formulated:

• Subsidiary research questions – (guiding the literature review)

SRQ1: What are the strategies that programmers (novices and experts) follow

during the SCC process?

SRQ2: What are the challenges that influence the development of novice

programmers’ SCC skills?

SRQ3: How do cognitive and metacognitive practices influence SCC?

• Subsidiary research questions – (directing the empirical investigations)

SRQ4 (a): What are the major SCC difficulties experienced by senior CS

students?

SRQ4 (b): How can knowledge of these difficulties be used to identify SCC

bottlenecks that should ideally be addressed in introductory

programming courses?

SRQ5 (a): What are the cognitive processes and related cognitive strategies

employed by expert programmers during SCC?

SRQ5 (b): What does insight into these cognitive process strategies suggest

in terms of mental scaffolding techniques for the modelling of

efficient SCC strategies to students?

SRQ6 (a): What are the explicit mental strategies (techniques and reasoning)

that CS experts employ while comprehending source code?

SRQ6 (b): How can knowledge of these strategies be applied in the

formulation of a step-by-step framework that could ultimately

contribute towards narrowing the gap between expert and novice

thinking with regard to efficient SCC?

1.4 Research design and methodology

The research design of this study was based on the seven-step DtDs framework.

Within this framework, an integrated-methods research approach based on

10

Plowright's (2011) Frameworks for an Integrated Methodology (FraIM) was adhered

to. The study consisted of three phases to distinguish between the different sources

of data (cases). Phase 1 was aimed at identifying specific senior CS students who

were having difficulties in comprehending short pieces of source code. Phase 2 was

aimed at uncovering specific points or places where senior students were

experiencing SCC difficulties, with the ultimate goal of identifying common and useful

SCC bottlenecks. Phase 3 was aimed at uncovering the explicit nature of steps and

strategies that programming experts would follow in order to accomplish the tasks

associated with one of the student-learning bottlenecks identified in Phase 2. The

specific details of how each of these three research phases unfolded, are provided in

Chapter 3 (see Section 3.4).

1.5 Research Contexts

As part of the FraIM, Plowright (2011) suggests that there are various contexts that

could impact the choice of topic in any research study. In the following sub-sections,

some background information is provided regarding four specific contexts that are of

relevance to this study.

1.5.1 Professional context

The researcher is a full-time lecturer at an institution of higher learning in Lesotho. He

started teaching in 2014 after working in the Department of ICT Services of the same

institution since 2003. He teaches Information Systems-related courses, including

introduction to programming, website development, and information systems in a

business environment. The choice of the research topic was influenced by both the

researcher’s own experiences as a CS student and his experiences in teaching

programming courses to a diverse group of students. As an undergraduate student,

the researcher perceived programming to be a difficult subject. However, upon moving

to a South African institution of higher learning to pursue his postgraduate studies

(Honours), he was required to take additional undergraduate programming modules

to come on par with the other Honours students. While studying these modules, he

was engulfed in a student-centred and welcoming environment. The teaching aids

used in these modules had emotional connection with the students, and most of the

examples shared were meaningful and made sense to students. As a result, the

11

researcher performed well in these undergraduate programming modules. This led

him to change his perception about programming being difficult. While teaching

programming, the researcher observed a lot of students struggling (e.g. syntax,

semantics, conceptualisation, code explanation, debugging, and tracing). This

happened irrespective of the fact that the same strategies were used as those used

during his Honours studies.

1.5.2 Organisational context

This research study was conducted at a selected South African higher education

institution. The novice programmers used as student participants in this research

study were senior CS students. These students were all enrolled for a three-year

Bachelor of Science degree majoring in Information Technology. As part of this

degree, students must complete a number of CS modules, together with modules from

at least one other specialisation field (Business Management, Chemistry,

Mathematical Statistics, Mathematics or Physics). In their first two study years, these

students take CS modules that focus on building foundational knowledge regarding

programming in C# (introductory and advanced), web development, computer

hardware, databases, human-computer interaction, and software design principles. In

the third year, these students must complete modules in advanced databases and

computer networks, as well as two other modules (Internet programming and Software

Engineering) where they have the opportunity to combine knowledge gained from

previously studied CS modules.

1.5.3 National context

In the past few years, higher education institutions in South Africa have been faced

with challenges such as burgeoning numbers of students enrolling in various

programmes (i.e. massification in higher education) (Council on Higher Education,

2016; Jansen, 2003). These students come from various settings in terms of ethnicity,

professional and personal background, socio-economic status, language, and sexual

orientation. It is therefore evident that these students are not all academically equally

prepared for the higher learning environment, which is characterised by lots of

pressure for adaptation, independence, and performance. Irrespective of the

aforementioned challenges, the institutions are pressurised to increase student

throughput (Council on Higher Education, 2016).

12

1.5.4 Theoretical context

Source code comprehension has been identified as one of the main difficulties that

novice programmers continue to experience (Cunningham, Blanchard, Ericson &

Guzdial, 2017; Lister et al., 2004). Computer Science instructors (as experts in the

field) are able to comprehend source code. However, they struggle to help novice

programmers understand source code in the same way they do. As indicated in the

discussion of the problem statement, expert blind spots (Grossman, 1990; Nathan &

Petrosino, 2003; Shulman, 1986), coupled with ways in which instructors teach source

code, can lead to students developing mental blocks when it comes to SCC. As such,

there is a need to identify the specific SCC challenges experienced by novice

programmers in an educational context. Since CS instructors (as experts) do not

typically have problems to comprehend source code, there is a need to uncover (or

decode) the explicit mental operations (techniques and reasoning strategies) they

follow during SCC. Knowledge of these explicit cognitive strategies and/or steps could

then be used to identify specific strategies for efficient SCC that instructors can use in

teaching students to comprehend source code more efficiently.

1.6 Scope of research

In this study, the DtDs framework was adapted to create an enabling environment to

conduct the empirical investigation and to ultimately answer the two main research

questions of the study. DtDs adaptations are supported by Middendorf and Pace

(2004), who indicate that the DtDs’ steps are neither ‘mechanical’ nor ‘deterministic’.

The framework is deemed suitable because it is pedagogical in nature (King, Linkon

& Middendorf, 2013). Furthermore, the framework helps to answer a series of

questions that instructors can ask themselves as they try to understand how their

students think and learn in their specific disciplines (Middendorf & Pace, 2004). Based

on this scope as well as the theoretical framework (as outlined in Section 1.5.4), Figure

1.2 provides a conceptual framework for the research study that also shows the link

with the empirical part of the investigation. Given the amount of work involved, rigour

applied in doing the work, and large amounts of data collected while following the DtDs

framework, this research study only focused on Step 1 and Step 2 of the framework.

13

Figure 1.2 – Conceptual framework for this study

For the empirical investigation, Phase 1 and Phase 2 of the study were conducted as

part of DtDs framework Step 1, while Phase 3 was conducted as part of DtDs

framework Step 2. The six usable SCC bottlenecks identified as part of Phase 2 are

reported in Chapter 4. Phase 3 only focused on addressing one of the six identified

bottlenecks. The main outcomes of Phase 3 were a set of mental scaffolding

techniques for the explicit modelling of SCC (as reported in Chapter 5) and the

proposed step-by-step framework for efficient SCC (discussed in Chapter 6). It is

believed that the implementation of these techniques, and the execution of this

framework, could be instrumental in assisting instructors to help novice programmers

comprehend source code the same way they do, hence addressing the cognitive

challenges that students experience. The entire investigation was conducted within

the field of Computer Science Education. The central issue was to use a systematic

decoding approach to devise a range of cognitive strategies that could be used to

address the specific SCC challenges experienced by novice programmers.

14

1.7 Presentation of the thesis

This thesis report consists of seven chapters.

In this chapter, Chapter 1, a brief introduction of the research study discussed in the

thesis is provided. The discussion presents preliminary insights from the literature on

which the study was grounded. This literature indicates the theoretical direction taken

by the study.

Chapter 2 presents a detailed review of related contemporary literature. The

discussions in this chapter specifically focus on factors that could influence the SCC

ability of programmers, strategies followed by programmers during the SCC process,

and the influence that cognitive practices can have on SCC.

Chapter 3 provides a discussion of the research design and methodology of this study,

as well as the theoretical underpinnings of the theories used for the selected research

design and methods. This chapter also provides a detailed discussion of how the

research study unfolded in the process of finding answers to the stated research

questions, together with the subsidiary research questions as explained in the

introductory chapter. Issues related to trustworthiness and ethical considerations are

also addressed in this chapter.

The research findings of the study are presented in the format of three articles included

as Chapters 4, 5 and 6 of this report. As per university regulations for the ‘thesis by

articles’ format, the main criterion for each article is that it must either be a ‘published

article’ or a ‘publishable manuscript’. As such, each article represents a standalone

document without any cross-references to other parts of the report. Each article is also

formatted according to the guidelines of the specific publication for which it was

prepared.

Chapter 4 presents Article 1, titled: Decoding source code comprehension:

Bottlenecks experienced by senior Computer Science students. Set within the DtDs

paradigm, this paper reports on an investigation aimed at identifying the major SCC

difficulties experienced by senior CS students. The identified difficulties, together with

15

information from other sources, were used to formulate six usable SCC bottlenecks.

These bottlenecks point to student-learning difficulties that should ideally already be

addressed in introductory CS courses.

Chapter 5 presents Article 2, titled: Decoding the explicit cognitive strategies of expert

instructors: Mental scaffolding techniques for efficient source code comprehension.

Set within the DtDs paradigm, this paper reports on an investigation aimed at

identifying the cognitive processes and related cognitive strategies that expert

programmers follow during the SCC process. The knowledge of the identified

strategies was used to formulate a set of mental scaffolding techniques for efficient

SCC. Programming instructors could use these techniques as an SCC teaching aid to

convey expert ways of thinking more explicitly to their students.

Chapter 6 presents Article 3, titled Narrowing the gap between expert and novice

thinking: A step-by-step framework for efficient source code comprehension. Set

within the DtDs paradigm, this paper reports on an investigation aimed at identifying

the explicit mental operations (techniques and reasoning strategies) that expert

programmers employ while comprehending source code. Insights into these strategies

were used in the development of a framework for efficient SCC. This framework is

aimed at creating awareness among CS instructors regarding the explicit mental

operations required for efficient SCC. It could also serve as a starting point for devising

explicit strategies to model these mental operations to students and to help them

master each of the identified strategies.

Chapter 7 outlines the conclusions of this study relating to the main and subsidiary

research questions. This includes a discussion of how the research questions were

answered, the presentation of the main findings and the contributions of the study, its

limitations and recommendations for future research.

Other documents related to this study and the various research activities are included

as appendices at the end of this thesis.

16

Chapter 2 – Theoretical Background

2.1 Introduction

Given the format of this thesis, each of the three articles (as presented in Chapters 4,

5 and 6) includes a section that considers relevant literature. While guarding against

unnecessary duplication, it was deemed necessary to also provide a wider conceptual

and theoretical basis upon which the remainder of this thesis builds. This chapter

therefore presents an overview of three key concepts. First, the general strategies that

can be used to comprehend source code are examined. In the course of this

examination, the different strategies used by novices and experts are compared. The

second section considers three challenges that could influence the development of a

novice programmer’s SCC skills. Lastly, in the light of the teaching and learning focus

of this study, the third section considers relevant cognitive and metacognitive practices

and examines the relation between these practices and SCC.

2.2 Source code comprehension strategies

Source code comprehension refers to the process of reading, interpreting, and

understanding pieces of source code that make up an entire computer program

(Busjahn & Schulte, 2013; Lister et al., 2004; Lister, Simon, Thompson, Whalley &

Prasad, 2006; Maalej, Tiarks, Roehm & Koschke, 2014). Numerous attempts have

been made to describe and classify the general strategies used by programmers to

comprehend pieces of source code (Fitzgerald, Simon & Thomas, 2005; Lister et al.,

2004; Xie, Nelson & Ko, 2018). The underlying philosophy of the DtDs paradigm is

that each discipline has its unique ways of thinking that instructors should teach their

students from early on (Middendorf & Pace, 2004). This also applies to the discipline-

specific skill of SCC. In the absence of more explicit knowledge regarding the exact

mental processes followed by programmers to efficiently comprehend pieces of

source code, it would therefore be impossible to accurately model these ways of

thinking to students (see Step 3 of the DtDs framework as presented in Figure 1.1).

Knowledge of the general SCC strategies used by programmers (both novices and

experts) can, however, serve as a starting point in uncovering the SCC learning

17

bottlenecks experienced by students (as part of Step 1 of the DtDs framework) as well

as the explicit mental processes required for efficient SCC (in Step 2).

With regard to general SCC strategies, traditional taxonomy refers to ‘bottom-up’ and

‘top-down’ as well as various combinations of these strategies (Brooks, 1983; O’Brien,

2003; Pennington, 1987a; Shneiderman, 1980; Von Mayrhauser & Vans, 1995b). With

a bottom-up strategy, a programmer approaches the comprehension process by first

considering the lower-level structures, then the intermediate structures, and finally the

higher-level structures of the source code (Pennington, 1987a; Shneiderman, 1980).

When following this approach, a programmer first reads and understands the

individual lines of source code and information relating to procedure. Second, the lines

of code are grouped into parts that have meaning (chunking). Lastly, these chunks are

grouped to form an understanding of how the source code functions (Pennington,

1987b; Shneiderman & Mayer, 1979). The top-down strategy can be regarded as an

inverse of the bottom-up strategy, where the programmer starts with the higher-level

structures and then works towards the lower-level structures (Brooks, 1983). This

means that the programmer first develops hypotheses about the source code being

studied. Beacons are then used to evaluate (verify) and refine the initial hypotheses

while interacting with the source code (Basili & Mills, 1982; Détienne, 1990; Soloway,

Ehrlich & Bonar, 1982). Beacons are defined as knowledge of the source text structure

from which a programmer can identify common source code features that act as a

signpost that there is an occurrence of certain structures or operations (Brooks, 1983).

For both of these strategies, the mentioned steps are repeated as and when necessary

until the programmer is able to either partially or fully comprehend the source code

under examination (Détienne, 1990; O’Brien, 2003).

Although these models share some common elements, the main difference, however,

is that the bottom-up strategy is suitable for situations where programmers are

unfamiliar with the domain (O’Brien, 2003), while the top-down strategy requires

programmers to utilise domain knowledge to develop their initial hypotheses about the

code (Brooks, 1983). It is also highly unlikely that a programmer will exclusively rely

on only one of these strategies (O’Brien, 2003). Instead, Von Mayrhauser and Vans

(1997) suggest that programmers rather use one of these as their predominant

strategy (a subconscious decision based on their level of domain knowledge) and then

18

follow an opportunistic approach (Letovsky, 1987) where they switch with ease

between strategies as more information becomes available. When a programmer

switches between strategies, it might also include elements that are not necessarily

part of either the bottom-up or top-down approaches. A number of researchers have

attempted to name and describe these ‘opportunistic’ strategies used by programmers

to comprehend source code.

When following a knowledge-based comprehension strategy (Letovsky, 1987),

programmers use their experience and expertise, including syntactic knowledge and

existing and/or newly acquired knowledge, about a problem domain during the

comprehension process. Depending on circumstances, the programmer may apply

either bottom-up or top-down reasoning. This strategy is considered more applicable

and useful for experienced programmers than for novices (Letovsky, 1987; Stan

Letovsky & Soloway, 1986; Storey, Fracchia & Muller, 1999).

With a systematic comprehension strategy (also known as the control flow-based

strategy), a programmer reads the source code text in detail and traces through the

control flow and data flow. The objective is to gain a global understanding of the source

code in order to successfully complete the given SCC task (Littman et al., 1987). As

programmers read the source code, they consult associated documentation and

perform the necessary simulations. These simulations are strategies that

programmers use to uncover the unwanted causal interactions between the various

components of the source code that is being examined (Soloway, 1986). The

interactions are produced by the dynamic aspects of the source code. An advantage

of this strategy is that correct augmentations to the source code are highly likely to be

made, because the causal relationships contained in the delocalised plans are

identified and studied in adequate detail. Letovsky and Soloway (1986) define

delocalised plans as programming plans whose parts are located in non-contiguous

parts of the source code. Although it may be realistic to systematically work through

short programs, this is not feasible with large programs (Soloway et al, 1988).

Another approach is the micro comprehension strategy (Letovsky, 1987), where a

programmer uses inquiry episodes. These are activities or groups of activities in which

a programmer follows the comprehension search cycle model depicted in Figure 2.1.

19

Programmers read the given source code and then develop questions that (when

answered) will help to enhance their understanding of the source code. With the

information obtained from reading the source code and developing questions,

programmers make small conclusions about their understanding of the source code.

During question development, the programmer can go back to read the source code

again. Even when making small conclusions about source code understanding, the

programmer is allowed to revisit the development stage of the questions. If they are

satisfied with their understanding, programmers stop at the conjecture stage, hence

the small conclusions become the final conclusion. Otherwise, they repeat the process

and the small conclusions already made will be revised accordingly. The whole

process is grounded in the delocalised plans that exist within the pieces of source

code in question (Letovsky, 1987; Storey et al., 1999).

[Source: Adapted from Letovsky (1987, p. 327)]

Figure 2.1 – Comprehension Search Cycle Model

With the as-needed comprehension strategy, programmers use their experience to

identify and only focus on parts of the source code that they think are relevant to the

current SCC task (Adelson & Soloway, 1985; Littman et al., 1987; Sillito, De Volder,

Fisher & Murphy, 2005). This strategy is also known as an isolation strategy (Nanja &

Cook, 1987) or opportunistic relevance strategy (Koenemann & Robertson, 1991).

One advantage of this strategy is that if a programmer identifies appropriate parts of

the source code intrinsically relevant to the given comprehension task, it may reduce

20

the time needed to complete the task. Filtering out source code locations irrelevant to

what the programmer wants to achieve will also save time. This strategy is, however,

more prone to errors because causal interactions within the source code are not

studied in sufficient detail (Soloway et al., 1988).

When following an integrated comprehension strategy, a programmer develops code

comprehension by switching between the three main strategy categories (bottom-up,

top-down and opportunistic) as and when the need arises during the comprehension

process (Von Mayrhauser & Vans, 1993; 1995b). This strategy is different from

Letovsky's (1987) reasoning in that if the top-down reasoning is used and the

programmer wants to change to the bottom-up reasoning, the top-down journey must

either be completed or the reasoning must be completely discarded. The same is true

when the programmer starts with bottom-up reasoning (Storey et al., 1999).

2.2.1 General reflection on the nature of SCC strategies

Even if one is aware of the processes involved in all of the above-mentioned SCC

strategies, it is impossible to predict which comprehension strategy or combination of

strategies a programmer would use in a given SCC-related task. Source code

comprehension is considered hard and time consuming (Maalej, Tiarks, Roehm &

Koschke, 2014). As such, even professional programmers avoid deep understanding

of the source code as long as they can achieve their comprehension goals without

having to comprehend everything intensely (Maalej et al., 2014). Some authors

(Brandt, Guo, Lewenstein, Dontcheva & Klemmer, 2009; LaToza, Garlan, Herbsleb &

Myers, 2007) indicate that using the minimum effort possible to maximise outcome is

applicable to various strategies that programmers use to comprehend source code.

Applying minimum effort with the objective to get the maximum outcome possible is

the philosophy underlying Carroll's (2003) minimalist theory.

Source code comprehension is also cognitive in nature (Praveen, 2016) and therefore

requires a lot of mental effort (Maalej et al., 2014). This implies that it is never easy to

predict or know what a person is thinking, unless they share their thoughts. In the

specific context of Maalej et al.'s (2014) study, programmers were found to

comprehend source code by asking questions and answering them, as well as

developing hypotheses and testing them. Their findings were consistent with the

21

results of several other authors (Brooks, 1983; Ko & Myers, 2004; Letovsky &

Soloway, 1986; Von Mayrhauser, Vans & Lang, 1998).

Understanding the intricacies of an individual’s SCC process is further complicated by

all the additional tools and practices that programmers have at their disposal to support

or facilitate their chosen SCC strategy. Given the cognitive nature of the SCC process

(Praveen, 2016), programmers have been shown to use various artefacts to reflect

their mental models and record knowledge. Maalej et al. (2014) found that

programmers use notes, while Lister et al. (2004) found them to be using doodles and

walkthroughs. Doodles are drawings, calculations, and annotations that programmers

create as they work through a given piece of code in order to ultimately establish what

the output would be if executed (Lister et al., 2004). Walkthroughs are defined as

“simply reading the code carefully in the order it would be executed (except for branch

points, where all branches are considered serially), to careful simulation, where the

[programmer] attempts to mimic as closely as possible the actions of the

[computer/compiler] that executes the code” (Jeffries, 1982, p. 12). Additionally,

programmers have a tendency to utilise the source code itself rather than associated

documentation. Maalej et al. (2014) found this tendency to be consistent with the

findings of LaToza et al. (2007), who realised the importance of people gaining

knowledge from the actual reading of the code compared to reading the text that

explains what the code does. Another potential reason for this tendency is that

documentation is rarely available. In instances where the documentation is available,

it is time consuming to use it to figure out how the code works (Maalej et al., 2014).

An individual’s choice of SCC strategy can also be influenced by personal preferences

and circumstances. An SCC study by Maalej et al. (2014) reveals that, in practising

code comprehension, programmers base themselves on the context, and have a

tendency to follow pragmatic comprehension strategies. This means that

programmers deal with comprehension in a realistic way that makes sense to them,

and they are mostly guided by practical considerations instead of theory (Holmes &

Walker, 2012). It has also been shown that programmers do not necessarily want to

comprehend source code; instead, they just want to complete their tasks (Kim,

Bergman, Lau & Notkin, 2004; Maalej et al., 2014; Singer et al., 1997). This may

dictate that programmers ignore the SCC strategies developed by researchers and

22

practitioners, unless they are subjected to conditions that compel them to utilise such

strategies.

Maalej et al. (2014) also established that there is a gap in the perception of SCC

between programmers (in practice) and researchers. One main reason attributed to

this gap is that researchers come up with strategies that may be too abstract,

complicated, or not relevant for application in the software industry (Singer, 2013).

Consequently, such strategies may be even less relevant in an educational context.

Given that programmer experience has also been identified as having a significant

impact on the choice of an SCC strategy (Maalej et al., 2014; Singer et al., 1997), it is

necessary to consider how the SCC strategies used by novice and expert

programmers differ. The different ways in which novices and experts think about and

perform discipline-specific tasks (such as SCC) is one of the main reasons why

students tend to develop mental blocks in their learning (Middendorf & Pace, 2004).

This is the kind of problem that can be addressed through application of the DtDs

framework.

2.2.2 Novice versus expert comprehension strategies

In the past 40 years, numerous studies have been conducted to compare the general

SCC strategies used by novice and experienced programmers. Soloway and Spohrer

(2013) point out that it takes approximately 10 years for a novice programmer to move

on the continuum from a novice to becoming an expert. In general, the results of these

studies indicate that novices tend to use bottom-up-based comprehension strategies,

while experienced programmers are more likely to use strategies that favour a top-

down approach. The identified major differences as well as some discovered

similarities between the approaches used by experienced and novice programmers to

read, interpret, and understand source code can be summarised as follows:

• In the initial stages of SCC, both experienced and novice programmers follow

similar overall strategies, but their strategies differ later on (Jeffries, 1982;

Nanja & Cook, 1987; Gugerty & Olson, 1986; Widowski & Eyferth, 1986).

• Experienced programmers use their experience, syntactic knowledge, and

knowledge of a problem domain (knowledge-based strategy), while novice

programmers read source code line-by-line (Letovsky & Soloway, 1986).

23

• Experienced programmers focus only on reading source code relating to a

particular task at hand (as-needed-based strategy), while novice programmers

focus on all elements of the source code (Littman et al., 1987; Soloway et al.,

1988).

• Experienced programmers use a semantic approach (reliance on functionality),

while novice programmers are driven by how a program works syntactically

rather than what a program does semantically (semantic versus syntactic

approach) (Adelson, 1981; 1983).

• Experienced programmers are more affected by violations in the rules of

discourse in a piece of source code than novice programmers (Soloway &

Ehrlich, 1984; Soloway, Lochhead & Clement, 1982).

• Both experienced and novice programmers pay least attention to the keywords

in the source code’s text (Crosby & Stelovsky, 1990).

• Experienced programmers do better than novices in situations where they have

to recall meaningful source codes. However, both do equally well where they

must recall source codes that are not well designed (Adelson, 1984; McKeithen,

Reitman, Rueter & Hirtle, 1981; Schmidt, 1986).

• Experienced programmers link parts of the source code to the problem domain

(cross-referencing strategy), which is unusual for novice programmers

(Pennington, 1987b).

• Experienced programmers do not study source code line-by-line like novices

(Letovsky, 1987). They search instead for key lines (beacons) (Brooks, 1999).

• It is easier for experienced programmers to realise when they have to change

or adapt their comprehension strategy – especially as the result of discovering

an anomaly in the source code or when the requested task has some inherent

special needs (Storey, Wong & Müller, 2000).

• Experienced programmers resort to using other skills (e.g. simulations of the

source code to make its dynamic properties explicit) when their higher-order

skills do not help them in understanding the source code. This is not typical with

novice programmers (Soloway, 1986).

24

• Experienced programmers tend to use a source code reading strategy that

follows the order in which the source code would be executed (Jeffries, Turner,

Polson & Atwood, 1981; Mosemann & Wiedenbeck, 2001; Nanja & Cook,

1987). Novice programmers, on the other hand, tend to read code line-by-line

as if they are following a cookbook recipe (Saha & Ray, 2015). Experts have,

however, been observed to revert to a line-by-line strategy in cases where they

were not familiar with a programming system (Ko & Uttl, 2003).

• Experienced programmers have developed the ability to identify the most

effective and appropriate strategy to follow for a given comprehension task

(Storey et al., 2000). Novices tend to use a guessing or trial-and-error strategy

to ultimately arrive at an acceptable comprehension strategy (Nanja & Cook,

1987).

• Experienced programmers form mental models in terms of abstractions, while

novice programmers’ models are formed in terms of source code statements or

sequentially (Corritore & Wiedenbeck, 1991; LaToza et al., 2007; Wiedenbeck,

Ramalingam, Sarasamma & Corritore, 1999).

• Experienced programmers make little use of their working memory during SCC

because they are able to readily identify the procedural nature of the source

code (Wiedenbeck et al., 1993). Novice programmers need more mental

attention (Wiedenbeck, 1985).

From the above comparisons, it can be deduced that the knowledge of programming

experts is more organised than that of novice programmers. This knowledge is

activated when programmers engage their thinking during the comprehension process

(Teasley, 1993). By engaging their thinking, programmers start to build the mental

representations or models of the source code text being examined. The resulting

mental representations built, are likely to differ for novices and experts. However, even

within the novice category, there are those that Corritore and Wiedenbeck (1991) refer

to as ‘high comprehenders’. These are novice programmers who display the level of

thinking and use strategies which are typical of experienced programmers. The mental

models developed by these comprehenders are also similar to those associated with

expert programmers. This implies that it is possible for a novice programmer to

25

traverse much faster on the continuum from non-expert programmer to expert

programmer than the 10-year timeframe suggested by Soloway and Spohrer (2013).

Furthermore, in the process of SCC, experienced programmers read the source code

in question and locate a place(s) where comprehension needs to happen (Maalej et

al., 2014). In order to discover these ‘places’, programmers need to have experience

of some sort. For example, they ought to have some knowledge of the lower and

higher syntactic structures, as well as at least the lower semantic structures (but ideally

knowledge of both structures) of the programming language (Adelson, 1981; 1983).

For this reason, experienced programmers are considered to pay attention to

meaningful areas of the source code and to complex statements (functional

characteristics), while novice programmers tend to visually concentrate on the

comments and comparisons (superficial features) (Crosby & Stelovsky, 1990; Von

Mayrhauser & Vans, 1995b). More specific details regarding the actual SCC strategies

followed by novice programmers are presented as part of Article 1 (see Chapter 3).

The intricate details of the strategies and detailed steps required for efficient SCC (as

executed by experts) are covered as part of Article 3 (see Chapter 5).

While level of experience can have a big influence on a programmer’s SCC

competency (Singer et al., 1997), it is also necessary to consider other challenges that

could potentially influence the development of a novice programmer’s SCC skills.

Moreover, knowledge of such additional challenges could be of value in the process

of uncovering students’ learning bottlenecks as part of Step 1 of the DtDs framework.

2.3 Challenges impacting the development of SCC skills

Due to the massification of higher education (Council on Higher Education, 2016;

Phillips, 2019; Jansen, 2003), CS departments have to deal with large groups of

students coming from diverse backgrounds. Since most of these students have limited

or no programming experience (Kirkpatrick & Mayfield, 2017), many of them find it

particularly difficult to master the key disciplinary skills of SCC (Cunningham et al.,

2017; Shaft & Vessey, 1995). Over the past three decades, numerous studies have

attempted to uncover the specific challenges experienced by novice programmers in

comprehending source code (Bosse & Gerosa, 2017; Cunningham et al., 2017; Du

26

Boulay, 1986; Lister et al., 2004). Some of the more discipline-specific challenges (or

difficulties) identified by these and other authors are covered as part of Article 1. There

are, however, also other challenges that could influence the development of a novice

programmer’s SCC skills. The discussion in this section examines three such

challenges: Lack of prior knowledge, lack of problem-solving skills, and lack of strong

mental models. In the course of this examination, strategies are also considered that

can be used by instructors to help students overcome these challenges.

2.3.1 Lack of prior knowledge

The term prior knowledge refers to what a student “already knows about a topic before

learning more about it” (Veerasamy, D’Souza, Lindén & Laakso, 2018, p. 228). This

knowledge is seen as “a much more important determinant of comprehension than

was earlier thought” (Malarz, 1998). When students are unable to engage their prior

knowledge to connect it to new understandings, it will hamper the creation of new

knowledge (Bransford, Brown & Cocking, 2000). Programming students therefore

need relevant prior knowledge in order to understand the concepts of the discipline

and to perform well in programming courses (Alturki, 2016). For example, if students

struggle to handle a mouse, type with one finger, and/or do not know how to save a

document, they find it particularly difficult to learn basic computer literacy and

programming skills at the same time (Oroma et al., 2012). Considerable research has

been conducted that links prior knowledge (or the lack thereof) to programming

performance (Allert, 2004; Patil & Goje, 2009; Pillay & Jugoo, 2005; Wilson, 2002).

Veerasamy, D’Souza, Lindén and Laakso (2018) specifically investigated the role

played by prior programming knowledge in lecture attendance and performance in the

subsequent final programming examination during an introductory programming

module. They found that students with prior programming knowledge performed

significantly better than those without it. The students’ lack of prior knowledge is

something that is largely beyond the instructor’s control (Kuhn, 2014). However, the

impact of prior programming knowledge on student performance has been shown to

gradually fade during the course period (Iv, Jagodzinski, Hao, Liu & Gupta, 2019) as

students become more accustomed to the environment.

27

2.3.2 Lack of problem-solving skills

Programming is a process that is characterised by problem solving (Faux, 2001;

Hazzan, Lapidot & Ragonis, 2011). As such, programming students at all levels of

study should be formally equipped with skills to solve problems (Hazzan et al., 2011).

Failure to do so will result in (1) failure of programming learning (O’ Kelly et al., 2004);

or (2) students using problem-solving strategies of their own that may be inadequate

(i.e. lengthy or not helping students to arrive at the solution) for the problem-solving

tasks in question (Oroma et al., 2012).

A process to follow when solving a problem starts with outlining the problem

specifications and ends with the outline of a solution. This implies that programmers

are challenged in the continuum from the specifications to the solution (Hazzan et al.,

2011). However, programmers may also be required to move from the solution back

to the original requirements (Biggerstaff et al., 1993). This further implies that

programmers experience challenges in the continuum from specifications to solution

and vice versa. When scrutinised, the following challenges associated with

programmers are judged to fall within the specified continuum:

• Planning and designing computer programs (Astrachan & Rodger, 1998; Butler

& Morgan, 2007; Mhashi & Alakeel, 2013);

• Developing algorithms from problem specifications (Sarpong, Arthur &

Amoako, 2013);

• Thinking analytically and reasoning logically in solving computer programming

problems (Butler & Morgan, 2007; Ismail, Ngah & Umar, 2010);

• Decomposing a problem description into sub-problems, implementing these

sub-problems, and putting the pieces together into a complete solution (Lister

et al., 2004, p. 119);

• Translating a manually solved problem into an equivalent computer program

(Soloway et al., 1983);

• Making a transition from an understanding of separate program statements to

the tasks that are to be achieved by groups of statements (Liffick & Aiken,

1996);

28

• Finding bugs in students’ own written computer programs (Piteira & Costa,

2013, p. 76);

• Dividing program functionality into procedures (Piteira & Costa, 2013, p. 76);

• Combining syntax and semantics of individual program statements into a valid

program (Wills, Deremer, Mccauley & Null, 1999);

• Understanding programming concepts to be applied in solving problems or to

develop computer programs (Lister et al., 2004, p. 120; Sentance & Csizmadia,

2016, p. 480); and

• Mapping what is in the code or program back into the original software

specifications or requirements (concept assignment problem) (Biggerstaff et al.,

1993).

These challenges provide ample evidence of the intensity of the impact that a lack of

problem-solving ability could have on programmers’ capability to comprehend source

code. This is in agreement with several authors (Chi, Bassok, Lewis, Reimann &

Glaser, 1989; Reed, Miller & Braught, 2000; Sweller, 1988) on the importance of

problem-solving abilities or skills in CS courses such as programming. In training

students, strategies introduced to them should not be limited to a programming

paradigm and/or language. Instead, the strategies should also be implementable in or

applicable to other environments.

Regarding problem solving in introductory computer programming courses,

McCracken et al. (2001, p. 126) proposed a framework that could be helpful to

students. The framework comprises five successive steps: (1) abstract the problem

from its description; (2) generate sub-problems; (3) transform sub-problems into sub-

solutions; (4) re-compose the sub-solutions into a working program; and (5) evaluate

and iterate. However, the framework is not sufficient because there are other skills

that students may lack in the run-up to problem-solving (Lister et al., 2004). Hence,

the ITiCSE 2004 working group (Lister et al., 2004) hypothesised that students might

have problems reading even simple code, which has been confirmed by their

multinational empirical investigation and other studies (e.g. Fitzgerald et al., 2005; Xie

29

et al., 2018). In addition to problem-solving abilities, this therefore implies that code-

reading skills can also play a role in influencing the comprehension of source code.

2.3.3 Lack of strong mental models

Alturki (2016) loosely defines mental models as the internal “representation of

concepts and ideas related to a given area, such as programming, in one’s mind” (pp.

177-178). In the context of this study, mental models refer to a programmer’s

understanding of source code during the comprehension process (Letovsky, 1987).

Throughout this process, a programmer reasons, explains, and makes some

predictions about the behaviour of the source code in question (Cañas, Bajo &

Gonzalvo, 1994; Norman, 1983). However, it is possible that the reasoning put forward

by students and the explanations they provide, as well as the predictions they make,

may be incorrect. In this way, they form non-viable mental models. Ma, Ferguson,

Roper and Wood (2007) define non-viable mental models as those models that result

in an invalid understanding of programming concepts. Instances of non-viable mental

models are evidenced in some studies (Biggs & Collis, 1982; Lopez, Whalley, Robbins

& Lister, 2008; The Joint Task Force on Computing Curricula Association for

Computing Machinery (ACM) IEEE Computer Society, 2013). Several studies

(Corritore & Wiedenbeck, 1991; Nanja & Cook, 1987; Pennington, 1987b; Littmann,

Pinto, Letovsky & Soloway, 1986; Soloway & Ehrlich, 1984; Wiedenbeck et al., 1999;

Wiedenbeck, LaBelle & Kain, 2004) have indicated that mental models play a vital role

in the ability of programmers to comprehend source code. More evidence of students’

fragile knowledge identified through the mental models and/or representations they

form while comprehending source code is discussed as part of Article 1 (see

Chapter 4).

In their study, Corritore and Wiedenbeck (1991) conducted two experiments. In the

first experiment, they examined the mental representations of the source code text

formed by novices. In this examination, they used short fragments of the source code.

Their results indicated that novice programmers form detailed and concrete mental

representations of the source code text. In the second experiment, they used the

results of the first experiment. They selected novice programmers classified as upper

and lower comprehenders and tested them on a longer computer program. Their

results indicated that novice programmers use detailed mental models of the source

30

code text and that they seldom make reference to the real world. On the other hand,

high comprehenders (e.g. advanced novices in programming) use more abstract

concepts in their mental models of the source code text and their abstractions have a

lot of references to the real world.

Having considered three high-level challenges that could affect the development of

SCC skills, more specific SCC challenges or bottlenecks are identified in Article 1 (see

Chapter 4). Since SCC is regarded a skill that requires efficient application of a series

of complex cognitive processes (Orlov, Bednarik & Orlova, 2016; Praveen, 2016), it is

important for students to be aware of their ‘thinking’ as well as how they ‘think about

how they think’ when doing things (e.g. performing SCC-related tasks). As such, the

next section discusses both cognitive and metacognitive practices that can influence

the comprehension of source code.

2.4 Cognitive practices

Cognition is defined as internal or mental processes that enable human beings to gain

knowledge from their surroundings and to retain it (Cognifit, 2019; Preece, Rogers &

Sharp, 2015; Schlinger, 1995). In any teaching-and-learning-related study, it is

important not only to understand how knowledge is gained, but also how individuals

are able to locate, identify, and accurately retrieve this information for future use.

2.4.1 Knowledge acquisition and retention

In an educational environment, students are generally expected to be able to

remember what they have learned so that they can pass tests and examinations, as

well as (ultimately) apply knowledge gained in lower- to advanced or upper-level

classes (Barkley, 2010). This is in line with the learning edge momentum philosophy

(Robins, 2010), namely that a student’s ability to understand new programming

concepts is linked to the preceding related concept(s) that the student has learned.

Careful implementation of this philosophy therefore suggests that it may not be

possible for students to progress to higher levels of study in programming while the

concepts that ought to have been studied in the lower levels of study are still lacking

(Alturki, 2016). Consequently, these students who did not experience the learning

31

edge momentum that upper-level students had, are not likely to overcome the

threshold concept (Meyer & Land, 2003) problem.

Both short- and long-term memory play a vital role in remembering information

received and applying acquired knowledge. According to Barkley (2010), “short-term

memory occurs when the brain works with new information until it decides if and where

to store it more permanently” (p. 22). If such information is to be retained over long

intervals, it is stored in the long-term memory (Waugh & Norman, 1965). Newly

acquired information or knowledge can typically be stored for about 24 hours in the

short-term memory and can be recalled during that time. After 24 hours, such

information or knowledge is consolidated into long-term memory storage, and is

available for recall over a longer period of time (e.g. forever or for several decades)

(Barkley, 2010; Robin, 2002). The problem, however, is that the neural networks –

those brain structures that facilitate the storage of knowledge in long-term memory for

future retention – gradually wear off when that knowledge is not used in relevant future

work or applied in life situations (Ratey, 2001). This implies that people’s (including

students’) brains must be continuously tapped into so that the existing connections

between new and already known information can be strengthened (Moon, 2004;

Sousa, 2006; Wlodkowski & Ginsberg, 2010).

According to Barkley (2010), knowledge or information does not just move from the

short- to long-term memory (a process known as consolidation). There are three

specific attributes that must be achieved during instruction to help ensure that this

movement occurs:

• Emotional connection – There is a likelihood that information can be stored in

the long-term memory if students are able to connect emotionally to such

information. To achieve this, instructors can instigate the relevant human

dimension in the learning process by using teaching aids that cause the

learning content to have some impact on students’ lives.

• Sense – The information or knowledge should make sense to students and be

relevant to what they already know. To achieve this, instructors can organise

learning into units characterised by themes and integrate the relevant

analogies or metaphors into the teaching and learning process.

32

• Meaning – Students must find a reason to justify why the knowledge they gain

during the teaching and learning process must be remembered. To achieve

this, instructors can ask students to “connect what they are learning to their

past, to what is going on presently in the world around them, or to the

professional or civic responsibilities they may have in the future” (p. 101).

With respect to uncovering expert ways of thinking as suggested by Step 2 of the

seven-step DtDs framework, it is vital to also delve deeper into the programmers’

‘thinking about how to think’ (metacognition) while comprehending source code.

2.4.2 Metacognition

Metacognition is defined as “one’s knowledge concerning one’s own cognitive

processes and products or anything related to them” (Flavell, 1976, p. 232).

Hennessey (1999) later defined it as:

“Awareness of one’s own thinking, awareness of the content of one’s

conceptions, an active monitoring of one’s cognitive processes, an attempt to

regulate one’s cognitive processes in relationship to further learning, and an

application of a set of heuristics as an effective device for helping people

organize their methods of attack on problems in general” (p. 3).

Therefore, using some elements of these definitions, metacognition in the context of

this study can be defined as the ability of a person to be cognisant of processes in

their mind (mental or cognitive processes) and to be in a position to exert the

necessary control (regulation) over such processes for the best possible learning.

[More details on the cognitive process aspects are covered in Article 2 (see

Chapter 5)].

Metacognition is a critical element in the learning environment (Ambrose et al., 2010;

Frith, 2012) that is often taken for granted by stakeholders. Students with good

metacognitive skills are typically classified as high academic achievers (Greeno,

Collins & Resnick, 1996; Lovett, 2008). In the CS discipline, metacognitive skills have

been found to play an essential role in solving computer programming problems

(Parham, Gugerty & Stevenson, 2010). Well-performing CS students have also been

found to use more metacognitive strategies than their lower-performing peers (Bergin,

33

Reilly & Traynor, 2005; Shaft, 1995). More details on the metacognitive strategies

applied by expert programmers during SCC are covered as part of Article 2 (see

Chapter 5).

2.4.2.1 Metacognitive promotion strategies

Although fostering metacognitive practices among students is not an easy task, there

are reports of positive results in this regard. Most of the desired outcomes are

characterised by strategies that include the planning, monitoring, and regulating of

mental processes when doing something or performing a task (Akturk & Sahin, 2011;

Lai, 2011). Deducing from the activities of Step 3 in the seven-step DtDs framework

as suggested by Middendorf and Pace (2004), modelling can also be used as a

strategy to promote metacognition.

Planning

The planning phase is characterised by setting goals, scanning through a task, asking

yourself several questions before starting with and while working on the task, and

analysing the tasks or steps that are involved or should be involved in tackling the

problem at hand. These planning activities trigger the prior knowledge of programmers

(Bergin et al., 2005; Pintrich, 1999). In the triggering process, programmers are able

to compare and contrast the new information they are seeing/receiving or getting with

already known information. In the process they learn, and are hence able to confidently

decide on the appropriate approaches to use for the task in question (Barkley, 2010).

Monitoring

The monitoring phase is characterised by programmers paying attention to their

mental processes as they read or work through a given task. In the process, they also

use some techniques to test their comprehension (Bergin et al., 2005; Simons &

Bolhuis, 2004). The techniques can include thinking aloud (Whalley & Kasto, 2014);

underlining some lines of code or keywords (Powell, Moore, Gray, Finlay & Reaney,

2004); drawing some diagrams (Lister et al., 2004); making analogies or metaphors

(Pace, 2017a); asking yourself questions about the various aspects of the task at hand

(Eisenführ, Weber & Langer, 2010; Herrmann, 2017; Uzonwanne, 2016); and making

notes or summaries to ensure comprehension of the content (Van Gorp & Grissom,

34

2001). According to Pintrich (1999), employing these techniques exposes

programmers to situations where they might have breakdowns in attention or

comprehension. He believes that the use of regulation strategies or activities

(regulation phase) can repair the associated breakdowns.

Regulation

The regulation phase is characterised by programmers continuously modifying

activities based on what they found during the planning and monitoring phases, as

well as what they experience as they continue working on the activity (Bergin et al.,

2005; Simons & Bolhuis, 2004). As an example, programmers may reread the given

text or scenario in order to confirm whether they really understand it or not. They may

also slowly read or reread the scenario if they think they do not understand it or if there

are some aspects that are difficult to understand. Additionally, programmers may skip

some aspects that they find challenging to understand with the hope that information

contained in the subsequent text may provide more insight (Moore, Zabrucky &

Commander, 1997; Pintrich, 1999).

Modelling

With the modelling strategy, the instructors explicitly show the students the steps that

they (the instructors) themselves would follow to tackle a given assignment or

problem-solving task. Following these steps, instructors walk through various stages

of their metacognitive processes, and normally demonstrate their thinking physically

on the board and in front of the students as they go about solving a problem. A

thinking-aloud technique is deliberately used in this type of demonstration. This

technique requires the person using it to verbalise the steps or procedures followed to

perform a certain task. To further strengthen the modelling strategy, the verbalised

thought processes can be performed concurrently with asking the relevant questions

in the course of the demonstration (Ellis, Denton & Bond, 2014; Kistner et al., 2010).

Nilson (2013) suggests that, other than modelling by the instructor or his/her

assistants, the task can also be assigned to students. Overall, modelling is normally

achieved by following the fundamental metacognitive processes suggested by

Ambrose et al. (2010) (also see Figure 2.2). In these processes, students:

35

• “Assess the [learning] task at hand, taking into consideration the task’s goals

and constraints;

• Evaluate their own knowledge and skills, identifying strengths and weaknesses;

• Plan their approach in a way that accounts for the current situation;

• Apply various strategies to enact their plan, monitoring their progress along the

way; and

• Reflect on the degree to which their current approach is working so that they

can adjust and restart the cycle as needed” (pp. 192-193).

[Source – Adapted from Ambrose et al. 2010, p. 193)]

Figure 2.2 – Metacognitive Process Cycle

According to Ambrose et al. (2010), the modelling process does not stop immediately

after going through the metacognitive cycle. Instead, they recommend that instructors

give students a problem to solve or an activity to undertake. To help students develop

metacognitive skills in the given assignment, instructors are expected to provide them

with the leading questions that they should ask themselves throughout the steps.

Examples of such questions could be: What problem am I trying to solve? Where do I

start? How do I start? What are the next steps after starting? What do I need to solve

this problem? What strategies do I need to solve the problem? How will I decide on

the best strategy? Is there an alternative approach?

36

The aforementioned questions form part of a scaffolding strategy which has been

identified in several studies (e.g. Bickhard, 2013; Feyzi-Behnagh et al., 2014;

Fitzgerald et al., 2005) to play a critical role in facilitating student learning. Ambrose et

al. (2010) define scaffolding as the “process by which instructors provide students with

cognitive supports early in their learning, and then gradually remove them as students

develop greater mastery and sophistication” (p. 146). Lev Vygotsky is one of the early

thinkers of metacognition who strongly influenced the concept of scaffolding (Robins,

2010). In the scaffolding strategy, instructors use various teaching tools, guides or

techniques (also known as scaffolds) that help students develop comprehension

beyond their ability or to successfully perform unfamiliar tasks (Deejring, 2015;

Raymond, 2017; Vygotsky & Cole, 1978; Wood, Bruner & Ross, 1976). This

comprehension happens by way of instructors asking students to work on distinct

phases of the given task in isolation, before being asked to assimilate the phases.

Instructors can also provide a framework for tasks that require considerable or full

student autonomy, and later relegate most of the tasks back to the students (Ambrose

et al., 2010).

Considerable research has indicated that the use of scaffolding techniques helps

students to improve their performance (Azevedo, Cromley, Winters, Moos & Greene,

2005; Molenaar, Van Boxtel & Sleegers, 2011; Roehler & Cantlon, 1997).

Consequently, it is vital to integrate scaffolding techniques [more details can be seen

in Article 2 (see Chapter 5)] into all teaching and learning efforts, including the teaching

of SCC skills. The objective is to see how the identified cognitive and metacognitive

practices can help students to better comprehend source code if they “reflect on their

ideas” (Davis, 2000, p. 819). The biggest problem in executing the modelling and

scaffolding techniques proposed here, is that instructors are not necessarily always

aware of the exact mental processes they follow in comprehending source code –

mostly due to their ‘expert blind spots’ (Grossman, 1990; Nathan & Petrosino, 2003;

Shulman, 1986). One of the main purposes of Step 2 in the DtDs framework is to

uncover the explicit nature of these blind spots (Middendorf & Pace, 2004). In this

regard, both Article 2 and Article 3 consider cognitive aspects useful in overcoming

problems related to blind spots.

37

2.5 Summary

This chapter presented the possible strategies that can be followed in comprehending

source code. From the discussion of these strategies, it surfaced that there are no

‘hard and fast’ rules to adhere strictly to these strategies. Instead, some elements of

each strategy or a combination of these strategies can be used. Realising this, it

became necessary therefore to consider how novices and experts differ in applying

these strategies. This was achieved by comparing the strategies that they (novices

and experts) use in comprehending source code. As a precursor to Step 1 of the

seven-step DtDs framework, the challenges related to the development of SCC skills

were also considered. Moreover, both cognitive and metacognitive aspects that may

influence the process of comprehending source code were considered.

Informed by the content of this chapter, the next chapter presents a detailed

description of the research design and methods for the study, as well as detailed

procedures followed throughout the investigation.

38

Chapter 3 – Research Design and Methodology

 Introduction

In this chapter, details regarding the research design and research methodology of

the study are outlined. The chapter commences with a discussion of the theoretical

underpinnings of the selected design and methodology. Thereafter, a detailed

discussion is provided on how the empirical part of this study unfolded in the process

of finding answers to the stated research questions (as set out in the introductory

chapter). For each of the three phases of this study, aspects related to the aim; chosen

data source management strategy; population and sampling procedures; data

collection strategies and data analysis methods are discussed. Next, measures taken

to ensure the trustworthiness of the study findings are outlined. The chapter concludes

with a description of various ethical considerations adhered to in this study.

 Research design

The research design of this study was based on the seven-step DtDs framework (see

Figure 1.1). In applying this framework, Step 1 guides instructors to identify students’

discipline-specific bottlenecks in the learning process. A bottleneck is defined as

points or places in a given course where the learning of many students is interrupted

such that they are not able to advance their thinking and discovery (Middendorf &

Pace, 2004). After identifying the bottlenecks, the crucial mental operations required

to overcome such bottlenecks are uncovered through the assistance of disciplinary

experts (Step 2). These operations are then modelled explicitly to students (Step 3).

After this, instructors create opportunities for students to practise these operations or

skills and get feedback on their mastery of the skills (Step 4). In the process,

motivational strategies or principles are applied to assist students in effectively

learning the imparted skills (Step 5). Eventually, an assessment is made of how well

the undertaken efforts help students to master the intended learning content (Step 6).

As part of the final step (Step 7), instructors are encouraged to share (formally or

informally) their experiences from this process (Middendorf & Pace, 2004; Pace,

2017a).

39

The basic idea underpinning the DtDs theory is that ways of thinking and doing are

specific (and often unique) to each academic discipline (Middendorf & Pace, 2004).

Boman et al. (2017, p. 13) claim that instructors, “operating as experts in their

disciplines, hold tacit knowledge and implicit ways of thinking that are not accessible

to novices in the discipline”. In this case, the concept of ‘expert blind spots’ surfaces.

Expert blind spots occur when instructors (as experts) unintentionally omit skills, steps

or information that are essential for novice students to effectively learn and perform

learning activities (Ambrose et al., 2010, p. 112). This implies that instructors in their

various disciplines may not always be aware of the steps they are trying to reflect in

their thinking, or they may sometimes take some steps for granted when explaining a

new concept. Computer Science instructors, particularly those teaching programming

courses, may not be an exception to this practice, especially considering the distinct

and inherent challenging thought processes involved in comprehending source code.

Over the past three decades, numerous research studies have highlighted the

importance of shaping teaching to match the specific (and unique) conditions of each

academic discipline (Middendorf & Pace, 2004). One important aspect of the

differences between disciplines was elucidated by Tobias (1992-1993). She observed

that even intelligent and hard-working instructors and students alike experience

problems when they move from courses in their own speciality to other courses in

other disciplines. It follows, therefore, that students have made their own preconceived

assumptions about their academic disciplines. According to Sengupta, Bhattacharya

and Sengupta (2012), these assumptions hinder students’ learning. Therefore, these

preconceived assumptions may need to be dealt with for students to understand

content (academic and/or non-academic) beyond the boundaries of their own

discipline.

DtDs was developed by David Pace and Joan Middendorf at Indiana University in the

United States of America. Their pioneering work, conducted in the discipline of History

Education, was published in a special issue of New Directions for Teaching and

Learning in 2004 (Middendorf & Pace, 2004). DtDs started as a program to help

instructors teaching large classes. Over time, it developed into a model to help

students get through places where they get stuck (also known as bottlenecks) in

thinking distinct to a particular disciplinary environment. DtDs has recently grown into

40

a theory of pedagogy – the core here is for experts to break down complicated thinking

in a specific discipline into steps that novices can understand and easily follow (King

et al., 2013).

By 2013, at least 17 published studies in various disciplines such as history, marketing,

humanities, and biology had already employed the DtDs theory (Tingerthal, 2013, pp.

50-51). This trend has continued over the past few years, with more studies employing

the DtDs theory "coming out all the time" (Middendorf, personal communication, 1

September 2017). According to Indiana University (2019), in 2017 alone, at least 32

research works using DtDs were published in various disciplines (e.g. Belanger, 2017;

Pace, 2017b; Shopkow, 2017; Timmermans & Meyer, 2019; Tucker, 2017). Originally,

the dominating studies were in the History discipline (Shopkow, Diaz, Middendorf &

Pace, 2012). However, the trend seems to be taking another direction as DtDs is

gaining popularity worldwide and is used in other disciplines. Further, Miller-Young

and Boman (2017, p. 9) point out that there are several teams in at least ten countries

exploring DtDs.

Although not much work is available in the public domain employing DtDs in the CS

discipline, Menzel and colleagues have used the DtDs model to help students in

Computer Science overcome bottlenecks associated with understanding the complex

concepts of recursion (Menzel, 2015); debugging; and logical reasoning in algorithmic

complexity and proving computer program correctness (Discrete Mathematics course)

(German, Menzel, Middendorf & Duncan, 2014). Furthermore, Dan Richert used DtDs

to overcome three problems encountered by students in a Database Design and Data

Retrieval course. These were (1) understanding ER diagrams; (2) reasoning in

MySQL; and (3) dualism (there is no one right answer on MySQL statement) (IUBCITL,

2016). Thurner, Zehetmeier, Hammer and Böttcher (2017) also applied the DtDs

model, where they attempted to analyse the initial competences of CS freshmen

students and relate them to study requirements. It can, therefore, be deduced that

although DtDs originated in the United States of America, it is spreading as a theory

and methodology presently employed in enhancing disciplinary instruction in many

different disciplines and in many parts of the world. As such, it can be regarded as

highly applicable to a study in CS with its particular ways of thinking and doing; and to

a study in which the researcher specifically attempts to understand cognitive

41

processes and challenges of novice students as they go through the process of source

code comprehension.

In this study, the DtDs framework was adapted to create an environment conducive to

conducting the empirical investigation and ultimately answering the research

questions of the study. DtDs adaptations are supported by Middendorf and Pace

(2004, p. 4), who indicate that the DtDs steps are neither ‘mechanical’ nor

‘deterministic’. The framework is deemed a suitable research design because it is

pedagogical in nature (King et al., 2013). Furthermore, the framework helps to answer

a series of questions that instructors can ask themselves as they try to understand

how students think and learn in their specific disciplines (Middendorf & Pace, 2004, p.

1). Details on how the adaptations of the DtDs framework were done in this study are

provided in the subsequent sections.

 Research methodology

Within the realm of the DtDs-based research design, this study followed a research

approach based on Plowright's (2011) Frameworks for an Integrated Methodology

(FraIM) (see Figure 3.1). The following sub-sections provide details regarding the

characteristics of this framework, issues surrounding data collection in studies using

the framework, and justification for using the framework in this study.

(Source : Plowright, 2011, p. 9)

Figure 3.1 – The FraIM

42

3.3.1 Characteristics of FraIM

The FraIM indicates how the researcher can traverse from formulating a research

question throughout all research stages to making conclusions about the study. This

integrated methodology presents a very fitting way around the controversial issues of

qualitative and quantitative research in other mixed methods’ designs (Hellawell,

2016). As such, FraIM is characterised by the following (Plowright, 2011; 2016b):

• No philosophical position needs to be taken before commencing with the study.

Such position can, however, be taken as the study evolves or even with the

interpretation of results.

• The philosophy used to comprehend and conceptualise the research process

should not determine the methodology applied in research, but the reverse is

true.

• The Q words (quantitative and qualitative) should not be used in any part of the

study (i.e. conceptualisation, design, methodology, axiology, and reporting).

Instead, the N words (numeric and narrative) are recommended for use.

Consequently, no distinction is made between quantitative and qualitative

methods in any FraIM-based research study.

• A combination of different types of data source management strategies

(experiments, surveys and case studies) can be used in one research study.

• FraIM-based research studies use cases or data sources which are managed

through these three data source management strategies.

• The cases can be organised based on three factors:

o The number of cases in the research;

o The degree of control the researcher has over cases allocated to various

groups; and

o Ecological validity – the degree of how natural the location and

placement of the research is.

• Exact and precise counting is not used to decide whether the data source

management strategy is a survey, experiment, or a case study. Instead, the

professional judgement of the researcher is used (i.e. the amount of in-depth

43

information that can be gathered from the selected cases and the degree of

generalisability that can be made about the inferences from the data collection

are used as the basis for the judgement).

• After researchers decide on the approach to data source management, they

make sampling decisions which determine the cases or participants (i.e.

number, richness, and nature or type of cases) to be included in a research

study.

• The researcher is encouraged to be more responsive, flexible, and have an

open-minded attitude in the process of answering the study’s research

question(s) or finding a solution to a problem.

• In FraIM-based research studies, it is easy to integrate both structured and

relatively less structured approaches to data collection methods.

• All data collection methods are treated as being equally acceptable and their

use is essentially determined by the research question(s) and what the

research is set out to achieve.

• No preference is given to either numerical or narrative data over another.

• The previous phases of the investigation can be revisited as and when

necessary.

• Different research approaches can be used and integrated at all stages of the

research process.

• The term ‘unstructured’ is not used in research conducted within FraIM,

especially when it comes to data collection (i.e. interviews). Instead, the

structure is viewed on the continuum from low degree to high degree of

structure.

• Decisions must be taken at each stage of the research process. These

decisions help the researcher to understand the phenomena under

investigation.

3.3.2 Data collection in FraIM

The FraIM distinguishes between three broad types of data generation and collection

methods: observations, asking questions, and artefact analyses. In any research study

44

employing this methodology, any one data collection method or a combination of these

methods can be used (Plowright, 2016a, p. 251). It is also important to note that any

type of data (numerical or narrative) can be collected using any type of data collection

method (observations, asking questions or artefact analyses) and any data source

management strategy (surveys, experiments or case studies). According to FraIM,

each type of data collection differs in terms of (1) structure (highly structured or little

structure determined by using open or closed questions); and (2) level of mediation

(how close in time and space the researcher is to the phenomenon under study).

For example, in the case of ‘asking questions’, structured questionnaires and/or open

interviews can be used. Resultant data can thus be numerical or narrative in nature

(two main categories of data in research employing FraIM). The difference in the level

of mediation in this example can be described as follows: researchers are distant to

the unit of analysis in structured questionnaires, while they are in the vicinity of the

phenomenon under study in open interviews. Guided by the preliminary findings as

the research study unfolds, it is argued that the study employing FraIM should allow

for numerical data to be converted into narrative data and vice versa (Plowright, 2011).

3.3.3 Justification for using FraIM

Based on the given characteristics of FraIM and issues surrounding data collection, it

can be deduced that ‘mixed methods using FraIM’ is what Plowright (2016b, p. 21)

refers to as ‘an integrated methodology’. This methodology goes beyond the

mainstream mixed methods research paradigm as discussed by several authors

(Bryman, 2006; Creswell, 2014; Creswell & Plano Clark, 2011; Hesse-Biber, 2010;

Teddlie & Tashakkori, 2009). According to Plowright (2016a, p. 243), the mainstream

mixed-methods paradigm is ‘traditional’, because researchers who use it still adhere

to the thorny issues of quantitative and qualitative research. As an example, Morse

(2003, p. 190) describes mixed methods as a paradigm involving the use of several

quantitative and qualitative techniques in a research study driven by quantitative and

qualitative theories.

Plowright's (2016b) integrated methodology can, therefore, be regarded as an

emerging paradigm, and as such, as a novel way of research thinking in the 21st

45

century and beyond. As a result, FraIM was regarded as highly relevant for this study

due to the following reasons:

• In an endeavour to overcome the SCC challenges of novice students, there was

a need to move back and forth using various strategies and data collection

methods that were not yet positively known at the beginning of the study.

• Multiple data collections and analyses were undertaken throughout the

empirical investigation process. This helped the researcher to obtain thick and

rich information that helped him to effectively address the stated research

questions of the study.

• The number of cases used in this study was not yet positively known at the

beginning.

• Part of the data collection for this study was drawn from test/examination or

assignment scripts (artefact analysis).

• Some decisions were informed by the events and outcomes of the investigation

[i.e. final conclusion of the ‘useful’ bottleneck(s) that formed the focus of this

study].

• Data collection structure and the researcher’s level of mediation (i.e. low,

medium or high) to the unit of analysis were not yet positively known at the

beginning.

• The degree of control (i.e. high, medium or low) that the researcher had over

cases involved in this study was not yet positively known at the beginning.

• The degree of structure associated with data collection methods in the study

was not yet positively known at the beginning, hence the type of coding

(pre/closed or post/open) used during data analysis was not predictable.

Having detailed the design and methodology chosen for this study, issues related to

purpose and procedure, coupled with the selection of data source management

strategies; population and sampling; data collection methods; and data analysis

techniques, as well as the nature of the resultant data in the three phases of the study,

are described next. According to Plowright (2011), the data source management and

sampling decisions are two levels at which research cases occur. Data source

46

management happens when the researcher decides on the approaches to use in

managing the sources of data. On the basis of FraIM, approaches to data source

management can be organised based on three factors, namely the number of cases

in the research; the degree of control the researcher has over cases allocated to

various groups; and ecological validity (the degree of how natural the location and

placement of the research is).

 Details of empirical study

In the following sub-sections, the three research phases that made up the empirical

part of this study are discussed.

3.4.1 Phase 1

3.4.1.1 Aim

As a start to Step 1 of the DtDs framework, the aim of Phase 1 was to identify specific

senior CS students who were having difficulty comprehending short pieces of source

code.

3.4.1.2 Data source management

The data source management approach in Phase 1 was a survey. This approach was

selected because the researcher wanted to collect a wide breadth of information from

a relatively large number of participants (or cases). These participants were also

drawn from naturally existing groups, with little disruption to their ongoing activities.

Furthermore, we (the researcher and the lecturer of the selected module) had authority

(i.e. control) over those students (as study participants). The survey was more

structured in the sense that students had to answer specific questions in a given venue

and within a specific time slot (Plowright, 2011; 2016b).

3.4.1.3 Population and sampling

The population for the Phase 1 research activity was senior CS students from a

selected South African higher education institution. The sample for Phase 1 consisted

of the 40 students registered for the 3rd year Internet Programming module. The

sample was purposeful (Cooper & Schindler, 2013) because the students had already

completed four programming modules. However, they could still be regarded as

47

novice programmers since they did not have any professional programming

experience. The sample was also convenient (Patton, 2015), since the researcher had

easy access to the participants as the lecturer responsible for the module agreed to

open up one of her scheduled class sessions for this research activity.

3.4.1.4 Data collection method

The data collection method for Phase 1 was ‘asking questions’ (through a

questionnaire). This method was characterised by a medium level of mediation,

because it was possible not to know – during the first encounter – some actual

interpretations for some answers provided by the participants. This means that there

had to be extended engagement with these answers for full understanding. Using this

method, the degree of structure was high due to the following reasons: First, the

researcher had a high level of control in the sense that the questionnaire had specific

questions that participants had to answer. Second, the possible responses to the

questions were predetermined. Third, the questions included in the questionnaire were

pre-structured, as it was based on an existing set of questions. This data resulted from

students’ answers to 12 multiple-choice SCC questions (Plowright, 2011; 2016b). The

data consisted of two sub-categories, namely artefacts and performance data.

Artefacts indicated the real writings (e.g. sketches, drawings, text) that students made

in answering the questions. According to Lister et al. (2004), these writings are known

as doodles. Performance data indicated the overall scores of students on the test.

3.4.1.5 Procedure

Students were given a questionnaire containing the 12 multiple choice questions

(MCQs) (see Appendix A) developed and used by the ITiCSE 2004 working group for

a multi-national study (Lister et al., 2004). The students answered these questions

under test/examination conditions. They worked through the 12 short fragments of

source code and then either had to predict the outcome of executing such fragments

or select a piece of source code (from a small set of options) that would correctly

complete a given near-complete code snippet. There were two reasons for using this

specific set of MCQs: First, all the questions contained source code fragments that

students had to read, interpret, comprehend and ultimately answer related questions.

Second, the questions had been tested with a large population of students in several

universities in both the United States of America and other countries. The questions,

48

as used by the ITiCSE 2004 working group, were originally written in Java, but were

all converted to the C# programming language. This was the one language that all the

study participants were familiar with.

3.4.1.6 Data analysis

Analysis of the numeric data collected through the questionnaire was fairly

straightforward. The researcher first graded all the submitted scripts, after which he

captured the marks on an MS Excel spreadsheet. Since one mark was awarded for

each of the 12 questions, a ‘1’ or ‘0’ was captured for each question. This was used to

identify students who answered specific questions wrong. For each of the questions,

the mean and standard deviations were calculated. These helped the researcher to

identify questions that were the most challenging to students. The aggregate

performance of students who answered the questionnaire, as well as the ranking of

the questions compared to the ITiCSE 2004 group (Lister et al., 2004) can be seen in

Appendix B. Consequently, the three most difficult questions (Q3, Q6 and Q8) were

selected for use in Phase 2. The results of the research activities in Phase 1 were also

used to identify appropriate participants for Phase 2. A description of the Phase 1

activities is therefore included as part of Article 1 (see Chapter 4).

3.4.2 Phase 2

3.4.2.1 Aim

As a continuation of Step 1 of the DtDs framework, the aim of Phase 2 was to uncover

specific points or places (Middendorf & Pace, 2004) where senior students were

experiencing SCC difficulties, with the goal of identifying common and useful SCC

bottlenecks. Phase 2 was therefore set up to answer the following two research

questions:

RQ4 (a): What are the major SCC difficulties experienced by senior CS

students?

RQ4 (b): How can knowledge of these difficulties be used to identify SCC

bottlenecks that should ideally be addressed in introductory programming

courses?

49

3.4.2.2 Data source management

The data source management approach in Phase 2 was a case study. This approach

was selected because of three reasons: First, the researcher wanted to collect in-

depth information from a smaller number of participants. Second, participants would

be disrupted minimally in order to spend some time with the researcher when they

were free from their other academic responsibilities. Third, the researcher wanted to

study only a few participants in a conducive environment, but where he had some

degree of control in terms of probing the participants where he deemed it necessary

in order to obtain rich and thick descriptions (Plowright, 2011; 2016b).

3.4.2.3 Population and sampling

The population for the Phase 2 research activity was third-year students registered for

the 3rd year Internet Programming module at the selected institution. The sample

consisted of the 15 students selected on the basis of a specific criterion. These were

the students from Phase 1 who incorrectly answered all the questions selected for use

in Phase 2. The sample could therefore be regarded as purposeful (Cooper &

Schindler, 2013). The sample was also convenient (Patton, 2015), because the

students were studying at the selected institution and the researcher could have

sessions with them any time they were free.

3.4.2.4 Data collection methods

The data collection methods for Phase 2 were ‘asking questions’ (through think-aloud

interviewing) and ‘making observations’. The asking-questions method was

characterised by a higher level of mediation because the researcher was close to all

the events, sources of data, as well as the actual data involved in the research activity

for this phase. The researcher had a high level of control for the same reasons

mentioned in Phase 1 above. The making-observations method was characterised by

a relatively high level of mediation, because the researcher was also asking probing

questions where necessary while making observations. The degree of structure with

the observations was high due to the reasons already alluded to (Plowright, 2011;

2016b).

The questions used for the research activity in Phase 2 were identified based on the

results of the Phase 1 research activity (see Section 3.4.1.6). Three forms of narrative

50

data were collected as part of the Phase 2 research activity. First, narrative data

resulted from the transcription of the audio recordings of the individual sessions the

researcher had with the participants. Second, doodle data resulted from the real

writings (e.g. sketches, drawings, text) that students created in answering the

questions. Third, observations made throughout the session were written down as

notes (narrative) to later supplement the discussion of the study findings. In order to

fine-tune the research activities of this phase, a pilot was conducted.

3.4.2.5 Piloting of Phase 2

As pilot studies play a crucial role in the research process, such a study was conducted

for Phase 2. Since pilot studies are nearly always conducted with a smaller number of

participants (Van Teijlingen & Hundley, 2002; Van Teijlingen, Rennie, Hundley &

Graham, 2001; Vogel & Draper-Rodi, 2017) , only one participant was involved in the

Phase 2 pilot. This participant was a postgraduate CS student. The pilot study was

conducted to fine-tune the structure of the individual sessions and to finalise a generic

list of possible probing questions to be used in the event that participants got stuck or

remained silent for too long.

The pilot participant took 16 minutes and 30 seconds to answer all three questions

(selected and used in this Phase) in a think-aloud manner. Given the advanced

experience level of the pilot participant, the researcher decided to schedule at least

45 minutes for each of the individual research participant sessions. In response to a

question posed by the researcher (as the interviewer), the pilot participant indicated

that she was familiar with the think-aloud technique, hence it was not demonstrated to

her. Although the pilot participant did not have any particular difficulties in executing

the technique, the researcher decided that it would be better to explicitly demonstrate

the technique to all participants in the real Phase 2 study so that they would know

exactly what was expected of them.

3.4.2.6 Procedure

To identify the Phase 2 participants, the researcher chose all students who incorrectly

answered all three questions (Q3, Q6 and Q8 – see Figure 3.2, Figure 3.3, and Figure

3.4) selected for use in this phase. Fifteen students were found to belong to this

category. These participants were invited through a formal invitation letter (see

51

Appendix C) to take part in the research activity in this phase. However, only 10 of the

invited participants selected to participate in the interview sessions. These participants

were given a questionnaire containing the three selected MCQs. For each of these

questions, participants had to work through the short fragments of source code and

then predict the outcome of executing such fragments.

(Source: Lister et al., 2004, p. 141)

Figure 3.2 – Question 3

Participants were also asked to use the think-aloud technique while they worked out

the question answers. Think-aloud is a technique whereby participants are instructed

to speak out loud any thoughts that come to their minds while performing the task at

hand. This technique allows the researcher some insight into how the participant

reached the solution. Using the technique, the researcher is also able to better

understand the participant’s mental steps (i.e. processing of working memory)

(Charters, 2003; Van Someren, Barnard & Sandberg, 1994). The protocol that guided

the proceedings for the think-aloud sessions is included in Appendix D. The think-

aloud technique was demonstrated to all participants before they started working on

52

the tasks in question. For this demonstration, an SCC question (see Figure 3.5)

sourced from the study of Sheard et al. (2015, p. 146) was used.

(Source: Lister et al., 2004, p. 142)

Figure 3.3 – Question 6

53

(Source: Lister et al., 2004, p. 143)

Figure 3.4 – Question 8

54

(Source: Sheard et al., 2015, p. 146)

Figure 3.5 – A think-aloud technique demonstrating question

3.4.2.7 Data analysis

The narrative data collected during the individual think-aloud sessions was analysed

thematically based on an adapted version of Creswell and Creswell's (2017) Narrative

Data Analysis Framework (NDAF) (see Table 3.1). The discussions in the following

sub-sections describe specific activities performed during the execution of this

analysis framework.

Data preparation and organisation

Data preparation started when the think-aloud interview recordings were moved from

the audio recorder to a computer for storage. For robust backup purposes, each

recording was saved at this stage on a laptop, desktop, external DVD/CRW drive,

Google Drive and a copy was given to the supervisor. For each recording, the

researcher also recorded the date, time, and details of each participant as suggested

by Marshall and Rossman (2016) and Step 1 of the NDAF (Creswell & Creswell, 2017).

These audio recordings were then transcribed. All 10 audio recordings from the think-

aloud interview sessions were transcribed by the researcher. The transcription

process followed guidelines developed by the Minnesota Historical Society (2001).

55

They suggest using brackets (especially square brackets []) to supply information not

available on the recording but which is necessary for clarity; using proper spelling for

slurred words (‘gonna’ is ‘going’); removing false starts; removing stumbles; using

ellipsis points (…) when a statement is not finished; eliminating some crutch words;

and writing numbers and words and vice versa.

Table 3.1 – Narrative Data Analysis Framework

Step Description Activities

1 Prepare and
organise the data

• Data transcription.

• Data translation (if necessary).

• Data cleansing.

• Data labelling (i.e. structuring and familiarising).

2 Identify a coding plan • Read, read, read, … (e.g. read and reread the transcripts).

• Decide whether analysis should be guided by research questions
(explanatory) or the data (exploratory) or both (mixed).

3 Sort the data into a
coding plan

• Code the data.

• Modify the coding plan (if necessary).

• Enter the data (if Computer-Aided Narrative Data Analysis
software is used).

4 Use the coding plan
in descriptive
analysis

• Put a range of responses or statements under the created nodes
(as determined by the coding plan identified in Step 2).

• Identify recurrent themes.

 (Source: Adapted from Creswell & Creswell, 2017)

Transcription process

Literature (Bailey, 2008; Hart, 2015; Powers, 2005) indicates that transcribing audio

tapes or recordings is time consuming. The researcher made three passes of the think-

aloud recordings. First, he listened to each recording immediately after the session to

make absolutely sure that the entire session was properly recorded. Second, he

started typing all the words that were said on the voice recorder verbatim on a Word

document. During this process, he had to pause, move back, and move forward in

order to capture all that was said on the recorder. Third, when the entire recording or

transcript was completed, he listened and re-listened to the whole recording while

reading the transcript to confirm whether all the words were properly captured. During

this process, he was able to form a better understanding of some sentences, and

hence make corrections to words which were vaguely heard in the second

transcription pass.

56

Cleansing of transcripts

After verbatim transcription of the audio recordings, the data was cleansed. Data

cleansing is defined as the process aimed at enhancing the quality of data by

searching for faults in the data (performing diagnosis) in order to repair it (by either

correcting or deleting these faults) (Chu, Ilyas, Krishnan & Wang, 2016; Parcell &

Rafferty, 2017; Van den Broeck, Cunningham, Eeckels & Herbst, 2005). Background

noise, incomprehensible words, hanging words that distort meaning, unfamiliar

terminology, blurred communication, mistyped words or typos, inappropriate

punctuations, silences, overlapped speech and sounds, accents and dialects, and

incomplete statements are all regarded as elements that can cause inconsistencies

within transcribed data (Easton, McComish & Greenberg, 2000; Hinds, Vogel &

Clarke-Steffen, 1997; ten Have, 2011). Since the participants had to verbalise their

thoughts as part of the think-aloud process, the transcripts also contained numerous

illogical and repeated statements. The researcher therefore decided to make use of

fuzzy-validation instead of strict validation (which requires the complete removal of

invalid or undesired responses) (Parcell & Rafferty, 2017). With fuzzy-validation, the

researcher is allowed to correct some data if there is a close match or known answer.

Parcell and Rafferty (2017) specifically mention “detecting and modifying, replacing or

deleting incomplete, incorrect, improperly formatted, duplicated or irrelevant records”

(p. 337) in their description of the fuzzy-validation process.

The decision to use fuzzy-validation was based on the following two reasons:

1. It was possible for both the interviewer(s) and interviewees to construct

incomplete or illogical statements or sentences, as they had to do a lot of

thinking and engagement throughout the interview process.

2. A lot of repetition in the uttered sentences or statements occurred due to the

candid nature of the questions that were asked throughout the interview. This

is especially because the probing questions were triggered by the responses

that interviewees provided (i.e. the questions were not predetermined).

During the fuzzy-validation process, some modifications were made. Typical examples

are writing abbreviations (e.g. isn’t, I’ll, I’m, and they’ve) in full; removal of verbal tics

57

(e.g. um, eh, and uh); representation of pauses with three dots (…); and removal of

repetitions (Arksey & Knight, 1999; Gibbs, 2018; Minnesota Historical Society, 2001).

Coding plan identification

The researcher immersed himself in the data (Liamputtong, 2009; Marshall &

Rossman, 2016; Holton III & Swanson, 2005; Thorne, 2000; Ulin, Robinson & Tolley,

2005) by listening and re-listening to the audio recordings numerous times, as well as

intensively reading and re-reading the transcripts (see Step 2 in Table 3.2). He wanted

to be completely familiar with the data (depth and breadth) before beginning the coding

process (Braun & Clarke, 2006). Upon familiarising himself with the data, he decided

on a coding plan where the analysis would be guided by the data as it relates to the

first research question (see RQ3 (a) in Section 3.4.2.1). Codes were therefore created

for every source code comprehension difficulty identified in the data.

Data coding

Data coding is defined as a method used to organise the data to help the researcher

to be clearer about the underlying messages portrayed by the data and its salient

features (Smith & Davies, 2010). As suggested by Saldaña (2013), the researcher

performed data coding by highlighting and/or underlining sections/passages (i.e.

words/keywords, sentences, paragraphs) from which difficulties with source code

comprehension could be extracted. During this process, the researcher found no need

to modify the coding plan. NVivo 12 Professional (for Microsoft Windows) was used

for analysis of the 10 validated transcripts. At this stage, the transcripts were uploaded

to NVivo (under Data) and the researcher then developed codes by creating several

nodes (each equivalent to a class of difficulties). The names of the codes consisted of

single words or simple phrases. Furthermore, the names of these nodes were

continuously revised by combining some and/or renaming them. During this stage, it

was also necessary to read and re-read the transcripts over and over again.

Descriptive analysis

During this stage, words, statements, and paragraphs (single and multiple) highlighted

and/or underlined during coding, were extracted from the transcripts and moved to

created nodes. This again required numerous re-reading of the transcripts in order not

to miss any important meanings or details. Braun and Clarke (2006) define a theme

58

as something that captures or pinpoints some important information about the data set

in relation to the research question. As such, some themes started emerging from the

process of extracting and moving the relevant text. Continuing this process led to the

emergence of recurrent themes. For each theme, frequencies of occurrence and

transcripts from which these themes were extracted, were also visible on NVivo.

The results of the Phase 2 research activities are reported as part of Article 1 (see

Chapter 4). The main outcome of Phase 2 was six usable SCC bottlenecks

experienced by senior CS students.

3.4.3 Phase 3

3.4.3.1 Aim

In response to the six bottlenecks identified in Phase 2 (as part of Step 1 of the DtDs

framework), Phase 3 focused on Step 2 of the DtDs framework. The main aim of

Phase 3 was to uncover the explicit nature of steps and strategies that programming

experts would follow in order to accomplish the tasks associated with one of the

student-learning bottlenecks identified in Phase 2 and reported in Article 1

(Bottleneck 6: Students are unable to reliably think their way through a long chain of

reasoning required to comprehend a piece of source code). Phase 3 was therefore set

up to answer the following four research questions:

RQ5 (a): What are the cognitive processes and related cognitive strategies

employed by expert programmers during SCC?

RQ5 (b): What does insight into these cognitive process strategies suggest in

terms of mental scaffolding techniques for the modelling of efficient SCC

strategies to students?

RQ6 (a): What are the explicit mental strategies (techniques and reasoning)

that CS experts employ while comprehending source code?

RQ6 (b): How can knowledge of these strategies be applied in the formulation

of a step-by-step framework that could ultimately contribute towards narrowing

the gap between expert and novice thinking with regard to efficient SCC?

59

3.4.3.2 Data source management

The data source management approach in Phase 3 was a case study. This approach

was selected because the researcher wanted to collect in-depth information from a

small number of participants. Participants would be disrupted minimally to spend some

time with the researcher when they were free from their other academic and research

activities. The researcher also wanted to study a few participants in a conducive

environment, but where he had some degree of control in terms of probing the

participants where necessary in order to obtain as rich and thick descriptions as

possible (Plowright, 2011; 2016b).

3.4.3.3 Population and sampling

The population for Phase 3 consisted of CS instructors who had experience in

teaching programming on first-year level and, ideally, had at least some industry

programming experience. These instructors were selected from a South African higher

education institution. A sample of five instructors was selected from this population.

This sample was purposeful (Cooper & Schindler, 2013) because the instructors were

involved in the teaching of programming modules, and had at least three years of

experience in teaching programming at first-year level (CS1 and/or CS2 modules).

Two of these participants (P1 and P4) had more than 14 years of experience in the

subject area, while P2 and P3 had between five and nine years of similar experience.

Except for P5, all the other participants worked as industry programmers for at least

four years and they were all, to some extent, still involved in private programming

consultancy work. For ease of reference, these participants will be referred to as the

‘expert programmers’ in the rest of this discussion. The sample could also be regarded

as convenient (Patton, 2015), since the participants were in the proximity of the

researcher, hence he could easily (physically, electronically or otherwise) reach them.

3.4.3.4 Data collection methods

The data collection methods for Phase 3 were ‘asking questions’ (through decoding

interviewing) and ‘making observations’. The asking-questions method was

characterised by a higher level of mediation and a higher degree of structure because

of the reasons alluded to in data collection methods for both Phases 1 and 2. Similar

to observations made in Phase 2, the degree of structure with Phase 3 observations

provided the researcher with a relatively high level of mediation and degree of

60

structure (Plowright, 2011; 2016b). Based on the selected data collection methods,

two sets of narrative data resulted from the Phase 3 research activity: Transcriptions

of the audio recordings made during each of the decoding-interview sessions, and a

written record of the observations and notes (for future reference) made by the

researcher.

3.4.3.5 Piloting of Phase 3

Using the same reasoning as provided in the discussion of the pilot study in Phase 2

(see Section 3.4.2.5), a pilot study was conducted with one participant who was a

lecturer for one of the CS programming modules at the selected institution. The

specific objective of the pilot was to assess the feasibility of all the logistics made in

preparation of the real sessions. The sub-objective was to determine whether the

probing questions would trigger any emotional responses from participants, as is

typical of decoding interviews (MacMillan et al., 2016). One of the concerns in this

regard was that DtDs interviews – where the interviewee is not the one who comes up

with the bottleneck(s) – may be challenging, because according to the proponents of

the DtDs framework (Middendorf & Pace, 2004), bottlenecks typically originate from

the interviewee. However, by the time of the interviews, bottleneck(s) for this study

had already been identified and refined (Lahm & Kaduk, 2016). The pilot participant

completed the entire interview session in 1:32:32 minutes. In addition to the first two

questions, she only managed to complete about half of the third question, however.

Consequently, the researcher decided to retain only one question [Q6 – the most

challenging question from the previous phases of this study (see Figure 3.3)]. The

researcher further decided to schedule at least 60 minutes for each of the upcoming

sessions.

3.4.3.6 Procedure

Five eligible participants (‘expert programmers’) were invited through verbal

communication to take part in the individual decoding interviews for Phase 3.

Justification for choosing these participants was already provided earlier (see Section

3.4.3.3). All the invited participants (100%) were able to show up for the interviews. In

these interviews, the researcher played the role of the principal researcher, while a

non-teaching CS researcher who had some decoding-interview experience, acted as

the second interviewer. (Note: A more detailed explanation regarding the selection of

61

the second interviewer is provided as part of the methods discussion of Article 2. This

individual had no other direct connection to the study). Each of the participants was

first taken through the interview protocol (see Appendix E). After that, they were each

asked the following question:

Suppose you are presented with a piece of source code on a piece of paper

and asked to read/work through it to predict its output. Can you explain to us

how you would go about doing that?

In response, the participants proceeded to explain the process they would typically go

through when having to comprehend any given piece of source code. Whenever the

interviewers felt that the participant was not clearly verbalising all their mental

operations, one of them would intervene with a probing question. After about 30

minutes, a specific SCC question (Q6 printed on a piece of paper) was presented to

the participant and the following question was asked:

Assuming you are given the following question, how would you go about

answering it?

In response, the participants therefore had to verbally illustrate the general SCC

process that they had previously explained. For each participant, the probing

questions were triggered by their response to the above questions and everything else

they said and did while attempting the given question. Although only 60 minutes were

scheduled for each interview session, participants were told that they could take longer

than that time duration, but no longer than 90 minutes. Participant 2 recorded the

shortest time (01:05:09 minutes), while Participant 1 recorded the longest time

(01:21:54 minutes). The rest of the sessions were completed as follows: Participant 3

recorded 01:10:20 minutes; Participant 4 recorded 01:08:44 minutes; and Participant

5 recorded 01:11:38 minutes.

3.4.3.7 Data analysis

The narrative data collected during the decoding-interview sessions was analysed

thematically based on the adapted version of Creswell and Creswell's (2017) NDAF.

The exact same procedure as outlined in the Phase 2 data analysis discussion (see

Section 3.4.2.7) was followed. However, different data was extracted in order to

address the Phase 3 research questions (see Section 3.4.2.1). After completion of the

62

transcription process, the five validated transcripts were imported into NVivo 12 for

further analysis. The data was then coded by highlighting and/or underlining

sections/passages (e.g. words/keywords, sentences, paragraphs) (Saldaña, 2013) for

each cognitive process recognised in the data (Article 2), and the mental SCC

strategies identified in the data (Article 3). The developed codes were then populated

by moving the necessary text into them. Consequently, some themes started to

emerge which revealed important information about the data set in relation to the

research questions (Braun & Clarke, 2006). Continuing to populate the codes led to

the emergence of recurrent themes. Finally, NVivo 12 was used to generate

frequencies of occurrence for each of the developed themes. Using these frequencies

and some of the excerpts from the transcripts, the data were put back together to

create new meaning (Lewins & Silver, 2007). In reporting the results of Phase 3, RQ5

(a) and RQ5 (b) are covered as part of Article 2, while Article 3 addresses RQ6 (a)

and RQ6 (b).

 Trustworthiness

For readers to develop confidence and/or trust in any research study, a researcher

must continuously take measures to safeguard the accuracy, consistency, and

legitimacy of the research findings throughout design, data collection, analysis,

interpretation, and reporting (Haworth & Conrad, 1997). The prominent approach used

in evaluating investigations which are narrative in nature, consists of five key criteria,

namely credibility, transferability, dependability, confirmability, and integrity (Guba,

1981; Schwandt, Lincoln & Guba, 2007; Wallendorf & Belk, 1989).

3.5.1 Credibility

The main issue in credibility is to establish whether the research findings can be seen

as a true reflection of the information obtained from the participants’ original data when

viewed from the perspective of the participants involved in the research (Trochim,

2006). To ensure that the study was credible, the researcher made sure to file these

documents (hard and soft copies of the test scripts from Phase 1 research activity;

transcripts from the think-aloud interviews; and audio recordings of the interview

sessions) for future cross-checking (Guba & Lincoln, 1982). These were also shared

with the supervisor. All copies will be destroyed within five years after the completion

63

of this study. In further ensuring credibility of this study, the researcher used

triangulation – multiple sources of data (senior students and expert programmers);

methods of data generation and collection (observations, asking questions, and

artefact analyses); and data collection instruments (questionnaire and interviews).

3.5.2 Transferability

To ensure transferability, a researcher continuously makes a series of judgements as

to whether the study findings can be generalised to other contexts or settings where

different participants are used (Trochim, 2006). Thick descriptions and the use of

purposive sampling are cited as strategies that can be used to facilitate transferability

(Bitsch, 2005). Using the decoding and think-aloud interviews, the researcher

collected adequately detailed descriptions of the data in context. This data was

reported with sufficient detail and precision, allowing readers to judge for themselves

whether or not the findings are transferrable to other contexts. In order to maximise

the acquisition of rich information and data from few participants, the researcher used

purposive sampling for both the senior students and expert programmers.

3.5.3 Dependability

In dependability, the main issue is whether the research findings would be similar if

the study was to be repeated in similar contexts and with the same participants

(Lincoln & Guba, 1985). Bitsch (2005) shares the view that even if the findings may

vary, such variations should be reasonable and easy to justify. To ensure that the

study met these conditions with respect to the data collected through decoding

interviews, the transcripts were sent to the five participants who took part in the

interviews, after the experts’ narrative data (i.e. transcripts) was cleaned. They were

asked to indicate whether the content of the transcripts was a true reflection of what

they shared during the interviews. Using this member-checking technique (Lincoln &

Guba, 1985), all the participants approved the transcripts either conditionally or

unconditionally. The conditional approval was due to some words that could not be

deciphered from the audio recording. Consequently, these sections of the interview

were excluded from the transcript.

Furthermore, in analysing all narrative data collected for this study, the researcher

used a specific and direct approach (see Section 3.4.2.7) where most of the codes

64

were established from the themes identified in the literature and/or were guided by the

research questions. This facilitated staying within the predetermined boundaries

during the data coding process. Additionally, in analysis and reporting, the researcher

was very careful with the quotes he used; he completely avoided using participants’

words out of context and/or editing them with the objective to suit the arguments that

he might have wanted to put forward. The researcher also employed the code-recode

strategy as suggested by Chilisa and Preece (2005). By doing so, he coded the data

more than once; the benefit was that he was able to ultimately formulate robust code

names. In like manner, he employed the peer-debriefing strategy (also known as

‘reality check’) (Saldaña, 2013), where he debriefed with his supervisor on a regular

basis, especially during the data collection, analysis, and reporting of the results. She

(the supervisor) was very critical of each and every aspect of the data reported,

interpretations made, and analysis presented.

Moreover, upon formulation of a step-by-step framework (consisting of 10 main steps)

for efficient source code comprehension (see Article 3), the second decoding

interviewer took part in checking the framework (i.e. part of validation); he indicated

that the steps were well written and could be taught to students. To further evaluate

and validate the proposed framework, the researcher arranged a validation meeting

with five CS instructors (expert programmers and others). One of these participants

took part in the original decoding interviews. Upon explaining the steps to the

participants, they had an opportunity to solve two selected questions [Question 1 and

Question 9 from the original set of 12 MCQs (Lister et al., 2004)] by applying the

formulated steps. Question 1 was selected because it was found to be the easiest

question from the previous phases of this study and was mainly used to familiarise the

validation participants with the proposed steps. Question 9 was selected because it

was not as straightforward as Question 1 – it involved some relatively significant

requirement descriptions, and it had a lot of code lines to be interpreted; even the

options that had to be chosen were actually lines of code (e.g. not necessarily ultimate

values of variables). In solving the given SCC problems, validation participants were

asked to put a check mark against each of the 10 steps and their sub-steps (e.g. to

put a tick [] against a step/sub-step they used, and a cross [] against a step/sub-

step they did not use) (see Article 3). Throughout the validation meeting, which took

65

the form of an open discussion, the participants provided constructive feedback that

helped the researcher consolidate the proposed steps and finalise the framework.

3.5.4 Confirmability

In confirmability, a researcher continuously makes sure that the data and

interpretations of research findings are derived from or grounded in the data, and

hence can be confirmed or corroborated by other researchers (Lincoln & Guba, 1985).

To ensure confirmability in this study, the researcher piloted the research activities of

both Phases 2 and 3. He also interpreted and reported the study findings in such a

way as to avoid bias at all costs. Furthermore, he had no personal inclination (i.e. was

as neutral as possible) in the analysis of data and reporting of findings. To further

enhance the confirmability of the results of this study, the analysis of data was

continuously reviewed by the research supervisor. Moreover, for cross-checking

(Guba & Lincoln, 1982), all the research-related records were kept throughout the

research process and are available upon request.

3.5.5 Integrity

The focal issue of integrity is to ensure that the data interpretations made and

recorded, do not in any respect contain elements of lies, evasions, misinformation or

misinterpretations by participants (Wallendorf & Belk, 1989). Considering the nature

of the interviews (both decoding and think-aloud), it was not possible for participants

to tell lies, because it was all about solving given problems. The only questions that

participants had to answer were to explain why they were doing certain actions or how

they arrived at definite decisions – there was therefore a low possibility that

participants could lie. Furthermore, there were no aspects related to social and/or

cultural understanding or legal implications that could make participants uneasy to

open up in the discussions. Additionally, participants provided information that the

researcher never doubted or felt that it might not be correct, hence his scepticism

measure of integrity was not exercised. Integrity was further safeguarded by not

revealing the identity of participants in the reporting of the study findings; instead,

pseudonyms were used for identification. Moreover, the interviewing approach used

in this study was rigorously prepared and tested – specific protocols existed and were

piloted before the real studies.

66

 Ethical considerations

This study was guided by the research ethics code of the University of the Free State.

Ethical clearance (see Appendix F) was obtained before any form of data collection

commenced. Reflections of ethical issues in the three phases of this study are

described as follows:

• Phase 1: The introduction of the questionnaire contained a statement to

explain the purpose thereof. Participants were also informed of the

approximate time needed to complete the questionnaire. These participants

were further informed that data resulting from the questionnaire would only be

used for research purposes. Likewise, the participants were assured that

confidentiality and anonymity regarding information provided in the

questionnaire would be respected to the maximum extent possible.

Additionally, the participants were informed that their participation was fully

voluntary and that they could withdraw at any time if they felt they no longer

wanted to participate. Moreover, they were informed that completing the

questionnaire or failing to complete it would not have any impact on any of the

CS modules for which they were enrolled (see Appendix A).

• Phase 2 and Phase 3: Before data collection commenced, each participant

was provided with a participant information sheet (PIS) in which details

regarding the purpose of the study; why the research activity was conducted;

what was required of each participant in the activity; as well as the potential

benefits and risks, were explained. PIS for senior students (as participants in

Phase 2) (see Appendix G) was different from the one for the expert

programmers (as participants in Phase 2) (see Appendix H). After agreeing

with all the information explained in the participant information sheets, each

participant signed the consent form (see Appendix I) and carried on with the

research activities as guided by the researcher.

Furthermore, the ethical confidentiality and privacy of participants’ rights was

protected to the maximum extent possible. In any part of the reporting in this thesis

and related publications, pseudonyms have been used for anonymity instead of using

the real names of the participants. Long before taking part in any research activity in

this study, all the participants were informed that their participation was voluntary and

67

that they were perfectly free to withdraw from the research activities at any time without

any form of penalty whatsoever. Participants who did not show up for some of the

research activities were not followed up, because the researcher assumed that they

did not want to participate in the study. Moreover, the researcher expressed his

willingness to share the summary of the study findings with participants once the study

was completed.

 Summary

Within the realm of the DtDs-based research design, this study followed an integrated

approach based on Plowright's (2011) FraIM. Within this framework, the focus was on

collecting narrative and/or numeric data by means of observations, asking questions,

and/or artefact analysis. In this chapter, the rationale for the selected research design

and research methods, as well as the various strategies used and decisions made to

answer all the research questions of this study, has been provided. The chapter also

provided detailed descriptions of issues relating to purpose and procedure, coupled

with the selection of data source management strategies; population and sampling;

data collection methods; and data analysis techniques, as well as the nature of the

resultant data from the three phases of the study. A discussion on how issues relating

to ethics and trustworthiness were addressed in this study, concludes the chapter.

In the next three chapters, the three research articles that were prepared for this

thesis, are presented. Article 1 covers the research activities of Phases 1 and 2. The

data set that transpired from Phase 3 was used to inform the discussions in both

Article 2 and Article 3. Table 3.2 provides a mapping to show which of the research

questions (as stated in Chapter 1) are covered in each of the articles. It should be

noted that each article is presented as a stand-alone unit without any cross-

referencing to the rest of the thesis report. Each article is formatted according to the

guidelines of the specific publication for which it was prepared. It should also be noted

that each article was/will be published under the names of both the researcher who

conducted this study and the study promoter. Consequently, there are some instances

where the word ‘we’ are used in reference to the dual authorship (instead of constant

reference to ‘the researcher’ or ‘the first author’). The use of the word ‘we’ should

therefore not be regarded as an indication that the research was conducted by both

68

authors. All data collection and data analysis activities for this study were solely

conducted by the researcher (unless specifically indicated otherwise), with inputs from

the study promoter where deemed necessary.

Table 3.2 – Research questions covered by articles

Article Research Questions

Article 1 RQ4 (a): What are the major SCC difficulties experienced by senior CS students?

RQ4 (b): How can knowledge of these difficulties be used to identify SCC bottlenecks that

should ideally be addressed in introductory programming courses?

Article 2 RQ5 (a): What are the cognitive processes and related cognitive strategies employed by

expert programmers during SCC?

RQ5 (b): What does insight into these cognitive process strategies suggest in terms of

mental scaffolding techniques for the modelling of efficient SCC strategies to

students?

Article 3 RQ6 (a): What are the explicit mental strategies (techniques and reasoning) that CS

experts employ while comprehending source code?

RQ6 (b): How can knowledge of these strategies be applied in the formulation of a step-

by-step framework that could ultimately contribute towards narrowing the gap

between expert and novice thinking with regard to efficient SCC?

69

Chapter 4 – (Article 1)

Decoding source code comprehension: Bottlenecks

experienced by senior Computer Science students1

Abstract. Source code comprehension (SCC) continues to be a challenge to undergraduate CS students.

Understanding the mental processes that students follow while comprehending source code can be crucial in

helping students to overcome related challenges. The Decoding the Disciplines (DtDs) paradigm that is gaining

popularity world-wide, presents a process to help students to master the mental actions they need to be

successful in a specific discipline. In focusing on the first and important DtDs step of identifying mental

obstacles (‘bottlenecks’), this paper reports on a study aimed at uncovering the major SCC bottlenecks that

senior CS students experienced. The study followed an integrated methodology approach where data was

collected by means of asking questions, observations, and artefact analysis. Thematic analysis of the collected

data revealed a series of SCC difficulties specifically related to arrays, programming logic, and control

structures. The identified difficulties, together with findings from existing literature as well as the teaching

experiences of the authors, were then used to compile a series of usable SCC bottlenecks. By focusing on

senior students (instead of first-year students), the identified SCC bottlenecks point to student learning

difficulties that need to be addressed in introductory CS courses. This paper intends to create awareness among

CS instructors regarding the role that a systematic decoding approach can play in exposing the mental processes

and bottlenecks unique to the CS discipline. Further investigations are needed to uncover the mental tasks that

expert programmers follow to overcome the identified bottlenecks so that students can be taught more explicit

SCC strategies.

Keywords: Undergraduate programming, source code comprehension, students’ learning bottlenecks,

decoding the disciplines

1 Introduction

Despite the continuous efforts of committed instructors to share the intricacies of their academic disciplines and

their students’ desperation to succeed, many students still struggle to master course material [31]. The specific

points where students’ learning gets interrupted can be referred to as bottlenecks [10,28]. A bottleneck typically

occurs when students are unsure about how to approach a problem and consequently follow inappropriate

strategies [31]. In an attempt to assist instructors in addressing students’ learning bottlenecks, Middendorf and

Pace [28] devised the Decoding the Disciplines (DtDs) paradigm. One of the underlying principles of this

paradigm is that each discipline has unique ways of thinking [28]. Those students who fail to master the required

‘ways of thinking’ are unlikely to succeed in their higher-level studies. Within the DtDs paradigm, instructors are

therefore encouraged to identify discipline-specific learning bottlenecks that could prevent students from

mastering the basic disciplinary ways of thinking. Subsequently, specific strategies to address the bottlenecks are

identified, implemented and evaluated [31]. Despite the recent uptake in decoding research conducted in other

disciplines [39,42], limited information regarding DtDs research in the Computer Science (CS) discipline is

available in the public domain.

 However, over the past three decades numerous investigations have been launched to gain better

understanding of the various difficulties that computer programming students experience [3,11]. One such

difficulty – which has been researched extensively – relates to the way in which students (also referred to as novice

1 An edited version of this article was published as: Khomokhoana, P. J., & Nel, L. (2020) Decoding Source

Code Comprehension: Bottlenecks Experienced by Senior Computer Science Students. In: Tait B., Kroeze J.,

Gruner S. (eds.) ICT Education. SACLA 2019. Communications in Computer Science, vol 1136. Springer,

Cham. https://doi.org/10.1007/978-3-030-35629-3_2

70

programmers) interpret pieces of source code [8,23]. This action – commonly referred to as source code

comprehension (SCC) – is regarded a vital skill that novice programmers have to master [38]. Most of the previous

SCC studies, however, focused on the evaluation of difficulties that students enrolled for introductory

programming courses experience [26,37]. Pace [31] points out that a student’s inability to master certain basic

concepts may not necessarily lead to his/her failure of an introductory course. However, it is likely that the

student’s confusion will continue to pile up, causing diminishing performance of basic tasks. As such, it is possible

for students to progress to advanced courses while they are still experiencing bottlenecks related to basic concepts.

Their failure to grasp these basic concepts could potentially have a negative impact on their ability to complete

their degrees. This paper therefore attempts to answer the following two questions:

1. What are the major SCC difficulties experienced by senior CS students?

2. How can knowledge of these difficulties be used to identify SCC bottlenecks that should ideally be addressed

in introductory programming courses?

In the remainder of this paper, a review of relevant background literature is presented in Section 2. This is followed

by a discussion of the research design and method in Section 3, and a presentation and interpretation of the results

in Section 4. The paper concludes with a presentation of the identified SCC bottlenecks in Section 5, and

conclusions and recommendations for future research in Section 6.

2 Related Work

The first step of Middendorf and Pace’s [28] seven-step DtDs framework is to identify students’ learning

bottlenecks. The identification of discipline-specific bottlenecks allows instructors to identify specific areas in a

module where they need to seriously intervene in order to facilitate maximum learning [29,31]. In identifying a

learning bottleneck, the instructor must ensure that the bottleneck is useful. A useful bottleneck affects the learning

of many students; is defined clearly and without jargon; interferes with the major learning in a module; is relatively

focused; and does not involve a large number of very disparate operations [31]. Within the DtDs paradigm [28],

instructors can use various ways to identify bottlenecks.

2.1 Bottleneck identification approaches

In one of the popular approaches, as suggested by Middendorf and Shopkow [29], instructors themselves identify

bottlenecks based on specific student problems they discover during their teaching of a specific module [33].

Instructors can also identify bottlenecks by focusing on a single assignment. In the History discipline, Pace [31]

identified a specific difficulty while grading a writing assignment, while Shopkow [39] was alerted to a specific

difficulty as a result of questions voiced by her students regarding the specifications of an assignment.

In most of the limited number of decoding studies conducted in the CS discipline to date, researchers have

also identified specific bottlenecks based on personal teaching experiences. For his Database Design and Data

Retrieval module, Richert [19] identified creating Entity Relationship diagrams, reasoning in MySQL and dualism

as the main student learning bottlenecks. At Indiana State University, Menzel [27] used her vast experience in

teaching an introductory CS module to identify recursion (a threshold concept in CS [37]) as the main bottleneck

that her students experienced. For a follow-up module, her colleague Adrian German [14] focused his decoding

study on addressing the challenges his students experienced with debugging.

Bottleneck identification for a specific module can also be facilitated by an outsider (e.g. a pedagogical

advisor). In Verpoorten et al.’s [42] study, module-specific bottlenecks were identified by asking seven

participants, representing five disciplines (Engineering, Chemistry, History, Social Sciences and Electronics), to

each write down a 10-line description of two or three bottlenecks they could think of for modules they were

teaching. In an attempt to identify the top bottlenecks experienced by Accounting students in their Taxation

modules, Timmermans and Barnett [41] first asked instructors to identify potential bottlenecks. Their eventual

selection of the top bottlenecks was based on the responses of 4th year Taxation students who were asked to rate

the 40 potential bottlenecks in terms of level of understanding and importance.

When the goal is to identify common bottlenecks within a specific discipline, the collective experiences of a

group of instructors can also be a valuable source. In this regard, various researchers from the History discipline

[10,40] have used individual interviews with instructors to identify common discipline-specific bottlenecks.

Wilkinson [44] opted for a peer dialogue strategy where Law instructors collectively established that the reading

of case law was the major learning bottleneck that their students experienced. For bottleneck identification in

Political Science, Rouse et al. [36] based their selection of literature reviews as the major bottleneck on the

71

experiences of both instructors and students (from different year levels) as well as the findings of other research

studies.

It is therefore apparent that an instructor’s insight often is the main source used for bottleneck identification.

However, the role that students can play in bottleneck identification should not be overlooked. Further justification

for the seriousness of specific bottlenecks can also be found by linking bottlenecks to discipline-specific learning

difficulties identified in other non-decoding studies.

2.2 SCC difficulties

As mentioned in Section 1, numerous previous studies have attempted to uncover the specific difficulties

experienced by novice programmers while comprehending source code. Although none of these studies were

specifically conducted within the DtDs framework, Middendorf and Shopkow [29] suggest that relevant literature

can also be used to identify bottlenecks.

Following an investigation of the programming competency of students enrolled for CS1 and CS2 courses,

the 2001 McCracken group [26] concludes that many students still do not know how to program at the end of

their introductory programming courses. The McCracken problem was further explored by the BRACElet project,

which confirmed students’ lack of programming skills as a reality [43]. In an attempt to further understanding of

the difficulties experienced by students, the McCracken group [26] refers to the potential role that in-depth analysis

of narrative data collected from students can play in creating deeper understanding of these difficulties.

The ITiCSE 2004 working group study [23] was conducted as a follow-up on the McCracken study. They

used a set of 12 Multiple Choice Questions (MCQs) to test students’ ability on two tasks: firstly, to predict the

outcome of executing the given fragments of source code; and secondly, their ability to select a piece of source

code (from a small set of options) that would correctly complete a given near-complete code snippet. Although

many students were found to be lacking the skills required to perform both tasks, the latter was found to be the

most challenging. The final ITiCSE 2004 working group report concludes that students were unable to “reliably

work their way through the long chain of reasoning required to hand execute code, and/or ...to reason reliably at

a more abstract level to select the missing line of code” [23] (p. 132).

The questions that the ITiCSE 2004 working group [23] used focused heavily on the concept of arrays – with

arrays featuring in all 12 questions. In a study aimed at improving students’ learning experiences, Hyland and

Clynch [18] found arrays to be the most challenging topic for first and second year students. In an attempt to

record all the difficulties that students experience during practical computer programming sessions, Garner, Haden

and Robins [13] found arrays to be featuring among the top three difficulties experienced by students. Other

studies [2,24] have also identified arrays as a challenging concept for novice programmers.

All the ITiCSE 2004 questions [23] included some form of basic control structures such as conditionals (e.g.

if, if-else), loops (e.g. while, for) or a combination of both. According to Milne and Rowe [30], many novice

programmers struggle to comprehend basic control structures. Various studies have reported the specific

difficulties that students experienced while interpreting looping (repetition) structures [5,16,18,24]. Garner et al.

[13] mention that most of the difficulties associated with loops originate in students’ incorrect comprehension of

either the header or body of the looping structure.

Although logic generally is regarded as a Mathematical field, it has grown more relevant to CS especially

with regard to its applications [17]. Programming logic involves executing statements contained in a given piece

of code one after another in the order in which they are written. Though still logical and correct, there are some

programming control structures that may violate this execution order [9]. It is therefore not surprising that students

struggle with logical reasoning in solving computer programming related problems [5]. The logical flow of the

source code statements is closely related to the control flow of such statements [13]. This implies that for

programmers to fully comprehend a computer program, they must skilfully combine the programming logic with

the control flow of the program. Students are more likely to logically work (or trace) through a piece of source

code if they have adequate knowledge of the semantics of the programming language and have the ability to keep

track of changes made to variable values [23]. It is therefore especially novices who struggle to follow a program’s

execution [11,35] and control flow [13].

As the proponents of the DtDs paradigm [28] argue that bottlenecks directly relate to difficulties hindering

the learning of many students, these previously identified difficulties can serve as a baseline for the identification

of common and useful SCC bottlenecks. The exact nature of some of these difficulties, however, remains unclear:

Where exactly are students getting stuck? Why are they getting stuck? What are they doing wrong? Which

strategies do they resort to when they get stuck? More in-depth knowledge regarding the nature of these difficulties

can thus be invaluable in determining teaching and learning gaps related to SCC.

72

3 Research Methods

3.1 Design

Within the scope of a DtDs-based research design, the study described in this paper followed an approach based

on Plowright’s [34] Frameworks for an Integrated Methodology (FraIM). Within this framework, the focus was

on collecting narrative and/or numeric data by means of observations, asking questions and/or artefact analysis.

The study population consisted of final-year undergraduate CS students from a selected South African university

(referred to as ‘senior students’ in this paper). The empirical part of the study comprised two phases. The aim of

Phase 1 was to identify specific senior CS students having trouble in comprehending short pieces of source code.

In Phase 2, we wanted to uncover specific points or places [28] where these students were experiencing SCC

difficulties with the goal of identifying common and useful SCC bottlenecks.

3.2 Phase 1 Participants, data collection and analysis

The sample for Phase 1 consisted of the 40 students registered for the 3rd year Internet Programming module.

The selection of this sample can be described as both purposeful and convenient [32]. The sample was purposeful

because the students had already completed four programming modules. However, they could still be regarded as

novice programmers since they did not have any professional programming experience. The sample was also

convenient since we had easy access to the participants as the lecturer responsible for the module agreed to make

available one of her scheduled class sessions for this research activity. For the research activity of Phase 1,

participants were given a test consisting of the 12 MCQs developed by the ITiCSE 2004 working group [23]. For

each of the questions, participants had to work through a short fragment of source code and then either predict the

execution outcome of the code fragment or select (from a small set of options) the relevant piece of code needed

to complete the given fragment. These 12 MCQs were chosen for two reasons: Firstly, all the questions contained

source code fragments that students had to comprehend before they could answer the related question. Secondly,

the questions had been tested with a large population of students from several universities in the United States of

America and in other countries. Since the original questions were written in Java, we had to convert the code

fragments to C# (a programming language familiar to the chosen population).

The participants’ answer sheets (regarded as ‘artefacts’) were the primary source of data for Phase 1. After

grading of the artefacts, the performance data for each participant were then captured into a Microsoft Excel

spreadsheet and descriptive statistics were used to rank the questions in order of difficulty (based on the number

of participants who incorrectly answered the question). The three most difficult questions (Q3, Q6 and Q8) were

chosen for use in Phase 2.

3.3 Phase 2 Data collection

Based on the student performance data collected during Phase 1, a total of 15 participants were invited to take

part in Phase 2. These were the participants who provided incorrect answers to all three of the most difficult

questions identified in Phase 1. Ten of the 15 invited participants agreed to partake in Phase 2. The research

activity in Phase 2 consisted of individual sessions during which each participant had to verbally explain his/her

thinking process(es) [through a think-aloud technique [6]] while answering the three most difficult SCC questions

identified in Phase 1. This data collection strategy can be regarded as a means of ‘asking questions’.

Time slots of 45 minutes were scheduled for each of the individual sessions. However, the participants were

informed that they could take as much time as they needed to complete the task. Since none of the participants

had prior experience with the required think-aloud technique, this technique was first demonstrated to each

participant, using an unrelated SCC question. The first author (principal researcher) played the role of the

interviewer by asking probing questions when required (i.e. no progress or silence). Where deemed necessary, he

also recorded some observations as an additional data collection strategy. The proceedings of each session were

audio recorded with permission from the relevant participant.

3.4 Phase 2 Data analysis

To transcribe and analyse the audio recordings made during the individual think-aloud sessions, we followed the

approach suggested by Creswell and Creswell [7]. Upon data transcription, the principal researcher cleansed the

data by searching for faults and repairing them accordingly [45]. Since the participants had to verbalise their

thoughts as part of the think-aloud process, the transcripts contained numerous illogical and repeated statements.

73

He therefore decided to make use of fuzzy-validation instead of strict validation (which requires the complete

removal of invalid or undesired responses) [45]. With fuzzy-validation, the researcher is allowed to correct some

data if there is a close match or known answer. After this, the principal researcher familiarised himself with the

data [25] by listening and re-listening to the audio records numerous times as well as intensively and repeatedly

reading the transcripts. This helped him to decide on a coding plan where the analysis would be guided by the

data as it relates to the first research question. At this stage, the 10 validated transcripts were imported into the

NVivo 12 Professional for Microsoft Windows, after which codes were developed (by creating several nodes) for

each SCC difficulty identified in the data.

In coding, Klenke [22] recommends the use of ‘units of analysis’. These can be words, sentences or

paragraphs. As such, the principal researcher coded the data by highlighting and/or underlining text (from which

the SCC difficulties could be extracted) within the domain of the stated units of analysis. He then populated the

created codes by moving the necessary text into them. During this process, the names of the codes were

continuously revised. Relevant themes and recurrent themes then started emerging. For each theme developed,

the NVivo-generated frequencies of occurrence were used.

4 Results and interpretation

Given the large amount of data collected during Phase 2, the results discussion only focuses on the participants’

comprehension of Question 3 (see Fig. 4.1). (Note: The code line numbers were added in aid of this discussion).

This question was selected since the related think-aloud activity data revealed numerous difficulties that can be

directly associated with SCC. This question also tested students’ comprehension of arrays and basic control

structures – concepts that both have previously been identified as challenging for novice programmers (see

Section 2.2). The discussion of the eight most common SCC difficulties identified are grouped into three

categories: arrays, programming logic, and control structures.

Fig. 4.1. Question 3 from the set of 12 MCQs

4.1 Array related difficulties

Analysis of the Question 3 think-aloud data revealed four major array-related difficulties experienced by the

participants.

Array index. An array index refers to a key or value that identifies the position of an element or object stored in

an array. Four participants had difficulties to interpret simple array indices with a total of nine occurrences

identified. Participant 1 (P1) had the most difficulties in this regard, with three occurrences identified. In her

interpretation of b[i], she regarded i as a value contained in array b instead of recognising it as the position of

74

the element in the array. One of the other participants (P8) confused the square brackets indicating the array index

with a multiplication operator when he interpreted b[i] as b multiplied by i: “int i is equal to 0 [Line 8],

and then for this times that, it is equal to true [Line 10] then increment the counter [Line 11], that times that

is equal to true … it is a difficult one but then ... that times that is true and that times that is true”. From the given

examples, it can be deduced that both participants were challenged by the notation [40] of the array index.

Array length. The length of an array refers to the maximum number of values that can be stored in a given array.

Three participants struggled to determine the length of the arrays contained in Question 3. P1 had no idea how to

determine the length of the Boolean array b and remarked: “I do not know what is the length of array b”. Similarly,

P6 was unable to determine the correct length of the array. He interpreted the Boolean array b to have the length

of 4 while the correct length was 5: “So now is 0 less than 4 because our b value is 4” [while reading the

condition of the for loop in Line 3].

Boolean array. A Boolean array refers to an array where the elements can only contain the values true or

false. Five occurrences of Boolean array difficulties were identified, with P7 being the most challenged (with

three identified occurrences). Overall, the identified difficulties ranged from the declaration of the Boolean array

to basic understanding regarding the effects of operations performed on such arrays.

P7 got stuck at the Boolean array declaration in Line 2 and opted to skip the question: “Do I understand what

I am doing? … it is a Boolean array, array is a Boolean, what does it mean? … (pause) … I am not sure about

this one yet, let me ... (turning the page to see the next question)”. When P7 later returned to this question, his

confusion regarding Boolean arrays became even more apparent as he regarded the index value of 1 as the Boolean

equivalent of true: “Once it gets to the if statement, i is now equal to 1 and 1 is equal to true” [Line 10].

Similarly, P9 was under the impression that since b was a Boolean array it could only contain two values:

“In position 0, I have 1, which means now at b[i] I have true. In my bool array I have stored 2 values” [Line

10]. In their comprehension of Line 10, both P7 and P9 disregarded the actual code syntax. Instead, they reverted

back to their basic knowledge about Boolean variables where a 0 represents false and a 1 represents true. Both

participants regarded the index positions of 0 and 1 to represent the Boolean equivalents.

Decomposition. Decomposition – where a complicated piece of code is broken down into its constituent

components in order to simplify the interpretation thereof [41] – is a task that many novice programmers struggle

with [42]. In their comprehension of Question 3, seven of the participants found it particularly difficult to

decompose the compound index contained in the expression b[x[i]] (see Line 6 in Fig. 4.1). Overall, 29

occurrences of this difficulty were identified from the Question 3 transcripts.

P10 misinterpreted Line 6 to be resetting all the values contained in the b array to true, while in actual fact

only the selected values in array b would be reset to true: “b[x[i]]set to true [Line 6] ... yeah no, I am very,

very confused actually (longer pause) ... b[i] ... then the second for loop [Line 5] sets everything from the

integer array to true, so if I am correct, then it resets everything from the first for loop [Line 3] back to true”.

Meanwhile, P6 became so confused with the meaning of the compound index expression, that he could not

even see how the code in Line 6 was related to the for loop in Line 5: “Now I am worried about this for loop,

the second for loop [Line 5], it seems like it has nothing to do with the rest of the statements that come after it

… so this second for loop is the one that is freaking me out”. Although P6 had no difficulty to comprehend any

of the other for loops in Question 3, it seems that his inability to decompose the compound index expression

caused so much confusion that he suddenly could not comprehend the basic execution of the for loop in Line 5.

4.2 Programming logic difficulties

The discussion in this sub-section focuses on the three programming logic difficulties identified from the Question

3 think-aloud transcripts.

The ripple effect. This effect occurs when the misinterpretation of one statement has a direct impact on the

execution of statements that follow. This difficulty, which was observed with three participants, typically arises

when programmers misinterpret programming logic [20]. Due to P1’s struggle to interpret the array indices (see

Section 4.1), her interpretation of the statements contained in the third for loop completely ignored any changes

made to the elements of the b array in the first two for loops [Lines 3-6]. She remarked: “If b[i] is true [Line

10], I increment count [Line 11]. So if I increment count every time until it is over 5, then I will have 5”. She

therefore chose ‘5’ (Option E) as her final answer to Question 3, which was incorrect.

The difficulties that P6 had in interpreting the second for loop [Lines 5-6] (see Section 4.1 – Decomposition)

caused him to overlook that loop completely while he was interpreting the third for loop: “When looking at this

75

third for loop [Line 8], it is the same as the first one [Line 3] that says the bool array is always equal to false.

Now in the third one, they are saying if the element at position i in the Boolean array is equal to true [Line 10],

then increment count [Line 11]. But according to this [Line 4], that b value is always false”.

The behaviour displayed by both P1 and P6 indicated that they were not thinking sequentially [43], and

therefore failed to follow the algorithmic logic of the source code in question [44]. P9 showed similar behaviour

after she realised that she could not interpret any of the for loops and the containing statements. In response, she

reverted her attention to those statements that she could comprehend and only considered those to arrive at count

= 1 as her answer to Question 3. Her non-sequential (non-algorithmic) reasoning is evident from the following

excerpt: “My first index: I have a false [Line 4], and then my second: I have a true [Line 6], and then int

count is equal to 0 [Line 7] … it will only increment when I get to this point [Line 11] whereby count needs

to be 1 [Option A]”.

The most concerning aspect of the thinking patterns portrayed by these three participants is the ‘mental block’

caused by the statements they could not fully comprehend and their consequent anxious behaviour (as observed

by the interviewer). These participants tried to resolve the mental block by completely ignoring the troublesome

statements as if those were no longer part of the code.

Guessing. One of the common critiques of MCQs is that they are answerable through guessing. This is also true

of the 12 MCQs used in Part 1 of this study as guessing behaviour was previously observed by both Fitzgerald,

Simon and Thomas [12] and Lister et al. [23], who used the same questions in their studies. The format of the

Phase 2 think-aloud sessions discouraged guessing as participants were continuously prompted to explain their

reasoning in as much detail as possible. However, one participant (P8) did attempt guessing when he said “I just

have to go with A” after only tracing through a small section of the given code. At that stage, he was unable to

show how he arrived at the chosen answer and had to be prompted by the interviewer to re-explain his reasoning.

Mathematical expressions. When a line of code contains a mathematical expression, the misinterpretation of an

operator can interfere with the comprehension of program logic. One example of such a mistake was observed

when P7 failed to terminate execution of the third for loop (Line 8) when the value of i increased to 5: “Yes, i

becomes 5 … once it runs throughout the loop and becomes 5 then ... b[i] is going to be true ... then the

count also increments”. He therefore treated the < as if it was a <= operator, which is typically regarded as a

logical error in the comprehension of source code.

4.3 Programming control structure difficulty

The Question 3 code only contained one type of control structure in the form of three for repetition structures.

As mentioned in the ripple effect discussion (see Section 4.2), the lack of understanding that P6 and P9 portrayed

regarding the overall functioning of a for loop caused them to eventually ignore the lines of code that contained

these structures. Another for loop misconception was observed when P7 repeatedly executed the loop counter

increment statement (++i) at the beginning of each loop, thereby setting the initial value of i to 1 for each of the

three loops. Since repetition structures are one of the concepts that novices find challenging [16], it is not

surprising that some participants experienced difficulties in this regard. However, one area of concern is the level

of difficulty that these senior students experienced in comprehending basic for repetition structures.

5 Identification of SCC bottlenecks

The results of Phase 2 revealed that the participants in this study (senior CS students) experienced eight major

SCC difficulties related to the concept of arrays, programming logic and programming control. In following

existing bottleneck identification guidelines [1, 13], we used our collective experience of more than 25 years in

teaching introductory and advanced programming modules combined with the new knowledge gained regarding

difficulties experienced by our students, as well as relevant literature, to formulate six usable SCC bottlenecks.

Bottleneck 1: Students are unable to keep track of variable values while tracing through a piece of code.

Throughout the think-aloud excerpts presented in Section 4, there are numerous examples where students lost

track of the changes made to variable values, causing them to arrive at an incorrect answer. They all tried to

remember the changes to the variable values (instead of making notes on the provided piece of paper), which put

unnecessary strain on their working memories. Their incorrect answers were therefore a direct result of failing

memory or guessing. Lister et al. [23] point out that when students document changes to variable values they are

76

much more likely to arrive at the correct answer. Most of the students in our study did not follow a reliable strategy

to keep track of such value changes.

Bottleneck 2: Students are unable to comprehend statements containing arrays and perform basic

operations on array elements. The bulk of the identified difficulties can be related to the students’ incorrect

understanding of array concepts, thereby supporting findings from previous studies in which arrays were also

identified as one of the most challenging concepts for novice programmers [2, 13, 18, 24]. Our students

particularly struggled to interpret the array indices – especially when it was integrated with other concepts. While

one student confused the square brackets (indicating the array index) with a multiplication operator, others were

unable to determine the length of an array. Although most students had little trouble to comprehend the array

containing integer (numeric) values, many of them were completely lost when having to deal with the Boolean

array.

Bottleneck 3: Students are unable to comprehend the execution of basic for repetition structures. Most of

the difficulties observed with the for loops can be traced back to our students’ incorrect comprehension of either

the header or the body of the looping structure, as Garner et al. [13] also observed. While some students failed to

recognise when and how to terminate the loops [16], an instance was also observed where the loop counter

increment statement was executed at the wrong time. Although most of the difficulties observed in comprehension

of the body of the looping structure are more specifically related to arrays, referencing the incorrect value of the

loop counter variable also caused problems for some students. Most worrying were the two students who

completely gave up on interpreting the for loops and opted to ignore either the entire structure or the loop header

completely for the remainder of their Question 3 interpretation.

Bottleneck 4: Students do not possess adequate strategies to help them interpret lines of code they cannot

comprehend. This bottleneck was observed in cases where students were unable to read, interpret and understand

(execute) a specific code statement. Of particular interest here are cases where two or more separate concepts –

which a student had no trouble to comprehend earlier – were combined to form a single ‘complex’ concept. The

students were unable to decompose [21] the more complex piece of code into smaller parts in order to simplify

the interpretation thereof. Their most common response to this challenge was to ignore the complex statements or

lines of code completely. Although decomposition is a task that many novice programmers struggle with [15],

students may never learn how to deal with complex concepts if they are not taught explicit strategies to resort to

in such situations.

Bottleneck 5: Students view a piece of source code as consisting of separate lines of code, thereby ignoring

the significance of each individual line. We typically teach our students that, in order to fully comprehend what

a program does, they first need to understand the meaning of each distinct line of code making up that program.

However, it seems that in following our ‘guidelines’, some students not only lose sight of how the parts fit together

but also of the overall significance of each individual line of code or statement. This behaviour was evident for

those students who chose to completely ignore sections of code they could not comprehend with a complete

disregard for the impact this would have on their ability to determine the correct answer to the question. Somewhat

similar behaviour is evident in Shopkow et al.’s [40] description of their “ignoring significance” bottleneck –

referring to History students’ complete disregard for how individual facts relate to the story they are trying to tell.

Bottleneck 6: Students are unable to reliably work their way through the long chain of reasoning required

to comprehend a piece of source code. This final bottleneck can be regarded as overarching since it refers to one

of the most common and significant SCC difficulties originally identified by Lister et al. [23], and which we also

observed in our study. It is directly related to our ‘ripple effect’ difficulty that refers to mistakes made when

students are unable to think sequentially [4] or fail to follow the source code logic [1]. In this study, we first-hand

experienced the significant negative impact that inadequate knowledge of semantics and inability to keep track of

variable values can have on a student’s comprehension of a piece of code. These are all examples of actions that

can cause a mental block in students’ reasoning ability, which they are unlikely to overcome if they do not possess

the required knowledge and abilities to deal with such difficulties. Although we present these as six separate

bottlenecks, they should be seen as “interconnected with each other” [40] since they are all indicators of mental

challenges experienced by novice programmers while comprehending source code.

77

6 Conclusions and future work

SCC continues to be a challenge to undergraduate CS students. Understanding the mental processes that students

follow while comprehending source code can be crucial in helping students to overcome related challenges. By

focusing on Step 1 of the seven-step DtDs framework, this study aimed to uncover the major SCC bottlenecks

experienced by senior CS students. Thematic analysis of data collected by means of asking questions, observations

and artefact analysis revealed a series of SCC difficulties specifically related to arrays, programming logic and

control structures. The uncovered difficulties, combined with findings from existing literature and the personal

experiences of the authors, were then used to formulate six bottlenecks that are indicative of the typical mental

challenges experienced by novice programmers during the comprehension of source code. By choosing to focus

on senior students, we were able to identify major bottlenecks that point to student learning difficulties that are

currently not adequately addressed in introductory CS courses, and therefore still influence the mental processes

followed by final-year undergraduate students.

Through this paper, we also wanted to create awareness among instructors regarding the role that a systematic

decoding approach can play in exposing the mental processes and bottlenecks unique to the CS discipline. In order

to address the remaining six steps of the DtDs framework [28], future research is needed, firstly to uncover the

mental tasks followed by expert programmers to overcome the six identified SCC bottlenecks. This knowledge

can then be used to devise teaching and learning strategies that model the explicit mental strategies that experts

follow. After creating opportunities for students to practice these skills and to receive feedback on their efforts,

instructors can assess students’ efforts to determine whether they have benefited from the implemented strategies

or not. The ultimate goal of this suggested research protocol is to help students to master the mental actions they

need to be successful in the CS discipline.

7 References

1. Alston, P., Walsh, D., Westhead, G.: Uncovering “Threshold Concepts” in Web Development: An Instructor Perspective.

ACM Trans. Comput. Educ. 15(1), 1–18 (2015). https://doi.org/10.1145/2700513

2. Anyango, J. T., Suleman, H.: Teaching Programming in Kenya and South Africa: What is difficult and is it universal? In:

Proceedings of the 18th Koli Calling International Conference on Computing Education Research. ACM, Koli (2018).

https://doi.org/10.1145/3279720.3279744

3. Bosse, Y., Gerosa, M.A.: Difficulties of Programming Learning from the Point of View of Students and Instructors. IEEE

Lat. Am. Trans. 15(11), 2191–2199 (2017). https://doi.org/10.1109/TLA.2017.8070426

4. Boustedt, J., Eckerdal, A., McCartney, R., Mostrm, J.E., Ratcliffe, M., Sanders, K., Zander, C.: Threshold concepts in

Computer Science: Do they exist and are they useful? In: Proceedings of the 38th SIGCSE technical symposium on

Computer Science education, pp. 504–508. ACM, Covington (2007). https://doi.org/10.1145/1227504.1227482

5. Butler, M., Morgan, M.: Learning challenges faced by novice programming students studying high level and low feedback

concepts. In: Proceedings Ascilite Singapore 2007, pp. 99–107. Ascilite, Singapore (2007)

6. Charters, E.: The use of think-aloud methods in qualitative research: An Introduction to think-aloud methods. Brock Educ.

12(2), 68–82 (2003). https://doi.org/10.26522/brocked.v12i2.38

7. Creswell, J.W., Creswell, J.D.: Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage,

Thousand Oaks (2017)

8. Cunningham, K., Blanchard, S., Ericson, B., Guzdial, M.: Using Tracing and Sketching to Solve Programming Problems:

Replicating and Extending an Analysis of What Students Draw. In: Proceedings of the 2017 ACM Conference on

International Computing Education Research, pp. 164–172. ACM, Tacoma (2017).

https://doi.org/10.1145/3105726.3106190

9. Deitel, P.J., Deitel, H., Deitel, A.: Visual Basic 2012 How to Program. Pearson Education, Inc., Hoboken (2013)

10. Diaz, A., Middendorf, J., Pace, D., Shopkow, L.: The History Learning Project: A Department “Decodes” Its Students. J.

Am. Hist. 94(4), 1211-1224 (2008). https://doi.org/10.2307/25095328

11. Du Boulay, B.: Some difficulties of learning to program. J. Educ. Comput. Res. 2(1), 57–73 (1986).

https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9

12. Fitzgerald, S., Simon, B., Thomas, L.: Strategies that Students Use to Trace Code: An Analysis Based in Grounded Theory.

In: Proceedings of the first international workshop on Computing education research, pp. 69–80. ACM, Seattle (2004).

https://doi.org/10.1145/1089786.1089793

13. Garner, S., Haden, P., Robins, A.: My program is correct but it doesn’t run: A preliminary investigation of novice

programmers’ problems. In: Australasian Computing Education Conference, pp. 173–180. Australian Computer Society,

Inc., Newcastle (2005)

14. German, A., Menzel, S., Middendorf, J., Duncan, F.J.: How to decode student bottlenecks to learning in Computer Science

(abstract only). In: Proceedings of the 45th ACM Technical Symposium on Computer Science Education, p. 733. ACM,

Atlanta (2014). https://doi.org/10.1145/2538862.2544228

78

15. Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., Zilles, C.: Identifying Important and

Difficult Concepts in Introductory Computing Courses using a Delphi Process. In: Proceedings of the 39th SIGSE

Technical Symposium on Computer Science Education, pp. 256–260. ACM, Portland (2008).

https://doi.org/10.1145/1352135.1352226

16. Grover, S., Basu, S.: Measuring Student Learning in Introductory BlockBased Programming: Examining Misconceptions

of Loops, Variables, and Boolean Logic. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education, pp. 267–272. ACM, Seattle (2017). https://doi.org/10.1145/3017680.3017723

17. Gurevich, Y.: Logic and the Challenge of Computer Science. In: Borger, E., (ed.) Current Trends in Theoretical Computer

Science, pp. 1–57. Computer Science Press, Rockville (1988). http://web.eecs.umich.edu/ gurevich/Opera/74.pdf.

Accessed 17 Jan 2019

18. Hyland, E., Clynch, G.: Initial experiences gained and initiatives employed in the teaching of Java programming in the

Institute of Technology Tallaght. In: Proceedings of the inaugural conference on the Principles and Practice of

programming, 2002 and Proceedings of the second workshop on Intermediate representation engineering for virtual

machines, 2002, pp. 101–106. ACM, Dublin (2002)

19. IUBCITL: Team-Based Learning For Practice and Motivation (2016). https://www.youtube.com/watch?v=1obB-n6JZ8k.

Accessed 18 Oct 2018

20. Kallia, M., Sentance, S.: Computing Teachers’ Perspectives on Threshold Concepts: Functions and Procedural Abstraction.

In: Proceedings of the 12th Workshop on Primary and Secondary Computing Education, pp. 15–24. WIPSCE, Nijmegen

(2017). https://doi.org/ 10.1145/3137065.3137085

21. Keen, A., Mammen, K.: Program Decomposition and Complexity in CS1. In: Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, pp. 48–53. ACM, Kansas City (2015).

https://doi.org/10.1145/2676723.2677219

22. Klenke, K.: Qualitative Research in the Study of Leadership, 2nd edn. Emerald Group Publishing Limited, Bingley (2016)

23. Lister, R., Seppl, O., Simon, B., Thomas, L., Adams, E.S., Fitzgerald, S., Sanders, K.: A multi-national study of reading

and tracing skills in novice programmers. ACM SIGCSE Bull. 36(4), 119–150 (2004).

https://doi.org/10.1145/1041624.1041673

24. Malik, S. I., Coldwell-Neilson, J.: A model for teaching an introductory programming course using ADRI. Educ. Inf.

Technol. 22(3), 1089–1120 (2017). https://doi.org/10.1007/s10639-016-9474-0

25. Marshall, C., Rossman, G.B.: Designing Qualitative Research, 6th edn. Sage Publications, Inc.,Thousand Oaks (2016)

26. McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Utting, I.: A multi-national, multi-

institutional study of assessment of programming skills of first-year CS students. In: Working group reports from ITiCSE

on Innovation and technology in computer science education, pp. 125–180. ACM, Canterbury (2001).

https://doi.org/10.1145/572139.572181

27. Menzel, S.: ISSOTL 2015: Recursion as a Bottleneck Concept (2017). https://www.youtube.com/watch?v=iNvQlm9phEI.

Accessed 2 Sept 2018

28. Middendorf, J., Pace, D.: Decoding the disciplines: A model for helping students learn disciplinary ways of thinking. New

Dir. Teach. Learn. 98, 1–12. Wiley Periodicals, Inc., Hoboken (2004). https://doi.org/10.1002/tl.142

29. Middendorf, J., Shopkow, L.: Overcoming Student Learning Bottlenecks: Decode Your Disciplinary Critical Thinking.

Stylus Publishing, LLC, Sterling (2018)

30. Milne, I., Rowe, G.: Difficulties in Learning and Teaching Programming – Views of Students and Tutors. Educ. Inf.

Technol. 7(1), 55–66 (2002). https://doi.org/10.1023/A:1015362608943

31. Pace, D.: The Decoding the Disciplines Paradigm: Seven Steps to Increased Student Learning. Indiana University Press,

Bloomington (2017)

32. Patton, M. Q.: Qualitative research & evaluation methods: Integrating theory and practice, 4th edn. Sage Publications,

Thousand Oaks (2015)

33. Pinnow, E.: Decoding the Disciplines: An Approach to Scientific Thinking. Psychol. Learn. Teach. 15(1), 94–101 (2016).

https://doi.org/10.1177/1475725716637484

34. Plowright, D.: Using mixed methods: Frameworks for an integrated methodology. Sage Publications, London (2011)

35. Qian, Y., Lehman, J.: Students’ Misconceptions and Other Difficulties in Introductory Programming: A Literature Review.

ACM Trans. Comput. Educ. 18(1), 1–24 (2017). https://doi.org/10.1145/3077618

36. Rouse, M., Phillips, J., Mehaffey, R., Mcgowan, S., Felten, P.: Decoding and Disclosure in Students-as-Partners Research:

A Case Study of the Political Science Literature Review. Int. J. Stud. Partn. 1(1), 1–14 (2017).

https://doi.org/10.15173/ijsap.v1i1.3061

37. Sanders, K., Mccartney, R.: Threshold Concepts in Computing: Past, Present, and Future. In: Proceedings of the 16th Koli

Calling International Conference on Computing Education Research, pp. 91–100. ACM, Koli (2016)

38. Shaft, T.M., Vessey, I.: The relevance of application domain knowledge: The case of computer program comprehension.

Inf. Syst. Res. 6(3), 286–299 (1995). https://doi.org/10.1287/isre.6.3.286

39. Shopkow, L.: How many sources do I need? Hist. Teach. 50(2), 169–200 (2017).

http://www.societyforhistoryeducation.org/pdfs/F17 Shopkow.pdf

40. Shopkow, L., Diaz, A., Middendorf, J., Pace, D.: From Bottlenecks to Epistemology in History: Changing the Conversation

about the Teaching of History in Colleges and Universities. In: Thompson, R. (ed.) Changing the Conversation about

Higher Education. Rowman & Littlefield Publishers, New York (2013)

79

41. Timmermans, J., Barnett, J.: The Role of Identifying and Decoding Bottlenecks in the Redesign of Tax Curriculum. In:

Society for Teaching and Learning in Higher Education Conference. Society for Teaching and Learning in Higher

Education, Cape Breton University, Sydney, Nova Scotia, Canada (2013)

42. Verpoorten, D., Devyver, J., Duchteau, D., Mihaylov, B., Agnello, A., Ebrahimbabaye, P., Focant, J.: Decoding the

disciplines – A pilot study at the University of Lige (Belgium). In: The 2nd EuroSoTL conference, pp. 263–267.

EuroSoTL, Lund (2017)

43. Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P.K.A., Prasad, C.: An Australasian study of

reading and comprehension skills in novice programmers, using the bloom and SOLO taxonomies. In: Proceedings of the

8th Australasian Conference on Computing Education, pp. 243–252. Australian Computer Society, Inc., Hobart (2006)

44. Wilkinson, A.: Decoding learning in law: Collaborative action towards the reshaping of university teaching and learning.

Educ. Media Int. 51(2), 124–134 (2014). https://doi.org/10.1080/09523987.2014.924665

45. Willes, K.L.: Data Cleaning. In: Allen, M. (ed.) The SAGE Encyclopedia of Communication Research Methods. Sage

Publications, Inc., Thousand Oaks (2017)

80

Chapter 5 – (Article 2)

Decoding the explicit cognitive strategies of expert

instructors: Mental scaffolding techniques for efficient

source code comprehension2

ABSTRACT

Many novice programmers fail to comprehend source code and its related

concepts in the same way that their instructors do. As emphasised in the Decoding

the Disciplines (DtDs) framework, each discipline (including Computer Science)

has its own unique set of mental operations. However, instructors often take

certain important mental operations for granted and do not explain these

explicitly when modelling problem solutions. Better understanding of the nature

of the cognitive processes and related strategies employed by experts during

source code comprehension (SCC) could ultimately be utilised to identify the

‘hidden’ mental steps. Within the realm of the DtDs framework, this study

employed decoding interviews, followed by thematic data analysis, to uncover a

variety of explicit cognitive processes and related strategies utilised by a select

group of experienced programming instructors during a SCC task. The insights

gained were then used to propose a set of mental scaffolding techniques for

efficient SCC. Programming instructors can use these techniques as a SCC teaching

aid to convey expert ways of thinking more explicitly to their students. Insight into

the general cognitive strategies utilised by expert programmers is an important

step towards further exploration of the more detailed step-by-step procedures

followed by experts during SCC.

Keywords:
Source-code comprehension, cognitive processes, decoding the disciplines,

Computer Science Education, mental scaffolding

2 Publishable manuscript.

81

Categories:
• Social and professional topics~Computer science education • Social and professional

topics~CS1

1 INTRODUCTION

Source code comprehension (SCC) is a core skill that many Computer Science (CS)

students continue to struggle with [1, 2]. SCC generally refers to the reading and

interpreting of pieces of source code [3, 4]. Some authors [5, 6] describe it as a skill

that requires efficient application of a series of complex cognitive processes. Due

to the complex nature of SCC, a ‘scaffolding’ process [7] – where instructors

gradually guide their students in mastering these cognitive processes – could be

instrumental in getting students to perform tasks that were initially beyond their

capacity. According to [8], each academic discipline has its own distinctive set of

mental operations that stakeholders follow when performing discipline-specific

tasks. The explicit nature of these operations is, however, often so deeply buried

in the unconscious minds of the discipline experts that it causes an ‘expert blind

spot’ [9]. As a result, vital mental operations become so natural to the experts that

they often omit crucial and even quite simple steps when explaining concepts and

procedures to others [10]. Such omissions during instruction can lead to novices

developing mental blocks (‘bottlenecks’) in mastering the steps involved in

completing discipline-specific tasks [9].

Decoding the Disciplines (DtDs) [8] is a seven-step process that can be used

to overcome specific student-learning bottlenecks. After identification of a specific

bottleneck (Step 1), the disciplinary unconsciousness is systematically decoded in

order to reveal the explicit steps followed by experts (e.g. instructors) when

performing tasks related to the identified bottleneck (Step 2). These steps are

then broken down into their component parts and each operation is modelled in

a way that will be understandable to students so that it can be used to facilitate

effective learning and understanding (Step 3). Students are then provided with

opportunities to practise the modelled operations and get feedback on their

efforts (Step 4). Throughout the process, specific strategies are employed to

motivate students to follow the modelled operations (Step 5) and to assess

whether they have mastered these operations (Step 6). In line with the principles

82

of the Scholarship of Teaching and Learning [11], DtDs practitioners are

encouraged to then share with other stakeholders what they have learned (Step

7).

Within the CS discipline, one of the most common and significant SCC

bottlenecks identified [12, 13], relates to students’ inability to reliably work their

way through the long chain of reasoning required to comprehend a piece of source

code. Instead of using Step 2 of the DtDs process to uncover the explicit steps that

experts follow in dealing with tasks related to this bottleneck, the complex

cognitive processes required to comprehend source code [6] have led us to first

focus on exposing specific strategies used within these cognitive processes. If the

strategies revealed by expert programmers during a SCC task are assumed as

typical of the basic cognitive operations required for efficient SCC, then these ways

of thinking could point to crucial techniques employed by experts during SCC.

More explicit awareness of the techniques instructors typically use to

comprehend source code could help them to avoid their own ‘blind spots’ when

sharing SCC strategies with their students. These techniques could also be used as

mental scaffolds to help students overcome related ‘bottlenecks’ [8] and better

prepare them for SCC tasks. Within the DtDs context, identification of general

cognitive strategies could serve as a pre-step for revealing the explicit steps

followed by experts in comprehending source code. This paper therefore attempts

to answer the following two questions:

• What are the cognitive processes and related cognitive strategies

employed by expert programmers during SCC?

• What does insight into these cognitive process strategies suggest in terms

of mental scaffolding techniques for the modelling of efficient SCC

strategies to students (as novice programmers)?

The remainder of this paper is organised as follows: Section 2 provides an

overview of the basic cognitive processes involved in processing information and

how these relate to SCC. In the discussion of the research design and method in

Section 3, detail is provided about the selection of the experts and the SCC

questions used in the decoding interviews. Important detail is also provided about

the nature of the interviews and the way in which the interview questions were

83

linked to cognitive processes in the data analysis. The presentation of findings

(Section 4) takes place according to the main categories of cognitive processes

recognised during analysis of the transcribed interview data. As part of the

discussion (Section 5), we summarise the experts’ cognitive process strategies and

propose techniques that could be used as part of a mental scaffolding process by

instructors while modelling efficient SCC strategies to their students. Conclusions

are presented in Section 6.

2 BASIC COGNITIVE PROCESSES AND THE RELATION TO SCC

Cognitive processes are defined as procedures that process all the information

(multiple, complex or otherwise) human beings receive from their surrounding

environment [14]. The processing is done with the objective to transform the

information into easily manageable cognitive tasks [15]. The basic cognitive

processes discussed in the following sub-sections include attention, perception,

memory, reading, speaking and listening as well as those processes related to

reflective cognition. All of these processes are highly relevant to SCC and also to

this study, as will be illustrated in the discussion.

2.1 Attention

Attention is a cognitive process in which certain things are selected (triggered by

single or multiple stimuli) from a host of available possibilities at a certain point

in time while doing something [16]. When applying attention, one can use either

the intensity or selectivity component [17]. The intensity component enables a

person to sustain concentration on one activity over time (sustained attention).

The selectivity component enables a person to choose to focus on competing

stimuli. This means that the attention may be divided and therefore not fully

focused on the current activity.

During SCC, expert programmers often focus their attention on complex

lines or sections of code [18]. These complex sections of code are likely to contain

dynamic representations such as literals, comparisons, operators, and keywords

[19]. Experts will typically identify these sections by quickly scanning through the

code from top to bottom [20].

84

Irrespective of type, attention is normally dependent on information that

is relevant to the current task a person is performing [21]. Van Someren, Barnard

and Sandberg [22] point out that in performing almost any task/activity, there will

be irrelevant and distracting stimuli. As such, any individual involved in

performing such a task should focus their attention by being conscious (e.g.

recognise, differentiate, assemble things together, be assertive, be orientated and

even suggest), alert, aware, and responsive (reactive) in order to be successful

[23].

2.2 Perception

Perception refers to the process of acquiring information from the world around

us and transforming it into real experiences [24]. Preece et al. [21] point out that

perception is a complex process that also involves other processes such as

memory, attention, and language. Although perception can be used under normal

circumstances, human beings have a tendency to use their perception when there

is a breakdown in other cognitive processes [25]. Perception can also change

while a specific task is performed. During this process, perceptual span increases

when a person obtains useful information, while it decreases when encountering

information that is difficult to comprehend [26]. Choi and Gordon [27] argue that

when perceptual span decreases, human beings will typically skip such

troublesome information (e.g. words or text) and jump to sections that are not

bothersome. With regard to comprehending source code, programmers can have

different perceptions based on whether they employ a bottom-up [28]; top-down

[29]; knowledge-based [30]; systematic [31]; micro [32]; as-needed [31]; or

integrated [33] source code comprehension strategy.

2.3 Memory

Memory is a cognitive process that involves the recall of different kinds of

knowledge that guide human beings to act or react in a specific way to certain

stimuli [21]. Knowledge can be recalled from either the long- or the short-term

memory [34, 35]. It is, however, important to note that not all knowledge is stored

in memory. A filtering process is used to decide what is processed and stored and

what is not [36]. Since cognitive processes tend to overlap, the more attention a

person pays to a certain aspect, the more likely it is that this aspect will be

85

remembered [21]. Programmers typically use strategies such as reading/re-

reading specifications; thinking of possible test cases; and reasoning aloud to

enhance the memorability of concepts [37, 38]. Other strategies, such as

highlighting or colouring some lines of code or text [39]; writing comments [40];

pattern recognition [37]; and making drawings or annotations (doodles) [12] are

often utilised by programmers to readily and easily remember or determine the

values of variables or other information without heavily engaging their memory.

2.4 Reading, speaking, and listening

Reading, speaking, and listening are three interrelated cognitive processes [21]

that can be identified through facial expressions, vocal behaviour, verbal consent,

pauses or segregates (e.g. ‘hmm’), posture or stance, eye behaviour, hand gestures,

and head movements [41, 42]. A person can typically understand something (e.g.

a given piece of code) well by using any one or a combination of these processes.

An attempt to comprehend something that is written down and spoken, requires

more cognitive effort than just listening to it [43]. However, many people prefer

to listen, as they consider it the easiest mode to comprehend something. In

contrast, if something is written down, it is easier to re-read the information if it

is not understood [21]. Analogous to strategies used in other cognitive processes

– in reading source code, programmers will mark some lines of code [39]; write

comments [40]; draw illustrations [12]; and/or read through the code multiple

times [38] in an attempt to enhance their comprehension. During code reading,

experienced programmers typically concentrate on the semantic features of the

code, while non-experienced programmers tend to focus more on the syntactic

features [33].

2.5 Reflective cognition

Planning, reasoning, and decision making are interrelated cognitive processes that

enable individuals to reflect on their cognition [21]. During reflection, initial

thoughts and/or responses should be examined carefully before conclusions can

be made. In doing so, a person will typically ask the following questions [44, 45,

46]:

1. What should I do? (Cognitive planning)

86

2. What alternative courses of action do I have available? (Cognitive

planning)

3. Which alternative courses of action should I select to use? (Cognitive

reasoning)

4. Why should I use these (selected) alternative courses of action? (Cognitive

reasoning)

5. What are the consequences of using these alternatives (selected)?

(Cognitive decision making)

Inherently, questions 1 and 2 form part of cognitive planning. In addressing

question 1, individuals actively and consciously engage their thought processes

and use all resources available to them, such as discussions with others or using

artefacts (e.g. books, papers, and the Internet) [21]. This is done with the objective

to better understand the nature of the task in question in order to avoid ill-

informed comprehension [47]. With regard to resources, Lister et al. [12]

recommend that a programmer should make some drawings or annotations

(artefacts) in order to better comprehend source code. According to Hayes-Roth

and Hayes-Roth [48], question 2 is addressed in two stages. Firstly, a person

decides in advance “a course of action aimed at achieving some goal” (pp. 275-76).

Secondly, the execution of the plan is continuously monitored and guided to

ensure success. This implies that the current course(s) of action can be revised

over time based on new conditions encountered in the subsequent parts of the

task at hand (e.g. SCC) [49].

Questions 3 and 4 essentially constitute cognitive reasoning. According to

Evans [50], an ability to arrive at the preferred alternatives involves some

intelligent thinking. This implies that it is not the solution that is retrieved from

the memory, but the relevant information. A person then needs to work out how

best to apply it. Use of connectives such as and, if, or, all, some, none and not can be

used as a basis in making some cognitive reasoning decisions in order to arrive at

a solution to a problem [51]. It is important to note that during the cognitive

reasoning process, a person (e.g. programmer) creates logical as well as

systematic arguments and makes judgement based on these arguments [52].

87

Evaluating different arguments to decide which one is the best option involves

actively and exhaustively processing information to ultimately decide on cost-

effective courses of action for the task in question [53].

Cognitive decision making is addressed by question 5. According to [21],

addressing this question involves working through different scenarios and

gauging the good as well as bad points of each alternative. The 12 multiple-choice

questions (MCQs) used in the study by Lister et al. [12], are examples of situations

where different scenarios – in this case missing pieces of source code – are

weighed against each other. Measures to mitigate unfavourable elements for each

alternative are identified and documented at this stage. To make decisions, a

person does not necessarily have to consider all details included in the text or

scenario. Instead, the focus can be placed on only a few key indicators [21]. By

doing so, a person provides justification for all decisions arrived at [45].

Planning, reasoning, and decision making can be regarded as steps in the

process of solving a problem. This process is characterised by certain actions that

a person performs prior to and throughout solving a problem. Due to the cognitive

nature of problem solving, a person should continuously engage and stimulate

their thought processes when solving a problem [54]. To be successful in problem

solving, Frederick [55] recommends that people should have “the ability or

disposition to resist reporting the response that first comes to mind” (p. 35). This

emphasises the argument that, after identifying a solution to a programming

problem, the solution should be evaluated, implemented, and re-evaluated. These

stages should also be revisited frequently during the iterative implementation of

the solution and the discovery of more knowledge that was not apparent to the

programmer [56].

Having provided some background on what constitutes the

aforementioned cognitive processes, the next section discusses the research

design and the procedure that was followed to uncover the cognitive processes

and related strategies employed by expert programmers in this study.

88

3 RESEARCH DESIGN AND METHOD

The design of this study was narrative in nature and focused on the ‘asking

questions’ data collection strategy, as described in Plowright's [57] Frameworks

for an Integrated Methodology (FraIM). A case study was deemed the most

appropriate data source management strategy, since only a small number of

participants would be used. The population included CS instructors from a

selected South African higher education institution. The sample consisted of five

instructors who were purposefully [58] selected based on the fact that they were

all experienced CS instructors who had been involved in teaching programming to

novices (as part of CS1 and/or CS2 courses) for at least three years. Two of the

participants (P1 and P4) had more than 14 years of experience in this regard,

while P2 and P3 had between five and nine years of similar experience. Except for

P5, all the other participants worked as industry programmers for at least four

years and they were all, to some extent, still involved in private programming

consultancy work. This sample can also be regarded as convenient [59], since the

selected participants were in the proximity of the principal researcher (the first

author) and could therefore be reached easily.

3.1 Data collection

As part of the ‘asking questions’ data collection strategy, primary data was

collected by means of decoding interviews [8] and supplemented by a short

questionnaire. Experts are characterised as individuals who perform critical

thinking tacitly and implicitly in their own disciplines [8, 9]. As such, the aim of

the decoding interviews was to uncover the explicit mental steps that expert

programming instructors would go through in order to accomplish tasks that

students find difficult to execute. A decoding interview is typically conducted by

at least two interviewers [9]. Given the format of a decoding interview, a single

interviewer might get lost in the details, while two minds could better keep the

interviewing process on track [60]. During the interview process, both

interviewers should be able to verbalise their thinking; challenge the explanations

given by the interviewees; and summarise their thinking back to the interviewees

on an abstract level [61]. For this reason, Middendorf and Pace [8] describe the

interview process as the most intellectually demanding of all the DtDs steps.

89

Since members of the same discipline have a tendency to share common

expert blind spots, Pace [9] recommends that the second interviewer should

ideally come from outside the discipline. The second interviewer is then more

likely to see when a specific mental step has not been fully explained. However,

given the complex nature of the cognitive processes involved in SCC and our

inability to find a suitable person with relevant decoding interview experience

from outside the discipline, we had to make an alternative arrangement. For the

decoding interviews in this study, the principal researcher acted as the principal

interviewer, with the support of a non-teaching CS researcher who had some

decoding interview experience as the second interviewer.

3.2 Data collection procedure

All participants completed an informed consent form (as stipulated in the ethical

clearance authorisation granted by the institution) before participating in the

decoding interview. The proceedings of each interview were audio recorded with

the permission of the participant. In each interview, the participants were first

asked to explain the process they would go through when they needed to

comprehend any given piece of source code. Whenever the interviewers felt that

the participants were not clearly verbalising all their mental operations, one of

them would intervene with a probing question. After about 30 minutes, a specific

SCC question was presented to the participants, asking them to verbally illustrate

the general SCC process they had just explained in answering this question. Where

necessary, further probing questions were asked. At the end of the interview

session, the participants completed the short questionnaire to provide basic

demographic data and information regarding their programming and teaching

experience.

Although the original plan was to include three SCC questions in this part

of the decoding interview, a pilot of the entire data collection procedure revealed

that it would take too long and that sufficient data could be collected if just one

question was used. Question 6 (see Figure 1) from the original set of 12 MCQs

developed by the ITiCSE 2004 working group for their multi-national study of

reading and tracing skills in novice programmers [12], was therefore selected.

This question was identified as the second most challenging question in Lister et

90

al.'s [12] study. While the most challenging question (Question 12) mostly focuses

on arrays, Question 6 covers a variety of programming concepts (including

Boolean variables, for loops, array indexes, and return statements to terminate

a for loop). In answering Question 6, the missing piece of source code had to be

identified from the five given options (Note: The correct answer is Option B). The

only change made to the question was to convert it from the original Java to C#

(the programming language that all the participants were familiar with). The line

numbers as illustrated in Figure 1 were not part of the question given to

participants and are only included here for ease of reference in the results

discussion to follow.

3.3 Data analysis

Following the decoding interview proceedings, a narrative data-analysis approach

as suggested by Creswell and Creswell [62] was used to transcribe the audio

recordings made during the decoding interview sessions and to analyse the data.

After transcribing the data, we cleansed it by searching for faults and repairing

them [63]. As the discussions were open-ended, the transcripts also contained

some illogical and repeated statements. We therefore decided to use fuzzy

validation [64], which allowed us to make some corrections to the data if there

was a close match or known answer. After this, we familiarised ourselves with the

data [65] by listening and re-listening to the audio recordings numerous times, as

well as intensively reading and re-reading the transcripts. This helped us to decide

on a coding plan where the analysis was guided by the data as it relates to the first

research question. At this point, we imported the five validated transcripts into

NVivo 12 for further analysis. We then started to develop codes (by creating

several nodes) for each cognitive process recognised in the data.

As suggested by Saldaña [66], we then coded the data by highlighting

and/or underlining sections/passages (e.g. words/keywords, sentences,

paragraphs) from which cognitive processes could be extracted (under the

guidance of the theoretical guidelines as identified from the literature). We

populated the developed codes by moving the necessary text into them.

Consequently, some themes started to emerge which revealed important

information about the data set in relation to the first research question [67].

91

Continuing with this process led to the emergence of recurrent themes. Finally, we

used NVivo to generate frequencies of occurrence for each of the developed

themes.

4 FINDINGS AND INTERPRETATION

Given the large amount of data collected during the decoding interviews, this

paper focuses on data collected during the time when the participants were

tackling the given SCC question (see Figure 1). The discussion in the following sub-

Figure 10: SCC question used in decoding interview

92

sections focuses on the five cognitive process categories that were observed, as

well as evidence of their occurrence.

4.1 Reflective cognition

The category for reflective cognition processes had the highest number of

occurrences (73). Participant 1 (P1) employed cognitive strategies extensively in

this category, with 25 occurrences. Findings on the four cognitive processes

constituting this category are discussed next.

4.1.1 Cognitive planning

During the cognitive planning process, a person needs to decide on the course of

action to follow in order to arrive at a solution to a problem [48]. P3 demonstrated

some elements of planning, as is evident from the following excerpt:

“You have already told me what the output should be. So now I have a

question: What is it supposed to do? But there is a mistake, what is missing

that would create the correct output? Now I know I need to look at this code

for an error. The first thing I need to do is figure out which thing is doing what

and how they are working together, and then I can find the mistake – unless

the mistake is something obvious, in which case I can quickly find it.”

It can be seen from this excerpt that P3 first familiarised himself with the

problem specifications so that he would know what was expected of him. The

problem statement gave him an idea of what the missing source code should do.

He also inferred that there might be errors in some of the source code fragments

that would make them fail to produce the desired output if they were to be placed

in the isSorted method. Further, by recognising that some pieces of code may

have conditions or errors that could disqualify them from being the correct piece

of missing code, P3 was already deciding on what he would do to ultimately arrive

at the correct piece of missing code. Moreover, this strategy could help him spend

considerably less time to ultimately get to the final answer, as he seemed to be

applying efficient planning.

93

4.1.2 Cognitive reasoning

The cognitive reasoning process requires a person to integrate all the information

at their disposal in order to arrive at a solution to a problem [50]. P1 exhibited this

type of reasoning when he started by focusing on the opening statement of the

question and the method signature in Line 1 (see Figure 1). He examined and read

the various aspects of the question and specifically employed a cognitive

reasoning process based on what he found. For example, to decide on the

parameters of the isSorted method, he read, interpreted, and comprehended

the method signature of the question. This, in turn, enabled him to apply some

reasoning throughout the tracing task process. The likelihood of identifying the

correct missing source code could have been low if this method signature was not

well understood.

Furthermore, P1 made logical and systematic arguments [51] as he

proceeded with the interpretation of the question. Evidence of this argument is

contained in the following excerpt:

“The IsSorted method will receive an array of integers. It will receive it in

x and now I will need to look at each one of these options here to see what

goes in the missing code.”

Referring to ‘options’ in the above excerpt is already an indication that P1

was working towards an elimination strategy [37] to get rid of incorrect options.

4.1.3 Cognitive decision making

During the decision-making process, a person will focus on those problem details

that can improve understanding of the problem so that well-informed decisions

are made in tackling the problem at hand [21]. For example, P1 made a strategic

decision based on the length of the question:

 “So, in such a case, when it is a long question like this, I would quickly scan

through the options to see which one is most probably going be the correct

one. And then I start with that one instead of doing the first one and run

through the entire thing.”

As can be seen from this excerpt, P1 also employed an effective ‘quick scan’

strategy as suggested by Bauer et al. [53]. This strategy allowed him to start

94

working towards an answer at an opportune place, hence expediting the process

of finding the right answer.

As another example of decision making, P3 familiarised himself with the

actual code included in the question by reading through the pieces of source code

in order to determine the meaning of each statement. In this regard, he said:

“Now I pick a set of inputs 0, 1, 2, and I see that we are obviously looping

through the array. So, I can see that we are stopping at the second-last

element. This is the case again where I do not need to look through this in

great detail, because I can see that thing. That is easy access to my array,

because you said it there. It is my array length minus 1, which means the

second-last element and we are going less than that. So, I understand it to be

saying that we are going through each element in the array up until the

second-last element, and I do not have to look at that loop again.”

From the above excerpt, it is also interesting to note that P3 decided to use some

test cases or sample values to identify the limits of the array in question. Moreover,

recognising that lines 6, 14, 21, 28 and 34 were identical, eliminated the need for

P3 to interpret each one of them. This means that he interpreted the statement on

line 6 and applied that interpretation to all similar statements.

4.1.4 Problem solving

Given the close relation between planning, reasoning, and decision making as part

of the problem-solving process [21], it is worthwhile to consider how one of our

experts utilised each of these cognitive processes as part of her problem-solving

strategy.

While reading through the problem specification, P2 started to formulate

her problem-solving strategy by identifying what she was asked to do and what

her first action should be. The following excerpt illustrates her cognitive planning

process: “So I first try to understand the question (reading the question) ... otherwise

the method should return false, right! So which one of the following is the missing

source code from the method isSorted? ... So what I am going to do is to scan

through each of my options quickly and see if I can eliminate others very quickly.”

95

Her main aim with this strategy was to quickly identify the ‘obvious’

incorrect options so that she would not have to spend unnecessary time on in-

depth interpretation of those code segments.

In her scanning of the initial lines of code (reading the code sequentially),

she said: “All of them [alternative answers] are returning values, all of them are

determining Booleans. So, I can’t eliminate an alternative based on that”. In this

regard, she was using cognitive reasoning to formulate a set of elimination criteria.

She further pointed out that these criteria were based on both the question and

what she saw in the given code fragments. After considering the above, she

continued her reasoning process to examine additional aspects of the code

alternatives: “Can I eliminate one? Yes or No? If I can't eliminate one, now I start

looking in more detail”. This examination of the possible code options eventually

led her to apply her decision-making skills when she tentatively marked option B

as the possible missing piece of code: “So I will mark B as a possible solution.

Because at the moment, without going really in depth and using a test case, it looks

to me like it will work”. However, instead of settling for option B right away, she

continued as follows: “So I will just go to B and I will check it again”. This is

illustrative of the thoroughness strategy, as suggested by Fitzgerald et al. [37].

This is the strategy where a person, upon initially recognising an answer, checks

further for the correctness or incorrectness of answers just to be convinced of the

final answer.

As illustrated in this problem-solving example, P2 followed an informed

problem-solving process that enabled her “to resist reporting the response that

first came to her (sic) mind” [55, p. 35] . Moreover, from the observation notes and

all the steps that P2 followed in answering the question, it could be seen that she

had mastered the problem-solving skill.

4.2 Attention

The attention process is characterised by selecting single or multiple options from

a host of available possibilities [16]. In this study, 52 occurrences of using the

attention cognitive process were observed in the participants. P1 employed this

category the most, with 21 occurrences. As an indication of paying attention, P1

uttered the following statement: “Now I see that B and E do not have that

96

declaration and it will only do a comparison in the if statement and then return a

specific value”. By using an attention cognitive process, he was therefore able to

identify that only three of the options (A, C and D) included a declaration for the

Boolean variable b.

P2 used her attention process to realise that all five options to the question

were returning values, as is evident from the following excerpt: “All of them are

returning values, all of them are determining Booleans”. As the cognitive processes

tend to overlap [21], she immediately switched from attention to decision making

(a reflective strategy) by saying, “so I cannot eliminate an option based on that”.

As an indication that P3 was paying attention while reading the question

specifications, he said:

“First thing, I must make sure that I understand the question. So, you have

helped me a bit by boldfacing some words. So, I will read the question focusing

only on the boldfaced words. Then I will read it again and I will boldface in

my mind some other words such as array, method, sorted – so those are words

that immediately come to mind. Other words glue everything together.”

It should be noted that the ‘boldfaced words’ referenced by P3 were

actually a different font face used to ensure that code statements and values would

stand out from the normal sentence text. With his attention drawn to these words,

P3 identified those as important sections [68]. He proceeded further by identifying

even more ‘keywords’ (e.g. array, method and sorted) to help focus his attention

while tackling the problem.

4.3 Reading, speaking and listening

As part of the decoding interview, participants had to listen to the interviewers’

questions and verbally explain their SCC processes. For the purpose of this

discussion, these listening and speaking actions are not regarded as part of the

experts’ natural SCC strategies. We instead focus on the 17 other occurrences of

these cognitive processes as observed in the participants. These actions included

body movements (hand, eye, and head); facial expressions; and the utterance of

some words [41, 42]. P1 applied this category the most, with six occurrences.

97

While reading the specifications, P1 focused on the semantic processing of

the method signature (see Line 1) to determine that isSorted was a static

method of a bool type which would receive an array of integers. Similar to our

other experts, he realised the importance of the method signature and chose to

focus on semantics instead of syntax. This is in contrast to a novice programmer

who would typically rely more on syntactic aspects or even choose to ignore the

method signature and its parameters completely [33]. As further evidence of

semantic processing, P3 referred to the specifications as a ‘rule’ that guides the

entire process of working through the comprehension task and arriving at the

desired answer. He explicitly shared the information that he gathered from

reading the problem specifications. He also advised that it is recommendable to

read problem specifications at least twice, as also suggested by [38].

P4 regarded speaking and listening as fundamental strategies in his way of

doing things (incl. code comprehension): “I always speak aloud! My wife came to

me this morning. She said: ‘You are getting mad’. She always hears me talking to

myself”. He further confirmed that even for general reasoning, he uses the think-

aloud technique. He argued that the technique helps him to go through the logic

fast and also ensures that he does not skip the logic steps as he is listening to

himself. This combination of cognitive reading, speaking, and listening strategies

also allows him to commit the information to memory [21].

4.4 Memory

The memory cognitive process requires the use of strategies that make it easier

for a person to remember and/or recall values or knowledge when necessary [21].

Many of the attention, reading, speaking and writing strategies as discussed above,

also helped the experts in this study to enhance their memory. Based on this

notion, 11 occurrences of this cognitive process were identified.

During the decoding interview, P2 was observed making some pen-holding

hand gestures as if she was writing computations in the air. In response to a

question asking if she was “passing values in her head as she went through the

code”, she replied “Yes” – confirmation that she was using her working memory.

Essentially, it is not easy to remember things that are not written down. Being

compelled to do so can lead to a working memory overload [69]. As further

98

evidence that P2 was doing some comparisons in her mind, she was observed

comparing the last two elements of the sample array she created herself. When

asked whether she considered the previous values, she said: “I compared them in

my mind”. P3 also did not show the test cases he used. However, when asked if he

was doing “the test cases in his mind”, he admitted that he was.

The behaviour exhibited by P2 and P3 is interesting, because Wiedenbeck

[70] observed that experienced programmers required less mental attention.

However, experts in this study mostly kept things in their working memory. A

possible explanation for this type of behaviour could be that these things were still

manageable (i.e. within the number 5 plus minus 2 items according to Miller [35]).

When the information became too much to keep in memory, the experts resorted

to other strategies [71] to help them remember values and/or keep track of the

program logic.

Due to the prominence of the integer array x in Q6, most of the participants

used some type of doodle [12] to represent the array elements (e.g.).

Others just wrote down the values of variables (e.g. ‘2, 7, 5’), plainly as an

indication that they were using these arbitrary values as test cases to help them

determine outputs for the given code fragments. To enhance his memory, P5

resorted to pattern recognition [37] after realising that the for loops in all five

alternative fragments of code (Lines 6, 14, 21, 28 and 34) were identical. During

the interview, P5 was asked the following question by interviewer 2: “Did you use

the pattern from option A, and apply it to option B?” In response, P5 said: “Yes, I did

not have to check whether this condition makes sense again”. This confirms that he

was using some recall of things or actions he did before. He went on to apply the

same pattern(s) he had seen in the previous options, and to apply them in

subsequent instances. Inherently, these strategies helped the expert

programmers to easily recall variable values and/or important information when

they wanted to use it.

4.5 Perception

Perception is often used as a strategy when other cognitive processes fail to help

us make sense of what we are trying to understand or achieve [25]. With reference

to this notion, a total of eight occurrences of the application of the perception

99

process were identified with the participants. P4 applied this process the most,

with four occurrences. In most of these instances, the participants’ perception

caused them to focus on issues that were not directly related to the given SCC task.

One of the participants (P4) was concerned that the given question did not

follow the naming conventions he was teaching to students: “I will make sure that

the name of the method, which is wrong here anyway, follows conventions. When

using a predicate method, there strictly should be a capital, not a lower case”. P5 did

not agree with the use of ‘breaks’ in a for loop. He notably indicated that he would

rather have used a compound while instead of the return false to break out

of the for loop (see Figure 1 - Lines 17 through 19): “Well, we do emphasise that

there are two ways to break out of the for loop, but we never use the one So, we

do not use the breaks, though we have a for. What we do instead, is that we convert

to a while loop with a compound condition. So, I would have it as b = true, while

b and i < x.Length – 1”.

P1 was concerned that the given SCC question would be too difficult for

novice programmers to answer. He expressed this by pointing out that the

argument of the isSorted method contained in its signature [see (int [] x) in

Line 1 of Figure 1] was “a higher-level concept”. His concern was based on his

knowledge of the content that is covered in elementary programming courses.

Another element of perception raised by P1 was related to his confidence in the

steps that he followed in answering the SCC question. In this regard, he said: “If I

have eliminated them, I am quite sure they are not necessary”. He therefore chose

to ignore the possibility that he could have made a mistake (e.g. logical or

otherwise) somewhere that might have caused him to arrive at an incorrect final

answer.

It should be noted that the perceptions identified from the experts in this

study, caused them to focus on issues that were not directly related to the SCC

question they were answering. Consequently, these identified perception

cognitive strategies can be regarded as unrelated to the aim of this paper, and

were therefore not considered further.

100

5 COGNITIVE STRATEGIES IN SOURCE CODE COMPREHENSION

During the SCC task, our expert programmers mostly relied on four cognitive

processes to efficiently comprehend the provided source code: reflective

cognition, attention, reading and memory. For each of these cognitive processes,

the experts followed very specific strategies. In the sub-sections to follow, we first

summarise these cognitive strategies and then extract the specific techniques that

could be used by instructors as part of a mental scaffolding process while

modelling efficient SCC strategies to their students.

5.1 Reflective cognition

The experts interviewed in this study often asked themselves guiding questions,

as also suggested by literature [44, 45, 46]. These questions allowed them to form

logical arguments to solve the given SCC problem. Furthermore, they did not seem

to take for granted any information included as part of a problem. Instead, they

used every single piece of information to formulate their logical and systematic

arguments [51]. In this regard, it was important for them to not only figure out the

meaning of each piece of code, but also how all the individual parts were linked

together.

Our expert programmers spent ample time to familiarise themselves with

the task requirements by intensively reading (and even re-reading) the question.

They clearly wanted to be sure that they fully comprehend the problem before

attempting to solve it [47]. This ultimately enabled them to decide on the best

strategies to use in tackling the given problem. Additionally, they also employed

time-saving reasoning strategies such as ‘quick scan’ (reading through the code

quickly just to get an overview) [53] and purposive elimination of identical code

segments (see Section 4.1.3) in an attempt to reduce the time and effort they

needed to solve a problem. However, their main focus was not to arrive at the

answer as quickly as possible. Instead, they patiently followed appropriate and

robust strategies, as suggested by literature [37, 55], to exhaust all possibilities to

verify and ensure the correctness of their final answer (see Section 4.1.4). In most

cases, this was achieved by double-checking the logic they followed to arrive at an

answer.

101

5.2 Attention

In solving SCC problems, the experts who participated in this study were seen to

be paying attention in the true sense. As a result, they were able to identify some

aspects (e.g. similar lines of code, used data structures, etc.) that readily informed

them on how to best tackle a given problem. In addition, these experts were

observed to possess a skill that helped them to immediately switch to other

strategies or alternatives [25] based on encountered information. This helped

them to avoid getting stuck in certain areas of the source code or problem

description. As a result, there were no signs of frustration, discomfort, and

disorganisation [13] observed with our experts while solving the given SCC task.

Similar to the findings of Busjahn et al. [19], our experts paid more

attention to complex code statements and functional details than to other simple

or superficial details. By focusing their attention, they were able to temporarily

ignore non-vital details at opportune moments (as suggested by Preece et al. [21]).

Moreover, cases of switching from one cognitive process to another were

observed in our experts. A typical example was when one expert (P2) switched

from attention to decision making (see Section 4.2). Switching attention (e.g.

strategy, alternative or cognitive process) in general seemed to have been helpful

to our experts throughout their SCC process.

5.3 Reading

In reading the given code comprehension scenarios, our experts made sure that

they understood what they were reading by re-reading the text of such scenarios,

even if they thought they understood it. It was interesting that the experts who

could be considered the most experienced, made sure of this and even emphasised

the importance of doing this. As reading or re-reading is observed through eye or

pen or hand movements [41, 42], our experts even mentioned that they were re-

reading the details or some code fragments to confirm their initial understanding.

They also interpreted and re-interpreted the various components of the scenario,

implying that they did not automatically rely on their very first interpretations.

This practice seems to have happened effortlessly with the experts, suggesting

that their brains were already ‘wired’ or prepared for such practices.

102

5.4 Memory

From the observations made (see excerpts in Section 4.4), our experts seemed to

possess innate knowledge that they applied if they did not note or write things

down [71]. Otherwise, they wrote down everything they believed necessary or

might be required during the SCC process. This helped them to easily update

current variable values as and when necessary without straining their memory

[2]. Another strategy our experts used was to consider limited scenarios at a time

(e.g. comparing a worst- and best-case scenario). By minimising the amount of

details kept in their memory, they did not necessarily have to write things down

as they did not overload their working memory. Our experts also indicated that

they used strategies such as think-aloud to help them remember certain

information. Of particular interest was the expert (P4) who indicated that think-

aloud was a fundamental technique he uses daily in almost everything he does

(see Section 4.4).

5.5 Mental scaffolding techniques for the modelling of
efficient SCC

As illustrated in the above discussions, we uncovered a number of cognitive

processes and related strategies that were employed by our experts during the

given SCC task. If these strategies are assumed as typical of the mental operations

required to efficiently perform the discipline-specific task [8] of SCC, then these

ways of thinking could point to crucial techniques that must be explicitly taught to

students. The 17 identified techniques are presented in Table 1 with the related

cognitive process(es) indicated for each. As indicated in Table 1, these techniques

are all related to one or more of the reflective cognition processes (planning,

cognitive reasoning and/or decision making) required for problem solving.

Problem solving (as a vital element of efficient SCC) is one of the skills which are

typically not taught to students explicitly, as instructors tend to concentrate more

on core course content than on external aspects of the learning process [56]. Since

so many CS students continue to struggle with SCC [1, 2], these are not techniques

that should just be given to students to master on their own. Due to the complex

cognitive nature of the SCC process [5, 6], we propose a more social context where

these techniques (as presented in Table 1) are modelled to students as part of a

103

Table 1: Mental scaffolding techniques

Mental scaffolding techniques for the modelling of efficient SCC

Cognitive Processes

P
la

n
n

in
g

R
e

a
so

n
in

g

D
e

ci
si

o
n

M

a
k

in
g

R
e

a
d

in
g

S
p

e
a

k
in

g
/

L

is
te

n
in

g

A
tt

e
n

ti
o

n

M
e

m
o

ry

Read through the problem specification at least twice (or until you understand what you are asked to do).
While reading through the specifications, mark/highlight important words.
Do a quick scan of the provided source code. Mark important sections AND complex sections of code.
For any complex sections of code, first make sure that you understand the meaning/working thereof BEFORE
you continue to solve the problem.

Identify any code segments that appear more than once (repeated code).
Read through all the provided code at least twice to make sure that you understand everything.
Write down any additional information that might be relevant in solving the problem.
Identify at least two strategies you could follow to solve the problem.
Compare the possible strategies and select ONE that you think will work best to solve the problem.

Do not be afraid to adapt or change your strategy if it is not working.

For questions with multiple answer options, first focus on evaluating options that seem ‘more correct’ at first
glance. Leave the ‘possibly incorrect’ options for later (if none of the ‘more correct’ options turn out to be the
correct answer).

If you get stuck, consider the wider context in which the code or piece of information appears/is used.

Define and use your own test case values (if not provided).
While tracing through the code, keep track of changes in variable values on paper.
Draw a diagram to visualise your understanding of the program logic.
Think aloud while working on solving the problem (if possible).
Once you have arrived at an answer, double-check your reasoning to confirm the correctness of your answer.

104

mental scaffolding process. By gradually removing the ‘scaffolds’, the learning process

can move from full instructor-assisted modelling to a point where students have

developed the necessary competence to perform techniques that were initially “beyond

[their] unassisted efforts” [7, p. 90].

6 CONCLUSION AND FUTURE WORK

In focusing on Step 2 of the DtDs framework, this study utilised decoding interviews to

identify four categories of cognitive processes (attention; memory; reading, speaking and

listening; and reflective cognition) and related strategies that are essential for efficient

SCC. By regarding these strategies as typical of the basic cognitive operations required

for efficient SCC, we were able to identify 17 crucial SCC techniques. Although the

techniques may seem quite simple (in the eyes of expert programmers and expert

programming instructors), it could be indicative of SCC ‘blind spots’ – those crucial

mental operations that instructors take for granted and fail to share explicitly with their

students. By creating awareness regarding all the mental processes required for efficient

SCC, we hope to, firstly, make other CS experts and instructors more aware of their own

potential SCC ‘blind spots’. Secondly, the uncovered SCC strategies highlight basic

techniques that should be explicitly modelled to and practised by students in an attempt

to help them overcome related SCC bottlenecks and better prepare them for SCC tasks.

Thirdly, by using these techniques as part of a mental scaffolding process, instructors can

gradually guide their students in mastering the basic mental operations needed for

efficient SCC. The ultimate goal is to get students to perform tasks that were initially

beyond their individual capacity [7], thereby mastering the core disciplinary skills of SCC.

Decoding interviews is just one of numerous methods that can be utilised in Step

2 of the DtDs process to systematically decode the disciplinary subconscious of experts

[60]. All of the proposed methods are, however, aimed at revealing the explicit steps that

an expert would follow when performing tasks related to an identified bottleneck [8]. In

this study, the complex cognitive processes required to comprehend source code [6] have

led us to instead focus (in the first part of the decoding interview) on exposing specific

strategies that our experts would follow within these cognitive processes. The nature of

the SCC process, however, allowed us to include an additional component in the second

part of our decoding interviews. The addition of a think-aloud component provided us

105

with a unique opportunity to directly observe our experts’ actual execution of the exposed

cognitive strategies during a real SCC task. This provided us with even more insight into

the nature of the cognitive processes and related strategies required for efficient SCC.

Knowledge of these general cognitive strategies (as presented in Table 1) could therefore

serve as a pre-step for revealing the explicit steps followed by experts in comprehending

source code in future research.

7 REFERENCES

[1] R. Mccartney, J. Boustedt, A. Eckerdal, K. Sanders, and C. Zander, “Can first-year

students program yet? A study revisited,” in Proceedings of the Ninth Annual

International ACM Conference on International Computing Education Research,

2013, pp. 91–98. San Diego, California: ACM. doi:

https://doi.org/10.1145/2493394.2493412

[2] B. Xie, G. L. Nelson, and A. J. Ko, “An explicit strategy to scaffold novice program

tracing,” in Proceedings of the 49th ACM Technical Symposium on Computer Science

Education, 2018, pp. 344–349. Baltimore, Maryland: ACM. doi:

https://doi.org/10.1145/3159450.3159527

[3] T. Busjahn and C. Schulte, “The use of code reading in teaching programming,” in

Proceedings of the 13th Koli Calling International Conference on Computing

Education Research, 2013, pp. 3–11. Koli, Finland: ACM. doi:

https://doi.org/10.1145/2526968.2526969

[4] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad, “Not seeing the forest

for the trees: Novice programmers and the SOLO taxonomy,” SIGCSE Bull., vol. 38,

no. 3, pp. 118–122, Jun. 2006. Bologna, Italy: ACM. doi:

https://doi.org/10.1145/1140124.1140157

[5] P. A. Orlov, R. Bednarik, and L. Orlova, “Programmers’ experiences with working

in the restricted-view mode as indications of parafoveal processing differences,”

in PPIG, 2016, pp. 96–105.

[6] A. Praveen, “Program comprehension and analysis,” Int. J. Eng. Appl. Comput. Sci.,

vol. 01, no. 01, pp. 17–21, 2016. doi: https://doi.org/10.24032/ijeacs/0101/04

[7] D. Wood, J. S. Bruner, and G. Ross, “The role of tutoring in problem solving,” J. Child

106

Psychol. Psychiatry, vol. 17, no. 2, pp. 89–100, 1976. doi:

https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

[8] J. K. Middendorf, D. Pace, and J. K. Middendorf, “Decoding the disciplines: A model

for helping students learn disciplinary ways of thinking,” New Dir. Teach. Learn.,

vol. 2004, no. 98, pp. 1–12, 2004. doi: https://doi.org/10.1002/tl.142

[9] D. Pace, The decoding the disciplines paradigm: Seven steps to increased student

learning. Bloomington: Indiana University Press, 2017.

[10] M. J. Nathan and A. Petrosino, “Expert blind spot among preservice teachers,” Am.

Educ. Res. J., vol. 40, no. 4, pp. 905–928, 2003. doi:

https://doi.org/10.3102/00028312040004905

[11] P. Felten, “Principles of good practice in SoTL,” Teach. Learn. Inq. ISSOTL J., vol. 1,

no. 1, pp. 121–125, 2013. doi: https://doi.org/10.2979/teachlearninqu.1.1.121

[12] R. Lister et al., “A multi-national study of reading and tracing skills in novice

programmers,” ACM SIGCSE Bull., vol. 36, no. 4, pp. 119–150, 2004. doi:

https://doi.org/10.1145/1041624.1041673

[13] P. J. Khomokhoana and L. Nel, “Decoding Source Code Comprehension: Bottlenecks

Experienced by Senior Computer Science Students,” in ICT Education, B. Tait, J.

Kroeze, and S. Gruner, Eds. Cham: Springer, 2020, pp. 17–32.

https://doi.org/10.1007/978-3-030-35629-3_2

[14] Cognifit, “Cognitive processes: What are they? Can they improve?,” Cognition and

Cognitive Science, 2019. [Online]. Available: https://www.cognifit.com/cognition.

[Accessed: 04-Sep-2019].

[15] A. Newen, “What are cognitive processes? An example-based approach,” Synthese,

vol. 194, pp. 4251–4268, 2015. doi: https://doi.org/10.1007/s11229-015-0812-3

[16] K. R. Chandrika, J. Amudha, and S. D. Sudarsan, “Recognizing eye tracking traits for

source code review,” in 2017 22nd IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), 2017, pp. 1–8. Limassol, Cyprus:

IEEE. doi: https://doi.org/10.1109/ETFA.2017.8247637

[17] S. Pero, C. Incoccia, B. Caracciolo, P. Zoccolotti, and R. Formisano, “Rehabilitation of

attention in two patients with traumatic brain injury by means of ‘attention

107

process training,’” Brain Inj., vol. 20, no. 11, pp. 1207–1219, 2006. doi:

https://doi.org/10.1080/02699050600983271

[18] T. D. Itoh et al., “Towards generation of visual attention map for source code,” in

Proceedings of the 11th annual conference organized by Asia-Pacific Signal and

Information Processing Association (APSIPA), 2019. [Online]. Available:

http://arxiv.org/abs/1907.06182 [Accesssed: 28-Jul-2019].

[19] T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading to gain more

insight in program comprehension,” in Proceedings of the 11th Koli Calling

International Conference on Computing Education Research, 2011, pp. 1–9. Koli,

Finland: ACM. doi:10.1145/2094131.2094133

[20] H. Uwano, M. Nakamura, A. Monden, and K. I. Matsumoto, “Analyzing individual

performance of source code review using reviewers’ eye movement,” in

Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, 2006,

pp. 133–140. San Diego, California: ACM. doi:

https://doi.org/10.1145/1117309.1117357

[21] J. Preece, Y. Rogers, and H. Sharp, Interaction design: Beyond human-computer

interaction, 4th ed. New Delhi: John Wiley & Sons, Inc., 2015.

[22] M. W. Van Someren, Y. F. Barnard, and J. A. Sandberg, The think aloud method: A

practical guide to modelling cognitive processes, 1st ed. London: Academic Press,

1994.

[23] F. Oyebode, Sims’ symptoms in the mind: Textbook of descriptive psychopathology,

6th ed. New York: Elsevier Ltd., 2018.

[24] M. Dhingra and V. Dhingra, “Perception: Scriptures’ perspective,” J. Hum. Values,

vol. 17, no. 1, pp. 63–72, 2011. doi:

https://doi.org/10.1177/097168581001700104

[25] M. M. Sohlberg, “Psychotherapy approaches,” in Neuropsychological management

of mild traumatic brain injury, S. A. Raskin and C. A. Mateer, Eds. New York: Oxford

University Press, 2000, pp. 137–156.

[26] P. A. Orlov and R. Bednarik, “The role of extrafoveal vision in source code

comprehension,” Perception, vol. 46, no. 5, pp. 541–565, 2017. doi:

108

https://doi.org/10.1177/0301006616675629

[27] W. Choi and P. C. Gordon, “Word skipping during sentence reading: Effects of

lexicality on parafoveal processing,” Atten. Percept. Psychophys., vol. 76, no. 1, pp.

201–213, 2013. doi: https://doi.org/10.3758/s13414-013-0494-1

[28] N. Pennington, “Comprehension strategies in programming,” in Empirical studies

of programmers: Second workshop, G. M. Olson, S. Sheppard, and E. Soloway, Eds.

Norwood: Ablex Publishing Corporation, 1987, pp. 100–113.

[29] R. Brooks, “Towards a theory of the comprehension of computer programs,” Int. J.

Man. Mach. Stud., vol. 18, no. 6, pp. 543–554, 1983. doi:

https://doi.org/10.1016/S0020-7373(83)80031-5

[30] S. Letovsky and E. Soloway, “Delocalized plans and program comprehension,” IEEE

Softw., vol. 3, no. 3, pp. 41–49, May 1986. doi:

https://doi.org/10.1109/MS.1986.233414

[31] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models and software

maintenance,” J. Syst. Softw., vol. 7, no. 4, pp. 341–355, 1987. doi:

https://doi.org/10.1016/0164-1212(87)90033-1

[32] S. Letovsky, “Cognitive processes in program comprehension,” J. Syst. Softw., vol. 7,

no. 4, pp. 325–339, 1987. doi: https://doi.org/10.1016/0164-1212(87)90032-X

[33] A. Von Mayrhauser, A. M. Vans, A. Von Mayrhauser, and A. M. Vans, “Program

understanding : Models and experiments,” Adv. Comput., vol. 40, pp. 1–38, 1995.

doi: https://doi.org/10.1016/S0065-2458(08)60543-4

[34] N. Gage and B. Baars, Fundamentals of cognitive neuroscience: A beginner’s guide.

New York: Academic Press, 2018.

[35] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our

capacity for processing information,” Psychol. Rev., vol. 101, no. 2, pp. 343–352,

1956. doi: https://doi.org/10.1037/h0043158

[36] E. F. Barkley, Student engagement techniques : A handbook of college faculty.

California: Jossey-Bass, 2010.

[37] S. Fitzgerald, B. Simon, and L. Thomas, “Strategies that students use to trace code:

An analysis based in grounded theory,” in Proceedings of the First International

109

Workshop on Computing Education Research, 2005, pp. 69–80. Seattle,

Washington: ACM. doi: https://doi.org/10.1145/1089786.1089793

[38] D. Moore, K. Zabrucky, and N. E. Commander, “Validation of the

metacomprehension scale,” Contemp. Educ. Psychol., vol. 22, pp. 457–471, 1997.

doi: https://doi.org/10.1006/ceps.1997.0946

[39] N. Powell, D. Moore, J. Gray, J. Finlay, and J. Reaney, “Dyslexia and learning

computer programming,” SIGCSE Bull., vol. 36, no. 3, p. 242, Jun. 2004. doi:

https://doi.org/10.1145/1026487.1008072

[40] S. Scalabrino et al., “Improving code readability models with textual features,” in

Proceedings of the 24th IEEE International Conference on Program Comprehension,

2016, pp. 1–10. Austin, Texas: IEEE. doi:

https://doi.org/10.1109/ICPC.2016.7503707

[41] S. Bonaccio, J. O’Reilly, S. O’Sullivan, and F. Chiocchio, “Nonverbal behavior and

communication in the workplace: A review and an agenda for research,” J.

Manage., vol. 42, no. 5, pp. 1044–1074, 2016. doi:

https://doi.org/10.1177/0149206315621146

[42] M. L. Knapp, J. A. Hall, and T. G. Horgan, Nonverbal communication in human

interaction. Boston, Massachusetts: Cengage Learning, 2014.

[43] A. Colter and K. Summers, “Low literacy users,” in Eye Tracking in User Experience

Design, J. R. Bergstrom and A. J. Schall, Eds. Boston: Morgan Kaufmann, 2014, pp.

331–348. doi: https://doi.org/10.1016/B978-0-12-408138-3.00013-3

[44] F. Eisenführ, M. Weber, and T. Langer, Rational decision making. Berlin: Springer-

Verlag Berlin Heidelberg, 2010.

[45] J. W. Herrmann, “Rational decision making,” in Wiley StatsRef: Statistics Reference

Online, N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, and J. L.

Teugels, Eds. John Wiley & Sons Ltd., 2017, pp. 1–9. doi:

https://doi.org/10.1002/9781118445112.stat07928

[46] F. C. Uzonwanne, “Rational model of decision making,” in Global Encyclopedia of

Public Administration, Public Policy, and Governance, A. Farazmand, Ed. Cham:

Springer International Publishing AG, 2016, pp. 1–6. doi:

110

https:/doi.org/10.1007/978-3-319-31816-5_2474-1

[47] C. Atherden, Can do problem solving year 1, Revised. Cheltenham: Nelson Thornes,

2014.

[48] B. Hayes-Roth and F. Hayes-Roth, “A cognitive model of planning,” Cogn. Sci., vol. 3,

no. 4, pp. 275–310, 1979. doi: https://doi.org/10.1207/s15516709cog0304_1

[49] M. G. Guerrero and R. Puche-Navarro, “The emergence of cognitive short-term

planning: Performance of preschoolers in a problem-solving task,” Acta Colomb.

Psicol., vol. 18, no. 2, pp. 13–27, 2015. doi:

https://doi.org/10.14718/ACP.2015.18.2.2

[50] J. S. B. T. Evans, “The cognitive psychology of reasoning: An introduction,” Q. J. Exp.

Psychol. Sect. A, vol. 46, no. 4, pp. 561–567, 1993. doi:

https://doi.org/10.1080/14640749308401027

[51] M. Knauff, “How our brains reason logically,” Topoi, vol. 26, no.1, pp. 19–36, 2007.

doi: https://doi.org/10.1007/s11245-006-9002-8

[52] P. Gabor, “Management theory and rational decision making,” Manag. Decis., vol.

14, no. 5, pp. 274–281, 1976.

[53] T. Bauer, B. Erdogan, J. Short, and M. Carpenter, Principles of management. New

York: Flat World Knowledge, 2016.

[54] M. Jones, “The redesign of the delivery of an introductory programming unit,”

Innov. Teach. Learn. Inf. Comput. Sci., vol. 6, no. 4, pp. 169–182, 2007. doi:

https://doi.org/10.11120/ital.2007.06040169

[55] S. Frederick, “Cognitive reflection and decision making,” J. Econ. Perspect., vol. 19,

no. 4, pp. 25–42, 2005. doi: https://doi.org/10.1257/089533005775196732

[56] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M. Burnett,

“Programming, problem solving, and self-awareness: Effects of explicit guidance,”

in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,

2016, pp. 1449–1461. doi: https://doi.org/10.1145/2858036.2858252

[57] D. Plowright, Using mixed methods: Frameworks for an integrated methodology.

London: Sage Publications, 2011.

111

[58] D. Cooper and P. Schindler, Business research methods, 12th ed. New York:

McGraw-Hill Education, 2013.

[59] M. Q. Patton, Qualitative research & evaluation methods: Integrating theory and

practice, 4th ed. Thousand Oaks: Sage, 2015.

[60] J. Middendorf and L. Shopkow, Overcoming student learning bottlenecks: Decode

your disciplinary critical thinking. Sterling, Virginia: Stylus Publishing, LLC., 2018.

[61] L. Shopkow, A. Diaz, J. Middendorf, and D. Pace, “From bottlenecks to

epistemology in History: Changing the conversation about the teaching of History

in colleges and universities,” in Changing the Conversation about Higher

Education, R. Thompson, Ed. New York: Rowman & Littlefield Publishers, 2013,

pp. 15–38.

[62] J. W. Creswell and J. D. Creswell, Research design: Qualitative, quantitative, and

mixed methods approaches, 5th ed. Thousand Oaks: Sage, 2017.

[63] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data cleaning: Overview and emerging

challenges,” in Proceedings of the 2016 International Conference on Management of

Data, 2016, pp. 2201–2206. doi: https://doi.org/10.1145/2882903.2912574

[64] E. S. Parcell and K. A. Rafferty, “Interviews, recording and transcribing,” in The

SAGE Encyclopedia of Communication Research Methods, M. Allen, Ed. Thousand

Oaks: Sage Publications, Inc., 2017. doi:

http://dx.doi.org/10.4135/9781483381411.n275

[65] P. Liamputtong, “Qualitative data analysis: conceptual and practical

considerations,” Heal. Promot. J. Aust., vol. 20, no. 2, pp. 133–139, 2009. doi:

https://doi.org/10.1071/HE09133

[66] J. Saldaña, The coding manual for qualitative researchers. London: Sage, 2016.

[67] V. Braun and V. Clarke, “Using thematic analysis in Psychology,” Qual. Res. Psychol.,

vol. 3, no. 2, pp. 77–101, 2006. doi: https://doi.org/10.1191/1478088706qp063oa

[68] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in

comprehension for novice and expert programmers,” in Proceedings of the 14th

Workshop of the Psychology of Programming Interest Group, 2002, pp. 58–73.

[69] T. De Jong and T. Jong, “Cognitive load theory, educational research, and

112

instructional design: Some food for thought,” Instr. Sci., vol. 38, pp. 105–134, 2010.

doi: https://doi.org/10.1007/s11251-009-9110-0

[70] S. Wiedenbeck, “Novice/expert differences in programming skills,” Int. J. Man.

Mach. Stud., vol. 23, no. 4, pp. 383–390, 1985. doi: https://doi.org/10.1016/S0020-

7373(85)80041-9

[71] J. Bransford, A. Brown, and R. Cocking, How people learn: Brain, mind, experience,

and school, Expanded. Washington, DC: National Academy Press, 2000.

113

Chapter 6 – (Article 3)

Narrowing the gap between expert and novice thinking: A

step-by-step framework for efficient source code

comprehension3

Abstract. The Decoding the Disciplines (DtDs) philosophy is based on the premise

that each discipline (including Computer Science) has its own unique set of mental

operations. In many cases, these operations have become invisible to instructors as

they tend to perform them automatically based on years of experience. If the nature of

these operations is not made explicit to students, it is likely that they will develop

learning ‘bottlenecks’ which could prevent them from mastering key disciplinary

practices. One of the key bottlenecks identified in the CS discipline relates to students’

inability to reliably work their way through the long chain of reasoning necessary to

comprehend source code. In an attempt to narrow the existing gap between expert

and novice thinking in this regard, the study utilised decoding interviews with five

expert programmers (who were also experienced instructors) to systematically

deconstruct the explicit mental techniques and reasoning strategies necessary for

efficient source code comprehension (SCC). Thematic analysis of the mental

operations performed by these experts during an SCC activity, led to the identification

of 11 key strategies. Knowledge of these strategies as well as the explicit mental

operations were then used to devise a step-by-step framework for efficient SCC. The

purpose of this framework is to create awareness among instructors regarding the

explicit mental operations required for efficient SCC and to serve as source of further

research and refinement. Moreover, within the realm of the DtDs philosophy, this

framework could also serve as a starting point for devising explicit strategies to model

these mental operations to students and to help them master each of the identified

strategies.

3 Publishable manuscript.

114

Keywords: Source code comprehension, expert programmers, decoding the

disciplines, decoding interview, computer science education.

1. Introduction

Source code comprehension (SCC) is a term that is generally used to refer to the

reading, interpreting, and understanding of existing source code (Lister et al., 2004;

Lister, Simon, Thompson, Whalley & Prasad, 2006; Maalej, Tiarks, Roehm & Koschke,

2014). Despite SCC being a critical disciplinary skill (Siegmund et al., 2012; Tiarks,

2011), many Computer Science (CS) students are still unable to reliably think and

work their way through a long chain of reasoning to efficiently comprehend a piece of

source code (Khomokhoana & Nel, 2020; Lister et al., 2004). This student-learning

bottleneck can be attributed to students’ fragile knowledge of basic programming

concepts (de Raadt, 2007; Perkins & Martin, 1986). A bottleneck refers to specific

places where the learning of a significant number of students gets interrupted (Diaz,

Middendorf, Pace & Shopkow, 2008; Middendorf & Pace, 2004). This interruption

happens when students are not sure how to approach a given problem, and as a result

apply improper strategies (Pace, 2017).

The severity of a bottleneck can be further intensified when instructors are

unable to accurately portray disciplinary ways of thinking to students (Middendorf &

Pace, 2004). This may occur due to instructors’ expert blind spots, which typically

occur when vital operations have become so natural to disciplinary experts that they

tend to omit crucial mental steps when explaining concepts and procedures to others

(Nathan & Petrosino, 2003). Decoding the Disciplines (DtDs) is a process that focuses

on increasing student learning “by bridging (sic) the gap between novice and expert

thinking” (Middendorf & Shopkow, 2018, p. 12). The seven-step DtDs framework can

be used to firstly expose the nature of such ‘hidden’ operations (linked to a specific

bottleneck) and to create awareness among instructors regarding the steps or

operations they typically omit when teaching their students. In subsequent steps of

this framework, instructors are guided to devise ways of helping students master these

operations and hence overcome specific learning bottlenecks (Middendorf & Pace,

2004; Pace, 2017).

Bottlenecks are typically identified in Step 1 of the DtDs framework, while Step

2 focuses on exploring the detailed or explicit mental steps that experts in a given field

would go through to accomplish the task(s) identified as a bottleneck (Middendorf &

115

Pace, 2004; Pace, 2017). In executing Step 2, several artefacts and/or techniques

(such as decoding interviews, rubrics, metaphors/analogies, mind maps, reflective

writing, and non-verbal modelling) can be used to uncover the explicit steps followed

by experts (Middendorf & Pace, 2004; Middendorf & Shopkow, 2018). However,

decoding interviews are cited as the most rigorous and effective technique in this

regard (Pace, 2017). A decoding interview is a special type of interview where

disciplinary experts (typically experienced instructors) are intellectually guided to

reveal the explicit steps they follow in order to get through a predetermined learning

bottleneck (Middendorf & Baer, 2019; Middendorf & Pace, 2004; Pace, 2017). As a

first step in dealing with a previously defined discipline-specific learning bottleneck

(novice programmers’ inability to reliably think and work their way through a long chain

of reasoning to efficiently comprehend a piece of source code), the study described in

this paper focuses on Step 2 of the DtDs framework. Consequently, this paper

attempts to answer the following two questions:

• What are the explicit mental strategies (techniques and reasoning) that CS

experts employ while comprehending source code?

• How can knowledge of these strategies be applied in the formulation of a step-

by-step framework that could ultimately contribute towards narrowing the gap

between expert and novice thinking with regard to efficient SCC?

The remainder of this paper is structured as follows: Section 2 presents an overview

of previously identified SCC strategies that are relevant to the specific learning

bottleneck under investigation. In the discussion of the research design and method

in Section 3, detail is provided regarding the selection of the decoding-interview

participants and interview panel. Special attention is also given to the validation steps

that were included to enhance the validity of the identified SCC strategies and steps.

In presenting the findings (Section 4), care is taken to link the identified strategies as

closely as possible with existing knowledge regarding SCC strategies. Based on the

findings, Section 5 presents a proposed step-by-step framework for efficient SCC. The

conclusions, recommendations for future work, and contribution of this study are

presented in Section 6.

116

2. Source Code Comprehension Strategies

Literature defines various generic SCC strategies, namely top-down, bottom-up, and

variations that either combine these two strategies or incorporate elements thereof

(Littman, Pinto, Letovsky & Soloway, 1987; Pennington, 1987; Von Mayrhauser &

Vans, 1995). Novice programmers and expert programmers have been shown to

favour different strategies, with top-down mostly observed with novices (Mosemann &

Wiedenbeck, 2001). Although the basic steps involved in each of these generic SCC

strategies are well documented, more specific details are needed to truly understand

the explicit mental operations or strategies required for efficient SCC. In previous

studies, researchers used observations (Feigenspan, Siegmund & Fruth, 2011;

Dunsmore & Roper, 2000; Siegmund, Kástner, Apel, Brechmann & Saake, 2013) and

think-alouds (Anderson, Bachman, Perkins & Cohen, 1991) to gather more detailed

information regarding the specific strategies employed during SCC.

In a study that evaluated the ways in which students (as novice programmers)

answered code-based multiple-choice questions, Fitzgerald, Simon and Thomas

(2005) identified 19 strategies used by students (see Table 1). Although this list

includes a number of good SCC strategies, as also identified by other researchers

(Cunningham, Blanchard, Ericson & Guzdial, 2017; Lister et al., 2004; Moore,

Zabrucky & Commander, 1997; Whalley, Prasad & Kumar, 2007), the novices did not

always execute these strategies in an optimum way. However, the strategies identified

by Fitzgerald et al. (2005) are much more specific than the generic SCC strategies

alluded to above. Although students and experts do not necessarily follow the same

SCC strategies, these strategies could serve as a starting point for identifying more

explicit details regarding the exact mental operations required for effective SCC.

In Fitzgerald et al.'s (2005) study, the novices used the first four strategies (see

S1, S2, S3, and S4 in Table 1) to acquaint themselves with some elements of the

code-based questions they were answering. This type of self-orientation is a typical

strategy used by people to familiarise themselves with the elements of the problem to

be tackled or question to be answered (Illeris, 2003). Simon, Lopez, Sutton and Clear

(2009) emphasise the importance of reading programs or pieces of code in order to

comprehend it. In this regard, Moore et al. (1997) even suggest reading through

question specifications or a piece of source code twice (Moore, Zabrucky &

Commander, 1997). To further enhance comprehension of a task, strategies such as

117

highlighting, underlining and colouring some words or text can also be used (Powell,

Moore, Gray, Finlay & Reaney, 2004; Sarkar, 2015). These important words or pieces

of text could be regarded as key for a programmer’s comprehension of either the

problem description or the code in question. However, use of keywords is one SCC

strategy that has not been observed with Fitzgerald et al.’s (2005) novices.

Table 1: Strategies employed by novice programmers in answering code-based

MCQs

No. Strategy Explanation

S1 Reading the question Previewing the question and looking for what is asked.

S2 Previewing the code by
identifying data structures

Identifying where variables/constants/objects are first encountered (i.e.
declared) in a program.

S3 Previewing the code by
identifying the initialisation
of data structures

Identifying where variables/constants/objects are assigned initial
values in a program.

S4 Previewing the code by
identifying control
structures

Identifying branching or decision-making constructs (e.g. loops) which
control the execution flow of the program.

S5 Understanding new
concepts (semantic)

Understanding something new by relating prior understood knowledge
to less understood knowledge or by using an example.

S6 Pattern recognition:
Temporally self-referential

Syntactically recognising that this looks like something from another
question in this test; multiple-choice distractors.

S7 Pattern recognition: Outside
knowledge

Syntactically recognising something familiar from outside knowledge.

S8 Pattern recognition:
Seeking higher levels of
meaning from the code

What the code really does at a higher semantic level.

S9 Walkthroughs Tracing, testing boundary or error conditions.

S10 Strategising Asking questions like ‘How would I write the code?’ or ‘What would I
need to do?’

S11 Grouping Looking for similarities and differences in the answers and selecting
more than one answer at once (for possible elimination or inclusion).

S12 Differentiation Noticing differences between answers or lines of code or choices.

S13 Elimination Ruling out specific choices.

S14 Guessing Guessing an answer from the provided options.

S15 Thoroughness After selecting an answer, verifying the correctness thereof. Could also
include verification of the incorrectness of other answer options.

S16 Starting over Getting lost or recognising an error and simply starting again.

S17 Coming back to the
question later

Going on to another part of the test without completing this problem.

S18 Posing questions Asking explicit questions regarding specific pieces of code that could
impact on the process leading to the correct answer (e.g. ‘Is this the
end of a loop?’).

S19 Doodling Making drawings, sketches or annotations on a piece of paper.

[Source: Adapted from (Fitzgerald et al., 2005, p. 73)]

118

Littman, Pinto, Letovsky and Soloway (1987) observe that programmers use either

systematic (line-by-line) source code reading or control/data-flow abstractions to

better comprehend the behaviour of a given program or piece of code. For novice

programmers to fully comprehend code behaviour, they need to have a global

understanding of the piece of source code in question. Global understanding entails

gaining an overall understanding of the problem to be solved or question to be

answered before trying to understand the minute details of the task. This

understanding already starts to develop in the early ‘previewing’ SCC strategies (e.g.

S2 – previewing the code by identifying data structures) suggested by Fitzgerald et al.

(2005). Comprehension can also be enhanced through pattern recognition where

similar or related code elements are classified into categories (Kpalma & Ronsin,

2007). In answering code-based questions, patterns can be identified in terms of both

syntax and semantics (Fitzgerald et al., 2005).

Similar to solving many real-world problems, the solving of SCC problems also

requires the application of logical reasoning processes (Butler & Morgan, 2007). In

SCC problems, test cases can, for example, be used to check the logic of both basic

and advanced conditions (Srikant & Aggarwal, 2014). To evaluate these test cases, a

programmer will typically conduct a walkthrough of the given source code (see S9 in

Table 1). Other ways in which programmers can apply logical reasoning, is by

strategising (S10) about how they would solve the given problem if they had to write

the code from scratch or by asking themselves specific questions (e.g. S18 – Posing

questions) that could help with their comprehension of a given piece of code.

Examples of such questions include: What should I do? What alternative courses of

action do I have available? Which alternative courses of action should I select to use?

Why should I use these alternative courses of action? What are the consequences of

using these alternatives? (Eisenführ, Weber & Langer, 2010; Herrmann, 2017;

Uzonwanne, 2016).

Strategies such as grouping (S11), differentiation (S12), elimination (S13), and

guessing (S14) are typically associated with the answering of MCQs, because there

are multiple answer options to choose from (Complete Test Preparation Inc., 2014).

On the other hand, the thoroughness strategy (S15), where an answer is re-checked

to confirm the correctness thereof, can be applied to any type of question. Frederick

(2005, p. 35) states that people should have “the ability or disposition to resist reporting

the response that first comes to mind” – thereby suggesting that, regardless of the

119

type of question, an answer to a question should always be evaluated to confirm the

correctness thereof.

Given the relative simplicity of the code-based questions used in Fitzgerald et

al.'s (2005) study, the starting over (S16) and coming back to the question later (S17)

strategies could be regarded as typical novice strategies that one would not

necessarily expect to observe with expert programmers (unless the complexity of the

questions was really high).

The doodling strategy (S19) was identified by Lister et al. (2004) as a strategy

typically used by programming experts to better comprehend source code. In various

other studies, it has been found that students who make annotations or sketches

during SCC were more successful than those who did not (Cunningham et al., 2017;

Fitzgerald et al., 2005). However, in Xie et al.'s (2018) study, some of the participants

specifically mentioned that they did not use doodles because they found it time-

consuming and unnecessary.

From this discussion, it is evident that although there are various SCC

strategies that have previously been identified, some of these strategies seem to be

more novice-specific. The format in which the SCC question is presented could also

impact the choice of comprehension strategies used by the programmer. As such, it

is possible that not all of the strategies discussed here would necessarily result in

efficient SCC. The next section presents the research design and procedure that was

followed to identify strategies that expert programmers follow while comprehending

source code.

3. Research Design and Method

A narrative research approach based on Plowright's (2011) Frameworks for an

Integrated Methodology (FraIM) was adhered to in this study. The data source

management strategy was a case study. Data was mainly collected through face-to-

face decoding interviews (Middendorf & Pace, 2004) (as a means of ‘asking

questions’), while observations were used as a supplementary strategy. The study

population consisted of CS instructors from a selected South African university. From

this population, five instructors were purposefully selected (Cooper & Schindler, 2013)

based on their experience in teaching programming courses. This sample can also be

regarded as convenient (Patton, 2015), since the selected participants were in close

proximity to the researcher and therefore easily reachable. Ethical clearance for this

120

study was obtained from the selected institution and all ethical considerations were

adhered to throughout the study investigations.

3.1. Decoding interviews

Decoding interviews are typically regarded as intellectually very demanding

(Middendorf & Pace, 2004), where a single interviewer can easily get lost in the details.

Pace (2017) therefore recommends that this type of interview be conducted by at least

two interviewers, as two minds will be in a better position to control the interview

process. Both interviewers should be able to verbalise their thinking, challenge

interviewees’ explanations, and summarise the interviewees’ thinking back to them at

an abstract level (Shopkow, Middendorf & Pace, 2013). As members of the same

discipline are more likely to share common expert blind spots, Pace (2017) also

suggests using a second interviewer from outside the discipline in question. Such an

interviewer will be more likely to notice when mental steps are not well explained.

Since we were unable to find a readily available individual with the relevant decoding-

interview experience from outside the CS discipline, we instead selected a non-

teaching CS researcher who had some decoding-interview experience as the second

interviewer. The decision was also influenced by the context of this research activity.

Given the highly discipline-specific nature of SCC, someone from outside the

discipline might not necessarily be able to follow the reasoning of the interviewees and

could find it difficult to instantly think of appropriate and relevant probing questions to

ask.

Separate decoding interviews were conducted with each of the five selected

participants. The principal researcher (the first author) acted as the main interviewer,

while the second interviewer (as described above) played a supporting role. The

proceedings of each interview were audio recorded with permission of the participant.

Where relevant, observations were also recorded by the principal researcher. The

main purpose of the decoding interviews was to uncover the explicit mental strategies

and steps followed by participants during an SCC task. In the first part of the decoding

interview, each participant was asked to explain the steps they would follow when

requested to predict the output of any piece of source code provided on a piece of

paper. The participants’ responses to this general question allowed the interviewers a

first glance at some of the basic SCC strategies utilised by expert programmers.

121

In order to uncover more explicit details regarding the nature of the shared strategies,

it was necessary to present the participants with a real SCC task. In the second part

of the interview, each participant was therefore presented with a real SCC problem

and asked to illustrate how they would implement their SCC strategy (as explained in

the first part of the interview) to solve the given problem. The question selected for this

activity was sourced from the original set of 12 MCQs used in Lister et al.'s (2004)

study. The selected question (Question 6 – see Figure 1) was identified as the second

most challenging question in the Lister et al. (2004) study. This question was

particularly selected as it covers a wider range of concepts (e.g. Boolean variables,

for loops, array indices, and use of return to terminate the for loop) than the most

challenging question (Question 12, which mainly focuses on arrays). In answering the

selected question, the missing piece of code had to be identified from the five given

options. (Note: The correct answer is Option B). The only change made to the question

was to convert the original Java code into C# (which was the language mainly used

by participants in their teaching). The code line numbers as indicated in Figure 1 were

only added in aid of the discussion that follows in Section 4.

3.2. Data analysis

An adapted version of Creswell and Creswell's (2017) narrative Data Analysis

Framework guided the transcription of the audio recordings (made during the decoding

interviews), as well as the analysis of the resultant narrative data. Considering the

open-endedness of the decoding-interview proceedings, a fuzzy-validation strategy

(Parcell & Rafferty, 2017) was employed to clean the data. This strategy allows some

corrections to the data if there is a close match or known answer. The resulting

transcripts were validated by each participant as part of member checking (Lincoln &

Guba, 1985). Inherently, it is well-accepted that in dealing with narrative inquiries, the

researcher is regarded as the instrument (Patton, 2015). As such, we had to immerse

ourselves in the data to be fully familiar with its breadth and depth (Braun & Clarke,

2006). This was achieved through several counts of listening and re-listening to the

audio recordings, coupled with intensive reading and re-reading of the transcripts.

After immersing ourselves in the data, we were able to decide on a coding plan

that would help with the analysis of the data in order to address the research

questions. The five validated transcripts were imported into NVivo 12 and codes were

created based on the strategies identified in the data. Subsequently, words and/or

122

short phrases (Saldaña, 2016) containing indications of the relevant strategies or

steps were extracted (under the guidance of the theoretical guidelines from literature)

from the imported transcripts onto the various nodes (forming codes) created on

NVivo. As coding gives rise to recurring themes (Saldaña, 2016), the extraction and

movement of the relevant text gave birth to such themes. For each theme, NVivo

generated the frequency of occurrence, hence making it easier to put the data back

together to make new meaning in relation to fully answering the research questions of

the study (Lewins & Silver, 2007).

Figure 1: Code tracing question used in decoding interview

123

3.3. Validation

After completion of the data analysis, an initial step-by-step framework for efficient

SCC was compiled. In order to enhance the validity of the framework, we deemed it

necessary to have this framework evaluated and validated by an informed audience.

The validation was deemed necessary to enhance the trustworthiness (Schwandt,

Lincoln & Guba, 2007; Guba, 1981) of this study’s research findings. In this regard,

two separate validation activities were conducted. First, the second decoding

interviewer reviewed the initial framework to confirm that the identified strategies and

steps were a true representation of the data gathered during the decoding interview;

and to check all the statements for clarity and ambiguity. Second, a validation meeting

was arranged with five participants (one junior lecturer, a postdoctoral student, and

three professors) from the CS department. One of the professors earlier participated

in the decoding interviews (as described in Section 3.2). The purpose of this meeting

was to further check for possible ambiguities in the proposed steps/strategies. In order

to validate the implementability and usefulness of the framework, participants were

requested to follow the framework steps (as closely as possible) while answering two

SCC questions. After an explanation of the framework, participants worked on solving

the first problem under the guidance of the principal researcher. For the second

question, each participant independently followed the framework steps to answer the

question. This was followed by an open discussion where participants shared their

experiences in using the framework to answer the two questions. Some issues

regarding the wording of some of the steps came to light and recommendations for

possible changes and additions were discussed. Based on the feedback received

during this validation meeting, a few minor changes were made to the initial

framework. The resulting, final framework is presented in Section 5.

4. Findings and Interpretation

Based on the analysis of the decoding-interview transcripts, 11 key SCC strategies

(techniques or reasoning) were observed with our experts. In the following sub-

sections, each of these strategies is presented together with evidence of its

occurrence.

124

4.1. Self-orientation

During self-orientation, programmers typically read the question and perform a lot of

code previewing on related aspects as suggested by Fitzgerald et al. (2005).

Application of this strategy was identified in all our participants, with a total of 18

occurrences. Participant 4 (P4) employed the strategy the most, with eight

occurrences.

As part of his self-orientation, P4 shared very specific details about how he

typically starts to comprehend a piece of source code and provided reasons for his

actions. Linking to the importance of reading the question description and code

statement (Fitzgerald et al., 2005; Simon et al., 2009), P4 also provided some insight

regarding the reading intensity he would employ in the process:

“Whenever I read code, I browse through it very quickly, not looking at detail. I

try to get the basic idea and then I browse through it again. So, I do not read

once from top to bottom and then I am done – never! I read through a piece of

code more than once – three, four, five times ... some of the details will go slow,

some of them will be quick depending on my familiarity with that specific code

fragment. ... I will go and look at it globally. Again, I will make sure that my

conceptual understanding of what it is supposed to be, is in order.”

From this excerpt, it is apparent that P4 read the source code more than once [i.e.

reread – (Moore, Zabrucky & Commander, 1997)] to ensure that he attained the

correct understanding. Expert programmers tend to read the code at least twice (even

if they understood it at first) just to confirm their original understanding (Simon, Lopez,

Sutton & Clear 2009). To confirm the importance of rereading code, P4 was asked if

he ever reads a piece of code just once, even if it is very simple. In response, he said:

“No, it depends on the length. If it is two lines of code, yes, then I might read it more

than once by looking at it once. I mean, your brain can cognitively observe a thing

more than once, while visually looking at it once.” This response from P4 could serve

as an indication that experts understand that there is some coordination between

seeing something and processing it in the brain, as reading is cognitive in nature

(O’Brien & Buckley, 2001).

 P4 further pointed out that the self-orientation process may not necessarily be

a smooth one, as there might be instances where the process would have to go a bit

slower (e.g. if he is being challenged to understand some components of the code or

problem). As sequential code reading is common with novice programmers (Letovsky,

125

1987), it is important to note that P4 would only resort to sequential code reading if

there were compelling circumstances. Otherwise, he would apply high-level strategies

such as global reasoning and conceptual understanding, as suggested by Fitzgerald

et al. (2005).

4.2. Keyword identification

A keyword is a word or concept that provides preliminary ideas on the significance of

such words/concepts in the task to be tackled, hence pre-empting a person to

remember it throughout the task. As indicated by Powell et al. (2004), there are

different ways that can be used to identify keywords while comprehending source

code. Two occurrences of using keywords were identified in two of the participants. In

this regard, P2 said: “What will catch my attention are the keywords. If I have syntax

highlighting, it is obviously a lot easier to identify the keywords.” This suggests that

while using an integrated development environment (IDE) such as Visual Studio that

provides this colour functionality, P2 would take the advantage of the built-in syntax

highlighting (Sarkar, 2015) to identify important words in the code.

Another participant, P4, took advantage of the keywords contained in the

problem specifications by earmarking them as his main focus. He explicitly indicated

that the other words were just there to link all the ideas together: “The first thing to do

is to make sure that I understand the question. You have helped me a bit by boldfacing

some words. So, I will read the question, focusing only on the boldfaced words. Then

I will read it again, and I will boldface in my mind some other words such as array,

method, and sorted. So, these are the words that immediately come to mind. The other

words glue everything together.” In this regard, it should be noted that, in the question

presented to participants (see Figure 1), words that referred to specific coding

concepts were formatted in a different type face – merely to distinguish it from the

normal sentence text. P4 took advantage of our formatting strategy by using these

words to mentally prepare himself for his SCC endeavour and to enhance his

understanding of what was required of him in answering the question.

4.3. Data structure identification

The identification of data structures entails locating the place where a

variable/constant or an object is first encountered (i.e. declared), and identifying the

value originally assigned to it (i.e. instantiation or initialisation). The identification

126

occurs mostly during the previewing strategies identified by Fitzgerald et al. (2005). If

a data structure is unfamiliar to a programmer, they could resort to using the

understanding new concept (semantic) strategy, thereby suggesting that S2, S3, and

S5 may be usable in the identification of data structures. Four occurrences of this

strategy were identified in the participants of this study. P3 employed the strategy the

most, with three occurrences. P2 indicated that, although she would do it faster than

students might do it (as a result of experience gathered over many years), she would

still identify the data structures involved in a given piece of code. This is a very valid

statement, since identifying and understanding data structures is a challenge often

experienced by novice programmers (Goldman et al., 2008; Jimoyiannis, 2011;

Litvinov et al., 2017; Ma, Ferguson, Roper & Wood, 2011; Izu, Weerasinghe & Pope,

2016). In this regard, P2 said: “I do not have to look line-by-line and explain to myself

what is happening. I can follow it much quicker than a student might. So, there might

be things that I skip, but I would still look at the variables.” P2’s revelation that she

would skip some steps, could point to an expert blind spot – causing her not to share

the exact same steps she would personally follow while teaching her students. This

action could have a negative impact on the SCC understanding of her students

(Ambrose, Bridges, DiPietro, Lovett & Norman, 2010).

4.4. Deduction of meaning from context

Deduction of meaning from context entails understanding the meaning of certain

challenging concepts from reading associated statements or pieces of text. This could

form part of Fitzgerald et al.'s (2005) understanding new concepts (semantic) (S5)

strategy. In order to deduce meaning from the problem context, expert programmers

follow various courses of action. Three of the participants in this study (by means of

four occurrences) shared what they would do if they came across difficult or

challenging concepts. P4 employed this strategy the most, with two occurrences. He

shared the following in this regard: “So I carry on, and the context of the global view

might clarify that little piece that I do not understand. It happens quite often that if I

understand something globally, it will lead me to the details that I do not understand,

and it becomes easier. It is all a matter of context. It is easier to understand difficult

parts if I have the context to which they belong.” It therefore becomes evident that

failing to understand how a specific concept is used does not necessarily block the

understanding of experts in terms of how that concept works. As established by

127

Fitzgerald et al. (2005) and observed with P4, experts do not have a problem to

proceed with subsequent steps, because they believe that such steps may give them

some idea(s) that could help to improve their understanding of difficult or unclear

concepts.

4.5. Strategic thinking

Strategic thinking involves the use of high-level and critical thinking as well as logical

reasoning in both understanding and solving a problem, thereby approaching this

problem from a variety of angles or differing perspectives (Grundy, 2014). Activities

performed as part of the strategising (S10) and posing questions (S18) strategies, as

suggested by Fitzgerald et al. (2005), require high-level reasoning (Lister et al., 2004).

These strategies therefore challenge programmers to tap into their strategic skills.

Fifteen occurrences were identified where this strategy was used. P4 employed the

strategy the most, with seven occurrences. It is impossible not to use logical/strategic

reasoning processes in problem solving (Butler & Morgan, 2007). P4 used an example

of a repetition structure to explain his reasoning while dealing with such a structure: “If

I read code, let us say there is a while loop. The first things I look for are: Are the

three elements there? (Do not look at the code, look if those three elements are there.)

Is there a condition? Is the condition initialised? Is there a place somewhere in the

loop where the conditions will be changed? If those three elements are not there, the

while is not going to work.” As can be seen from this excerpt, P4’s strategic reasoning

allowed him to understand that it would be useless to read the code further if the

conditions under which such a repetition structure would operate are not met.

4.6. Walkthroughs

Walkthroughs are defined as “simply reading the code carefully in the order it would

be executed (except for branch points, where all branches are considered serially), to

careful simulation, where the [programmer] attempts to mimic as closely as possible

the actions of the [computer/compiler] that executes the code” (Jeffries, 1982, p. 12).

Sixteen occurrences of this strategy were identified. P4 employed walkthroughs the

most, with seven occurrences.

There were several instances where participants modelled this strategy through

their mental actions, as suggested by Hertz and Jump (2013). P2 in particular, said: “I

will do a trace table. And I will draw and say, this is where I am tracing the code. I will

128

carry on in another trace table. If I have the code on a piece of paper, I will actually go

and write – in line 1, this is what is happening, and this is my variable. In line 2, this

is what is happening. In line 3, we are making a function call to that method. And then

I will jump to that method and associate it with lines and actually write out a picture of

what is happening.” In this instance, P2 was observed physically drawing a trace table

and putting in arbitrary labels for the respective input and output values of variables.

She was actually trying to make her SCC steps or processes as visible as possible

(Chou & Sun, 2013) and also modelling what was happening in her mind (Hertz &

Jump, 2013).

With regard to situations where the use of test cases might not be specifically

feasible, other participants indicated that they would not use test cases as suggested

by Srikant and Aggarwal (2014), because it would be time-consuming to consider all

cases available in each scenario. In this regard, P2 said: “Let us say I have an array

of 100 elements, I am not going to sit in class and draw 100 things on my trace table,

so I will do a few.” However, P2 would be careful in selecting a limited set of test cases

that would at least cover the “worst, average and best cases”, thereby accommodating

for ‘testing boundary or error conditions’ as specified by Fitzgerald et al. (2005).

4.7. Revisit previous stages

In executing the revisit previous stages strategy, a programmer moves back and forth

between different parts of the question (problem specification and/or code). This

strategy is typically performed to ensure complete understanding of concepts and to

integrate the various aspects contained in the question to be answered and/or problem

to be solved. Five occurrences of this strategy were identified among the participants

in this study. P3 employed the strategy the most, with three occurrences.

As an indication that P2 would check previous occurrences of a certain variable

if a need arises, she said: “And you can always refer back if you forget that there was

this variable.” Similarly, P3 said: “If it is something I cannot fit into my working memory

and reliably remember what happened earlier in the program, I have to continually

refer back to the previous part of the program just to familiarise myself again.” It can

be deduced from P3’s excerpt that this strategy is not applied all the time. Instead,

participants (as experts) employ the notion of the capacity of the working memory

(Miller, 1956), to say there is no need to revisit the previous stages if the information

needed can be recalled from the working memory.

129

4.8. Doodling

Doodles or annotations refer to the making of some drawings, sketches or writings

(i.e. of some variable values) while solving a problem. These ‘ideas’ can then easily

be referenced when deemed necessary (Lister et al., 2004). The use of doodles has

also been confirmed as a valuable strategy in correctly solving SCC problems

(Cunningham et al., 2017; Fitzgerald et al., 2005; Lister et al., 2004). Interpreting

doodles can also help to reveal the programmer’s thinking patterns while solving a

problem (Hertz & Jump, 2013). In this study, the use of annotations or doodles was

only observed in one participant (P2). In addition to the trace table she drew (see

Section 4.6), there was another observed occurrence of doodling where she just wrote

‘worst’, ‘best’ and, ‘avg’ and circled them. This indicated that she was thinking of the

three test cases she could use to confirm her answer. Due to an oversight by the

interview panel, these artefacts were not retained for further analysis.

4.9. Thoroughness

The thoroughness strategy is characterised by the careful examination of the attained

solution to a problem in order to confirm the correctness of the solution (or answer)

(Fitzgerald et al., 2005). Three occurrences of this strategy were observed with P2.

While trying to find the correct answer, she tentatively identified option B as the correct

answer: “So, I will mark B as a possible solution. Because at the moment, without

going really in depth and using a test case, it looks to me like it will work.” What is of

importance here is that she did not stop there. Instead, she continued and said: “So I

will just go to B and I will check it again.” In this way, she resisted presenting the

answer she first arrived at as her final answer (Frederick, 2005).

4.10. Pattern recognition

During pattern recognition, similar or related code elements are identified and

consequently thought of and treated collectively (Kpalma & Ronsi, 2007). Two

occurrences of pattern recognition were observed in P5. While studying answer option

A (see Figure 1), he was observed thoroughly checking Line 8, but when he got to

Line 16, he just hovered his pen over that line. As a result of this observation, the

second interviewer posed the following question to him: “Did you use the pattern from

option A and apply it to option B?” In response, P5 said: “Yes, I did not have to check

whether this condition makes sense again.” During SCC, both syntactical and

130

semantical patterns can be valuable in helping programmers make decisions that

could help them arrive at the desired comprehension or answer to a code-related

question. Ideas about these patterns could come from the programmers’ prior

knowledge or their previous interactions with code syntax and semantics (Fitzgerald

et al., 2005).

4.11. Group answer options

The grouping (S11), differentiation (S12) and elimination (S13) strategies are often

used together during SCC (Fitzgerald et al., 2005). In following these strategies,

programmers ultimately aim to either eliminate answer options or identify answer

options to focus on first. Instances of all three these strategies were identified among

the expert programmers in this study. Given the close relation between these

strategies, they are categorised under one main strategy – group answer options.

4.11.1. Grouping

When applying a grouping strategy during SCC, a programmer specifically tries to

identify similarities and differences in the provided answer options in order to form

answer groups. This is done with the objective of either including or excluding entire

groups of answer options as possible answers (Fitzgerald et al., 2005). Two

occurrences of grouping were observed in this study. While solving the given SCC

problem, P1 was observed checking lines 5, 14, 20, 27 and 34 (see Figure 1) and was

consequently asked what he was doing. He explained that in answer options A, C, and

D, the boolean variable b was declared before the for loop, while it was not declared

before the for loop in options B and E. In doing so, he was trying to establish which

group of answer options he should focus on first (as a time-saving strategy). Although

the actions of P1 could also be regarded as pattern recognition (see Section 4.10), the

reason he provided for the grouping led to this action being classified as an example

of using a ‘grouping’ strategy. This also corresponds with Fitzgerald et al.’s (2005)

explanation of the grouping strategy.

4.11.2. Differentiation

When applying the differentiation strategy, a programmer explicitly looks for the

differences between the given alternatives or lines of code (Fitzgerald et al., 2005).

There were 15 occurrences of this strategy identified in all the participants. P1

131

employed the strategy the most, with seven occurrences. He specifically said: “What

I am also trying to do is to find out what the differences are in the five options.”

Understanding these differences helped him to decide which alternative answers to

pursue further (i.e. possibly correct) and which ones to discard (i.e. possibly incorrect)

immediately.

4.11.3. Elimination

In the elimination strategy, a person uses some criterion to judge specific alternatives

as undesirable (Fitzgerald et al., 2005). A total of 16 occurrences of this strategy were

observed in all the participants. P1 employed this strategy the most, with seven

occurrences. Using the term ‘discard’ for elimination, P5 said: “But I can immediately

discard this option [Option A], being inefficient … let us see if I can just take a global

approach and see one of them that I can immediately discard.” As can be seen from

the excerpt, P5 wanted to group efficient and inefficient alternative answers so that he

could start by eliminating the inefficient ones first.

5. Framework for Efficient Source Code Comprehension

By using the strategies identified in Section 4, as well as insights gained from

observing the explicit SCC strategies followed by the expert participants during the

decoding interviews, a step-by-step framework for efficient SCC (see Table 2) was

formulated. This framework contains 10 key steps linked to each of the relevant mental

strategies (techniques and reasoning strategies) used by the experts in executing

each of these steps (as discussed in Section 4). However, within some of the main

steps, there are several sub-steps that can be performed. In using this framework, it

is recommended that users put a tick mark (✓) against each step/sub-step they use,

and a cross mark () against any step/sub-step they do not use. The additional

resource(s) mentioned in Step 1 could include official study material, resources from

the Internet, or an expert (e.g. instructor, tutor, student assistant). It is also suggested

that users of this framework should be encouraged to revisit previous steps whenever

they get stuck.

132

Table 2: Proposed step-by step framework for efficient SCC

 Step-by-step framework for answering a source code comprehension question

Strategies Applied Steps Description

• Self-orientation

• Keyword identification

• Strategic thinking

• Revisit previous stages

• Doodling

1 Read through the question statement/requirements at least twice (until you understand what you have to do).

• Highlight/mark important words and/or phrases and make sure you understand their meaning or implication.

• If there are any words and/or phrases that you do not understand, consult any additional resource(s)* for clarification.

• If I were to write the code to solve the problem, how would I do it?

• Self-orientation

• Revisit previous stages

2 Preview all the given code by scanning through it at least twice (to get a global overview).

• Do not look at detailed syntax.

• Self-orientation

• Data structure identification

• Strategic thinking

• Walkthroughs

• Doodling

• Pattern recognition

3 Scan through the code line-by-line.

• Identify all the data structures.

• Identify all the control structures (e.g. Sequence, Iteration, Selection).

• Identify any methods/functions/properties.

• Make sure that you understand the syntax and meaning (e.g. semantics) of each individual code fragment/statement.

• Mark any code syntax and/or code fragments/statements that you do not understand.

• Mark code fragments/statements that are similar or repeated.

• Self-orientation 4 If there is code syntax that you do not understand, consult any additional resource(s) for clarification.

• Deduction of meaning from
context

5 If there are still code fragments/statements that you do not understand, consider the context in which the fragment/statement is
used. (Note: A more global view of the context in which the code fragment/statement is used might help to clarify your
misunderstanding).

• Self-orientation

• Strategic thinking

• Revisit previous stages

• Doodling

6 Scan through all the code again (as many times as necessary) to make sure that you fully understand how everything fits together.

• Repeat Step 3, Step 4 and/or Step 5 if necessary.

• Draw a diagram to visualise your understanding of the program logic (if applicable).

133

 Step-by-step framework for answering a source code comprehension question (continued)

Strategies Applied Steps Description

• Strategic thinking

• Group answer options

• Pattern recognition

7 If the question requires you to select the correct code fragment/statement(s) from multiple options:

• Identify the option(s) that look(s) more correct. (Consider these first in Step 8).

• Identify options that could possibly be incorrect. (Only consider these ‘possibly incorrect’

options if none of the ‘more correct’ options turn out to be a valid/correct answer).

• Explain to yourself why you think some option(s) could be more correct than others.

• Self-orientation

• Strategic thinking

• Walkthroughs

• Doodling

8 Trace through the code by executing (from the top) each line according to the rules of the programming language.

• Whenever a new variable/constant/object is created, write down its name and the initial value(s) (if applicable) on a piece
of paper. (Suggestion: Start a trace table).

• Record any changes to the value(s) of the variables/objects on your piece of paper.

• Make any applicable drawings, notes or annotations that could help you keep track of or follow the program logic. (Do not
try to keep it all in your head!)

• Strategic thinking

• Revisit previous stages

9 Write down your answer.

• If it is not a valid answer, repeat Step 8 using one of the other answer options.

• Strategic thinking

• Walkthroughs

• Revisit previous stages

• Thoroughness

10 Repeat Step 8 to confirm the correctness of your final answer.

• Use your own test case values (if not provided).

134

6. Conclusion

The gap that exists between the ways in which novice and expert programmers

comprehend source code continues to be a challenge. Better understanding of those

mental operations that have become invisible to instructors (because they perform it

automatically), could be valuable in narrowing this gap. This can be achieved by

uncovering the explicit nature of the mental techniques and reasoning strategies

followed by experts during SCC. By focusing on Step 2 of the DtDs framework, this

study utilised decoding interviews to systematically deconstruct mental operations

performed by expert programmers while comprehending a piece of source code.

Thematic analysis of the data collected during the decoding interviews revealed 11

key strategies that expert programmers typically employ during SCC. What also

became apparent, is that experts each approach SCC differently. At any stage during

the SCC process, the experts’ prior knowledge or experience can trigger them to use

specific strategies. The experts also find it easy to switch to a completely different

strategy based on what they are currently thinking, as well as information or details

that they are encountering.

The SCC techniques and reasoning strategies identified in this study, in

combination with existing knowledge (from literature and based on the authors’ own

experience), were used to develop a step-by-step framework for efficient SCC. The

main purpose of this framework is to create awareness among instructors regarding

the explicit mental operations required for efficient SCC. Knowledge of the nature of

these mental operations could firstly help instructors to better understand their own

expert blind spots. Moreover, as a practical contribution within the realm of the DtDs

philosophy (Middendorf & Pace, 2004), this framework could also serve as a starting

point for devising explicit strategies to model these mental operations to students and

to help them master each of the identified strategies. It is also believed that the

proposed framework has the potential to make a theoretical contribution to the field of

CS education as a source of further research on efficient SCC strategies. This

framework could also stimulate further research regarding the application and

refinement of the framework itself.

The distinct decoding-interview approach followed in this study – where experts

were observed and questioned (regarding their mental actions) while performing an

actual discipline-specific task – could be regarded as an extension of the traditional

135

decoding-interview approach. In disciplines where it is possible to observe actual tasks

in real time, a similar decoding-interview strategy could be used to uncover even more

explicit details regarding the mental operations required to overcome discipline-

specific student learning bottlenecks. This study also serves as further proof that the

DtDs paradigm – as a scientific way of thinking and learning that is gaining popularity

worldwide – can be used in the investigation of classroom practices as suggested by

Middendorf and Pace (2004). Consequently, such a research approach should hold

particular appeal for instructors working in the Science, Technology, Engineering and

Mathematics (STEM) education fields.

7. References

Ambrose, A. S., Bridges, W. M., DiPietro, M., Lovett, C. M., & Norman, K. M. (2010).
How learning works : Seven research-based principles for smart teaching.
California: John Wiley & Sons. https://doi.org/10.1002/mop.21454

Anderson, N. J., Bachman, L., Perkins, K., & Cohen, A. (1991). An exploratory study
into the construct validity of a reading comprehension test: Triangulation of data
sources. Language Testing - LANG TEST, 8(1), 41–66.
https://doi.org/10.1177/026553229100800104

Braun, V., & Clarke, V. (2006). Using thematic analysis in Psychology. Qualitative
Research in Psychology, 3(2), 77–101.
https://doi.org/10.1191/1478088706qp063oa

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming
students studying high level and low feedback concepts. In R. Atkinson, C.
McBeath, A. S. Swee Kit, & C. Cheers (Eds.), Proceedings of ascilite Singapore
2007 ICT: Providing Choices for Learners and Learning (pp. 99–107). Nanyang
Singapore: Nanyang Technological University.

Chou, C. Y., & Sun, P. F. (2013). An educational tool for visualizing students’
program tracing processes. Computer Applications in Engineering Education,
21(3), 432–438. https://doi.org/10.1002/cae.20488

Complete Test Preparation Inc. (2014). GED Test Strategy! Winning multiple choice
strategies for the GED: Winning Multiple Choice Strategies for the GED Exam.
Victoria BC: Complete Test Preparation Inc.

Cooper, D., & Schindler, P. (2013). Business research methods (12th ed.). New
York: McGraw-Hill Education.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative,
and mixed methods approaches (5th ed.). Thousand Oaks: Sage.

Cunningham, K., Blanchard, S., Ericson, B., & Guzdial, M. (2017). Using tracing and
sketching to solve programming problems. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (pp. 164–172).
https://doi.org/10.1145/3105726.3106190

de Raadt, M. (2007). A review of Australasian investigations into problem solving
and the novice programmer. Computer Science Education, 17(3), 201–213.
https://doi.org/10.1080/08993400701538104

Diaz, A., Middendorf, J., Pace, D., & Shopkow, L. (2008). The history learning roject:
A department “decodes” its students. Journal of American History, 94(4), 1211–

136

1224. https://doi.org/10.2307/25095328
Dunsmore, A., & Roper, M. (2000). A comparative evaluation of program

comprehension measures. The Journal of Systems and Software, 52(3), 121–
129.

Eisenführ, F., Weber, M., & Langer, T. (2010). Rational decision making. Berlin:
Springer-Verlag Berlin Heidelberg.

Feigenspan, J., Siegmund, N., & Fruth, J. (2011). On the role of program
comprehension in embedded systems. Softwaretechnik-Trends, 31(2).

Fitzgerald, S., Simon, B., & Thomas, L. (2005). Strategies that students use to trace
code: An analysis based in grounded theory. In Proceedings of the First
International Workshop on Computing Education Research (pp. 69–80). New
York: Association for Computing Machinery.
https://doi.org/10.1145/1089786.1089793

Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic
Perspectives, 19(4), 25–42. https://doi.org/10.1257/089533005775196732

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., &
Zilles, C. (2008). Identifying important and difficult concepts in introductory
computing courses using a delphi process. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education (pp. 256–260). Portland,
Oregon: Association for Computing Machinery.
https://doi.org/10.1145/1352135.1352226

Grundy, T. (2014). Demystifying strategic thinking: lessons from leading CEOs. New
Delhi: Kogan Page Publishers.

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries.
Educational Communication and Technology, 29(2), 75–91.

Herrmann, J. W. (2017). Rational decision making. In N. Balakrishnan, T. Colton, B.
Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef:
Statistics Reference Online (pp. 1–9). John Wiley & Sons Ltd.
https://doi.org/10.1002/9781118445112.stat07928

Hertz, M., & Jump, M. (2013). Trace-based teaching in early programming courses.
In Proceedings of the 44th ACM technical symposium on Computer science
education (pp. 561–566). Denver, Colorado: ACM.
https://doi.org/10.1145/2445196.2445364

Illeris, K. (2003). Learning, identity and self-orientation in youth. Nordic Journal of
Youth Research, 11(4), 357–373. https://doi.org/10.4324/9781315620565-6

Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice
programmers. In Proceedings of AERA annual meeting (pp. 1–17). New York:
American Educational Research Association.

Jimoyiannis, A. (2011). Using SOLO taxonomy to explore students’ mental models of
the programming variable and the assignment statement. Themes in Science
and Technology Education, 4(2), 53–74.

Khomokhoana, P. J., & Nel, L. (2020). Decoding source code comprehension:
Bottlenecks experienced by senior computer science students. In B. Tait, J.
Kroeze, & S. Gruner (Eds.), ICT Education (pp. 17–32). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-030-35629-3_2

Kpalma, K., & Ronsin, J. (2007). An overview of advances of pattern recognition
systems in computer Vision. In G. Obinata & A. Dutta (Eds.), Vision systems:
Segmentation and pattern recognition (pp. 357–382). Vienna, Austria:
IntechOpen. https://doi.org/10.5772/4960

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of

137

Systems and Software, 7(4), 325–339. https://doi.org/10.1016/0164-
1212(87)90032-X

Lewins, A., & Silver, C. (2007). Using software in qualitative research: A step-by-step
guide. London: Sage Publications.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. California: Sage
Publications.

Lister, R., Fone, W., McCartney, R., Seppälä, O., Adams, E. S., Hamer, J., …
Sanders, K. (2004). A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36(4), 119–150.
https://doi.org/10.1145/1041624.1041673

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing
the forest for the trees: Novice programmers and the SOLO taxonomy. SIGCSE
Bull., 38(3), 118–122. https://doi.org/10.1145/1140123.1140157

Littman, D. C., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental models and
software maintenance. Journal of Systems and Software, 7(4), 341–355.
https://doi.org/10.1016/0164-1212(87)90033-1

Litvinov, S., Mingazov, M., Myachikov, V., Ivanov, V., Palamarchuk, Y., Sozonov, P.,
& Succi, G. (2017). A tool for visualizing the execution of programs and stack
traces especially suited for novice programmers. In Proceedings of the 12th
International Conference on Evaluation of Novel Approaches to Software
Engineering (pp. 235–240). Setubal, PRT: SCITEPRESS - Science and
Technology Publications, Lda. https://doi.org/10.5220/0006336902350240

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the
models of programming concepts held by novice programmers. Computer
Science Education, 21(1), 57–80.
https://doi.org/10.1080/08993408.2011.554722

Maalej, W., Tiarks, R., Roehm, T., Koschke, R., Feigenspan, J., Siegmund, N., …
Koschke, R. (2014). On the comprehension of program comprehension. ACM
Transactions on Software Engineering Methodology, 23(4), 31:1-31:37.
https://doi.org/10.1145/2622669

Middendorf, J., & Baer, A. (2019). Bottlenecks of information literacy. In Craig
Gibson & S. Mader (Eds.), Building teaching and learning communities: Creating
shared meaning and purpose (pp. 51–68). Chicago: ACRL Publications.

Middendorf, J., & Pace, D. (2004). Decoding the disciplines: A model for helping
students learn disciplinary ways of thinking. New Directions for Teaching and
Learning, 2004(98), 1–12. https://doi.org/10.1002/tl.142

Middendorf, J., & Shopkow, L. (2018). Overcoming student learning bottlenecks:
Decode your disciplinary critical thinking. Sterling, Virginia: Stylus Publishing,
LLC.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Review, 101(2), 343–352.
https://doi.org/10.1037/h0043158

Moore, D., Zabrucky, K., & Commander, N. E. (1997). Validation of the
metacomprehension scale. Contemporary Educational Psychology, 22, 457–
471. https://doi.org/10.1006/ceps.1997.0946

Mosemann, R., & Wiedenbeck, S. (2001). Navigation and comprehension of
programs by novice programmers. In Proceedings of the 9th International
Workshop on Program Comprehension (pp. 79–88). Toronto, Ontario: IEEE.
https://doi.org/10.1109/WPC.2001.921716

Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers.

138

American Educational Research Journal, 40(4), 905–928.
https://doi.org/10.3102/00028312040004905

O’Brien, M. P., & Buckley, J. (2001). Inference-based and expectation-based
processing in program comprehension. In Proceedings of the 9th International
Workshop on Program Comprehension. Toronto: IEEE Computer Society Press.
https://doi.org/10.1109/WPC.2001.921715

Pace, D. (2017). The decoding the disciplines paradigm: Seven steps to increased
student learning. Bloomington: Indiana University Press.

Parcell, E. S., & Rafferty, K. A. (2017). Interviews, recording and transcribing. In M.
Allen (Ed.), The SAGE Encyclopedia of Communication Research Methods.
Thousand Oaks: Sage Publications, Inc.
https://doi.org/10.4135/9781483381411.n275

Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory
and practice (4th ed.). Thousand Oaks: Sage Publications.

Pennington, N. (1987). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3), 295–341.
https://doi.org/10.1016/0010-0285(87)90007-7

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in
novice programmers. In Proceedings of the First Workshop on Empirical Studies
of Programmers on Empirical Studies of Programmers (pp. 213–229).
Washington, D.C.: Ablex Publishing Corp.

Plowright, D. (2011). Using mixed methods: Frameworks for an integrated
methodology. London: Sage Publications.

Pope, C., Izu, C., Weerasinghe, A., & Pope, C. (2016). A study of code design skills
in novice programmers using the SOLO taxonomy. In Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science
Education (pp. 251–259). Melbourne, VIC: Association for Computing
Machinery. https://doi.org/10.1145/2960310.2960324

Powell, N., Moore, D., Gray, J., Finlay, J., & Reaney, J. (2004). Dyslexia and
learning computer programming. SIGCSE Bull., 36(3), 242.
https://doi.org/10.1145/1026487.1008072

Saldaña, J. (2016). The coding manual for qualitative researchers. London: Sage
Publications.

Sarkar, A. (2015). The impact of syntax colouring on program comprehension. In
Proceedings of the 26th Annual Conference of the Psychology of Programming
Interest Group (pp. 49–58). Bournemouth, UK: Psychology of Programming
Interest Group.

Schwandt, T. A., Lincoln, Y. S., & Guba, E. G. (2007). Judging interpretations: But is
it rigorous? Trustworthiness and authenticity in naturalistic evaluation. New
Directions for Evaluation, 2007(114), 11–25. https://doi.org/10.1002/ev

Shopkow, L., Middendorf, J., Pace, D., Diaz, A., Middendorf, J., & Pace, D. (2013).
From bottlenecks to epistemology: Changing the conversation about the
teaching of history in colleges and Universities. In R. Thompson (Ed.), Changing
the conversation of higher education (pp. 15–38). New York: Rowman &
Littlefield.

Siegmund, J., Brechmann, A., Apel, S., Kästner, C., Liebig, J., Leich, T., & Saake, G.
(2012). Toward measuring program comprehension with functional magnetic
resonance imaging. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (pp. 1–4). Cary, North
Carolina: Association for Computing Machinery.

139

https://doi.org/10.1145/2393596.2393624
Siegmund, J., Kástner, C., Apel, S., Brechmann, A., & Saake, G. (2013). Experience

from measuring program comprehension - Toward a general framework. In S.
Kowalewski & B. Rumpe (Eds.), Software Engineering 2013 - Fachtagung des
GI-Fachbereichs Softwaretechnik. GI-Edition - Lecture Notes in Informatics
(LNI) (Vol. P-213, pp. 239–257). Bonn: Gesellschaft für Informatik e.V.

Simon, B., Lopez, M., Sutton, K., & Clear, T. (2009). Surely we must learn to read
before we learn to write! In Proceedings of the conferences in Research and
Practice in Information Technology Series (pp. 165–170). Wellington, New
Zealand: Australian Computer Society, Inc.

Srikant, S., & Aggarwal, V. (2014). A system to grade computer programming skills
using machine learning. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 1887–1896). New
York, NY: Association for Computing Machinery.
https://doi.org/10.1145/2623330.2623377

Tiarks, R. (2011). What maintenance programmers really do: An observational study.
Softwaretechnik-Trends, 31(2), 1–2.

Uzonwanne, F. C. (2016). Rational model of decision making. In A. Farazmand
(Ed.), Global Encyclopedia of Public Administration, Public Policy, and
Governance (pp. 1–6). Cham: Springer International Publishing AG.
https://doi.org/10.1007/978-3-319-31816-5_2474-1

Von Mayrhauser, A., & Vans, A. M. M. (1995). Program understanding: Models and
experiments. Advances in Computers, 40, 1–38. https://doi.org/10.1016/S0065-
2458(08)60543-4

Whalley, J., Prasad, C., & Kumar, A. (2007). Decoding doodles: Novice
programmers and their annotations. In Proceedings of the conferences in
Research and Practice in Information Technology Series (Vol. 66, pp. 171–180).
Ballarat, Victoria, Australia: Australian Computer Society, Inc.

Xie, B., Nelson, G. L., & Ko, A. J. (2018). An explicit strategy to scaffold novice
program tracing. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (pp. 344–349). New York, NY: Association for
Computing Machinery. https://doi.org/10.1145/3159450.3159527

140

Chapter 7 – Conclusions and Recommendations

7.1 Introduction

Building on the reality that SCC is a vital disciplinary skill that many higher education

students continue to struggle with, this study was set out to explore how a systematic

decoding approach can be used to uncover cognitive strategies for efficient SCC by

novice programmers. In order to address the stated aim, this study was directed by

two main research questions:

RQ1: What are the SCC challenges experienced by novice programmers?

RQ2: How can a systematic decoding approach be used to devise cognitive

strategies that could be used to address these challenges?

In order to address these main research questions, the following nine subsidiary

research questions were formulated:

• Subsidiary research questions – (guiding the literature review)

SRQ1: What are the strategies that programmers (novices and experts) follow

during the SCC process?

SRQ2: What are the challenges that influence the development of novice

programmers’ SCC skills?

SRQ3: How do cognitive and metacognitive practices influence SCC?

• Subsidiary research questions – (directing the empirical investigations)

SRQ4 (a): What are the major SCC difficulties experienced by senior CS

students?

SRQ4 (b): How can these difficulties be used to identify more common SCC

bottlenecks that should ideally already be addressed in introductory

programming courses?

SRQ5 (a): What are the cognitive processes and related cognitive strategies

employed by expert programmers during SCC?

141

SRQ5 (b): What does insight into these cognitive process strategies suggest

in terms of mental scaffolding techniques for the modelling of

efficient SCC strategies to students?

SRQ6 (a): What are the explicit mental strategies (techniques and reasoning)

that CS experts employ while comprehending source code?

SRQ6 (b): How can knowledge of these strategies be applied in the

formulation of a step-by-step framework that could ultimately

contribute towards narrowing the gap between expert and novice

thinking with regard to efficient SCC?

In this chapter, a synthesis of the study findings (covering both the literature review

and empirical investigations) is provided. This discussion is grouped according to the

relevant research questions as stipulated above. Thereafter, the major contributions

of this study are highlighted, and the study limitations are discussed. Next,

recommendations for future research are outlined. Finally, an overall conclusion to the

study is provided.

7.2 Synthesis of findings

In this section, a synthesis of the findings from the research study is presented. The

discussion is structured around the individual research questions.

7.2.1 Literature review

A comprehensive literature review was conducted to provide answers to the first three

subsidiary research questions.

SRQ1: What are the strategies that programmers (novices and experts) follow

during the SCC process?

This part of the study established the three taxonomies of common SCC strategies

that programmers use during the SCC process, which are bottom-up, top-down, and

opportunistic (or mixed) strategies. However, it has become evident that the specific

SCC strategies employed by programmers are dependent on their level of expertise

as well as the resources they have at their disposal (see Section 2.2). In support of

Storey et al.'s (2000) findings regarding SCC strategies, it could be suggested that

142

any strategy used by programmers to comprehend source code should allow them to:

(1) use a single comprehension strategy or a combination of strategies as needed; (2)

switch between SCC strategies when necessary; and (3) reduce their cognitive

overload as much as possible while comprehending source code.

SRQ2: What are the challenges that influence the development of novice

programmers’ SCC skills?

Lack of prior knowledge, lack of problem solving skills, and lack of strong mental

models have been identified as the main challenges that could influence the SCC

ability of novice programmers (see Section 2.3). Regarding these challenges, it could

be suggested that instructors should effectively engage students throughout the

course period and ensure that course activities (e.g. assignments and learning tasks)

compel students to continuously make efforts to gain and retain knowledge for future

use (see Section 2.4.1.1). This can be achieved by integrating relevant content (e.g.

topics, examples, and concepts) into the instructional strategies to help students learn

SCC skills. Although the use of pragmatic comprehension strategies (see Section

2.2.1) seems to serve programmers of different levels of expertise well, it may not be

ideal for students at elementary levels of programming to use such strategies. Instead,

some standard guidelines should be developed for use by these students. Such

guidelines should preferably be as detailed and explicit as possible.

SRQ3: How do cognitive and metacognitive practices influence SCC?

In an endeavour to understand the influence of cognitive and metacognitive practices

on SCC (see Section 2.4), the literature review highlighted how critical these practices

are in any learning environment (regardless of the discipline). It was noted in the study

that nurturing these practices is not always easy. However, students who achieve

success because of the practices, find it much easier to plan, monitor, and regulate

the mental processes in their learning (Bergin et al., 2005; Pintrich, 1999; Simons &

Bolhuis, 2004). Modelling has also been identified as an instructional strategy that can

be used to foster metacognition (Ellis, Denton & Bond, 2014; Kistner et al., 2010).

The particular activities suggested as part of the planning, monitoring, and regulation

strategies (Ambrose et al., 2010), could be incorporated as part of a ‘modelling’

instructional strategy. In executing such a modelling strategy, instructors could focus

143

on demonstrating or modelling the specific steps and/or best practice strategies that

may be intrinsic to proper planning, monitoring, and regulation. The objective would

be for students to experience first-hand how instructors (who can be regarded as

experts) manoeuvre through these steps or strategies. Afterwards, students can be

provided with opportunities to practise or implement these steps/strategies. Such a

modelling strategy could be further enhanced by coupling it with scaffolding

techniques.

For example, while modelling how best to comprehend source code, instructors can

share with students the possible strategies they think can help them. After this, they

can give reasons to students why such strategies might be useful. Ultimately, students

could then select a strategy (or combination of strategies) that they think might work

best for them. Instructors should also demonstrate flexibility – thereby encouraging

their students to change to a different strategy if a selected strategy does not work for

some reason. These are just some of the mental scaffolds believed to be vital for the

modelling of efficient SCC. As such, this enhanced modelling strategy could be

referred to as ‘integrated’ modelling. This strategy could be regarded as one of the

most effective ways to foster cognitive and metacognitive practices in the learning

process. Apart from using a think-aloud technique to demonstrate mental or expert

moves by instructors (Middendorf & Pace, 2004), the integrated modelling strategy

also combines all the advantages of the three metacognitive promotion strategies.

7.2.2 Empirical findings

The other six subsidiary research questions were answered as part of Article 1, Article

2, and Article 3. A discussion of how this was achieved is provided in the sub-sections

that follow.

Article 1

Article 1 was focused on answering the following two subsidiary research questions:

SRQ4 (a): What are the major SCC difficulties experienced by senior CS

students?

SRQ4 (b): How can knowledge of these difficulties be used to identify SCC

bottlenecks that should ideally be addressed in introductory

programming courses?

144

According to the literature, students experience several SCC difficulties. These

difficulties are related to simple programming concepts as well as more advanced

concepts. Premised on the research activities performed in this part of the study (i.e.

SCC questions tackled), three main categories of specific difficulties with SCC were

identified as experienced by senior CS students. These difficulties were related to

arrays (array index, length of an array, Boolean array, and decomposition);

programming logic (the ripple effect, guessing, and mathematical expressions); and

program control (for loop). Although most students were able to comprehend these

concepts when viewed in isolation, the level of misunderstanding often intensified

when well-understood concepts were integrated with unknown concepts into a single

piece of code. For example, if a student is able to compute the length of an array, but

does not quite understand the working of an array index, and these two concepts are

put together in a piece of code to be comprehended, the student easily gets even more

confused.

Additionally, many students did not fully understand how a for repetition structure

works – especially the difference between pre- and post-incrementation of the loop

counter variable. While comprehending source code, many students seem to expect

only concepts that they have studied before. As such, if they encounter something

new, they get completely disorganised, and hence their thinking patterns become

limited to some extent. When students fail to understand one line of code, they often

forget that what a program achieves in the end is a collective of the individual lines of

code contained in the program. Consequently, they deal with this confusion by

completely ignoring challenging code statements. Ultimately, they then base their

overall comprehension of a specific fragment of source code only on those parts that

they were able to understand. Overall, the specified difficulties revealed teaching and

learning gaps that instructors should not ignore in teaching SCC skills to novice

programmers.

The aforementioned difficulties, in combination with knowledge from supporting

literature and personal experiences of the researcher, resulted in the identification of

six SCC bottlenecks (see Section 5 of Chapter 4). The study concluded that these

bottlenecks should already be addressed in elementary programming courses. With

regard to these bottlenecks, many students are not aware of effective strategies to

145

follow while trying to comprehend code. Consequently, they end up using unreliable

strategies that are insufficient to successfully complete an SCC task. Moreover, due

to a lack of proper strategies, the problem gets amplified when students are presented

with larger SCC tasks.

Article 2

The focus of Article 2 was on answering the following two subsidiary research

questions:

SRQ5 (a): What are the cognitive processes and related cognitive strategies

employed by expert programmers during SCC?

SRQ5 (b): What does insight into these cognitive process strategies suggest

in terms of mental scaffolding techniques for the modelling of

efficient SCC strategies to students?

The literature revealed five relevant cognitive process categories (attention,

perception, memory, reading, speaking and listening, and reflective cognition) that can

be used for any problem-solving process in any discipline. Planning, cognitive

reasoning, and decision making are distinct cognitive processes within the reflective

cognition category. Although these cognitive processes may appear to be common,

the study revealed fresh perspectives by which CS instructors can view and apply

these processes in teaching. Noteworthy is that the perceptions identified in the

experts in this study, caused them to focus on issues that were not directly related to

the SCC question they were answering. Consequently, the perception-cognitive

process was not included in the proposed mental scaffolding techniques for the

modelling of efficient SCC.

Based on the aforementioned cognitive processes, 17 mental scaffolding techniques

(directly linked to one or more of these cognitive processes) for efficient SCC were

developed (see Table 1 in Chapter 5). It is proposed that programming instructors

should use these techniques as an SCC teaching aid to convey expert ways of thinking

and doing more explicitly to novice programmers. It is believed that execution of these

techniques could act as a way to scaffold students’ processes to better comprehend

146

source code, thereby improving their cognitive and metacognitive process skills in this

regard.

Article 3

The focus of Article 3 was on answering the following two subsidiary research

questions:

SRQ6 (a): What are the explicit mental strategies (techniques and reasoning)

that CS experts employ while comprehending source code?

SRQ6 (b): How can knowledge of these strategies be applied in the

formulation of a step-by-step framework that could ultimately

contribute towards narrowing the gap between expert and novice

thinking with regard to efficient SCC?

Premised on the nature of this part of the study, a set of mental strategies identified

from the literature was used as a starting point for the identification of specific

strategies employed by programming experts during SCC. Analysis of the data

collected during the decoding interviews led to the identification of 15 key strategies

for efficient SCC (see Section 4 in Article 3). Since the use of doodles or annotations

was cited by Lister et al. (2004) as a strategy that experienced programmers typically

use during SCC, it was surprising that this strategy was not used extensively by the

experts in this study. In discussing the results of their study, Xie et al. (2018) noted

that doodles are sometimes regarded as time-wasting by novice programmers. Under

stringent time limitations, expert programmers might also regard doodles as time-

consuming. Since this is not conclusive, it remains to be further investigated why

doodles were not extensively used by the expert programmers in this study,

particularly because they were not subjected to stringent time constraints. It was also

interesting to note that, while Crosby and Stelovsky (1990) mentioned that both

experienced and novice programmers pay least attention to the keywords in the

source code text, the experts in this study regarded the identification of keywords from

the problem description and code fragments provided to them, as one of their key

strategies (see Section 4 in Chapter 6).

147

By coupling the 15 identified strategies with the insights gained regarding the explicit

mental steps performed by the experts during the decoding interviews, a step-by-step

framework for efficient SCC was compiled (see Table 2 in Chapter 6). The main

intention of this framework is to create awareness among CS instructors regarding the

explicit mental operations required for efficient SCC. Within the realm of the DtDs

philosophy, the framework can also serve as a starting point for the planning of

instructional strategies to explicitly model these mental operations (steps) to students

and to help them master each of the identified strategies. It is believed that if the

content of the framework is included in the planning of instructional activities in order

to teach efficient SCC, students are highly likely to be equipped with skills that will

enable them to think about and perform SCC tasks like experts.

7.2.3 Summary

This research study was originally set out to answer the following two main research

questions:

RQ1: What are the SCC challenges experienced by novice programmers?

RQ2: How can a systematic decoding approach be used to devise cognitive

strategies that could be used to address these challenges?

This study has revealed numerous SCC challenges and difficulties as experienced by

novice programmers (both from literature and the empirical investigations of this

study). Based on the Phase 1 and Phase 2 research activities, the eight principal SCC

difficulties related to the concepts of arrays, programming logic, and programming

control were identified. These were used to develop six useful bottlenecks – describing

the main SCC challenges experienced by novice programmers. As a starting point for

the systematic decoding approach followed in this study, it was shown that students

can be a valuable source for the identification of bottlenecks that may hamper their

understanding of the discipline-specific skill of SCC.

Given the variety of concepts covered by these six bottlenecks, the remainder of the

empirical investigations focused mainly on Bottleneck 6 (Students cannot reliably think

their way through a long chain of reasoning required to comprehend a piece of source

code). As such, decoding interviews with expert programmers were used to explore

the explicit steps that these programmers would follow to overcome the stated

148

bottleneck. The decoding interviews, performed as part of Step 2 of the DtDs

framework, followed a different structure than suggested by the proponents of this

framework (Middendorf & Pace, 2004). In this study, the decoding interviews started

off in the typical manner – asking the participants to explain the steps they would follow

while executing a discipline-specific task (to predict the output of any piece of source

code provided on a piece of paper). The second part of the decoding interview was,

however, less conventional. Here, each participant was presented with a real SCC

problem and asked to illustrate how they would implement their previously shared SCC

strategy in solving the given problem. By putting the participants in a situation where

they had to illustrate their strategy in a ‘real’ situation, the researcher believes that he

was able to gain much deeper insight into the explicit cognitive strategies required for

efficient SCC.

Systematic analysis of all the data gathered as part of these interviews, guided by the

relevant research questions, led to the development of the proposed mental

scaffolding techniques for the modelling of efficient SCC (see Section 5.5 in

Chapter 5), as well as a step-by-step framework for efficient SCC (see Section 5 in

Chapter 6). It is envisioned that the proposed scaffolding techniques and the step-by-

step framework could serve as a starting point for CS instructors to model the explicit

strategies and steps as proposed by Step 3 of the DtDs framework. Ultimately, such

modelled strategies could then be incorporated as part of instructional strategies

specifically aimed at helping novice programmers to overcome the identified

bottleneck and become more efficient in the comprehension of source code.

Given the selected focus on Bottleneck 6, explicit cognitive strategies that could help

novice programmers overcome the other five bottlenecks, were not specifically

explored in this study. It should, however, be noted that both the proposed mental

scaffolding techniques for the modelling of SCC (see Chapter 5) and the step-by-step

framework (see Section 5 of Chapter 6) contain information that could be of relevance

in addressing some aspects of the other five bottlenecks.

Overall, this study has illustrated how a systematic decoding approach (encompassing

adapted versions of Step 1 and Step 2 of the DtDs framework) can be used to devise

cognitive strategies for efficient SCC. The identified cognitive strategies (and steps)

149

could ultimately be used by CS instructors to address some of the main SCC

challenges experienced by novice programmers.

7.3 Contributions of the study

The main contributions of this research study can be described in three main

categories. Firstly, this study has made a contribution to the practice of Computer

Science Education by identifying specific SCC bottlenecks that point to student

learning difficulties, which instructors should focus on in teaching introductory

programming courses. As a way to assist these instructors, the study has proposed

mental scaffolding techniques and a step-by-step framework for efficient SCC. These

techniques and strategies could be integrated as part of instructional plans. The

objective would be to create opportunities for students to better comprehend source

code upon execution of these explicit steps and strategies. It is believed that applying

these techniques and implementing the framework could ultimately help students to

think about and perform SCC tasks more like experts.

Secondly, the study contributes to the enhancement of the DtDs paradigm in the

following ways:

1. Create awareness among instructors regarding the role that a systematic

decoding approach can play in exposing the mental processes or operations

necessary for a complex discipline-specific task.

2. Show how a think-aloud technique (as part of Step 1 of the DtDs framework)

can be used in a scientific manner to uncover the core of students’ learning

bottlenecks.

3. Demonstrate a unique decoding-interview approach (as part of Step 2 of the

DtDs framework) where experts are observed and questioned (regarding their

mental actions) while they perform an actual discipline-specific task.

4. Illustrate how decoding interviews (as part of Step 2 of the DtDs framework)

can be used to also identify the actual cognitive processes followed by experts

(in addition to just exposing the mental steps skipped by experts).

150

5. Create awareness of the possibilities the DtDs paradigm holds not only for the

CS discipline, but also for other disciplines.

Third, the study contributes to the theory of Computer Science Education, as the

proposed cognitive processes as well as steps and strategies can lead to new debates

and potential new research directions. Specifically, the six identified SCC bottlenecks

could lead to more vital insights and further investigations into ways students can be

helped to overcome these bottlenecks. Moreover, this study has established various

cognitive teaching and learning aids for instructors to use in their efforts to help

students improve their SCC skills.

7.4 Limitations of the study

Narrative data-related threats, including trustworthiness issues such as credibility,

transferability, dependability, confirmability, and integrity (see Section 3.4 – Chapter

3), as well as potential issues related to the specific research procedures (data source

management strategies, population and sampling strategies, data collection methods,

and data analysis) (see Section 3.3 – Chapter 3) have already been discussed.

However, six perceived limitations of this study are worth pointing out.

First, the use of the selected set of 12 MCQs resulted in the identification of

bottlenecks that were specifically related to the concepts tested in these questions.

Bottlenecks related to other difficult programming concepts, such as recursion

(Sanders & Mccartney, 2016), could not come out from the data set of this study. This

suggests that the bottlenecks identified in this study are not comprehensive. The study

did, however, illustrate the usefulness of a novel research design and methodology to

identify bottlenecks specific to the CS discipline.

Second, the original intention was to engage one decoding interviewer from outside

the CS discipline, as suggested by the proponents of the DtDs framework (Middendorf

& Pace, 2004). However, due to the unavailability of an individual with the relevant

decoding-interview experience, an interviewer from within the CS discipline was

engaged. Using a second interviewer from outside the discipline could therefore have

151

resulted in additional insights regarding the explicit mental strategies and steps

followed by expert programmers.

Third, the researcher also acknowledges his own limitations as far as insight and

experience in the fields of Computer Science Education and general research are

concerned. However, he believes that many of the personal limitations were mitigated

by the valuable guidance and suggestions received from his experienced supervisor,

other colleagues in the field, as well as those who evaluated and validated some of

the findings (see Section 3.5.3 – Chapter 3).

Fourth, no full-time professional programmers were involved in the decoding

interviews. It should, however, be noted that in DtDs studies, experienced educators

or instructors are typically regarded and used as experts (Middendorf & Pace, 2004;

Pace, 2017a).

Fifth, as an oversight on the side of the researcher, the limited doodles made by the

expert programmers during the decoding interviews were not retained for further

analysis. Having access to these artefacts as an additional source of data could have

helped to enhance the discussion of the study findings.

Lastly, this research study was conducted within a specific context (a selected South

African higher education institution). The study was also focused on identifying the

SCC challenges experienced by a very specific population (senior CS students). Due

to the exploratory nature of this research study, no claims can therefore be made to

the generalisability of the study findings.

7.5 Recommendations for future research

The problems experienced by novice programmers and strategies to address these

problems have been an ongoing research focus for the past 40 years. The focal point

of this research study was to explore how a systematic decoding approach could be

used to uncover cognitive strategies for efficient SCC by novice programmers. The

investigation was based on a specific number of research activities that focused on a

specific population of university students studying at a senior level. Natural extensions

152

of this work could be conducted in a different setting, perhaps with participants from a

higher level of study (e.g. honours or master’s). The objective would be to ascertain

whether there would be variations in the findings when more advanced senior students

are used as participants.

Furthermore, the inclusion of professionals solely from the programming industry (as

expert participants) could also be considered. The objective would be to determine the

extent to which full-time programmers do things differently or similarly (e.g. thought

processes) to those who teach programming with only limited industry experience. A

similar study can further be conducted with a different set of SCC questions. These

questions can, for example, be obtained from the literature or past examination papers

or be developed by researchers from scratch. The use of such questions could help

to identify additional bottlenecks related to programming concepts not specifically

covered in the 12 MCQs used in this study.

Although six bottlenecks were identified in Article 1 (see Chapter 4), only one

bottleneck was explored further in this study. Therefore, similar studies can be

conducted to address the other five bottlenecks. Based on the proposed step-by-step

framework for efficient SCC, some of the identified strategies and/or steps (e.g.

making a trace table; drawing a diagram to visualise an understanding of the program

logic; and optimising the selection of test cases to use in confirming answers) could

be explored even further. Such exploration might lead to even more simplistic and

optimal steps to follow as part of an efficient SCC strategy. Insights gained from this

study regarding the general cognitive and metacognitive strategies employed by

expert programmers could serve as a stepping-stone for further exploration of the

more detailed step-by-step procedures that experts follow while comprehending

source code.

Natural extensions of this study could focus on the remaining DtDs steps not covered

by the study. Since the study only focused on the first two steps of the seven-step

DtDs framework, follow-up investigations are needed to explicitly model the identified

steps and strategies in a format that will be usable/understandable to students (as part

of Step 3). As part of Step 4, instructors can then develop instructional strategies

(including specific assignments, team activities, and other learning exercises) that will

153

provide students with opportunities to practise each of the defined tasks and get

feedback on their mastery of that skill. As part of Step 5, instructors can identify and

test specific strategies to motivate students to incorporate the modelled strategies as

part of their own processes. As part of Step 6, instructors need to develop assessment

strategies that could be used to determine if and how the modelled tasks have helped

students to overcome the stated bottleneck. Similar to the ways in which the

researcher of this study has shared his experiences and findings (through this thesis

report and the publications that have transpired from the research study), other

researchers are encouraged to do the same (as part of Step 7 of the DtDs framework)

(Middendorf & Pace, 2004).

7.6 Conclusion

The findings of this study are mostly pedagogical in nature and therefore present a

promising avenue for a renewed focus on the explicit teaching and learning of SCC

skills. The way in which this study was approached and how the investigations

unfolded (the identification of the SCC bottlenecks, mental scaffolding techniques for

efficient SCC, and step-by-step framework for efficient SCC), have revealed a further

need for continuous research in this area. Specifically, empirical findings from this

study in relation to the six SCC bottlenecks that have been identified, contain a

noteworthy element of 'surprise' through which older theories or scholarly opinions can

be improved or contested. It is believed that these fresh perspectives can help

instructors to theoretically and practically enhance the field of Computer Science

Education.

This study also intended to make a contribution to the field of Computer Science

Education. The researcher’s efforts revealed and highlighted the complexity of the

problems encountered by both CS students and instructors regarding the learning and

teaching of SCC skills. Throughout the study, it was further established that there are

no shortcuts in overcoming these problems. Instead, explicit scientific solutions that

speak directly to the minds (i.e. cognition and metacognition) of students should be

devised and used. The Computer Science Education field also needs more

researchers who can continue the search for new ways in which discipline-specific

teaching and learning problems can be uncovered and solutions sought. The DtDs

154

paradigm has been shown as a promising and alternative way of investigating these

aspects. This approach can and should be further exploited, but there are certainly

many other new ways to conduct research in Computer Science Education waiting to

be uncovered or discovered. As we are on the threshold of the Fourth Industrial

Revolution, ‘reimagining the future for all disciplines’ – in CS we also have to prepare

our students for new developments in the field and for jobs that do not even exist at

the moment (D2L, 2018). The CS instructors of today need to be innovative, creative,

and proactive if they want to make a lasting contribution to the field of Computer

Science Education beyond the 2020 era.

155

List of References

Adelson, B. (1981). Problem solving and the development of abstract categories in

programming languages. Memory & Cognition, 9(4), 422–433.

https://doi.org/10.3758/BF03197568

Adelson, B. (1983). Structure and strategy in the semantically-rich domains. Harvard

University, Cambridge.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may

increase with expertise. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 10(3), 483–495. https://doi.org/10.1037/0278-7393.10.3.483

Adelson, B., & Soloway, E. (1985). The role of domain experience in software

design. IEEE Transactions on Software Engineering, SE-11(11), 1351–1360.

https://doi.org/10.1109/TSE.1985.231883

Akturk, A. O., & Sahin, I. (2011). Literature review on metacognition and its

measurement. Procedia - Social and Behavioral Sciences, 15, 3731–3736.

https://doi.org/10.1016/j.sbspro.2011.04.364

Alam, A., & Padenga, T. (2010). Application software reengineering. New Delhi:

Dorling Kindersley (India).

Allert, J. (2004). Learning style and factors contributing to success in an introductory

Computer Science course. In Proceedings of the IEEE International Conference

on Advanced Learning Technologies (pp. 385–389). Joensuu, Finland: IEEE.

https://doi.org/10.1109/ICALT.2004.1357442

Alturki, R. A. (2016). Measuring and improving student performance in an

introductory programming course. Informatics in Education, 15(2), 183–204.

https://doi.org/10.15388/infedu.2016.10

Ambrose, A. S., Bridges, W. M., DiPietro, M., Lovett, C. M., & Norman, K. M. (2010).

How learning works : Seven research-based principles for smart teaching.

California: John Wiley & Sons. https://doi.org/10.1002/mop.21454

Anderson, N. J., Bachman, L., Perkins, K., & Cohen, A. (1991). An exploratory study

into the construct validity of a reading comprehension test: triangulation of data

sources. Language Testing, 8(1), 41–66.

https://doi.org/10.1177/026553229100800104

156

Arksey, H., & Knight, P. (1999). Interviewing for Social Scientists. London: Sage

Publications.

Astrachan, O., & Rodger, S. H. (1998). Animation, visualization, and interaction in

CS1 assignments. In Proceedings of the twenty-ninth SIGCSE technical

symposium on Computer Science Education (pp. 317–321). New York, NY:

Association for Computing Machinery. https://doi.org/10.1145/273133.274321

Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2005).

Adaptive human scaffolding facilitates adolescents’ self-regulated learning with

hypermedia. Instructional Science, 33(5–6), 381–412.

https://doi.org/10.1007/s11251-005-1273-8

Bailey, J. (2008). First steps in qualitative data analysis: Transcribing. Family

Practice, 25(2), 127–131. https://doi.org/10.1093/fampra/cmn003

Barkley, E. F. (2010). Student engagement techniques : A handbook of college

faculty. California: Jossey-Bass.

Basili, V. R., & Mills, H. D. (1982). Understanding and documenting programs. IEEE

Transactions on Software Engineering, 3(SE-8), 270–283.

https://doi.org/10.1109/TSE.1982.235255

Bednarik, R., & Tukiainen, M. (2006). An eye-tracking methodology for

characterizing program comprehension processes. In Proceedings of the 2006

symposium on eye tracking research & applications - ETRA ’06 (pp. 125–132).

https://doi.org/10.1145/1117309.1117356

Belanger, E. (2017). Using US Tuning to effect: The American Historical

Association’s Tuning Project and the first year research paper. Arts and

Humanities in Higher Education, 16(4), 385–402.

https://doi.org/10.1177/1474022216628379

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated

learning on introductory programming performance. In Proceedings of the First

International Workshop on Computing Education Research (pp. 81–86).

Seattle,Washington: ACM. https://doi.org/10.1145/1089786.1089794

Bickhard, M. H. (2013). Scaffolding and self-scaffolding: Central aspects of

development. In L. T. Winegar & J. Valsiner (Eds.), Children’s development

within social context, Volume 1: Metatheory and theory; Volume 2: Research

and methodology (1st ed., pp. 33–52). New Jersey: Lawrence Erlbaum

Associates.

157

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. (1993). The concept assignment

problem in program understanding. In Proceedings of 1993 15th International

Conference on Software Engineering (pp. 482–498). Baltimore, MD: IEEE

Computer Society Press. https://doi.org/10.1109/ICSE.1993.346017

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). New York: Academic

Press.

Bitsch, V. (2005). Qualitative research : A grounded theory example and evaluation

criteria. Journal of Agribusiness, 23(1), 75–91.

https://doi.org/10.1002/cssc.201300370

Boman, J., Currie, G., MacDonald, R., Miller-Young, J., Yeo, M., & Zette, S. (2017).

Overview of decoding across the disciplines. New Directions for Teaching and

Learning, (150), 13–18. https://doi.org/10.1002/tl

Bosse, Y., & Gerosa, M. A. (2017). Difficulties of programming learning from the

point of view of students and instructors. IEEE Latin America Transactions,

15(11), 2191–2199. https://doi.org/10.1109/TLA.2017.8070426

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009). Two

studies of opportunistic programming. In Proceedings of the 27th international

conference on Human factors in computing systems - CHI 09 (p. 1589). Boston,

Massachusetts: ACM. https://doi.org/10.1145/1518701.1518944

Bransford, J., Brown, A., & Cocking, R. (2000). How people learn: Brain, mind,

experience, and school (Expanded). Washington, DC: National Academy Press.

https://doi.org/10.4135/9781483387772.n2

Braught, G., Wahls, T., & Eby, L. M. (2011). The case for pair programming in the

Computer Science classroom. ACM Transactions on Computing Education,

11(1), 1–21. https://doi.org/10.1145/1921607.1921609

Braun, V., & Clarke, V. (2006). Using thematic analysis in Psychology. Qualitative

Research in Psychology, 3(2), 77–101.

https://doi.org/10.1191/1478088706qp063oa

Brookhart, S. M. (2008). How to give effective feedback to your students. Alexandria:

Association for Supervision and Curriculum Development.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18(6), 543–554.

https://doi.org/10.1016/S0020-7373(83)80031-5

158

Brooks, R. (1999). Towards a theory of the cognitive processes in computer

programming. International Journal of Human-Computer Studies, 51(2), 197–

211. https://doi.org/10.1006/ijhc.1977.0306

Bryman, A. (2006). Integrating quantitative and qualitative research: how it is done.

Qualitative Research, 6(1), 97–113. https://doi.org/10.1177/1468794106058877

Burkhardt, J. M., Détienne, F., & Wiedenbeck, S. (2002). Object-oriented program

comprehension: Effect of expertise, task and phase. Empirical Software

Engineering, 7(2), 115–156. https://doi.org/10.1023/A:1015297914742

Busjahn, T., & Schulte, C. (2013). The use of code reading in teaching programming.

In Proceedings of the 13th Koli Calling International Conference on Computing

Education Research (pp. 3–11). New York, NY: ACM.

https://doi.org/10.1145/2526968.2526969

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of code reading to gain more

insight in program comprehension. In Proceedings of the 11th Koli Calling

International Conference on Computing Education Research (pp. 1–9). New

York, NY: Association for Computing Machinery.

https://doi.org/10.1145/2094131.2094133

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming

students studying high level and low feedback concepts. In R. Atkinson, C.

McBeath, A. S. Swee Kit, & C. Cheers (Eds.), Proceedings of ascilite Singapore

2007 ICT: Providing Choices for Learners and Learning (pp. 99–107). Nanyang

Singapore: Nanyang Technological University.

Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer

programming. International Journal of Human - Computer Studies, 40, 795–811.

https://doi.org/10.1006/ijhc.1994.1038

Carroll, J. M. (2003). Minimalism beyond the Nurnberg Funnel. Cambridge,

Massachusetts: MIT Press.

Charters, E. (2003). The use of think-aloud methods in qualitative research: An

Introduction to think-aloud methods. Brock Education, 12(2), 68–82.

https://doi.org/10.1080/02602938.2010.496532

Chi, Michelene T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989).

Self-explanationss: How students study and use examples in learning to solve

problems. Cognitive Science, 13, 145–182.

https://doi.org/10.1207/s15516709cog1302_1

159

Chilisa, B., & Preece, J. (2005). Research methods for adult educators in Africa.

Cape Town: Pearson Education, Inc.

Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data cleaning: Overview and

emerging challenges. In Proceedings of the 2016 International Conference on

Management of Data (pp. 2201–2206). New York, NY: Association for

Computing Machinery. https://doi.org/10.1145/2882903.2912574

Cimitile, A., Tortorella, M., & Munro, M. (1994). Program comprehension through the

identification of abstract data types. In Proceedings of the 1994 IEEE 3rd

Workshop on Program Comprehension (pp. 12–19). Washington, DC: IEEE.

https://doi.org/10.1109/wpc.1994.341243

Cognifit. (2019). Cognitive processes: What are they? Can they improve? Retrieved

September 4, 2019, from https://www.cognifit.com/cognition

Cooper, D., & Schindler, P. (2013). Business research methods (12th ed.). New

York: McGraw-Hill Education.

Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during program

comprehension? International Journal of Human-Computer Interaction, 3(2),

199–222. https://doi.org/10.1080/10447319109526004

Council on Higher Education. (2016). South African higher education reviewed: Two

decades of democracy. Pretoria: Council on Higher Education.

https://doi.org/10.1080/02642060701453288

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed

methods approaches (4th ed.). Thousand Oaks: Sage Publications.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative,

and mixed methods approaches (5th ed.). Thousand Oaks: Sage.

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed

methods research (2nd ed.). Thousand Oaks: Sage Publications.

Cronje, J. (2013). What is this thing called “design” in design research and

instructional design. Educational Media International, 50(1), 1–11.

https://doi.org/10.1080/09523987.2013.777180

Crosby, M. E., & Stelovsky, J. (1990). How do we read algorithms?: A case study.

Computer, 23(1), 25–35. https://doi.org/10.1109/2.48797

Cunningham, K., Blanchard, S., Ericson, B., & Guzdial, M. (2017). Using tracing and

sketching to solve programming problems. Proceedings of the 2017 ACM

Conference on International Computing Education Research - ICER ’17, 164–

160

172. https://doi.org/10.1145/3105726.3106190

D2L. (2018). The future of work and learning : In the age of the 4th Industrial

Revolution. Kitchener: D2L. Retrieved from www.D2L.com.

Davies, S. P. (1990). The nature and development of programming plans.

International Journal of Man-Machine Studies, 32(4), 461–481.

https://doi.org/10.1016/S0020-7373(05)80143-9

Davis, E. A. (2000). Scaffolding students’ knowledge integration: Prompts for

reflection in KIE. International Journal of Science Education, 22(8), 819–837.

https://doi.org/10.1080/095006900412293

Deejring, K. (2015). The validation of web-based learning using collaborative

learning techniques and a scaffolding system to enhance learners’ competency

in higher education. Procedia - Social and Behavioral Sciences, 174, 34–42.

https://doi.org/10.1016/j.sbspro.2015.01.623

Détienne, F. (1990). Expert programming knowledge: A schema-based approach. In

J. M. Hoc, T. R. G. Green, R. Samurcay, & D. J. Gilmore (Eds.), Psychology of

Programming (pp. 205–222). London: Academic Press.

https://doi.org/10.1016/B978-0-12-350772-3.50018-5

Diaz, A., Middendorf, J., Pace, D., Shopkow, L., Díaz, A., Middendorf, J., …

Shopkow, L. (2008). The History learning project: A department “decodes” its

students. Journal of American History, 94(4), 1211–1224.

https://doi.org/10.2307/25095328

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of

Educational Computing Research, 2(1), 57–73. https://doi.org/10.2190/3LFX-

9RRF-67T8-UVK9

Easton, K. L., McComish, J. F., & Greenberg, R. (2000). Avoiding common pitfalls in

qualitative data collection and transcription. Qualitative Health Research, 10(5),

703–707. https://doi.org/10.1177/104973200129118651

Eisenführ, F., Weber, M., & Langer, T. (2010). Rational decision making. Berlin:

Springer-Verlag Berlin Heidelberg.

Ellis, A. K., Denton, D. W., & Bond, J. B. (2014). An analysis of research on

metacognitive teaching strategies. Procedia - Social and Behavioral Sciences,

116(2014), 4015–4024. https://doi.org/10.1016/j.sbspro.2014.01.883

Eranki, K. L. N., & Moudgalya, K. M. (2016). Program slicing technique : A novel

approach to improve programming skills in novice learners. In Proceedings of

161

the 17th Annual Conference on Information Technology Education (pp. 160–

165). New York: Association for Computing Machinery.

https://doi.org/10.1145/2978192.2978215

Faux, R. (2001). Teaching problem solving techniques and software engineering

concepts before programming. Retrieved January 16, 2018, from

http://www.micsymposium.org/mics_2001/faux1.pdf

Feyzi-Behnagh, R., Azevedo, R., Legowski, E., Reitmeyer, K., Tseytlin, E., &

Crowley, R. S. (2014). Metacognitive scaffolds improve self-judgments of

accuracy in a medical intelligent tutoring system. Instructional Science, 42(2),

159–181. https://doi.org/10.1007/s11251-013-9275-4

Fisler, K. (2014). The recurring rainfall problem. In Proceedings of the Tenth Annual

Conference on International Computing Education Research (pp. 35–42).

Glasgow, Scotland: ACM. https://doi.org/10.1145/2632320.2632346

Fitzgerald, S., Simon, B., & Thomas, L. (2005). Strategies that students use to trace

code: An analysis based in grounded theory. In Proceedings of the First

International Workshop on Computing Education Research (pp. 69–80). New

York: Association for Computing Machinery.

https://doi.org/10.1145/1089786.1089793

Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. Resnick (Ed.),

The Nature of Intelligence (pp. 231–236). Hillsdale: Lawrence Erlbaum

Associates.

Frith, C. D. (2012). The role of metacognition in human social interactions.

Philosophical Transactions of the Royal Society B: Biological Sciences,

367(1599), 2213–2223. https://doi.org/10.1098/rstb.2012.0123

German, A., Menzel, S., Middendorf, J., & Duncan, F. J. (2014). How to decode

student bottlenecks to learning in Computer Science (abstract only). In

Proceedings of the 45th ACM technical symposium on Computer Science

Education (pp. 733–733). Bloomington: ACM.

https://doi.org/10.1145/2538862.2544228

Gibbs, G. R. (2018). Analysing qualitative data (2nd ed.). London: Sage Publications.

Gilmore, D. J., & Green, T. R. G. (1988). Programming plans and programming

expertise. The Quarterly Journal of Experimental Psychology Section A, 40(3),

423–442. https://doi.org/10.1080/02724988843000005

Green, T. R. G., & Navarro, R. (1995). Programming plans, imagery, and visual

162

programming. In K. Nordby, P. Helmersen, D. J. Gilmore, & S. A. Arnesen

(Eds.), Human Computer Interaction. IFIP Advances in Information and

Communication Technology (pp. 139–144). Boston, MA: Springer.

Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and Learning. In D.

C. Berliner & R. C. Calfee (Eds.), Handbook of Educational Psychology (pp. 15–

46). New York: Prentice Hall International.

Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher

education. New York: Teachers College Press.

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries.

Educational Communication and Technology, 29(2), 75–91.

Guba, E. G., & Lincoln, Y. S. (1982). Establishing dependability and confirmability in

naturalistic inquiry through an Audit. In Proceedings of the Annual Meeting of

the American Educational Research Association. New York: American

Educational Research Association.

Gugerty, L., & Olson, G. M. (1986). Comprehension differences in debugging by

skilled and novice programmers. In Proceedings of the first workshop on

empirical studies of programmers on empirical studies of programmers (pp. 13–

27). Washington, D.C.: Ablex Publishing Corp.

Hart, T. (2015). Technologies for conducting an online ethnography of

communication: The case of Eloqi. In H. Shalin (Ed.), Enhancing qualitative and

mixed methods research with technology (pp. 105–124). Hershey: Information

Science Reference (an imprint of IGI Global).

Haworth, J. G., & Conrad, C. F. (1997). Emblems of quality in higher education.

Boston: Allyn & Bacon.

Hazzan, O., Lapidot, T., & Ragonis, N. (2011). Guide to teaching Computer Science :

An activity-based approach. London: Springer-Verlag.

https://doi.org/10.1017/CBO9781107415324.004

Hellawell, D. (2016). Using mixed methods Frameworks for an Integrated

Methodology : Reviews. Retrieved September 14, 2017, from

https://us.sagepub.com/en-us/nam/using-mixed-methods/book233419#reviews

Hennessey, M. G. (1999). Probing the dimensions of metacognition: Implications for

conceptual change teaching-learning. In Proceedings of the Annual Meeting of

the National Association for Research in Science Teaching (pp. 1–33). Boston,

MA: The National Association for Research in Science Teaching.

163

Herrmann, J. W. (2017). Rational decision making. In N. Balakrishnan, T. Colton, B.

Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef:

Statistics Reference Online (pp. 1–9). John Wiley & Sons Ltd.

https://doi.org/10.1002/9781118445112.stat07928

Hesse-Biber, S. N. (2010). Mixed methods research: Merging theory with practice.

New York: Guilford Press.

Hinds, P. S., Vogel, R. J., & Clarke-Steffen, L. (1997). The possibilities and pitfalls of

doing a secondary analysis of a qualitative data set. Qualitative Health

Research, 7(3), 408–424. https://doi.org/10.1177/104973239700700306

Holmes, R., & Walker, R. J. (2012). Systematizing pragmatic software reuse. ACM

Transactions on Software Engineering and Methodology, 21(4), 20:1-20:44.

https://doi.org/10.1145/2377656.2377657

Holton III, R. A., & Swanson, E. F. (2005). Research in organizations: Foundations

and methods of inquiry. San Francisco, CA: Berrett Koehler Publications.

Indiana University. (2019). Decoding the disciplines - Improving student learning.

Retrieved December 20, 2019, from

http://decodingthedisciplines.org/bibliography/

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). Instructional strategy in the teaching

of computer programming: A need assessment analyses. Turkish Online Journal

of Educational Technology, 9(2), 125–131.

IUBCITL. (2016). Team-based learning for practice and motivation. Retrieved

October 18, 2017, from https://www.youtube.com/watch?v=1obB-n6JZ8k

Iv, D. H. S., Jagodzinski, F., Hao, Q., Liu, Y., & Gupta, V. (2019). Quantifying the

effects of prior knowledge in entry-level programming courses. In Proceedings

of the ACM Conference on Global Computing Education (pp. 30–36). Chengdu,

Sichuan, China: ACM. https://doi.org/10.1145/3300115.3309503

Jansen, J. (2003). The state of higher education in South Africa: From massification

to mergers. In J. Daniel, A. Habib, & R. Southall (Eds.), State of the Nation:

South Africa 2003-2004. Pretoria: HRSC.

Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice

programmers. In Proceedings of AERA annual meeting (pp. 1–17). New York:

American Educational Research Association.

Jeffries, R., Turner, a. a., Polson, P. G., & Atwood, M. E. (1981). The processes

involved in designing software. In J. R. Anderson (Ed.), Cognitive Skills and

164

Their Acquisition (pp. 255–283). Hillsdale, NJ: Lawrence Erlbaum Associates.

Kim, M., Bergman, L., Lau, T., & Notkin, D. (2004). An ethnographic study of copy

and paste programming practices in OOPL. In Proceedings of the 2004

International Symposium on Empirical Software Engineering (ISESE’04) (pp.

83–92). Redondo Beach, CA: IEEE.

https://doi.org/10.1109/ISESE.2004.1334896

King, K., Linkon, S., & Middendorf, J. (2013). Decoding the disciplines and threshold

concepts. Retrieved January 21, 2017, from

https://www.youtube.com/watch?v=Wqe_kKFoOq4

Kinnunen, P. (2009). Challenges of teaching and studying programming at a

university of technology - viewpoints of students, teachers and the university.

Department of Computer Science and Engineering. PhD thesis, Department of

Computer Science and Engineering, Helsinki University of Technology.

Kirkpatrick, M. S., & Mayfield, C. (2017). Evaluating an alternative CS1 for students

with prior programming experience. In Proceedings of the Conference on

Integrating Technology into Computer Science Education, ITiCSE (pp. 333–

338). Seattle, Washington: ACM. https://doi.org/10.1145/3017680.3017759

Kistner, S., Rakoczy, K., Otto, B., Dignath-van Ewijk, C., Büttner, G., & Klieme, E.

(2010). Promotion of self-regulated learning in classrooms: Investigating

frequency, quality, and consequences for student performance. Metacognition

and Learning, 5(2), 157–171. https://doi.org/10.1007/s11409-010-9055-3

Ko, A. J., & Myers, B. A. (2004). Designing the whyline: A debugging interface for

asking questions about program behavior. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 151–158). Vienna,

Austria: ACM. https://doi.org/10.1145/985692.985712

Ko, A. J., & Uttl, B. (2003). Individual differences in program comprehension

strategies in unfamiliar programming systems. In Proceedings of the 11th IEEE

International Workshop on Program Comprehension. Washington, DC: IEEE

Computer Society Press. https://doi.org/10.1109/WPC.2003.1199201

Koenemann, J., & Robertson, S. P. (1991). Expert problem solving strategies for

program comprehension. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 125–130). New Orleans, Louisiana: ACM.

https://doi.org/10.1145/108844.108863

Kuhn, J. (2014). Fear and learning in America: Bad data, good teachers, and the

165

attack on public education. New York: Teachers College Press.

Lahm, S., & Kaduk, S. (2016). Essay on decoding the disciplines as a starting point

for research-based teaching and learning. In H. A. Mieg & J. Lehmann (Eds.),

Learning through research: A practical handbook. FHP-Verlag.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice

programmers. In Proceedings of the 10th Annual SIGSCE Conference on

Innovation and Technology in Computer Science Education (pp. 14–18). Monte

de Caparica, Portugal: ACM Press. https://doi.org/10.1145/1151954.1067453

Lai, E. R. (2011). Metacognition : A literature review research report. Retrieved

October 20, 2018, from https://studylib.net/doc/12091843/metacognition--a-

literature-review-research-report

LaToza, T. D., Garlan, D., Herbsleb, J. D., & Myers, B. A. (2007). Program

comprehension as fact finding. In Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering (pp. 361–370). Dubrovnik, Croatia:

ACM. https://doi.org/10.1145/1287624.1287675

Lee, M. J., & Ko, A. J. (2015). Comparing the effectiveness of online learning

approaches on CS1 learning outcomes. In Proceedings of the Eleventh Annual

International Conference on International Computing Education Research (pp.

237–246). Omaha, Nebraska: ACM. https://doi.org/10.1145/2787622.2787709

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of

Systems and Software, 7(4), 325–339. https://doi.org/10.1016/0164-

1212(87)90032-X

Letovsky, Stan, & Soloway, E. (1986). Delocalized plans and program

comprehension. IEEE Software, 3(3), 41–49.

https://doi.org/10.1109/MS.1986.233414

Lewin, K. (1951). Field theory in social science: Selected theoretical papers. New

York: Harper & Brothers.

Lewins, A., & Silver, C. (2007). Using software in qualitative research: A step-by-step

guide. London: Sage Publications.

Liamputtong, P. (2009). Qualitative data analysis: conceptual and practical

considerations. Health Promotion Journal of Australia, 20(2), 133–139.

https://doi.org/10.1071/HE09133

Liffick, B. W., & Aiken, R. (1996). A novice programmer’s support environment. In

166

Proceedings of the 1st Conference on Integrating Technology into Computer

Science Education (pp. 49–51). Barcelona, Spain: ACM.

https://doi.org/10.1145/1013718.237525

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. California: Sage

Publications.

Lister, R., Fone, W., McCartney, R., Seppälä, O., Adams, E. S., Hamer, J., …

Thomas, L. (2004). A multi-national study of reading and tracing skills in novice

programmers. SIGCSE Bulletin (Association for Computing Machinery, Special

Interest Group on Computer Science Education) (Vol. 36).

https://doi.org/10.1145/1041624.1041673

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing

the forest for the trees: novice programmers and the SOLO taxonomy. In

Proceedings of the 11th Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education (pp. 118–122). Bologna: ACM.

https://doi.org/http://doi.acm.org/10.1145/1140124.1140157

Littman, D. C., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental models and

software maintenance. Journal of Systems and Software, 7(4), 341–355.

https://doi.org/10.1016/0164-1212(87)90033-1

Littmann, P., Pinto, J., Letovsky, S., & Soloway, E. (1986). Software maintenance

and mental models. In E. Soloway & S. Iyengar (Eds.), Empirical Studies of

Programmers. New York: Ablex Publishing Corporation.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between

reading, tracing and writing skills in introductory programming. In Proceedings of

the Fourth International Workshop on Computing Education Research (pp. 101–

112). Sydney, Australia: ACM. https://doi.org/10.1145/1404520.1404531

Lovett, M. (2008). Teaching metacognition. Retrieved January 28, 2018, from

https://events.educause.edu/ir/library/pdf/ELI08104.pdf

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of

mental models held by novice programmers. SIGCSE Bull., 39(1), 499–503.

https://doi.org/10.1145/1227504.1227481

Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the comprehension of

program comprehension. ACM Transactions on Software Engineering

Methodology, 23(4), 1–37. https://doi.org/10.1145/2622669

MacMillan, M., Yeo, M., Currie, G., Pace, D., McCollum, B., & Miller-Young, J.

167

(2016). The decoding interview, live and unplugged. Retrieved August 23, 2018,

from https://mruir.mtroyal.ca/xmlui/handle/11205/355

Malarz, L. (1998). Bilingual education: Effective programming for language-minority

students. In ASCD (Ed.), Curriculum Handbook. Alexandria, VA: Association for

Supervision and Curriculum Development.

Marshall, C., & Rossman, G. B. (2016). Designing qualitative research (6th ed.).

Thousand Oaks: Sage Publications, Inc.

Mccartney, R., Boustedt, J., Eckerdal, A., Sanders, K., & Zander, C. (2013). Can

first-year students program yet? A study revisited. In Proceedings of the Ninth

Annual International ACM Conference on International Computing Education

Research (pp. 91–98). San Diego, California: ACM.

https://doi.org/10.1145/2493394.2493412

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., … Utting,

I. (2001). A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. SIGCSE Bull., 33(4), 125–180.

https://doi.org/10.1145/572139.572181

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowledge

organization and skill differences in computer programmers. Cognitive

Psychology, 13(3), 307–325. https://doi.org/10.1016/0010-0285(81)90012-8

Menzel, S. (2015). Recursion as a bottleneck in Computer Science. In Proceedings

of the 12th annual conference of the International Society for the Scholarship of

Teaching and Learning. Melbourne, Australia: The International Society for the

Scholarship of Teaching & Learning (ISSOTL). Retrieved from

https://eprints.usq.edu.au/28746/7/ISSOTL 2015 Program Book WEB.pdf

Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge:

Linkages to ways of thinking and practising within the disciplines. In C. Rust

(Ed.), Improving student learning – Ten years on (pp. 1–16). Oxford: Oxford

Centre for Staff and Learning Development (OCSLD).

Mhashi, M. M., & Alakeel, A. (2013). Difficulties facing students in learning computer

programming skills at Tabuk University. In Proceedings of the 12th International

Conference on Education and Educational Technology (pp. 15–24). Morioka

City, Japan: WSEAS Press.

Middendorf, J. K., & Pace, D. (2004). Decoding the disciplines: A model for helping

students learn disciplinary ways of thinking. New Directions for Teaching and

168

Learning, 2004(98), 1–12. https://doi.org/10.1002/tl.142

Miller-Young, J., & Boman, J. (Eds.). (2017). Foreword. In Using the Decoding The

Disciplines Framework for Learning Across the Disciplines. San Francisco:

Jossey-Bass.

Minnesota Historical Society. (2001). Transcribing, editing and processing

guidelines. Saint Paul, Minnesota: Minnesota Historical Society.

Mishra, J., & Mohanty, A. (2012). Software Engineering. New Delhi: Dorling

Kindersley (India) Pvt. Ltd.

Molenaar, I., Van Boxtel, C. A. M., & Sleegers, P. J. C. (2011). Metacognitive

scaffolding in an innovative learning arrangement. Instructional Science, 39,

785–803. https://doi.org/10.1007/s11251-010-9154-1

Moon, J. A. (2004). A handbook of reflective and experiential learning: Theory and

practice. New York: Routledge.

Moore, D., Zabrucky, K., & Commander, N. E. (1997). Validation of the

metacomprehension scale. Contemporary Educational Psychology, 22, 457–

471. https://doi.org/10.1006/ceps.1997.0946

Morse, J. M. (2003). Principles of mixed method and multimethod research design.

In A. Tashakkori & C. Teddlie (Eds.), Handbook of mixed methods in social &

behavioral research (pp. 189–208). Thousand Oaks: Sage Publications.

Mosemann, R., & Wiedenbeck, S. (2001). Navigation and comprehension of

programs by novice programmers. In Proceedings of the 9th International

Workshop on Program Comprehension (pp. 79–88). Toronto, Ontario: IEEE.

https://doi.org/10.1109/WPC.2001.921716

Nanja, M., & Cook, C. R. (1987). An analysis of the on-line debugging process. In G.

M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical studies of programmers:

second workshop (pp. 172–184). New Jersey: Ablex Publishing Corporation.

Nathan, A. J., & Scobell, A. (2012). How China sees America. Foreign Affairs.

London: Sage. https://doi.org/10.1017/CBO9781107415324.004

Nathan, M. J., & Koedinger, K. R. (2000). An investigation of teachers’ beliefs of

students’ Algebra development. Cognition and Instruction, 18(2), 209–237.

https://doi.org/10.1207/S1532690XCI1802_03

Nathan, M. J., Koedinger, K. R., & Alibali, M. W. (2001). Expert blind spot: When

content knowledge eclipses pedagogical content knowledge. In Proceedings of

the third International Conference on Cognitive Science (pp. 644–648). Beijing,

169

China: USTC Press.

Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers.

American Educational Research Journal, 40(4), 905–928.

https://doi.org/10.3102/00028312040004905

Nilson, L. B. (2013). Creating self-regulated learners: Strategies to strengthen

student’s self-awareness and learning skills. Sterling: Stylus.

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L.

Stevens (Eds.), Mental Models (pp. 241–244). New Jersey: Morgan Kaufmann

Publishers, Inc.

O’ Kelly, J., Bergin, S., Dunne, S., Gaughran, P., Ghent, J., & Mooney, A. (2004).

Initial findings on the impact of an alternative approach to problem based

learning in Computer Science. In Proceedings of the PBL Conference. Cancun,

Mexico: Tecnologico De Monterrey.

O’Brien, M. (2003). Software Comprehension - A review and research direction.

Department of Computer Science & Information Systems, University of Limerick,

Limerick, Ireland.

Orlov, P. A., Bednarik, R., & Orlova, L. (2016). Programmers’ experiences with

working in the restricted-view mode as indications of parafoveal processing

differences. In Proceedings of the 27th Annual Workshop of the Psychology of

Programming Interest Group (pp. 96–105). St. Catharine’s College, University of

Cambridge, UK: PPIG.

Oroma, J., Wanga, H., & Ngumbuke, F. (2012). Challenges of teaching and learning

computer programming in a developing country: Lessons from Tanzania. In

Proceedings of the 6th International Technology, Education and Development

Conference (pp. 3820–3826). Valencia, Spain: IATED.

https://doi.org/10.13140/2.1.3836.6407

Pace, D. (2017a). The decoding the disciplines paradigm: Seven steps to increased

student learning. Bloomington: Indiana University Press.

Pace, D. (2017b). Thoughts on history, tuning and the scholarship of teaching and

learning in the United States. Arts and Humanities in Higher Education, 16(4),

415–419. https://doi.org/10.1177/1474022216686508

Parcell, E. S., & Rafferty, K. A. (2017). Interviews, recording and transcribing. In M.

Allen (Ed.), The SAGE Encyclopedia of Communication Research Methods.

Thousand Oaks: Sage Publications, Inc.

170

https://doi.org/10.4135/9781483381411.n275

Parham, J., Gugerty, L., & Stevenson, D. E. (2010). Empirical evidence for the

existence and uses of metacognition in Computer Science problem solving. In

Proceedings of the 41st ACM technical symposium on Computer Science

Education (pp. 416–420). Milwaukee, Wisconsin: ACM.

https://doi.org/10.1145/1734263.1734406

Patil, S. P., & Goje, A. C. (2009). The effect of developments in student attributes on

success in programming of management students. In Proceedings of the 2009

International Conference on Education Technology and Computer (pp. 191–

193). Singapore: IEEE Computer Society Press.

https://doi.org/10.1109/ICETC.2009.35

Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory

and practice (4th ed.). Thousand Oaks: Sage Publications.

Pennington, N. (1987a). Comprehension strategies in programming. In G. M. Olson,

S. Sheppard, & E. Soloway (Eds.), Empirical studies of programmers: Second

workshop (pp. 100–113). Norwood: Ablex Publishing Corporation.

Pennington, N. (1987b). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19(3), 295–341.

https://doi.org/10.1016/0010-0285(87)90007-7

Perscheid, M. (2011). Dynamic service analysis : Test-driven views for enhancing

software maintenance. In J. Holzl, L. Ribe-Baumann, & M. Bruckner (Eds.), Joint

Workshop of the German Research Training Groups in Computer Science (p.

137). Berlin: GITO mbH Verlag.

Phillips, A. (2019). The quest for equity in higher education. Pepperdine Policy

Review, 11(4), 1–28.

Pillay, N., & Jugoo, V. R. (2005). An investigation into student characteristics

affecting novice programming performance. ACM SIGCSE Bulletin, 37(4), 107–

110. https://doi.org/10.1145/1113847.1113888

Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-

regulated learning. International Journal of Educational Research, 31(6), 459–

470. https://doi.org/10.1016/S0883-0355(99)00015-4

Piteira, M., & Costa, C. (2013). Learning computer programming: Study of difficulties

in learning programming. In Proceedings of the 2013 International Conference

on Information Systems and Design of Communication (pp. 75–80). Lisboa,

171

Portugal: ACM. https://doi.org/10.1145/2503859.2503871

Plowright, D. (2011). Using mixed methods: Frameworks for an integrated

methodology. London: Sage Publications.

Plowright, D. (2016a). Developing doctoral research skills for workplace inquiry. In

M. Fourie-Malherbe, R. Albertyn, & E. Bitzer (Eds.), Postgraduate Supervision-

Future Foci for the knowledge society (pp. 241–254). Stellenbosch: Sun Press.

https://doi.org/10.18820/9781928357223/14

Plowright, D. (2016b). Making sense of research in higher education. In L. Frick, V.

Trafford, & M. Fourie-Malherbe (Eds.), Being Scholarly - Festschrift in honour of

the work of Eli M Bitzer (pp. 15–24). Stellenbosch: SUN MeDIA.

https://doi.org/10.18820/9781928314219/01

Pope, C., Izu, C., Weerasinghe, A., & Pope, C. (2016). A study of code design skills

in novice programmers using the SOLO taxonomy. In Proceedings of the 2016

ACM Conference on Innovation and Technology in Computer Science

Education (pp. 251–259). Melbourne, VIC: Association for Computing

Machinery. https://doi.org/10.1145/2960310.2960324

Powell, N., Moore, D., Gray, J., Finlay, J., & Reaney, J. (2004). Dyslexia and

learning computer programming. ACM SIGCSE Bulletin, 36(3), 242.

https://doi.org/10.1145/1026487.1008072

Powers, W. R. (2005). Transcription techniques for the spoken word. New York:

Altamira Press.

Praveen, A. (2016). Program comprehension and analysis. International Journal of

Engineering and Applied Computer Science, 01(01), 17–21.

https://doi.org/10.24032/ijeacs/0101/04

Preece, J., Rogers, Y., & Sharp, H. (2015). Interaction design: Beyond human-

computer interaction (4th ed.). New Delhi: John Wiley & Sons, Inc.

Ratey, J. J. (2001). A user’s guide to the brain: Perception, attention, and the four

theatres of the brain. New York: Pantheon.

Raymond, E. (2017). Learners with mild disabilities: A characteristic approach (5th

ed.). Massachusetts: Allyn & Bacon.

Reed, D., Miller, C., & Braught, G. (2000). Empirical investigation throughout the CS

curriculum. ACM SIGCSE Bulletin, 32(1), 202–206.

https://doi.org/10.1145/331795.331855

Rist, R. S. (1986). Plans in programming: Definition, demonstration and

172

development. In E. Soloway & S. Iyengar (Eds.), Empirical studies of

programmers (pp. 28–45). New Jersey: Ablex Publishing Corporation.

Robin, M. (2002). A physiological handbook for teachers of Yogasana. Tucson:

Fenestra Books.

Robins, A. (2010). Learning edge momentum: A new account of outcomes in CS1.

Computer Science Education, 20(1), 37–71.

https://doi.org/10.1080/08993401003612167

Roehler, L. R., & Cantlon, D. J. (1997). Scaffolding: A powerful tool in social

constructivist classrooms. In K. Hogan & M. Pressley (Eds.), Scaffolding student

learning: Instructional approaches and issues (pp. 6–42). Cambridge: Brookline

Books.

Sagor, R. (2000). Guiding school improvement with action research. Alexandria:

Association for Supervision and Curriculum Development.

Saha, B., & Ray, U. K. (2015). Learning programming : An Indian perspective.

International Journal of Information Science and Computing, 2(1), 21–32.

Sanders, K., & Mccartney, R. (2016). Threshold concepts in computing : Past,

present, and future. In Proceedings of the 16th Koli Calling International

Conference on Computing Education Research (pp. 91–100). Koli, Finland:

ACM.

Sarkar, A. (2015). The impact of syntax colouring on program comprehension. In

Proceedings of the 26th Annual Conference of the Psychology of Programming

Interest Group (pp. 49–58). Bournemouth, UK: Psychology of Programming

Interest Group.

Sarpong, K. A., Arthur, J. K., & Amoako, P. (2013). Causes of failure of students in

computer programming courses: The teacher – learner perspective.

International Journal of Computer Applications, 77(12), 27–32.

https://doi.org/10.5120/13448-1311

Schlinger, H. D. (1995). A behavior analytic view of child development. New York:

Springer Science & Business Media.

Schmidt, A. L. (1986). Effects of experience and comprehension on reading time.

International Journal of Man-Machine Studies, 399–409.

Schwandt, T. A., Lincoln, Y. S., & Guba, E. G. (2007). Judging interpretations: But is

it rigorous? Trustworthiness and authenticity in naturalistic evaluation. New

Directions for Evaluation, 2007(114), 11–25. https://doi.org/10.1002/ev

173

Sengupta, N., Bhattacharya, M. S., & Sengupta, R. N. (2012). Managing change in

organizations (3rd ed.). New Delhi: PHI Learning Private Limited.

Sentance, S., & Csizmadia, A. (2016). Computing in the curriculum: Challenges and

strategies from a teacher’s perspective. Education and Information

Technologies, 22, 469–495. https://doi.org/10.1007/s10639-016-9482-0

Shaft, T. M. (1995). Helping programmers understand computer programs: The use

of metacognition. Data Base Advances, 26(4), 25–46.

https://doi.org/10.1145/223278.223280

Shaft, T. M., & Vessey, I. (1995). Research report - The relevance of application

domain knowledge: The case of computer program comprehension. Information

Systems Research, 6(3), 286–299. https://doi.org/10.1287/isre.6.3.286

Sheard, J., D’Souza, D., Lopez, M., Luxton-Reilly, A., Robbins, P., Teague, D., &

Whalley, J. L. (2015). How (not) to write an introductory programming exam. In

Proceedings of the 17th Australasian Computing Education Conference (ACE

2015) (pp. 137–146). Sydney, Australia: Australian Computer Society, Inc.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.

International Journal of Computer & Information Sciences, 5(2), 123–143.

https://doi.org/10.1007/BF00975629

Shneiderman, B. (1980). Software psychology: Human factors in computer and

information systems. Massachusetts: Winthrop Publishers, Inc.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer

behavior: A model and experimental results. International Journal of Computer

and Information Sciences, 8(3), 219–238. https://doi.org/10.1007/BF00977789

Shopkow, L. (2017). How many sources do I need? The History Teacher, 50(2),

169–200.

Shopkow, Leah, Diaz, A., Middendorf, J., Pace, D., Díaz, A., Middendorf, J., & Pace,

D. (2013). The History learning project “decodes” a discipline: The union of

teaching and epistemology. In K. McKinney (Ed.), Scholarship of Teaching and

Learning in and Across the Disciplines. Bloomington: Indiana University Press.

Shulman, L. S. (1986). Those who understand : Knowledge growth in teaching.

Educational Researcher, 15(2), 4–14.

https://doi.org/http://www.jstor.org/stable/1175860

Siegmund, J. (2016). Program comprehension : Past, present, and future. In

Proceedings of the 23rd International Conference on Software Analysis,

174

Evolution, and Reengineering (pp. 13–20). Suita, Japan: IEEE.

https://doi.org/10.1109/SANER.2016.35

Siegmund, J., Kástner, C., Apel, S., Brechmann, A., & Saake, G. (2013). Experience

from measuring program comprehension - Toward a general framework. In S.

Kowalewski & B. Rumpe (Eds.), Software Engineering 2013 - Fachtagung des

GI-Fachbereichs Softwaretechnik. GI-Edition - Lecture Notes in Informatics

(LNI) (Vol. P-213, pp. 239–257). Bonn: Gesellschaft für Informatik e.V.

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., …

Brechmann, A. (2014). Understanding understanding source code with

functional magnetic resonance imaging. In Proceedings of the 36th International

Conference on Software Engineering (pp. 378–389). Hyderabad, India: ACM.

https://doi.org/10.1145/2568225.2568252

Sillito, J., De Volder, K., Fisher, B., & Murphy, G. (2005). Managing software change

tasks: an exploratory study. In Proceedings of the 2005 International

Symposium on Empirical Software Engineering, ISESE’05 (pp. 23–32). Noosa

Heads, Qld., Australia: IEEE. https://doi.org/10.1109/ISESE.2005.1541811

Simons, R., & Bolhuis, S. (2004). Constructivist learning theories and complex

learning environments. Oxford Studies in Comparative Education, 13(1), 13–25.

Singer, J., Lethbridge, T., Vinson, N., & Anquetil, N. (1997). An examination of

software engineering work practices. In Proceedings of the 1997 Conference of

the Centre for Advanced Studies on Collaborative Research (pp. 209–223).

Toronto, Ontario: IBM Press. https://doi.org/10.1145/782010.782031

Singer, L. (2013). Improving the adoption of software engineering practices through

persuasive interventions. PhD thesis, Fakultät für Elektrotechnik und Informatik,

Gottfried Wilhelm Leibniz Universität Hannover.

Singh, V., Pollock, L. L., Snipes, W., & Kraft, N. A. (2016). A case study of program

comprehension effort and technical debt estimations. In Proceedings of the 24th

International Conference on Program Comprehension (ICPC) (pp. 1–9). Austin,

TX: IEEE. https://doi.org/10.1109/ICPC.2016.7503710

Smith, K., & Davies, J. (2010). Qualitative data analysis. In L. Dahlberg & C. McCaig

(Eds.), Practical researcher and evaluation: A start-to finish guide for

practitioners (pp. 145–158). London: Sage Publications.

Soh, Z., Khomh, F., Gueheneuc, Y. G., & Antoniol, G. (2013). Towards

understanding how developers spend their effort during maintenance activities.

175

In Proceedings of the Working Conference on Reverse Engineering (WCRE)

(pp. 152–161). Koblenz, Germany: IEEE.

https://doi.org/10.1109/WCRE.2013.6671290

Soloway, E. (1986). Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), 850–858.

https://doi.org/10.1145/6592.6594

Soloway, E., Adelson, B., & Ehrlich, K. (1988). Knowledge and processes in the

comprehension of computer programs. In M. T. H. Chi, R. Glasser, & M. J. Farr

(Eds.), The nature of expertise (pp. 129–152). Hillsdale: Lawrence Erlbaum

Associates.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge.

IEEE Transactions on Software Engineering, SE-10(5), 595–609.

Soloway, E., Ehrlich, K., & Black, J. B. (1983). Beyond numbers: Don’t ask “how

many” ... ask “why.” In Proceedings of the SIGCHI conference on Human

Factors in Computing Systems (pp. 240–246). Boston, Massachusetts: ACM.

https://doi.org/10.1145/800045.801619

Soloway, E., Ehrlich, K., & Bonar, J. (1982). Tapping into tacit programming

knowledge. In Proceedings of the 1982 Conference on Human Factors in

Computing (pp. 52–57). Gaithersburg, Maryland: ACM.

https://doi.org/10.1145/800049.801754

Soloway, E., Lampert, R., Letovsky, S., Littman, D., & Pinto, J. (1988). Designing

documentation to compensate for delocalized plans. Communications of the

ACM, 31(11), 1259–1267. https://doi.org/10.1145/50087.50088

Soloway, E., Lochhead, J., & Clement, J. (1982). Does computer programming

enhance problem solving ability? Some positive evidence on Algebra word

problems. In R. J. Sediel, R. E. Anderson, & B. Hunter (Eds.), Computer

Literacy (pp. 171–201). New York: Academic Press, Inc.

https://doi.org/10.1016/b978-0-12-634960-3.50023-3

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer. New York:

Psychology Press.

Sousa, D. A. (2006). How the brain learns (3rd ed.). California: Thousand Oaks.

Standish, T. A. (1984). An essay on software reuse. IEEE Transactions on Software

Engineering, SE-10(5), 494–497. https://doi.org/10.1109/TSE.1984.5010272

Storey, M. A. D., Fracchia, F. D., & Müller, H. A. (1999). Cognitive design elements

176

to support the construction of a mental model during software visualization. The

Journal of Systems and Software, 44, 171–185.

https://doi.org/10.1109/WPC.1997.601257

Storey, M. A. D., Wong, K., & Müller, H. A. (2000). How do program understanding

tools affect how programmers understand programs? Science of Computer

Programming, 36(2), 183–207. https://doi.org/10.1016/S0167-6423(99)00036-2

Stringer, E. T. (2014). Action research (4th ed.). California: Sage Publications.

Sweller, J. (1988). Cognitive load during problem solving : Effects on learning.

Cognitive Science, 12, 257–285. https://doi.org/10.1016/0364-0213(88)90023-7

Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive

architecture and instructional design. Educational Psychology Review, 10(3),

251–296. https://doi.org/10.1023/A:1022193728205

Teasley, B. M. (1993). Program comprehension skills and their acquisition: A call for

an ecological paradigm. In E. Lemut, B. Du Boulay, & G. Dettori (Eds.),

Cognitive models and intelligent environments for learning programming (pp.

71–79). New York: Springer-Verlag Berlin Heidelberg.

Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research:

Integrating quantitative and quantitative approaches in the social and behavioral

sciences. New York: Sage Publications.

ten Have, P. (2011). Transcribing talk-in-interaction. In P. ten Have (Ed.), Introducing

qualitative methods: doing conversation analysis (pp. 94–115). London: Sage

Publications, Ltd. https://doi.org/10.4135/9781849208895

The Joint Task Force on Computing Curricula Association for Computing Machinery

(ACM) IEEE Computer Computer Society. (2013). Computer Science curricula

2013: Curriculum guidelines for undergraduate degree programs in Computer

Science. New York: Association for Computing Machinery.

https://doi.org/10.1145/2534860

Thorne, S. (2000). Data analysis in qualitative research. Evidence-Based Nursing,

3(3), 68–70. https://doi.org/10.1136/ebn.3.3.68

Thurner, V., Zehetmeier, D., Hammer, S., & Böttcher, A. (2017). Developing a test

for assessing incoming students’ cognitive competences. International Journal

of Engineering Pedagogy, 7(4), 35. https://doi.org/10.3991/ijep.v7i4.7433

Tiarks, R. (2011). What maintenance programmers really do: An observational study.

Softwaretechnik-Trends, 31(2), 1–2.

177

Timmermans, J. A., & Meyer, J. H. F. (2019). A framework for working with university

teachers to create and embed ‘Integrated Threshold Concept Knowledge’

(ITCK) in their practice. International Journal for Academic Development, 24(4),

354–368. https://doi.org/10.1080/1360144X.2017.1388241

Tingerthal, J. (2013). Applying the decoding the disciplines process to teaching

structural mechanics: An autoethnographic case study. PhD theisis, Northern

Arizona University.

Tobias, S. (1992-1993). Disciplinary cultures and general education: What can we

learn from our learners? Teaching Excellence, 4(6), 1–3.

Trochim, W. M. K. (2006). Research methods knowledge base, 2nd edition.

Retrieved April 2, 2019, from https://socialresearchmethods.net/kb/

Tucker, V. M. (2017). Threshold concepts and core competences in the library and

information science (LIS) domain: Methodologies for discovery. Library and

Information Research, 41(125), 61–80. https://doi.org/10.29173/lirg750

Ulin, P. R., Robinson, E. T., & Tolley, E. E. (2005). Qualitative methods in public

health: A field guide for applied research. San Francisco, CA: Jossey-Bass.

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., … Wilusz, T.

(2013). A fresh look at novice programmers’ performance and their teachers’

expectations. In Proceedings of the ITiCSE working group reports conference

on innovation and technology in Computer Science education-working group

reports (pp. 15–32). Canterbury, England: ACM.

https://doi.org/10.1145/2543882.2543884

Uzonwanne, F. C. (2016). Rational model of decision making. In A. Farazmand

(Ed.), Global Encyclopedia of Public Administration, Public Policy, and

Governance (pp. 1–6). Cham: Springer International Publishing AG.

https://doi.org/10.1007/978-3-319-31816-5_2474-1

Van den Broeck, J., Cunningham, S. A., Eeckels, R., & Herbst, K. (2005). Data

cleaning: Detecting, diagnosing, and editing data abnormalities. PLoS Medicine,

2(10), 0966–0970. https://doi.org/10.1371/journal.pmed.0020267

Van Gorp, M. J., & Grissom, S. (2001). An empirical evaluation of using constructive

classroom activities to teach introductory programming. Computer Science

Education, 11(3), 247–260. https://doi.org/10.1076/csed.11.3.247.3837

Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. (1994). The think aloud

method: A practical guide to modelling cognitive processes (1st ed.). London:

178

Academic Press.

Van Teijlingen, E., & Hundley, V. (2002). The importance of pilot studies. Nursing

Standard, 16(40), 33–36. https://doi.org/10.7748/ns2002.06.16.40.33.c3214

Van Teijlingen, E. R., Rennie, A. M., Hundley, V., & Graham, W. (2001). The

importance of conducting and reporting pilot studies: The example of the

Scottish Births Survey. Journal of Advanced Nursing, 34(3), 289–295.

https://doi.org/10.1046/j.1365-2648.2001.01757.x

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. J. (2018). The impact of

prior programming knowledge on lecture attendance and final exam. Journal of

Educational Computing Research, 56(2), 226–253.

https://doi.org/10.1177/0735633117707695

Verpoorten, D., Devyver, J., Duchâteau, D., Mihaylov, B., Agnello, A.,

Ebrahimbabaye, P., & Focant, J. (2017). Decoding the disciplines – A pilot study

at the University of Liège (Belgium). In Proceedings of the 2nd EuroSoTL

conference - Transforming patterns through the scholarship of teaching and

learning (pp. 263–267). Lund, Sweden: Lund University Press.

Vogel, S., & Draper-Rodi, J. (2017). The importance of pilot studies, how to write

them and what they mean. International Journal of Osteopathic Medicine, 23, 2–

3. https://doi.org/10.1016/j.ijosm.2017.02.001

Von Mayrhauser, A., & Vans, A. M. (1993). From program comprehension to tool

requirements for an industrial environment. In Proceedings of the Second

Workshop on Program Comprehension (pp. 78–86). Capri, Italy: IEEE Computer

Society Press. https://doi.org/10.1109/WPC.1993.263903

Von Mayrhauser, A., & Vans, A. M. (1995a). Industrial experience with an integrated

code comprehension model. Software Engineering Journal, 10(5), 171–182.

https://doi.org/10.1049/sej.1995.0023

Von Mayrhauser, A., & Vans, A. M. (1995b). Program comprehension during

software maintenance and evolution. IEEE Computer, 28(8), 44–55.

https://doi.org/10.1109/2.402076

Von Mayrhauser, A., & Vans, A. M. (1996). Identification of dynamic comprehension

processes during large scale maintenance. IEEE Transactions on Software

Engineering, 22(6), 424–437.

Von Mayrhauser, A., & Vans, A. M. (1997). Program understanding behavior during

debugging of large scale software. In Proceedings of the seventh workshop on

179

Empirical studies of programmers (pp. 157–179). Alexandria, VA: ACM.

https://doi.org/10.1145/266399.266414

Von Mayrhauser, A., Vans, A. M., & Howe, A. E. (1997). Program understanding

behaviour during enhancement of large-scale software. Journal of Software

Maintenance: Research and Practice, 9, 299–327.

https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5<299::AID-

SMR157>3.0.CO;2-S

Von Mayrhauser, A., Vans, A. M., & Lang, S. (1998). Program comprehension and

enhancement of software. In Proceedings of the 15th IFIP World Computing

Congress - Information Technology and Knowledge Systems. Vienna, Austria:

Austrian Computer Society, Inc.

Vygotsky, L. S., & Cole, M. (1978). Mind in society: The development of higher

psychological processes. Massachusetts: Harvard University Press.

Wallendorf, M., & Belk, R. W. (1989). Assessing trustworthiness in naturalistic

consumer research. In E. C. Hirschman (Ed.), Interpretive consumer research

(pp. 69–84). Provo, UT: Association for Consumer Research.

Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review,

72(2), 89–104. https://doi.org/10.1037/h0021797

Whalley, J., & Kasto, N. (2014). A qualitative think-aloud study of novice

programmers’ code writing strategies. In Proceedings of the 2014 conference on

Innovation & technology in Computer Science Education (pp. 279–284).

Uppsala, Sweden: ACM. https://doi.org/10.1145/2591708.2591762

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K. A., &

Prasad, C. (2006). An Australasian study of reading and comprehension skills in

novice programmers, using the bloom and SOLO taxonomies. In Proceedings of

the 8th Australasian conference on computing education - Volume 2 (pp. 243–

252). Hobart, Australia: Australian Computer Society, Inc.

Widowski, D., & Eyferth, K. (1986). Comprehending and recalling computer

programs of different structural and semantic complexity by experts and

novices. In H. Willumeit (Ed.), Human Decision Making and Manual Control.

North Holland: Elsevier Inc.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills.

International Journal of Man-Machine Studies, 23(4), 383–390.

https://doi.org/10.1016/S0020-7373(85)80041-9

180

Wiedenbeck, S., Fix, V., & Scholtz, J. (1993). Characteristics of the mental

representations of novice and expert programmers: an empirical study.

International Journal of Man-Machine Studies, 39(5), 793–812.

https://doi.org/10.1006/imms.1993.1084

Wiedenbeck, S., LaBelle, D., & Kain, V. (2004). Factors affecting course outcomes in

introductory programming. In E. Dunican & T. R. G. Green (Eds.), Proceedings

of the 16th Workshop of the Psychology of Programming Interest Group (pp.

97–110). Carlow, Ireland: PPIG.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A

comparison of the comprehension of object-oriented and procedural programs

by novice programmers. Interacting with Computers, 11(3), 255–282.

https://doi.org/10.1016/S0953-5438(98)00029-0

Wills, C. E., Deremer, D., McCauley, R. A., & Null, L. (2010). Studying the use of

peer learning in the introductory Computer Science curriculum. Computer

Science Education, 9(2), 71–88. https://doi.org/10.1076/csed.9.2.71.3811

Wilson, B. C. (2002). A study of factors promoting success in Computer Science

including gender differences. Computer Science Education, 12(1–2), 141–164.

https://doi.org/10.1076/csed.12.1.141.8211

Wlodkowski, R. J., & Ginsberg, M. B. (2010). Teaching intensive and accelerated

courses : Instruction that motivates learning. San Francisco: Jossey-Bass.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving.

Journal of Child Psychology and Psychiatry, 17(2), 89–100.

https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Xie, B., Nelson, G. L., & Ko, A. J. (2018). An explicit strategy to scaffold novice

program tracing. In Proceedings of the 49th ACM Technical Symposium on

Computer Science Education (pp. 344–349). New York, NY: Association for

Computing Machinery. https://doi.org/10.1145/3159450.3159527

181

Appendix A – Questionnaire for Senior Students (Phase 1)

Dear Senior Student,

Thank you for giving your attention to this questionnaire. The approximate time needed

to complete this questionnaire is 60 - 90 minutes. The purpose of this questionnaire is

to uncover source code comprehension challenges experienced by students.

By completing this questionnaire, you give the researcher consent to use your

information for research purposes only. Responses will be confidential and your

privacy will be protected to the maximum extent allowable by law.

Participation is voluntary and you can withdraw anytime when you do not feel like

participating anymore. Completing or failing to complete this questionnaire has

absolutely no bearing on your grade for any of the Computer Science modules you

are enrolled into.

Section 1 – Source Code Comprehension Questions

Instructions:

Carefully study the following fragments of source code, and use the working spaces

provided for each question to show your workings. Please write your answer to each

question in the space provided at the end of each question.

Question 1
Consider the following source code fragment:

int[] x = { 2, 1, 4, 5, 7 };

int limit = 3;

int i = 0;

int sum = 0;

while ((sum < limit) && (i < x.Length))

{

 ++i;

 sum += x[i];

}

What value is in the variable i after this source code is executed?
a) 0

b) 1

c) 2

d) 3

Answer to Question 1: __

182

Question 2
Consider the following source code fragment:

int[] x1 = {1, 2, 4, 7};

int[] x2 = {1, 2, 5, 7};

int i1 = x1.Length - 1;

int i2 = x2.Length - 1;

int count = 0;

while ((i1 > 0) && (i2 > 0))

{

 if (x1[i1] == x2[i2])

 {

 ++count;

 --i1;

 --i2;

 }

 else if (x1[i1] < x2[i2])

 {

 --i2;

 }

 else

 {

 // x1[i1] > x2[i2]

 --i1;

 }

}

After the above while loop finishes, count contains what value?
a) 3

b) 2

c) 1

d) 0

Answer to Question 2: __

183

Question 3
Consider the following source code fragment:

int[] x = {1, 2, 3, 3, 3};

bool[] b = new bool[x.Length];

for (int i = 0; i < b.Length; ++i)

 b[i] = false;

for (int i = 0; i < x.Length; ++i)

 b[x[i]] = true;

int count = 0;

for (int i = 0; i < b.Length; ++i)

{

 if (b[i] == true)

 ++count;

}

After this source code is executed, count contains:
a) 1

b) 2

c) 3

d) 4

e) 5

Answer to Question 3: __

184

Question 4
Consider the following source code fragment:

int[] x1 = {0, 1, 2, 3};

int[] x2 = {1, 2, 2, 3};

int i1 = 0; int i2 = 0;

int count = 0;

while ((i1 < x1.Length) && (i2 < x2.Length))

{

 if (x1[i1] == x2[i2])

 {

 ++count;

 ++i2;

 }

 else if (x1[i1] < x2[i2])

 {

 ++i1;

 }

 else

 {

 // x1[i1] > x2[i2]

 ++i2;

 }

}

After this source code is executed, count contains:
a) 0

b) 1

c) 2

d) 3

e) 4

Answer to Question 4: __

185

Question 5
Consider the following source code fragment:

int[] x = { 0, 1, 2, 3 };

int temp;

int i = 0;

int j = x.Length - 1;

while (i < j)

{

temp = x[i];

x[i] = x[j];

x[j] = 2*temp;

i++;

j--;

}

After this source code is executed, array x contains the values:
a) { 3, 2, 2, 0 }

b) { 0, 1, 2, 3 }

c) { 3, 2, 1, 0 }

d) { 0, 2, 4, 6 }

e) { 6, 4, 2, 0 }

Answer to Question 5: __

186

Question 6
The following method isSorted should return true if the array is sorted in

ascending order. Otherwise, the method should return false:

public static bool isSorted (int[] x)

{

//missing source code goes here

}

Which of the following is the missing source code from the method isSorted?
a) bool b = true;

 for (int i = 0; i < x.Length - 1; i++)

 {

 if (x[i] > x[i + 1])

 b = false;

 else

 b = true;

 }

 return b;

b) for (int i = 0; i < x.Length - 1; i++)

 {

 if (x[i] > x[i + 1])

 return false;

 }

 return true;

c) bool b = false;

 for (int i = 0; i < x.Length - 1; i++)

 {

if (x[i] > x[i + 1])

b = false;

 }

 return b;

d) bool b = false;

 for (int i = 0; i < x.Length - 1; i++)

 {

 if (x[i] > x[i + 1])

 b = true;

 }

 return b;

e) for (int i = 0; i < x.Length - 1;i++)

 {

if (x[i] > x[i + 1])

return true;

 }

 return false;

Answer to Question 6: __

187

Question 7
Consider the following source code fragment:

int[] x = { 2, 1, 4, 5, 7 };

int limit = 7;

int i = 0;

int sum = 0;

while ((sum < limit) && (i < x.Length))

{

sum += x[i];

++i;

}

What value is in the variable i after this source code is executed?
a) 0

b) 1

c) 2

d) 3

e) 4

Answer to Question 7: __

188

Question 8
If any two numbers in an array of integers, not necessarily consecutive numbers in the
array, are out of order (i.e. the number that occurs first in the array is larger than the
number that occurs second), then that is called an inversion. For example, consider
an array x that contains the following six numbers:

 4 5 6 2 1 3

There are 10 inversions in that array, as:

x[0]=4 > x[3]=2

x[0]=4 > x[4]=1

x[0]=4 > x[5]=3

x[1]=5 > x[3]=2

x[1]=5 > x[4]=1

x[1]=5 > x[5]=3

x[2]=6 > x[3]=2

x[2]=6 > x[4]=1

x[2]=6 > x[5]=3

x[3]=2 > x[4]=1

The skeleton source code below is intended to count the number of inversions in an
array x:

int inversionCount = 0;

for (int i = 0; i < x.Length - 1; i++)

{

for xxxxxx

{

if (x[i] > x[j])

++inversionCount;

}

}

When the above source code finishes, the variable inversionCount is intended to

contain the number of inversions in array x. Therefore, the xxxxxx in the above

source code should be replaced by:

a) (int j = 0; j < x.Length; j++)
b) (int j = 0; j < x.Length - 1; j++)

c) (int j = i + 1; j < x.Length; j++)

d) (int j = i + 1; j < x.Length - 1; j++)

Answer to Question 8: __

189

Question 9
The skeleton source code below is intended to copy into an array of integers called
array2 any numbers in another integer array array1 that are even numbers. For

example, if array1 contained the numbers:

array1: 4 5 6 2 1 3

then after the copying process, array2 should contain in its first three places:

array2: 4 6 2

The following source code assumes that array2 is big enough to hold all the even

numbers from array1:

int a2 = 0;

for (int a1 = 0; xxx1xxx; ++a1)

{

// if array1[a1] is even

if (array1[a1] % 2 == 0)

{

// array1[a1] is even,

// so copy it

xxx2xxx;

xxx3xxx;

}

}

The missing pieces of source code xxx1xxx, xxx2xxx and xxx3xxx in the above

source code should be replaced respectively by:

a) a1 < array1.Length
 ++a2

 array2[a2] = array1[a1]

b) a1 < array1.Length
 array2[a2] = array1[a1]

 ++a2

c) a1 <= array1.Length
 array2[a2] = array1[a1]

 ++a2

d) a1 <= array1.Length
 ++a2

 array2[a2] = array1[a1]

Hint: in all four options above, the second and third parts are the same, just reversed.

Answer to Question 9: __

190

Question 10
Consider the following source code fragment:

int[] array1 = { 2, 4, 1, 3 };

int[] array2 = { 0, 0, 0, 0 };

int a2 = 0;

for (int a1 = 1; a1 < array1.Length; ++a1)

{

if (array1[a1] >= 2)

{

array2[a2] = array1[a1];

++a2;

}

}

After this source code is executed, the array array2 contains what values?
a) { 4, 3, 0, 0 }

b) { 4, 1, 3, 0 }

c) { 2, 4, 3, 0 }

d) { 2, 4, 1, 3 }

Answer to Question 10: ___

191

Question 11
Suppose an array of integers s contains zero or more different positive integers, in

ascending order, followed by a zero. For example:

int[] s = { 2, 4, 6, 8, 0 };

 or
 int[] s = { 0 };

Consider the following “skeleton” source code, where the sequences of xxxxxx are

substitutes for the correct C# source code:

int pos = 0;

while ((xxxxxx) && (xxxxxx))

 ++pos;

Suppose an integer variable e contains a positive integer. The purpose of the above

source code is to find the place in s occupied by the value stored in e. Formally, when

the above while loop terminates, the variable pos is determined as follows:

1. If the value stored in e is also stored in the array, then pos contains the index of

that position. For example, if e=6 and s = {2, 4, 6, 8, 0}, then pos should

equal 2.

2. If the value stored in e is NOT stored in the array, but the value in e is less than

some of the values in the array then pos contains the index of the lowest position in

the array where the value is larger than in e. For example, if e=7 and s = {2,

4, 6, 8, 0}, then pos should equal 3.

3. If the value stored in e is larger than any value in s, then pos contains the index of

the position containing the zero. For example, if e=9 and s = {2, 4, 6, 8,

0}, then pos should equal 4.

The correct Boolean condition for the above while loop is:
a) (pos < e) && (s[pos] != 0)

b) (pos != e) && (s[pos] != 0)

c) (s[pos] < e) && (pos != 0)

d) (s[pos] < e) && (s[pos] != 0)

e) (s[pos] != e) && (s[pos] != 0)

Answer to Question 11: ___

192

Question 12
This question continues on from the previous question. Assuming we have found the
position in the array s containing the same value stored in the variable e, we now wish

to write source code that deletes that number from the array, but retains the ascending
order of all remaining integers in the array. For example, given:

s = { 2, 4, 6, 8, 0 }; e = 6; pos = 2;

The desired outcome is to remove the 6 from s to give:

s = { 2, 4, 8, 0, 0 };

Consider the following “skeleton” source code, where xxxxxx is a substitute for the

correct C# source code:

do {

++pos;

xxxxxx;

} while (s[pos] != 0);

The correct replacement for xxxxxx is:

a) s[pos+1] = s[pos];

b) s[pos] = s[pos+1];

c) s[pos] = s[pos-1];

d) s[pos-1] = s[pos];

e) None of the above

Answer to Question 12: ___

Section 2 - Demographic information

Instructions:

Please circle your selected answers.

Tell us a little bit about yourself:

Gender: Male Female

Age: 18 19 20 21 22 23+

Student number: ___

Thank you for completing the questionnaire!

193

Appendix B – Aggregate Performance of Phase 1 participants

The following table shows an aggregate performance of Phase 1 participants (3rd Year

students who answered the 12 original MCQs developed and used in the multi-national

study by Lister et al. (2004, pp. 141-144). The five columns in this table can be

described thus:

• Column1 – Question number as presented in the original Lister et al.'s (2004)

paper.

• Column 2 – Percentage (%) of students who answered each question correctly.

• Column 3 – Number of students who answered each question correctly.

• Column 4 – Ranking of the questions according to the performance of this

study’s participants (Rank 1 was the hardest question, while Rank 12 was the

easiest).

• Column 5 – Ranking of the questions according to the performance of Lister et

al.'s (2004) participants.

MCQ % correct Number of
students

Question ranking

(Phase 2 of this study)

Question ranking

(2004 ITiCSE working group)

1 61 23 (11/12) Easiest 8/9

2 38 14 4/5/6 6

3 38 14 4/5/6 7

4 49 18 9 5

5 41 15 7 12(Easiest)

6 30 11 3 2

7 51 19 10 10

8 22 8 2 3

9 62 23 (11/12) Easiest 11

10 46 17 8 8/9

11 38 14 4/5/6 4

12 19 7 1 (Hardest) 1 (Hardest)

194

Appendix C – Invitation Letter to Senior Students (Phase 2)

 21 May 2018
Dear [Student Initials and Surname],

On Monday, 23 April 2018, you completed a short test on source code comprehension.

The test was part of the first phase of a research study looking to uncover the source

code comprehension challenges of novice programmers. Based on your performance

in the Phase 1 test, you have been identified as a suitable participant for Phase 2 of

the study.

We would, therefore, like to extend an invitation to you to participate in Phase 2 of this

study. As a participant in Phase 2, you will be asked to answer three source code

comprehension questions in a think-aloud manner – explaining your reasoning as your

work through each of the questions. The session will last for approximately 30 minutes.

In appreciation for your time, you will receive a R100 voucher for Treats on the

Thakaneng Bridge.

Sessions will be scheduled in the time period from 05 to 29 June 2018. If you are

willing to participate, please contact Mr Pakiso Khomokhoana (E-mail:

khomo_khoana@yahoo.com or Physical: WWG308) to book your session.

Please feel free to contact me if you need additional information about this study.

Kind regards,

Prof Liezel Nel

Adjunct-professor: Department of Computer Science & Informatics

195

Appendix D – Case Study Protocol for Senior Students

(Phase 2)

Protocol to identify and determine the nature of relevant bottlenecks related to source

code comprehension

Case study protocol introduction:

Thank you for agreeing to participate in this research activity. Prior to the activity you were

sent a participant information sheet and two consent forms (one to sign and return; and

another to keep). This activity will not last for longer than 30 minutes. However, you can take

as much time as you like if you feel so. In answering the questions, please use the think-aloud

protocol, that is talk to us and to yourself aloud as much as you can. Also scribble on your

working paper as much as you can; and try to demonstrate your thinking as much as possible

so that we are able to understand how and why you arrived at your answer. The main issue

is not necessarily to test whether you can get the answers correct or not, but to analyse your

thinking in the process. For purposes of capturing all occurrences of the experiment

proceedings, the session will be audio-recorded. I hope you have read the participant

information sheet sent out to you earlier. Do you have any questions on it or any other

questions relating to the study? If there are no further questions, let us get started with the

questions.

Participant instructions:

Answer the three source code comprehension questions. Use think-aloud to verbalise your

reasoning in answering these questions.

Post-experiment questions

• What did you like the most about the questions?

• What do you think was the most challenging in the questions?

• How did you find hand analysing, working through and determining the output of the

source code/aim or what the source code does (hand executing source code?) Please

describe.

o Easy? Difficult? Challenging?

• Any other comments?

o Language?

196

Appendix E – Decoding Interview Protocol

(Phase 3 - Experts)

Interview Introduction

Thank you for agreeing to participate in this interview. We estimate that this interview

will be approximately 60 minutes in length. Prior to the interview you were sent a

participant information sheet and two consent forms (one to sign and return; and

another to keep). Have you read the participant information sheet sent out to you

earlier? Do you have any questions on it or any other questions relating to the study?

The ultimate aim of this study is to help novice programmers to improve their source

code comprehension skills. As such, we want them to be able to overcome bottlenecks

associated with source code comprehension. A bottleneck is something that an

instructor understands well, but despite his/her best efforts to teach it to students, they

(the students) still struggle to understand it. Essentially, the instructor fails to

understand why students do not understand it. One possible explanation is that

instructors might perform certain actions ‘automatically’ and consequently fail to make

students aware of these actions or steps they follow to perform the actions. We are

therefore trying to uncover these ‘hidden’ steps so that they can be explicitly modelled

and taught to students.

In this study, we are specifically focusing on source code tracing as a bottleneck.

Preliminary findings of this study suggest that even senior undergraduate students are

unable to reliably read/work through a section of source code in order to predict the

correct output (tracing). Do you have any questions regarding the bottleneck

description?

Ok, let us get started.

In this interview, we will ask you a number of questions based on the steps that you

follow or the mental/intellectual/cognitive moves you make in tracing through source

197

code. Basically, we want to explore the techniques or processes or strategies or tactics

that you use when you trace through source code. Also note that you are used to being

able to answer questions put to you as an expert. But in this interview, as we explore

your tacit knowledge, you may find it difficult to answer some of our questions. That

will be a good sign and will mean the interview will be going well, so do not worry if it

happens. It is also possible that we can ask you the same question more than once.

If it happens, we may want you to go deeper or give more details or provide more

clarification. This is a normal process in this type of interview.

Ok, suppose you are presented with a piece of source code on a piece of paper and

asked to read/work through it to predict its output (tracing). Can you explain to us how

you would go about doing that?

…..

Assuming you are given the following question, how would you go about answering

it? (Researcher handing over the question to the participant).

Possible probing questions

• What are the questions that come to your mind immediately when you see

this problem?

• When faced with a similar problem, what do you do?

• How do you know what to pay attention to in the problem?

• What would students have to do to understand or overcome that?

• Is there any experience one needs to tackle that problem?

• Are there any particular concepts one has to focus on? Why?

• How would you make connections between these concepts?

• What do you think enables other students to do it correctly while others

cannot?

• How do you know when you have found an answer? (i.e. when to stop?)

198

Appendix F – Ethical Clearance Approval

199

Appendix G – Participant Information Sheet (Phase 2 - Senior

Students)

Source code comprehension: Uncovering the cognitive challenges of novice

programmers

Dear Sir/Madam,

I hereby invite you to participate in a research study on source code comprehension.

This study is being conducted as part of the Ph.D. research project of Mr. Pakiso J.

Khomokhoana under the supervision of Prof Liezel Nel.

Participation in this research study requires signed consent from participants. Before

you complete the consent form, you need to understand why the research study is

being conducted, what your participation would require as well as potential benefits

and risks. The Research Ethics Committee of the Faculty of Natural and Agricultural

Science, University of the Free State has approved this research study. This

information sheet and the attached consent form are only part of the process of

informed consent.

Please take time to read the following information carefully. Feel free to ask questions

if anything is not clear or if you required more details about any aspect of the study.

1. What is the aim of this study?

The aim of this study is to use part of the seven-step Decoding the Disciplines (DtDs)

framework to investigate how instructors can help CS programming students

(especially novices) to improve their SCC skills.

2. Why have I been invited to participate?

You have been invited to participate because you are currently registered for or have

successfully completed an advanced programming module.

200

3. What will I be asked to do?

You will be required to answer a select number of Multiple Choice Questions in an

observed environment. All the questions will contain source code fragments that you

will have to study carefully and ultimately determine the output of each if it were to be

executed on the Integrated Development Environment (IDE). In answering the

questions, you will be required to use the thinking aloud technique. Moreover, you will

be required to explain to the experimenter (interviewer and/or observer) the steps that

you will take and why you will take such steps or think in a certain way as you work

toward your answers. The experimenter will prod you verbally to keep you talking

when you become silent.

4. Are there any possible risks and/or benefits from participating in this study?

There are no known or anticipated risks as a result of participating in the study.

Furthermore, participants will not receive any direct benefits for their participation.

5. What if I change my mind during or after the study?

If you decide at any time during the experiment session that you no longer wish to

participate in the research activities, you may withdraw your consent without providing

any explanation. The information collected from you up to the point when you withdraw

will be retained and may be used for the study.

6. What happens to the information I provide?

All information associated with you will be kept in private. Only the researcher and the

supervisor will have access to the information. In publishing any results from this study,

you will not be identified unless you give me specific permission to do so. I may also

share the data with other researchers so that they can check the accuracy of my

conclusions. However, this can only be done when I am confident that your

confidentiality is fully protected. Any local electronic data will be stored on secured

computers where only the researcher can gain access to the data. All physical and

electronic records containing information that can identify you will be destroyed one

year after publication of the study results.

201

7. How will the results of the study be published?

Written findings will be published online or in print journals; and written and/or video

reporting may be presented at local, provincial, national or international academic

conferences. The objective will be to advance an understanding of the cognitive

challenges of novice programmers with source code comprehension. Your identity will

remain anonymous in all written presentations of data via pseudonyms and the

reporting of aggregated results.

8. What if I have questions about this study?

Please feel free to contact the researcher or supervisor if you require further

information about the study. If you have concerns or complaints about the conduct of

this study, please contact either the supervisor or the Research Ethics Coordinator of

the Department of Computer Science and Informatics at the University of the Free

State.

Contact details:

• Researcher: khomo_khoana@yahoo.com or (+27) 060 620 7710

• Supervisor: nell@ufs.ac.za or (+27) 051 401 3591

• Departmental Research Ethics Coordinator: BeeldersTR@ufs.ac.za or

(+27) 051 401 9320

9. How do I give my consent to participate?

Complete the attached consent form if you understand and agree to take part in this

study. Please submit the completed consent form to the researcher. You may keep

this information sheet for your own records.

202

Appendix H – Participant Information Sheet

(Phase 3 - Experts)

Source code comprehension: Uncovering the cognitive challenges of novice

programmers

Dear Sir/Madam,

I hereby invite you to participate in a research study on source code comprehension.

This study is being conducted as part of the Ph.D. research project of Mr. Pakiso J.

Khomokhoana under the supervision of Prof Liezel Nel.

Participation in this research study requires signed consent from participants. Before

you complete the consent form, you need to understand why the research study is

being conducted, what your participation would require as well as potential benefits

and risks. The Research Ethics Committee of the Faculty of Natural and Agricultural

Science, University of the Free State has approved this research study. This

information sheet and the attached consent form are only part of the process of

informed consent.

Please take time to read the following information carefully. Feel free to ask questions

if anything is not clear or if you required more details about any aspect of the study.

1. What is the aim of this study?

The aim of this study is to use part of the seven-step Decoding the Disciplines (DtDs)

framework to investigate how instructors can help CS programming students

(especially novices) to improve their SCC skills.

2. Why have I been invited to participate?

You have been invited to participate because you have experience in teaching a

programming course and/or you are working in the programming industry.

203

3. What will I be asked to do?

You will be required to participate in a face-to-face interview. The duration of this

interview will not be longer than 60 minutes. In this interview, you will be asked to

explain in explicit details the steps that you would follow to solve a given source code

comprehension related problem. For purposes of capturing all occurrences of the

interview proceedings, the interview will be video/audio-taped.

4. Are there any possible risks and/or benefits from participating in this study?

There are no known or anticipated risks as a result of participating in the study.

Furthermore, participants will not receive any direct benefits for their participation.

5. What if I change my mind during or after the study?

If you decide at any time during the interview session that you no longer wish to

participate in the research activities, you may withdraw your consent without providing

any explanation. The information collected from you up to the point when you withdraw

will be retained and may be used for the study.

6. What happens to the information I provide?

All information associated with you will be kept in private. Only the researcher and the

supervisor will have access to the information. In publishing any results from this study,

you will not be identified unless you give me specific permission to do so. I may also

share the data with other researchers so that they can check the accuracy of my

conclusions. However, this can only be done when I am confident that your

confidentiality is fully protected. Any local electronic data will be stored on secured

computers where only the researcher can gain access to the data. All physical and

electronic records containing information that can identify you will be destroyed one

year after publication of the study results.

7. How will the results of the study be published?

Written findings will be published online or in print journals; and written and/or video

reporting may be presented at local, provincial, national or international academic

conferences. The objective will be to advance an understanding of the cognitive

challenges of novice programmers with source code comprehension. Your identity will

204

remain anonymous in all written and visual presentations of data via pseudonyms and

the reporting of aggregated results.

8. What if I have questions about this study?

Please feel free to contact the researcher or supervisor if you require further

information about the study. If you have concerns or complaints about the conduct of

this study, please contact either the supervisor or the Research Ethics Coordinator of

the Department of Computer Science and Informatics at the University of the Free

State.

Contact details:

• Researcher: khomo_khoana@yahoo.com or (+27) 060 620 7710

• Supervisor: nell@ufs.ac.za or (+27) 051 401 3591

• Departmental Research Ethics Coordinator: BeeldersTR@ufs.ac.za or

(+27) 051 401 9320

9. How do I give my consent to participate?

Complete the attached consent form if you understand and agree to take part in this

study. Please submit the completed consent form to the researcher. You may keep

this information sheet for your own records.

205

Appendix I – Participant Consent Form (Phases 1, 2 & 3)

Please tick () to indicate you consent to the following:

I have read the Participant Information Sheet and the nature and purpose of the research
study has been explained to me. I understand and agree to take part.

Yes No

I understand the purpose of the research study and my involvement in it. Yes No

I have been given sufficient time to consider whether or not to participate in this study. Yes No

I am satisfied with the answers I have been given regarding the study and I have a copy of
this consent form and information sheet.

Yes No

I understand that taking part in this study is voluntary and that I may withdraw from
participation at any time.

Yes No

I understand that while information gained during the study may be published, I will not be
identified and my personal responses will remain confidential.

Yes No

I know who to contact if I have any questions about the study in general. Yes No

I understand my responsibilities as a study participant. Yes No

I wish to receive a summary of the results from the study. Yes No

Initials and Surname: ……………………………………………………………………………

Student/Staff number: ………………………………………………………………………..…

Signature: …………………………………….……………………………………………………

Date: …………………………………..……….……………………………………………………

Study title: Source code comprehension: Decoding the cognitive challenges of novice
programmers

Researcher: Mr. Pakiso. J. Khomokhoana (khomo_khoana@yahoo.com)

	Title Page
	Declaration
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Summary
	Chapter 1 – Introduction
	1.1 Background to the study
	1.1.1 Challenges in teaching computer programming
	1.1.2 Challenges in learning computer programming

	1.2 Problem statement
	1.3 Aim and research questions
	1.4 Research design and methodology
	1.5 Research Contexts
	1.5.1 Professional context
	1.5.2 Organisational context
	1.5.3 National context
	1.5.4 Theoretical context

	1.6 Scope of research
	1.7 Presentation of the thesis

	Chapter 2 – Theoretical Background
	2.1 Introduction
	2.2 Source code comprehension strategies
	2.2.1 General reflection on the nature of SCC strategies
	2.2.2 Novice versus expert comprehension strategies

	2.3 Challenges impacting the development of SCC skills
	2.3.1 Lack of prior knowledge
	2.3.2 Lack of problem-solving skills
	2.3.3 Lack of strong mental models

	2.4 Cognitive practices
	2.4.1 Knowledge acquisition and retention
	2.4.2 Metacognition
	2.4.2.1 Metacognitive promotion strategies
	Planning
	Monitoring
	Regulation
	Modelling

	2.5 Summary

	Chapter 3 – Research Design and Methodology
	3.1 Introduction
	3.2 Research design
	3.3 Research methodology
	3.3.1 Characteristics of FraIM
	3.3.2 Data collection in FraIM
	3.3.3 Justification for using FraIM

	3.4 Details of empirical study
	3.4.1 Phase 1
	3.4.1.1 Aim
	3.4.1.2 Data source management
	3.4.1.3 Population and sampling
	3.4.1.4 Data collection method
	3.4.1.5 Procedure
	3.4.1.6 Data analysis

	3.4.2 Phase 2
	3.4.2.1 Aim
	3.4.2.2 Data source management
	3.4.2.3 Population and sampling
	3.4.2.4 Data collection methods
	3.4.2.5 Piloting of Phase 2
	3.4.2.6 Procedure
	3.4.2.7 Data analysis
	Data preparation and organisation
	Transcription process
	Cleansing of transcripts
	Coding plan identification
	Data coding
	Descriptive analysis

	3.4.3 Phase 3
	3.4.3.1 Aim
	3.4.3.2 Data source management
	3.4.3.3 Population and sampling
	3.4.3.4 Data collection methods
	3.4.3.5 Piloting of Phase 3
	3.4.3.6 Procedure
	3.4.3.7 Data analysis

	3.5 Trustworthiness
	3.5.1 Credibility
	3.5.2 Transferability
	3.5.3 Dependability
	3.5.4 Confirmability
	3.5.5 Integrity

	3.6 Ethical considerations
	3.7 Summary

	Chapter 4 – (Article 1) Decoding source code comprehension: Bottlenecks experienced by senior Computer Science students
	1 Introduction
	2 Related Work
	2.1 Bottleneck identification approaches
	2.2 SCC difficulties

	3 Research Methods
	3.1 Design
	3.2 Phase 1 Participants, data collection and analysis
	3.3 Phase 2 Data collection
	3.4 Phase 2 Data analysis

	4 Results and interpretation
	4.1 Array related difficulties
	4.2 Programming logic difficulties
	4.3 Programming control structure difficulty

	5 Identification of SCC bottlenecks
	6 Conclusions and future work
	7 References

	Chapter 5 – (Article 2) Decoding the explicit cognitive strategies of expert instructors: Mental scaffolding techniques for efficient source code comprehension
	1 INTRODUCTION
	2 BASIC COGNITIVE PROCESSES AND THE RELATION TO SCC
	2.1 Attention
	2.2 Perception
	2.3 Memory
	2.4 Reading, speaking, and listening
	2.5 Reflective cognition

	3 RESEARCH DESIGN AND METHOD
	3.1 Data collection
	3.2 Data collection procedure
	3.3 Data analysis

	4 FINDINGS AND INTERPRETATION
	4.1 Reflective cognition
	4.1.1 Cognitive planning
	4.1.2 Cognitive reasoning
	4.1.3 Cognitive decision making
	4.1.4 Problem solving

	4.2 Attention
	4.3 Reading, speaking and listening
	4.4 Memory
	4.5 Perception

	5 COGNITIVE STRATEGIES IN SOURCE CODE COMPREHENSION
	5.1 Reflective cognition
	5.2 Attention
	5.3 Reading
	5.4 Memory
	5.5 Mental scaffolding techniques for the modelling of efficient SCC

	6 CONCLUSION AND FUTURE WORK
	7 REFERENCES

	Chapter 6 – (Article 3) Narrowing the gap between expert and novice thinking: A step-by-step framework for efficient source code comprehension
	1. Introduction
	2. Source Code Comprehension Strategies
	3. Research Design and Method
	3.1. Decoding interviews
	3.2. Data analysis
	3.3. Validation

	4. Findings and Interpretation
	4.1. Self-orientation
	4.2. Keyword identification
	4.3. Data structure identification
	4.4. Deduction of meaning from context
	4.5. Strategic thinking
	4.6. Walkthroughs
	4.7. Revisit previous stages
	4.8. Doodling
	4.9. Thoroughness
	4.10. Pattern recognition
	4.11. Group answer options

	5. Framework for Efficient Source Code Comprehension
	6. Conclusion
	7. References

	Chapter 7 – Conclusions and Recommendations
	7.1 Introduction
	7.2 Synthesis of findings
	7.2.1 Literature review
	SRQ1: What are the strategies that programmers (novices and experts) follow during the SCC process?
	SRQ2: What are the challenges that influence the development of novice programmers’ SCC skills?
	SRQ3: How do cognitive and metacognitive practices influence SCC?

	7.2.2 Empirical findings
	Article 1
	Article 2
	Article 3

	7.2.3 Summary

	7.3 Contributions of the study
	7.4 Limitations of the study
	7.5 Recommendations for future research
	7.6 Conclusion

	List of References
	Appendix A – Questionnaire for Senior Students (Phase 1)
	Appendix B – Aggregate Performance of Phase 1 participants
	Appendix C – Invitation Letter to Senior Students (Phase 2)
	Appendix D – Case Study Protocol for Senior Students (Phase 2)
	Appendix E – Decoding Interview Protocol (Phase 3 - Experts)
	Appendix F – Ethical Clearance Approval
	Appendix G – Participant Information Sheet (Phase 2 - Senior Students)
	Appendix H – Participant Information Sheet (Phase 3 - Experts)
	Appendix I – Participant Consent Form (Phases 1, 2 & 3)

