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Summary 

After four decades of research investigations, source code comprehension (SCC) 

continues to be challenging to undergraduate Computer Science (CS) students. CS 

instructors, on the other hand, do not generally have any problems to comprehend 

source code. The Decoding the Disciplines (DtDs) philosophy is based on the premise 

that each discipline has its own unique set of mental operations. In many cases, these 

operations have become invisible to instructors, as they tend to perform them 

automatically based on years of experience. If the nature of these operations is not 

made explicit to students, it is likely that they will develop learning ‘bottlenecks’ which 

could prevent them from mastering key disciplinary practices (such as SCC). Better 

understanding of the nature of the cognitive processes and related strategies 

employed by experts during SCC could ultimately be utilised to expose these ‘hidden’ 

mental steps. 

 

The overall aim of this study was to explore how a systematic decoding approach can 

be used to uncover cognitive strategies for efficient SCC by novice programmers. The 

research findings are presented in the format of three interrelated articles: 

 

Article 1 reports on a study aimed at uncovering common SCC bottlenecks 

experienced by senior CS students. Thematic analysis of the collected data revealed 

eight common SCC difficulties specifically related to arrays, programming logic, and 

control structures. The identified difficulties, together with findings from existing 

literature, as well as personal experiences were then used to formulate six usable SCC 

bottlenecks. The identified bottlenecks point to student learning difficulties that should 

be addressed in introductory CS courses. This article intends to create awareness 

among CS instructors regarding the role that a systematic decoding approach can play 

in exposing the mental processes and bottlenecks unique to the CS discipline.  

 

Article 2 describes a study that employed decoding interviews, followed by thematic 

data analysis, to uncover a variety of explicit cognitive processes and related 

strategies utilised by a select group of experienced programming instructors during a 
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SCC task. The insights gained were then used to propose a set of mental scaffolding 

techniques for efficient SCC. It is foreseen that programming instructors could use 

these techniques as an SCC teaching aid to convey expert ways of thinking more 

explicitly to their students. Insight into the general cognitive strategies utilised by 

expert programmers is also an important step towards further exploration of the more 

detailed step-by-step procedures followed by experts during SCC. 

 

One of the key bottlenecks identified in the CS discipline, relates to students’ inability 

to reliably work their way through the long chain of reasoning necessary to 

comprehend source code. In an attempt to narrow the existing gap between expert 

and novice thinking in this regard, Article 3 describes a study in which decoding 

interviews with five expert programmers (who were also experienced programming 

instructors) were utilised to systematically deconstruct the explicit mental techniques 

and reasoning strategies necessary for efficient SCC. Thematic analysis of the mental 

operations performed by these experts during an SCC activity, led to the identification 

of 11 key strategies. Knowledge of these strategies as well as the related explicit 

mental operations were then used to devise a step-by-step framework for efficient 

SCC. The main purpose of this framework is to create awareness among CS 

instructors regarding the explicit mental operations required for efficient SCC, and to 

serve as a source of further research and refinement. Moreover, within the realm of 

the DtDs philosophy, this framework can also serve as a starting point for devising 

explicit strategies to model these mental operations to students, and to help them 

master each of the identified strategies. 

 

Keywords: Source code comprehension, decoding the disciplines, decoding 

interview, student-learning bottlenecks, cognitive processes, cognitive strategies, 

undergraduate programming, Computer Science Education, novice programmers, 

expert programmers.       
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Chapter 1 – Introduction  

 

1.1 Background to the study  

In the global world of Computer Science (CS), it is well documented that learning to 

program poses a challenge to many students. As such, several efforts have been 

undertaken to assist entry-level CS students overcome programming-related 

challenges. Most of these challenges are rooted in students’ inability to effectively and 

efficiently read, comprehend, and modify source code (Lister et al., 2004; McCracken 

et al., 2001). This is evidenced by the struggle students encounter when they have to 

modify source code that they did not write themselves (Mishra & Mohanty, 2012; 

Singh, Pollock, Snipes & Kraft, 2016; Cimitile, Tortorella & Munro, 1994). Several 

authors (Perscheid, 2011; Soh, Khomh, Gueheneuc & Antoniol, 2013; Standish, 1984; 

Tiarks, 2011; Von Mayrhauser, Vans & Howe, 1997) are in agreement that students 

(as programmers) devote most of their time to the process of reading and 

understanding source code in order to modify it. This process is commonly referred to 

as source code comprehension (SCC).  

 

Source code comprehension is widely recognised as central to programming 

(Bednarik & Tukiainen, 2006; Shaft & Vessey, 1995). It is also regarded as a 

precondition for any type of modification to occur in a computer program (Alam & 

Padenga, 2010). In computer programming courses, instructors must address an 

assortment of programming aspects that could help enhance students’ ability to 

understand source code. These aspects may be the various small challenges of 

computer programming that, if overlooked, may ultimately hamper the SCC ability of 

students. Therefore, inherent challenges experienced by instructors in teaching 

computer programming and difficulties encountered by students in the learning of 

computer programming are considered next.   

 

1.1.1 Challenges in teaching computer programming  

Although teaching is a complex activity, courses in various disciplines are normally 

taught by instructors who have not received formal training in pedagogy, but who are 



2 

experts in the courses they teach. Consequently, these instructors tend to follow 

methods and strategies that were used on them when they were students (Ambrose, 

Bridges, DiPietro, Lovett & Norman, 2010). The teaching of computer programming is 

not an exception to this practice. Hence, computer programming instructors are faced 

with challenges, including the following:  

• Devising instructional strategies that would adequately reach all students 

(Lahtinen, Ala-Mutka & Järvinen, 2005) due to factors such as high enrolment 

rates and diversity in students’ prior knowledge. 

• Retaining and graduating most of the enrolled students, due to the fact that 

learning to read and write source code is generally considered hard (Eranki & 

Moudgalya, 2016). 

• Using effective pedagogical strategies and methods that will help students to 

learn programming maximally (Oroma, Wanga & Ngumbuke, 2012; Sentance 

& Csizmadia, 2016).   

 

If teaching computer programming poses challenges, it can be inferred that 

programming students also have to deal with discipline-specific challenges.  

 

1.1.2 Challenges in learning computer programming 

Of all the students enrolled in computer programming courses, the entry-level students 

are normally the most challenged (Kinnunen, 2009). Literature (Busjahn & Schulte, 

2013; Fisler, 2014; Lee & Ko, 2015; Pope, 2016) commonly refers to entry-level 

programming students as ‘CS1/CS2 students’. One fundamental reason that could be 

attributed to the fact that CS1/CS2 students are the most challenged, is that they must 

first learn to ‘speak’ a new (programming) language. In addition, they also have to face 

the following challenges: 

• Thinking analytically and reasoning logically in solving computer programming 

problems (Butler & Morgan, 2007; Ismail, Ngah & Umar, 2010).   

• Decomposing a problem description into sub-problems, implementing these 

sub-problems, and putting the pieces together into a complete solution (Lister 

et al., 2004). 
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• Translating a manually solved problem into an equivalent computer program 

(Soloway, Ehrlich & Black, 1983).   

• Making a transition from an understanding of separate program statements to 

the tasks that are to be achieved by groups of statements (Liffick & Aiken, 

1996). 

• Dividing program functionality into procedures (Piteira & Costa, 2013).  

• Understanding programming concepts to be applied in solving problems or in 

developing computer programs (Lister et al., 2004; Sentance & Csizmadia, 

2016). 

• Mapping what is in the code or program back into the original software 

specifications or requirements (concept assignment problem) (Biggerstaff, 

Mitbander & Webster, 1993). 

 

All of the stated challenges could have a negative impact on the SCC abilities of 

students. If students are unable to fully comprehend and master source code, their 

software maintenance abilities may be hampered in future. To identify specific 

challenges with SCC, several techniques have been suggested and used. These 

include showing source code to students and giving them a task to solve in a controlled 

environment to determine their level of source code understanding (Siegmund, 

Kástner, Apel, Brechmann & Saake, 2013); and using think-aloud techniques or 

protocols (Anderson, Bachman, Perkins & Cohen, 1991).  

 

By applying the aforementioned techniques, differences between strategies used by 

experienced and novice programmers to understand source code have been 

identified. These include the fact that experienced programmers pay attention to 

meaningful areas of the source code and complex statements, while novice 

programmers visually concentrate on the comments and comparisons (Busjahn, 

Schulte & Busjahn, 2011; Crosby & Stelovsky, 1990; Von Mayrhauser & Vans, 1995b). 

The experienced programmers also need little working memory when solving SCC-

related problems, because they readily identify the procedural nature of the source 

code – which is not the case with novice programmers (Wiedenbeck, Fix & Scholtz, 

1993).  
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In close examination of such strategies, deficiencies inherent in novice programmers 

are exposed. To help them overcome these challenges, a myriad of strategies and/or 

techniques have been suggested and used. These include using programming plans 

(stereotype source code fragments that represent known action sequences) (Davies, 

1990; Gilmore & Green, 1988; Green & Navarro, 1995; Rist, 1986; Soloway & Ehrlich, 

1984); developing tools with search capabilities (Singer, Lethbridge, Vinson & 

Anquetil, 1997); syntax highlighting (Sarkar, 2015); cognitive load reduction (Sweller, 

1988; Sweller, Van Merrienboer & Paas, 1998); pair-programming (Braught, Wahls & 

Eby, 2011; Cronje, 2013); bottom-up comprehension strategy (Basili & Mills, 1982; 

Shneiderman, 1976; Shneiderman & Mayer, 1979); and top-down comprehension 

strategy (Brooks, 1999).  

 

In addition to the above-mentioned strategies, another angle that could be considered 

to help CS students (as novice programmers) understand source code better, is the 

cognitive perspective. Reasons for considering this perspective are twofold: First, SCC 

is regarded as a highly cognitive task (Praveen, 2016). Second, for students to better 

comprehend source code, they need to acquire a mental model of the structure and 

function of the source code (Bednarik & Tukiainen, 2006). The mental model refers to 

students’ understanding of the source code during the comprehension process 

(Letovsky, 1987).  

 

Using the cognitive perspective, several studies have attempted to provide insights 

regarding the strategies used by programmers of various expertise levels, including 

novice programmers, to comprehend source code (Burkhardt, Détienne & 

Wiedenbeck, 2002; Ko & Uttl, 2003; Littman, Pinto, Letovsky & Soloway, 1987; 

Letovsky, 1987; Soloway, Lampert, Letovsky, Littman & Pinto, 1988; Von Mayrhauser 

& Vans, 1996). These investigations have mostly been based on verbal protocols 

(capturing the thought-processing). Similar investigations based on non-verbal 

protocols used eye-movement tracking (Bednarik & Tukiainen, 2006; Crosby & 

Stelovsky, 1990) and neuro-imaging methods (Siegmund et al., 2014). Some other 

interventions were to carry out simulations of the source code that is being maintained 

(Soloway, 1986).  
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Most of the previous research studies that considered the mental processes involved 

in understanding source code, employed cognition models as their theoretical lenses. 

Considerable research (Basili & Mills, 1982; Brooks, 1983; Letovsky, 1987; Littman et 

al., 1987; Shneiderman & Mayer, 1979; Soloway, Adelson & Ehrlich, 1988) on 

developing these models has been conducted from the late 1970s throughout the 

1980s. Von Mayrhauser and Vans (1993; 1995b) even developed an integrated code 

comprehension model which is based on many of these cognition models.  

 

However, an approach from a different theoretical lens could be considered. Decoding 

the Disciplines (DtDs) is a framework that could be usable due to its multidisciplinarity 

and pedagogical nature. This seven-step framework was devised by Joan Middendorf 

and David Pace (Middendorf & Pace, 2004). Within this framework, the challenges 

experienced by students are normally referred to as bottlenecks. These are defined 

as specific points where the learning of a significant number of students gets 

interrupted (Diaz, Middendorf, Pace & Shopkow, 2008; Middendorf & Pace, 2004). 

Bottlenecks usually come to the fore when students do not have the knowledge of how 

to deal with a situation or problem, and hence resort to unsuitable strategies (Pace, 

2017a).  

 

DtDs presents an all-embracing framework within which these bottlenecks can be 

addressed. One of the fundamental principles of this framework is that each discipline 

has its own unique ways of thinking (Middendorf & Pace, 2004). Students who are 

unable to master the required ways of thinking are unlikely to succeed in their higher-

level studies. Within the DtDs framework, instructors are therefore encouraged to 

identify discipline-specific learning bottlenecks that could prevent students from 

mastering the basic disciplinary ways of thinking (Step 1). After identifying the 

bottlenecks, the crucial mental operations required to overcome such bottlenecks are 

uncovered with the assistance of disciplinary experts (Step 2). These operations are 

then modelled explicitly to students (Step 3). After this, instructors create opportunities 

for students to practise these operations or skills and get feedback on their mastery of 

the skills (Step 4). In the process, motivational strategies or principles are applied to 

assist students in effectively learning the imparted skills (Step 5). Eventually, an 

assessment is made of how well the undertaken efforts help students to master the 

intended learning content (Step 6). As part of the final step (Step 7), instructors are 
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encouraged to share (formally or informally) their experiences from this process 

(Middendorf & Pace, 2004; Pace, 2017a). The seven distinct steps of the DtDs 

framework, as described above, are presented in Figure 1.1. Despite the recent uptake 

in decoding research conducted in other disciplines (Shopkow, 2017; Verpoorten et 

al., 2017), limited information regarding DtDs research in the CS discipline is available 

in the public domain. 

 

[Source: Middendorf & Pace, 2004, p. 3) 

Figure 1.1 – Seven steps of the DtDs framework 

 

1.2 Problem statement         

Despite numerous efforts undertaken since the early 1980s (Siegmund, 2016) to 

assist students in improving their SCC skills and generally performing well in 

programming courses, many CS students continue to struggle with SCC. This is 

evidenced by the findings of several studies (Lister et al., 2004; Mccartney, Boustedt, 

Eckerdal, Sanders & Zander, 2013; McCracken et al., 2001; Utting et al., 2013; 

Whalley et al., 2006). Most of these studies have reported students’ struggles when 
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they have to read, interpret, and/or comprehend given pieces of code. The 

continuation of the struggle can be attributed to the fact that, of all the initiatives 

undertaken, there is no consensus among researchers, educational developers, and 

instructors on how to address this issue best. This happens irrespective of the 

seemingly better strategies used by programming experts themselves.  

 

To some extent, most CS instructors can be regarded as experts in their discipline. 

Despite their ‘expert’ skills, these instructors often struggle to explain source code and 

its underlying concepts to their students (as novice programmers) in such a way that 

these novices understand it in the same way they (the instructors) do. The problem 

emanates from the constantly confirmed hypothesis termed ‘expert blind spot’ 

(Grossman, 1990; Nathan & Petrosino, 2003; Shulman, 1986). This hypothesis was 

developed from the works of Nathan and his colleagues (Nathan & Koedinger, 2000; 

Nathan, Koedinger & Alibali, 2001). It states that instructors: 

“with advanced subject-matter knowledge of a scholarly discipline tend to use 

the powerful organising principles, formalisms and methods of analysis that 

serve as the foundation of that discipline as guiding principles for the students’ 

conceptual development and instruction, rather than being guided by 

knowledge of the learning needs and developmental profiles of novices” 

(Nathan & Petrosino, 2003, p. 906). 

 

Therefore, it can be deduced from this hypothesis that an expert blind spot refers to 

vital operations that have become so natural to the experts that they omit crucial steps 

when explaining concepts and procedures to others.  

 

Hence, these expert blind spots, coupled with ways in which instructors teach source 

code comprehension, could lead to students developing mental blocks when it comes 

to SCC. It may, therefore, be essential to pay further attention to the cognitive 

perspective of this problem. Coupling this perspective with the fundamental elements 

of students’ thinking and doing to facilitate effective learning and understanding, as 

suggested by Middendorf and Pace (2004), it is essential that novice programmers 

are: 



8 

• Made aware of the intrinsic cognitive processes or steps that experts follow 

while comprehending source code. This can be used as a comprehension 

strategy to obtain new knowledge, as suggested by Von Mayrhauser and Vans 

(1995a; 1995b);  

• Engaged in practising the models (being motivated in the process); and 

• Provided with effective feedback in order to see how they can better 

comprehend source code.  

 

It is, for example, strongly believed that students must think and do for learning to 

happen (Herbert, as cited in Ambrose et al., 2010, p. 1). Students are more likely to 

remember what they do than what they are being told to do. Accordingly, students 

should be engaged in the modelling and practising of the models in order for them to 

learn. On feedback issues, Brookhart (2008) alludes to various factors such as timing, 

amount (content) of feedback, mode, and audience as fundamental in providing 

feedback to students.   

 

If CS1/CS2 instructors are able to put appropriate pedagogical interventions (in the 

form of a pedagogical process) in place and effectively tap into students` cognitive 

blocks, this could help students to systematically overcome the identified blocks. As 

part of this process, students should be helped to improve and/or refine their mental 

actions in understanding source code in a classroom setting (naturally occurring 

context) (Lewin, 1951; Sagor, 2000; Stringer, 2014).   

 

1.3 Aim and research questions  

Based on the problem statement (as described in Section 1.2), this study is set out to 

explore how a systematic decoding approach can be used to uncover cognitive 

strategies for efficient SCC by novice programmers. In order to address this aim, the 

research study attempted to answer the following main research questions: 

RQ1: What are the SCC challenges experienced by novice programmers? 

RQ2: How can a systematic decoding approach be used to devise cognitive 

strategies that could be used to address these challenges? 
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For the purpose of answering the aforementioned two main research questions, the 

following nine subsidiary research questions were formulated: 

 

• Subsidiary research questions – (guiding the literature review) 

SRQ1: What are the strategies that programmers (novices and experts) follow 

during the SCC process?  

SRQ2:  What are the challenges that influence the development of novice 

programmers’ SCC skills? 

SRQ3:  How do cognitive and metacognitive practices influence SCC?   

• Subsidiary research questions – (directing the empirical investigations) 

SRQ4 (a):  What are the major SCC difficulties experienced by senior CS 

students?  

SRQ4 (b):  How can knowledge of these difficulties be used to identify SCC 

bottlenecks that should ideally be addressed in introductory 

programming courses?  

SRQ5 (a):  What are the cognitive processes and related cognitive strategies 

employed by expert programmers during SCC? 

SRQ5 (b):  What does insight into these cognitive process strategies suggest 

in terms of mental scaffolding techniques for the modelling of 

efficient SCC strategies to students? 

SRQ6 (a):  What are the explicit mental strategies (techniques and reasoning) 

that CS experts employ while comprehending source code? 

SRQ6 (b):  How can knowledge of these strategies be applied in the 

formulation of a step-by-step framework that could ultimately 

contribute towards narrowing the gap between expert and novice 

thinking with regard to efficient SCC?           

       

1.4 Research design and methodology   

The research design of this study was based on the seven-step DtDs framework. 

Within this framework, an integrated-methods research approach based on 
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Plowright's (2011) Frameworks for an Integrated Methodology (FraIM) was adhered 

to. The study consisted of three phases to distinguish between the different sources 

of data (cases). Phase 1 was aimed at identifying specific senior CS students who 

were having difficulties in comprehending short pieces of source code. Phase 2 was 

aimed at uncovering specific points or places where senior students were 

experiencing SCC difficulties, with the ultimate goal of identifying common and useful 

SCC bottlenecks. Phase 3 was aimed at uncovering the explicit nature of steps and 

strategies that programming experts would follow in order to accomplish the tasks 

associated with one of the student-learning bottlenecks identified in Phase 2. The 

specific details of how each of these three research phases unfolded, are provided in 

Chapter 3 (see Section 3.4).  

 

1.5 Research Contexts 

As part of the FraIM, Plowright (2011) suggests that there are various contexts that 

could impact the choice of topic in any research study. In the following sub-sections, 

some background information is provided regarding four specific contexts that are of 

relevance to this study. 

 

1.5.1 Professional context 

The researcher is a full-time lecturer at an institution of higher learning in Lesotho. He 

started teaching in 2014 after working in the Department of ICT Services of the same 

institution since 2003. He teaches Information Systems-related courses, including 

introduction to programming, website development, and information systems in a 

business environment. The choice of the research topic was influenced by both the 

researcher’s own experiences as a CS student and his experiences in teaching 

programming courses to a diverse group of students. As an undergraduate student, 

the researcher perceived programming to be a difficult subject. However, upon moving 

to a South African institution of higher learning to pursue his postgraduate studies 

(Honours), he was required to take additional undergraduate programming modules 

to come on par with the other Honours students. While studying these modules, he 

was engulfed in a student-centred and welcoming environment. The teaching aids 

used in these modules had emotional connection with the students, and most of the 

examples shared were meaningful and made sense to students. As a result, the 
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researcher performed well in these undergraduate programming modules. This led 

him to change his perception about programming being difficult. While teaching 

programming, the researcher observed a lot of students struggling (e.g. syntax, 

semantics, conceptualisation, code explanation, debugging, and tracing). This 

happened irrespective of the fact that the same strategies were used as those used 

during his Honours studies.    

   

1.5.2 Organisational context 

This research study was conducted at a selected South African higher education 

institution. The novice programmers used as student participants in this research 

study were senior CS students. These students were all enrolled for a three-year 

Bachelor of Science degree majoring in Information Technology. As part of this 

degree, students must complete a number of CS modules, together with modules from 

at least one other specialisation field (Business Management, Chemistry, 

Mathematical Statistics, Mathematics or Physics). In their first two study years, these 

students take CS modules that focus on building foundational knowledge regarding 

programming in C# (introductory and advanced), web development, computer 

hardware, databases, human-computer interaction, and software design principles. In 

the third year, these students must complete modules in advanced databases and 

computer networks, as well as two other modules (Internet programming and Software 

Engineering) where they have the opportunity to combine knowledge gained from 

previously studied CS modules. 

   

1.5.3 National context 

In the past few years, higher education institutions in South Africa have been faced 

with challenges such as burgeoning numbers of students enrolling in various 

programmes (i.e. massification in higher education) (Council on Higher Education, 

2016; Jansen, 2003). These students come from various settings in terms of ethnicity, 

professional and personal background, socio-economic status, language, and sexual 

orientation. It is therefore evident that these students are not all academically equally 

prepared for the higher learning environment, which is characterised by lots of 

pressure for adaptation, independence, and performance. Irrespective of the 

aforementioned challenges, the institutions are pressurised to increase student 

throughput (Council on Higher Education, 2016).      
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1.5.4 Theoretical context 

Source code comprehension has been identified as one of the main difficulties that 

novice programmers continue to experience (Cunningham, Blanchard, Ericson & 

Guzdial, 2017; Lister et al., 2004). Computer Science instructors (as experts in the 

field) are able to comprehend source code. However, they struggle to help novice 

programmers understand source code in the same way they do. As indicated in the 

discussion of the problem statement, expert blind spots (Grossman, 1990; Nathan & 

Petrosino, 2003; Shulman, 1986), coupled with ways in which instructors teach source 

code, can lead to students developing mental blocks when it comes to SCC. As such, 

there is a need to identify the specific SCC challenges experienced by novice 

programmers in an educational context. Since CS instructors (as experts) do not 

typically have problems to comprehend source code, there is a need to uncover (or 

decode) the explicit mental operations (techniques and reasoning strategies) they 

follow during SCC. Knowledge of these explicit cognitive strategies and/or steps could 

then be used to identify specific strategies for efficient SCC that instructors can use in 

teaching students to comprehend source code more efficiently.     

 

1.6 Scope of research           

In this study, the DtDs framework was adapted to create an enabling environment to 

conduct the empirical investigation and to ultimately answer the two main research 

questions of the study. DtDs adaptations are supported by Middendorf and Pace 

(2004), who indicate that the DtDs’ steps are neither ‘mechanical’ nor ‘deterministic’. 

The framework is deemed suitable because it is pedagogical in nature (King, Linkon 

& Middendorf, 2013). Furthermore, the framework helps to answer a series of 

questions that instructors can ask themselves as they try to understand how their 

students think and learn in their specific disciplines (Middendorf & Pace, 2004). Based 

on this scope as well as the theoretical framework (as outlined in Section 1.5.4), Figure 

1.2 provides a conceptual framework for the research study that also shows the link 

with the empirical part of the investigation. Given the amount of work involved, rigour 

applied in doing the work, and large amounts of data collected while following the DtDs 

framework, this research study only focused on Step 1 and Step 2 of the framework. 



13 

 

Figure 1.2 – Conceptual framework for this study 

 

For the empirical investigation, Phase 1 and Phase 2 of the study were conducted as 

part of DtDs framework Step 1, while Phase 3 was conducted as part of DtDs 

framework Step 2. The six usable SCC bottlenecks identified as part of Phase 2 are 

reported in Chapter 4. Phase 3 only focused on addressing one of the six identified 

bottlenecks. The main outcomes of Phase 3 were a set of mental scaffolding 

techniques for the explicit modelling of SCC (as reported in Chapter 5) and the 

proposed step-by-step framework for efficient SCC (discussed in Chapter 6). It is 

believed that the implementation of these techniques, and the execution of this 

framework, could be instrumental in assisting instructors to help novice programmers 

comprehend source code the same way they do, hence addressing the cognitive 

challenges that students experience. The entire investigation was conducted within 

the field of Computer Science Education. The central issue was to use a systematic 

decoding approach to devise a range of cognitive strategies that could be used to 

address the specific SCC challenges experienced by novice programmers. 
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1.7 Presentation of the thesis                  

This thesis report consists of seven chapters.  

  

In this chapter, Chapter 1, a brief introduction of the research study discussed in the 

thesis is provided. The discussion presents preliminary insights from the literature on 

which the study was grounded. This literature indicates the theoretical direction taken 

by the study. 

 

Chapter 2 presents a detailed review of related contemporary literature. The 

discussions in this chapter specifically focus on factors that could influence the SCC 

ability of programmers, strategies followed by programmers during the SCC process, 

and the influence that cognitive practices can have on SCC.  

 

Chapter 3 provides a discussion of the research design and methodology of this study, 

as well as the theoretical underpinnings of the theories used for the selected research 

design and methods. This chapter also provides a detailed discussion of how the 

research study unfolded in the process of finding answers to the stated research 

questions, together with the subsidiary research questions as explained in the 

introductory chapter. Issues related to trustworthiness and ethical considerations are 

also addressed in this chapter.  

 

The research findings of the study are presented in the format of three articles included 

as Chapters 4, 5 and 6 of this report. As per university regulations for the ‘thesis by 

articles’ format, the main criterion for each article is that it must either be a ‘published 

article’ or a ‘publishable manuscript’. As such, each article represents a standalone 

document without any cross-references to other parts of the report. Each article is also 

formatted according to the guidelines of the specific publication for which it was 

prepared.  

 

Chapter 4 presents Article 1, titled: Decoding source code comprehension: 

Bottlenecks experienced by senior Computer Science students. Set within the DtDs 

paradigm, this paper reports on an investigation aimed at identifying the major SCC 

difficulties experienced by senior CS students. The identified difficulties, together with 
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information from other sources, were used to formulate six usable SCC bottlenecks. 

These bottlenecks point to student-learning difficulties that should ideally already be 

addressed in introductory CS courses. 

 

Chapter 5 presents Article 2, titled: Decoding the explicit cognitive strategies of expert 

instructors: Mental scaffolding techniques for efficient source code comprehension. 

Set within the DtDs paradigm, this paper reports on an investigation aimed at 

identifying the cognitive processes and related cognitive strategies that expert 

programmers follow during the SCC process. The knowledge of the identified 

strategies was used to formulate a set of mental scaffolding techniques for efficient 

SCC. Programming instructors could use these techniques as an SCC teaching aid to 

convey expert ways of thinking more explicitly to their students.    

 

Chapter 6 presents Article 3, titled Narrowing the gap between expert and novice 

thinking: A step-by-step framework for efficient source code comprehension. Set 

within the DtDs paradigm, this paper reports on an investigation aimed at identifying 

the explicit mental operations (techniques and reasoning strategies) that expert 

programmers employ while comprehending source code. Insights into these strategies 

were used in the development of a framework for efficient SCC. This framework is 

aimed at creating awareness among CS instructors regarding the explicit mental 

operations required for efficient SCC. It could also serve as a starting point for devising 

explicit strategies to model these mental operations to students and to help them 

master each of the identified strategies. 

 

Chapter 7 outlines the conclusions of this study relating to the main and subsidiary 

research questions. This includes a discussion of how the research questions were 

answered, the presentation of the main findings and the contributions of the study, its 

limitations and recommendations for future research.  

 

Other documents related to this study and the various research activities are included 

as appendices at the end of this thesis.   
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Chapter 2 – Theoretical Background 

 

2.1 Introduction  

Given the format of this thesis, each of the three articles (as presented in Chapters 4, 

5 and 6) includes a section that considers relevant literature. While guarding against 

unnecessary duplication, it was deemed necessary to also provide a wider conceptual 

and theoretical basis upon which the remainder of this thesis builds. This chapter 

therefore presents an overview of three key concepts. First, the general strategies that 

can be used to comprehend source code are examined. In the course of this 

examination, the different strategies used by novices and experts are compared. The 

second section considers three challenges that could influence the development of a 

novice programmer’s SCC skills. Lastly, in the light of the teaching and learning focus 

of this study, the third section considers relevant cognitive and metacognitive practices 

and examines the relation between these practices and SCC.   

 

2.2 Source code comprehension strategies  

Source code comprehension refers to the process of reading, interpreting, and 

understanding pieces of source code that make up an entire computer program 

(Busjahn & Schulte, 2013; Lister et al., 2004; Lister, Simon, Thompson, Whalley & 

Prasad, 2006; Maalej, Tiarks, Roehm & Koschke, 2014). Numerous attempts have 

been made to describe and classify the general strategies used by programmers to 

comprehend pieces of source code (Fitzgerald, Simon & Thomas, 2005; Lister et al., 

2004; Xie, Nelson & Ko, 2018). The underlying philosophy of the DtDs paradigm is 

that each discipline has its unique ways of thinking that instructors should teach their 

students from early on (Middendorf & Pace, 2004). This also applies to the discipline-

specific skill of SCC. In the absence of more explicit knowledge regarding the exact 

mental processes followed by programmers to efficiently comprehend pieces of 

source code, it would therefore be impossible to accurately model these ways of 

thinking to students (see Step 3 of the DtDs framework as presented in Figure 1.1). 

Knowledge of the general SCC strategies used by programmers (both novices and 

experts) can, however, serve as a starting point in uncovering the SCC learning 
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bottlenecks experienced by students (as part of Step 1 of the DtDs framework) as well 

as the explicit mental processes required for efficient SCC (in Step 2).  

 

With regard to general SCC strategies, traditional taxonomy refers to ‘bottom-up’ and 

‘top-down’ as well as various combinations of these strategies (Brooks, 1983; O’Brien, 

2003; Pennington, 1987a; Shneiderman, 1980; Von Mayrhauser & Vans, 1995b). With 

a bottom-up strategy, a programmer approaches the comprehension process by first 

considering the lower-level structures, then the intermediate structures, and finally the 

higher-level structures of the source code (Pennington, 1987a; Shneiderman, 1980). 

When following this approach, a programmer first reads and understands the 

individual lines of source code and information relating to procedure. Second, the lines 

of code are grouped into parts that have meaning (chunking). Lastly, these chunks are 

grouped to form an understanding of how the source code functions (Pennington, 

1987b; Shneiderman & Mayer, 1979). The top-down strategy can be regarded as an 

inverse of the bottom-up strategy, where the programmer starts with the higher-level 

structures and then works towards the lower-level structures (Brooks, 1983). This 

means that the programmer first develops hypotheses about the source code being 

studied. Beacons are then used to evaluate (verify) and refine the initial hypotheses 

while interacting with the source code (Basili & Mills, 1982; Détienne, 1990; Soloway, 

Ehrlich & Bonar, 1982). Beacons are defined as knowledge of the source text structure 

from which a programmer can identify common source code features that act as a 

signpost that there is an occurrence of certain structures or operations (Brooks, 1983). 

For both of these strategies, the mentioned steps are repeated as and when necessary 

until the programmer is able to either partially or fully comprehend the source code 

under examination (Détienne, 1990; O’Brien, 2003). 

 

Although these models share some common elements, the main difference, however, 

is that the bottom-up strategy is suitable for situations where programmers are 

unfamiliar with the domain (O’Brien, 2003), while the top-down strategy requires 

programmers to utilise domain knowledge to develop their initial hypotheses about the 

code (Brooks, 1983). It is also highly unlikely that a programmer will exclusively rely 

on only one of these strategies (O’Brien, 2003). Instead, Von Mayrhauser and Vans 

(1997) suggest that programmers rather use one of these as their predominant 

strategy (a subconscious decision based on their level of domain knowledge) and then 
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follow an opportunistic approach (Letovsky, 1987) where they switch with ease 

between strategies as more information becomes available. When a programmer 

switches between strategies, it might also include elements that are not necessarily 

part of either the bottom-up or top-down approaches. A number of researchers have 

attempted to name and describe these ‘opportunistic’ strategies used by programmers 

to comprehend source code.  

 

When following a knowledge-based comprehension strategy (Letovsky, 1987), 

programmers use their experience and expertise, including syntactic knowledge and 

existing and/or newly acquired knowledge, about a problem domain during the 

comprehension process. Depending on circumstances, the programmer may apply 

either bottom-up or top-down reasoning. This strategy is considered more applicable 

and useful for experienced programmers than for novices (Letovsky, 1987; Stan 

Letovsky & Soloway, 1986; Storey, Fracchia & Muller, 1999).  

 

With a systematic comprehension strategy (also known as the control flow-based 

strategy), a programmer reads the source code text in detail and traces through the 

control flow and data flow. The objective is to gain a global understanding of the source 

code in order to successfully complete the given SCC task (Littman et al., 1987). As 

programmers read the source code, they consult associated documentation and 

perform the necessary simulations. These simulations are strategies that 

programmers use to uncover the unwanted causal interactions between the various 

components of the source code that is being examined (Soloway, 1986). The 

interactions are produced by the dynamic aspects of the source code. An advantage 

of this strategy is that correct augmentations to the source code are highly likely to be 

made, because the causal relationships contained in the delocalised plans are 

identified and studied in adequate detail. Letovsky and Soloway (1986) define 

delocalised plans as programming plans whose parts are located in non-contiguous 

parts of the source code. Although it may be realistic to systematically work through 

short programs, this is not feasible with large programs (Soloway et al, 1988).     

 

Another approach is the micro comprehension strategy (Letovsky, 1987), where a 

programmer uses inquiry episodes. These are activities or groups of activities in which 

a programmer follows the comprehension search cycle model depicted in Figure 2.1. 
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Programmers read the given source code and then develop questions that (when 

answered) will help to enhance their understanding of the source code. With the 

information obtained from reading the source code and developing questions, 

programmers make small conclusions about their understanding of the source code. 

During question development, the programmer can go back to read the source code 

again. Even when making small conclusions about source code understanding, the 

programmer is allowed to revisit the development stage of the questions. If they are 

satisfied with their understanding, programmers stop at the conjecture stage, hence 

the small conclusions become the final conclusion. Otherwise, they repeat the process 

and the small conclusions already made will be revised accordingly. The whole 

process is grounded in the delocalised plans that exist within the pieces of source 

code in question (Letovsky, 1987; Storey et al., 1999).  

 

 

[Source: Adapted from Letovsky (1987, p. 327)] 

Figure 2.1 – Comprehension Search Cycle Model 

 

With the as-needed comprehension strategy, programmers use their experience to 

identify and only focus on parts of the source code that they think are relevant to the 

current SCC task (Adelson & Soloway, 1985; Littman et al., 1987; Sillito, De Volder, 

Fisher & Murphy, 2005). This strategy is also known as an isolation strategy (Nanja & 

Cook, 1987) or opportunistic relevance strategy (Koenemann & Robertson, 1991). 

One advantage of this strategy is that if a programmer identifies appropriate parts of 

the source code intrinsically relevant to the given comprehension task, it may reduce 
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the time needed to complete the task. Filtering out source code locations irrelevant to 

what the programmer wants to achieve will also save time. This strategy is, however, 

more prone to errors because causal interactions within the source code are not 

studied in sufficient detail (Soloway et al., 1988).   

 

When following an integrated comprehension strategy, a programmer develops code 

comprehension by switching between the three main strategy categories (bottom-up, 

top-down and opportunistic) as and when the need arises during the comprehension 

process (Von Mayrhauser & Vans, 1993; 1995b). This strategy is different from 

Letovsky's (1987) reasoning in that if the top-down reasoning is used and the 

programmer wants to change to the bottom-up reasoning, the top-down journey must 

either be completed or the reasoning must be completely discarded. The same is true 

when the programmer starts with bottom-up reasoning (Storey et al., 1999). 

 

2.2.1 General reflection on the nature of SCC strategies 

Even if one is aware of the processes involved in all of the above-mentioned SCC 

strategies, it is impossible to predict which comprehension strategy or combination of 

strategies a programmer would use in a given SCC-related task. Source code 

comprehension is considered hard and time consuming (Maalej, Tiarks, Roehm & 

Koschke, 2014). As such, even professional programmers avoid deep understanding 

of the source code as long as they can achieve their comprehension goals without 

having to comprehend everything intensely (Maalej et al., 2014). Some authors 

(Brandt, Guo, Lewenstein, Dontcheva & Klemmer, 2009; LaToza, Garlan, Herbsleb & 

Myers, 2007) indicate that using the minimum effort possible to maximise outcome is 

applicable to various strategies that programmers use to comprehend source code. 

Applying minimum effort with the objective to get the maximum outcome possible is 

the philosophy underlying Carroll's (2003) minimalist theory.  

 

Source code comprehension is also cognitive in nature (Praveen, 2016) and therefore 

requires a lot of mental effort (Maalej et al., 2014). This implies that it is never easy to 

predict or know what a person is thinking, unless they share their thoughts. In the 

specific context of Maalej et al.'s (2014) study, programmers were found to 

comprehend source code by asking questions and answering them, as well as 

developing hypotheses and testing them. Their findings were consistent with the 
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results of several other authors (Brooks, 1983; Ko & Myers, 2004; Letovsky & 

Soloway, 1986; Von Mayrhauser, Vans & Lang, 1998).    

 

Understanding the intricacies of an individual’s SCC process is further complicated by 

all the additional tools and practices that programmers have at their disposal to support 

or facilitate their chosen SCC strategy. Given the cognitive nature of the SCC process 

(Praveen, 2016), programmers have been shown to use various artefacts to reflect 

their mental models and record knowledge. Maalej et al. (2014) found that 

programmers use notes, while Lister et al. (2004) found them to be using doodles and 

walkthroughs. Doodles are drawings, calculations, and annotations that programmers 

create as they work through a given piece of code in order to ultimately establish what 

the output would be if executed (Lister et al., 2004). Walkthroughs are defined as 

“simply reading the code carefully in the order it would be executed (except for branch 

points, where all branches are considered serially), to careful simulation, where the 

[programmer] attempts to mimic as closely as possible the actions of the 

[computer/compiler] that executes the code” (Jeffries, 1982, p. 12). Additionally, 

programmers have a tendency to utilise the source code itself rather than associated 

documentation. Maalej et al. (2014) found this tendency to be consistent with the 

findings of LaToza et al. (2007), who realised the importance of people gaining 

knowledge from the actual reading of the code compared to reading the text that 

explains what the code does. Another potential reason for this tendency is that 

documentation is rarely available. In instances where the documentation is available, 

it is time consuming to use it to figure out how the code works (Maalej et al., 2014). 

 

An individual’s choice of SCC strategy can also be influenced by personal preferences 

and circumstances. An SCC study by Maalej et al. (2014) reveals that, in practising 

code comprehension, programmers base themselves on the context, and have a 

tendency to follow pragmatic comprehension strategies. This means that 

programmers deal with comprehension in a realistic way that makes sense to them, 

and they are mostly guided by practical considerations instead of theory (Holmes & 

Walker, 2012). It has also been shown that programmers do not necessarily want to 

comprehend source code; instead, they just want to complete their tasks (Kim, 

Bergman, Lau & Notkin, 2004; Maalej et al., 2014; Singer et al., 1997). This may 

dictate that programmers ignore the SCC strategies developed by researchers and 
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practitioners, unless they are subjected to conditions that compel them to utilise such 

strategies. 

 

Maalej et al. (2014) also established that there is a gap in the perception of SCC 

between programmers (in practice) and researchers. One main reason attributed to 

this gap is that researchers come up with strategies that may be too abstract, 

complicated, or not relevant for application in the software industry (Singer, 2013). 

Consequently, such strategies may be even less relevant in an educational context. 

Given that programmer experience has also been identified as having a significant 

impact on the choice of an SCC strategy (Maalej et al., 2014; Singer et al., 1997), it is 

necessary to consider how the SCC strategies used by novice and expert 

programmers differ. The different ways in which novices and experts think about and 

perform discipline-specific tasks (such as SCC) is one of the main reasons why 

students tend to develop mental blocks in their learning (Middendorf & Pace, 2004). 

This is the kind of problem that can be addressed through application of the DtDs 

framework.     

 

2.2.2 Novice versus expert comprehension strategies   

In the past 40 years, numerous studies have been conducted to compare the general 

SCC strategies used by novice and experienced programmers. Soloway and Spohrer 

(2013) point out that it takes approximately 10 years for a novice programmer to move 

on the continuum from a novice to becoming an expert. In general, the results of these 

studies indicate that novices tend to use bottom-up-based comprehension strategies, 

while experienced programmers are more likely to use strategies that favour a top-

down approach. The identified major differences as well as some discovered 

similarities between the approaches used by experienced and novice programmers to 

read, interpret, and understand source code can be summarised as follows:   

• In the initial stages of SCC, both experienced and novice programmers follow 

similar overall strategies, but their strategies differ later on (Jeffries, 1982; 

Nanja & Cook, 1987; Gugerty & Olson, 1986; Widowski & Eyferth, 1986). 

• Experienced programmers use their experience, syntactic knowledge, and 

knowledge of a problem domain (knowledge-based strategy), while novice 

programmers read source code line-by-line (Letovsky & Soloway, 1986). 
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• Experienced programmers focus only on reading source code relating to a 

particular task at hand (as-needed-based strategy), while novice programmers 

focus on all elements of the source code (Littman et al., 1987; Soloway et al., 

1988).     

• Experienced programmers use a semantic approach (reliance on functionality), 

while novice programmers are driven by how a program works syntactically 

rather than what a program does semantically (semantic versus syntactic 

approach) (Adelson, 1981; 1983).  

• Experienced programmers are more affected by violations in the rules of 

discourse in a piece of source code than novice programmers (Soloway & 

Ehrlich, 1984; Soloway, Lochhead & Clement, 1982). 

• Both experienced and novice programmers pay least attention to the keywords 

in the source code’s text (Crosby & Stelovsky, 1990). 

• Experienced programmers do better than novices in situations where they have 

to recall meaningful source codes. However, both do equally well where they 

must recall source codes that are not well designed (Adelson, 1984; McKeithen, 

Reitman, Rueter & Hirtle, 1981; Schmidt, 1986).    

• Experienced programmers link parts of the source code to the problem domain 

(cross-referencing strategy), which is unusual for novice programmers 

(Pennington, 1987b). 

• Experienced programmers do not study source code line-by-line like novices 

(Letovsky, 1987). They search instead for key lines (beacons) (Brooks, 1999).  

• It is easier for experienced programmers to realise when they have to change 

or adapt their comprehension strategy – especially as the result of discovering 

an anomaly in the source code or when the requested task has some inherent 

special needs (Storey, Wong & Müller, 2000).  

• Experienced programmers resort to using other skills (e.g. simulations of the 

source code to make its dynamic properties explicit) when their higher-order 

skills do not help them in understanding the source code. This is not typical with 

novice programmers (Soloway, 1986). 
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• Experienced programmers tend to use a source code reading strategy that 

follows the order in which the source code would be executed (Jeffries, Turner, 

Polson & Atwood, 1981; Mosemann & Wiedenbeck, 2001; Nanja & Cook, 

1987). Novice programmers, on the other hand, tend to read code line-by-line 

as if they are following a cookbook recipe (Saha & Ray, 2015). Experts have, 

however, been observed to revert to a line-by-line strategy in cases where they 

were not familiar with a programming system (Ko & Uttl, 2003).  

• Experienced programmers have developed the ability to identify the most 

effective and appropriate strategy to follow for a given comprehension task 

(Storey et al., 2000). Novices tend to use a guessing or trial-and-error strategy 

to ultimately arrive at an acceptable comprehension strategy (Nanja & Cook, 

1987). 

• Experienced programmers form mental models in terms of abstractions, while 

novice programmers’ models are formed in terms of source code statements or 

sequentially (Corritore & Wiedenbeck, 1991; LaToza et al., 2007; Wiedenbeck, 

Ramalingam, Sarasamma & Corritore, 1999). 

• Experienced programmers make little use of their working memory during SCC 

because they are able to readily identify the procedural nature of the source 

code (Wiedenbeck et al., 1993). Novice programmers need more mental 

attention (Wiedenbeck, 1985). 

 

From the above comparisons, it can be deduced that the knowledge of programming 

experts is more organised than that of novice programmers. This knowledge is 

activated when programmers engage their thinking during the comprehension process 

(Teasley, 1993). By engaging their thinking, programmers start to build the mental 

representations or models of the source code text being examined. The resulting 

mental representations built, are likely to differ for novices and experts. However, even 

within the novice category, there are those that Corritore and Wiedenbeck (1991) refer 

to as ‘high comprehenders’. These are novice programmers who display the level of 

thinking and use strategies which are typical of experienced programmers. The mental 

models developed by these comprehenders are also similar to those associated with 

expert programmers. This implies that it is possible for a novice programmer to 
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traverse much faster on the continuum from non-expert programmer to expert 

programmer than the 10-year timeframe suggested by Soloway and Spohrer (2013). 

 

Furthermore, in the process of SCC, experienced programmers read the source code 

in question and locate a place(s) where comprehension needs to happen (Maalej et 

al., 2014). In order to discover these ‘places’, programmers need to have experience 

of some sort. For example, they ought to have some knowledge of the lower and 

higher syntactic structures, as well as at least the lower semantic structures (but ideally 

knowledge of both structures) of the programming language (Adelson, 1981; 1983). 

For this reason, experienced programmers are considered to pay attention to 

meaningful areas of the source code and to complex statements (functional 

characteristics), while novice programmers tend to visually concentrate on the 

comments and comparisons (superficial features) (Crosby & Stelovsky, 1990; Von 

Mayrhauser & Vans, 1995b). More specific details regarding the actual SCC strategies 

followed by novice programmers are presented as part of Article 1 (see Chapter 3). 

The intricate details of the strategies and detailed steps required for efficient SCC (as 

executed by experts) are covered as part of Article 3 (see Chapter 5). 

 

While level of experience can have a big influence on a programmer’s SCC 

competency (Singer et al., 1997), it is also necessary to consider other challenges that 

could potentially influence the development of a novice programmer’s SCC skills. 

Moreover, knowledge of such additional challenges could be of value in the process 

of uncovering students’ learning bottlenecks as part of Step 1 of the DtDs framework.    

 

2.3 Challenges impacting the development of SCC skills  

Due to the massification of higher education (Council on Higher Education, 2016; 

Phillips, 2019; Jansen, 2003), CS departments have to deal with large groups of 

students coming from diverse backgrounds. Since most of these students have limited 

or no programming experience (Kirkpatrick & Mayfield, 2017), many of them find it 

particularly difficult to master the key disciplinary skills of SCC (Cunningham et al., 

2017; Shaft & Vessey, 1995). Over the past three decades, numerous studies have 

attempted to uncover the specific challenges experienced by novice programmers in 

comprehending source code (Bosse & Gerosa, 2017; Cunningham et al., 2017; Du 



26 

Boulay, 1986; Lister et al., 2004). Some of the more discipline-specific challenges (or 

difficulties) identified by these and other authors are covered as part of Article 1. There 

are, however, also other challenges that could influence the development of a novice 

programmer’s SCC skills. The discussion in this section examines three such 

challenges: Lack of prior knowledge, lack of problem-solving skills, and lack of strong 

mental models. In the course of this examination, strategies are also considered that 

can be used by instructors to help students overcome these challenges. 

 

2.3.1 Lack of prior knowledge     

The term prior knowledge refers to what a student “already knows about a topic before 

learning more about it” (Veerasamy, D’Souza, Lindén & Laakso, 2018, p. 228). This 

knowledge is seen as “a much more important determinant of comprehension than 

was earlier thought” (Malarz, 1998). When students are unable to engage their prior 

knowledge to connect it to new understandings, it will hamper the creation of new 

knowledge (Bransford, Brown & Cocking, 2000). Programming students therefore 

need relevant prior knowledge in order to understand the concepts of the discipline 

and to perform well in programming courses (Alturki, 2016). For example, if students 

struggle to handle a mouse, type with one finger, and/or do not know how to save a 

document, they find it particularly difficult to learn basic computer literacy and 

programming skills at the same time (Oroma et al., 2012). Considerable research has 

been conducted that links prior knowledge (or the lack thereof) to programming 

performance (Allert, 2004; Patil & Goje, 2009; Pillay & Jugoo, 2005; Wilson, 2002). 

Veerasamy, D’Souza, Lindén and Laakso (2018) specifically investigated the role 

played by prior programming knowledge in lecture attendance and performance in the 

subsequent final programming examination during an introductory programming 

module. They found that students with prior programming knowledge performed 

significantly better than those without it. The students’ lack of prior knowledge is 

something that is largely beyond the instructor’s control (Kuhn, 2014). However, the 

impact of prior programming knowledge on student performance has been shown to 

gradually fade during the course period (Iv, Jagodzinski, Hao, Liu & Gupta, 2019) as 

students become more accustomed to the environment.   
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2.3.2 Lack of problem-solving skills      

Programming is a process that is characterised by problem solving (Faux, 2001; 

Hazzan, Lapidot & Ragonis, 2011). As such, programming students at all levels of 

study should be formally equipped with skills to solve problems (Hazzan et al., 2011). 

Failure to do so will result in (1) failure of programming learning (O’ Kelly et al., 2004); 

or (2) students using problem-solving strategies of their own that may be inadequate 

(i.e. lengthy or not helping students to arrive at the solution) for the problem-solving 

tasks in question (Oroma et al., 2012).  

 

A process to follow when solving a problem starts with outlining the problem 

specifications and ends with the outline of a solution. This implies that programmers 

are challenged in the continuum from the specifications to the solution (Hazzan et al., 

2011). However, programmers may also be required to move from the solution back 

to the original requirements (Biggerstaff et al., 1993). This further implies that 

programmers experience challenges in the continuum from specifications to solution 

and vice versa. When scrutinised, the following challenges associated with 

programmers are judged to fall within the specified continuum: 

• Planning and designing computer programs (Astrachan & Rodger, 1998; Butler 

& Morgan, 2007; Mhashi & Alakeel, 2013);  

• Developing algorithms from problem specifications (Sarpong, Arthur & 

Amoako, 2013); 

• Thinking analytically and reasoning logically in solving computer programming 

problems (Butler & Morgan, 2007; Ismail, Ngah & Umar, 2010);  

• Decomposing a problem description into sub-problems, implementing these 

sub-problems, and putting the pieces together into a complete solution (Lister 

et al., 2004, p. 119); 

• Translating a manually solved problem into an equivalent computer program 

(Soloway et al., 1983);   

• Making a transition from an understanding of separate program statements to 

the tasks that are to be achieved by groups of statements (Liffick & Aiken, 

1996); 
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• Finding bugs in students’ own written computer programs (Piteira & Costa, 

2013, p. 76); 

• Dividing program functionality into procedures (Piteira & Costa, 2013, p. 76);  

• Combining syntax and semantics of individual program statements into a valid 

program (Wills, Deremer, Mccauley & Null, 1999);  

• Understanding programming concepts to be applied in solving problems or to 

develop computer programs (Lister et al., 2004, p. 120; Sentance & Csizmadia, 

2016, p. 480); and 

• Mapping what is in the code or program back into the original software 

specifications or requirements (concept assignment problem) (Biggerstaff et al., 

1993). 

  

These challenges provide ample evidence of the intensity of the impact that a lack of 

problem-solving ability could have on programmers’ capability to comprehend source 

code. This is in agreement with several authors (Chi, Bassok, Lewis, Reimann & 

Glaser, 1989; Reed, Miller & Braught, 2000; Sweller, 1988) on the importance of 

problem-solving abilities or skills in CS courses such as programming. In training 

students, strategies introduced to them should not be limited to a programming 

paradigm and/or language. Instead, the strategies should also be implementable in or 

applicable to other environments. 

 

Regarding problem solving in introductory computer programming courses, 

McCracken et al. (2001, p. 126) proposed a framework that could be helpful to 

students. The framework comprises five successive steps: (1) abstract the problem 

from its description; (2) generate sub-problems; (3) transform sub-problems into sub-

solutions; (4) re-compose the sub-solutions into a working program; and (5) evaluate 

and iterate. However, the framework is not sufficient because there are other skills 

that students may lack in the run-up to problem-solving (Lister et al., 2004). Hence, 

the ITiCSE 2004 working group (Lister et al., 2004) hypothesised that students might 

have problems reading even simple code, which has been confirmed by their 

multinational empirical investigation and other studies (e.g. Fitzgerald et al., 2005; Xie 
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et al., 2018). In addition to problem-solving abilities, this therefore implies that code-

reading skills can also play a role in influencing the comprehension of source code.  

 

2.3.3 Lack of strong mental models       

Alturki (2016) loosely defines mental models as the internal “representation of 

concepts and ideas related to a given area, such as programming, in one’s mind” (pp. 

177-178). In the context of this study, mental models refer to a programmer’s 

understanding of source code during the comprehension process (Letovsky, 1987). 

Throughout this process, a programmer reasons, explains, and makes some 

predictions about the behaviour of the source code in question (Cañas, Bajo & 

Gonzalvo, 1994; Norman, 1983). However, it is possible that the reasoning put forward 

by students and the explanations they provide, as well as the predictions they make, 

may be incorrect. In this way, they form non-viable mental models. Ma, Ferguson, 

Roper and Wood (2007) define non-viable mental models as those models that result 

in an invalid understanding of programming concepts. Instances of non-viable mental 

models are evidenced in some studies (Biggs & Collis, 1982; Lopez, Whalley, Robbins 

& Lister, 2008; The Joint Task Force on Computing Curricula Association for 

Computing Machinery (ACM) IEEE Computer Society, 2013). Several studies 

(Corritore & Wiedenbeck, 1991; Nanja & Cook, 1987; Pennington, 1987b; Littmann, 

Pinto, Letovsky & Soloway, 1986; Soloway & Ehrlich, 1984; Wiedenbeck et al., 1999; 

Wiedenbeck, LaBelle & Kain, 2004) have indicated that mental models play a vital role 

in the ability of programmers to comprehend source code. More evidence of students’ 

fragile knowledge identified through the mental models and/or representations they 

form while comprehending source code is discussed as part of Article 1 (see 

Chapter 4). 

 

In their study, Corritore and Wiedenbeck (1991) conducted two experiments. In the 

first experiment, they examined the mental representations of the source code text 

formed by novices. In this examination, they used short fragments of the source code. 

Their results indicated that novice programmers form detailed and concrete mental 

representations of the source code text. In the second experiment, they used the 

results of the first experiment. They selected novice programmers classified as upper 

and lower comprehenders and tested them on a longer computer program. Their 

results indicated that novice programmers use detailed mental models of the source 
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code text and that they seldom make reference to the real world. On the other hand, 

high comprehenders (e.g. advanced novices in programming) use more abstract 

concepts in their mental models of the source code text and their abstractions have a 

lot of references to the real world.  

 

Having considered three high-level challenges that could affect the development of 

SCC skills, more specific SCC challenges or bottlenecks are identified in Article 1 (see 

Chapter 4). Since SCC is regarded a skill that requires efficient application of a series 

of complex cognitive processes (Orlov, Bednarik & Orlova, 2016; Praveen, 2016), it is 

important for students to be aware of their ‘thinking’ as well as how they ‘think about 

how they think’ when doing things (e.g. performing SCC-related tasks). As such, the 

next section discusses both cognitive and metacognitive practices that can influence 

the comprehension of source code.  

 

2.4 Cognitive practices 

Cognition is defined as internal or mental processes that enable human beings to gain 

knowledge from their surroundings and to retain it (Cognifit, 2019; Preece, Rogers & 

Sharp, 2015; Schlinger, 1995). In any teaching-and-learning-related study, it is 

important not only to understand how knowledge is gained, but also how individuals 

are able to locate, identify, and accurately retrieve this information for future use. 

  

2.4.1 Knowledge acquisition and retention     

In an educational environment, students are generally expected to be able to 

remember what they have learned so that they can pass tests and examinations, as 

well as (ultimately) apply knowledge gained in lower- to advanced or upper-level 

classes (Barkley, 2010). This is in line with the learning edge momentum philosophy 

(Robins, 2010), namely that a student’s ability to understand new programming 

concepts is linked to the preceding related concept(s) that the student has learned. 

Careful implementation of this philosophy therefore suggests that it may not be 

possible for students to progress to higher levels of study in programming while the 

concepts that ought to have been studied in the lower levels of study are still lacking 

(Alturki, 2016). Consequently, these students who did not experience the learning 
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edge momentum that upper-level students had, are not likely to overcome the 

threshold concept (Meyer & Land, 2003) problem.  

 

Both short- and long-term memory play a vital role in remembering information 

received and applying acquired knowledge. According to Barkley (2010), “short-term 

memory occurs when the brain works with new information until it decides if and where 

to store it more permanently” (p. 22). If such information is to be retained over long 

intervals, it is stored in the long-term memory (Waugh & Norman, 1965). Newly 

acquired information or knowledge can typically be stored for about 24 hours in the 

short-term memory and can be recalled during that time. After 24 hours, such 

information or knowledge is consolidated into long-term memory storage, and is 

available for recall over a longer period of time (e.g. forever or for several decades) 

(Barkley, 2010; Robin, 2002). The problem, however, is that the neural networks – 

those brain structures that facilitate the storage of knowledge in long-term memory for 

future retention – gradually wear off when that knowledge is not used in relevant future 

work or applied in life situations (Ratey, 2001). This implies that people’s (including 

students’) brains must be continuously tapped into so that the existing connections 

between new and already known information can be strengthened (Moon, 2004; 

Sousa, 2006; Wlodkowski & Ginsberg, 2010).  

 

According to Barkley (2010), knowledge or information does not just move from the 

short- to long-term memory (a process known as consolidation). There are three 

specific attributes that must be achieved during instruction to help ensure that this 

movement occurs:  

• Emotional connection – There is a likelihood that information can be stored in 

the long-term memory if students are able to connect emotionally to such 

information. To achieve this, instructors can instigate the relevant human 

dimension in the learning process by using teaching aids that cause the 

learning content to have some impact on students’ lives.  

• Sense – The information or knowledge should make sense to students and be 

relevant to what they already know. To achieve this, instructors can organise 

learning into units characterised by themes and integrate the relevant 

analogies or metaphors into the teaching and learning process.  
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• Meaning – Students must find a reason to justify why the knowledge they gain 

during the teaching and learning process must be remembered. To achieve 

this, instructors can ask students to “connect what they are learning to their 

past, to what is going on presently in the world around them, or to the 

professional or civic responsibilities they may have in the future” (p. 101). 

 

With respect to uncovering expert ways of thinking as suggested by Step 2 of the 

seven-step DtDs framework, it is vital to also delve deeper into the programmers’ 

‘thinking about how to think’ (metacognition) while comprehending source code.  

 

2.4.2 Metacognition  

Metacognition is defined as “one’s knowledge concerning one’s own cognitive 

processes and products or anything related to them” (Flavell, 1976, p. 232). 

Hennessey (1999) later defined it as:  

“Awareness of one’s own thinking, awareness of the content of one’s 

conceptions, an active monitoring of one’s cognitive processes, an attempt to 

regulate one’s cognitive processes in relationship to further learning, and an 

application of a set of heuristics as an effective device for helping people 

organize their methods of attack on problems in general” (p. 3).  

 

Therefore, using some elements of these definitions, metacognition in the context of 

this study can be defined as the ability of a person to be cognisant of processes in 

their mind (mental or cognitive processes) and to be in a position to exert the 

necessary control (regulation) over such processes for the best possible learning. 

[More details on the cognitive process aspects are covered in Article 2 (see 

Chapter 5)]. 

 

Metacognition is a critical element in the learning environment (Ambrose et al., 2010; 

Frith, 2012) that is often taken for granted by stakeholders. Students with good 

metacognitive skills are typically classified as high academic achievers (Greeno, 

Collins & Resnick, 1996; Lovett, 2008). In the CS discipline, metacognitive skills have 

been found to play an essential role in solving computer programming problems 

(Parham, Gugerty & Stevenson, 2010). Well-performing CS students have also been 

found to use more metacognitive strategies than their lower-performing peers (Bergin, 
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Reilly & Traynor, 2005; Shaft, 1995). More details on the metacognitive strategies 

applied by expert programmers during SCC are covered as part of Article 2 (see 

Chapter 5).      

  

2.4.2.1 Metacognitive promotion strategies 

Although fostering metacognitive practices among students is not an easy task, there 

are reports of positive results in this regard. Most of the desired outcomes are 

characterised by strategies that include the planning, monitoring, and regulating of 

mental processes when doing something or performing a task (Akturk & Sahin, 2011; 

Lai, 2011). Deducing from the activities of Step 3 in the seven-step DtDs framework 

as suggested by Middendorf and Pace (2004), modelling can also be used as a 

strategy to promote metacognition.  

  

Planning 

The planning phase is characterised by setting goals, scanning through a task, asking 

yourself several questions before starting with and while working on the task, and 

analysing the tasks or steps that are involved or should be involved in tackling the 

problem at hand. These planning activities trigger the prior knowledge of programmers 

(Bergin et al., 2005; Pintrich, 1999). In the triggering process, programmers are able 

to compare and contrast the new information they are seeing/receiving or getting with 

already known information. In the process they learn, and are hence able to confidently 

decide on the appropriate approaches to use for the task in question (Barkley, 2010).   

  

Monitoring  

The monitoring phase is characterised by programmers paying attention to their 

mental processes as they read or work through a given task. In the process, they also 

use some techniques to test their comprehension (Bergin et al., 2005; Simons & 

Bolhuis, 2004). The techniques can include thinking aloud (Whalley & Kasto, 2014); 

underlining some lines of code or keywords (Powell, Moore, Gray, Finlay & Reaney, 

2004); drawing some diagrams (Lister et al., 2004); making analogies or metaphors 

(Pace, 2017a); asking yourself questions about the various aspects of the task at hand 

(Eisenführ, Weber & Langer, 2010; Herrmann, 2017; Uzonwanne, 2016); and making 

notes or summaries to ensure comprehension of the content (Van Gorp & Grissom, 
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2001). According to Pintrich (1999), employing these techniques exposes 

programmers to situations where they might have breakdowns in attention or 

comprehension. He believes that the use of regulation strategies or activities 

(regulation phase) can repair the associated breakdowns.  

  

Regulation   

The regulation phase is characterised by programmers continuously modifying 

activities based on what they found during the planning and monitoring phases, as 

well as what they experience as they continue working on the activity (Bergin et al., 

2005; Simons & Bolhuis, 2004). As an example, programmers may reread the given 

text or scenario in order to confirm whether they really understand it or not. They may 

also slowly read or reread the scenario if they think they do not understand it or if there 

are some aspects that are difficult to understand. Additionally, programmers may skip 

some aspects that they find challenging to understand with the hope that information 

contained in the subsequent text may provide more insight (Moore, Zabrucky & 

Commander, 1997; Pintrich, 1999).  

  

Modelling  

With the modelling strategy, the instructors explicitly show the students the steps that 

they (the instructors) themselves would follow to tackle a given assignment or 

problem-solving task. Following these steps, instructors walk through various stages 

of their metacognitive processes, and normally demonstrate their thinking physically 

on the board and in front of the students as they go about solving a problem. A 

thinking-aloud technique is deliberately used in this type of demonstration. This 

technique requires the person using it to verbalise the steps or procedures followed to 

perform a certain task. To further strengthen the modelling strategy, the verbalised 

thought processes can be performed concurrently with asking the relevant questions 

in the course of the demonstration (Ellis, Denton & Bond, 2014; Kistner et al., 2010). 

Nilson (2013) suggests that, other than modelling by the instructor or his/her 

assistants, the task can also be assigned to students. Overall, modelling is normally 

achieved by following the fundamental metacognitive processes suggested by 

Ambrose et al. (2010) (also see Figure 2.2). In these processes, students: 
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• “Assess the [learning] task at hand, taking into consideration the task’s goals 

and constraints; 

• Evaluate their own knowledge and skills, identifying strengths and weaknesses; 

• Plan their approach in a way that accounts for the current situation; 

• Apply various strategies to enact their plan, monitoring their progress along the 

way; and 

• Reflect on the degree to which their current approach is working so that they 

can adjust and restart the cycle as needed” (pp. 192-193). 

 

 

[Source – Adapted from Ambrose et al. 2010, p. 193)] 

Figure 2.2 – Metacognitive Process Cycle  

 

According to Ambrose et al. (2010), the modelling process does not stop immediately 

after going through the metacognitive cycle. Instead, they recommend that instructors 

give students a problem to solve or an activity to undertake. To help students develop 

metacognitive skills in the given assignment, instructors are expected to provide them 

with the leading questions that they should ask themselves throughout the steps. 

Examples of such questions could be: What problem am I trying to solve? Where do I 

start? How do I start? What are the next steps after starting? What do I need to solve 

this problem? What strategies do I need to solve the problem? How will I decide on 

the best strategy? Is there an alternative approach? 
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The aforementioned questions form part of a scaffolding strategy which has been 

identified in several studies (e.g. Bickhard, 2013; Feyzi-Behnagh et al., 2014; 

Fitzgerald et al., 2005) to play a critical role in facilitating student learning. Ambrose et 

al. (2010) define scaffolding as the “process by which instructors provide students with 

cognitive supports early in their learning, and then gradually remove them as students 

develop greater mastery and sophistication” (p. 146). Lev Vygotsky is one of the early 

thinkers of metacognition who strongly influenced the concept of scaffolding (Robins, 

2010). In the scaffolding strategy, instructors use various teaching tools, guides or 

techniques (also known as scaffolds) that help students develop comprehension 

beyond their ability or to successfully perform unfamiliar tasks (Deejring, 2015; 

Raymond, 2017; Vygotsky & Cole, 1978; Wood, Bruner & Ross, 1976). This 

comprehension happens by way of instructors asking students to work on distinct 

phases of the given task in isolation, before being asked to assimilate the phases. 

Instructors can also provide a framework for tasks that require considerable or full 

student autonomy, and later relegate most of the tasks back to the students (Ambrose 

et al., 2010).  

 

Considerable research has indicated that the use of scaffolding techniques helps 

students to improve their performance (Azevedo, Cromley, Winters, Moos & Greene, 

2005; Molenaar, Van Boxtel & Sleegers, 2011; Roehler & Cantlon, 1997). 

Consequently, it is vital to integrate scaffolding techniques [more details can be seen 

in Article 2 (see Chapter 5)] into all teaching and learning efforts, including the teaching 

of SCC skills. The objective is to see how the identified cognitive and metacognitive 

practices can help students to better comprehend source code if they “reflect on their 

ideas” (Davis, 2000, p. 819). The biggest problem in executing the modelling and 

scaffolding techniques proposed here, is that instructors are not necessarily always 

aware of the exact mental processes they follow in comprehending source code – 

mostly due to their ‘expert blind spots’ (Grossman, 1990; Nathan & Petrosino, 2003; 

Shulman, 1986). One of the main purposes of Step 2 in the DtDs framework is to 

uncover the explicit nature of these blind spots (Middendorf & Pace, 2004). In this 

regard, both Article 2 and Article 3 consider cognitive aspects useful in overcoming 

problems related to blind spots.  
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2.5 Summary  

This chapter presented the possible strategies that can be followed in comprehending 

source code. From the discussion of these strategies, it surfaced that there are no 

‘hard and fast’ rules to adhere strictly to these strategies. Instead, some elements of 

each strategy or a combination of these strategies can be used. Realising this, it 

became necessary therefore to consider how novices and experts differ in applying 

these strategies. This was achieved by comparing the strategies that they (novices 

and experts) use in comprehending source code. As a precursor to Step 1 of the 

seven-step DtDs framework, the challenges related to the development of SCC skills 

were also considered. Moreover, both cognitive and metacognitive aspects that may 

influence the process of comprehending source code were considered. 

 

Informed by the content of this chapter, the next chapter presents a detailed 

description of the research design and methods for the study, as well as detailed 

procedures followed throughout the investigation.  
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Chapter 3 – Research Design and Methodology 

 

 Introduction 

In this chapter, details regarding the research design and research methodology of 

the study are outlined. The chapter commences with a discussion of the theoretical 

underpinnings of the selected design and methodology. Thereafter, a detailed 

discussion is provided on how the empirical part of this study unfolded in the process 

of finding answers to the stated research questions (as set out in the introductory 

chapter). For each of the three phases of this study, aspects related to the aim; chosen 

data source management strategy; population and sampling procedures; data 

collection strategies and data analysis methods are discussed. Next, measures taken 

to ensure the trustworthiness of the study findings are outlined. The chapter concludes 

with a description of various ethical considerations adhered to in this study. 

     

 Research design  

The research design of this study was based on the seven-step DtDs framework (see 

Figure 1.1). In applying this framework, Step 1 guides instructors to identify students’ 

discipline-specific bottlenecks in the learning process. A bottleneck is defined as 

points or places in a given course where the learning of many students is interrupted 

such that they are not able to advance their thinking and discovery (Middendorf & 

Pace, 2004). After identifying the bottlenecks, the crucial mental operations required 

to overcome such bottlenecks are uncovered through the assistance of disciplinary 

experts (Step 2). These operations are then modelled explicitly to students (Step 3). 

After this, instructors create opportunities for students to practise these operations or 

skills and get feedback on their mastery of the skills (Step 4). In the process, 

motivational strategies or principles are applied to assist students in effectively 

learning the imparted skills (Step 5). Eventually, an assessment is made of how well 

the undertaken efforts help students to master the intended learning content (Step 6). 

As part of the final step (Step 7), instructors are encouraged to share (formally or 

informally) their experiences from this process (Middendorf & Pace, 2004; Pace, 

2017a).  
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The basic idea underpinning the DtDs theory is that ways of thinking and doing are 

specific (and often unique) to each academic discipline (Middendorf & Pace, 2004). 

Boman et al. (2017, p. 13) claim that instructors, “operating as experts in their 

disciplines, hold tacit knowledge and implicit ways of thinking that are not accessible 

to novices in the discipline”. In this case, the concept of ‘expert blind spots’ surfaces. 

Expert blind spots occur when instructors (as experts) unintentionally omit skills, steps 

or information that are essential for novice students to effectively learn and perform 

learning activities (Ambrose et al., 2010, p. 112). This implies that instructors in their 

various disciplines may not always be aware of the steps they are trying to reflect in 

their thinking, or they may sometimes take some steps for granted when explaining a 

new concept. Computer Science instructors, particularly those teaching programming 

courses, may not be an exception to this practice, especially considering the distinct 

and inherent challenging thought processes involved in comprehending source code.  

Over the past three decades, numerous research studies have highlighted the 

importance of shaping teaching to match the specific (and unique) conditions of each 

academic discipline (Middendorf & Pace, 2004). One important aspect of the 

differences between disciplines was elucidated by Tobias (1992-1993). She observed 

that even intelligent and hard-working instructors and students alike experience 

problems when they move from courses in their own speciality to other courses in 

other disciplines. It follows, therefore, that students have made their own preconceived 

assumptions about their academic disciplines. According to Sengupta, Bhattacharya 

and Sengupta (2012), these assumptions hinder students’ learning. Therefore, these 

preconceived assumptions may need to be dealt with for students to understand 

content (academic and/or non-academic) beyond the boundaries of their own 

discipline. 

DtDs was developed by David Pace and Joan Middendorf at Indiana University in the 

United States of America. Their pioneering work, conducted in the discipline of History 

Education, was published in a special issue of New Directions for Teaching and 

Learning in 2004 (Middendorf & Pace, 2004). DtDs started as a program to help 

instructors teaching large classes. Over time, it developed into a model to help 

students get through places where they get stuck (also known as bottlenecks) in 

thinking distinct to a particular disciplinary environment. DtDs has recently grown into 
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a theory of pedagogy – the core here is for experts to break down complicated thinking 

in a specific discipline into steps that novices can understand and easily follow (King 

et al., 2013). 

By 2013, at least 17 published studies in various disciplines such as history, marketing, 

humanities, and biology had already employed the DtDs theory (Tingerthal, 2013, pp. 

50-51). This trend has continued over the past few years, with more studies employing 

the DtDs theory "coming out all the time" (Middendorf, personal communication, 1 

September 2017). According to Indiana University (2019), in 2017 alone, at least 32 

research works using DtDs were published in various disciplines (e.g. Belanger, 2017; 

Pace, 2017b; Shopkow, 2017; Timmermans & Meyer, 2019; Tucker, 2017). Originally, 

the dominating studies were in the History discipline (Shopkow, Diaz, Middendorf & 

Pace, 2012). However, the trend seems to be taking another direction as DtDs is 

gaining popularity worldwide and is used in other disciplines. Further, Miller-Young 

and Boman (2017, p. 9) point out that there are several teams in at least ten countries 

exploring DtDs. 

 

Although not much work is available in the public domain employing DtDs in the CS 

discipline, Menzel and colleagues have used the DtDs model to help students in 

Computer Science overcome bottlenecks associated with understanding the complex 

concepts of recursion (Menzel, 2015); debugging; and logical reasoning in algorithmic 

complexity and proving computer program correctness (Discrete Mathematics course) 

(German, Menzel, Middendorf & Duncan, 2014). Furthermore, Dan Richert used DtDs 

to overcome three problems encountered by students in a Database Design and Data 

Retrieval course. These were (1) understanding ER diagrams; (2) reasoning in 

MySQL; and (3) dualism (there is no one right answer on MySQL statement) (IUBCITL, 

2016). Thurner, Zehetmeier, Hammer and Böttcher (2017) also applied the DtDs 

model, where they attempted to analyse the initial competences of CS freshmen 

students and relate them to study requirements. It can, therefore, be deduced that 

although DtDs originated in the United States of America, it is spreading as a theory 

and methodology presently employed in enhancing disciplinary instruction in many 

different disciplines and in many parts of the world. As such, it can be regarded as 

highly applicable to a study in CS with its particular ways of thinking and doing; and to 

a study in which the researcher specifically attempts to understand cognitive 
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processes and challenges of novice students as they go through the process of source 

code comprehension. 

 

In this study, the DtDs framework was adapted to create an environment conducive to 

conducting the empirical investigation and ultimately answering the research 

questions of the study. DtDs adaptations are supported by Middendorf and Pace 

(2004, p. 4), who indicate that the DtDs steps are neither ‘mechanical’ nor 

‘deterministic’. The framework is deemed a suitable research design because it is 

pedagogical in nature (King et al., 2013). Furthermore, the framework helps to answer 

a series of questions that instructors can ask themselves as they try to understand 

how students think and learn in their specific disciplines (Middendorf & Pace, 2004, p. 

1). Details on how the adaptations of the DtDs framework were done in this study are 

provided in the subsequent sections. 

 

 Research methodology  

Within the realm of the DtDs-based research design, this study followed a research 

approach based on Plowright's (2011) Frameworks for an Integrated Methodology 

(FraIM) (see Figure 3.1). The following sub-sections provide details regarding the 

characteristics of this framework, issues surrounding data collection in studies using 

the framework, and justification for using the framework in this study. 

 

(Source : Plowright, 2011, p. 9) 

Figure 3.1 – The FraIM  
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3.3.1 Characteristics of FraIM 

The FraIM indicates how the researcher can traverse from formulating a research 

question throughout all research stages to making conclusions about the study. This 

integrated methodology presents a very fitting way around the controversial issues of 

qualitative and quantitative research in other mixed methods’ designs (Hellawell, 

2016). As such, FraIM is characterised by the following (Plowright, 2011; 2016b): 

• No philosophical position needs to be taken before commencing with the study. 

Such position can, however, be taken as the study evolves or even with the 

interpretation of results. 

• The philosophy used to comprehend and conceptualise the research process 

should not determine the methodology applied in research, but the reverse is 

true.  

• The Q words (quantitative and qualitative) should not be used in any part of the 

study (i.e. conceptualisation, design, methodology, axiology, and reporting). 

Instead, the N words (numeric and narrative) are recommended for use. 

Consequently, no distinction is made between quantitative and qualitative 

methods in any FraIM-based research study.   

• A combination of different types of data source management strategies 

(experiments, surveys and case studies) can be used in one research study. 

• FraIM-based research studies use cases or data sources which are managed 

through these three data source management strategies.  

• The cases can be organised based on three factors: 

o The number of cases in the research;  

o The degree of control the researcher has over cases allocated to various 

groups; and  

o Ecological validity – the degree of how natural the location and 

placement of the research is. 

• Exact and precise counting is not used to decide whether the data source 

management strategy is a survey, experiment, or a case study. Instead, the 

professional judgement of the researcher is used (i.e. the amount of in-depth 
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information that can be gathered from the selected cases and the degree of 

generalisability that can be made about the inferences from the data collection 

are used as the basis for the judgement).    

• After researchers decide on the approach to data source management, they 

make sampling decisions which determine the cases or participants (i.e. 

number, richness, and nature or type of cases) to be included in a research 

study.   

• The researcher is encouraged to be more responsive, flexible, and have an 

open-minded attitude in the process of answering the study’s research 

question(s) or finding a solution to a problem.  

• In FraIM-based research studies, it is easy to integrate both structured and 

relatively less structured approaches to data collection methods. 

• All data collection methods are treated as being equally acceptable and their 

use is essentially determined by the research question(s) and what the 

research is set out to achieve. 

• No preference is given to either numerical or narrative data over another.  

• The previous phases of the investigation can be revisited as and when 

necessary. 

• Different research approaches can be used and integrated at all stages of the 

research process.  

• The term ‘unstructured’ is not used in research conducted within FraIM, 

especially when it comes to data collection (i.e. interviews). Instead, the 

structure is viewed on the continuum from low degree to high degree of 

structure.  

• Decisions must be taken at each stage of the research process. These 

decisions help the researcher to understand the phenomena under 

investigation. 

 

3.3.2 Data collection in FraIM 

The FraIM distinguishes between three broad types of data generation and collection 

methods: observations, asking questions, and artefact analyses. In any research study 



44 

employing this methodology, any one data collection method or a combination of these 

methods can be used (Plowright, 2016a, p. 251). It is also important to note that any 

type of data (numerical or narrative) can be collected using any type of data collection 

method (observations, asking questions or artefact analyses) and any data source 

management strategy (surveys, experiments or case studies). According to FraIM, 

each type of data collection differs in terms of (1) structure (highly structured or little 

structure determined by using open or closed questions); and (2) level of mediation 

(how close in time and space the researcher is to the phenomenon under study).  

 

For example, in the case of ‘asking questions’, structured questionnaires and/or open 

interviews can be used. Resultant data can thus be numerical or narrative in nature 

(two main categories of data in research employing FraIM). The difference in the level 

of mediation in this example can be described as follows: researchers are distant to 

the unit of analysis in structured questionnaires, while they are in the vicinity of the 

phenomenon under study in open interviews. Guided by the preliminary findings as 

the research study unfolds, it is argued that the study employing FraIM should allow 

for numerical data to be converted into narrative data and vice versa (Plowright, 2011).  

 

3.3.3 Justification for using FraIM 

Based on the given characteristics of FraIM and issues surrounding data collection, it 

can be deduced that ‘mixed methods using FraIM’ is what Plowright (2016b, p. 21) 

refers to as ‘an integrated methodology’. This methodology goes beyond the 

mainstream mixed methods research paradigm as discussed by several authors 

(Bryman, 2006; Creswell, 2014; Creswell & Plano Clark, 2011; Hesse-Biber, 2010; 

Teddlie & Tashakkori, 2009). According to Plowright (2016a, p. 243), the mainstream 

mixed-methods paradigm is ‘traditional’, because researchers who use it still adhere 

to the thorny issues of quantitative and qualitative research. As an example, Morse 

(2003, p. 190) describes mixed methods as a paradigm involving the use of several 

quantitative and qualitative techniques in a research study driven by quantitative and 

qualitative theories.  

 

Plowright's (2016b) integrated methodology can, therefore, be regarded as an 

emerging paradigm, and as such, as a novel way of research thinking in the 21st 
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century and beyond. As a result, FraIM was regarded as highly relevant for this study 

due to the following reasons: 

• In an endeavour to overcome the SCC challenges of novice students, there was 

a need to move back and forth using various strategies and data collection 

methods that were not yet positively known at the beginning of the study. 

• Multiple data collections and analyses were undertaken throughout the 

empirical investigation process. This helped the researcher to obtain thick and 

rich information that helped him to effectively address the stated research 

questions of the study. 

• The number of cases used in this study was not yet positively known at the 

beginning.  

• Part of the data collection for this study was drawn from test/examination or 

assignment scripts (artefact analysis).  

• Some decisions were informed by the events and outcomes of the investigation 

[i.e. final conclusion of the ‘useful’ bottleneck(s) that formed the focus of this 

study].   

• Data collection structure and the researcher’s level of mediation (i.e. low, 

medium or high) to the unit of analysis were not yet positively known at the 

beginning.  

• The degree of control (i.e. high, medium or low) that the researcher had over 

cases involved in this study was not yet positively known at the beginning.  

• The degree of structure associated with data collection methods in the study 

was not yet positively known at the beginning, hence the type of coding 

(pre/closed or post/open) used during data analysis was not predictable.   

 

Having detailed the design and methodology chosen for this study, issues related to 

purpose and procedure, coupled with the selection of data source management 

strategies; population and sampling; data collection methods; and data analysis 

techniques, as well as the nature of the resultant data in the three phases of the study, 

are described next. According to Plowright (2011), the data source management and 

sampling decisions are two levels at which research cases occur. Data source 
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management happens when the researcher decides on the approaches to use in 

managing the sources of data. On the basis of FraIM, approaches to data source 

management can be organised based on three factors, namely the number of cases 

in the research; the degree of control the researcher has over cases allocated to 

various groups; and ecological validity (the degree of how natural the location and 

placement of the research is).   

  

 Details of empirical study 

In the following sub-sections, the three research phases that made up the empirical 

part of this study are discussed. 

 

3.4.1 Phase 1  

3.4.1.1 Aim 

As a start to Step 1 of the DtDs framework, the aim of Phase 1 was to identify specific 

senior CS students who were having difficulty comprehending short pieces of source 

code.   

 

3.4.1.2 Data source management  

The data source management approach in Phase 1 was a survey. This approach was 

selected because the researcher wanted to collect a wide breadth of information from 

a relatively large number of participants (or cases). These participants were also 

drawn from naturally existing groups, with little disruption to their ongoing activities. 

Furthermore, we (the researcher and the lecturer of the selected module) had authority 

(i.e. control) over those students (as study participants). The survey was more 

structured in the sense that students had to answer specific questions in a given venue 

and within a specific time slot (Plowright, 2011; 2016b). 

 

3.4.1.3 Population and sampling  

The population for the Phase 1 research activity was senior CS students from a 

selected South African higher education institution. The sample for Phase 1 consisted 

of the 40 students registered for the 3rd year Internet Programming module. The 

sample was purposeful (Cooper & Schindler, 2013) because the students had already 

completed four programming modules. However, they could still be regarded as 
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novice programmers since they did not have any professional programming 

experience. The sample was also convenient (Patton, 2015), since the researcher had 

easy access to the participants as the lecturer responsible for the module agreed to 

open up one of her scheduled class sessions for this research activity. 

 

3.4.1.4 Data collection method  

The data collection method for Phase 1 was ‘asking questions’ (through a 

questionnaire). This method was characterised by a medium level of mediation, 

because it was possible not to know – during the first encounter – some actual 

interpretations for some answers provided by the participants. This means that there 

had to be extended engagement with these answers for full understanding. Using this 

method, the degree of structure was high due to the following reasons: First, the 

researcher had a high level of control in the sense that the questionnaire had specific 

questions that participants had to answer. Second, the possible responses to the 

questions were predetermined. Third, the questions included in the questionnaire were 

pre-structured, as it was based on an existing set of questions. This data resulted from 

students’ answers to 12 multiple-choice SCC questions (Plowright, 2011; 2016b). The 

data consisted of two sub-categories, namely artefacts and performance data. 

Artefacts indicated the real writings (e.g. sketches, drawings, text) that students made 

in answering the questions. According to Lister et al. (2004), these writings are known 

as doodles. Performance data indicated the overall scores of students on the test.   

 

3.4.1.5 Procedure 

Students were given a questionnaire containing the 12 multiple choice questions 

(MCQs) (see Appendix A) developed and used by the ITiCSE 2004 working group for 

a multi-national study (Lister et al., 2004). The students answered these questions 

under test/examination conditions. They worked through the 12 short fragments of 

source code and then either had to predict the outcome of executing such fragments 

or select a piece of source code (from a small set of options) that would correctly 

complete a given near-complete code snippet. There were two reasons for using this 

specific set of MCQs: First, all the questions contained source code fragments that 

students had to read, interpret, comprehend and ultimately answer related questions. 

Second, the questions had been tested with a large population of students in several 

universities in both the United States of America and other countries. The questions, 
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as used by the ITiCSE 2004 working group, were originally written in Java, but were 

all converted to the C# programming language. This was the one language that all the 

study participants were familiar with. 

 

3.4.1.6 Data analysis 

Analysis of the numeric data collected through the questionnaire was fairly 

straightforward. The researcher first graded all the submitted scripts, after which he 

captured the marks on an MS Excel spreadsheet. Since one mark was awarded for 

each of the 12 questions, a ‘1’ or ‘0’ was captured for each question. This was used to 

identify students who answered specific questions wrong. For each of the questions, 

the mean and standard deviations were calculated. These helped the researcher to 

identify questions that were the most challenging to students. The aggregate 

performance of students who answered the questionnaire, as well as the ranking of 

the questions compared to the ITiCSE 2004 group (Lister et al., 2004) can be seen in 

Appendix B. Consequently, the three most difficult questions (Q3, Q6 and Q8) were 

selected for use in Phase 2. The results of the research activities in Phase 1 were also 

used to identify appropriate participants for Phase 2. A description of the Phase 1 

activities is therefore included as part of Article 1 (see Chapter 4).    

 

3.4.2 Phase 2  

3.4.2.1 Aim 

As a continuation of Step 1 of the DtDs framework, the aim of Phase 2 was to uncover 

specific points or places (Middendorf & Pace, 2004) where senior students were 

experiencing SCC difficulties, with the goal of identifying common and useful SCC 

bottlenecks. Phase 2 was therefore set up to answer the following two research 

questions:  

RQ4 (a): What are the major SCC difficulties experienced by senior CS 

students? 

RQ4 (b): How can knowledge of these difficulties be used to identify SCC 

bottlenecks that should ideally be addressed in introductory programming 

courses? 
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3.4.2.2 Data source management  

The data source management approach in Phase 2 was a case study. This approach 

was selected because of three reasons: First, the researcher wanted to collect in-

depth information from a smaller number of participants. Second, participants would 

be disrupted minimally in order to spend some time with the researcher when they 

were free from their other academic responsibilities. Third, the researcher wanted to 

study only a few participants in a conducive environment, but where he had some 

degree of control in terms of probing the participants where he deemed it necessary 

in order to obtain rich and thick descriptions (Plowright, 2011; 2016b). 

 

3.4.2.3 Population and sampling  

The population for the Phase 2 research activity was third-year students registered for 

the 3rd year Internet Programming module at the selected institution. The sample 

consisted of the 15 students selected on the basis of a specific criterion. These were 

the students from Phase 1 who incorrectly answered all the questions selected for use 

in Phase 2. The sample could therefore be regarded as purposeful (Cooper & 

Schindler, 2013). The sample was also convenient (Patton, 2015), because the 

students were studying at the selected institution and the researcher could have 

sessions with them any time they were free.  

 

3.4.2.4 Data collection methods  

The data collection methods for Phase 2 were ‘asking questions’ (through think-aloud 

interviewing) and ‘making observations’. The asking-questions method was 

characterised by a higher level of mediation because the researcher was close to all 

the events, sources of data, as well as the actual data involved in the research activity 

for this phase. The researcher had a high level of control for the same reasons 

mentioned in Phase 1 above. The making-observations method was characterised by 

a relatively high level of mediation, because the researcher was also asking probing 

questions where necessary while making observations. The degree of structure with 

the observations was high due to the reasons already alluded to (Plowright, 2011; 

2016b).  

 

The questions used for the research activity in Phase 2 were identified based on the 

results of the Phase 1 research activity (see Section 3.4.1.6). Three forms of narrative 
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data were collected as part of the Phase 2 research activity. First, narrative data 

resulted from the transcription of the audio recordings of the individual sessions the 

researcher had with the participants. Second, doodle data resulted from the real 

writings (e.g. sketches, drawings, text) that students created in answering the 

questions. Third, observations made throughout the session were written down as 

notes (narrative) to later supplement the discussion of the study findings. In order to 

fine-tune the research activities of this phase, a pilot was conducted.  

 

3.4.2.5 Piloting of Phase 2 

As pilot studies play a crucial role in the research process, such a study was conducted 

for Phase 2. Since pilot studies are nearly always conducted with a smaller number of 

participants (Van Teijlingen & Hundley, 2002; Van Teijlingen, Rennie, Hundley & 

Graham, 2001; Vogel & Draper-Rodi, 2017) , only one participant was involved in the 

Phase 2 pilot. This participant was a postgraduate CS student. The pilot study was 

conducted to fine-tune the structure of the individual sessions and to finalise a generic 

list of possible probing questions to be used in the event that participants got stuck or 

remained silent for too long.  

 

The pilot participant took 16 minutes and 30 seconds to answer all three questions 

(selected and used in this Phase) in a think-aloud manner. Given the advanced 

experience level of the pilot participant, the researcher decided to schedule at least 

45 minutes for each of the individual research participant sessions. In response to a 

question posed by the researcher (as the interviewer), the pilot participant indicated 

that she was familiar with the think-aloud technique, hence it was not demonstrated to 

her. Although the pilot participant did not have any particular difficulties in executing 

the technique, the researcher decided that it would be better to explicitly demonstrate 

the technique to all participants in the real Phase 2 study so that they would know 

exactly what was expected of them. 

 

3.4.2.6 Procedure  

To identify the Phase 2 participants, the researcher chose all students who incorrectly 

answered all three questions (Q3, Q6 and Q8 – see Figure 3.2, Figure 3.3, and Figure 

3.4) selected for use in this phase. Fifteen students were found to belong to this 

category. These participants were invited through a formal invitation letter (see 
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Appendix C) to take part in the research activity in this phase. However, only 10 of the 

invited participants selected to participate in the interview sessions. These participants 

were given a questionnaire containing the three selected MCQs. For each of these 

questions, participants had to work through the short fragments of source code and 

then predict the outcome of executing such fragments.  

 

(Source: Lister et al., 2004, p. 141) 

Figure 3.2 – Question 3  

 

Participants were also asked to use the think-aloud technique while they worked out 

the question answers. Think-aloud is a technique whereby participants are instructed 

to speak out loud any thoughts that come to their minds while performing the task at 

hand. This technique allows the researcher some insight into how the participant 

reached the solution. Using the technique, the researcher is also able to better 

understand the participant’s mental steps (i.e. processing of working memory) 

(Charters, 2003; Van Someren, Barnard & Sandberg, 1994). The protocol that guided 

the proceedings for the think-aloud sessions is included in Appendix D. The think-

aloud technique was demonstrated to all participants before they started working on 
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the tasks in question. For this demonstration, an SCC question (see Figure 3.5) 

sourced from the study of Sheard et al. (2015, p. 146) was used.  

 

 

(Source: Lister et al., 2004, p. 142) 

Figure 3.3 – Question 6   
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(Source: Lister et al., 2004, p. 143) 

Figure 3.4 – Question 8  
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(Source: Sheard et al., 2015, p. 146)   

Figure 3.5 – A think-aloud technique demonstrating question    

 

3.4.2.7 Data analysis  

The narrative data collected during the individual think-aloud sessions was analysed 

thematically based on an adapted version of Creswell and Creswell's (2017) Narrative 

Data Analysis Framework (NDAF) (see Table 3.1). The discussions in the following 

sub-sections describe specific activities performed during the execution of this 

analysis framework. 

 

Data preparation and organisation   

Data preparation started when the think-aloud interview recordings were moved from 

the audio recorder to a computer for storage. For robust backup purposes, each 

recording was saved at this stage on a laptop, desktop, external DVD/CRW drive, 

Google Drive and a copy was given to the supervisor. For each recording, the 

researcher also recorded the date, time, and details of each participant as suggested 

by Marshall and Rossman (2016) and Step 1 of the NDAF (Creswell & Creswell, 2017). 

These audio recordings were then transcribed. All 10 audio recordings from the think-

aloud interview sessions were transcribed by the researcher. The transcription 

process followed guidelines developed by the Minnesota Historical Society (2001). 
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They suggest using brackets (especially square brackets [ ]) to supply information not 

available on the recording but which is necessary for clarity; using proper spelling for 

slurred words (‘gonna’ is ‘going’); removing false starts; removing stumbles; using 

ellipsis points (…) when a statement is not finished; eliminating some crutch words; 

and writing numbers and words and vice versa.  

 

Table 3.1 – Narrative Data Analysis Framework 

Step Description Activities 

1 Prepare and 
organise the data 

• Data transcription. 

• Data translation (if necessary). 

• Data cleansing. 

• Data labelling (i.e. structuring and familiarising). 

2 Identify a coding plan • Read, read, read, … (e.g. read and reread the transcripts). 

• Decide whether analysis should be guided by research questions 
(explanatory) or the data (exploratory) or both (mixed).  

3 Sort the data into a 
coding plan 

• Code the data. 

• Modify the coding plan (if necessary). 

• Enter the data (if Computer-Aided Narrative Data Analysis 
software is used). 

4 Use the coding plan 
in descriptive 
analysis 

• Put a range of responses or statements under the created nodes 
(as determined by the coding plan identified in Step 2). 

• Identify recurrent themes. 

 (Source: Adapted from Creswell & Creswell, 2017) 

 

Transcription process 

Literature (Bailey, 2008; Hart, 2015; Powers, 2005) indicates that transcribing audio 

tapes or recordings is time consuming. The researcher made three passes of the think-

aloud recordings. First, he listened to each recording immediately after the session to 

make absolutely sure that the entire session was properly recorded. Second, he 

started typing all the words that were said on the voice recorder verbatim on a Word 

document. During this process, he had to pause, move back, and move forward in 

order to capture all that was said on the recorder. Third, when the entire recording or 

transcript was completed, he listened and re-listened to the whole recording while 

reading the transcript to confirm whether all the words were properly captured. During 

this process, he was able to form a better understanding of some sentences, and 

hence make corrections to words which were vaguely heard in the second 

transcription pass.   
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Cleansing of transcripts  

After verbatim transcription of the audio recordings, the data was cleansed. Data 

cleansing is defined as the process aimed at enhancing the quality of data by 

searching for faults in the data (performing diagnosis) in order to repair it (by either 

correcting or deleting these faults) (Chu, Ilyas, Krishnan & Wang, 2016; Parcell & 

Rafferty, 2017; Van den Broeck, Cunningham, Eeckels & Herbst, 2005). Background 

noise, incomprehensible words, hanging words that distort meaning, unfamiliar 

terminology, blurred communication, mistyped words or typos, inappropriate 

punctuations, silences, overlapped speech and sounds, accents and dialects, and 

incomplete statements are all regarded as elements that can cause inconsistencies 

within transcribed data (Easton, McComish & Greenberg, 2000; Hinds, Vogel & 

Clarke-Steffen, 1997; ten Have, 2011). Since the participants had to verbalise their 

thoughts as part of the think-aloud process, the transcripts also contained numerous 

illogical and repeated statements. The researcher therefore decided to make use of 

fuzzy-validation instead of strict validation (which requires the complete removal of 

invalid or undesired responses) (Parcell & Rafferty, 2017). With fuzzy-validation, the 

researcher is allowed to correct some data if there is a close match or known answer. 

Parcell and Rafferty (2017) specifically mention “detecting and modifying, replacing or 

deleting incomplete, incorrect, improperly formatted, duplicated or irrelevant records” 

(p. 337) in their description of the fuzzy-validation process.  

 

The decision to use fuzzy-validation was based on the following two reasons: 

1. It was possible for both the interviewer(s) and interviewees to construct 

incomplete or illogical statements or sentences, as they had to do a lot of 

thinking and engagement throughout the interview process.  

2. A lot of repetition in the uttered sentences or statements occurred due to the 

candid nature of the questions that were asked throughout the interview. This 

is especially because the probing questions were triggered by the responses 

that interviewees provided (i.e. the questions were not predetermined).      

 

During the fuzzy-validation process, some modifications were made. Typical examples 

are writing abbreviations (e.g. isn’t, I’ll, I’m, and they’ve) in full; removal of verbal tics 



57 

(e.g. um, eh, and uh); representation of pauses with three dots (…); and removal of 

repetitions (Arksey & Knight, 1999; Gibbs, 2018; Minnesota Historical Society, 2001).  

  

Coding plan identification    

The researcher immersed himself in the data (Liamputtong, 2009; Marshall & 

Rossman, 2016; Holton III & Swanson, 2005; Thorne, 2000; Ulin, Robinson & Tolley, 

2005) by listening and re-listening to the audio recordings numerous times, as well as 

intensively reading and re-reading the transcripts (see Step 2 in Table 3.2). He wanted 

to be completely familiar with the data (depth and breadth) before beginning the coding 

process (Braun & Clarke, 2006). Upon familiarising himself with the data, he decided 

on a coding plan where the analysis would be guided by the data as it relates to the 

first research question (see RQ3 (a) in Section 3.4.2.1). Codes were therefore created 

for every source code comprehension difficulty identified in the data.  

 

Data coding    

Data coding is defined as a method used to organise the data to help the researcher 

to be clearer about the underlying messages portrayed by the data and its salient 

features (Smith & Davies, 2010). As suggested by Saldaña (2013), the researcher 

performed data coding by highlighting and/or underlining sections/passages (i.e. 

words/keywords, sentences, paragraphs) from which difficulties with source code 

comprehension could be extracted. During this process, the researcher found no need 

to modify the coding plan. NVivo 12 Professional (for Microsoft Windows) was used 

for analysis of the 10 validated transcripts. At this stage, the transcripts were uploaded 

to NVivo (under Data) and the researcher then developed codes by creating several 

nodes (each equivalent to a class of difficulties). The names of the codes consisted of 

single words or simple phrases. Furthermore, the names of these nodes were 

continuously revised by combining some and/or renaming them. During this stage, it 

was also necessary to read and re-read the transcripts over and over again. 

 

Descriptive analysis    

During this stage, words, statements, and paragraphs (single and multiple) highlighted 

and/or underlined during coding, were extracted from the transcripts and moved to 

created nodes. This again required numerous re-reading of the transcripts in order not 

to miss any important meanings or details. Braun and Clarke (2006) define a theme 
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as something that captures or pinpoints some important information about the data set 

in relation to the research question. As such, some themes started emerging from the 

process of extracting and moving the relevant text. Continuing this process led to the 

emergence of recurrent themes. For each theme, frequencies of occurrence and 

transcripts from which these themes were extracted, were also visible on NVivo.  

 

The results of the Phase 2 research activities are reported as part of Article 1 (see 

Chapter 4). The main outcome of Phase 2 was six usable SCC bottlenecks 

experienced by senior CS students. 

 

3.4.3 Phase 3  

3.4.3.1 Aim 

In response to the six bottlenecks identified in Phase 2 (as part of Step 1 of the DtDs 

framework), Phase 3 focused on Step 2 of the DtDs framework. The main aim of 

Phase 3 was to uncover the explicit nature of steps and strategies that programming 

experts would follow in order to accomplish the tasks associated with one of the 

student-learning bottlenecks identified in Phase 2 and reported in Article 1 

(Bottleneck 6: Students are unable to reliably think their way through a long chain of 

reasoning required to comprehend a piece of source code). Phase 3 was therefore set 

up to answer the following four research questions:  

RQ5 (a): What are the cognitive processes and related cognitive strategies 

employed by expert programmers during SCC? 

RQ5 (b): What does insight into these cognitive process strategies suggest in 

terms of mental scaffolding techniques for the modelling of efficient SCC 

strategies to students? 

RQ6 (a): What are the explicit mental strategies (techniques and reasoning) 

that CS experts employ while comprehending source code? 

RQ6 (b): How can knowledge of these strategies be applied in the formulation 

of a step-by-step framework that could ultimately contribute towards narrowing 

the gap between expert and novice thinking with regard to efficient SCC?           
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3.4.3.2 Data source management  

The data source management approach in Phase 3 was a case study. This approach 

was selected because the researcher wanted to collect in-depth information from a 

small number of participants. Participants would be disrupted minimally to spend some 

time with the researcher when they were free from their other academic and research 

activities. The researcher also wanted to study a few participants in a conducive 

environment, but where he had some degree of control in terms of probing the 

participants where necessary in order to obtain as rich and thick descriptions as 

possible (Plowright, 2011; 2016b).      

 

3.4.3.3 Population and sampling  

The population for Phase 3 consisted of CS instructors who had experience in 

teaching programming on first-year level and, ideally, had at least some industry 

programming experience. These instructors were selected from a South African higher 

education institution. A sample of five instructors was selected from this population. 

This sample was purposeful (Cooper & Schindler, 2013) because the instructors were 

involved in the teaching of programming modules, and had at least three years of 

experience in teaching programming at first-year level (CS1 and/or CS2 modules). 

Two of these participants (P1 and P4) had more than 14 years of experience in the 

subject area, while P2 and P3 had between five and nine years of similar experience. 

Except for P5, all the other participants worked as industry programmers for at least 

four years and they were all, to some extent, still involved in private programming 

consultancy work. For ease of reference, these participants will be referred to as the 

‘expert programmers’ in the rest of this discussion. The sample could also be regarded 

as convenient (Patton, 2015), since the participants were in the proximity of the 

researcher, hence he could easily (physically, electronically or otherwise) reach them. 

 

3.4.3.4 Data collection methods  

The data collection methods for Phase 3 were ‘asking questions’ (through decoding 

interviewing) and ‘making observations’. The asking-questions method was 

characterised by a higher level of mediation and a higher degree of structure because 

of the reasons alluded to in data collection methods for both Phases 1 and 2. Similar 

to observations made in Phase 2, the degree of structure with Phase 3 observations 

provided the researcher with a relatively high level of mediation and degree of 
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structure (Plowright, 2011; 2016b). Based on the selected data collection methods, 

two sets of narrative data resulted from the Phase 3 research activity: Transcriptions 

of the audio recordings made during each of the decoding-interview sessions, and a 

written record of the observations and notes (for future reference) made by the 

researcher.  

  

3.4.3.5 Piloting of Phase 3 

Using the same reasoning as provided in the discussion of the pilot study in Phase 2 

(see Section 3.4.2.5), a pilot study was conducted with one participant who was a 

lecturer for one of the CS programming modules at the selected institution. The 

specific objective of the pilot was to assess the feasibility of all the logistics made in 

preparation of the real sessions. The sub-objective was to determine whether the 

probing questions would trigger any emotional responses from participants, as is 

typical of decoding interviews (MacMillan et al., 2016). One of the concerns in this 

regard was that DtDs interviews – where the interviewee is not the one who comes up 

with the bottleneck(s) – may be challenging, because according to the proponents of 

the DtDs framework (Middendorf & Pace, 2004), bottlenecks typically originate from 

the interviewee. However, by the time of the interviews, bottleneck(s) for this study 

had already been identified and refined (Lahm & Kaduk, 2016). The pilot participant 

completed the entire interview session in 1:32:32 minutes. In addition to the first two 

questions, she only managed to complete about half of the third question, however. 

Consequently, the researcher decided to retain only one question [Q6 – the most 

challenging question from the previous phases of this study (see Figure 3.3)]. The 

researcher further decided to schedule at least 60 minutes for each of the upcoming 

sessions. 

 

3.4.3.6 Procedure    

Five eligible participants (‘expert programmers’) were invited through verbal 

communication to take part in the individual decoding interviews for Phase 3. 

Justification for choosing these participants was already provided earlier (see Section 

3.4.3.3). All the invited participants (100%) were able to show up for the interviews. In 

these interviews, the researcher played the role of the principal researcher, while a 

non-teaching CS researcher who had some decoding-interview experience, acted as 

the second interviewer. (Note: A more detailed explanation regarding the selection of 
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the second interviewer is provided as part of the methods discussion of Article 2. This 

individual had no other direct connection to the study). Each of the participants was 

first taken through the interview protocol (see Appendix E). After that, they were each 

asked the following question:  

Suppose you are presented with a piece of source code on a piece of paper 

and asked to read/work through it to predict its output. Can you explain to us 

how you would go about doing that?  

In response, the participants proceeded to explain the process they would typically go 

through when having to comprehend any given piece of source code. Whenever the 

interviewers felt that the participant was not clearly verbalising all their mental 

operations, one of them would intervene with a probing question. After about 30 

minutes, a specific SCC question (Q6 printed on a piece of paper) was presented to 

the participant and the following question was asked:  

Assuming you are given the following question, how would you go about 

answering it?  

In response, the participants therefore had to verbally illustrate the general SCC 

process that they had previously explained. For each participant, the probing 

questions were triggered by their response to the above questions and everything else 

they said and did while attempting the given question. Although only 60 minutes were 

scheduled for each interview session, participants were told that they could take longer 

than that time duration, but no longer than 90 minutes. Participant 2 recorded the 

shortest time (01:05:09 minutes), while Participant 1 recorded the longest time 

(01:21:54 minutes). The rest of the sessions were completed as follows: Participant 3 

recorded 01:10:20 minutes; Participant 4 recorded 01:08:44 minutes; and Participant 

5 recorded 01:11:38 minutes. 

 

3.4.3.7 Data analysis  

The narrative data collected during the decoding-interview sessions was analysed 

thematically based on the adapted version of Creswell and Creswell's (2017) NDAF. 

The exact same procedure as outlined in the Phase 2 data analysis discussion (see 

Section 3.4.2.7) was followed. However, different data was extracted in order to 

address the Phase 3 research questions (see Section 3.4.2.1). After completion of the 
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transcription process, the five validated transcripts were imported into NVivo 12 for 

further analysis. The data was then coded by highlighting and/or underlining 

sections/passages (e.g. words/keywords, sentences, paragraphs) (Saldaña, 2013) for 

each cognitive process recognised in the data (Article 2), and the mental SCC 

strategies identified in the data (Article 3). The developed codes were then populated 

by moving the necessary text into them. Consequently, some themes started to 

emerge which revealed important information about the data set in relation to the 

research questions (Braun & Clarke, 2006). Continuing to populate the codes led to 

the emergence of recurrent themes. Finally, NVivo 12 was used to generate 

frequencies of occurrence for each of the developed themes. Using these frequencies 

and some of the excerpts from the transcripts, the data were put back together to 

create new meaning (Lewins & Silver, 2007). In reporting the results of Phase 3, RQ5 

(a) and RQ5 (b) are covered as part of Article 2, while Article 3 addresses RQ6 (a) 

and RQ6 (b). 

 

 Trustworthiness  

For readers to develop confidence and/or trust in any research study, a researcher 

must continuously take measures to safeguard the accuracy, consistency, and 

legitimacy of the research findings throughout design, data collection, analysis, 

interpretation, and reporting (Haworth & Conrad, 1997). The prominent approach used 

in evaluating investigations which are narrative in nature, consists of five key criteria, 

namely credibility, transferability, dependability, confirmability, and integrity (Guba, 

1981; Schwandt, Lincoln & Guba, 2007; Wallendorf & Belk, 1989).  

 

3.5.1 Credibility 

The main issue in credibility is to establish whether the research findings can be seen 

as a true reflection of the information obtained from the participants’ original data when 

viewed from the perspective of the participants involved in the research (Trochim, 

2006). To ensure that the study was credible, the researcher made sure to file these 

documents (hard and soft copies of the test scripts from Phase 1 research activity; 

transcripts from the think-aloud interviews; and audio recordings of the interview 

sessions) for future cross-checking (Guba & Lincoln, 1982). These were also shared 

with the supervisor. All copies will be destroyed within five years after the completion 
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of this study. In further ensuring credibility of this study, the researcher used 

triangulation – multiple sources of data (senior students and expert programmers); 

methods of data generation and collection (observations, asking questions, and 

artefact analyses); and data collection instruments (questionnaire and interviews).   

 

3.5.2 Transferability 

To ensure transferability, a researcher continuously makes a series of judgements as 

to whether the study findings can be generalised to other contexts or settings where 

different participants are used (Trochim, 2006). Thick descriptions and the use of 

purposive sampling are cited as strategies that can be used to facilitate transferability 

(Bitsch, 2005). Using the decoding and think-aloud interviews, the researcher 

collected adequately detailed descriptions of the data in context. This data was 

reported with sufficient detail and precision, allowing readers to judge for themselves 

whether or not the findings are transferrable to other contexts. In order to maximise 

the acquisition of rich information and data from few participants, the researcher used 

purposive sampling for both the senior students and expert programmers. 

 

3.5.3 Dependability 

In dependability, the main issue is whether the research findings would be similar if 

the study was to be repeated in similar contexts and with the same participants 

(Lincoln & Guba, 1985). Bitsch (2005) shares the view that even if the findings may 

vary, such variations should be reasonable and easy to justify. To ensure that the 

study met these conditions with respect to the data collected through decoding 

interviews, the transcripts were sent to the five participants who took part in the 

interviews, after the experts’ narrative data (i.e. transcripts) was cleaned. They were 

asked to indicate whether the content of the transcripts was a true reflection of what 

they shared during the interviews. Using this member-checking technique (Lincoln & 

Guba, 1985), all the participants approved the transcripts either conditionally or 

unconditionally. The conditional approval was due to some words that could not be 

deciphered from the audio recording. Consequently, these sections of the interview 

were excluded from the transcript. 

  

Furthermore, in analysing all narrative data collected for this study, the researcher 

used a specific and direct approach (see Section 3.4.2.7) where most of the codes 
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were established from the themes identified in the literature and/or were guided by the 

research questions. This facilitated staying within the predetermined boundaries 

during the data coding process. Additionally, in analysis and reporting, the researcher 

was very careful with the quotes he used; he completely avoided using participants’ 

words out of context and/or editing them with the objective to suit the arguments that 

he might have wanted to put forward. The researcher also employed the code-recode 

strategy as suggested by Chilisa and Preece (2005). By doing so, he coded the data 

more than once; the benefit was that he was able to ultimately formulate robust code 

names. In like manner, he employed the peer-debriefing strategy (also known as 

‘reality check’) (Saldaña, 2013), where he debriefed with his supervisor on a regular 

basis, especially during the data collection, analysis, and reporting of the results. She 

(the supervisor) was very critical of each and every aspect of the data reported, 

interpretations made, and analysis presented.  

 

Moreover, upon formulation of a step-by-step framework (consisting of 10 main steps) 

for efficient source code comprehension (see Article 3), the second decoding 

interviewer took part in checking the framework (i.e. part of validation); he indicated 

that the steps were well written and could be taught to students. To further evaluate 

and validate the proposed framework, the researcher arranged a validation meeting 

with five CS instructors (expert programmers and others). One of these participants 

took part in the original decoding interviews. Upon explaining the steps to the 

participants, they had an opportunity to solve two selected questions [Question 1 and 

Question 9 from the original set of 12 MCQs (Lister et al., 2004)] by applying the 

formulated steps. Question 1 was selected because it was found to be the easiest 

question from the previous phases of this study and was mainly used to familiarise the 

validation participants with the proposed steps. Question 9 was selected because it 

was not as straightforward as Question 1 – it involved some relatively significant 

requirement descriptions, and it had a lot of code lines to be interpreted; even the 

options that had to be chosen were actually lines of code (e.g. not necessarily ultimate 

values of variables). In solving the given SCC problems, validation participants were 

asked to put a check mark against each of the 10 steps and their sub-steps (e.g. to 

put a tick [] against a step/sub-step they used, and a cross [] against a step/sub-

step they did not use) (see Article 3). Throughout the validation meeting, which took 
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the form of an open discussion, the participants provided constructive feedback that 

helped the researcher consolidate the proposed steps and finalise the framework. 

 

3.5.4 Confirmability 

In confirmability, a researcher continuously makes sure that the data and 

interpretations of research findings are derived from or grounded in the data, and 

hence can be confirmed or corroborated by other researchers (Lincoln & Guba, 1985). 

To ensure confirmability in this study, the researcher piloted the research activities of 

both Phases 2 and 3. He also interpreted and reported the study findings in such a 

way as to avoid bias at all costs. Furthermore, he had no personal inclination (i.e. was 

as neutral as possible) in the analysis of data and reporting of findings. To further 

enhance the confirmability of the results of this study, the analysis of data was 

continuously reviewed by the research supervisor. Moreover, for cross-checking 

(Guba & Lincoln, 1982), all the research-related records were kept throughout the 

research process and are available upon request.  

 

3.5.5 Integrity 

The focal issue of integrity is to ensure that the data interpretations made and 

recorded, do not in any respect contain elements of lies, evasions, misinformation or 

misinterpretations by participants (Wallendorf & Belk, 1989). Considering the nature 

of the interviews (both decoding and think-aloud), it was not possible for participants 

to tell lies, because it was all about solving given problems. The only questions that 

participants had to answer were to explain why they were doing certain actions or how 

they arrived at definite decisions – there was therefore a low possibility that 

participants could lie. Furthermore, there were no aspects related to social and/or 

cultural understanding or legal implications that could make participants uneasy to 

open up in the discussions. Additionally, participants provided information that the 

researcher never doubted or felt that it might not be correct, hence his scepticism 

measure of integrity was not exercised. Integrity was further safeguarded by not 

revealing the identity of participants in the reporting of the study findings; instead, 

pseudonyms were used for identification. Moreover, the interviewing approach used 

in this study was rigorously prepared and tested – specific protocols existed and were 

piloted before the real studies.  
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 Ethical considerations  

This study was guided by the research ethics code of the University of the Free State. 

Ethical clearance (see Appendix F) was obtained before any form of data collection 

commenced. Reflections of ethical issues in the three phases of this study are 

described as follows: 

• Phase 1: The introduction of the questionnaire contained a statement to 

explain the purpose thereof. Participants were also informed of the 

approximate time needed to complete the questionnaire. These participants 

were further informed that data resulting from the questionnaire would only be 

used for research purposes. Likewise, the participants were assured that 

confidentiality and anonymity regarding information provided in the 

questionnaire would be respected to the maximum extent possible. 

Additionally, the participants were informed that their participation was fully 

voluntary and that they could withdraw at any time if they felt they no longer 

wanted to participate. Moreover, they were informed that completing the 

questionnaire or failing to complete it would not have any impact on any of the 

CS modules for which they were enrolled (see Appendix A). 

• Phase 2 and Phase 3: Before data collection commenced, each participant 

was provided with a participant information sheet (PIS) in which details 

regarding the purpose of the study; why the research activity was conducted; 

what was required of each participant in the activity; as well as the potential 

benefits and risks, were explained. PIS for senior students (as participants in 

Phase 2) (see Appendix G) was different from the one for the expert 

programmers (as participants in Phase 2) (see Appendix H). After agreeing 

with all the information explained in the participant information sheets, each 

participant signed the consent form (see Appendix I) and carried on with the 

research activities as guided by the researcher.  

 

Furthermore, the ethical confidentiality and privacy of participants’ rights was 

protected to the maximum extent possible. In any part of the reporting in this thesis 

and related publications, pseudonyms have been used for anonymity instead of using 

the real names of the participants. Long before taking part in any research activity in 

this study, all the participants were informed that their participation was voluntary and 
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that they were perfectly free to withdraw from the research activities at any time without 

any form of penalty whatsoever. Participants who did not show up for some of the 

research activities were not followed up, because the researcher assumed that they 

did not want to participate in the study. Moreover, the researcher expressed his 

willingness to share the summary of the study findings with participants once the study 

was completed.  

 

 Summary 

Within the realm of the DtDs-based research design, this study followed an integrated 

approach based on Plowright's (2011) FraIM. Within this framework, the focus was on 

collecting narrative and/or numeric data by means of observations, asking questions, 

and/or artefact analysis. In this chapter, the rationale for the selected research design 

and research methods, as well as the various strategies used and decisions made to 

answer all the research questions of this study, has been provided. The chapter also 

provided detailed descriptions of issues relating to purpose and procedure, coupled 

with the selection of data source management strategies; population and sampling; 

data collection methods; and data analysis techniques, as well as the nature of the 

resultant data from the three phases of the study. A discussion on how issues relating 

to ethics and trustworthiness were addressed in this study, concludes the chapter.  

 

In the next three chapters, the three research articles that were prepared for this 

thesis, are presented. Article 1 covers the research activities of Phases 1 and 2. The 

data set that transpired from Phase 3 was used to inform the discussions in both 

Article 2 and Article 3. Table 3.2 provides a mapping to show which of the research 

questions (as stated in Chapter 1) are covered in each of the articles. It should be 

noted that each article is presented as a stand-alone unit without any cross-

referencing to the rest of the thesis report. Each article is formatted according to the 

guidelines of the specific publication for which it was prepared. It should also be noted 

that each article was/will be published under the names of both the researcher who 

conducted this study and the study promoter. Consequently, there are some instances 

where the word ‘we’ are used in reference to the dual authorship (instead of constant 

reference to ‘the researcher’ or ‘the first author’). The use of the word ‘we’ should 

therefore not be regarded as an indication that the research was conducted by both 
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authors. All data collection and data analysis activities for this study were solely 

conducted by the researcher (unless specifically indicated otherwise), with inputs from 

the study promoter where deemed necessary.  

 

Table 3.2 – Research questions covered by articles  

Article Research Questions 

Article 1 RQ4 (a): What are the major SCC difficulties experienced by senior CS students? 

RQ4 (b): How can knowledge of these difficulties be used to identify SCC bottlenecks that 

should ideally be addressed in introductory programming courses? 

Article 2 RQ5 (a): What are the cognitive processes and related cognitive strategies employed by 

expert programmers during SCC? 

RQ5 (b): What does insight into these cognitive process strategies suggest in terms of 

mental scaffolding techniques for the modelling of efficient SCC strategies to 

students? 

Article 3 RQ6 (a): What are the explicit mental strategies (techniques and reasoning) that CS 

experts employ while comprehending source code?   

RQ6 (b): How can knowledge of these strategies be applied in the formulation of a step-

by-step framework that could ultimately contribute towards narrowing the gap 

between expert and novice thinking with regard to efficient SCC? 
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Chapter 4 – (Article 1)  

Decoding source code comprehension: Bottlenecks 

experienced by senior Computer Science students1 

 

Abstract. Source code comprehension (SCC) continues to be a challenge to undergraduate CS students. 

Understanding the mental processes that students follow while comprehending source code can be crucial in 

helping students to overcome related challenges. The Decoding the Disciplines (DtDs) paradigm that is gaining 

popularity world-wide, presents a process to help students to master the mental actions they need to be 

successful in a specific discipline. In focusing on the first and important DtDs step of identifying mental 

obstacles (‘bottlenecks’), this paper reports on a study aimed at uncovering the major SCC bottlenecks that 

senior CS students experienced. The study followed an integrated methodology approach where data was 

collected by means of asking questions, observations, and artefact analysis. Thematic analysis of the collected 

data revealed a series of SCC difficulties specifically related to arrays, programming logic, and control 

structures. The identified difficulties, together with findings from existing literature as well as the teaching 

experiences of the authors, were then used to compile a series of usable SCC bottlenecks. By focusing on 

senior students (instead of first-year students), the identified SCC bottlenecks point to student learning 

difficulties that need to be addressed in introductory CS courses. This paper intends to create awareness among 

CS instructors regarding the role that a systematic decoding approach can play in exposing the mental processes 

and bottlenecks unique to the CS discipline. Further investigations are needed to uncover the mental tasks that 

expert programmers follow to overcome the identified bottlenecks so that students can be taught more explicit 

SCC strategies. 

Keywords: Undergraduate programming, source code comprehension, students’ learning bottlenecks, 

decoding the disciplines  

1 Introduction 

Despite the continuous efforts of committed instructors to share the intricacies of their academic disciplines and 

their students’ desperation to succeed, many students still struggle to master course material [31]. The specific 

points where students’ learning gets interrupted can be referred to as bottlenecks [10,28]. A bottleneck typically 

occurs when students are unsure about how to approach a problem and consequently follow inappropriate 

strategies [31]. In an attempt to assist instructors in addressing students’ learning bottlenecks, Middendorf and 

Pace [28] devised the Decoding the Disciplines (DtDs) paradigm. One of the underlying principles of this 

paradigm is that each discipline has unique ways of thinking [28]. Those students who fail to master the required 

‘ways of thinking’ are unlikely to succeed in their higher-level studies. Within the DtDs paradigm, instructors are 

therefore encouraged to identify discipline-specific learning bottlenecks that could prevent students from 

mastering the basic disciplinary ways of thinking. Subsequently, specific strategies to address the bottlenecks are 

identified, implemented and evaluated [31]. Despite the recent uptake in decoding research conducted in other 

disciplines [39,42], limited information regarding DtDs research in the Computer Science (CS) discipline is 

available in the public domain. 

 However, over the past three decades numerous investigations have been launched to gain better 

understanding of the various difficulties that computer programming students experience [3,11]. One such 

difficulty – which has been researched extensively – relates to the way in which students (also referred to as novice 

 

 
1 An edited version of this article was published as: Khomokhoana, P. J., & Nel, L. (2020) Decoding Source 

Code Comprehension: Bottlenecks Experienced by Senior Computer Science Students. In: Tait B., Kroeze J., 

Gruner S. (eds.) ICT Education. SACLA 2019. Communications in Computer Science, vol 1136. Springer, 

Cham. https://doi.org/10.1007/978-3-030-35629-3_2 
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programmers) interpret pieces of source code [8,23]. This action – commonly referred to as source code 

comprehension (SCC) – is regarded a vital skill that novice programmers have to master [38]. Most of the previous 

SCC studies, however, focused on the evaluation of difficulties that students enrolled for introductory 

programming courses experience [26,37]. Pace [31] points out that a student’s inability to master certain basic 

concepts may not necessarily lead to his/her failure of an introductory course. However, it is likely that the 

student’s confusion will continue to pile up, causing diminishing performance of basic tasks. As such, it is possible 

for students to progress to advanced courses while they are still experiencing bottlenecks related to basic concepts. 

Their failure to grasp these basic concepts could potentially have a negative impact on their ability to complete 

their degrees. This paper therefore attempts to answer the following two questions: 

 

1. What are the major SCC difficulties experienced by senior CS students? 

2. How can knowledge of these difficulties be used to identify SCC bottlenecks that should ideally be addressed 

in introductory programming courses? 

 

In the remainder of this paper, a review of relevant background literature is presented in Section 2. This is followed 

by a discussion of the research design and method in Section 3, and a presentation and interpretation of the results 

in Section 4. The paper concludes with a presentation of the identified SCC bottlenecks in Section 5, and 

conclusions and recommendations for future research in Section 6. 

2 Related Work 

The first step of Middendorf and Pace’s [28] seven-step DtDs framework is to identify students’ learning 

bottlenecks. The identification of discipline-specific bottlenecks allows instructors to identify specific areas in a 

module where they need to seriously intervene in order to facilitate maximum learning [29,31]. In identifying a 

learning bottleneck, the instructor must ensure that the bottleneck is useful. A useful bottleneck affects the learning 

of many students; is defined clearly and without jargon; interferes with the major learning in a module; is relatively 

focused; and does not involve a large number of very disparate operations [31]. Within the DtDs paradigm [28], 

instructors can use various ways to identify bottlenecks. 

2.1 Bottleneck identification approaches 

In one of the popular approaches, as suggested by Middendorf and Shopkow [29], instructors themselves identify 

bottlenecks based on specific student problems they discover during their teaching of a specific module [33]. 

Instructors can also identify bottlenecks by focusing on a single assignment. In the History discipline, Pace [31] 

identified a specific difficulty while grading a writing assignment, while Shopkow [39] was alerted to a specific 

difficulty as a result of questions voiced by her students regarding the specifications of an assignment.  

In most of the limited number of decoding studies conducted in the CS discipline to date, researchers have 

also identified specific bottlenecks based on personal teaching experiences. For his Database Design and Data 

Retrieval module, Richert [19] identified creating Entity Relationship diagrams, reasoning in MySQL and dualism 

as the main student learning bottlenecks. At Indiana State University, Menzel [27] used her vast experience in 

teaching an introductory CS module to identify recursion (a threshold concept in CS [37]) as the main bottleneck 

that her students experienced. For a follow-up module, her colleague Adrian German [14] focused his decoding 

study on addressing the challenges his students experienced with debugging.  

Bottleneck identification for a specific module can also be facilitated by an outsider (e.g. a pedagogical 

advisor). In Verpoorten et al.’s [42] study, module-specific bottlenecks were identified by asking seven 

participants, representing five disciplines (Engineering, Chemistry, History, Social Sciences and Electronics), to 

each write down a 10-line description of two or three bottlenecks they could think of for modules they were 

teaching. In an attempt to identify the top bottlenecks experienced by Accounting students in their Taxation 

modules, Timmermans and Barnett [41] first asked instructors to identify potential bottlenecks. Their eventual 

selection of the top bottlenecks was based on the responses of 4th year Taxation students who were asked to rate 

the 40 potential bottlenecks in terms of level of understanding and importance.  

When the goal is to identify common bottlenecks within a specific discipline, the collective experiences of a 

group of instructors can also be a valuable source. In this regard, various researchers from the History discipline 

[10,40] have used individual interviews with instructors to identify common discipline-specific bottlenecks. 

Wilkinson [44] opted for a peer dialogue strategy where Law instructors collectively established that the reading 

of case law was the major learning bottleneck that their students experienced. For bottleneck identification in 

Political Science, Rouse et al. [36] based their selection of literature reviews as the major bottleneck on the 
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experiences of both instructors and students (from different year levels) as well as the findings of other research 

studies.  

It is therefore apparent that an instructor’s insight often is the main source used for bottleneck identification. 

However, the role that students can play in bottleneck identification should not be overlooked. Further justification 

for the seriousness of specific bottlenecks can also be found by linking bottlenecks to discipline-specific learning 

difficulties identified in other non-decoding studies. 

2.2 SCC difficulties 

As mentioned in Section 1, numerous previous studies have attempted to uncover the specific difficulties 

experienced by novice programmers while comprehending source code. Although none of these studies were 

specifically conducted within the DtDs framework, Middendorf and Shopkow [29] suggest that relevant literature 

can also be used to identify bottlenecks.  

Following an investigation of the programming competency of students enrolled for CS1 and CS2 courses, 

the 2001 McCracken group [26] concludes that many students still do not know how to program at the end of 

their introductory programming courses. The McCracken problem was further explored by the BRACElet project, 

which confirmed students’ lack of programming skills as a reality [43]. In an attempt to further understanding of 

the difficulties experienced by students, the McCracken group [26] refers to the potential role that in-depth analysis 

of narrative data collected from students can play in creating deeper understanding of these difficulties.  

The ITiCSE 2004 working group study [23] was conducted as a follow-up on the McCracken study. They 

used a set of 12 Multiple Choice Questions (MCQs) to test students’ ability on two tasks: firstly, to predict the 

outcome of executing the given fragments of source code; and secondly, their ability to select a piece of source 

code (from a small set of options) that would correctly complete a given near-complete code snippet. Although 

many students were found to be lacking the skills required to perform both tasks, the latter was found to be the 

most challenging. The final ITiCSE 2004 working group report concludes that students were unable to “reliably 

work their way through the long chain of reasoning required to hand execute code, and/or ...to reason reliably at 

a more abstract level to select the missing line of code” [23] (p. 132).  

The questions that the ITiCSE 2004 working group [23] used focused heavily on the concept of arrays – with 

arrays featuring in all 12 questions. In a study aimed at improving students’ learning experiences, Hyland and 

Clynch [18] found arrays to be the most challenging topic for first and second year students. In an attempt to 

record all the difficulties that students experience during practical computer programming sessions, Garner, Haden 

and Robins [13] found arrays to be featuring among the top three difficulties experienced by students. Other 

studies [2,24] have also identified arrays as a challenging concept for novice programmers.  

All the ITiCSE 2004 questions [23] included some form of basic control structures such as conditionals (e.g. 

if, if-else), loops (e.g. while, for) or a combination of both. According to Milne and Rowe [30], many novice 

programmers struggle to comprehend basic control structures. Various studies have reported the specific 

difficulties that students experienced while interpreting looping (repetition) structures [5,16,18,24]. Garner et al. 

[13] mention that most of the difficulties associated with loops originate in students’ incorrect comprehension of 

either the header or body of the looping structure.  

Although logic generally is regarded as a Mathematical field, it has grown more relevant to CS especially 

with regard to its applications [17]. Programming logic involves executing statements contained in a given piece 

of code one after another in the order in which they are written. Though still logical and correct, there are some 

programming control structures that may violate this execution order [9]. It is therefore not surprising that students 

struggle with logical reasoning in solving computer programming related problems [5]. The logical flow of the 

source code statements is closely related to the control flow of such statements [13]. This implies that for 

programmers to fully comprehend a computer program, they must skilfully combine the programming logic with 

the control flow of the program. Students are more likely to logically work (or trace) through a piece of source 

code if they have adequate knowledge of the semantics of the programming language and have the ability to keep 

track of changes made to variable values [23]. It is therefore especially novices who struggle to follow a program’s 

execution [11,35] and control flow [13].  

As the proponents of the DtDs paradigm [28] argue that bottlenecks directly relate to difficulties hindering 

the learning of many students, these previously identified difficulties can serve as a baseline for the identification 

of common and useful SCC bottlenecks. The exact nature of some of these difficulties, however, remains unclear: 

Where exactly are students getting stuck? Why are they getting stuck? What are they doing wrong? Which 

strategies do they resort to when they get stuck? More in-depth knowledge regarding the nature of these difficulties 

can thus be invaluable in determining teaching and learning gaps related to SCC. 
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3 Research Methods 

3.1 Design 

Within the scope of a DtDs-based research design, the study described in this paper followed an approach based 

on Plowright’s [34] Frameworks for an Integrated Methodology (FraIM). Within this framework, the focus was 

on collecting narrative and/or numeric data by means of observations, asking questions and/or artefact analysis. 

The study population consisted of final-year undergraduate CS students from a selected South African university 

(referred to as ‘senior students’ in this paper). The empirical part of the study comprised two phases. The aim of 

Phase 1 was to identify specific senior CS students having trouble in comprehending short pieces of source code. 

In Phase 2, we wanted to uncover specific points or places [28] where these students were experiencing SCC 

difficulties with the goal of identifying common and useful SCC bottlenecks. 

3.2 Phase 1 Participants, data collection and analysis 

The sample for Phase 1 consisted of the 40 students registered for the 3rd year Internet Programming module. 

The selection of this sample can be described as both purposeful and convenient [32]. The sample was purposeful 

because the students had already completed four programming modules. However, they could still be regarded as 

novice programmers since they did not have any professional programming experience. The sample was also 

convenient since we had easy access to the participants as the lecturer responsible for the module agreed to make 

available one of her scheduled class sessions for this research activity. For the research activity of Phase 1, 

participants were given a test consisting of the 12 MCQs developed by the ITiCSE 2004 working group [23]. For 

each of the questions, participants had to work through a short fragment of source code and then either predict the 

execution outcome of the code fragment or select (from a small set of options) the relevant piece of code needed 

to complete the given fragment. These 12 MCQs were chosen for two reasons: Firstly, all the questions contained 

source code fragments that students had to comprehend before they could answer the related question. Secondly, 

the questions had been tested with a large population of students from several universities in the United States of 

America and in other countries. Since the original questions were written in Java, we had to convert the code 

fragments to C# (a programming language familiar to the chosen population).  

The participants’ answer sheets (regarded as ‘artefacts’) were the primary source of data for Phase 1. After 

grading of the artefacts, the performance data for each participant were then captured into a Microsoft Excel 

spreadsheet and descriptive statistics were used to rank the questions in order of difficulty (based on the number 

of participants who incorrectly answered the question). The three most difficult questions (Q3, Q6 and Q8) were 

chosen for use in Phase 2.   

3.3 Phase 2 Data collection 

Based on the student performance data collected during Phase 1, a total of 15 participants were invited to take 

part in Phase 2. These were the participants who provided incorrect answers to all three of the most difficult 

questions identified in Phase 1. Ten of the 15 invited participants agreed to partake in Phase 2. The research 

activity in Phase 2 consisted of individual sessions during which each participant had to verbally explain his/her 

thinking process(es) [through a think-aloud technique [6]] while answering the three most difficult SCC questions 

identified in Phase 1. This data collection strategy can be regarded as a means of ‘asking questions’.  

Time slots of 45 minutes were scheduled for each of the individual sessions. However, the participants were 

informed that they could take as much time as they needed to complete the task. Since none of the participants 

had prior experience with the required think-aloud technique, this technique was first demonstrated to each 

participant, using an unrelated SCC question. The first author (principal researcher) played the role of the 

interviewer by asking probing questions when required (i.e. no progress or silence). Where deemed necessary, he 

also recorded some observations as an additional data collection strategy. The proceedings of each session were 

audio recorded with permission from the relevant participant. 

3.4 Phase 2 Data analysis 

To transcribe and analyse the audio recordings made during the individual think-aloud sessions, we followed the 

approach suggested by Creswell and Creswell [7]. Upon data transcription, the principal researcher cleansed the 

data by searching for faults and repairing them accordingly [45]. Since the participants had to verbalise their 

thoughts as part of the think-aloud process, the transcripts contained numerous illogical and repeated statements. 
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He therefore decided to make use of fuzzy-validation instead of strict validation (which requires the complete 

removal of invalid or undesired responses) [45]. With fuzzy-validation, the researcher is allowed to correct some 

data if there is a close match or known answer. After this, the principal researcher familiarised himself with the 

data [25] by listening and re-listening to the audio records numerous times as well as intensively and repeatedly 

reading the transcripts. This helped him to decide on a coding plan where the analysis would be guided by the 

data as it relates to the first research question. At this stage, the 10 validated transcripts were imported into the 

NVivo 12 Professional for Microsoft Windows, after which codes were developed (by creating several nodes) for 

each SCC difficulty identified in the data.  

In coding, Klenke [22] recommends the use of ‘units of analysis’. These can be words, sentences or 

paragraphs. As such, the principal researcher coded the data by highlighting and/or underlining text (from which 

the SCC difficulties could be extracted) within the domain of the stated units of analysis. He then populated the 

created codes by moving the necessary text into them. During this process, the names of the codes were 

continuously revised. Relevant themes and recurrent themes then started emerging. For each theme developed, 

the NVivo-generated frequencies of occurrence were used.    

4 Results and interpretation 

Given the large amount of data collected during Phase 2, the results discussion only focuses on the participants’ 

comprehension of Question 3 (see Fig. 4.1). (Note: The code line numbers were added in aid of this discussion). 

This question was selected since the related think-aloud activity data revealed numerous difficulties that can be 

directly associated with SCC. This question also tested students’ comprehension of arrays and basic control 

structures – concepts that both have previously been identified as challenging for novice programmers (see 

Section 2.2). The discussion of the eight most common SCC difficulties identified are grouped into three 

categories: arrays, programming logic, and control structures. 

 

 

Fig. 4.1. Question 3 from the set of 12 MCQs 

4.1 Array related difficulties 

Analysis of the Question 3 think-aloud data revealed four major array-related difficulties experienced by the 

participants.  

 

Array index. An array index refers to a key or value that identifies the position of an element or object stored in 

an array. Four participants had difficulties to interpret simple array indices with a total of nine occurrences 

identified. Participant 1 (P1) had the most difficulties in this regard, with three occurrences identified. In her 

interpretation of b[i], she regarded i as a value contained in array b instead of recognising it as the position of 
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the element in the array. One of the other participants (P8) confused the square brackets indicating the array index 

with a multiplication operator when he interpreted b[i] as b multiplied by i: “int i is equal to 0 [Line 8], 

and then for this times that, it is equal to true [Line 10] then increment the counter [Line 11], that times that 

is equal to true … it is a difficult one but then ... that times that is true and that times that is true”. From the given 

examples, it can be deduced that both participants were challenged by the notation [40] of the array index. 

 

Array length. The length of an array refers to the maximum number of values that can be stored in a given array. 

Three participants struggled to determine the length of the arrays contained in Question 3. P1 had no idea how to 

determine the length of the Boolean array b and remarked: “I do not know what is the length of array b”. Similarly, 

P6 was unable to determine the correct length of the array. He interpreted the Boolean array b to have the length 

of 4 while the correct length was 5: “So now is 0 less than 4 because our b value is 4” [while reading the 

condition of the for loop in Line 3].  

 

Boolean array. A Boolean array refers to an array where the elements can only contain the values true or 

false. Five occurrences of Boolean array difficulties were identified, with P7 being the most challenged (with 

three identified occurrences). Overall, the identified difficulties ranged from the declaration of the Boolean array 

to basic understanding regarding the effects of operations performed on such arrays. 

P7 got stuck at the Boolean array declaration in Line 2 and opted to skip the question: “Do I understand what 

I am doing? … it is a Boolean array, array is a Boolean, what does it mean? … (pause) … I am not sure about 

this one yet, let me ... (turning the page to see the next question)”. When P7 later returned to this question, his 

confusion regarding Boolean arrays became even more apparent as he regarded the index value of 1 as the Boolean 

equivalent of true: “Once it gets to the if statement, i is now equal to 1 and 1 is equal to true” [Line 10]. 

Similarly, P9 was under the impression that since b was a Boolean array it could only contain two values: 

“In position 0, I have 1, which means now at b[i] I have true. In my bool array I have stored 2 values” [Line 

10]. In their comprehension of Line 10, both P7 and P9 disregarded the actual code syntax. Instead, they reverted 

back to their basic knowledge about Boolean variables where a 0 represents false and a 1 represents true. Both 

participants regarded the index positions of 0 and 1 to represent the Boolean equivalents.  

 

Decomposition. Decomposition – where a complicated piece of code is broken down into its constituent 

components in order to simplify the interpretation thereof [41] – is a task that many novice programmers struggle 

with [42]. In their comprehension of Question 3, seven of the participants found it particularly difficult to 

decompose the compound index contained in the expression b[x[i]] (see Line 6 in Fig. 4.1). Overall, 29 

occurrences of this difficulty were identified from the Question 3 transcripts.  

P10 misinterpreted Line 6 to be resetting all the values contained in the b array to true, while in actual fact 

only the selected values in array b would be reset to true: “b[x[i]]set to true [Line 6] ... yeah no, I am very, 

very confused actually (longer pause) ... b[i] ... then the second for loop [Line 5] sets everything from the 

integer array to true, so if I am correct, then it resets everything from the first for loop [Line 3] back to true”. 

Meanwhile, P6 became so confused with the meaning of the compound index expression, that he could not 

even see how the code in Line 6 was related to the for loop in Line 5: “Now I am worried about this for loop, 

the second for loop [Line 5], it seems like it has nothing to do with the rest of the statements that come after it 

… so this second for loop is the one that is freaking me out”. Although P6 had no difficulty to comprehend any 

of the other for loops in Question 3, it seems that his inability to decompose the compound index expression 

caused so much confusion that he suddenly could not comprehend the basic execution of the for loop in Line 5. 

4.2 Programming logic difficulties 

The discussion in this sub-section focuses on the three programming logic difficulties identified from the Question 

3 think-aloud transcripts.  

 

The ripple effect. This effect occurs when the misinterpretation of one statement has a direct impact on the 

execution of statements that follow. This difficulty, which was observed with three participants, typically arises 

when programmers misinterpret programming logic [20]. Due to P1’s struggle to interpret the array indices (see 

Section 4.1), her interpretation of the statements contained in the third for loop completely ignored any changes 

made to the elements of the b array in the first two for loops [Lines 3-6]. She remarked: “If b[i] is true [Line 

10], I increment count [Line 11]. So if I increment count every time until it is over 5, then I will have 5”. She 

therefore chose ‘5’ (Option E) as her final answer to Question 3, which was incorrect.  

The difficulties that P6 had in interpreting the second for loop [Lines 5-6] (see Section 4.1 – Decomposition) 

caused him to overlook that loop completely while he was interpreting the third for loop: “When looking at this 
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third for loop [Line 8], it is the same as the first one [Line 3] that says the bool array is always equal to false. 

Now in the third one, they are saying if the element at position i in the Boolean array is equal to true [Line 10], 

then increment count [Line 11]. But according to this [Line 4], that b value is always false”. 

The behaviour displayed by both P1 and P6 indicated that they were not thinking sequentially [43], and 

therefore failed to follow the algorithmic logic of the source code in question [44]. P9 showed similar behaviour 

after she realised that she could not interpret any of the for loops and the containing statements. In response, she 

reverted her attention to those statements that she could comprehend and only considered those to arrive at count 

= 1 as her answer to Question 3. Her non-sequential (non-algorithmic) reasoning is evident from the following 

excerpt: “My first index: I have a false [Line 4], and then my second: I have a true [Line 6], and then int 

count is equal to 0 [Line 7] … it will only increment when I get to this point [Line 11] whereby count needs 

to be 1 [Option A]”. 

The most concerning aspect of the thinking patterns portrayed by these three participants is the ‘mental block’ 

caused by the statements they could not fully comprehend and their consequent anxious behaviour (as observed 

by the interviewer). These participants tried to resolve the mental block by completely ignoring the troublesome 

statements as if those were no longer part of the code. 

 

Guessing. One of the common critiques of MCQs is that they are answerable through guessing. This is also true 

of the 12 MCQs used in Part 1 of this study as guessing behaviour was previously observed by both Fitzgerald, 

Simon and Thomas [12] and Lister et al. [23], who used the same questions in their studies. The format of the 

Phase 2 think-aloud sessions discouraged guessing as participants were continuously prompted to explain their 

reasoning in as much detail as possible. However, one participant (P8) did attempt guessing when he said “I just 

have to go with A” after only tracing through a small section of the given code. At that stage, he was unable to 

show how he arrived at the chosen answer and had to be prompted by the interviewer to re-explain his reasoning. 

 

Mathematical expressions. When a line of code contains a mathematical expression, the misinterpretation of an 

operator can interfere with the comprehension of program logic. One example of such a mistake was observed 

when P7 failed to terminate execution of the third for loop (Line 8) when the value of i increased to 5: “Yes, i 

becomes 5 … once it runs throughout the loop and becomes 5 then ... b[i] is going to be true ... then the 

count also increments”. He therefore treated the < as if it was a <= operator, which is typically regarded as a 

logical error in the comprehension of source code. 

4.3 Programming control structure difficulty 

The Question 3 code only contained one type of control structure in the form of three for repetition structures. 

As mentioned in the ripple effect discussion (see Section 4.2), the lack of understanding that P6 and P9 portrayed 

regarding the overall functioning of a for loop caused them to eventually ignore the lines of code that contained 

these structures. Another for loop misconception was observed when P7 repeatedly executed the loop counter 

increment statement (++i) at the beginning of each loop, thereby setting the initial value of i to 1 for each of the 

three loops. Since repetition structures are one of the concepts that novices find challenging [16], it is not 

surprising that some participants experienced difficulties in this regard. However, one area of concern is the level 

of difficulty that these senior students experienced in comprehending basic for repetition structures.  

5 Identification of SCC bottlenecks 

The results of Phase 2 revealed that the participants in this study (senior CS students) experienced eight major 

SCC difficulties related to the concept of arrays, programming logic and programming control. In following 

existing bottleneck identification guidelines [1, 13], we used our collective experience of more than 25 years in 

teaching introductory and advanced programming modules combined with the new knowledge gained regarding 

difficulties experienced by our students, as well as relevant literature, to formulate six usable SCC bottlenecks. 

Bottleneck 1: Students are unable to keep track of variable values while tracing through a piece of code. 

Throughout the think-aloud excerpts presented in Section 4, there are numerous examples where students lost 

track of the changes made to variable values, causing them to arrive at an incorrect answer. They all tried to 

remember the changes to the variable values (instead of making notes on the provided piece of paper), which put 

unnecessary strain on their working memories. Their incorrect answers were therefore a direct result of failing 

memory or guessing. Lister et al. [23] point out that when students document changes to variable values they are 
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much more likely to arrive at the correct answer. Most of the students in our study did not follow a reliable strategy 

to keep track of such value changes.  

 

Bottleneck 2: Students are unable to comprehend statements containing arrays and perform basic 

operations on array elements. The bulk of the identified difficulties can be related to the students’ incorrect 

understanding of array concepts, thereby supporting findings from previous studies in which arrays were also 

identified as one of the most challenging concepts for novice programmers [2, 13, 18, 24]. Our students 

particularly struggled to interpret the array indices – especially when it was integrated with other concepts. While 

one student confused the square brackets (indicating the array index) with a multiplication operator, others were 

unable to determine the length of an array. Although most students had little trouble to comprehend the array 

containing integer (numeric) values, many of them were completely lost when having to deal with the Boolean 

array.  

Bottleneck 3: Students are unable to comprehend the execution of basic for repetition structures. Most of 

the difficulties observed with the for loops can be traced back to our students’ incorrect comprehension of either 

the header or the body of the looping structure, as Garner et al. [13] also observed. While some students failed to 

recognise when and how to terminate the loops [16], an instance was also observed where the loop counter 

increment statement was executed at the wrong time. Although most of the difficulties observed in comprehension 

of the body of the looping structure are more specifically related to arrays, referencing the incorrect value of the 

loop counter variable also caused problems for some students. Most worrying were the two students who 

completely gave up on interpreting the for loops and opted to ignore either the entire structure or the loop header 

completely for the remainder of their Question 3 interpretation.  

 

Bottleneck 4: Students do not possess adequate strategies to help them interpret lines of code they cannot 

comprehend. This bottleneck was observed in cases where students were unable to read, interpret and understand 

(execute) a specific code statement. Of particular interest here are cases where two or more separate concepts – 

which a student had no trouble to comprehend earlier – were combined to form a single ‘complex’ concept. The 

students were unable to decompose [21] the more complex piece of code into smaller parts in order to simplify 

the interpretation thereof. Their most common response to this challenge was to ignore the complex statements or 

lines of code completely. Although decomposition is a task that many novice programmers struggle with [15], 

students may never learn how to deal with complex concepts if they are not taught explicit strategies to resort to 

in such situations.  

Bottleneck 5: Students view a piece of source code as consisting of separate lines of code, thereby ignoring 

the significance of each individual line. We typically teach our students that, in order to fully comprehend what 

a program does, they first need to understand the meaning of each distinct line of code making up that program. 

However, it seems that in following our ‘guidelines’, some students not only lose sight of how the parts fit together 

but also of the overall significance of each individual line of code or statement. This behaviour was evident for 

those students who chose to completely ignore sections of code they could not comprehend with a complete 

disregard for the impact this would have on their ability to determine the correct answer to the question. Somewhat 

similar behaviour is evident in Shopkow et al.’s [40] description of their “ignoring significance” bottleneck – 

referring to History students’ complete disregard for how individual facts relate to the story they are trying to tell.  

 

Bottleneck 6: Students are unable to reliably work their way through the long chain of reasoning required 

to comprehend a piece of source code. This final bottleneck can be regarded as overarching since it refers to one 

of the most common and significant SCC difficulties originally identified by Lister et al. [23], and which we also 

observed in our study. It is directly related to our ‘ripple effect’ difficulty that refers to mistakes made when 

students are unable to think sequentially [4] or fail to follow the source code logic [1]. In this study, we first-hand 

experienced the significant negative impact that inadequate knowledge of semantics and inability to keep track of 

variable values can have on a student’s comprehension of a piece of code. These are all examples of actions that 

can cause a mental block in students’ reasoning ability, which they are unlikely to overcome if they do not possess 

the required knowledge and abilities to deal with such difficulties. Although we present these as six separate 

bottlenecks, they should be seen as “interconnected with each other” [40] since they are all indicators of mental 

challenges experienced by novice programmers while comprehending source code. 
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6 Conclusions and future work  

SCC continues to be a challenge to undergraduate CS students. Understanding the mental processes that students 

follow while comprehending source code can be crucial in helping students to overcome related challenges. By 

focusing on Step 1 of the seven-step DtDs framework, this study aimed to uncover the major SCC bottlenecks 

experienced by senior CS students. Thematic analysis of data collected by means of asking questions, observations 

and artefact analysis revealed a series of SCC difficulties specifically related to arrays, programming logic and 

control structures. The uncovered difficulties, combined with findings from existing literature and the personal 

experiences of the authors, were then used to formulate six bottlenecks that are indicative of the typical mental 

challenges experienced by novice programmers during the comprehension of source code. By choosing to focus 

on senior students, we were able to identify major bottlenecks that point to student learning difficulties that are 

currently not adequately addressed in introductory CS courses, and therefore still influence the mental processes 

followed by final-year undergraduate students.  

Through this paper, we also wanted to create awareness among instructors regarding the role that a systematic 

decoding approach can play in exposing the mental processes and bottlenecks unique to the CS discipline. In order 

to address the remaining six steps of the DtDs framework [28], future research is needed, firstly to uncover the 

mental tasks followed by expert programmers to overcome the six identified SCC bottlenecks. This knowledge 

can then be used to devise teaching and learning strategies that model the explicit mental strategies that experts 

follow. After creating opportunities for students to practice these skills and to receive feedback on their efforts, 

instructors can assess students’ efforts to determine whether they have benefited from the implemented strategies 

or not. The ultimate goal of this suggested research protocol is to help students to master the mental actions they 

need to be successful in the CS discipline. 
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Chapter 5 – (Article 2)  

Decoding the explicit cognitive strategies of expert 

instructors: Mental scaffolding techniques for efficient 

source code comprehension2  

 

ABSTRACT 

Many novice programmers fail to comprehend source code and its related 

concepts in the same way that their instructors do. As emphasised in the Decoding 

the Disciplines (DtDs) framework, each discipline (including Computer Science) 

has its own unique set of mental operations. However, instructors often take 

certain important mental operations for granted and do not explain these 

explicitly when modelling problem solutions. Better understanding of the nature 

of the cognitive processes and related strategies employed by experts during 

source code comprehension (SCC) could ultimately be utilised to identify the 

‘hidden’ mental steps. Within the realm of the DtDs framework, this study 

employed decoding interviews, followed by thematic data analysis, to uncover a 

variety of explicit cognitive processes and related strategies utilised by a select 

group of experienced programming instructors during a SCC task. The insights 

gained were then used to propose a set of mental scaffolding techniques for 

efficient SCC. Programming instructors can use these techniques as a SCC teaching 

aid to convey expert ways of thinking more explicitly to their students. Insight into 

the general cognitive strategies utilised by expert programmers is an important 

step towards further exploration of the more detailed step-by-step procedures 

followed by experts during SCC. 

 

Keywords: 
Source-code comprehension, cognitive processes, decoding the disciplines, 

Computer Science Education, mental scaffolding 
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Categories: 
• Social and professional topics~Computer science education   • Social and professional 

topics~CS1    

1 INTRODUCTION 

Source code comprehension (SCC) is a core skill that many Computer Science (CS) 

students continue to struggle with [1, 2]. SCC generally refers to the reading and 

interpreting of pieces of source code [3, 4]. Some authors [5, 6] describe it as a skill 

that requires efficient application of a series of complex cognitive processes. Due 

to the complex nature of SCC, a ‘scaffolding’ process [7] – where instructors 

gradually guide their students in mastering these cognitive processes – could be 

instrumental in getting students to perform tasks that were initially beyond their 

capacity. According to [8], each academic discipline has its own distinctive set of 

mental operations that stakeholders follow when performing discipline-specific 

tasks. The explicit nature of these operations is, however, often so deeply buried 

in the unconscious minds of the discipline experts that it causes an ‘expert blind 

spot’ [9]. As a result, vital mental operations become so natural to the experts that 

they often omit crucial and even quite simple steps when explaining concepts and 

procedures to others [10]. Such omissions during instruction can lead to novices 

developing mental blocks (‘bottlenecks’) in mastering the steps involved in 

completing discipline-specific tasks [9].  

Decoding the Disciplines (DtDs) [8] is a seven-step process that can be used 

to overcome specific student-learning bottlenecks. After identification of a specific 

bottleneck (Step 1), the disciplinary unconsciousness is systematically decoded in 

order to reveal the explicit steps followed by experts (e.g. instructors) when 

performing tasks related to the identified bottleneck (Step 2).  These steps are 

then broken down into their component parts and each operation is modelled in 

a way that will be understandable to students so that it can be used to facilitate 

effective learning and understanding (Step 3). Students are then provided with 

opportunities to practise the modelled operations and get feedback on their 

efforts (Step 4). Throughout the process, specific strategies are employed to 

motivate students to follow the modelled operations (Step 5) and to assess 

whether they have mastered these operations (Step 6). In line with the principles 
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of the Scholarship of Teaching and Learning [11], DtDs practitioners are 

encouraged to then share with other stakeholders what they have learned (Step 

7).  

Within the CS discipline, one of the most common and significant SCC 

bottlenecks identified [12, 13], relates to students’ inability to reliably work their 

way through the long chain of reasoning required to comprehend a piece of source 

code. Instead of using Step 2 of the DtDs process to uncover the explicit steps that 

experts follow in dealing with tasks related to this bottleneck, the complex 

cognitive processes required to comprehend source code [6] have led us to first 

focus on exposing specific strategies used within these cognitive processes. If the 

strategies revealed by expert programmers during a SCC task are assumed as 

typical of the basic cognitive operations required for efficient SCC, then these ways 

of thinking could point to crucial techniques employed by experts during SCC. 

More explicit awareness of the techniques instructors typically use to 

comprehend source code could help them to avoid their own ‘blind spots’ when 

sharing SCC strategies with their students. These techniques could also be used as 

mental scaffolds to help students overcome related ‘bottlenecks’ [8] and better 

prepare them for SCC tasks. Within the DtDs context, identification of general 

cognitive strategies could serve as a pre-step for revealing the explicit steps 

followed by experts in comprehending source code. This paper therefore attempts 

to answer the following two questions: 

• What are the cognitive processes and related cognitive strategies 

employed by expert programmers during SCC?  

• What does insight into these cognitive process strategies suggest in terms 

of mental scaffolding techniques for the modelling of efficient SCC 

strategies to students (as novice programmers)?  

The remainder of this paper is organised as follows: Section 2 provides an 

overview of the basic cognitive processes involved in processing information and 

how these relate to SCC. In the discussion of the research design and method in 

Section 3, detail is provided about the selection of the experts and the SCC 

questions used in the decoding interviews. Important detail is also provided about 

the nature of the interviews and the way in which the interview questions were 
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linked to cognitive processes in the data analysis. The presentation of findings 

(Section 4) takes place according to the main categories of cognitive processes 

recognised during analysis of the transcribed interview data. As part of the 

discussion (Section 5), we summarise the experts’ cognitive process strategies and 

propose techniques that could be used as part of a mental scaffolding process by 

instructors while modelling efficient SCC strategies to their students. Conclusions 

are presented in Section 6. 

2 BASIC COGNITIVE PROCESSES AND THE RELATION TO SCC 

Cognitive processes are defined as procedures that process all the information 

(multiple, complex or otherwise) human beings receive from their surrounding 

environment [14]. The processing is done with the objective to transform the 

information into easily manageable cognitive tasks [15]. The basic cognitive 

processes discussed in the following sub-sections include attention, perception, 

memory, reading, speaking and listening as well as those processes related to 

reflective cognition. All of these processes are highly relevant to SCC and also to 

this study, as will be illustrated in the discussion.  

2.1 Attention  

Attention is a cognitive process in which certain things are selected (triggered by 

single or multiple stimuli) from a host of available possibilities at a certain point 

in time while doing something [16]. When applying attention, one can use either 

the intensity or selectivity component [17]. The intensity component enables a 

person to sustain concentration on one activity over time (sustained attention). 

The selectivity component enables a person to choose to focus on competing 

stimuli. This means that the attention may be divided and therefore not fully 

focused on the current activity.  

During SCC, expert programmers often focus their attention on complex 

lines or sections of code [18]. These complex sections of code are likely to contain 

dynamic representations such as literals, comparisons, operators, and keywords 

[19]. Experts will typically identify these sections by quickly scanning through the 

code from top to bottom [20]. 
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Irrespective of type, attention is normally dependent on information that 

is relevant to the current task a person is performing [21]. Van Someren, Barnard 

and Sandberg [22] point out that in performing almost any task/activity, there will 

be irrelevant and distracting stimuli. As such, any individual involved in 

performing such a task should focus their attention by being conscious (e.g. 

recognise, differentiate, assemble things together, be assertive, be orientated and 

even suggest), alert, aware, and responsive (reactive) in order to be successful 

[23].           

2.2 Perception   

Perception refers to the process of acquiring information from the world around 

us and transforming it into real experiences [24]. Preece et al. [21] point out that 

perception is a complex process that also involves other processes such as 

memory, attention, and language. Although perception can be used under normal 

circumstances, human beings have a tendency to use their perception when there 

is a breakdown in other cognitive processes [25]. Perception can also change 

while a specific task is performed. During this process, perceptual span increases 

when a person obtains useful information, while it decreases when encountering 

information that is difficult to comprehend [26]. Choi and Gordon [27] argue that 

when perceptual span decreases, human beings will typically skip such 

troublesome information (e.g. words or text) and jump to sections that are not 

bothersome. With regard to comprehending source code, programmers can have 

different perceptions based on whether they employ a bottom-up [28]; top-down 

[29]; knowledge-based [30]; systematic [31]; micro [32]; as-needed [31]; or 

integrated [33] source code comprehension strategy. 

2.3 Memory  

Memory is a cognitive process that involves the recall of different kinds of 

knowledge that guide human beings to act or react in a specific way to certain 

stimuli [21]. Knowledge can be recalled from either the long- or the short-term 

memory [34, 35]. It is, however, important to note that not all knowledge is stored 

in memory. A filtering process is used to decide what is processed and stored and 

what is not [36]. Since cognitive processes tend to overlap, the more attention a 

person pays to a certain aspect, the more likely it is that this aspect will be 
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remembered [21]. Programmers typically use strategies such as reading/re-

reading specifications; thinking of possible test cases; and reasoning aloud to 

enhance the memorability of concepts [37, 38]. Other strategies, such as 

highlighting or colouring some lines of code or text [39]; writing comments [40]; 

pattern recognition [37]; and making drawings or annotations (doodles) [12] are 

often utilised by programmers to readily and easily remember or determine the 

values of variables or other information without heavily engaging their memory.   

2.4 Reading, speaking, and listening 

Reading, speaking, and listening are three interrelated cognitive processes [21] 

that can be identified through facial expressions, vocal behaviour, verbal consent, 

pauses or segregates (e.g. ‘hmm’), posture or stance, eye behaviour, hand gestures, 

and head movements [41, 42]. A person can typically understand something (e.g. 

a given piece of code) well by using any one or a combination of these processes. 

An attempt to comprehend something that is written down and spoken, requires 

more cognitive effort than just listening to it [43]. However, many people prefer 

to listen, as they consider it the easiest mode to comprehend something. In 

contrast, if something is written down, it is easier to re-read the information if it 

is not understood [21]. Analogous to strategies used in other cognitive processes 

– in reading source code, programmers will mark some lines of code [39]; write 

comments [40]; draw illustrations [12]; and/or read through the code multiple 

times [38] in an attempt to enhance their comprehension. During code reading, 

experienced programmers typically concentrate on the semantic features of the 

code, while non-experienced programmers tend to focus more on the syntactic 

features [33].              

2.5 Reflective cognition  

Planning, reasoning, and decision making are interrelated cognitive processes that 

enable individuals to reflect on their cognition [21]. During reflection, initial 

thoughts and/or responses should be examined carefully before conclusions can 

be made. In doing so, a person will typically ask the following questions [44, 45, 

46]:  

1. What should I do? (Cognitive planning)  
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2. What alternative courses of action do I have available? (Cognitive 

planning) 

3. Which alternative courses of action should I select to use? (Cognitive 

reasoning)  

4. Why should I use these (selected) alternative courses of action? (Cognitive 

reasoning)  

5. What are the consequences of using these alternatives (selected)? 

(Cognitive decision making)  

Inherently, questions 1 and 2 form part of cognitive planning. In addressing 

question 1, individuals actively and consciously engage their thought processes 

and use all resources available to them, such as discussions with others or using 

artefacts (e.g. books, papers, and the Internet) [21]. This is done with the objective 

to better understand the nature of the task in question in order to avoid ill-

informed comprehension [47]. With regard to resources, Lister et al. [12] 

recommend that a programmer should make some drawings or annotations 

(artefacts) in order to better comprehend source code. According to Hayes-Roth 

and Hayes-Roth [48], question 2 is addressed in two stages. Firstly, a person 

decides in advance “a course of action aimed at achieving some goal” (pp. 275-76). 

Secondly, the execution of the plan is continuously monitored and guided to 

ensure success. This implies that the current course(s) of action can be revised 

over time based on new conditions encountered in the subsequent parts of the 

task at hand (e.g. SCC) [49]. 

Questions 3 and 4 essentially constitute cognitive reasoning. According to 

Evans [50], an ability to arrive at the preferred alternatives involves some 

intelligent thinking. This implies that it is not the solution that is retrieved from 

the memory, but the relevant information. A person then needs to work out how 

best to apply it. Use of connectives such as and, if, or, all, some, none and not can be 

used as a basis in making some cognitive reasoning decisions in order to arrive at 

a solution to a problem [51]. It is important to note that during the cognitive 

reasoning process, a person (e.g. programmer) creates logical as well as 

systematic arguments and makes judgement based on these arguments [52]. 
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Evaluating different arguments to decide which one is the best option involves 

actively and exhaustively processing information to ultimately decide on cost-

effective courses of action for the task in question [53]. 

Cognitive decision making is addressed by question 5. According to [21], 

addressing this question involves working through different scenarios and 

gauging the good as well as bad points of each alternative. The 12 multiple-choice 

questions (MCQs) used in the study by Lister et al. [12], are examples of situations 

where different scenarios – in this case missing pieces of source code – are 

weighed against each other. Measures to mitigate unfavourable elements for each 

alternative are identified and documented at this stage. To make decisions, a 

person does not necessarily have to consider all details included in the text or 

scenario. Instead, the focus can be placed on only a few key indicators [21]. By 

doing so, a person provides justification for all decisions arrived at [45].  

Planning, reasoning, and decision making can be regarded as steps in the 

process of solving a problem. This process is characterised by certain actions that 

a person performs prior to and throughout solving a problem. Due to the cognitive 

nature of problem solving, a person should continuously engage and stimulate 

their thought processes when solving a problem [54]. To be successful in problem 

solving, Frederick [55] recommends that people should have “the ability or 

disposition to resist reporting the response that first comes to mind” (p. 35). This 

emphasises the argument that, after identifying a solution to a programming 

problem, the solution should be evaluated, implemented, and re-evaluated. These 

stages should also be revisited frequently during the iterative implementation of 

the solution and the discovery of more knowledge that was not apparent to the 

programmer [56].       

Having provided some background on what constitutes the 

aforementioned cognitive processes, the next section discusses the research 

design and the procedure that was followed to uncover the cognitive processes 

and related strategies employed by expert programmers in this study.    
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3 RESEARCH DESIGN AND METHOD  

The design of this study was narrative in nature and focused on the ‘asking 

questions’ data collection strategy, as described in Plowright's [57] Frameworks 

for an Integrated Methodology (FraIM). A case study was deemed the most 

appropriate data source management strategy, since only a small number of 

participants would be used. The population included CS instructors from a 

selected South African higher education institution. The sample consisted of five 

instructors who were purposefully [58] selected based on the fact that they were 

all experienced CS instructors who had been involved in teaching programming to 

novices (as part of CS1 and/or CS2 courses) for at least three years. Two of the 

participants (P1 and P4) had more than 14 years of experience in this regard, 

while P2 and P3 had between five and nine years of similar experience. Except for 

P5, all the other participants worked as industry programmers for at least four 

years and they were all, to some extent, still involved in private programming 

consultancy work. This sample can also be regarded as convenient [59], since the 

selected participants were in the proximity of the principal researcher (the first 

author) and could therefore be reached easily. 

3.1 Data collection  

As part of the ‘asking questions’ data collection strategy, primary data was 

collected by means of decoding interviews [8] and supplemented by a short 

questionnaire. Experts are characterised as individuals who perform critical 

thinking tacitly and implicitly in their own disciplines [8, 9]. As such, the aim of 

the decoding interviews was to uncover the explicit mental steps that expert 

programming instructors would go through in order to accomplish tasks that 

students find difficult to execute. A decoding interview is typically conducted by 

at least two interviewers [9]. Given the format of a decoding interview, a single 

interviewer might get lost in the details, while two minds could better keep the 

interviewing process on track [60]. During the interview process, both 

interviewers should be able to verbalise their thinking; challenge the explanations 

given by the interviewees; and summarise their thinking back to the interviewees 

on an abstract level [61]. For this reason, Middendorf and Pace [8] describe the 

interview process as the most intellectually demanding of all the DtDs steps.  
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Since members of the same discipline have a tendency to share common 

expert blind spots, Pace [9] recommends that the second interviewer should 

ideally come from outside the discipline. The second interviewer is then more 

likely to see when a specific mental step has not been fully explained. However, 

given the complex nature of the cognitive processes involved in SCC and our 

inability to find a suitable person with relevant decoding interview experience 

from outside the discipline, we had to make an alternative arrangement. For the 

decoding interviews in this study, the principal researcher acted as the principal 

interviewer, with the support of a non-teaching CS researcher who had some 

decoding interview experience as the second interviewer. 

3.2 Data collection procedure  

All participants completed an informed consent form (as stipulated in the ethical 

clearance authorisation granted by the institution) before participating in the 

decoding interview. The proceedings of each interview were audio recorded with 

the permission of the participant. In each interview, the participants were first 

asked to explain the process they would go through when they needed to 

comprehend any given piece of source code. Whenever the interviewers felt that 

the participants were not clearly verbalising all their mental operations, one of 

them would intervene with a probing question. After about 30 minutes, a specific 

SCC question was presented to the participants, asking them to verbally illustrate 

the general SCC process they had just explained in answering this question. Where 

necessary, further probing questions were asked. At the end of the interview 

session, the participants completed the short questionnaire to provide basic 

demographic data and information regarding their programming and teaching 

experience. 

Although the original plan was to include three SCC questions in this part 

of the decoding interview, a pilot of the entire data collection procedure revealed 

that it would take too long and that sufficient data could be collected if just one 

question was used. Question 6 (see Figure 1) from the original set of 12 MCQs 

developed by the ITiCSE 2004 working group for their multi-national study of 

reading and tracing skills in novice programmers [12], was therefore selected. 

This question was identified as the second most challenging question in Lister et 
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al.'s [12] study. While the most challenging question (Question 12) mostly focuses 

on arrays, Question 6 covers a variety of programming concepts (including 

Boolean variables, for loops, array indexes, and return statements to terminate 

a for loop). In answering Question 6, the missing piece of source code had to be 

identified from the five given options (Note: The correct answer is Option B). The 

only change made to the question was to convert it from the original Java to C# 

(the programming language that all the participants were familiar with). The line 

numbers as illustrated in Figure 1 were not part of the question given to 

participants and are only included here for ease of reference in the results 

discussion to follow. 

3.3 Data analysis  

Following the decoding interview proceedings, a narrative data-analysis approach 

as suggested by Creswell and Creswell [62] was used to transcribe the audio 

recordings made during the decoding interview sessions and to analyse the data. 

After transcribing the data, we cleansed it by searching for faults and repairing 

them [63]. As the discussions were open-ended, the transcripts also contained 

some illogical and repeated statements. We therefore decided to use fuzzy 

validation [64], which allowed us to make some corrections to the data if there 

was a close match or known answer. After this, we familiarised ourselves with the 

data [65] by listening and re-listening to the audio recordings numerous times, as 

well as intensively reading and re-reading the transcripts. This helped us to decide 

on a coding plan where the analysis was guided by the data as it relates to the first 

research question. At this point, we imported the five validated transcripts into 

NVivo 12 for further analysis. We then started to develop codes (by creating 

several nodes) for each cognitive process recognised in the data.   

As suggested by Saldaña [66], we then coded the data by highlighting 

and/or underlining sections/passages (e.g. words/keywords, sentences, 

paragraphs) from which cognitive processes could be extracted (under the 

guidance of the theoretical guidelines as identified from the literature). We 

populated the developed codes by moving the necessary text into them. 

Consequently, some themes started to emerge which revealed important 

information about the data set in relation to the first research question [67]. 
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Continuing with this process led to the emergence of recurrent themes. Finally, we 

used NVivo to generate frequencies of occurrence for each of the developed 

themes.  

 

4 FINDINGS AND INTERPRETATION  

Given the large amount of data collected during the decoding interviews, this 

paper focuses on data collected during the time when the participants were 

tackling the given SCC question (see Figure 1). The discussion in the following sub-

 

Figure 10:  SCC question used in decoding interview 
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sections focuses on the five cognitive process categories that were observed, as 

well as evidence of their occurrence. 

4.1 Reflective cognition  

The category for reflective cognition processes had the highest number of 

occurrences (73). Participant 1 (P1) employed cognitive strategies extensively in 

this category, with 25 occurrences. Findings on the four cognitive processes 

constituting this category are discussed next. 

4.1.1 Cognitive planning   

During the cognitive planning process, a person needs to decide on the course of 

action to follow in order to arrive at a solution to a problem [48]. P3 demonstrated 

some elements of planning, as is evident from the following excerpt:  

“You have already told me what the output should be. So now I have a 

question: What is it supposed to do? But there is a mistake, what is missing 

that would create the correct output? Now I know I need to look at this code 

for an error. The first thing I need to do is figure out which thing is doing what 

and how they are working together, and then I can find the mistake – unless 

the mistake is something obvious, in which case I can quickly find it.”  

It can be seen from this excerpt that P3 first familiarised himself with the 

problem specifications so that he would know what was expected of him. The 

problem statement gave him an idea of what the missing source code should do. 

He also inferred that there might be errors in some of the source code fragments 

that would make them fail to produce the desired output if they were to be placed 

in the isSorted method. Further, by recognising that some pieces of code may 

have conditions or errors that could disqualify them from being the correct piece 

of missing code, P3 was already deciding on what he would do to ultimately arrive 

at the correct piece of missing code. Moreover, this strategy could help him spend 

considerably less time to ultimately get to the final answer, as he seemed to be 

applying efficient planning.   
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4.1.2 Cognitive reasoning   

The cognitive reasoning process requires a person to integrate all the information 

at their disposal in order to arrive at a solution to a problem [50]. P1 exhibited this 

type of reasoning when he started by focusing on the opening statement of the 

question and the method signature in Line 1 (see Figure 1).  He examined and read 

the various aspects of the question and specifically employed a cognitive 

reasoning process based on what he found. For example, to decide on the 

parameters of the isSorted method, he read, interpreted, and comprehended 

the method signature of the question. This, in turn, enabled him to apply some 

reasoning throughout the tracing task process. The likelihood of identifying the 

correct missing source code could have been low if this method signature was not 

well understood. 

Furthermore, P1 made logical and systematic arguments [51] as he 

proceeded with the interpretation of the question. Evidence of this argument is 

contained in the following excerpt:  

“The IsSorted method will receive an array of integers. It will receive it in 

x and now I will need to look at each one of these options here to see what 

goes in the missing code.”  

Referring to ‘options’ in the above excerpt is already an indication that P1 

was working towards an elimination strategy [37] to get rid of incorrect options.     

4.1.3 Cognitive decision making    

During the decision-making process, a person will focus on those problem details 

that can improve understanding of the problem so that well-informed decisions 

are made in tackling the problem at hand [21]. For example, P1 made a strategic 

decision based on the length of the question: 

 “So, in such a case, when it is a long question like this, I would quickly scan 

through the options to see which one is most probably going be the correct 

one. And then I start with that one instead of doing the first one and run 

through the entire thing.” 

As can be seen from this excerpt, P1 also employed an effective ‘quick scan’ 

strategy as suggested by Bauer et al. [53]. This strategy allowed him to start 
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working towards an answer at an opportune place, hence expediting the process 

of finding the right answer.   

As another example of decision making, P3 familiarised himself with the 

actual code included in the question by reading through the pieces of source code 

in order to determine the meaning of each statement. In this regard, he said: 

“Now I pick a set of inputs 0, 1, 2, and I see that we are obviously looping 

through the array. So, I can see that we are stopping at the second-last 

element. This is the case again where I do not need to look through this in 

great detail, because I can see that thing. That is easy access to my array, 

because you said it there. It is my array length minus 1, which means the 

second-last element and we are going less than that. So, I understand it to be 

saying that we are going through each element in the array up until the 

second-last element, and I do not have to look at that loop again.” 

From the above excerpt, it is also interesting to note that P3 decided to use some 

test cases or sample values to identify the limits of the array in question. Moreover, 

recognising that lines 6, 14, 21, 28 and 34 were identical, eliminated the need for 

P3 to interpret each one of them. This means that he interpreted the statement on 

line 6 and applied that interpretation to all similar statements.   

4.1.4 Problem solving   

Given the close relation between planning, reasoning, and decision making as part 

of the problem-solving process [21], it is worthwhile to consider how one of our 

experts utilised each of these cognitive processes as part of her problem-solving 

strategy.  

While reading through the problem specification, P2 started to formulate 

her problem-solving strategy by identifying what she was asked to do and what 

her first action should be. The following excerpt illustrates her cognitive planning 

process: “So I first try to understand the question (reading the question) ... otherwise 

the method should return false, right! So which one of the following is the missing 

source code from the method isSorted? ... So what I am going to do is to scan 

through each of my options quickly and see if I can eliminate others very quickly.” 
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Her main aim with this strategy was to quickly identify the ‘obvious’ 

incorrect options so that she would not have to spend unnecessary time on in-

depth interpretation of those code segments.  

In her scanning of the initial lines of code (reading the code sequentially), 

she said: “All of them [alternative answers] are returning values, all of them are 

determining Booleans. So, I can’t eliminate an alternative based on that”. In this 

regard, she was using cognitive reasoning to formulate a set of elimination criteria. 

She further pointed out that these criteria were based on both the question and 

what she saw in the given code fragments. After considering the above, she 

continued her reasoning process to examine additional aspects of the code 

alternatives: “Can I eliminate one? Yes or No? If I can't eliminate one, now I start 

looking in more detail”. This examination of the possible code options eventually 

led her to apply her decision-making skills when she tentatively marked option B 

as the possible missing piece of code: “So I will mark B as a possible solution. 

Because at the moment, without going really in depth and using a test case, it looks 

to me like it will work”. However, instead of settling for option B right away, she 

continued as follows: “So I will just go to B and I will check it again”. This is 

illustrative of the thoroughness strategy, as suggested by Fitzgerald et al. [37]. 

This is the strategy where a person, upon initially recognising an answer, checks 

further for the correctness or incorrectness of answers just to be convinced of the 

final answer.  

As illustrated in this problem-solving example, P2 followed an informed 

problem-solving process that enabled her “to resist reporting the response that 

first came to her (sic) mind” [55, p. 35] . Moreover, from the observation notes and 

all the steps that P2 followed in answering the question, it could be seen that she 

had mastered the problem-solving skill. 

4.2 Attention   

The attention process is characterised by selecting single or multiple options from 

a host of available possibilities [16]. In this study, 52 occurrences of using the 

attention cognitive process were observed in the participants. P1 employed this 

category the most, with 21 occurrences. As an indication of paying attention, P1 

uttered the following statement: “Now I see that B and E do not have that 
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declaration and it will only do a comparison in the if statement and then return a 

specific value”. By using an attention cognitive process, he was therefore able to 

identify that only three of the options (A, C and D) included a declaration for the 

Boolean variable b.  

P2 used her attention process to realise that all five options to the question 

were returning values, as is evident from the following excerpt: “All of them are 

returning values, all of them are determining Booleans”. As the cognitive processes 

tend to overlap [21], she immediately switched from attention to decision making 

(a reflective strategy) by saying, “so I cannot eliminate an option  based on that”.  

As an indication that P3 was paying attention while reading the question 

specifications, he said: 

“First thing, I must make sure that I understand the question. So, you have 

helped me a bit by boldfacing some words. So, I will read the question focusing 

only on the boldfaced words. Then I will read it again and I will boldface in 

my mind some other words such as array, method, sorted – so those are words 

that immediately come to mind. Other words glue everything together.”  

It should be noted that the ‘boldfaced words’ referenced by P3 were 

actually a different font face used to ensure that code statements and values would 

stand out from the normal sentence text. With his attention drawn to these words, 

P3 identified those as important sections [68]. He proceeded further by identifying 

even more ‘keywords’ (e.g. array, method and sorted) to help focus his attention 

while tackling the problem.      

4.3 Reading, speaking and listening  

As part of the decoding interview, participants had to listen to the interviewers’ 

questions and verbally explain their SCC processes. For the purpose of this 

discussion, these listening and speaking actions are not regarded as part of the 

experts’ natural SCC strategies. We instead focus on the 17 other occurrences of 

these cognitive processes as observed in the participants. These actions included 

body movements (hand, eye, and head); facial expressions; and the utterance of 

some words [41, 42]. P1 applied this category the most, with six occurrences.  
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While reading the specifications, P1 focused on the semantic processing of 

the method signature (see Line 1) to determine that isSorted was a static 

method of a bool type which would receive an array of integers. Similar to our 

other experts, he realised the importance of the method signature and chose to 

focus on semantics instead of syntax. This is in contrast to a novice programmer 

who would typically rely more on syntactic aspects or even choose to ignore the 

method signature and its parameters completely [33]. As further evidence of 

semantic processing, P3 referred to the specifications as a ‘rule’ that guides the 

entire process of working through the comprehension task and arriving at the 

desired answer. He explicitly shared the information that he gathered from 

reading the problem specifications. He also advised that it is recommendable to 

read problem specifications at least twice, as also suggested by [38].  

P4 regarded speaking and listening as fundamental strategies in his way of 

doing things (incl. code comprehension): “I always speak aloud! My wife came to 

me this morning. She said: ‘You are getting mad’. She always hears me talking to 

myself”. He further confirmed that even for general reasoning, he uses the think-

aloud technique. He argued that the technique helps him to go through the logic 

fast and also ensures that he does not skip the logic steps as he is listening to 

himself. This combination of cognitive reading, speaking, and listening strategies 

also allows him to commit the information to memory [21].  

4.4 Memory 

The memory cognitive process requires the use of strategies that make it easier 

for a person to remember and/or recall values or knowledge when necessary [21]. 

Many of the attention, reading, speaking and writing strategies as discussed above, 

also helped the experts in this study to enhance their memory. Based on this 

notion, 11 occurrences of this cognitive process were identified.  

During the decoding interview, P2 was observed making some pen-holding 

hand gestures as if she was writing computations in the air. In response to a 

question asking if she was “passing values in her head as she went through the 

code”, she replied “Yes” – confirmation that she was using her working memory. 

Essentially, it is not easy to remember things that are not written down. Being 

compelled to do so can lead to a working memory overload [69]. As further 
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evidence that P2 was doing some comparisons in her mind, she was observed 

comparing the last two elements of the sample array she created herself. When 

asked whether she considered the previous values, she said: “I compared them in 

my mind”. P3 also did not show the test cases he used. However, when asked if he 

was doing “the test cases in his mind”, he admitted that he was.  

The behaviour exhibited by P2 and P3 is interesting, because Wiedenbeck 

[70] observed that experienced programmers required less mental attention. 

However, experts in this study mostly kept things in their working memory. A 

possible explanation for this type of behaviour could be that these things were still 

manageable (i.e. within the number 5 plus minus 2 items according to Miller [35]). 

When the information became too much to keep in memory, the experts resorted 

to other strategies [71] to help them remember values and/or keep track of the 

program logic.  

Due to the prominence of the integer array x in Q6, most of the participants 

used some type of doodle [12] to represent the array elements (e.g. ). 

Others just wrote down the values of variables (e.g. ‘2, 7, 5’), plainly as an 

indication that they were using these arbitrary values as test cases to help them 

determine outputs for the given code fragments. To enhance his memory, P5 

resorted to pattern recognition [37] after realising that the for loops in all five 

alternative fragments of code (Lines 6, 14, 21, 28 and 34) were identical. During 

the interview, P5 was asked the following question by interviewer 2: “Did you use 

the pattern from option A, and apply it to option B?” In response, P5 said: “Yes, I did 

not have to check whether this condition makes sense again”. This confirms that he 

was using some recall of things or actions he did before. He went on to apply the 

same pattern(s) he had seen in the previous options, and to apply them in 

subsequent instances. Inherently, these strategies helped the expert 

programmers to easily recall variable values and/or important information when 

they wanted to use it.  

4.5 Perception 

Perception is often used as a strategy when other cognitive processes fail to help 

us make sense of what we are trying to understand or achieve [25]. With reference 

to this notion, a total of eight occurrences of the application of the perception 
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process were identified with the participants. P4 applied this process the most, 

with four occurrences. In most of these instances, the participants’ perception 

caused them to focus on issues that were not directly related to the given SCC task.   

One of the participants (P4) was concerned that the given question did not 

follow the naming conventions he was teaching to students: “I will make sure that 

the name of the method, which is wrong here anyway, follows conventions. When 

using a predicate method, there strictly should be a capital, not a lower case”. P5 did 

not agree with the use of ‘breaks’ in a for loop. He notably indicated that he would 

rather have used a compound while instead of the return false to break out 

of the for loop (see Figure 1 - Lines 17 through 19): “Well, we do emphasise that 

there are two ways to break out of the for loop, but we never use the one .... So, we 

do not use the breaks, though we have a for. What we do instead, is that we convert 

to a while loop with a compound condition. So, I would have it as b = true, while 

b and i < x.Length – 1”. 

P1 was concerned that the given SCC question would be too difficult for 

novice programmers to answer. He expressed this by pointing out that the 

argument of the isSorted method contained in its signature [see (int [] x) in 

Line 1 of Figure 1] was “a higher-level concept”. His concern was based on his 

knowledge of the content that is covered in elementary programming courses. 

Another element of perception raised by P1 was related to his confidence in the 

steps that he followed in answering the SCC question. In this regard, he said: “If I 

have eliminated them, I am quite sure they are not necessary”. He therefore chose 

to ignore the possibility that he could have made a mistake (e.g. logical or 

otherwise) somewhere that might have caused him to arrive at an incorrect final 

answer.  

It should be noted that the perceptions identified from the experts in this 

study, caused them to focus on issues that were not directly related to the SCC 

question they were answering. Consequently, these identified perception 

cognitive strategies can be regarded as unrelated to the aim of this paper, and 

were therefore not considered further.          
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5 COGNITIVE STRATEGIES IN SOURCE CODE COMPREHENSION   

During the SCC task, our expert programmers mostly relied on four cognitive 

processes to efficiently comprehend the provided source code: reflective 

cognition, attention, reading and memory. For each of these cognitive processes, 

the experts followed very specific strategies. In the sub-sections to follow, we first 

summarise these cognitive strategies and then extract the specific techniques that 

could be used by instructors as part of a mental scaffolding process while 

modelling efficient SCC strategies to their students.  

5.1 Reflective cognition 

The experts interviewed in this study often asked themselves guiding questions, 

as also suggested by literature [44, 45, 46]. These questions allowed them to form 

logical arguments to solve the given SCC problem. Furthermore, they did not seem 

to take for granted any information included as part of a problem. Instead, they 

used every single piece of information to formulate their logical and systematic 

arguments [51]. In this regard, it was important for them to not only figure out the 

meaning of each piece of code, but also how all the individual parts were linked 

together.  

Our expert programmers spent ample time to familiarise themselves with 

the task requirements by intensively reading (and even re-reading) the question. 

They clearly wanted to be sure that they fully comprehend the problem before 

attempting to solve it [47]. This ultimately enabled them to decide on the best 

strategies to use in tackling the given problem. Additionally, they also employed 

time-saving reasoning strategies such as ‘quick scan’ (reading through the code 

quickly just to get an overview) [53] and purposive elimination of identical code 

segments (see Section 4.1.3) in an attempt to reduce the time and effort they 

needed to solve a problem. However, their main focus was not to arrive at the 

answer as quickly as possible.  Instead, they patiently followed appropriate and 

robust strategies, as suggested by literature [37, 55], to exhaust all possibilities to 

verify and ensure the correctness of their final answer (see Section 4.1.4). In most 

cases, this was achieved by double-checking the logic they followed to arrive at an 

answer.  
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5.2 Attention  

In solving SCC problems, the experts who participated in this study were seen to 

be paying attention in the true sense. As a result, they were able to identify some 

aspects (e.g. similar lines of code, used data structures, etc.) that readily informed 

them on how to best tackle a given problem. In addition, these experts were 

observed to possess a skill that helped them to immediately switch to other 

strategies or alternatives [25] based on encountered information. This helped 

them to avoid getting stuck in certain areas of the source code or problem 

description. As a result, there were no signs of frustration, discomfort, and 

disorganisation [13] observed with our experts while solving the given SCC task.  

Similar to the findings of Busjahn et al. [19], our experts paid more 

attention to complex code statements and functional details than to other simple 

or superficial details. By focusing their attention, they were able to temporarily 

ignore non-vital details at opportune moments (as suggested by Preece et al. [21]). 

Moreover, cases of switching from one cognitive process to another were 

observed in our experts. A typical example was when one expert (P2) switched 

from attention to decision making (see Section 4.2). Switching attention (e.g. 

strategy, alternative or cognitive process) in general seemed to have been helpful 

to our experts throughout their SCC process.      

5.3 Reading    

In reading the given code comprehension scenarios, our experts made sure that 

they understood what they were reading by re-reading the text of such scenarios, 

even if they thought they understood it. It was interesting that the experts who 

could be considered the most experienced, made sure of this and even emphasised 

the importance of doing this. As reading or re-reading is observed through eye or 

pen or hand movements [41, 42], our experts even mentioned that they were re-

reading the details or some code fragments to confirm their initial understanding. 

They also interpreted and re-interpreted the various components of the scenario, 

implying that they did not automatically rely on their very first interpretations. 

This practice seems to have happened effortlessly with the experts, suggesting 

that their brains were already ‘wired’ or prepared for such practices. 
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5.4 Memory    

From the observations made (see excerpts in Section 4.4), our experts seemed to 

possess innate knowledge that they applied if they did not note or write things 

down [71]. Otherwise, they wrote down everything they believed necessary or 

might be required during the SCC process. This helped them to easily update 

current variable values as and when necessary without straining their memory 

[2]. Another strategy our experts used was to consider limited scenarios at a time 

(e.g. comparing a worst- and best-case scenario). By minimising the amount of 

details kept in their memory, they did not necessarily have to write things down 

as they did not overload their working memory. Our experts also indicated that 

they used strategies such as think-aloud to help them remember certain 

information. Of particular interest was the expert (P4) who indicated that think-

aloud was a fundamental technique he uses daily in almost everything he does 

(see Section 4.4).   

5.5 Mental scaffolding techniques for the modelling of 
efficient SCC 

As illustrated in the above discussions, we uncovered a number of cognitive 

processes and related strategies that were employed by our experts during the 

given SCC task. If these strategies are assumed as typical of the mental operations 

required to efficiently perform the discipline-specific task [8] of SCC, then these 

ways of thinking could point to crucial techniques that must be explicitly taught to 

students. The 17 identified techniques are presented in Table 1 with the related 

cognitive process(es) indicated for each. As indicated in Table 1, these techniques 

are all related to one or more of the reflective cognition processes (planning, 

cognitive reasoning and/or decision making) required for problem solving. 

Problem solving (as a vital element of efficient SCC) is one of the skills which are 

typically not taught to students explicitly, as instructors tend to concentrate more 

on core course content than on external aspects of the learning process [56]. Since 

so many CS students continue to struggle with SCC [1, 2], these are not techniques 

that should just be given to students to master on their own. Due to the complex 

cognitive nature of the SCC process [5, 6], we propose a more social context where 

these techniques (as presented in Table 1) are modelled to students as part of a  
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Table 1: Mental scaffolding techniques  

Mental scaffolding techniques for the modelling of efficient SCC 

Cognitive Processes 
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Read through the problem specification at least twice (or until you understand what you are asked to do).        
While reading through the specifications, mark/highlight important words.        
Do a quick scan of the provided source code. Mark important sections AND complex sections of code.        
For any complex sections of code, first make sure that you understand the meaning/working thereof BEFORE 
you continue to solve the problem.        

Identify any code segments that appear more than once (repeated code).        
Read through all the provided code at least twice to make sure that you understand everything.        
Write down any additional information that might be relevant in solving the problem.        
Identify at least two strategies you could follow to solve the problem.         
Compare the possible strategies and select ONE that you think will work best to solve the problem.         

Do not be afraid to adapt or change your strategy if it is not working.         

For questions with multiple answer options, first focus on evaluating options that seem ‘more correct’ at first 
glance. Leave the ‘possibly incorrect’ options for later (if none of the ‘more correct’ options turn out to be the 
correct answer).  

       

If you get stuck, consider the wider context in which the code or piece of information appears/is used.         

Define and use your own test case values (if not provided).        
While tracing through the code, keep track of changes in variable values on paper.        
Draw a diagram to visualise your understanding of the program logic.        
Think aloud while working on solving the problem (if possible).           
Once you have arrived at an answer, double-check your reasoning to confirm the correctness of your answer.        
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mental scaffolding process. By gradually removing the ‘scaffolds’, the learning process 

can move from full instructor-assisted modelling to a point where students have 

developed the necessary competence to perform techniques that were initially “beyond 

[their] unassisted efforts” [7, p. 90]. 

6 CONCLUSION AND FUTURE WORK 

In focusing on Step 2 of the DtDs framework, this study utilised decoding interviews to 

identify four categories of cognitive processes (attention; memory; reading, speaking and 

listening; and reflective cognition) and related strategies that are essential for efficient 

SCC. By regarding these strategies as typical of the basic cognitive operations required 

for efficient SCC, we were able to identify 17 crucial SCC techniques. Although the 

techniques may seem quite simple (in the eyes of expert programmers and expert 

programming instructors), it could be indicative of SCC ‘blind spots’ – those crucial 

mental operations that instructors take for granted and fail to share explicitly with their 

students. By creating awareness regarding all the mental processes required for efficient 

SCC, we hope to, firstly, make other CS experts and instructors more aware of their own 

potential SCC ‘blind spots’. Secondly, the uncovered SCC strategies highlight basic 

techniques that should be explicitly modelled to and practised by students in an attempt 

to help them overcome related SCC bottlenecks and better prepare them for SCC tasks. 

Thirdly, by using these techniques as part of a mental scaffolding process, instructors can 

gradually guide their students in mastering the basic mental operations needed for 

efficient SCC. The ultimate goal is to get students to perform tasks that were initially 

beyond their individual capacity [7], thereby mastering the core disciplinary skills of SCC. 

Decoding interviews is just one of numerous methods that can be utilised in Step 

2 of the DtDs process to systematically decode the disciplinary subconscious of experts 

[60]. All of the proposed methods are, however, aimed at revealing the explicit steps that 

an expert would follow when performing tasks related to an identified bottleneck [8]. In 

this study, the complex cognitive processes required to comprehend source code [6] have 

led us to instead focus (in the first part of the decoding interview) on exposing specific 

strategies that our experts would follow within these cognitive processes. The nature of 

the SCC process, however, allowed us to include an additional component in the second 

part of our decoding interviews. The addition of a think-aloud component provided us 
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with a unique opportunity to directly observe our experts’ actual execution of the exposed 

cognitive strategies during a real SCC task. This provided us with even more insight into 

the nature of the cognitive processes and related strategies required for efficient SCC. 

Knowledge of these general cognitive strategies (as presented in Table 1) could therefore 

serve as a pre-step for revealing the explicit steps followed by experts in comprehending 

source code in future research.    
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Chapter 6 – (Article 3)  

Narrowing the gap between expert and novice thinking: A 

step-by-step framework for efficient source code 

comprehension3 

 

Abstract. The Decoding the Disciplines (DtDs) philosophy is based on the premise 

that each discipline (including Computer Science) has its own unique set of mental 

operations. In many cases, these operations have become invisible to instructors as 

they tend to perform them automatically based on years of experience. If the nature of 

these operations is not made explicit to students, it is likely that they will develop 

learning ‘bottlenecks’ which could prevent them from mastering key disciplinary 

practices. One of the key bottlenecks identified in the CS discipline relates to students’ 

inability to reliably work their way through the long chain of reasoning necessary to 

comprehend source code. In an attempt to narrow the existing gap between expert 

and novice thinking in this regard, the study utilised decoding interviews with five 

expert programmers (who were also experienced instructors) to systematically 

deconstruct the explicit mental techniques and reasoning strategies necessary for 

efficient source code comprehension (SCC). Thematic analysis of the mental 

operations performed by these experts during an SCC activity, led to the identification 

of 11 key strategies. Knowledge of these strategies as well as the explicit mental 

operations were then used to devise a step-by-step framework for efficient SCC. The 

purpose of this framework is to create awareness among instructors regarding the 

explicit mental operations required for efficient SCC and to serve as source of further 

research and refinement. Moreover, within the realm of the DtDs philosophy, this 

framework could also serve as a starting point for devising explicit strategies to model 

these mental operations to students and to help them master each of the identified 

strategies. 

 

 
3 Publishable manuscript. 
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Keywords: Source code comprehension, expert programmers, decoding the 

disciplines, decoding interview, computer science education.    

1. Introduction  

Source code comprehension (SCC) is a term that is generally used to refer to the 

reading, interpreting, and understanding of existing source code (Lister et al., 2004; 

Lister, Simon, Thompson, Whalley & Prasad, 2006; Maalej, Tiarks, Roehm & Koschke, 

2014). Despite SCC being a critical disciplinary skill (Siegmund et al., 2012; Tiarks, 

2011), many Computer Science (CS) students are still unable to reliably think and 

work their way through a long chain of reasoning to efficiently comprehend a piece of 

source code (Khomokhoana & Nel, 2020; Lister et al., 2004). This student-learning 

bottleneck can be attributed to students’ fragile knowledge of basic programming 

concepts (de Raadt, 2007; Perkins & Martin, 1986). A bottleneck refers to specific 

places where the learning of a significant number of students gets interrupted (Diaz, 

Middendorf, Pace & Shopkow, 2008; Middendorf & Pace, 2004). This interruption 

happens when students are not sure how to approach a given problem, and as a result 

apply improper strategies (Pace, 2017).  

The severity of a bottleneck can be further intensified when instructors are 

unable to accurately portray disciplinary ways of thinking to students (Middendorf & 

Pace, 2004). This may occur due to instructors’ expert blind spots, which typically 

occur when vital operations have become so natural to disciplinary experts that they 

tend to omit crucial mental steps when explaining concepts and procedures to others 

(Nathan & Petrosino, 2003). Decoding the Disciplines (DtDs) is a process that focuses 

on increasing student learning “by bridging (sic) the gap between novice and expert 

thinking” (Middendorf & Shopkow, 2018, p. 12). The seven-step DtDs framework can 

be used to firstly expose the nature of such ‘hidden’ operations (linked to a specific 

bottleneck) and to create awareness among instructors regarding the steps or 

operations they typically omit when teaching their students. In subsequent steps of 

this framework, instructors are guided to devise ways of helping students master these 

operations and hence overcome specific learning bottlenecks (Middendorf & Pace, 

2004; Pace, 2017).   

Bottlenecks are typically identified in Step 1 of the DtDs framework, while Step 

2 focuses on exploring the detailed or explicit mental steps that experts in a given field 

would go through to accomplish the task(s) identified as a bottleneck (Middendorf & 
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Pace, 2004; Pace, 2017). In executing Step 2, several artefacts and/or techniques 

(such as decoding interviews, rubrics, metaphors/analogies, mind maps, reflective 

writing, and non-verbal modelling) can be used to uncover the explicit steps followed 

by experts (Middendorf & Pace, 2004; Middendorf & Shopkow, 2018). However, 

decoding interviews are cited as the most rigorous and effective technique in this 

regard (Pace, 2017). A decoding interview is a special type of interview where 

disciplinary experts (typically experienced instructors) are intellectually guided to 

reveal the explicit steps they follow in order to get through a predetermined learning 

bottleneck (Middendorf & Baer, 2019; Middendorf & Pace, 2004; Pace, 2017). As a 

first step in dealing with a previously defined discipline-specific learning bottleneck 

(novice programmers’ inability to reliably think and work their way through a long chain 

of reasoning to efficiently comprehend a piece of source code), the study described in 

this paper focuses on Step 2 of the DtDs framework. Consequently, this paper 

attempts to answer the following two questions: 

• What are the explicit mental strategies (techniques and reasoning) that CS 

experts employ while comprehending source code?   

• How can knowledge of these strategies be applied in the formulation of a step-

by-step framework that could ultimately contribute towards narrowing the gap 

between expert and novice thinking with regard to efficient SCC? 

The remainder of this paper is structured as follows: Section 2 presents an overview 

of previously identified SCC strategies that are relevant to the specific learning 

bottleneck under investigation. In the discussion of the research design and method 

in Section 3, detail is provided regarding the selection of the decoding-interview 

participants and interview panel. Special attention is also given to the validation steps 

that were included to enhance the validity of the identified SCC strategies and steps. 

In presenting the findings (Section 4), care is taken to link the identified strategies as 

closely as possible with existing knowledge regarding SCC strategies. Based on the 

findings, Section 5 presents a proposed step-by-step framework for efficient SCC. The 

conclusions, recommendations for future work, and contribution of this study are 

presented in Section 6. 
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2. Source Code Comprehension Strategies 

Literature defines various generic SCC strategies, namely top-down, bottom-up, and 

variations that either combine these two strategies or incorporate elements thereof 

(Littman, Pinto, Letovsky & Soloway, 1987; Pennington, 1987; Von Mayrhauser & 

Vans, 1995). Novice programmers and expert programmers have been shown to 

favour different strategies, with top-down mostly observed with novices (Mosemann & 

Wiedenbeck, 2001). Although the basic steps involved in each of these generic SCC 

strategies are well documented, more specific details are needed to truly understand 

the explicit mental operations or strategies required for efficient SCC. In previous 

studies, researchers used observations (Feigenspan, Siegmund & Fruth, 2011; 

Dunsmore & Roper, 2000; Siegmund, Kástner, Apel, Brechmann & Saake, 2013) and 

think-alouds (Anderson, Bachman, Perkins & Cohen, 1991) to gather more detailed 

information regarding the specific strategies employed during SCC.  

In a study that evaluated the ways in which students (as novice programmers) 

answered code-based multiple-choice questions, Fitzgerald, Simon and Thomas 

(2005) identified 19 strategies used by students (see Table 1). Although this list 

includes a number of good SCC strategies, as also identified by other researchers 

(Cunningham, Blanchard, Ericson & Guzdial, 2017; Lister et al., 2004; Moore, 

Zabrucky & Commander, 1997; Whalley, Prasad & Kumar, 2007), the novices did not 

always execute these strategies in an optimum way. However, the strategies identified 

by Fitzgerald et al. (2005) are much more specific than the generic SCC strategies 

alluded to above. Although students and experts do not necessarily follow the same 

SCC strategies, these strategies could serve as a starting point for identifying more 

explicit details regarding the exact mental operations required for effective SCC. 

In Fitzgerald et al.'s (2005) study, the novices used the first four strategies (see 

S1, S2, S3, and S4 in Table 1) to acquaint themselves with some elements of the 

code-based questions they were answering. This type of self-orientation is a typical 

strategy used by people to familiarise themselves with the elements of the problem to 

be tackled or question to be answered (Illeris, 2003). Simon, Lopez, Sutton and Clear 

(2009) emphasise the importance of reading programs or pieces of code in order to 

comprehend it. In this regard, Moore et al. (1997) even suggest reading through 

question specifications or a piece of source code twice (Moore, Zabrucky & 

Commander, 1997). To further enhance comprehension of a task, strategies such as 
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highlighting, underlining and colouring some words or text can also be used (Powell, 

Moore, Gray, Finlay & Reaney, 2004; Sarkar, 2015). These important words or pieces 

of text could be regarded as key for a programmer’s comprehension of either the 

problem description or the code in question. However, use of keywords is one SCC 

strategy that has not been observed with Fitzgerald et al.’s (2005) novices. 

 

Table 1: Strategies employed by novice programmers in answering code-based 

MCQs  

No. Strategy Explanation 

S1 Reading the question Previewing the question and looking for what is asked.   

S2 Previewing the code by 
identifying data structures 

Identifying where variables/constants/objects are first encountered (i.e. 
declared) in a program.  

S3 Previewing the code by 
identifying the initialisation 
of data structures 

Identifying where variables/constants/objects are assigned initial 
values in a program.  

S4 Previewing the code by 
identifying control 
structures 

Identifying branching or decision-making constructs (e.g. loops) which 
control the execution flow of the program.  

S5 Understanding new 
concepts (semantic) 

Understanding something new by relating prior understood knowledge 
to less understood knowledge or by using an example. 

S6 Pattern recognition: 
Temporally self-referential 

Syntactically recognising that this looks like something from another 
question in this test; multiple-choice distractors. 

S7 Pattern recognition: Outside 
knowledge 

Syntactically recognising something familiar from outside knowledge. 

S8 Pattern recognition: 
Seeking higher levels of 
meaning from the code 

What the code really does at a higher semantic level. 

S9 Walkthroughs Tracing, testing boundary or error conditions. 

S10 Strategising Asking questions like ‘How would I write the code?’ or ‘What would I 
need to do?’ 

S11 Grouping Looking for similarities and differences in the answers and selecting 
more than one answer at once (for possible elimination or inclusion). 

S12 Differentiation Noticing differences between answers or lines of code or choices. 

S13 Elimination Ruling out specific choices. 

S14 Guessing Guessing an answer from the provided options.    

S15 Thoroughness After selecting an answer, verifying the correctness thereof. Could also 
include verification of the incorrectness of other answer options.   

S16 Starting over Getting lost or recognising an error and simply starting again. 

S17 Coming back to the 
question later 

Going on to another part of the test without completing this problem. 

S18 Posing questions Asking explicit questions regarding specific pieces of code that could 
impact on the process leading to the correct answer (e.g. ‘Is this the 
end of a loop?’). 

S19 Doodling Making drawings, sketches or annotations on a piece of paper. 

[Source: Adapted from (Fitzgerald et al., 2005, p. 73)] 
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Littman, Pinto, Letovsky and Soloway (1987) observe that programmers use either 

systematic (line-by-line) source code reading or control/data-flow abstractions to 

better comprehend the behaviour of a given program or piece of code. For novice 

programmers to fully comprehend code behaviour, they need to have a global 

understanding of the piece of source code in question. Global understanding entails 

gaining an overall understanding of the problem to be solved or question to be 

answered before trying to understand the minute details of the task. This 

understanding already starts to develop in the early ‘previewing’ SCC strategies (e.g. 

S2 – previewing the code by identifying data structures) suggested by Fitzgerald et al. 

(2005). Comprehension can also be enhanced through pattern recognition where 

similar or related code elements are classified into categories (Kpalma & Ronsin, 

2007). In answering code-based questions, patterns can be identified in terms of both 

syntax and semantics (Fitzgerald et al., 2005).    

Similar to solving many real-world problems, the solving of SCC problems also 

requires the application of logical reasoning processes (Butler & Morgan, 2007). In 

SCC problems, test cases can, for example, be used to check the logic of both basic 

and advanced conditions (Srikant & Aggarwal, 2014). To evaluate these test cases, a 

programmer will typically conduct a walkthrough of the given source code (see S9 in 

Table 1). Other ways in which programmers can apply logical reasoning, is by 

strategising (S10) about how they would solve the given problem if they had to write 

the code from scratch or by asking themselves specific questions (e.g. S18 – Posing 

questions) that could help with their comprehension of a given piece of code. 

Examples of such questions include: What should I do? What alternative courses of 

action do I have available? Which alternative courses of action should I select to use? 

Why should I use these alternative courses of action? What are the consequences of 

using these alternatives? (Eisenführ, Weber & Langer, 2010; Herrmann, 2017; 

Uzonwanne, 2016).   

Strategies such as grouping (S11), differentiation (S12), elimination (S13), and 

guessing (S14) are typically associated with the answering of MCQs, because there 

are multiple answer options to choose from (Complete Test Preparation Inc., 2014). 

On the other hand, the thoroughness strategy (S15), where an answer is re-checked 

to confirm the correctness thereof, can be applied to any type of question. Frederick 

(2005, p. 35) states that people should have “the ability or disposition to resist reporting 

the response that first comes to mind” – thereby suggesting that, regardless of the 
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type of question, an answer to a question should always be evaluated to confirm the 

correctness thereof.  

Given the relative simplicity of the code-based questions used in Fitzgerald et 

al.'s (2005) study, the starting over (S16) and coming back to the question later (S17) 

strategies could be regarded as typical novice strategies that one would not 

necessarily expect to observe with expert programmers (unless the complexity of the 

questions was really high). 

The doodling strategy (S19) was identified by Lister et al. (2004) as a strategy 

typically used by programming experts to better comprehend source code. In various 

other studies, it has been found that students who make annotations or sketches 

during SCC were more successful than those who did not (Cunningham et al., 2017; 

Fitzgerald et al., 2005). However, in Xie et al.'s (2018) study, some of the participants 

specifically mentioned that they did not use doodles because they found it time-

consuming and unnecessary.  

From this discussion, it is evident that although there are various SCC 

strategies that have previously been identified, some of these strategies seem to be 

more novice-specific. The format in which the SCC question is presented could also 

impact the choice of comprehension strategies used by the programmer. As such, it 

is possible that not all of the strategies discussed here would necessarily result in 

efficient SCC. The next section presents the research design and procedure that was 

followed to identify strategies that expert programmers follow while comprehending 

source code.  

3. Research Design and Method    

A narrative research approach based on Plowright's (2011) Frameworks for an 

Integrated Methodology (FraIM) was adhered to in this study. The data source 

management strategy was a case study. Data was mainly collected through face-to-

face decoding interviews (Middendorf & Pace, 2004) (as a means of ‘asking 

questions’), while observations were used as a supplementary strategy. The study 

population consisted of CS instructors from a selected South African university. From 

this population, five instructors were purposefully selected (Cooper & Schindler, 2013) 

based on their experience in teaching programming courses. This sample can also be 

regarded as convenient (Patton, 2015), since the selected participants were in close 

proximity to the researcher and therefore easily reachable. Ethical clearance for this 
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study was obtained from the selected institution and all ethical considerations were 

adhered to throughout the study investigations. 

 

3.1. Decoding interviews 

Decoding interviews are typically regarded as intellectually very demanding 

(Middendorf & Pace, 2004), where a single interviewer can easily get lost in the details. 

Pace (2017) therefore recommends that this type of interview be conducted by at least 

two interviewers, as two minds will be in a better position to control the interview 

process. Both interviewers should be able to verbalise their thinking, challenge 

interviewees’ explanations, and summarise the interviewees’ thinking back to them at 

an abstract level (Shopkow, Middendorf & Pace, 2013). As members of the same 

discipline are more likely to share common expert blind spots, Pace (2017) also 

suggests using a second interviewer from outside the discipline in question. Such an 

interviewer will be more likely to notice when mental steps are not well explained. 

Since we were unable to find a readily available individual with the relevant decoding-

interview experience from outside the CS discipline, we instead selected a non-

teaching CS researcher who had some decoding-interview experience as the second 

interviewer. The decision was also influenced by the context of this research activity. 

Given the highly discipline-specific nature of SCC, someone from outside the 

discipline might not necessarily be able to follow the reasoning of the interviewees and 

could find it difficult to instantly think of appropriate and relevant probing questions to 

ask.  

Separate decoding interviews were conducted with each of the five selected 

participants. The principal researcher (the first author) acted as the main interviewer, 

while the second interviewer (as described above) played a supporting role. The 

proceedings of each interview were audio recorded with permission of the participant. 

Where relevant, observations were also recorded by the principal researcher. The 

main purpose of the decoding interviews was to uncover the explicit mental strategies 

and steps followed by participants during an SCC task. In the first part of the decoding 

interview, each participant was asked to explain the steps they would follow when 

requested to predict the output of any piece of source code provided on a piece of 

paper. The participants’ responses to this general question allowed the interviewers a 

first glance at some of the basic SCC strategies utilised by expert programmers.  
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In order to uncover more explicit details regarding the nature of the shared strategies, 

it was necessary to present the participants with a real SCC task. In the second part 

of the interview, each participant was therefore presented with a real SCC problem 

and asked to illustrate how they would implement their SCC strategy (as explained in 

the first part of the interview) to solve the given problem. The question selected for this 

activity was sourced from the original set of 12 MCQs used in Lister et al.'s (2004) 

study. The selected question (Question 6 – see Figure 1) was identified as the second 

most challenging question in the Lister et al. (2004) study. This question was 

particularly selected as it covers a wider range of concepts (e.g. Boolean variables, 

for loops, array indices, and use of return to terminate the for loop) than the most 

challenging question (Question 12, which mainly focuses on arrays). In answering the 

selected question, the missing piece of code had to be identified from the five given 

options. (Note: The correct answer is Option B). The only change made to the question 

was to convert the original Java code into C# (which was the language mainly used 

by participants in their teaching). The code line numbers as indicated in Figure 1 were 

only added in aid of the discussion that follows in Section 4. 

 

3.2. Data analysis   

An adapted version of Creswell and Creswell's (2017) narrative Data Analysis 

Framework guided the transcription of the audio recordings (made during the decoding 

interviews), as well as the analysis of the resultant narrative data. Considering the 

open-endedness of the decoding-interview proceedings, a fuzzy-validation strategy 

(Parcell & Rafferty, 2017) was employed to clean the data. This strategy allows some 

corrections to the data if there is a close match or known answer. The resulting 

transcripts were validated by each participant as part of member checking (Lincoln & 

Guba, 1985). Inherently, it is well-accepted that in dealing with narrative inquiries, the 

researcher is regarded as the instrument (Patton, 2015). As such, we had to immerse 

ourselves in the data to be fully familiar with its breadth and depth (Braun & Clarke, 

2006). This was achieved through several counts of listening and re-listening to the 

audio recordings, coupled with intensive reading and re-reading of the transcripts.  

After immersing ourselves in the data, we were able to decide on a coding plan 

that would help with the analysis of the data in order to address the research 

questions. The five validated transcripts were imported into NVivo 12 and codes were 

created based on the strategies identified in the data. Subsequently, words and/or 
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short phrases (Saldaña, 2016) containing indications of the relevant strategies or 

steps were extracted (under the guidance of the theoretical guidelines from literature) 

from the imported transcripts onto the various nodes (forming codes) created on 

NVivo. As coding gives rise to recurring themes (Saldaña, 2016), the extraction and 

movement of the relevant text gave birth to such themes. For each theme, NVivo 

generated the frequency of occurrence, hence making it easier to put the data back 

together to make new meaning in relation to fully answering the research questions of 

the study (Lewins & Silver, 2007).     

 

 

Figure 1: Code tracing question used in decoding interview  
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3.3. Validation   

After completion of the data analysis, an initial step-by-step framework for efficient 

SCC was compiled. In order to enhance the validity of the framework, we deemed it 

necessary to have this framework evaluated and validated by an informed audience. 

The validation was deemed necessary to enhance the trustworthiness (Schwandt, 

Lincoln & Guba, 2007; Guba, 1981) of this study’s research findings. In this regard, 

two separate validation activities were conducted. First, the second decoding 

interviewer reviewed the initial framework to confirm that the identified strategies and 

steps were a true representation of the data gathered during the decoding interview; 

and to check all the statements for clarity and ambiguity. Second, a validation meeting 

was arranged with five participants (one junior lecturer, a postdoctoral student, and 

three professors) from the CS department. One of the professors earlier participated 

in the decoding interviews (as described in Section 3.2). The purpose of this meeting 

was to further check for possible ambiguities in the proposed steps/strategies. In order 

to validate the implementability and usefulness of the framework, participants were 

requested to follow the framework steps (as closely as possible) while answering two 

SCC questions. After an explanation of the framework, participants worked on solving 

the first problem under the guidance of the principal researcher. For the second 

question, each participant independently followed the framework steps to answer the 

question. This was followed by an open discussion where participants shared their 

experiences in using the framework to answer the two questions. Some issues 

regarding the wording of some of the steps came to light and recommendations for 

possible changes and additions were discussed. Based on the feedback received 

during this validation meeting, a few minor changes were made to the initial 

framework. The resulting, final framework is presented in Section 5. 

4. Findings and Interpretation    

Based on the analysis of the decoding-interview transcripts, 11 key SCC strategies 

(techniques or reasoning) were observed with our experts. In the following sub-

sections, each of these strategies is presented together with evidence of its 

occurrence.  
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4.1. Self-orientation  

During self-orientation, programmers typically read the question and perform a lot of 

code previewing on related aspects as suggested by Fitzgerald et al. (2005). 

Application of this strategy was identified in all our participants, with a total of 18 

occurrences. Participant 4 (P4) employed the strategy the most, with eight 

occurrences.  

As part of his self-orientation, P4 shared very specific details about how he 

typically starts to comprehend a piece of source code and provided reasons for his 

actions. Linking to the importance of reading the question description and code 

statement (Fitzgerald et al., 2005; Simon et al., 2009), P4 also provided some insight 

regarding the reading intensity he would employ in the process: 

“Whenever I read code, I browse through it very quickly, not looking at detail. I 

try to get the basic idea and then I browse through it again. So, I do not read 

once from top to bottom and then I am done – never! I read through a piece of 

code more than once – three, four, five times ... some of the details will go slow, 

some of them will be quick depending on my familiarity with that specific code 

fragment. ... I will go and look at it globally. Again, I will make sure that my 

conceptual understanding of what it is supposed to be, is in order.” 

From this excerpt, it is apparent that P4 read the source code more than once [i.e. 

reread – (Moore, Zabrucky & Commander, 1997)] to ensure that he attained the 

correct understanding. Expert programmers tend to read the code at least twice (even 

if they understood it at first) just to confirm their original understanding (Simon, Lopez, 

Sutton & Clear 2009). To confirm the importance of rereading code, P4 was asked if 

he ever reads a piece of code just once, even if it is very simple. In response, he said: 

“No, it depends on the length. If it is two lines of code, yes, then I might read it more 

than once by looking at it once. I mean, your brain can cognitively observe a thing 

more than once, while visually looking at it once.” This response from P4 could serve 

as an indication that experts understand that there is some coordination between 

seeing something and processing it in the brain, as reading is cognitive in nature 

(O’Brien & Buckley, 2001).  

 P4 further pointed out that the self-orientation process may not necessarily be 

a smooth one, as there might be instances where the process would have to go a bit 

slower (e.g. if he is being challenged to understand some components of the code or 

problem). As sequential code reading is common with novice programmers (Letovsky, 
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1987), it is important to note that P4 would only resort to sequential code reading if 

there were compelling circumstances. Otherwise, he would apply high-level strategies 

such as global reasoning and conceptual understanding, as suggested by Fitzgerald 

et al. (2005).   

  

4.2. Keyword identification 

A keyword is a word or concept that provides preliminary ideas on the significance of 

such words/concepts in the task to be tackled, hence pre-empting a person to 

remember it throughout the task. As indicated by Powell et al. (2004), there are 

different ways that can be used to identify keywords while comprehending source 

code. Two occurrences of using keywords were identified in two of the participants. In 

this regard, P2 said: “What will catch my attention are the keywords. If I have syntax 

highlighting, it is obviously a lot easier to identify the keywords.” This suggests that 

while using an integrated development environment (IDE) such as Visual Studio that 

provides this colour functionality, P2 would take the advantage of the built-in syntax 

highlighting (Sarkar, 2015) to identify important words in the code. 

Another participant, P4, took advantage of the keywords contained in the 

problem specifications by earmarking them as his main focus. He explicitly indicated 

that the other words were just there to link all the ideas together: “The first thing to do 

is to make sure that I understand the question. You have helped me a bit by boldfacing 

some words. So, I will read the question, focusing only on the boldfaced words. Then 

I will read it again, and I will boldface in my mind some other words such as array, 

method, and sorted. So, these are the words that immediately come to mind. The other 

words glue everything together.” In this regard, it should be noted that, in the question 

presented to participants (see Figure 1), words that referred to specific coding 

concepts were formatted in a different type face – merely to distinguish it from the 

normal sentence text. P4 took advantage of our formatting strategy by using these 

words to mentally prepare himself for his SCC endeavour and to enhance his 

understanding of what was required of him in answering the question. 

 

4.3. Data structure identification 

The identification of data structures entails locating the place where a 

variable/constant or an object is first encountered (i.e. declared), and identifying the 

value originally assigned to it (i.e. instantiation or initialisation). The identification 
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occurs mostly during the previewing strategies identified by Fitzgerald et al. (2005). If 

a data structure is unfamiliar to a programmer, they could resort to using the 

understanding new concept (semantic) strategy, thereby suggesting that S2, S3, and 

S5 may be usable in the identification of data structures. Four occurrences of this 

strategy were identified in the participants of this study. P3 employed the strategy the 

most, with three occurrences. P2 indicated that, although she would do it faster than 

students might do it (as a result of experience gathered over many years), she would 

still identify the data structures involved in a given piece of code. This is a very valid 

statement, since identifying and understanding data structures is a challenge often 

experienced by novice programmers (Goldman et al., 2008; Jimoyiannis, 2011; 

Litvinov et al., 2017; Ma, Ferguson, Roper & Wood, 2011; Izu, Weerasinghe & Pope, 

2016). In this regard, P2 said: “I do not have to look line-by-line and explain to myself 

what is happening. I can follow it much quicker than a student might. So, there might 

be things that I skip, but I would still look at the variables.” P2’s revelation that she 

would skip some steps, could point to an expert blind spot – causing her not to share 

the exact same steps she would personally follow while teaching her students. This 

action could have a negative impact on the SCC understanding of her students 

(Ambrose, Bridges, DiPietro, Lovett & Norman, 2010).  

  

4.4. Deduction of meaning from context     

Deduction of meaning from context entails understanding the meaning of certain 

challenging concepts from reading associated statements or pieces of text. This could 

form part of Fitzgerald et al.'s (2005) understanding new concepts (semantic) (S5) 

strategy. In order to deduce meaning from the problem context, expert programmers 

follow various courses of action. Three of the participants in this study (by means of 

four occurrences) shared what they would do if they came across difficult or 

challenging concepts. P4 employed this strategy the most, with two occurrences. He 

shared the following in this regard: “So I carry on, and the context of the global view 

might clarify that little piece that I do not understand. It happens quite often that if I 

understand something globally, it will lead me to the details that I do not understand, 

and it becomes easier. It is all a matter of context. It is easier to understand difficult 

parts if I have the context to which they belong.” It therefore becomes evident that 

failing to understand how a specific concept is used does not necessarily block the 

understanding of experts in terms of how that concept works. As established by 
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Fitzgerald et al. (2005) and observed with P4, experts do not have a problem to 

proceed with subsequent steps, because they believe that such steps may give them 

some idea(s) that could help to improve their understanding of difficult or unclear 

concepts.  

 

4.5. Strategic thinking  

Strategic thinking involves the use of high-level and critical thinking as well as logical 

reasoning in both understanding and solving a problem, thereby approaching this 

problem from a variety of angles or differing perspectives (Grundy, 2014). Activities 

performed as part of the strategising (S10) and posing questions (S18) strategies, as 

suggested by Fitzgerald et al. (2005), require high-level reasoning (Lister et al., 2004). 

These strategies therefore challenge programmers to tap into their strategic skills. 

Fifteen occurrences were identified where this strategy was used. P4 employed the 

strategy the most, with seven occurrences. It is impossible not to use logical/strategic 

reasoning processes in problem solving (Butler & Morgan, 2007). P4 used an example 

of a repetition structure to explain his reasoning while dealing with such a structure: “If 

I read code, let us say there is a while loop. The first things I look for are: Are the 

three elements there? (Do not look at the code, look if those three elements are there.) 

Is there a condition? Is the condition initialised? Is there a place somewhere in the 

loop where the conditions will be changed? If those three elements are not there, the 

while is not going to work.” As can be seen from this excerpt, P4’s strategic reasoning 

allowed him to understand that it would be useless to read the code further if the 

conditions under which such a repetition structure would operate are not met. 

 

4.6. Walkthroughs 

Walkthroughs are defined as “simply reading the code carefully in the order it would 

be executed (except for branch points, where all branches are considered serially), to 

careful simulation, where the [programmer] attempts to mimic as closely as possible 

the actions of the [computer/compiler] that executes the code” (Jeffries, 1982, p. 12). 

Sixteen occurrences of this strategy were identified. P4 employed walkthroughs the 

most, with seven occurrences.  

There were several instances where participants modelled this strategy through 

their mental actions, as suggested by Hertz and Jump (2013). P2 in particular, said: “I 

will do a trace table. And I will draw and say, this is where I am tracing the code. I will 
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carry on in another trace table. If I have the code on a piece of paper, I will actually go 

and write – in line 1, this is what is happening, and this is my variable. In line 2, this 

is what is happening. In line 3, we are making a function call to that method. And then 

I will jump to that method and associate it with lines and actually write out a picture of 

what is happening.” In this instance, P2 was observed physically drawing a trace table 

and putting in arbitrary labels for the respective input and output values of variables. 

She was actually trying to make her SCC steps or processes as visible as possible 

(Chou & Sun, 2013) and also modelling what was happening in her mind (Hertz & 

Jump, 2013).  

With regard to situations where the use of test cases might not be specifically 

feasible, other participants indicated that they would not use test cases as suggested 

by Srikant and Aggarwal (2014), because it would be time-consuming to consider all 

cases available in each scenario. In this regard, P2 said: “Let us say I have an array 

of 100 elements, I am not going to sit in class and draw 100 things on my trace table, 

so I will do a few.” However, P2 would be careful in selecting a limited set of test cases 

that would at least cover the “worst, average and best cases”, thereby accommodating 

for ‘testing boundary or error conditions’ as specified by Fitzgerald et al. (2005). 

 

4.7. Revisit previous stages 

In executing the revisit previous stages strategy, a programmer moves back and forth 

between different parts of the question (problem specification and/or code). This 

strategy is typically performed to ensure complete understanding of concepts and to 

integrate the various aspects contained in the question to be answered and/or problem 

to be solved. Five occurrences of this strategy were identified among the participants 

in this study. P3 employed the strategy the most, with three occurrences.   

As an indication that P2 would check previous occurrences of a certain variable 

if a need arises, she said: “And you can always refer back if you forget that there was 

this variable.” Similarly, P3 said: “If it is something I cannot fit into my working memory 

and reliably remember what happened earlier in the program, I have to continually 

refer back to the previous part of the program just to familiarise myself again.” It can 

be deduced from P3’s excerpt that this strategy is not applied all the time. Instead, 

participants (as experts) employ the notion of the capacity of the working memory 

(Miller, 1956), to say there is no need to revisit the previous stages if the information 

needed can be recalled from the working memory.    
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4.8. Doodling 

Doodles or annotations refer to the making of some drawings, sketches or writings 

(i.e. of some variable values) while solving a problem. These ‘ideas’ can then easily 

be referenced when deemed necessary (Lister et al., 2004). The use of doodles has 

also been confirmed as a valuable strategy in correctly solving SCC problems 

(Cunningham et al., 2017; Fitzgerald et al., 2005; Lister et al., 2004). Interpreting 

doodles can also help to reveal the programmer’s thinking patterns while solving a 

problem (Hertz & Jump, 2013). In this study, the use of annotations or doodles was 

only observed in one participant (P2). In addition to the trace table she drew (see 

Section 4.6), there was another observed occurrence of doodling where she just wrote 

‘worst’, ‘best’ and, ‘avg’ and circled them. This indicated that she was thinking of the 

three test cases she could use to confirm her answer. Due to an oversight by the 

interview panel, these artefacts were not retained for further analysis. 

 

4.9. Thoroughness 

The thoroughness strategy is characterised by the careful examination of the attained 

solution to a problem in order to confirm the correctness of the solution (or answer) 

(Fitzgerald et al., 2005). Three occurrences of this strategy were observed with P2. 

While trying to find the correct answer, she tentatively identified option B as the correct 

answer: “So, I will mark B as a possible solution. Because at the moment, without 

going really in depth and using a test case, it looks to me like it will work.” What is of 

importance here is that she did not stop there. Instead, she continued and said: “So I 

will just go to B and I will check it again.” In this way, she resisted presenting the 

answer she first arrived at as her final answer (Frederick, 2005). 

 

4.10. Pattern recognition 

During pattern recognition, similar or related code elements are identified and 

consequently thought of and treated collectively (Kpalma & Ronsi, 2007). Two 

occurrences of pattern recognition were observed in P5. While studying answer option 

A (see Figure 1), he was observed thoroughly checking Line 8, but when he got to 

Line 16, he just hovered his pen over that line. As a result of this observation, the 

second interviewer posed the following question to him: “Did you use the pattern from 

option A and apply it to option B?” In response, P5 said: “Yes, I did not have to check 

whether this condition makes sense again.” During SCC, both syntactical and 
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semantical patterns can be valuable in helping programmers make decisions that 

could help them arrive at the desired comprehension or answer to a code-related 

question. Ideas about these patterns could come from the programmers’ prior 

knowledge or their previous interactions with code syntax and semantics (Fitzgerald 

et al., 2005). 

 

4.11. Group answer options 

The grouping (S11), differentiation (S12) and elimination (S13) strategies are often 

used together during SCC (Fitzgerald et al., 2005). In following these strategies, 

programmers ultimately aim to either eliminate answer options or identify answer 

options to focus on first. Instances of all three these strategies were identified among 

the expert programmers in this study. Given the close relation between these 

strategies, they are categorised under one main strategy – group answer options.  

 

4.11.1. Grouping 

When applying a grouping strategy during SCC, a programmer specifically tries to 

identify similarities and differences in the provided answer options in order to form 

answer groups. This is done with the objective of either including or excluding entire 

groups of answer options as possible answers (Fitzgerald et al., 2005). Two 

occurrences of grouping were observed in this study. While solving the given SCC 

problem, P1 was observed checking lines 5, 14, 20, 27 and 34 (see Figure 1) and was 

consequently asked what he was doing. He explained that in answer options A, C, and 

D, the boolean variable b was declared before the for loop, while it was not declared 

before the for loop in options B and E. In doing so, he was trying to establish which 

group of answer options he should focus on first (as a time-saving strategy). Although 

the actions of P1 could also be regarded as pattern recognition (see Section 4.10), the 

reason he provided for the grouping led to this action being classified as an example 

of using a ‘grouping’ strategy. This also corresponds with Fitzgerald et al.’s (2005) 

explanation of the grouping strategy. 

 

4.11.2. Differentiation 

When applying the differentiation strategy, a programmer explicitly looks for the 

differences between the given alternatives or lines of code (Fitzgerald et al., 2005). 

There were 15 occurrences of this strategy identified in all the participants. P1 
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employed the strategy the most, with seven occurrences. He specifically said: “What 

I am also trying to do is to find out what the differences are in the five options.” 

Understanding these differences helped him to decide which alternative answers to 

pursue further (i.e. possibly correct) and which ones to discard (i.e. possibly incorrect) 

immediately.    

 

4.11.3. Elimination 

In the elimination strategy, a person uses some criterion to judge specific alternatives 

as undesirable (Fitzgerald et al., 2005). A total of 16 occurrences of this strategy were 

observed in all the participants. P1 employed this strategy the most, with seven 

occurrences. Using the term ‘discard’ for elimination, P5 said: “But I can immediately 

discard this option [Option A], being inefficient … let us see if I can just take a global 

approach and see one of them that I can immediately discard.” As can be seen from 

the excerpt, P5 wanted to group efficient and inefficient alternative answers so that he 

could start by eliminating the inefficient ones first. 

  

5. Framework for Efficient Source Code Comprehension 

By using the strategies identified in Section 4, as well as insights gained from 

observing the explicit SCC strategies followed by the expert participants during the 

decoding interviews, a step-by-step framework for efficient SCC (see Table 2) was 

formulated. This framework contains 10 key steps linked to each of the relevant mental 

strategies (techniques and reasoning strategies) used by the experts in executing 

each of these steps (as discussed in Section 4). However, within some of the main 

steps, there are several sub-steps that can be performed. In using this framework, it 

is recommended that users put a tick mark (✓) against each step/sub-step they use, 

and a cross mark () against any step/sub-step they do not use. The additional 

resource(s) mentioned in Step 1 could include official study material, resources from 

the Internet, or an expert (e.g. instructor, tutor, student assistant). It is also suggested 

that users of this framework should be encouraged to revisit previous steps whenever 

they get stuck.    
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Table 2: Proposed step-by step framework for efficient SCC  

 

 

 Step-by-step framework for answering a source code comprehension question 

Strategies Applied Steps Description 

• Self-orientation 

• Keyword identification 

• Strategic thinking  

• Revisit previous stages 

• Doodling 

1 Read through the question statement/requirements at least twice (until you understand what you have to do). 

• Highlight/mark important words and/or phrases and make sure you understand their meaning or implication. 

• If there are any words and/or phrases that you do not understand, consult any additional resource(s)* for clarification. 

• If I were to write the code to solve the problem, how would I do it? 

• Self-orientation 

• Revisit previous stages 

2 Preview all the given code by scanning through it at least twice (to get a global overview).  

• Do not look at detailed syntax. 

• Self-orientation 

• Data structure identification  

• Strategic thinking  

• Walkthroughs 

• Doodling 

• Pattern recognition 

3 Scan through the code line-by-line. 

• Identify all the data structures. 

• Identify all the control structures (e.g. Sequence, Iteration, Selection). 

• Identify any methods/functions/properties. 

• Make sure that you understand the syntax and meaning (e.g. semantics) of each individual code fragment/statement. 

• Mark any code syntax and/or code fragments/statements that you do not understand. 

• Mark code fragments/statements that are similar or repeated. 

• Self-orientation 4  If there is code syntax that you do not understand, consult any additional resource(s) for clarification.  

• Deduction of meaning from 
context 

5 If there are still code fragments/statements that you do not understand, consider the context in which the fragment/statement is 
used. (Note: A more global view of the context in which the code fragment/statement is used might help to clarify your 
misunderstanding).   

• Self-orientation 

• Strategic thinking 

• Revisit previous stages 

• Doodling 

6  Scan through all the code again (as many times as necessary) to make sure that you fully understand how everything fits together. 

• Repeat Step 3, Step 4 and/or Step 5 if necessary. 

• Draw a diagram to visualise your understanding of the program logic (if applicable). 
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 Step-by-step framework for answering a source code comprehension question (continued) 

Strategies Applied Steps Description 

• Strategic thinking  

• Group answer options 

• Pattern recognition 

 

7 If the question requires you to select the correct code fragment/statement(s) from multiple options: 

• Identify the option(s) that look(s) more correct. (Consider these first in Step 8). 

• Identify options that could possibly be incorrect. (Only consider these ‘possibly incorrect’  

options if none of the ‘more correct’ options turn out to be a valid/correct answer). 

• Explain to yourself why you think some option(s) could be more correct than others. 

• Self-orientation 

• Strategic thinking  

• Walkthroughs  

• Doodling 

8 Trace through the code by executing (from the top) each line according to the rules of the programming language.  

• Whenever a new variable/constant/object is created, write down its name and the initial value(s) (if applicable) on a piece 
of paper. (Suggestion: Start a trace table).  

• Record any changes to the value(s) of the variables/objects on your piece of paper.  

• Make any applicable drawings, notes or annotations that could help you keep track of or follow the program logic. (Do not 
try to keep it all in your head!) 

• Strategic thinking  

• Revisit previous stages  

9 Write down your answer. 

• If it is not a valid answer, repeat Step 8 using one of the other answer options. 

• Strategic thinking  

• Walkthroughs 

• Revisit previous stages 

• Thoroughness 

10 Repeat Step 8 to confirm the correctness of your final answer. 

• Use your own test case values (if not provided). 
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6. Conclusion 

The gap that exists between the ways in which novice and expert programmers 

comprehend source code continues to be a challenge. Better understanding of those 

mental operations that have become invisible to instructors (because they perform it 

automatically), could be valuable in narrowing this gap. This can be achieved by 

uncovering the explicit nature of the mental techniques and reasoning strategies 

followed by experts during SCC. By focusing on Step 2 of the DtDs framework, this 

study utilised decoding interviews to systematically deconstruct mental operations 

performed by expert programmers while comprehending a piece of source code. 

Thematic analysis of the data collected during the decoding interviews revealed 11 

key strategies that expert programmers typically employ during SCC. What also 

became apparent, is that experts each approach SCC differently. At any stage during 

the SCC process, the experts’ prior knowledge or experience can trigger them to use 

specific strategies. The experts also find it easy to switch to a completely different 

strategy based on what they are currently thinking, as well as information or details 

that they are encountering.  

The SCC techniques and reasoning strategies identified in this study, in 

combination with existing knowledge (from literature and based on the authors’ own 

experience), were used to develop a step-by-step framework for efficient SCC. The 

main purpose of this framework is to create awareness among instructors regarding 

the explicit mental operations required for efficient SCC. Knowledge of the nature of 

these mental operations could firstly help instructors to better understand their own 

expert blind spots. Moreover, as a practical contribution within the realm of the DtDs 

philosophy (Middendorf & Pace, 2004), this framework could also serve as a starting 

point for devising explicit strategies to model these mental operations to students and 

to help them master each of the identified strategies. It is also believed that the 

proposed framework has the potential to make a theoretical contribution to the field of 

CS education as a source of further research on efficient SCC strategies. This 

framework could also stimulate further research regarding the application and 

refinement of the framework itself. 

The distinct decoding-interview approach followed in this study – where experts 

were observed and questioned (regarding their mental actions) while performing an 

actual discipline-specific task – could be regarded as an extension of the traditional 
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decoding-interview approach. In disciplines where it is possible to observe actual tasks 

in real time, a similar decoding-interview strategy could be used to uncover even more 

explicit details regarding the mental operations required to overcome discipline-

specific student learning bottlenecks. This study also serves as further proof that the 

DtDs paradigm – as a scientific way of thinking and learning that is gaining popularity 

worldwide – can be used in the investigation of classroom practices as suggested by 

Middendorf and Pace (2004). Consequently, such a research approach should hold 

particular appeal for instructors working in the Science, Technology, Engineering and 

Mathematics (STEM) education fields.  
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Chapter 7 – Conclusions and Recommendations 

 

7.1 Introduction 

Building on the reality that SCC is a vital disciplinary skill that many higher education 

students continue to struggle with, this study was set out to explore how a systematic 

decoding approach can be used to uncover cognitive strategies for efficient SCC by 

novice programmers. In order to address the stated aim, this study was directed by 

two main research questions: 

RQ1: What are the SCC challenges experienced by novice programmers? 

RQ2: How can a systematic decoding approach be used to devise cognitive 

strategies that could be used to address these challenges? 

In order to address these main research questions, the following nine subsidiary 

research questions were formulated: 

• Subsidiary research questions – (guiding the literature review) 

SRQ1: What are the strategies that programmers (novices and experts) follow 

during the SCC process?  

SRQ2:  What are the challenges that influence the development of novice 

programmers’ SCC skills? 

SRQ3:  How do cognitive and metacognitive practices influence SCC?   

• Subsidiary research questions – (directing the empirical investigations) 

SRQ4 (a):  What are the major SCC difficulties experienced by senior CS 

students?  

SRQ4 (b):  How can these difficulties be used to identify more common SCC 

bottlenecks that should ideally already be addressed in introductory 

programming courses?  

SRQ5 (a):  What are the cognitive processes and related cognitive strategies 

employed by expert programmers during SCC? 
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SRQ5 (b):  What does insight into these cognitive process strategies suggest 

in terms of mental scaffolding techniques for the modelling of 

efficient SCC strategies to students? 

SRQ6 (a):  What are the explicit mental strategies (techniques and reasoning) 

that CS experts employ while comprehending source code?   

SRQ6 (b):  How can knowledge of these strategies be applied in the 

formulation of a step-by-step framework that could ultimately 

contribute towards narrowing the gap between expert and novice 

thinking with regard to efficient SCC? 

 

In this chapter, a synthesis of the study findings (covering both the literature review 

and empirical investigations) is provided. This discussion is grouped according to the 

relevant research questions as stipulated above. Thereafter, the major contributions 

of this study are highlighted, and the study limitations are discussed. Next, 

recommendations for future research are outlined. Finally, an overall conclusion to the 

study is provided. 

 

7.2 Synthesis of findings 

In this section, a synthesis of the findings from the research study is presented. The 

discussion is structured around the individual research questions. 

 

7.2.1 Literature review  

A comprehensive literature review was conducted to provide answers to the first three 

subsidiary research questions.  

 

SRQ1: What are the strategies that programmers (novices and experts) follow 

during the SCC process?  

This part of the study established the three taxonomies of common SCC strategies 

that programmers use during the SCC process, which are bottom-up, top-down, and 

opportunistic (or mixed) strategies. However, it has become evident that the specific 

SCC strategies employed by programmers are dependent on their level of expertise 

as well as the resources they have at their disposal (see Section 2.2). In support of 

Storey et al.'s (2000) findings regarding SCC strategies, it could be suggested that 
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any strategy used by programmers to comprehend source code should allow them to: 

(1) use a single comprehension strategy or a combination of strategies as needed; (2) 

switch between SCC strategies when necessary; and (3) reduce their cognitive 

overload as much as possible while comprehending source code.  

 

SRQ2: What are the challenges that influence the development of novice 

programmers’ SCC skills?  

Lack of prior knowledge, lack of problem solving skills, and lack of strong mental 

models have been identified as the main challenges that could influence the SCC 

ability of novice programmers (see Section 2.3). Regarding these challenges, it could 

be suggested that instructors should effectively engage students throughout the 

course period and ensure that course activities (e.g. assignments and learning tasks) 

compel students to continuously make efforts to gain and retain knowledge for future 

use (see Section 2.4.1.1). This can be achieved by integrating relevant content (e.g. 

topics, examples, and concepts) into the instructional strategies to help students learn 

SCC skills. Although the use of pragmatic comprehension strategies (see Section 

2.2.1) seems to serve programmers of different levels of expertise well, it may not be 

ideal for students at elementary levels of programming to use such strategies. Instead, 

some standard guidelines should be developed for use by these students. Such 

guidelines should preferably be as detailed and explicit as possible. 

  

SRQ3: How do cognitive and metacognitive practices influence SCC? 

In an endeavour to understand the influence of cognitive and metacognitive practices 

on SCC (see Section 2.4), the literature review highlighted how critical these practices 

are in any learning environment (regardless of the discipline). It was noted in the study 

that nurturing these practices is not always easy. However, students who achieve 

success because of the practices, find it much easier to plan, monitor, and regulate 

the mental processes in their learning (Bergin et al., 2005; Pintrich, 1999; Simons & 

Bolhuis, 2004). Modelling has also been identified as an instructional strategy that can 

be used to foster metacognition (Ellis, Denton & Bond, 2014; Kistner et al., 2010).  

 

The particular activities suggested as part of the planning, monitoring, and regulation 

strategies (Ambrose et al., 2010), could be incorporated as part of a ‘modelling’ 

instructional strategy. In executing such a modelling strategy, instructors could focus 
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on demonstrating or modelling the specific steps and/or best practice strategies that 

may be intrinsic to proper planning, monitoring, and regulation. The objective would 

be for students to experience first-hand how instructors (who can be regarded as 

experts) manoeuvre through these steps or strategies. Afterwards, students can be 

provided with opportunities to practise or implement these steps/strategies. Such a 

modelling strategy could be further enhanced by coupling it with scaffolding 

techniques.  

 

For example, while modelling how best to comprehend source code, instructors can 

share with students the possible strategies they think can help them. After this, they 

can give reasons to students why such strategies might be useful. Ultimately, students 

could then select a strategy (or combination of strategies) that they think might work 

best for them. Instructors should also demonstrate flexibility – thereby encouraging 

their students to change to a different strategy if a selected strategy does not work for 

some reason. These are just some of the mental scaffolds believed to be vital for the 

modelling of efficient SCC. As such, this enhanced modelling strategy could be 

referred to as ‘integrated’ modelling. This strategy could be regarded as one of the 

most effective ways to foster cognitive and metacognitive practices in the learning 

process. Apart from using a think-aloud technique to demonstrate mental or expert 

moves by instructors (Middendorf & Pace, 2004), the integrated modelling strategy 

also combines all the advantages of the three metacognitive promotion strategies.  

 

7.2.2 Empirical findings 

The other six subsidiary research questions were answered as part of Article 1, Article 

2, and Article 3. A discussion of how this was achieved is provided in the sub-sections 

that follow. 

Article 1 

Article 1 was focused on answering the following two subsidiary research questions: 

SRQ4 (a):  What are the major SCC difficulties experienced by senior CS 

students?  

SRQ4 (b):  How can knowledge of these difficulties be used to identify SCC 

bottlenecks that should ideally be addressed in introductory 

programming courses?  
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According to the literature, students experience several SCC difficulties. These 

difficulties are related to simple programming concepts as well as more advanced 

concepts. Premised on the research activities performed in this part of the study (i.e. 

SCC questions tackled), three main categories of specific difficulties with SCC were 

identified as experienced by senior CS students. These difficulties were related to 

arrays (array index, length of an array, Boolean array, and decomposition); 

programming logic (the ripple effect, guessing, and mathematical expressions); and 

program control (for loop). Although most students were able to comprehend these 

concepts when viewed in isolation, the level of misunderstanding often intensified 

when well-understood concepts were integrated with unknown concepts into a single 

piece of code. For example, if a student is able to compute the length of an array, but 

does not quite understand the working of an array index, and these two concepts are 

put together in a piece of code to be comprehended, the student easily gets even more 

confused.  

 

Additionally, many students did not fully understand how a for repetition structure 

works – especially the difference between pre- and post-incrementation of the loop 

counter variable. While comprehending source code, many students seem to expect 

only concepts that they have studied before. As such, if they encounter something 

new, they get completely disorganised, and hence their thinking patterns become 

limited to some extent. When students fail to understand one line of code, they often 

forget that what a program achieves in the end is a collective of the individual lines of 

code contained in the program. Consequently, they deal with this confusion by 

completely ignoring challenging code statements. Ultimately, they then base their 

overall comprehension of a specific fragment of source code only on those parts that 

they were able to understand. Overall, the specified difficulties revealed teaching and 

learning gaps that instructors should not ignore in teaching SCC skills to novice 

programmers.  

         

The aforementioned difficulties, in combination with knowledge from supporting 

literature and personal experiences of the researcher, resulted in the identification of 

six SCC bottlenecks (see Section 5 of Chapter 4). The study concluded that these 

bottlenecks should already be addressed in elementary programming courses. With 

regard to these bottlenecks, many students are not aware of effective strategies to 
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follow while trying to comprehend code. Consequently, they end up using unreliable 

strategies that are insufficient to successfully complete an SCC task. Moreover, due 

to a lack of proper strategies, the problem gets amplified when students are presented 

with larger SCC tasks. 

 

Article 2    

The focus of Article 2 was on answering the following two subsidiary research 

questions: 

SRQ5 (a):  What are the cognitive processes and related cognitive strategies 

employed by expert programmers during SCC? 

SRQ5 (b):  What does insight into these cognitive process strategies suggest 

in terms of mental scaffolding techniques for the modelling of 

efficient SCC strategies to students? 

 

The literature revealed five relevant cognitive process categories (attention, 

perception, memory, reading, speaking and listening, and reflective cognition) that can 

be used for any problem-solving process in any discipline. Planning, cognitive 

reasoning, and decision making are distinct cognitive processes within the reflective 

cognition category. Although these cognitive processes may appear to be common, 

the study revealed fresh perspectives by which CS instructors can view and apply 

these processes in teaching. Noteworthy is that the perceptions identified in the 

experts in this study, caused them to focus on issues that were not directly related to 

the SCC question they were answering. Consequently, the perception-cognitive 

process was not included in the proposed mental scaffolding techniques for the 

modelling of efficient SCC.           

        

Based on the aforementioned cognitive processes, 17 mental scaffolding techniques 

(directly linked to one or more of these cognitive processes) for efficient SCC were 

developed (see Table 1 in Chapter 5). It is proposed that programming instructors 

should use these techniques as an SCC teaching aid to convey expert ways of thinking 

and doing more explicitly to novice programmers. It is believed that execution of these 

techniques could act as a way to scaffold students’ processes to better comprehend 
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source code, thereby improving their cognitive and metacognitive process skills in this 

regard.  

 

Article 3 

The focus of Article 3 was on answering the following two subsidiary research 

questions: 

SRQ6 (a): What are the explicit mental strategies (techniques and reasoning) 

that CS experts employ while comprehending source code? 

SRQ6 (b):  How can knowledge of these strategies be applied in the 

formulation of a step-by-step framework that could ultimately 

contribute towards narrowing the gap between expert and novice 

thinking with regard to efficient SCC? 

 

Premised on the nature of this part of the study, a set of mental strategies identified 

from the literature was used as a starting point for the identification of specific 

strategies employed by programming experts during SCC. Analysis of the data 

collected during the decoding interviews led to the identification of 15 key strategies 

for efficient SCC (see Section 4 in Article 3). Since the use of doodles or annotations 

was cited by Lister et al. (2004) as a strategy that experienced programmers typically 

use during SCC, it was surprising that this strategy was not used extensively by the 

experts in this study. In discussing the results of their study, Xie et al. (2018) noted 

that doodles are sometimes regarded as time-wasting by novice programmers. Under 

stringent time limitations, expert programmers might also regard doodles as time-

consuming. Since this is not conclusive, it remains to be further investigated why 

doodles were not extensively used by the expert programmers in this study, 

particularly because they were not subjected to stringent time constraints. It was also 

interesting to note that, while Crosby and Stelovsky (1990) mentioned that both 

experienced and novice programmers pay least attention to the keywords in the 

source code text, the experts in this study regarded the identification of keywords from 

the problem description and code fragments provided to them, as one of their key 

strategies (see Section 4 in Chapter 6). 
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By coupling the 15 identified strategies with the insights gained regarding the explicit 

mental steps performed by the experts during the decoding interviews, a step-by-step 

framework for efficient SCC was compiled (see Table 2 in Chapter 6). The main 

intention of this framework is to create awareness among CS instructors regarding the 

explicit mental operations required for efficient SCC. Within the realm of the DtDs 

philosophy, the framework can also serve as a starting point for the planning of 

instructional strategies to explicitly model these mental operations (steps) to students 

and to help them master each of the identified strategies. It is believed that if the 

content of the framework is included in the planning of instructional activities in order 

to teach efficient SCC, students are highly likely to be equipped with skills that will 

enable them to think about and perform SCC tasks like experts.   

     

7.2.3 Summary 

This research study was originally set out to answer the following two main research 

questions: 

RQ1: What are the SCC challenges experienced by novice programmers? 

RQ2: How can a systematic decoding approach be used to devise cognitive 

strategies that could be used to address these challenges? 

This study has revealed numerous SCC challenges and difficulties as experienced by 

novice programmers (both from literature and the empirical investigations of this 

study). Based on the Phase 1 and Phase 2 research activities, the eight principal SCC 

difficulties related to the concepts of arrays, programming logic, and programming 

control were identified. These were used to develop six useful bottlenecks – describing 

the main SCC challenges experienced by novice programmers. As a starting point for 

the systematic decoding approach followed in this study, it was shown that students 

can be a valuable source for the identification of bottlenecks that may hamper their 

understanding of the discipline-specific skill of SCC.  

 

Given the variety of concepts covered by these six bottlenecks, the remainder of the 

empirical investigations focused mainly on Bottleneck 6 (Students cannot reliably think 

their way through a long chain of reasoning required to comprehend a piece of source 

code). As such, decoding interviews with expert programmers were used to explore 

the explicit steps that these programmers would follow to overcome the stated 



 

 

148 

bottleneck. The decoding interviews, performed as part of Step 2 of the DtDs 

framework, followed a different structure than suggested by the proponents of this 

framework (Middendorf & Pace, 2004). In this study, the decoding interviews started 

off in the typical manner – asking the participants to explain the steps they would follow 

while executing a discipline-specific task (to predict the output of any piece of source 

code provided on a piece of paper). The second part of the decoding interview was, 

however, less conventional. Here, each participant was presented with a real SCC 

problem and asked to illustrate how they would implement their previously shared SCC 

strategy in solving the given problem. By putting the participants in a situation where 

they had to illustrate their strategy in a ‘real’ situation, the researcher believes that he 

was able to gain much deeper insight into the explicit cognitive strategies required for 

efficient SCC. 

 

Systematic analysis of all the data gathered as part of these interviews, guided by the 

relevant research questions, led to the development of the proposed mental 

scaffolding techniques for the modelling of efficient SCC (see Section 5.5 in 

Chapter 5), as well as a step-by-step framework for efficient SCC (see Section 5 in 

Chapter 6). It is envisioned that the proposed scaffolding techniques and the step-by-

step framework could serve as a starting point for CS instructors to model the explicit 

strategies and steps as proposed by Step 3 of the DtDs framework. Ultimately, such 

modelled strategies could then be incorporated as part of instructional strategies 

specifically aimed at helping novice programmers to overcome the identified 

bottleneck and become more efficient in the comprehension of source code.  

 

Given the selected focus on Bottleneck 6, explicit cognitive strategies that could help 

novice programmers overcome the other five bottlenecks, were not specifically 

explored in this study. It should, however, be noted that both the proposed mental 

scaffolding techniques for the modelling of SCC (see Chapter 5) and the step-by-step 

framework (see Section 5 of Chapter 6) contain information that could be of relevance 

in addressing some aspects of the other five bottlenecks.  

 

Overall, this study has illustrated how a systematic decoding approach (encompassing 

adapted versions of Step 1 and Step 2 of the DtDs framework) can be used to devise 

cognitive strategies for efficient SCC. The identified cognitive strategies (and steps) 
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could ultimately be used by CS instructors to address some of the main SCC 

challenges experienced by novice programmers. 

 

7.3 Contributions of the study 

The main contributions of this research study can be described in three main 

categories. Firstly, this study has made a contribution to the practice of Computer 

Science Education by identifying specific SCC bottlenecks that point to student 

learning difficulties, which instructors should focus on in teaching introductory 

programming courses. As a way to assist these instructors, the study has proposed 

mental scaffolding techniques and a step-by-step framework for efficient SCC. These 

techniques and strategies could be integrated as part of instructional plans. The 

objective would be to create opportunities for students to better comprehend source 

code upon execution of these explicit steps and strategies. It is believed that applying 

these techniques and implementing the framework could ultimately help students to 

think about and perform SCC tasks more like experts.  

 

Secondly, the study contributes to the enhancement of the DtDs paradigm in the 

following ways:      

1. Create awareness among instructors regarding the role that a systematic 

decoding approach can play in exposing the mental processes or operations 

necessary for a complex discipline-specific task.  

2. Show how a think-aloud technique (as part of Step 1 of the DtDs framework) 

can be used in a scientific manner to uncover the core of students’ learning 

bottlenecks.  

3. Demonstrate a unique decoding-interview approach (as part of Step 2 of the 

DtDs framework) where experts are observed and questioned (regarding their 

mental actions) while they perform an actual discipline-specific task.  

4. Illustrate how decoding interviews (as part of Step 2 of the DtDs framework) 

can be used to also identify the actual cognitive processes followed by experts 

(in addition to just exposing the mental steps skipped by experts).  
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5. Create awareness of the possibilities the DtDs paradigm holds not only for the 

CS discipline, but also for other disciplines. 

 

Third, the study contributes to the theory of Computer Science Education, as the 

proposed cognitive processes as well as steps and strategies can lead to new debates 

and potential new research directions. Specifically, the six identified SCC bottlenecks 

could lead to more vital insights and further investigations into ways students can be 

helped to overcome these bottlenecks. Moreover, this study has established various 

cognitive teaching and learning aids for instructors to use in their efforts to help 

students improve their SCC skills.   

 

7.4 Limitations of the study 

Narrative data-related threats, including trustworthiness issues such as credibility, 

transferability, dependability, confirmability, and integrity (see Section 3.4 – Chapter 

3), as well as potential issues related to the specific research procedures (data source 

management strategies, population and sampling strategies, data collection methods,  

and data analysis) (see Section 3.3 – Chapter 3) have already been discussed. 

However, six perceived limitations of this study are worth pointing out.  

 

First, the use of the selected set of 12 MCQs resulted in the identification of 

bottlenecks that were specifically related to the concepts tested in these questions. 

Bottlenecks related to other difficult programming concepts, such as recursion 

(Sanders & Mccartney, 2016), could not come out from the data set of this study. This 

suggests that the bottlenecks identified in this study are not comprehensive. The study 

did, however, illustrate the usefulness of a novel research design and methodology to 

identify bottlenecks specific to the CS discipline.   

 

Second, the original intention was to engage one decoding interviewer from outside 

the CS discipline, as suggested by the proponents of the DtDs framework (Middendorf 

& Pace, 2004). However, due to the unavailability of an individual with the relevant 

decoding-interview experience, an interviewer from within the CS discipline was 

engaged. Using a second interviewer from outside the discipline could therefore have 
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resulted in additional insights regarding the explicit mental strategies and steps 

followed by expert programmers.  

 

Third, the researcher also acknowledges his own limitations as far as insight and 

experience in the fields of Computer Science Education and general research are 

concerned. However, he believes that many of the personal limitations were mitigated 

by the valuable guidance and suggestions received from his experienced supervisor, 

other colleagues in the field, as well as those who evaluated and validated some of 

the findings (see Section 3.5.3 – Chapter 3).  

 

Fourth, no full-time professional programmers were involved in the decoding 

interviews. It should, however, be noted that in DtDs studies, experienced educators 

or instructors are typically regarded and used as experts (Middendorf & Pace, 2004; 

Pace, 2017a).   

 

Fifth, as an oversight on the side of the researcher, the limited doodles made by the 

expert programmers during the decoding interviews were not retained for further 

analysis. Having access to these artefacts as an additional source of data could have 

helped to enhance the discussion of the study findings.     

 

Lastly, this research study was conducted within a specific context (a selected South 

African higher education institution). The study was also focused on identifying the 

SCC challenges experienced by a very specific population (senior CS students). Due 

to the exploratory nature of this research study, no claims can therefore be made to 

the generalisability of the study findings.      

 

7.5 Recommendations for future research 

The problems experienced by novice programmers and strategies to address these 

problems have been an ongoing research focus for the past 40 years. The focal point 

of this research study was to explore how a systematic decoding approach could be 

used to uncover cognitive strategies for efficient SCC by novice programmers. The 

investigation was based on a specific number of research activities that focused on a 

specific population of university students studying at a senior level. Natural extensions 
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of this work could be conducted in a different setting, perhaps with participants from a 

higher level of study (e.g. honours or master’s). The objective would be to ascertain 

whether there would be variations in the findings when more advanced senior students 

are used as participants.  

 

Furthermore, the inclusion of professionals solely from the programming industry (as 

expert participants) could also be considered. The objective would be to determine the 

extent to which full-time programmers do things differently or similarly (e.g. thought 

processes) to those who teach programming with only limited industry experience. A 

similar study can further be conducted with a different set of SCC questions. These 

questions can, for example, be obtained from the literature or past examination papers 

or be developed by researchers from scratch. The use of such questions could help 

to identify additional bottlenecks related to programming concepts not specifically 

covered in the 12 MCQs used in this study. 

 

Although six bottlenecks were identified in Article 1 (see Chapter 4), only one 

bottleneck was explored further in this study. Therefore, similar studies can be 

conducted to address the other five bottlenecks. Based on the proposed step-by-step 

framework for efficient SCC, some of the identified strategies and/or steps (e.g. 

making a trace table; drawing a diagram to visualise an understanding of the program 

logic; and optimising the selection of test cases to use in confirming answers) could 

be explored even further. Such exploration might lead to even more simplistic and 

optimal steps to follow as part of an efficient SCC strategy. Insights gained from this 

study regarding the general cognitive and metacognitive strategies employed by 

expert programmers could serve as a stepping-stone for further exploration of the 

more detailed step-by-step procedures that experts follow while comprehending 

source code.  

 

Natural extensions of this study could focus on the remaining DtDs steps not covered 

by the study. Since the study only focused on the first two steps of the seven-step 

DtDs framework, follow-up investigations are needed to explicitly model the identified 

steps and strategies in a format that will be usable/understandable to students (as part 

of Step 3). As part of Step 4, instructors can then develop instructional strategies 

(including specific assignments, team activities, and other learning exercises) that will 
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provide students with opportunities to practise each of the defined tasks and get 

feedback on their mastery of that skill. As part of Step 5, instructors can identify and 

test specific strategies to motivate students to incorporate the modelled strategies as 

part of their own processes. As part of Step 6, instructors need to develop assessment 

strategies that could be used to determine if and how the modelled tasks have helped 

students to overcome the stated bottleneck. Similar to the ways in which the 

researcher of this study has shared his experiences and findings (through this thesis 

report and the publications that have transpired from the research study), other 

researchers are encouraged to do the same (as part of Step 7 of the DtDs framework) 

(Middendorf & Pace, 2004).      

  

7.6 Conclusion 

The findings of this study are mostly pedagogical in nature and therefore present a 

promising avenue for a renewed focus on the explicit teaching and learning of SCC 

skills. The way in which this study was approached and how the investigations 

unfolded (the identification of the SCC bottlenecks, mental scaffolding techniques for 

efficient SCC, and step-by-step framework for efficient SCC), have revealed a further 

need for continuous research in this area. Specifically, empirical findings from this 

study in relation to the six SCC bottlenecks that have been identified, contain a 

noteworthy element of 'surprise' through which older theories or scholarly opinions can 

be improved or contested. It is believed that these fresh perspectives can help 

instructors to theoretically and practically enhance the field of Computer Science 

Education.  

 

This study also intended to make a contribution to the field of Computer Science 

Education. The researcher’s efforts revealed and highlighted the complexity of the 

problems encountered by both CS students and instructors regarding the learning and 

teaching of SCC skills. Throughout the study, it was further established that there are 

no shortcuts in overcoming these problems. Instead, explicit scientific solutions that 

speak directly to the minds (i.e. cognition and metacognition) of students should be 

devised and used. The Computer Science Education field also needs more 

researchers who can continue the search for new ways in which discipline-specific 

teaching and learning problems can be uncovered and solutions sought. The DtDs 
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paradigm has been shown as a promising and alternative way of investigating these 

aspects. This approach can and should be further exploited, but there are certainly 

many other new ways to conduct research in Computer Science Education waiting to 

be uncovered or discovered. As we are on the threshold of the Fourth Industrial 

Revolution, ‘reimagining the future for all disciplines’ – in CS we also have to prepare 

our students for new developments in the field and for jobs that do not even exist at 

the moment (D2L, 2018). The CS instructors of today need to be innovative, creative, 

and proactive if they want to make a lasting contribution to the field of Computer 

Science Education beyond the 2020 era.  
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Appendix A – Questionnaire for Senior Students (Phase 1) 

Dear Senior Student, 

 

Thank you for giving your attention to this questionnaire. The approximate time needed 

to complete this questionnaire is 60 - 90 minutes. The purpose of this questionnaire is 

to uncover source code comprehension challenges experienced by students.  

  

By completing this questionnaire, you give the researcher consent to use your 

information for research purposes only. Responses will be confidential and your 

privacy will be protected to the maximum extent allowable by law. 

 

Participation is voluntary and you can withdraw anytime when you do not feel like 

participating anymore. Completing or failing to complete this questionnaire has 

absolutely no bearing on your grade for any of the Computer Science modules you 

are enrolled into.   

 

Section 1 – Source Code Comprehension Questions 

 
Instructions: 

Carefully study the following fragments of source code, and use the working spaces 

provided for each question to show your workings. Please write your answer to each 

question in the space provided at the end of each question.  

 
Question 1 
Consider the following source code fragment: 
 
int[] x = { 2, 1, 4, 5, 7 };  

int limit = 3;  

int i = 0;  

int sum = 0; 

while ((sum < limit) && (i < x.Length)) 

{  

     ++i; 

     sum += x[i];  

} 

 
What value is in the variable i after this source code is executed? 
a) 0  

b) 1  

c) 2  

d) 3 

 
Answer to Question 1: ________________________________________________ 
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Question 2 
Consider the following source code fragment:  
 
int[] x1 = {1, 2, 4, 7};  

int[] x2 = {1, 2, 5, 7};  

int i1 = x1.Length - 1; 

int i2 = x2.Length - 1;  

int count = 0;  

while ((i1 > 0) && (i2 > 0)) 

{ 

   if (x1[i1] == x2[i2])  

   { 

      ++count; 

      --i1; 

      --i2; 

   }  

 

   else if (x1[i1] < x2[i2]) 

   { 

      --i2; 

   } 

 

   else  

   { 

     // x1[i1] > x2[i2] 

     --i1; 

   } 

} 

 

After the above while loop finishes, count contains what value? 
a) 3  

b) 2  

c) 1  

d) 0 

 
Answer to Question 2: ________________________________________________ 
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Question 3 
Consider the following source code fragment: 
 
int[] x = {1, 2, 3, 3, 3};  

bool[] b = new bool[x.Length];  

 

for (int i = 0; i < b.Length; ++i)  

   b[i] = false; 

 

for (int i = 0; i < x.Length; ++i)  

   b[x[i]] = true; 

 

int count = 0; 

 

for (int i = 0; i < b.Length; ++i) 

{ 

    if (b[i] == true)  

       ++count;  

} 

 
After this source code is executed, count contains: 
a) 1  

b) 2  

c) 3  

d) 4  

e) 5 

 

Answer to Question 3: ________________________________________________ 
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Question 4 
Consider the following source code fragment: 
 
int[] x1 = {0, 1, 2, 3};  

int[] x2 = {1, 2, 2, 3};  

int i1 = 0; int i2 = 0;  

int count = 0; 

 

while ((i1 < x1.Length) && (i2 < x2.Length)) 

{ 

  if (x1[i1] == x2[i2]) 

  { 

    ++count; 

    ++i2; 

  }  

 

  else if (x1[i1] < x2[i2]) 

  { 

    ++i1; 

  }  

 

  else  

  {  

 

   // x1[i1] > x2[i2]  

   ++i2; 

  } 

} 

 

After this source code is executed, count contains:  
a) 0  

b) 1  

c) 2  

d) 3  

e) 4 

 
Answer to Question 4: ________________________________________________ 
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Question 5 
Consider the following source code fragment: 
 

int[] x = { 0, 1, 2, 3 };  

int temp;  

int i = 0; 

int j = x.Length - 1; 

 

while (i < j)  

{ 

temp = x[i];  

x[i] = x[j];  

x[j] = 2*temp;  

i++;  

j--; 

}  

 

After this source code is executed, array x contains the values: 
a) { 3, 2, 2, 0 }  

b) { 0, 1, 2, 3 }  

c) { 3, 2, 1, 0 }  

d) { 0, 2, 4, 6 }  

e) { 6, 4, 2, 0 } 

 

Answer to Question 5: ________________________________________________ 
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Question 6 
The following method isSorted should return true if the array is sorted in 

ascending order. Otherwise, the method should return false: 

 
public static bool isSorted (int[] x) 

{ 

//missing source code goes here 

} 

 

Which of the following is the missing source code from the method isSorted? 
a)  bool b = true; 

     for (int i = 0; i < x.Length - 1; i++)  

     { 

 if (x[i] > x[i + 1]) 

   b = false; 

 else  

   b = true;  

     }  

     return b; 

 

b)  for (int i = 0; i < x.Length - 1; i++)  

     { 

 if (x[i] > x[i + 1])  

  return false; 

     } 

     return true; 

 

c)   bool b = false; 

     for (int i = 0; i < x.Length - 1; i++) 

     { 

if (x[i] > x[i + 1])  

b = false; 

     }  

     return b; 

 

d)  bool b = false; 

     for (int i = 0; i < x.Length - 1; i++)  

     { 

 if (x[i] > x[i + 1]) 

   b = true; 

     }  

     return b; 

 

e)  for (int i = 0; i < x.Length - 1;i++)  

     { 

if (x[i] > x[i + 1])  

return true; 

     }  

     return false; 

Answer to Question 6: ________________________________________________ 
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Question 7 
Consider the following source code fragment: 
 
int[] x = { 2, 1, 4, 5, 7 };  

int limit = 7;  

int i = 0;  

int sum = 0; 

 

while ((sum < limit) && (i < x.Length))  

{ 

sum += x[i];  

++i; 

} 

 

What value is in the variable i after this source code is executed? 
a) 0  

b) 1  

c) 2  

d) 3  

e) 4 

 
Answer to Question 7: ________________________________________________ 
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Question 8 
If any two numbers in an array of integers, not necessarily consecutive numbers in the 
array, are out of order (i.e. the number that occurs first in the array is larger than the 
number that occurs second), then that is called an inversion. For example, consider 
an array x that contains the following six numbers: 

 
  4 5 6 2 1 3  

 
There are 10 inversions in that array, as: 
 
x[0]=4 > x[3]=2  

x[0]=4 > x[4]=1  

x[0]=4 > x[5]=3  

x[1]=5 > x[3]=2  

x[1]=5 > x[4]=1  

x[1]=5 > x[5]=3  

x[2]=6 > x[3]=2  

x[2]=6 > x[4]=1  

x[2]=6 > x[5]=3  

x[3]=2 > x[4]=1 

 
The skeleton source code below is intended to count the number of inversions in an 
array x: 

 
int inversionCount = 0; 

 

for (int i = 0; i < x.Length - 1; i++)  

{ 

for xxxxxx  

{ 

if (x[i] > x[j]) 

++inversionCount; 

} 

} 

 
When the above source code finishes, the variable inversionCount is intended to 

contain the number of inversions in array x. Therefore, the xxxxxx in the above 

source code should be replaced by: 
 
a) (int j = 0; j < x.Length; j++)  
b) (int j = 0; j < x.Length - 1; j++)  

c) (int j = i + 1; j < x.Length; j++)  

d) (int j = i + 1; j < x.Length - 1; j++) 

 

 
Answer to Question 8: ________________________________________________ 
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Question 9 
The skeleton source code below is intended to copy into an array of integers called 
array2 any numbers in another integer array array1 that are even numbers. For 

example, if array1 contained the numbers: 

 
array1: 4 5 6 2 1 3 

 
then after the copying process, array2 should contain in its first three places: 

 
array2: 4 6 2 

 
The following source code assumes that array2 is big enough to hold all the even 

numbers from array1: 

 
int a2 = 0; 

 

for (int a1 = 0; xxx1xxx; ++a1)  

{ 

// if array1[a1] is even 

if (array1[a1] % 2 == 0)  

{ 

// array1[a1] is even,  

// so copy it  

xxx2xxx;  

xxx3xxx; 

}  

} 

 
The missing pieces of source code xxx1xxx, xxx2xxx and xxx3xxx in the above 

source code should be replaced respectively by: 
 
a) a1 < array1.Length  
 ++a2  

 array2[a2] = array1[a1]  

 

b) a1 < array1.Length  
 array2[a2] = array1[a1]  

   ++a2  

 

c) a1 <= array1.Length  
   array2[a2] = array1[a1] 

   ++a2 

 

d) a1 <= array1.Length  
 ++a2  

 array2[a2] = array1[a1] 

 
Hint: in all four options above, the second and third parts are the same, just reversed. 
 

Answer to Question 9: ________________________________________________ 
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Question 10 
Consider the following source code fragment: 
 

int[] array1 = { 2, 4, 1, 3 };  

int[] array2 = { 0, 0, 0, 0 };  

int a2 = 0; 

 

for (int a1 = 1; a1 < array1.Length; ++a1)  

{ 

if (array1[a1] >= 2)  

{ 

array2[a2] = array1[a1];  

++a2; 

}  

} 

 

After this source code is executed, the array array2 contains what values? 
a) { 4, 3, 0, 0 }  

b) { 4, 1, 3, 0 }  

c) { 2, 4, 3, 0 }  

d) { 2, 4, 1, 3 } 

 

 
Answer to Question 10: _______________________________________________ 
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Question 11 
Suppose an array of integers s contains zero or more different positive integers, in 

ascending order, followed by a zero. For example: 
 
int[] s = { 2, 4, 6, 8, 0 };  

     or  
     int[] s = { 0 }; 

 
Consider the following “skeleton” source code, where the sequences of xxxxxx are 

substitutes for the correct C# source code: 
 
int pos = 0; 

while ( (xxxxxx) && (xxxxxx) )  

   ++pos; 

 
Suppose an integer variable e contains a positive integer. The purpose of the above 

source code is to find the place in s occupied by the value stored in e. Formally, when 

the above while loop terminates, the variable pos is determined as follows: 

 
1. If the value stored in e is also stored in the array, then pos contains the index of 

that position. For example, if e=6 and s = {2, 4, 6, 8, 0}, then pos should 

equal 2. 

 
2. If the value stored in e is NOT stored in the array, but the value in e is less than 

some of the values in the array then pos contains the index of the lowest position in 

the array where the value is larger than in e. For example, if e=7 and s = {2, 

4, 6, 8, 0}, then pos should equal 3. 

 
3. If the value stored in e is larger than any value in s, then pos contains the index of 

the position containing the zero. For example, if e=9 and s = {2, 4, 6, 8, 

0}, then pos should equal 4. 

 
The correct Boolean condition for the above while loop is: 
a) (pos < e) && (s[pos] != 0) 

b) (pos != e) && (s[pos] != 0) 

c) (s[pos] < e) && ( pos != 0)  

d) (s[pos] < e) && (s[pos] != 0)  

e) (s[pos] != e) && (s[pos] != 0) 

 
 
Answer to Question 11: _______________________________________________ 
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Question 12 
This question continues on from the previous question. Assuming we have found the 
position in the array s containing the same value stored in the variable e, we now wish 

to write source code that deletes that number from the array, but retains the ascending 
order of all remaining integers in the array. For example, given: 
 
s = { 2, 4, 6, 8, 0 }; e = 6; pos = 2; 

 

The desired outcome is to remove the 6 from s to give:  

 
s = { 2, 4, 8, 0, 0 }; 

 

Consider the following “skeleton” source code, where xxxxxx is a substitute for the 

correct C# source code: 
 
do { 

++pos;  

xxxxxx; 

} while (s[pos] != 0 );  

 
The correct replacement for xxxxxx is: 

 
a) s[pos+1] = s[pos];  

b) s[pos] = s[pos+1];  

c) s[pos] = s[pos-1];  

d) s[pos-1] = s[pos]; 

e) None of the above 

 
 
Answer to Question 12: _______________________________________________ 
 

Section 2 - Demographic information 

 

Instructions: 

Please circle your selected answers. 

 
Tell us a little bit about yourself: 
 
Gender:        Male                       Female         

 

Age:           18                 19                 20                 21                22                 23+ 

 
Student number:           _____________________________________________________ 

 

Thank you for completing the questionnaire! 
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Appendix B – Aggregate Performance of Phase 1 participants  

The following table shows an aggregate performance of Phase 1 participants (3rd Year 

students who answered the 12 original MCQs developed and used in the multi-national 

study by Lister et al. (2004, pp. 141-144). The five columns in this table can be 

described thus: 

• Column1 – Question number as presented in the original Lister et al.'s (2004) 

paper. 

• Column 2 – Percentage (%) of students who answered each question correctly.  

• Column 3 – Number of students who answered each question correctly. 

• Column 4 – Ranking of the questions according to the performance of this 

study’s participants (Rank 1 was the hardest question, while Rank 12 was the 

easiest). 

• Column 5 – Ranking of the questions according to the performance of Lister et 

al.'s (2004) participants.      

 

MCQ % correct Number of 
students 

Question ranking 

(Phase 2 of this study) 

Question ranking  

(2004 ITiCSE working group) 

1 61 23  (11/12) Easiest 8/9 

2 38 14 4/5/6 6 

3 38 14 4/5/6 7 

4 49 18 9 5 

5 41 15 7 12(Easiest) 

6 30 11 3 2 

7 51 19 10 10 

8 22 8 2 3 

9 62 23 (11/12) Easiest 11 

10 46 17 8 8/9 

11 38 14 4/5/6 4 

12 19 7 1 (Hardest) 1 (Hardest) 

 

  



 

 

194 

Appendix C – Invitation Letter to Senior Students (Phase 2) 

                                                                                                                  21 May 2018 
Dear [Student Initials and Surname], 

 

On Monday, 23 April 2018, you completed a short test on source code comprehension. 

The test was part of the first phase of a research study looking to uncover the source 

code comprehension challenges of novice programmers. Based on your performance 

in the Phase 1 test, you have been identified as a suitable participant for Phase 2 of 

the study. 

 

We would, therefore, like to extend an invitation to you to participate in Phase 2 of this 

study. As a participant in Phase 2, you will be asked to answer three source code 

comprehension questions in a think-aloud manner – explaining your reasoning as your 

work through each of the questions. The session will last for approximately 30 minutes. 

In appreciation for your time, you will receive a R100 voucher for Treats on the 

Thakaneng Bridge. 

 

Sessions will be scheduled in the time period from 05 to 29 June 2018. If you are 

willing to participate, please contact Mr Pakiso Khomokhoana (E-mail: 

khomo_khoana@yahoo.com or Physical: WWG308) to book your session. 

 

Please feel free to contact me if you need additional information about this study. 

 

Kind regards, 

 

 

Prof Liezel Nel 

Adjunct-professor: Department of Computer Science & Informatics 
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Appendix D – Case Study Protocol for Senior Students 

(Phase 2)    

  
Protocol to identify and determine the nature of relevant bottlenecks related to source 

code comprehension 
 
 
Case study protocol introduction: 

Thank you for agreeing to participate in this research activity. Prior to the activity you were 

sent a participant information sheet and two consent forms (one to sign and return; and 

another to keep). This activity will not last for longer than 30 minutes. However, you can take 

as much time as you like if you feel so. In answering the questions, please use the think-aloud 

protocol, that is talk to us and to yourself aloud as much as you can. Also scribble on your 

working paper as much as you can; and try to demonstrate your thinking as much as possible 

so that we are able to understand how and why you arrived at your answer. The main issue 

is not necessarily to test whether you can get the answers correct or not, but to analyse your 

thinking in the process. For purposes of capturing all occurrences of the experiment 

proceedings, the session will be audio-recorded. I hope you have read the participant 

information sheet sent out to you earlier. Do you have any questions on it or any other 

questions relating to the study? If there are no further questions, let us get started with the 

questions. 

Participant instructions: 

Answer the three source code comprehension questions. Use think-aloud to verbalise your 

reasoning in answering these questions. 

Post-experiment questions  

• What did you like the most about the questions? 

• What do you think was the most challenging in the questions?  

• How did you find hand analysing, working through and determining the output of the 

source code/aim or what the source code does (hand executing source code?) Please 

describe. 

o Easy? Difficult? Challenging? 

• Any other comments? 

o Language? 
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Appendix E – Decoding Interview Protocol  

(Phase 3 - Experts) 

Interview Introduction 

Thank you for agreeing to participate in this interview. We estimate that this interview 

will be approximately 60 minutes in length. Prior to the interview you were sent a 

participant information sheet and two consent forms (one to sign and return; and 

another to keep). Have you read the participant information sheet sent out to you 

earlier? Do you have any questions on it or any other questions relating to the study? 

 

The ultimate aim of this study is to help novice programmers to improve their source 

code comprehension skills. As such, we want them to be able to overcome bottlenecks 

associated with source code comprehension. A bottleneck is something that an 

instructor understands well, but despite his/her best efforts to teach it to students, they 

(the students) still struggle to understand it. Essentially, the instructor fails to 

understand why students do not understand it. One possible explanation is that 

instructors might perform certain actions ‘automatically’ and consequently fail to make 

students aware of these actions or steps they follow to perform the actions. We are 

therefore trying to uncover these ‘hidden’ steps so that they can be explicitly modelled 

and taught to students.  

 

In this study, we are specifically focusing on source code tracing as a bottleneck. 

Preliminary findings of this study suggest that even senior undergraduate students are 

unable to reliably read/work through a section of source code in order to predict the 

correct output (tracing). Do you have any questions regarding the bottleneck 

description? 

 

Ok, let us get started.  

 

In this interview, we will ask you a number of questions based on the steps that you 

follow or the mental/intellectual/cognitive moves you make in tracing through source 
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code. Basically, we want to explore the techniques or processes or strategies or tactics 

that you use when you trace through source code. Also note that you are used to being 

able to answer questions put to you as an expert. But in this interview, as we explore 

your tacit knowledge, you may find it difficult to answer some of our questions. That 

will be a good sign and will mean the interview will be going well, so do not worry if it 

happens. It is also possible that we can ask you the same question more than once. 

If it happens, we may want you to go deeper or give more details or provide more 

clarification. This is a normal process in this type of interview.   

 

Ok, suppose you are presented with a piece of source code on a piece of paper and 

asked to read/work through it to predict its output (tracing). Can you explain to us how 

you would go about doing that?   

….. 

Assuming you are given the following question, how would you go about answering 

it? (Researcher handing over the question to the participant). 

 

Possible probing questions  

• What are the questions that come to your mind immediately when you see 

this problem? 

• When faced with a similar problem, what do you do? 

• How do you know what to pay attention to in the problem? 

• What would students have to do to understand or overcome that?  

• Is there any experience one needs to tackle that problem? 

• Are there any particular concepts one has to focus on? Why? 

• How would you make connections between these concepts?  

• What do you think enables other students to do it correctly while others 

cannot? 

• How do you know when you have found an answer? (i.e. when to stop?) 
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Appendix F – Ethical Clearance Approval    
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Appendix G – Participant Information Sheet (Phase 2 - Senior 

Students) 

  
Source code comprehension: Uncovering the cognitive challenges of novice 

programmers 
  
 

Dear Sir/Madam, 

I hereby invite you to participate in a research study on source code comprehension. 

This study is being conducted as part of the Ph.D. research project of Mr. Pakiso J. 

Khomokhoana under the supervision of Prof Liezel Nel.  

 

Participation in this research study requires signed consent from participants. Before 

you complete the consent form, you need to understand why the research study is 

being conducted, what your participation would require as well as potential benefits 

and risks. The Research Ethics Committee of the Faculty of Natural and Agricultural 

Science, University of the Free State has approved this research study. This 

information sheet and the attached consent form are only part of the process of 

informed consent. 

 

Please take time to read the following information carefully. Feel free to ask questions 

if anything is not clear or if you required more details about any aspect of the study.    

 

1. What is the aim of this study? 

The aim of this study is to use part of the seven-step Decoding the Disciplines (DtDs) 

framework to investigate how instructors can help CS programming students 

(especially novices) to improve their SCC skills.  

2. Why have I been invited to participate? 

You have been invited to participate because you are currently registered for or have 

successfully completed an advanced programming module.  
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3. What will I be asked to do?  

You will be required to answer a select number of Multiple Choice Questions in an 

observed environment. All the questions will contain source code fragments that you 

will have to study carefully and ultimately determine the output of each if it were to be 

executed on the Integrated Development Environment (IDE). In answering the 

questions, you will be required to use the thinking aloud technique. Moreover, you will 

be required to explain to the experimenter (interviewer and/or observer) the steps that 

you will take and why you will take such steps or think in a certain way as you work 

toward your answers. The experimenter will prod you verbally to keep you talking 

when you become silent.  

4. Are there any possible risks and/or benefits from participating in this study? 

There are no known or anticipated risks as a result of participating in the study. 

Furthermore, participants will not receive any direct benefits for their participation.  

5. What if I change my mind during or after the study?   

If you decide at any time during the experiment session that you no longer wish to 

participate in the research activities, you may withdraw your consent without providing 

any explanation. The information collected from you up to the point when you withdraw 

will be retained and may be used for the study. 

6. What happens to the information I provide? 

All information associated with you will be kept in private. Only the researcher and the 

supervisor will have access to the information. In publishing any results from this study, 

you will not be identified unless you give me specific permission to do so. I may also 

share the data with other researchers so that they can check the accuracy of my 

conclusions. However, this can only be done when I am confident that your 

confidentiality is fully protected. Any local electronic data will be stored on secured 

computers where only the researcher can gain access to the data. All physical and 

electronic records containing information that can identify you will be destroyed one 

year after publication of the study results. 
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7. How will the results of the study be published? 

Written findings will be published online or in print journals; and written and/or video 

reporting may be presented at local, provincial, national or international academic 

conferences. The objective will be to advance an understanding of the cognitive 

challenges of novice programmers with source code comprehension. Your identity will 

remain anonymous in all written presentations of data via pseudonyms and the 

reporting of aggregated results. 

8. What if I have questions about this study? 

Please feel free to contact the researcher or supervisor if you require further 

information about the study. If you have concerns or complaints about the conduct of 

this study, please contact either the supervisor or the Research Ethics Coordinator of 

the Department of Computer Science and Informatics at the University of the Free 

State. 

Contact details: 

• Researcher: khomo_khoana@yahoo.com or (+27) 060 620 7710 

• Supervisor: nell@ufs.ac.za or (+27) 051 401 3591 

• Departmental Research Ethics Coordinator: BeeldersTR@ufs.ac.za or 

(+27) 051 401 9320 

9. How do I give my consent to participate? 

Complete the attached consent form if you understand and agree to take part in this 

study. Please submit the completed consent form to the researcher. You may keep 

this information sheet for your own records. 
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Appendix H – Participant Information Sheet  

(Phase 3 - Experts)  

   
Source code comprehension: Uncovering the cognitive challenges of novice 

programmers 
  
 

Dear Sir/Madam, 

I hereby invite you to participate in a research study on source code comprehension. 

This study is being conducted as part of the Ph.D. research project of Mr. Pakiso J. 

Khomokhoana under the supervision of Prof Liezel Nel.  

 

Participation in this research study requires signed consent from participants. Before 

you complete the consent form, you need to understand why the research study is 

being conducted, what your participation would require as well as potential benefits 

and risks. The Research Ethics Committee of the Faculty of Natural and Agricultural 

Science, University of the Free State has approved this research study. This 

information sheet and the attached consent form are only part of the process of 

informed consent. 

 

Please take time to read the following information carefully. Feel free to ask questions 

if anything is not clear or if you required more details about any aspect of the study.    

1. What is the aim of this study? 

The aim of this study is to use part of the seven-step Decoding the Disciplines (DtDs) 

framework to investigate how instructors can help CS programming students 

(especially novices) to improve their SCC skills.  

2. Why have I been invited to participate? 

You have been invited to participate because you have experience in teaching a 

programming course and/or you are working in the programming industry. 
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3. What will I be asked to do?  

You will be required to participate in a face-to-face interview. The duration of this 

interview will not be longer than 60 minutes. In this interview, you will be asked to 

explain in explicit details the steps that you would follow to solve a given source code 

comprehension related problem. For purposes of capturing all occurrences of the 

interview proceedings, the interview will be video/audio-taped. 

4. Are there any possible risks and/or benefits from participating in this study? 

There are no known or anticipated risks as a result of participating in the study. 

Furthermore, participants will not receive any direct benefits for their participation.  

5. What if I change my mind during or after the study?   

If you decide at any time during the interview session that you no longer wish to 

participate in the research activities, you may withdraw your consent without providing 

any explanation. The information collected from you up to the point when you withdraw 

will be retained and may be used for the study. 

6. What happens to the information I provide? 

All information associated with you will be kept in private. Only the researcher and the 

supervisor will have access to the information. In publishing any results from this study, 

you will not be identified unless you give me specific permission to do so. I may also 

share the data with other researchers so that they can check the accuracy of my 

conclusions. However, this can only be done when I am confident that your 

confidentiality is fully protected. Any local electronic data will be stored on secured 

computers where only the researcher can gain access to the data. All physical and 

electronic records containing information that can identify you will be destroyed one 

year after publication of the study results. 

7. How will the results of the study be published? 

Written findings will be published online or in print journals; and written and/or video 

reporting may be presented at local, provincial, national or international academic 

conferences. The objective will be to advance an understanding of the cognitive 

challenges of novice programmers with source code comprehension. Your identity will 
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remain anonymous in all written and visual presentations of data via pseudonyms and 

the reporting of aggregated results. 

8. What if I have questions about this study? 

Please feel free to contact the researcher or supervisor if you require further 

information about the study. If you have concerns or complaints about the conduct of 

this study, please contact either the supervisor or the Research Ethics Coordinator of 

the Department of Computer Science and Informatics at the University of the Free 

State. 

Contact details: 

• Researcher: khomo_khoana@yahoo.com or (+27) 060 620 7710 

• Supervisor: nell@ufs.ac.za or (+27) 051 401 3591 

• Departmental Research Ethics Coordinator: BeeldersTR@ufs.ac.za or 

(+27) 051 401 9320 

9. How do I give my consent to participate? 

Complete the attached consent form if you understand and agree to take part in this 

study. Please submit the completed consent form to the researcher. You may keep 

this information sheet for your own records. 
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Appendix I – Participant Consent Form (Phases 1, 2 & 3)      

 

Please tick () to indicate you consent to the following: 

 

I have read the Participant Information Sheet and the nature and purpose of the research 
study has been explained to me. I understand and agree to take part.   

Yes  No  

I understand the purpose of the research study and my involvement in it. Yes  No  

I have been given sufficient time to consider whether or not to participate in this study. Yes  No  

I am satisfied with the answers I have been given regarding the study and I have a copy of 
this consent form and information sheet. 

Yes  No  

I understand that taking part in this study is voluntary and that I may withdraw from 
participation at any time.  

Yes  No  

I understand that while information gained during the study may be published, I will not be 
identified and my personal responses will remain confidential. 

Yes  No  

I know who to contact if I have any questions about the study in general. Yes  No  

I understand my responsibilities as a study participant. Yes  No  

I wish to receive a summary of the results from the study. Yes  No  

   

Initials and Surname:  …………………………………………………………………………… 

Student/Staff number:  ………………………………………………………………………..… 

Signature: …………………………………….…………………………………………………… 

Date: …………………………………..……….…………………………………………………… 

 

 
 

 

Study title: Source code comprehension: Decoding the cognitive challenges of novice 
programmers 

Researcher: Mr. Pakiso. J. Khomokhoana (khomo_khoana@yahoo.com) 
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