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DEFINING NOTATION 

 

N.1 Mathematical 

{ }xdiag    the elements of the vector x written on the main diagonal of the  
   formed matrix and all other elements of the matrix taking on the value   
   zero.  

[ ]Aetr    exp[trace of the matrix A] 

( ) ( )tgtf ∝    the functions of f and g  are proportional 

( )xΓ     gamma function (x > 0) 
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( )Atr     trace of the matrix A 
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N.2 Probabilistic 
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( )?|xf    density of variable X , conditional on parameter θ 

( )?|yf~Y   Y is distributed with density ( )?|yf  

R is a partitioned matrix such that partition R11 is of order a rows by a  
columns, partition R 12 is of order a  rows by b  columns, etc. 
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( )Σ,θN    multivariate normal distribution 
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N.4 Statistical 
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CHAPTER 1 

INTRODUCTION 

1.1 WHAT IS LACTATION 

The term lactation may be defined as the secretion of milk manufactured from simple blood 

nutrients by the milk -synthesising cells of the mammary glands, together with the removal 

thereof from the mammary gland (Hurley, 2003).  These special glands, also known as 

mammae, are found in the udder of the females of mammal species and have the same simple 

and relatively homogeneous basic structure for all mammal species. 

In mammals the purpose of milk is to feed the newborn and therefore lactation usually begins 

at the end of pregnancy.  The stimulation of the mammary gland to start producing milk 

around the time of birth or parturition is controlled by changes in the levels of certain 

hormones, some of which are involved in the action process of parturition.  It is the removal 

of milk from the udder, usually but not necessarily by the newborn, that initiates lactation. 

A fluid, known as colostrum, is secreted before true milk is produced.  This first secretion 

from the udder occurs shortly after or sometimes even before parturition of the infant.  

Colostrum is a relatively clear fluid containing, amongst others, serum, white blood cells, and 

protective antibodies and is mainly responsible for immunity transfer during the first few 

hours of life, making it vital to the survival of the newborn.  The composition of the colostrum 

secretion gradually changes over a period of 2 to 3 days after parturition, depending on the 

mammal species under consideration, to that of mature milk.  Both colostrum and milk are 

secreted in response to the sucking action of the infant on the nipple or teat.  This sucking 

action can also be simulated by artificial means, such as milking by hand and the milk 

machines used in the dairy industry (Mepham, 1976). 

Lactation is controlled by hormones resulting in different amounts of milk secreted at various 

stages of lactation.  It is generally accepted that as a result of the influence of hormones, 

together with the stimulus of milk removal, milk yield rises to a peak, where after for the rest 

of lactation milk yield is in continual decline.  The daily milk yield, length of time until an 

animal reaches peak milk yield, as well as the duration of lactation differs from mammal 
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species to mammal species and sometimes even for different breeds within a certain species.  

Total milk yield is the result of the combination of the amount of daily milk produced and the 

duration of lactation.  Secretion of milk stops when the infant is no longer allowed to suckle 

or when artificial stimulation of the mammary glands end (Whittemore, 1980). 

 

1.2 MILK COMPOSITION 

Milk may be described as a white liquid designed for the nourishment of the infant, of which 

water constitutes over 80% by weight in most mammal species (Mepham, 1976).  Cow milk, 

for example, contains approximately 87,4% water (Whittemore, 1980).  The remaining 

constituents are solids in the form of lipids, carbohydrate and proteins, as well as various 

vitamins and minerals.  Milk is secreted as a complex mixture of these components.  The 

composition of milk, however, varies considerably between species and even within the same 

species, as well as during lactation – with the major changes usually occurring soon after the 

start of lactation. 

Milk is synthesised in specialised secretory cells of the mammary glands from substances 

absorbed from the blood of the mother.  Through a process known as biosynthesis lipids, 

commonly known as milk fat, are synthes ised mainly from triglycerides that are derivatives of 

glycerol, but also from other fatty acids and glucose in the blood.  Milk fat droplets form the 

cream of milk.  Milk fat is the most variable component of milk and ranges from a little over 

1% to greater than 50%, depending on the mammal species under consideration.  

Considerable variation in milk fat content may also occur within mammal species. 

Lactose, present in the milk of most mammals, is unique to the mammary gland and plays an 

important role in milk synthesis.  It also forms the major carbohydrate in milk.  Lactose is 

defined as the sugar of milk synthesised from blood glucose of the mother.  As a result of the 

close relationship between lactose synthesis and the amount of water drawn into milk through 

the process of osmosis, the lactose content of milk is the least variable component of milk. 

Several types of proteins are found in milk, but the major milk proteins are unique to milk.  

The major milk proteins may be divided into two main groups, caseins and whey proteins.  

Whey proteins found in milk are mainly β-lactoglobulin, α-lactalbumin, serum albumin and 

immunoglobulins, although long list of enzymes, hormones, growth factors, and other protein 



3 

components also form part of the whey protein content of milk.  Milk proteins are synthesised 

form amino acids.  The protein content of milk also varies considerably among species and 

sometimes even within species (from 1% to 14%), although not as much as milk fat.  Hurley 

(2003) points out that it is generally accepted that protein percentage is positively correlated 

with milk fat percentage. 

Because milk is the only source of food in mammal infants, the nutritional composition there-

of is important with respect to skeletal and soft tissue development.  Milk minerals provide 

these necessary components in the form of calcium and phosphorus, secreted into milk in a 

complex with caseins.  Milk also contains most other minerals found in the body; these 

include sodium, iron and potassium, to name a few.  In order to contribute to the general 

health of the infant, milk also contains all the major vitamins.  Fat-soluble vitamins contained 

primarily in milk fat are vitamins A, D, E and K.  The B vitamins are found in the aqueous 

phase of milk, as these are water-soluble.  In addition to all of the above, milk also contains a 

number of other biochemical components, including bioactive factors such as growth 

hormones, enzymes and various others (Hurley, 2003). 

 

1.3 IMPORTANT CHARACTERISTICS OF LACTATION 

The purpose of milk produced by mammals in nature is to feed the infants of these mammals, 

which are at parturition totally dependent on the mother and unable to find food by 

themselves.  Therefore, milk production commences at a relatively high rate at parturition.  As 

the infant grows, the amount of milk secreted continues to increase over a period of time in 

order to satisfy the needs of the growing infant until a peak production level is reached.  Once 

this peak level is reached, the mother can no longer fulfil in the growing nutrient requirements 

of the infant.  The duration of this increase in milk production until peak level, as well as the 

level of peak yield, differ for different species of mammals.  After peak production is attained, 

milk production gradually declines.  This decline is generally associated with the infant 

becoming more independent from its mother, resulting in the development of the ability of the 

infant to feed by itself.  Subsequently, weaning of the infant by its mother takes place (Lee et 

al., 1991).  Hurley (2003) refers to the rate of decline in milk production as the persistency of 

milk production.  In the dairy industry, where the infant is removed from the mother a few 

days after parturition, machine milking simulates the same effect. 



4 

The variation in the milk production during lactation produces what is termed a lactation 

curve.  According to Ruvuna et al. (1995) lactation curves represent the relationship between 

milk yield and time after parturition.   The shape of the standard lactation curve may be 

described as increasing, at a relatively high rate, up to the point where peak production is 

obtained, after which it declines at a slower rate until the end of the milk production cycle.  

Standard curves of this form are often referred to as type I curves.  Variations from this 

standard pattern can however sometimes occur.  In some red deer, for example, a 

continuously decreasing curve has also been found.  Lactation curves of this nature are 

generally referred to as so-called type II curves (Landete-Casitllejos and Gallego, 2000), but 

may sometimes also be referred to as atypical curves (Ferris et al., 1985).  These atypical 

curves are commonly found in cases where no lactation records prior to peak are observed.  

Since the first research on lactation has taken place, a variety of functions have been used to 

model lactation.  The majority of these functions, however, have the two important 

characteristics in common.  Milk yield as a function of time is firstly peaked and secondly 

skewed to the right, to represent a lactation curve that is desirable with respect to the 

biological progression of the process (Tozer and Huffaker, 1999). 

Whittemore (1980) noted that at the start of lactation, the first milk or colostrum contains 

twice the normal concentration of solids, five times the protein, approximately twice the fat 

and half the lactose.  Once this composition has settled down and true milk is produced, a 

certain pattern in both yield and composition becomes apparent.  Fat and protein content 

usually vary inversely to yield, while lactose in most cases goes into steady decline over the 

whole lactation.  There is little day-to-day variation in protein and lactose content of milk and 

any changes that occur are gradual.  The fat content of milk, however, does vary considerably 

from day to day.  

To make provision for the production of colostrum, almost all studies of lactation consider 

changes in milk production and composition only from the point in time that true milk is 

produced.  This means that the study of lactation in mammals only commences 2 to 3 days 

after parturition, depending on the mammal species under consideration. 

According to Hurley (2003), fat is the most variable constituent of milk, while lactose is the 

least variable, but differences among individuals within a breed are often greater than 

differences among breeds.  Although it is generally accepted that production of fat and protein 
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are correlated, the production of these composition constituents seem to be inversely related 

to lactation yield (Groenewald and Viljoen, 2003). 

 

1.4 WHY IS IT IMPORTANT TO MODEL LACTATION 

Describing lactation in mammals using a lactation curve aims at providing a concise summary 

of the pattern of milk yield.  The shape of the resulting lactation curve provides valuable 

information about the biological and economic efficiency (Grossman and Koops, 1988) of the 

animal or herd under consideration. 

Milk is extracted from dairy animals for the purpose of feeding people.  Around the world, 

mainly cow milk is used for this purpose, although a small volume of goat and sheep milk is 

also consumed.  From a management point of view, knowledge of the lactation curve of 

lactating dairy animals is required for feeding, breeding and economic management of a dairy 

herd.  Lactation curves are especially important when making decisions that are time-

dependent.  Knowing when to expect an animal to reach peak yield, would affect the feeding 

strategy followed, allowing economic management of feed to the extent that would satisfy the 

animal’s requirement during various stages of lactation, reduce cost, and possibly maintaining 

peak yield for as long as possible (Tozer and Huffaker, 1999). 

Lactation curves also allow for the identification of animals with a relatively constant yield 

throughout lactation, as well as animals with a high peak yield, but sudden decline thereafter.  

Information provided by lactation curves could also assist management, where decisions 

concerning aspects such as culling and milking strategies are concerned.  It may for instance 

not be worthwhile to carry on milking an animal for an extended period of time, if it yields 

most of its milk early in lactation and then shows a sudden decline with respect to yield 

thereafter (Sakul and Boylan, 1992). 

Lactation m odels may also be used in prediction of future milk yields of an individual animal 

or a herd.  The objective when using a lactation curve in prediction, is to predict yield on each 

day of lactation with minimum error in the presence of variation as a result of environmental 

and other factors, in order to determine the underlying pattern of milk yield.  The extent of the 

usefulness of a lactation model depends on how well it succeeds in imitating the biological 

lactation process and how well it adjust for environmental and other factors that could 
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influence production (Olori et al., 1999).  Management decisions may also be made based on 

yield early in lactation, together with prediction of remaining yield.  For example, in 

identifying sick animals before the manifestation of clinical signs and in identifying animals 

with special dietary needs (Gipson and Grossman, 1989).  Prediction information may also be 

of value in deciding on culling or keeping breeding stock (Sherchand et al., 1995). 

In general, two possible payment schemes are applicable to the dairy industry.  The producer 

may be paid for his milk based on quantity alone, or paid according to quantity once it has 

been adjusted for quality.  Depending on the ultimate use of the milk as intended by the 

purchaser, premium payments for milk could be related to the content of the milk with respect 

to milk-fat, protein or total milk solids and therefore it is often important to also consider 

curves fitted to the lactation traits, fat and protein, as well as curves fitted to milk yield when 

studying lactation.  Selection of contributors to a dairy herd could therefore be based on all of 

milk, protein and fat yield. 

In some countries milk quotas have been introduced, resulting in an increase in yield above 

the specified quota not being desirable.  For this reason it might be more beneficial to include 

animals in a dairy herd that peak at a lower, but more sustainable yield level, i.e. animals that 

produce milk at a greater level of persistency (Ferris et al., 1985) .  Animals with a high level 

of peak yield followed by a sharp decline in production thereafter would be undesirable.  

Tekerli et al. (2000) points out that cows with flatter lactation curves, seem to be less prone to 

incidences of metabolic and reproductive disorders, which often occurs as a result of the 

physiological stress of high levels of yield.  Lactation that follows a flatter curve may, 

however, result in a slight reduction in total milk yield (Varona et al., 1998). 

One should not only be focusing on the dairy industry when considering lactation curves.  For 

example, milk yield of the dam is the single most influential factor in the weaning weight of a 

beef calf and for this reason it is important when managing beef cattle to understand the shape 

of the lactation curve in a beef cow.  The pattern of milk production would impact on the 

feeding and weaning strategies followed, so that economically beneficial decisions may be 

taken  (Kim et al., 1998). 

Whittemore (1980) warns that the use of lactation curves in both research and farm 

management should be approached with caution.  The idea is not that a herd should follow the 

predetermined curve, but that once such a curve has been set up for a herd, it should act as a 
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reference point from which deviations may be observed and causes for such deviations be 

investigated. 

By fitting a parametric curve to the pattern of milk yield and to the yields of the traits of milk 

production, statistical analysis of the parameter estimates are also made possible. 

 

1.5 FACTORS INFLUENCING LACTATION 

As early as 1969, Wood already commented on the fact that the shape of the lactation curve in 

cows is affected by not only biological factors such as age and fertility of the cow, but also by 

various environmental factors.  He specifically noted that season of parturition probably has 

the most drastic effect on the shape of the lactation curve. 

According to Whittemore (1980), environmental and seasonal changes all bring about 

compositional changes in milk.  The so-called comfort zone for most breeds of dairy cattle for 

instance, is between 5°C and 25°C, with temperatures below or above this generally being 

responsible for a reduction in yield.  With respect to composition traits, low temperatures may 

increase the fat content of milk, while high temperatures are usually associated with a decline 

in milk fat.  Hurley (2003) points out that at elevated temperatures the reason for this is that 

milk production and feed consumption are reduced automatically in an effort to counter the 

production of heat associated with these metabolic processes.  Reduced milk yields are the 

result of depressed appetite.  Heat stress is especially harmful to peak milk production.  

Season of parturition is also expected to have a significant effect on total milk production.  

For cows, milk yields over the entire lactation seems to be higher when parturition takes place 

in autumn and decreases progressively when parturition occurs in winter, spring or summer.  

The reason for this is probably related to both temperature and the quality and availability of 

digestible feeds.  Ferris, Mao and Anderson (1985) reported that season of parturition affected 

initial yield, peak yield, rise to peak and decline thereafter, and time of peak yield in dairy 

cows.  Tekerli et al. (2000) specifically found that peak yield in dairy cows is higher when 

parturition takes place in autumn or winter.  In the case of dairy goats, Ruvuna et al. (1995) 

noted that the greatest yield was obtained from does kidding in the hot dry season and the 

lowest yield form does kidding in the cold dry season.  Gipson and Grossman (1990) confirm 

that season of kidding in dairy goats affects both initial and peak yield. 
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In cows, milk yields increase, be it at a decreasing rate, until about 8 years of age  and then 

decrease at an increasing rate (Hurley, 2003).  The production of mature cows is about 25% 

more than that of 2-year-old heifers, with approximately one fifth of this increase attributed to 

body weight while the remaining 80% results from increased udder development as a result of 

recurring parturitions.  Although a large cow generally produces more milk than a small cow, 

the relationship between body weight and milk production is not directly proportional.  Freeze 

and Richards (1992) also confirmed the effect of age on the lactation curve of Holstein dairy 

cows, but in their study maximum yield was attained at an age of roughly 6½ years.  With 

respect to the composition traits, their study showed that the fat content increased with age, 

but that protein content starts declining as soon as the total yield starts declining, that is after 

about 6½ years.  Mostert, Theron and Kanfer (2001) found that during the first two parities, 

younger dairy cows have lower total milk yield.  Franci et al. (1999) reported that in the case 

of Massese sheep ewes, only total milk yield was affected by the age of an ewe. 

Batra (1986), however, found that the effect of age of dairy cows on the lactation curve was 

not significant.  Factors that he found to have a significant effect on the lactation curve were 

the station at which the herd is located, both year and month of parturition, and the number of 

days since the end of previous lactation.  Jamrozik and Schaeffer (1997) mention that test day 

yields for Holstein dairy cows are affected by factors such as breed, region, how the herd is 

managed, day of the year (including weather conditions), parity, age at calving, month of 

calving, days in milk, pregnancy status, medical treatments and number of milking times per 

day.  

Other studies considered parity number, which is the number of a particular parturition when 

considered in sequential order, rather than the age of the mother as having a significant effect 

on the lactation curve.  Rowlands et al. (1982) notes that peak yield in dairy cows occurs later 

during first parity than is the case for second parity.  Portolano et al. (1996) in their study of 

the lactation of Comisana sheep found a positive correlation between parity and peak yield, 

while parity and time of peak yield were negatively correlated.   

Gipson and Grossman (1989) reported that in dairy goats, time of peak yield was later for first 

than for third parity does and also that initial yield, peak yield and total yield were lower in 

first parity does than in third pa rity does.  They also mention that breed has little effect on the 

shape of the lactation curve.  In 1990, however, Gipson and Grossman reported that the breed 

of dairy goat did affect both the level and time of peak yield, but their finding on parity 
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remained that initial and peak yield were lower for first than for later parity does and that time 

of peak yield was later for first parity does.  Apka et al. (2001) found that in Red Sokoto goat 

herds, season of parturition and parity affected the shape of the lactation curve, with highest 

yield also occurring in the third parity.  Groenewald and Viljoen (2003) found that in dairy 

goats, peak yield increased with increasing parity up until about the third or fourth parity and 

time of peak yield was later for first than for later parity does.  Total milk yield was affected 

by the time during the season that kidding occurred, with higher yields occurring in does 

kidding earlier in the season, and that year of kidding significantly affected both total yield 

and peak yield.  These results corresponded with that of others studying lactation in dairy 

goats (Mavrogenis, Constantinou, and Louca, 1984; Kala and Prakash, 1990; Rabasco et al., 

1993; Kominakis et al., 2000).   

Wood (1970) noted that differences in management of herds, including the intervals between 

milk extraction sessions, did not seem to really affect the shape of the lactation curve.  He also 

noted that parity and season of calving were the two factors with the greatest influence on the 

lactation curve and as a result, inclusion of these two factors in a model would lead to more 

accurate prediction. 

Tozer and Huffaker (1999) pointed out that almost all research to that point in time had been 

carried out on lactation records of animals that roam in the northern hemisphere, where 

environmental conditions and management practices are very different from that which occur 

in the southern hemisphere.  They found that in the case of Australian Holstein-Friesian dairy 

cows, the resulting lactation curve shapes and yield characteristics differ from the results 

obtained from studies of dairy cows in Europe, North America and the United Kingdom.  Our 

study of lactation was carried out on data acquired under South African conditions and will 

therefore make a valuable contribution to the knowledge of lactation curves under southern 

hemisphere conditions. 
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CHAPTER 2 

HISTORICAL DEVELOPMENT OF LACTATION 

CURVES 

2.1 WHERE DID IT ALL START 

In all the models described it is assumed that ty  denotes daily milk yield, t denotes time in 

days after parturition, and a, b, c, d, m, k  and w denote model parameters.   

The first attempt at the development of a mathematical model to describe the lactation curve 

was as early as 1923.  Brody, Ragsdale and Turner (1923) used an exponential decline 

function of the following form for this purpose: 

)exp( ctayt −= .      (2.1) 

Although this model1 resulted in a good attempt to describe the declining phase of lactation, it 

was unable to model the initial rise in production to peak yield.  To overcome this limitation, 

Brody, Turner and Ragsdale presented an improved version of their model in 1924.  This time 

the model made provision for the initial rise to peak production by incorporating an inclining 

function into the model: 

)exp()exp( ctabtayt −−−= .     (2.2) 

This model meant that increase in yield to peak production took place at a rate of 

)()ln( bcb
c − .  Although this was a great improvement on their first model, later researchers 

such as Cobby and Le Du (1978) found on fitting this model to lactation data of cows, that it 

resulted in underestimation of milk yield in mid-lactation and overestimated milk yield in late 

lactation.  

This was followed by a parabolic exponential function introduced by Sikka (1950) to model 

milk yield.  This model: 

)exp( 2ctbtayt −=       (2.3) 

                                                 
1  Note that Wood attributes this model to Gaines, but work by Gaines in this field was only published in 1927, 
whereas Brody et al. already published their paper in 1923. 



11 

resulted in a bell shaped truncated curve that, as a result of the curve symmetry around peak 

yield, only fitted milk yield reasonably during first lactation. 

In 1958 Fischer attempted to improve on the Brody, Ragsdale and Turner model in (2.2), by 

substituting the exponential decline built into this model with a linear decline: 

)exp( ctabtayt −−−= .     (2.4) 

The result was a model that tends to the straight line bta − after peak yield has been obtained.  

Peak yield for this model occurs at )ln(1 bacc−  and the ratio ba /  estimates the duration of 

lactation.  This model underestimated peak milk yield and also peaked relatively early 

(Rowlands, Lucey and Russell, 1982). 

Vujicic and Bacic (1961) attempted a modification of the model in (2.1): 

( )cttcy a
t −= − exp .      (2.5) 

This model seems to be the first attempt at developing a model that varies both directly and 

exponentially with time. 

In an effort to improve on all models that existed at the time, Nelder (1966) suggested an 

inverse polynomial model be fitted to lactation data: 

)( 2ctbtatyt ++= .      (2.6) 

For this model peak milk yield of ( )( ) 12 −+ bac  occurs at time ( )ca .  The result was a 

model with a good fit when lactation started at a relatively low initial yield and peaked 

relatively early. 

This was followed by what has been described as one of the major advances in modelling 

lactation - the model suggested by Wood (1967).  Wood proposed a gamma function of the 

following form be used: 

)exp( ctaty b
t −= .      (2.7) 

In this model, the parameter a approximates the level at which production of milk commences 

at parturition.  According to Shanks et al. (1981) the parameter b is an index of the ability of a 

cow to make effective use of energy in producing milk, but mathematically according to 

Wood (1972) the parameter b represents the rate at which the rise to peak yield takes place 

and the parameter c  in turn represents the rate of decline after peak yield was attained.  Cobby 

and Le Du (1978) states that these interpretations of the parameters b  and c “is a considerable 

over-simplification and could be misleading”.  In 1977 Wood tried to justify the use of his 
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model from a physiological point of view, but still does not interpret the parameters b and c  

from a practical biological point of view.  From this model Wood (1967) also defined the 

following lactation curve characteristics: 

Total milk yield:    ( )11 +Γ= + b
c

a
y b        (2.8) 

Yield to time n :     dncnnay
n

n ∫ −=
 

0 

2 )exp(      (2.9) 

Time of peak milk yield:  cbt =                (2.10) 

Peak milk yield:     ( ) )exp(max bcbay b −=             (2.11) 

Wood also realised the need for a measure that could describe the ability of an animal to 

maintain peak production or the so-called measure of persistency of lactation.  As a first 

attempt Wood noted that, because total yield or y is a function of )1( +− bc , this may be used a 

measure of persistency.  It was reasoned that variation in total yield was almost entirely as a 

result of variation in a and in )1( +− bc , and because a describes the level at which lactation 

commences then, for all lactations commencing at the same level, variation in )1( +− bc would 

describe the remaining variation or the extent to which peak yield is maintained.  In 1970 

Wood used this measure of persistency in log form so that the measure of persistency of 

lactation became:    ( ) cbS ln1+−= .              (2.12) 

Rowland et al. (1982) mentions that because the Wood persistency measure is dimensionless, 

it is a valuable measure in comparison of persistency among both the various lactations of the 

same cow and lactations of different cows within a herd.  Grossman et al. (1999) criticised the 

Wood persistency measure as being “difficult to interpret biologically”. 

 To this day Wood’s equation is still widely used and generally regarded by animal scientists 

as one of the best models that exist for modelling lactation.  There is, however, one justifiable 

criticism of the Wood model in that it implicitly results in a production level of zero at time  

t = 0, which is known not to be true in most mammal species.  Tozer and Huffaker (1999) do, 

however, state that a cow initially yields colostrum instead of true milk, which is not 

considered to have any economic value, and therefore a cow only enters a dairy herd as 

contributor once it comes into true milk.  From an economic and management point of view, 

fixing milk yield at zero therefore does not represent a significant problem.  Some studies of 

the Wood model (Scott et al., 1996) found that this model has the tendency to overestimate 

milk yield prior to peak yield and in late lactation.  Underestimation of milk yield in mid-
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lactation sometimes also occurs.  This has resulted in the ongoing search for an even better 

lactation model.  

In the study of lactation curves in dairy goats Fuller (1969) used grafted polynomials to obtain 

a lactation model of t he following form: 

2
2

2
1

2 mrdrctbtayt ++++=            (2.13) 

where 1r  has the value t − 52 when t > 52 and 0 otherwise and 2r  has the value t − 85 when  

t > 85 and 0 otherwise.  No reference could however be found of this model being used in 

animals other than dairy goats and therefore the reason for the choice of the values 52 and 85 

in the above could not be ascertained. 

In 1971 the search for an improvement on the then existing lactation models continued with 

the proposal of the quadratic model by Dave: 

2ctbtayt ++= .              (2.14) 

The next attempt at finding a good lactation model was that of Madalena, Martinez and 

Freitas (1979) with the use of a simple linear regression model: 

btayt −= .              (2.15) 

The ingenuity of this model is questionable as it only represents a straight line with declining 

slope and is therefore unable to model the initial rise to peak yield.  

To improve on the previous effort Molina and Boschini (1979) proposed the combination of 

two straight lines of equal but opposite slopes that intersect at peak yield at time t0: 

( )



≥−+
<+=

00

0
2 ttttba

ttbtayt .           (2.16) 

The idea of equal but opposite slopes may be questionable, because milk yield in most 

mammal species rises to peak at a faster rate than the subsequent decline after peak yield has 

been reached.  

Working from a popular model as base, Dhanoa (1981) attempted to reparameterise the 

gamma function proposed by Wood in (2.6), with the following result: 

)exp( ctaty mc
t −=             (2.17) 
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where, m = time until peak milk yield is reached.  This model resulted in a lower correlation 

between parameters m and c, than was the case between parameters b and c in the original 

Wood model.  

In 1982 Singh and Gopal proposed two new models.  The first was the so-called linear cum 

log model: 

tcbtayt ln+−=             (2.18) 

and the second the quadratic cum log model:  

tdctbtayt ln2 +++= .           (2.19) 

In linear cum log model time of peak yield is at bc .  Time of peak yield for the quadratic 

cum log model is at 
c

cdbb
4

82 −±− .  Unfortunately at time t = 0 both these models are 

undefined, because ln t = −∞. 

In an attempt to include a seasonality effect in the Wood’s model, Goodall (1983) proposed 

the inclusion of a categorical variable D that takes on the value 0 in the colder 6 month period 

from October to March in the northern hemisphere and the value 1 from April to September, 

resulting in the model: 

)exp( dDctaty b
t +−=             (2.20) 

where d then estimates the seasonality factor.  This technique allowed for quantitative 

assessment of the effect of seasonal changes on yield. 

Another modification of the gamma function proposed by Wood was attempted by Jenkins 

and Ferrell (1984) by setting the exponent of t, which is the value of b in the Wood model, 

equal to 1: 

)exp( ctatyt −= .              (2.21) 

This model has one important limitation in that the rise to peak yield is relatively slow, 

rendering this model of little use in practise (Landete-Castillejos and Gallego, 2000). 

In 1987 Ali and Scheaffer suggested a polynomial regression model of the following form be 

used to model lactation: 

( )22 lnln tktdctbtayt ++++=            (2.22) 

This model only adds one term, ( )2ln tk , to the model fitted by Singh and Gopal (1982). 
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Working from the model introduced by Fischer as basis, Wilmink (1987) introduced two 

lactation models.  In the first model a quadratic term was added and an adjustment made to 

the exponential term, resulting in 

      2)exp( dtwtcbtayt +−++= .            (2.23) 

This model was then adjusted to obtain the second model by dropping the quadratic term from 

his initial function: 

)exp( wtcbtayt −++= .            (2.24) 

In both (2.23) and (2.24) a  may be interpreted as the level at which production commences, b  

as the decrease after peak yield is reached and c as the initial rise to peak.  The factor w was 

set equal to 0,05 and is related to the time of peak yield, which for the data on Dutch Friesians 

used in this study was approximately 50 days after parturition.  The model in (2.24) was again 

applied by Olori et al. in 1999, but they estimated this factor to be w = 0,61.  

In 1988 Papajcsik and Bodero searched for a better performing model by combining into 

functional pairs combinations of certain increasing functions bt , ( )t−− exp1 , ( )tln  and 

( )tarctan , and decreasing functions ( )t−exp  and ( )tcosh1 , where arctan and cosh 

respectively refers to the arctangent and hyperbolic cosine functions.  This resulted in the 

following six models: 

      )cosh(ctaty b
t =              (2.25) 

      ( ) )cosh(1 cteay bt
t

−−=             (2.26) 

      ( ) )cosh(arctan ctbtayt =             (2.27) 

      )exp()ln( ctbtayt −=              (2.28) 

     )cosh()ln( ctbtayt =              (2.29) 

  and    )exp()arctan( ctbtayt −= .            (2.30) 

Their study compared these six models to those described in (2.1) to (2.3), (2.6) and (2.7), 

(2.14) to (2.16), and (2.18).  The models of Wood and (2.25) where found to be the best 

representations of the lactation curve for the data on Holstein cows considered.  

Next a novel approach was introduced by Grossman and Koops (1988) in that they suggested 

that lactation could be viewed as a multiphasic biological process.  Although at this point it 

was not uncommon to view lactation as a two stage process, usually divided into incline until 

peak yield as first stage and decrease after peak yield as second, nobody thought of suggesting 
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lactation to have more than two stages.  The suggested multiphasic logistical function 

determines the total milk yield by obtaining the sum of the yield resulting from each of the 

lactation phases: 

( )( )[ ]{ }∑
=

−−=
n

i
iiiit ctbbay

1

2tanh1            (2.31) 

where n is the number of lactation phases considered and tanh is the hyperbolic tangent.  For 

each phase i, peak yield equals aib i and occurs at time ci.  The duration of each phase is 

related to 2bi
−1 that represents the time it takes to acquire 75% of asymptotic total yield during 

that phase.  This model was applied as a two stage or diphasic and a three stage or triphasic 

model only, with a better fit resulting from the triphasic model due to smaller and less 

correlated residuals.  This is attributed to the fact that early in lactation the diphasic model 

results in a poor fit because the hyperbolic tangent requires symmetry in both phases, and 

when only two phases are considered a symmetric curve does not fit the possible steep rise 

that occurs early in lactation.  Gipson and Grossman (1989) noted that, although more 

research in this regard is required, for a diphasic model the first phase could possibly be 

considered as the so-called “peak” phase because of its  “proximity to overall peak and short 

duration”.  Similarly the second phase could perhaps be referred to as the “persistency” phase.  

This model is criticised by Rook et la. (1993), because, although it seems to behave well when 

fitted to lactation data, no justification could at the time be given for why lactation may be 

viewed as a multiphasic process. 

In 1989 Morant and Gnanasakthy considered curves that resulted from the study of the 

proportional rates of changes in lactation yield.  Mathematically the pattern of the 

proportional changes is defined by ( ) ydtdy .  Lactation curves were obtained from these 

proportional rates of change by determining the integral of ( ) ydtdy  which then results in 

the natural logarithm of yield at time t, or tyln .  The result: 

))exp(exp( kk tdbtayt −+−=            (2.32) 

( )( )tdtcaty b
t −−= exp             (2.33) 

))exp(exp( 2 kktdctbtayt −++−=           (2.34) 

)exp( 2 tdctbtayt ++−=             (2.35) 

( ))exp( 2 ktdctbtayt +++−= .           (2.36) 
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They experienced problems in fitting the models denoted in (2.32), (2.34) and (2.36).  Fitting 

the curves in (2.33) and (2.35) were, however, straight forward, with the smallest correlation 

among parameters obtained for (2.35).  This lead to the reparameterisation of (2.35) resulting 

in the model: 

( )tdctbtayt ++−= 2''exp              (2.37) 

where ( ) 100' 0ttt −=  and t0 is a constant, which for the purpose of their study was fixed at 

the value 150 days.  Later researchers of lactation models, such as Williams (1993), referred 

to this model as the 4-parameter Morant model.  Morant and Gnanasakthy then rearranged 

this model so that it became 

( )( )tdctrtbtayt +++−= 2''1'exp             (2.38) 

where r is a constant determined as the slope of the regression for the estimates of parameter c  

on the estimates of parameter b  as obtained from (2.37).  It was noted that as a result of the 

increase in the value of t as time goes by, the parameter d only really affects the shape of the 

curve in the early days of lactations with its effect becoming more and more negligible as 

time goes by.  A major advantage of this model is that the parameters have relatively simple 

interpretations.  The logarithm of parameter a represents the expected yield on day t0.   

Parameter b  is defined at the rate of change in yield at t0 and is the main shape-affecting 

parameter of the curve.  The parameter c also affects the shape of the lactation curve and is 

said to measure “the extent to which persistency changes during lactation”.  They, howeve r 

defined persistency as the extent to which day-to-day yields at any stage of lactation are 

maintained and may be determined using  

( )[ ] 2100'21 tdtcbrb −−+− .              (2.39) 

The parameter d  provides the rate at which yield increase during early lactation.  This model 

was also adopted by Williams (1993) to fit lactation curves to British dairy goats, but he 

comments on the fact that effective estimation of d is problematic as a result of the drastic 

effect of errors in observation early in lactation, as well as because of the small amount of 

data available prior to peak yield when compared to that after peak yield.  To overcome this 

he used the mean of the estimated d's in the model instead of calculating a unique estimate for 

every lactation curve fitted.  This, however, still does not imply that d  is a constant.  Gipson 

and Grossman (1990) in a review of lactation curves fitted to lactation data obtained from 

dairy goats noted that the model in (2.33) may be referred to as the general exponential, and 

that by setting both b and d equal to zero the model becomes the exponential function 

suggested by Brody, Ragsdale and Turner (1923), by setting b equal to zero the model results 
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in the parabolic exponential function suggested by Sikka (1950), and by setting d equal to 

zero the incomplete gamma function fitted by Wood (1967) is obtained. 

In order to limit the number of parameters to be estimated in case of a multiphasic model, a 

diphasic model is preferred over one with more than two phases.  Weigel et al. (1992) 

attempted to improve the diphasic version of the Grossman and Koops model by means of a 

power transformation of time and replacing aibi by a new parameter di.  This was the applied 

to lactation data as both a single stage or monophasic model : 

( )( )[ ]ctbdy k
t −−= 2tanh1               (2.40) 

and a diphasic model: 

( )( )[ ] ( )( )[ ]22
2

211
2

1 tanh1tanh1 ctbdctbdy k
t −−+−−=  .    (2.41) 

In 1993 Rook, France and Dhanoa again attempted to model lactation as the product of a 

constant, A , a monotonically increasing function of time, )(1 tφ , and a monotonically 

decreasing function of time, )(2 tφ .  The following six monotonically increasing functions 

were considered: 

the Mitscherlich function    )exp(1 bta −− ,            (2.42) 

the Michaelis-Menten function   ( )[ ]tba ++11 ,            (2.43) 

the generalised saturation kinetic function ( )[ ]ctba ++11 ,            (2.44) 

the logistic function     ( ))exp(11 bta −+ ,           (2.45) 

the Gompertz function     ( ) ( )( )[ ]btaa −−− exp1lnexp           (2.46) 

and the hyperbolic tangent     ( )[ ] 2tanh1 bta ++ .           (2.47) 

Only two monotonically decreasing functions were considered: 

the exponential function     ( )dt−exp              (2.48) 

and the inverse straight line    ( )ct+11 .             (2.49) 

This resulted in twelve lactation curves of the form ( ) ( )ttAyt 21 φφ= , that were fitted, together 

with the model proposed by Wood, to lactation data obtained from dairy cows.  It was found 

that the Wood model together with the following function combinations fitted the data well:  

Mitscherlich × exponential, Michaelis-Menten × exponential, logistic × exponential and 

logistic × inverse straight line. 
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Williams (1993) suggested that the 4-parameter Morant model be extended to a six parameter 

model to make it more comparable to the diphasic model suggested by Grossman and Koops 

in (2.31) with its six parameters.  The result was a model Williams referred to as the 6-

parameter Morant model: 

( )432 ''''exp mtkttdctbtayt ++++−=            (2.50) 

where ( ) 100' 0ttt −=  and t0 is a constant that Williams also fixed at the value 150 days.  As a 

result of the large number of parameters in this model, it provided a good fit to lactation data 

of white British dairy goats. 

In an effort to overcome the underestimation of peak yield and overestimation of yield later in 

lactation that occurs as a result of using the Wood model, Cappio-Borlino, Pulina and Rossi 

(1995) introduced a non-linear modification of the Wood model: 
)exp( ctb

t aty −=                (2.51) 

Although a lot more complex than the Wood model, this model reduced the extent of both 

underestimation early in lactation and overestimation in the final stage of lactation for the data 

used.  Franci et al. (1999) refers to this model as the bi-exponential function.  They also found 

that this model was well suited to describe lactation with an initial sharp rise in milk 

production.  

Guo and Swalve (1995) introduced a model, referred to as the mixed log model, of the 

following form: 

tcbtayt ln2
1

++= .             (2.52) 

This model differs from that suggested by Singh and Gopal (1982), referred to as the linear 

cum log model, in that the square root of t is obtained in the second term.  The model, 

however, tends to underestimate peak yield, while overestimating the post-peak yield (Olori et 

al., 1999). 

In 1999 Grossman, Hartz and Koops in their research on the persistency of lactation yield also 

introduced a novel approach to modelling lactation.  They viewed the lactation curve of  an 

average cow as the result of three intersecting straight lines.  The first of these lines is said to 

describe the initial rise in yield to peak, the second line has a slope of zero and represents the 

peak yield over the period for which it is sustained, while the third line represents subsequent 
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decline after peak.  As a result, two very similar models were suggested, the first the so-called 

lactation persistency model: 
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where Py  is the level of constant yield during the peak phase; 1b  is the slope of the straight 

line during the initial inclining phase, 3b  is the slope of the straight line during the final 

declining phase, 't  is the transition time from the slope of the first straight line to the slope of 

the second straight line, 1a  and 2a  are the durations of transition from the slopes of the first 

to the second, and from the second to the third straight line, and P is the number of days 

during which the level of constant yield of the peak phase is maintained.  The second model is 

simply a reduced form of the first model and referred to as the reduced lactation persistency 

model: 
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with the same parameter interpretations as in the lactation persistency model above.  The main 

advantage of both these models is that persistency, P, forms part of the model in the form of a 

parameter. 

As commented by Tozer and Huffaker (1999), a wide variety of different mathematical 

equations for modelling lactation are found in the literature and these have been applied to 

lactation data from a variety of different mammals.  Some of these resulting lactation curves 

perform better in certain studies than others, but so far no single lactation model has emerged 

as a consistent best performer in all cases.  Rekaya, Carabaño and Toro (2000) point out that 

the most desirable model would be one with a limited number of parameters and a biological 

interpretation that is of value from a practical point of view. 

Recently the focus in the study of lactation has moved away from attempts to find a standard 

robust model.  Instead researchers are now more concerned with the methods used to fit the 

existing models. 

Table 2.1 contains a summary of the above lactation models and the different animals to 

which these lactation models have been applied, together with the reference numbers of the 
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literature in the References where data on these animals have be used in the application of the 

various models.  Models that have the same origin or that are similar in structural nature have 

been grouped together in chronological order within blocks. 

Table 2.1:  Lactation model and application summary  
Brody et al. (1923) - exponential decline function: 

)exp( ctay t −=  
Dairy cows:  [5] 
Red deer:  [55] 

Sikka (1950) - parabolic exponential function: 
)exp( 2ctbtay t −=  

Dairy cows:  [87] 
Red deer:  [55] 

Fischer (1958): 
)exp( ctabtayt −−−=  

Württemberg Spotted Mountain cows:  [20] 
British Friesian cows:  [78] 
Dairy cows:  [13] [95] 
Holstein cows:  [86] 
  Vujicic and Bacic (1961): 

( )cttcy a
t −= − exp  

Dairy cows:  [97] 
Wilmink I (1987): 

2)exp( dtwtcbtayt +−++=      for  (w = 0,05) 
 Dutch Friesian cows:  [101] 
Fischer (1958): 

)exp( ctabtay t −−−=  
Württemberg Spotted Mountain cows:  [20] 
British Friesian cows:  [78] 
Dairy cows:  [13] [95] 
Holstein cows:  [86] 

Wood (1967) - gamma function: 
)exp( ctaty b

t −=  
Friesian cows:  [103] [104] [105] 
British Friesian cows:  [57] [78] [106] 
Dutch Friesian cows:  [42] 
Holstein-Friesian cows:  [70] [75] [94] 
Holstein cows:  [19] [83] [86] [91] 
Simmental cows:  [89] 
Spanish dairy cows:  [96] 
Brown Swiss cows:  [82] 
Dairy cows:  [13] [36] [37] [77] [85] [95] [107] [109] 
Hanwoo Korean beef cows:  [53] 
US Sheep breeds:  [81] 
Massese sheep:  [21] 
Dairy sheep:  [9] [10] 
Comisana sheep:  [73] 
Merino sheep:  [38] [39] 
Crossbred sheep:  [93] 
Saanen diary goats:  [40] 
White British dairy goats:  [100] 
Red Sokoto goats.  [2] 
Goats:  [79] 
Red deer:  [55] 

Wilmink II (1987):  
)exp( wtcbtayt −++=  

South African Holsteins cows:  [68]   (w = 0,05) 
South African Jerseys cows:  [68]   (w = 0,05) 
Holstein-Friesian cows:  [70]   (w = 0,61) 
Dutch Friesian cows:  [101]   (w  = 0,05) 
Dairy cows:  [95]   (w = 0,05) 

Dhanoa (1981) - reparameterise Wood: 
)exp( ctaty mc

t −=  
Friesian cows:  [18] 
 

Goodall (1983) - seasonally adjusted Wood: 
)exp( dDctaty b

t +−=  

British Friesian cows:  [34] [35] [57] 

Nelder (1966) - inverse polynomial: 
)( 2ctbtatyt ++=  

Red deer:  [55] 
Dairy cows:  [4] 
Holstein-Friesian cows:  [70] [94]  
Holstein cows:  [83] [86] 

Jenkins and Ferrell (1984) - adjustment of Wood: 
)exp( ctatyt −=  

Dairy cows:  [49] 
Red deer:  [55] 

Fuller (1969) - grafted polynomials: 
2

2
2

1
2 mrdrctbtay t ++++=  

 

Cappio-Borlino et al. (1995) - bi-exponential function: 
)exp( ctb

t aty −=  
Sardinian diary sheep:  [7] 
Massese sheep:  [21] 

Dave (1971) - quadratic function: 
2ctbtay t ++=  

Dairy sheep:  [10] 
Indian water buffalo:  [14] 

Morant and Gnanasakthy (1989) - general exponential: 
( )( )tdtcaty b

t −−= exp  
Friesian heifers:  [67] 
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Madalena et al. (1979) - simple linear regression: 

btayt −=  
Holstein-Friesian cows:  [15] 
Holstein-Friesian × Gir cows:  [15] 

Morant and Gnanasakthy (1989) – 4-parameter Morant: 
)exp( 2 tdctbtay t ++−=  

Friesian heifers:  [38] [67] 

Molina and Boschini (1979) - straight lines of equal, 
but opposite slopes: 

( )



≥−+
<+

=
00

0

2 ttttba

ttbta
y t

 

Holstein cows:  [66] 

Morant and Gnanasakthy (1989): 
( )( )tdctrtbtay t +++−= 2''1'exp  

where ( ) 100' 0ttt −=  and t0 = 150 days. 
Friesian heifers:  [67] 
Dairy cows:  [95] 
British Friesian cows:  [57] 
White British dairy goats:  [100] 

Singh and Gopal (1982) - linear cum log: 
tcbtayt ln+−=  

Indian dairy buffalo:  [88] 
Holstein cows:  [86] 

Williams (1993) – 6-parameter model Morant: 
( )432 ''''exp mtk ttdctbtay t ++++−=  

where ( ) 100' 0ttt −=  and t0 =150 days. 
White British dairy goats:  [100] 

Singh and Gopal (1982) - quadratic cum log: 
tdctbtayt ln2 +++=  

Indian dairy buffalo:  [88] 
Holstein cows:  [86] 

Morant and Gnanasakthy (1989): 
))exp(exp( kk tdbtayt −+−=  

))exp(exp( 2 kk tdctbtayt −++−=  

( ))exp( 2 ktdctbtay t +++−=  
Friesian heifers:  [67] 

Ali and Scheaffer (1987) - polynomial regression 
model: 

( )22 lnln tktdctbtayt ++++=  
Holstein-Friesian cows:  [70] 
Dairy cows:  [1] 
Guo and Swalve (1995) - mixed log model: 

tcbtay t ln2
1

++=  
Dairy cows:  [43] 
Holstein-Friesian cows:  [70] 

Grossman and Koops (1988) - multiphasic logistical 
function: 

( )( )[ ]{ }∑
=

−−=
n

i
iiiit ctbbay

1

2tanh1  

Dutch Friesian cows:  [42] 
Holstein-Friesian cows:  [94] 
Israeli Holstein cows:  [15] 
Dairy cows:  [95] 
White British dairy goats:  [100] 
Dairy goats:  [31] 

Papajcsik and Bodero (1988): 
)cosh(ctaty b

t =  

( ) )cosh(1 cteay bt
t

−−=  

( ) )cosh(arctan ctbtay t =  
Holstein cows:  [86] 
Friesian cows:  [72] 

Weigel et al. (1992) - adapted monophasic function: 
( )( )[ ]ctbdy k

t −−= 2tanh1  
Dairy cows:  [99] 
Holstein cows:  [86] 

Papajcsik and Bodero (1988): 
)exp()ln( ctbtayt −=  

)cosh()ln( ctbtay t =  

)exp()arctan( ctbtayt −=  
Friesian cows:  [72] 

Weigel et al. (1992) - adapted diphasic function: 
( )( )[ ] ( )( )[ ]22

2
211

2
1 tanh1tanh1 ctbdctbdy k

t −−+−−=  
Dairy cows:  [99] 
Holstein cows:  [86] 
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Grossman et al. (1999) - lactation persistency model: 
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Dairy cows:  [41] [95] 
 

Grossman et al. (1999) - reduced lactation persistency 
model: 
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Dairy cows:  [41] [95] 

Rook et al. (1993): 
Michaelis-Menten×exponential:  
 Ayt = ( )[ ] 11 −++ tba ( )dt−exp  

Generalised saturation kinetic×exponential: 
 Ayt = ( )[ ] 11 −++ ctba ( )dt−exp  
Logistic×exponential:   
 Ayt = ( ) 1)exp(1 −−+ bta ( )dt−exp  

Gompertz×exponential:  
 Ayt = ( ) ( )( )[ ]( )btaa −−− exp1lnexp ( )dt−exp  

Hyperbolic×exponential:   
 Ayt = ( )[ ]( )2tanh1 bta ++ ( )dt−exp  

Mitscherlich×inverse straight line:  
 Ayt = ( ))exp(1 bta −− ( ) 11 −+ ct  

Michaelis-Menten×inverse straight line: 

 Ayt = ( )[ ] 11 −++ tba ( ) 11 −+ ct  
Generalised saturation kinetic 
  × inverse straight line: 
 Ayt = ( )[ ] 1

1
−

++ ctba ( ) 11 −+ ct  

Logistic×inverse straight line:  

 Ayt = ( ) 1)exp(1 −−+ bta ( ) 11 −+ ct  

Gompertz×inverse straight line:  
 Ayt = ( ) ( )( )[ ]( )btaa −−− exp1lnexp ( ) 11 −+ ct  

Hyperbolic×inverse straight line:  
 Ayt = ( )[ ]( )2tanh1 bta ++ ( ) 11 −+ ct  
Dairy cows:  [77]   

Rook et al. (1993): 
Mitscherlich ×exponential:  
 Ayt = ( ))exp(1 bta −− ( )dt−exp  
Holstein-Friesian cows:  [94] 
Dairy cows:  [77] [95] 
 

 
 

2.2 TYPICAL LACTATION CURVE SHAPES 

It is generally accepted that the standard lactation curve that applies to most mammal species 

increases up to the point where peak yield is attained, whereafter a gradual decline takes place 

until the end of the lactation process is reached.   Standard lactation curves of this nature are 

often also referred to as type I curves (Landete-Castillejos and Gallego, 2000).  In fitting the 

various theoretical lactation curve models to data researcher have, however, also come across 

another lactation curve shape, one that has no peak and graphically represents a curve that is 

in continual decline.   Lactation curves of this form are generally referred to as atypical (Ferris 

et al., 1985) or type II (Landete -Castillejos and Gallego, 2000) lactation curves. 

There are a number of possible reasons for the occurrence of these atypical or type II lactation 

curves.  In almost all cases where lactation is study, test day records are obtained by weighing 
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milk yield and measuring milk composition traits at various intervals after parturition.  These 

intervals are often based on certain days preferred by management, and do not occur at the 

same stage of lactation for all animals.  As a result, it sometimes happens that for a particular 

animal the first observation is made after peak yield had already been reached.  If this is the 

case, when fitting a lactation curve to this data, the illusion is created that no rise to peak yield 

and subsequent peak have occurred, resulting in an atypical lactation curve as best fit.  The 

same kind of result could also occur in cases where the intervals between test day records 

collected during the early days of lactation is so great that it is unable to successfully depict 

peak yield, for example where the first observation occurs during the rise to peak and the 

second during the declining phase after peak, but the resulting weight is lower for the second 

observation than for the first observation.  Observational errors when weighing milk yield 

could also attribute to fitting atypica l lactation curves.  In a small number of non-dairy 

mammals such as Red deer (Arman et al., 1974) and Iberian Red deer (Loudan et al., 1983; 

Garcia et al., 1999; Landete-Castillejos and Gallego, 2000) atypical or type II lactation curves 

have been found as the applicable lactation curve.  Landete -Castillejos and Gallego (2000) 

mentions the possibility that atypical or type II lactation curves might not be uncommon in 

wild ungulates. 

Researchers differ in opinion on how such atypical or type II lactation curves should be 

handled.  Some researchers feel that these curves imply that peak yield occurred prior to 

parturition and that for this reason these curves represent an unrealistic picture and should not 

be allowed in the study of lactation in dairy animals (Ferris et al., 1985; Tekerli et al., 2000). 

Another school of thought is that when fitting a parametric lactation model to data the 

possible occurrence of atypical or type II lactation curves should be limited by placing 

restriction on the values the parameters of the curve can take and thereby forcing the lactation 

curve to be typical.  In such cases the parameter values that would lead to atypical or type II 

curves are determined, restrictions on the values of these parameters formulated and 

appropriate estimation methods employed so that these values are not obtained.  In this 

respect Bayesian analysis using the Gibbs sampler, together with an acceptance-rejection step, 

is a useful tool to reduce the occurrence of atypical or type II lactation curves (Varona et al., 

1998; Rekaya et al., 2000; Groenewald and Viljoen, 2003).  Varona et al. (1998) reported a 

reduction in atypical or type II lactation curves from 29% to 0,25% in Spanish dairy cows 

using Wood’s model and a Bayesian analysis of this nature. 
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A third approach to handling atypical or type II lactation curves was considered by Landete -

Castillejos and Gallego (2000) after determining that an atypical or type II lactation curve was 

most often the lactation curve of choice in Iberian Red deer.  They pointed out that one should 

carefully inspect your data before selecting the model(s) to fit to ensure that the model(s) 

fitted do indeed have the ability to accommodate atypical or type II lactation curves when 

required.  Models such as the inverse polynomial in (2.6) developed by Nelder (1966) and the 

model in (2.21) developed by Jenkins and Ferrel (1984) are unable to produce atypical or type 

II lactation curves. 

Schneeberger (1981) found that in dairy cows the percentage of atypical or type II lactation 

curves decreased with increasing parity number.  This result makes it plausible that atypical or 

type II curves may also occur in the ordinary course of lactation in dairy animals.  For this 

reason using a Bayesian analysis that would reduce, but not totally eliminate the occurrence of 

this curve type would possibly be the golden mean.  

 

2.3 CURVES FITTED TO COMPOSITION TRAITS 

As pointed out earlier depending on the intended use of milk produced, the composition traits 

of milk could also be important.  When t his is the case a composition trait curve may be fitted 

to the milk fat, protein and lactose content of the milk.  The percentages of milk fat and 

protein are typically convex functions over time, which means that they vary inversely to 

yield.  Considerable day-to-day variation has been noted in the fat content of milk 

(Whittemore, 1980).  The percentage of lactose, however, does not vary in relation to yield, 

but goes into a steady decline over the whole lactation.  As a result of this both milk fat and 

protein are often also modelled with the same functions that is used to model milk yield, on 

condition that they are able to take on a convex form.  Lactose, on the other hand, requires a 

function that has the ability to model decline, as no rise to peak is present.  Very little work 

has been done on modelling the lactose content of milk.  

The earliest reference found on lactation models fitted to composition traits, was that of 

Goodall (1986) who fitted the seasonally adjusted Wood model of (2.20) to both the milk fat 

and the protein percentages of milk.   



26 

In 1987 Wilmink fitted both the models that he suggested in (2.23) and (2.24) to model milk 

yield, to the milk fat and protein content of milk as measured in terms of weight.  The factor w  

in these models was again set equal to 0,05 for estimating fat and protein content curves. 

Morant and Gnanasakthy (1989) use the rearranged reparameterisation of their model as given 

in (2.38) to model milk fat, protein and lactose content as measured in kilograms.  This was 

the first reference found in which an attempt was made to also model lactose.  The model 

used seemed to fit protein and lactose content, but in the case of fat a larger residual variation 

was obtained.  This should be expected due to the day-to-day variation in fat content of milk. 

De Boer et al. (1989) only attempted to model the fat content of milk by fitting a diphasic 

function, i.e. the model in (2.31) with n  = 2, to the fat content of milk as measured by weight.   

Sakul and Boylan (1992) fitted the Wood model of (2.7) to the proportions of fat, protein and 

lactose contained in milk.  The Wood model provided a satisfactory fit with respect to the fat 

and protein content of milk, but was unable to adequately model the proportion of lactose 

contained in milk.   

In 2001 Mostert, Theron and Kanfer again used the reduced Wilmink model provided in 

(2.24) and fitted it to the milk fat and protein content of milk measured in kilograms.  They 

also used 0,05 as value of the factor w in this study 

Groenewald and Viljoen (2003) also fitted the Wood model in (2.7) to the fat and protein 

content of milk measured in kilograms. 

 

2.4 PERSISTENCY 

The earliest reference to the persistency of lactation found, was that of Wood (1967) in which 

he defined persistency as “the extent to which peak yield is maintained”.  Wood then also 

developed a measure of persistency to correspond to this definition (see (2.12)).  Since then a 

number of other researchers have also attempted to not only define persistency, but also to 

develop a measure of persistency.  No single consistent definition of persistency, however, 

exists within the framework of lactation research and as a result the defined measures of 

persistency are also inconsistent.  Morant and Gnanasakthy (1989) defined persistency as “the 

extent to which yield is maintained from day to day at any stage of lactation” and then 
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developed the measure given in (2.39), which is greater than one when yield increases, equal 

to one when yield is constant, and less than one in case of declining yield.  The most widely 

used definition seems to be that persistency is the rate of decline in milk yield after peak, and 

the measures of persistency developed as a result of this definition include ratios of yield 

during various stages of lactation, variation in test day yields and formulations of measures 

from lactation model parameters (Grossman, Hartz and Koops, 1999). 

The first and to date only attempt at developing model that contains persistency as a model 

parameter was that of Grossman, Hartz and Koops (1999).  They first defined persistency as 

the number of days during which the level of milk yield remains constant and then developed 

the models in (2.52) and (2.53) referred to respectively as the lactation persistency and 

reduced lactation persistency models. 

Various factors seem to influence persistency, but parity seems to have the greatest influence.  

In studies of the lactation of dairy cows it was reported that the Wood measure of persistency 

is significantly higher in first lactation than in later lactations (Rowlands et al., 1982).  

Sölkner and Fuchs (1987) obtained the same result for dairy cows by using both ratios of 

yields during different stages of lactation, as well as measures expressed as ratios of variation 

that occurred in test day yields.  They also found that the season of parturition, as well as the 

total milk yield had a significant effect on measures of persistency obtained through these two 

methods.  Tekerli et al. (2000) employed three persistency measures in their study of  dairy 

cows; Wood measure of persistency, ratios of yields during different stages of lactation, and 

ratios of variation that occurred in test day yields; and in all cases persistency during first 

lactation proved greatest.  In the study of lactation in dairy goats using parameter based 

persistency formulas (Gipson and Grossman, 1990; Ruvuna et al., 1995), it was found that 

persistency was significantly affected by parity, season of kidding and level of total 

production, with higher yielding does being less persistent than lower yielding does.  

Persistency was greatest during cooler seasons and during first parity, declining there after.  

Portolano et al. (1996) found that for Comisana sheep significant positive correlation existed 

between persistency and time of peak yield, while persistency and peak yield, and persistency 

and parity were negatively correlated.  A more persistent ewe would therefore have a curve 

with lower peak that occurred later relative to less persistent ewes.  Schneeberger (1981) also 

found negative genetic correlation between initial yield and persistency when studying Swiss 

Brown dairy cows.  Gipson and Grossman (1989) also noted a negative relationship between 
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both persistency and parity, and persistency and yield for dairy goats.  Lactation curve of 

dairy goats were found to in general be flatter and as a result more persistent than those of 

dairy cows (Ruvuna et al., 1995; Apka et al., 2001).  

To summarise, four groups of persistency measures have, been identified:  1) measures 

derived from the lactation model, containing estimated parameters from the afore mentioned 

model;  2) measures that express persistency as the ratio of yields during different stages of 

lactation;  3) measures derived from variation that occurs in test day milk  yield; and 4) the 

duration (in number of days) for which the level of milk yield remains constant (Grossman, 

Hartz and Koops, 1999).  Because of these differences in the nature of persistency measures, 

it is not possible to directly compare the persistenc y values obtained by the various measures, 

although there seems to be general consensus with respect to the effect of different biological 

and environmental factors on the various persistency measures. 

Persistency of lactation is considered a very important characteristic of the lactation curve.  

As was mentioned in Chapter 1, dairy animals producing milk at a greater level of persistency 

are preferred in the dairy industry, because this would reduce and stabilise productions cost 

and ultimately maximise profit.  For example, cows with a flatter lactation curve is considered 

more persistent and would have an increased proportion of roughage in their rations, which 

would reduce their production cost (Tekerli et al., 2000). 
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CHAPTER 3 

METHODS APPLIED IN FITTING LACTATION 

CURVES 

3.1 INTERPOLATION TO OBTAIN TOTAL MILK PRODUCTION 

Often in the management of a dairy herd interest is focussed on the total milk yield of an 

individual animal over the lactation period.  As a result of both the time and labour cost fac tor 

involved in weighing milk produced during every extraction session, the milk yield of an 

animal is weighed at intervals determined by management.  The result is test day records that 

do not provide a complete picture of the animal’s lactation process, but from which the total 

yield have to be obtained.  One method commonly used in the dairy industry approximates the 

total yield of an animal from the incomplete test day records using various interpolation 

procedures, sometimes also referred to as standardisation and projection procedures (Serrano 

et al., 2001). 

One interpolation method commonly used is the so-called Test Interval Method (TIM) that 

makes use of a form of linear interpolation (Olori and Galesloot, 1999).  This method assumes 

that the yield on any test day is the mean yield for the interval of time from halfway between 

this test day and the immediately preceding test day up to halfway between this test day and 

the one immediately thereafter.  To make provision for the periods before the first day and 

after the last test day, however, the yield on the first test day is assumed to be the daily yield 

since calving, and the yield on the last test day is assumed to be the daily yield until 

termination of lactation.  The total yield over the lactation is then determined through 

summation to be as follows:   ( ){ } nn

n

i
iii ypyypypy 1

2
111 5.0 +

=
− +++= ∑  

where, y      =  total yield 

  yi     =  test day yield as measured on test day i 

  p1    =  number of days in the interval from calving date to first test date 

  pi     = number of days in the interval between test day i and the preceding test day 
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  pn+1 = number of days in the interval between test day i and termination day 

Olori and Galesloot (1999) pointed out that for this method to produce valid results, the first 

test day has to occur before day 50 in the cows lactation cycle.  This method is also criticised 

for being unable to take into account the pattern of lactation that occurs around peak yield 

because of its dependence on the interval between test days. 

 

3.2 IRIS  

IRIS is a computer software package that was developed in the Netherlands for the collection 

and sensible organisation of data for management purposes on cattle farms.  One module of 

this package makes provision for milk recording, and is referred to as IRIS-Dairy.   IRIS also 

includes modules on herd book registration, type classification and statistics on cattle data.  

Olori and Galesloot (1999) fully describe the procedure employed by IRIS-Dairy, which is 

summarised below. 

IRIS-Dairy makes provision for prediction of the lactation of a cow very early in lactation.  

Using IRIS-Dairy it is already possible to predict lactation as soon as the first test-day record 

becomes available.  Predicting the next lactation cycle based on the yield in the immediately 

preceding lactation is also possible on condition that the cow and herd of which it forms part 

participates in milk performance testing so that information on calving date and age, as well 

as production level of the herd crucial to these predictions are available. 

This program uses what is known as the Standard Lactation Curve (SLAC) method to make 

such predictions.  Standard lactation curves (SLAC) are obtained from the mean yield of a 

comparable group of cows referred to as contemporaries.  A contemporary group consists of 

cows of similar age, with the same herd production level, calving in the same season.  Based 

on the assumption that cows from the same contemporary group have similar production 

patterns, these standard lactation curves indicate the expected pattern of production for a cow 

similar to the contemporaries and guides the prediction of daily yields in the future part of 

lactation.  Predictions are then based on the stage of lactation, and the yield of the cow on the 

last test day, together with the cumulative yield from its previous lactation as indicators of 

that cow’s potential.  The lactation curve of an individual cow is then obtained from the 
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standard lactation curve by incorporating the deviation of the observed yields from the 

expected yields. 

Standard lactation curves relevant to the specific environmental and biological factors 

influencing a particular breed of dairy cow have been derived.  SLAC curves for a breed had 

to be developed for class combinations of twenty herd level classes, eighteen parity/age 

classes and six calving seasons, which resulted in 2160 standard lactation curves for each of 

the lactation traits milk yield, fat content and protein content for that breed.  This was done by 

using the test day records of the group of contemporaries from which the standard lactation 

curve had to be constructed and determining their yield at 15 fixed days, from the 10th day in 

intervals of 20 days up to day 290, during the lactations of these animals.  To derive the yield 

on fixed days prior to the first test day and after the last test day the lactation model developed 

by Wilmink (1987) as denoted in (2.24), together with w = 0,05 was used.  The yields of fixed 

days between the first and last test days were obtained by means of interpola tion between 

successive test day yields.  The expected or mean yields on these fixed days were then 

obtained for the group of contemporary cows and, once these yields had been adjusted for the 

effect of herd level, age and calving season, they then represe nted (when connected) the 

standard lactation curve for such a contemporary group of cows.  A fixed effects model with 

herd level, age class and calving season as fixed effects was used to estimate the effect of 

these factors. 

To predict a daily yield level after the last actual test day using the standard lactation curve 

method, the following calculation is employed: 

( ) ( )[ ] ( )[ ]iitt XEXbYEYbYEY −+−+= 2PLPL1 305305ˆ  

where, 

              tŶ   =   predicted yield on day t of lactation 

         ( )tYE   =   expected yield on day t of lactation obtained from SLAC 

      PL305Y   =   total yield of preceding lactation  

( )PL305YE  =   expected tot yield of preceding lactation obtained from SLAC 

             iX   =   yield measured on last test day of lactation in progress 

       ( )iXE   =   expected yield for last test day of lactation in progress obtained from SLAC 

         21  ,bb   =   prediction factors 
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The prediction factors b1 and b2 are determined for each interval of 20 days from the 10th day 

of lactation for three parity groups (parities 1, 2, and 3 or higher) for each of the lactation 

traits milk yield, fat content and protein content.  This is done by estimating the deviation of 

the observed yield from the expected yield for each cow included in the derivation of the 

standard lactation curves.  Least squares regression of the model 

( ) ( )[ ] ( )[ ]iitt XEXßYEYßßYEY −+−+=− 2PLPL10 305305  

is used and the resulting estimates of the regression coefficie nts 1β  and 2β  provide the 

projection factor values of b1 and b2.   

This method of prediction is used in predicting milk yield, fat content and protein content 

curves.  As may be expected, as lactation progresses the accuracy of prediction using this 

method improves.  This method of prediction has two main advantages: 1) the lactation yield 

at the start of lactation (i.e. at time t = 0) in not assumed equal to zero; and 2) it is relatively 

easy to use on farm management level, because all information required is either already 

available to management from historic or current lactation records or built into the program in 

the form of the standard lactation curves required. 

 

3.3 LINEAR AND NON-LINEAR METHODS OF CURVE FITTING 

As alternative to the approximation methods above, the lactation curve models discussed in 

Chapter 2, together with the test day records of an animal, may be used to model the lactation 

of the animal.  The total yield over the duration of the lactation may then be acquired using 

the method relevant to the lactation model fitted.  Both non-linear and linear estimation 

methods have been employed to fit lactation curve models, where the method employed is 

determined by the nature of the model to be fitted.  Some lactation models may be fitted by 

means of both non-linear and linear estimation. 

Some of the lactation models are linear by nature, while others may be transformed into linear 

models.  Wood already noted in 1967 that the gamma function converts to a simple linear 

regression model by performing a natural log transformation, making it possible to determine 

the values of a, b and c by means of least squares estimation.  This principle was applied by 

Cobby and Le Du (1978), Torres-Hernandez and Hohenboken (1980), Sakul and Boylan 

(1992), Tekerli et al. (2000) and others when fitting the Wood model.  This approach to model 
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estimation by performing a natural log transformation to obtain a linear model may also be 

applied to other models, such as Brody’s exponential decline function (Brody et al., 1923), 

Sikka’s parabolic exponential function (Sikka, 1950), Goodall’s seasonally adjusted Wood 

model (Goodall, 1983; Lennox et al, 1992), the Jenkins’ adjustment of the Wood model 

(Jenkins and Ferrell, 1984), the 4-parameter Morant model (Lennox et al., 1992, Groenewald 

et al., 1995) and other models suggested by Morant and Gnanasakthy (Morant and 

Gnanasakthy, 1989), and the 6-parameter Morant model (Williams, 1993).  Nelder’s inverse 

polynomial model (1966) may also be transformed to a multiple regression model, but this 

time using an inverse transformation (Batra, 1986).  Models that are intrinsically already 

linear without a natural log transformation are the grafted polynomial (Fuller, 1969), the 

quadratic model (Dave,1971), the simple linear regression model of Madalena et al. (1979), 

the model of Molina and Boshini (1979), the linear cum log and quadratic cum log models 

(Singh and Gopal, 1982), the polynomial regression model (Ali and Scheaffer, 1987), and the 

mixed log model (Guo and Swalve, 1995). 

Non-linear regression by means of the iterative Marquardt’s compromise method (Marquardt, 

1963) as available in SAS, has been the most common method of fitting non-linear lactation 

models to data thus far, and has been used to fit Nelder’s inverse polynomial function, the 

Mitscherlich×exponential function, the multiphasic model with n = 1 or monophasic fit (Tozer 

and Huffaker, 1999) and the Wood model (Ferris et al, 1985; Cappio-Borlino et al., 1995; 

Ruvuna et al., 1995; Portolano et al., 1996; Franci et al., 1999; Tozer and Huffaker, 1999).  

Another method frequently employed is non-linear regression using the Gauss-Newton 

iterative method also available in SAS.  This was done for the Wood model, and the 

multiphasic  function fitted with n  = 2 as diphasic to milk yield (Grossman and Koops, 1988; 

De Boer et al., 1989) and with n = 3 as triphasic to fat (De Boer et al., 1989).  Other models 

for which unspecified methods of non-linear fitting were used include the 1924-Brody model; 

the Fischer model (Cobby and Le Du, 1978; Rowlands et al., 1982), the Wilmink I model 

(Wilmink, 1987; Olori et al. 1999), the Wilmink II model (Wilmink, 1987; Olori et al. 1999; 

Vargas et al. 2000; Mostert et al. 2001), the Mitscherlich×exponential model (Rook et al., 

1993; Vargas et al., 2000), the 4-parameter Morant model (Williams, 1993; Vargas et al., 

2000), and both the lactation persistency and reduced lactation persistency models (Grossman 

et al., 1999; Vargas et al., 2000). 
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Often, in studies where multiple regression and least squares estimation were employed to fit 

lactation models, further analysis of the regression coefficients were performed by means of 

analysis of variance to study the effect of various environmental and other cofactors on the 

lactation model.  This was done using a generalised linear model that combines both fixed 

effects, representing the cofactors at their various levels, and a random error in order to 

describe either a function of the estimates of the parameters of the model fitted or the actual 

observed data.  Interaction effects were very seldom included in such a model, because these 

were mostly not significant and random effects were only found in models where genetic 

effects were included.  Analysis of variance then indicated the presence of significant effects.  

(Batra, 1986; Grossman and Koops, 1988; Gipson and Grossman, 1989; Olori et al., 1999; 

Akpa et al., 2001) 

 

3.4 BAYESIAN APPROACH TO LACTATION CURVE FITTING 

Although using a Bayesian approach in statistical research of animal genetics is a common 

practise, a Bayesian approach was applied in a very small proportion of research work done 

on lactation models thus far.  The first attempt at modelling lactation by means of an approach 

that also forms part of the Bayesian framework, was that of Goodall and Sprevak (1984), 

where a Monte Carlo simulation procedure was employed to generate simulated values of 

milk yield in dairy cows.  A year later in 1985 Goodall and Sprevak formally used the 

Kalman filter as a Bayesian estimation procedure that included prior information on the herd, 

as well as observed lactation records, to estimate the parameters of the lactation curve of dairy 

cows.  In both these studies the lactation model proposed by Wood was fitted. 

In 1996 Groenewald et al., to fit the Wood model to lactation data of Merino sheep, assumed 

a hierarchical Bayesian model and applied the Gibbs sampler to obtain the marginal posterior 

distributions of functions of parameters, including lactation curve character istics such as peak 

yield, time of peak yield, persistency and total milk yield for the Wood model.  

Jamrozik et al. (1997) required information on lactation test day records for the purpose of 

genetic evaluation  of first lactation Holstein cows.  For this purpose the Wilmink model 

described in (2.24) with w = 0,05 and a random regression model with both fixed and random 

effects was used to analyse test day records of dairy cows.  They wanted to then compare 

three different random regression models using combinations of the Wilmink model and a 
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linear function of five covariates suggested by Ali and Schaeffer (1987) as linear functions of 

covariates for fixed and random regression coefficients.  Model variances and covariances 

were estimated by means of Bayesian methods utilising the Gibbs sampler to generate 

samples from the marginal posterior distribution.  

In 1998 Varona et al. analysed test day records of Spanish dairy cows using the Wood model 

and a hierarchical Bayesian procedure.  They specifically point out that the main advantage of 

this approach is that posterior marginal distributions of covariance components, breeding 

values and systematic effects for Wood’s model are easily obtained and comment on the 

usefulness of this form of analysis in reducing the occurrence of type II or atypical lactation 

curves by restricting the values of parameter estimates in the model.  Restricting the values of 

the parameter estimates are made possible by including an acceptance-rejection step in the 

Gibbs sampler.  Spec ial reference is also made to the “solid estimates of systematic effects 

and breeding values” obtained for the parameters of the lactation curve through the Bayesian 

procedure. 

Rekaya et al. (2000) employed a three-stage hierarchical Bayesian approach, together with the 

Wood function, to model lactation in Holstein-Friesian cows.  Restrictions were placed on 

two of the parameters in the Wood model, which required the use of the adaptive rejection 

Metropolis within Gibbs scheme.  In this case the ultimate objective again was estimating 

genetic correlation between parameters of the Wood lactation curve and functions thereof 

such as total yield, persistency, and peak yield.  The obtained estimates indicated that 

modifying the shape of the lactation curve through genetic selection is possible. 

Chang et al. (2001) also used the Wood model and a three-stage hierarchical Bayesian 

approach, with Gibbs sampling and the Metropolis-Hastings algorithm to draw samples from 

the posterior distributions of the model parameters to model lactation in dairy sheep.  As in 

preceding studies where the Bayesian approach was applied, the objective was the 

investigation of genetic variation of features of lactation curves.  In 2002 Chang et al. 

revisited this approach to the investigation of genetic variation to compare results from the 

quadratic function of (2.14) proposed by Dave in 1971 and that of the Wood function.  

Groenewald and Viljoen (2003) used a hierarchical Bayesian approach, together with Wood’s 

model to model not only lac tation trait curves for milk yield of Saanen dairy goats, but also 

for the protein and fat composition of milk.  Marginal posterior distributions were again 
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obtained through Markov chain Monte Carlo methods.  Various covariates and environmental 

factors were also built into the Bayesian model to enable the integrated study of the effects of 

these factors on lactation curves. 

It is evident from the above discussion that very little work has been done on prediction of 

lactation records from a Bayesian point of view, and that the majority of the research in this 

field to date was done for the purpose of genetic evaluation and selection. 

 

3.5 ASSUMPTION ABOUT ERRORS 

When the general form of a function is ßxie , where ix  (1 × p ) is some vector function of time 

t, the estimation and inferences made dependent crucially on the assumptions made about the 

errors.  Here are three possible approaches: 

1) Often the model is fitted by non-linear least squares methods.  This is basically non-

parametric and implies no distributional assumptions.  However, no statistical inferences 

(such as variance estimation, confidence intervals, etc.) made from the results are strictly 

valid.  From a statistical point of view, such a method of fitting the model implies an additive 

error, 

     ii
iey ε+= ßx  ,  i = 1,  …  , n    (3.1) 

where  ),0(...~ 2σε Ndiii , which in turn implies that ∞<<∞− iy , while iy  is a strictly 

positive variable.  This can lead t o nonsensical inferences.  The only way (3.1) can be used as 

a statistical model is if the error is bounded from below so that ∞<<− i
ie εßx .  This makes 

statistical inferences extremely complicated, as the sample space for the error term is a 

function of the unknown parameter, as with a truncated normal distribution.  

2) The most common method of fitting the model is to assume a multiplicative error, so 

that 

     ii
iey εßx=   ,  i = 1,  …  , n    (3.2) 

and 

     iiiy εlnln += ßx        (3.3) 

Then the least squares estimate of β  is also the maximum likelihood estimator if we assume 
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that ),0(...~ln 2σε Ndiii , i.e. zß ')'(ˆ 1 XXX −= , with X (n × p ) and )ln( yz = .  This means 

that iε  has a lognormal distribution with mean 
`2

2
1

][E σε ei =  and variance 

)1(][Var
22

−= σσε eei .  This is a reasonable model and works well, but there are a couple of 

points that are often overlooked when analysing the error terms.  If iε  is estimated by  

     ßx- ˆ
ˆ ieyii =ε  ,  i = 1,  …  , n    (3.4) 

then 0)ˆlnE()ˆlnE( =−= ßxiii yε ,  but researchers often use the log transformation to estimate 

β and then define the error estimate as the direct deviation, 

     ßx ˆˆ ieye ii −= ,  i = 1,  …  , n.    (3.5) 

Since     
2

2
1

][E][E σε +== ßxßx ii eeY ii       (3.6) 

and 
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it follows that  

     ( ))1)'(( /12
2
12

2
1

1]ˆ[E −+ −

−= iii XX
i eee xxßx σσ .    (3.7) 

Since 1')'( <ii XX xx , it means that 0]ˆ[E >ie  always.  So ßxi
ˆe  is not an unbiased predictor of 

iy  and tends to underfit the true function ßxie .  Yet iê  is often used to compare models and to 

determine goodness of fit. 

The variance of iê  is given by 

[ ] ( ) ( ) ( )[ ] ( )112 2
2
12

2
12222

2211ˆVar ++ −+−+−= iiiiiiiii eeeeeeee x
i

aaaa σσσσσσβ   (3.8) 

where  ')'( 1
iiii XXa xx −= . 

Secondly, the expectation as well as the variance of iê are monotonic functions of the function 

ßxie  itself.  So a study of the residuals iê  after fitting a linear model should show a pattern, 
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and that is not evidence of a lack of fit or autocorrelation between residuals.  The residuals in 

(3.5) resulting from the fitting as in (3.3) should show discernable pattern. 

The estimator (3.4) of iε  is also not an unbiased estimator of 
2

2
1

][E σε ei =  since 
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where  ')'( 1
jiij XXa xx −=   and  ) , (~ 2σßx jj Nz . 

Then 

     )1(2
2
1

]ˆ[E iia
i e −= σε   i = 1,  …  , n    (3.9) 

which is smaller than ][E iε , since 10 << iia , and so tends to underestimate the true error. 

3) In paragraph (2) the condition on the error is that 5,0]1[ =>εiP .  Since the lognormal 

distribution is skewed, this condition is achieved when 
2

2
1

][E σε −= ei .  Instead, we could 

impose the condition that 1][E =iε , i = 1,…, n .  This means that we assume that 

) , (~ln 22
2
1 σσε −Ni  so that )1 , 1(ln~

2

−σε eNi .  Then 

     ) , (~ln 22
2
1 σσ−= ßxiii Nyz .            (3.10) 

Now iy  is an unbiased estimator of the function value ßxie , i.e. 

))1( , (ln~
22 −σeeeNy ii

i
ßxßx .  The variances of nyy , ... ,1  are not homogeneous.  The 

maximum likelihood estimator of β in (3.10) is given by  

     )ˆ(')'(ˆ 2
2
11

n1zXXXß σ+= − ,            (3.11) 

which only increases the constant term of the usual estimator, zß ')'(ˆ 1
0 XXX −= , by 2

2
1 σ̂ . 

Interestingly, the variance estimator remains the same as before, 

     )ˆ()'ˆ(ˆ 00
12 ßzßz XXn −−=σ .             (3.12) 
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So in paragraph (2) the assumption is that the median of the error distribution is equal to one, 

while in paragraph (3) the mean is assumed equal to one.  When 2σ  is relatively small, there 

is little difference between the fitted functions from the two approaches.  From a convenience 

point of view the method of paragraph (2) is preferable. 

The expectation of the estimated error is 

     iia
i e

2
2
1

]ˆ[E σε −= ,               (3.13) 

which makes iε̂  again a biased estimator of ][E iε . 

4) The Wilmink model 

     )(tfcebtay wt
t =++=              (3.14) 

is often used for the estimation of the lactation curves of cows.  However, it has the flaw that 

a fitted curve can be negative.  Least squares fitting implies a statistical model with additive 

errors that are normally distributed, 

     ) , 0(~                    ,      )( 2
t σεε Ntfy tt += .          (3.15) 

Inferences from this model can often yield unrealistic results.  The only way to use this model 

as a statistical model is to (a) assume that  ) , 0(~    ,  )(ln 2
t σεε Ntfy tt += , so that we are 

back with the general form of paragraph 2 for w known, or (b) assume that iε  has a truncated 

distribution, i.e. 

     ) , 0(~ 2σε TNt ,   ∞≤≤− ttf ε)(           (3.16) 

and  0)( ≥tf .  Then 

     te
tf

f t
ε

σ

πσφ
ε 22

1

22))((

1
)(

−
= , ∞≤≤− ttf ε)( ,         (3.17) 

but the expectation of tε  is no longer zero. 

In summary, the multiplicative model (3.2) is in general preferable to the additive model (3.1) 

for fitting lactation models for the following reasons: 
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1) As mentioned before, (3.1) implies that the production can be negative unless restrictions 

are placed on the distribution of the error term. This greatly complicates statistical inferences. 

2) Usually when model (3.1) is employed the assumption of a common error variance is 

made, which means a constant variation in production y over the lactation period. For 

lactation data it is reasonable to assume that the error variance will decrease with production, 

due to both less variation in production and smaller measurement errors. The multiplicative 

model (3.2) naturally allows for this, as the variance in production is an increasing function of  

the expected production. 

3) When the lactation model can be linearised by a log transformation, a log-normal 

distribution on the error term is appropriate, and normal theory is available for inferences. 

It should be remembered that a maximum likelihood curve fitted after a log (or any other) 

transformation is not the best non-linear least squares fit in the sense of (3.5). This, however, 

is not a major drawback as the maximum likelihood estimate will in most cases be the more 

reasonable fit. 

Care should also be taken when creating a linear model with a transformation other than a log 

transformation. For example, the inverse polynomial model (Nelder (1966)), 

)/( 2ctbtatyt ++= ,              (3.18) 

can be linearised as 

cttabyt ++= //1 ,              (3.19) 

but least squares estimation of the parameters can give nonsensical answers when applied to 

the original model, with the estimated lactation curve tending to infinity at the roots of the 

denominator. The problem is that if a multiplicative error is assumed for the original model, 

then 

tt cttaby ε/)/(/1 ++=  ,             (3.20) 

and no distributional assumptions about tε  can make maximum likelihood estimation 

feasible. If this model is to be used, non-linear least square estimation is the best option, but 

with the drawback that no statistical inference is possible. 
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CHAPTER 4 

A BAYESIAN APPROACH 

4.1 THE GENERALISED BAYESIAN MODEL 

Any lactation model to which the assumption of multiplicative errors is applied and that may 

be re-written in linear form by means of a transformation in such a manner that, as a result, 

additive errors for the transformed linear form there-of holds, may be analysed in the manner 

as discussed below.  Keeping in mind the discussion on the error assumptions in section 3.5, 

this basically implies that a log transformation of the original model (with multiplicative 

errors) is required to transform the model to linear (with resulting additive errors).  Once a 

model has been obtained in generalised linear form, a hierarchical model similar to that 

introduced by Lindley and Smith (1972) is assumed and a Bayesian approach is used to model 

lactation.  In general the methodology used is as follows: 

Suppose that for every animal i in a herd of k  animals the lactation observations are denoted 

by )( ijpijs tW , where j serves as an index of only those lactation cycles under consideration, s  

denotes the relevant lactation trait among those that were observed (e.g. milk yield, protein 

content, fat content, or lactose content), p  refers to the index of the test day during the 

lactation cycle on which the observation was made, and ijpt  is the time of the p -th test day.  

Note that initially it is assumed that over a specified period the same number of consecutive 

lactation cycles has been observed for each animal in the herd.  As a result, i = 1, … , k ,   

j = 1, … , q  where for every animal in the herd a total of q  lactation cycles are observed,   

s = 1, … , u  where u is the number of lactation traits observed, and  p  = 1, … , ijn  where ijn  is 

the number of test days for animal i during lactation cycle j.  If a non-linear model with the 

assumption of multiplicative  errors has to be fitted to the original data and by performing a 

natural log transformation on the data the result is: 

     ( ))(ln)( ijpijsijpijs tWtY =        (4.1) 

to which an observation model of generalised linear model form, with additive 

( )2,0...~ sijps Ndiie σ , may now be fitted.  If it is assumed that aijs, bijs, …, d ijs are the v  

regression coefficients of the generalised linear form of the lactation model for the i-th animal 
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during its j-th lactation cycle for the lactation trait indicated by s, then the model for lactation 

trait s of animal i during lactation cycle j is: 

ijsijsijijs emXy +=        (4.2) 

where ijsy  is the vector of transformed data values for the lactation trait s of animal i in its j-th 

observed lactation cycle, ijsm  is the vector containing the v regression coefficients for the 

generalised linear form of the lactation model fitted for this lactation trait of the i-th animal in 

lactation cycle j and when multiplied with the design matrix ijX  it returns the appropriate 

generalised model form of the fitted lactation model. 

If this model is applied to milk yield and all of the composition traits contained in the data 

simultaneously, then the model for animal i in the j-th observed lac tation cycle is: 

     ijijijij EMXY +=        (4.3) 

where ( ) ( )
ijnNun IE ijij ⊗×′ Φ,0 vec~1 vec .  Note that vec A ′  denotes the elements of matrix 

A  when stacked row-wise into one column.  The r-th row of ( )vn ijij ×X  contains the 

elements of the r-th row of a design matrix that would return the appropriate generalised 

linear model when multiplied with the matrix of coefficients ijM , where v denotes the 

number of coefficients that every lactation trait in the generalised linear model contains.  The 

matrix of coefficients has u columns, each containing the coefficients of the generalised linear 

model for one of the lactation traits, milk yield, protein contents and fat content etc., 

therefore: 
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     ][)1( 22
2

2
1

2
us u σσσ=× Ks      (4.5) 

and     }{diag)( 2
suu s=×F .       (4.6) 

To further generalise this model, all of the q consecutive lactation cycles of animal i as 

indexed by j are included in the model.  As a result for animal i over all q of its observed 

lactation cycles, the model becomes: 
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where )( un ×iiY , ( )
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animal i during all q lactation cycles observed, }{diag)( ijii vqn XX =×  and 
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The model can similarly be extended to include all records observed for all animals in the 

herd, resulting in the following complete model: 

EXMY +=         (4. 9) 

where )( un ×Y , ( )nINE ⊗×′ F,0 vec~)1( vec un  ∑
=

=
k

i
inn

1
the total number of test day over 

all k  animals in the herd during all observed lactation cycles, }{diag)( iXX =× vqkn  and   
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)( .              (4.10) 

Often the lactation data available for analysis purposes do not only include information on the 

milk yield and composition traits of production on each test day, but also information on other 

factors such as parturition date, parity number, season of parturition, age of the mother and 

region in which the herd is located.  From the discussion in section 1.5 other researchers have 

found that some these factors could significantly influence lactation.  As a result it is therefore 

necessary to make provision for this information in the formulation of a lactation model.  To 

include the factors considered to be possible significant covariates, it was decided to include a 

covariate matrix as part of the prior information of the model.  Therefore, let Zi denote the  

(m × q ) matrix of m covariates for animal i. 

Because the interests of lactation research focuses on the lactation curves and lactation 

characteristics of the individual animals within the herd, this analysis is conducted with 

respect to the model of animal i, in other words by considering the model in the form 

iiii EMXY += .  For analysis purposes the vector form of this model and the covariates 
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applicable to the data is considered, with ii Zz  vec=  denoting the (mq × 1) column vector 

formed by arranging the columns of Zi into one long column.  Similarly for ijm (uv × 1) = vec 

Mij which then gives the parameters of the model for animal i during lactation cycle j as one 

column, with the first set of v rows containing the parameters of the first trait, the second set 

of v rows that of the second trait and so forth up until set u .  As a result of earlier work by 

Lindley and Smith (1972), Groenewald et al. (1996), Chang et al. (2001), and Groenewald 

and Viljoen (2003), the prior distribution of ijm  is assumed to be 

),(~,| SS ijij N BzBm                (4.11) 

where B (uv × m) is a matrix of regression coefficients and zij(m × 1) is the j-th column of Zi.  

Further, if im  (uvq  × 1) = 
′





 ′′

iiqi mm L1  represents the column vector of the parameters of 

animal i over all the lactation cycles considered, then 

( )SS ⊗⊗ RzBINRBm ,)(~,,| iqi .           (4.12) 

The q × q matrix R ={ρjr} represents the covariances between the model parameters of the 

same animal in successive lactation cycles when q > 1. 

The prior distributions on the other parameters are as follows: 

1)( ∝Bπ ,                (4.13) 
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
 σ∝π ∏

u

s
sF ,              (4.14) 

( )δδ −− ,)(~ 11 PR qW               (4.15) 

and  ( )gguv ,)(~ 11 −− GWS               (4.16) 

where δ, P, g  and G are assumed known.  Priors (4.13) and (4.14) are the standard Jeffreys 

priors for the location and scale parameters, while priors (4.15) and (4.16) have to be proper, 

but noninformative.  The choice of their parameters will be discussed in Section 5.2. 

The full conditional distributions of all the model parameters of interest from which the 

marginal posterior distributions (conditional on the observed data only) will be obtained by 

means of Gibbs sampling procedure, are derived as follows: 
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Suppose yi = vec Yi′, then, for i = ,1, …, k  : 
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Completing the square: 
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As a result the conditional distribution of mi is: 
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where ii Zz  vec)1( =×mq  is the column vector formed by arranging the columns of  

Zi (m × q ) into one long column.  Similarly ijm (uv × 1) = vec Mij , where Mij(v × u).  Defining 

[ ]qquv iii mmM L1)(~ =×  and reverting back to Zi (m × q): 
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Also 
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where, { }22
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1 ,,,diag sσσσ K=Φ  so that: 
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so that, 
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To summarise: 
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Estimation of the model parameters for an individual animal follows from (4.17), while 

predicting the model parameters of one or more of the q lactation cycles under consideration 

for an individual animal i, or )2(
ifm , given the performance in the h < q previous lactation 

cycle, for which the parameters are )1(
im , may now be derived as follows.  From (4.12) it is 

known that: 

( )SS ⊗⊗ RzBINRBm iqi ,)(~,,| . 

 

Therefore the mi may be partitioned as follows 
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hquv

uvh

if

i
i m

m
m   where  h = 1,…, (q −1), 

so that h represents the number of previous lactation cycles considered in the prediction of the 

remaining q  − h lactation cycles and 

   (4.17) 
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In the Markov chain Monte Carlo simulation ( )∗1
im  is drawn from ( ) RBym ii ,,,,1(1) SΦ  in (4.17) 

with Xi
(1), ( )1

iy  and ( )1
iz  as applicable to the lactation cycles assumed known.  Then ( )∗2

ifm  is 

drawn from (4.22). 

Once ( ) ( )∗= 22
ifif mm  is drawn, the predictive density follows from the fact that  

( )
inIMXNMY iiii ⊗ΦΦ ,~, . 

So the predictive distribution of (q − j) future lactation cycles becomes: 

( ) ( ) ( ) ( )( ) ( )
( )( )hqnif −

∗∗ ⊗⊗= ImXINmmy ififuififif ΦΦ ,~, 22222          (4.23) 

where ( )2
ify  is of order ( )( )1×− hqunif . 

. 

        (4.22) 
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4.2 THE GIBBS SAMPLER 

The Gibbs sampler is a highly efficient, computer intensive sampling algorithm that provides 

a technique to indirectly generate random variables in the absence of the density using 

elementary Markov chain properties as base.  A sample, Y(1), …, Y(n), with the same 

distributional form as that of the unknown density is generated provided that all the full 

conditional distributions are known and available.  When this sample simulated through Gibbs 

sampling becomes large enough, i.e. when n  becomes large enough, any of the characteristics 

of the marginal distribution, such as the mean, variance and others, may be calculated with 

great accuracy.  It is, however, important to note that although the method generates a sample, 

the end result of calculations based on such a sample actually yield population values.  In 

1984 Geman and Geman showed that the distribution of such a sample of n  values generated 

by means of the Gibbs sampler under reasonably general conditions, converges to the 

marginal distribution of the variable for which the sampling was performed as n → ∞.  In 

other words, if we for example consider the mean of f(y) from a simulated sample Y(1) , …, Y(n) 

obtained by means of the Gibbs sampler then:  

     ( ) ( )YEdyyfyY
n 1i

(i)

n
== ∫∑

∞

∞−
=

∞→
  

1lim  n

. 

If the sample size is large enough the characteristics obtained from it would be that of the 

population itself.  In this manner even the actual density may be determined.   

To explain the Gibbs sampling procedure, consider the two variables U and V with their 

respective conditional distributions f(u |v) and f(v|u ).  Through Gibbs sampling the following 

sequence of random variables is generated: U(0), V(0), U(1), V(1), U(2), V(2), … , U(n), V(n).  This is 

done by first specifying a starting value for one of the variable, say U(0) = u (0), and then 

iteratively sampling from the two full conditional distributions alternatively as follows until n  

sets of random variables have been obtained to form the required sequence of random 

variables: 

( ) ( )( )ii(i) uU|vf~V =   and  ( ) ( )( )ii)( i vV|uf~U =+1  

Casella and George (1992) noted that the rate of convergence (in distribution) of the sequence 

generated determines the so-called “efficiency of the Gibbs sampler”.  This convergence may 

be handled in a number of different ways in order to find an approximate sample from the 

marginal distributions of interest.  One method would be to generate k  samples of size n by 

means of the Gibbs sampler and then using the nth simulated value from each of the k  samples, 
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i.e. (n)
k

(n)
2

(n)
1 Y,,Y,Y K , which will then, on condition that n  is sufficiently large, form an 

independent sample from the marginal distribution, ( )yf .  If k  is chosen to be large enough, 

( )yf  itself or any characteristic there-of may be calculated to the desired degree of accuracy 

(Gelfand and Smith, 1990).  Gelfand, Hills, Racine -Poon and Smith (1990) noted the 

appropriate values of n  and k  required for convergence would depend on the application 

considered at the time and that these values cannot be pre-specified unilaterally.  They also 

suggested checking for convergence graphically.  This is done by simulating a large number 

of values through Gibbs sampling and then plotting the data generated for each of the random 

variables univariately to see when the simulated values seem to stabilise.  Convergence of the 

Gibbs sampler was also considered by Wang, Rutledge and Gianola (1993), Roberts and 

Polson (1994), Zellner and Min (1995) and many others. 

In 1991 Geyer suggested that instead of sampling the nth or last simulated value from each of 

k  independently generated sequences, one long sequence may be generated and every rth value 

from such a sequence may then be extracted to form, on condition that r is large enough, an 

independent sample from the marginal distribution, ( )yf .  MacEachern and Berliner (1994) 

described another popular approach in using the Gibbs sampler to generate a marginal 

distribution.  A long sequence of dependent variables are generated by means of the Gibbs 

sampler and then the sets variables generated during the first few iterations are discarded as 

the so-called “burn-in” period of the process.  The result of the remaining iterations is then 

used, without any further subsampling, as the marginal distributions for the variables under 

consideration.  

As mentioned earlier, the Gibbs sampler is used to obtain the posterior distributions of the 

model parameters from the full conditional distributions found in equations (4.17) to (4.21).  

To apply the Gibbs sampler to equations (4.17) to (4.21) , starting values in the form of the 

least squares estimators were specified for B, Φ -1, Σ -1 and R-1, and then the observations mi,  

i = 1, … , k , were generated from (4.17).  These values of M, together with the starting values 

of the other parameters, were then used in turn in (4.18) to (4.21) and then in (4.17) to 

generate the second set of observations in the sequence.  The result of this second set of 

observations in the sequence were then again used in another iteration of the process to 

generate the third set of observation in the sequence, and so forth.  This is repeated r times, 

after which the results of first l iterations were discarded as “burn-in” period, from which it 

then follows that in the case of B, for example: 
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The posterior distributions of any function of these parameters, such as those of the 

characteristics of the production curve itself may now be obtained very easily. 

 

4.3 THE CHARACTERISTICS OF THE LACTATION CURVE 

In the case of the Wood model of (2.7) as described in Chapter 2, certain lactation curve 

characteristics have been written in terms of functions of model parameters.  These 

characteristics of the lactation curve of interest are: 

total milk yield (kg), 

∫ +=
300  

0  
)exp( dtctat bφ ,              (4.24) 

peak milk yield (kg), 

( ) )exp( bab
c
b −−=η ,               (4.25) 

time of peak yield (days), 

c
b−=τ ,                 (4.26) 

and persistency of production (Wood, 1968), 

)ln()1( cb −+−=ψ .               (4.27) 

For the above quantities the conditional distributions are unspecified, but because they are 

functions of model parameters of which the posterior distributions are easily obtained through 

the use of the Gibbs sampler, they are still easily obtainable.  Note that the above quantities as 

given in (4.24) to (4.27) are of very little value when considering the composition trait curves 

such as that of fat and protein, and are therefore only considered in term of milk production.  

As a result, the reduced model only containing the parameters relevant to milk yield have to 

be considered.  

The marginal posterior densities of the mean of each of these characteristics are obtained as 

follows.  For each set of simulated values of mij values, i = 1, …, k  and j = 1, …, q for milk 

yield only as obtained through Gibbs sampling, the value of the quantity under consideration 

is calculated.  A histogram for the values of this quantity is then constructed.  After 
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standardising such a histogram to make the area under the histogram equal to one, it is 

smoothed by means of Pearson curve fitting.  Note that the system of Pearson curves makes 

use of the first four moments about the mean to describe the shape of the distribution 

according to its location (mean), dispersion (variance), skewness and kurtosis, and then fits 

the resulting curve based on these descriptive measures.  The resulting curve provides a good 

approximation to the posterior of the expected value of the characteristic under consideration. 

 

4.4 HANDLING INCOMPLETE DATA 

Initially it was assumed that over a specified period a total of q consecutive lactation cycles 

were observed for each animal in the herd.  This is, however, often not the case, resulting in 

what could be considered as incomplete lactation cycle data.  In such a case it might happen 

that, over the same specified period, test day data might be recorded for some animals over all 

q  lactation cycles under consideration, while for other animals test day data on only some of 

these lactation cycles are available. 

To illustrate the simplest possible case where this could occur, assume that lactation data over 

a period that would include at most two consecutive lactation cycles are available.  Included 

in such a data set are three possible recording schemes of lactation cycle data; 1) lactation 

data for animals that were recorded during the first of the two possible consecutive lactation 

cycles only; 2) lactation data for animals that were recorded only during the second of the two 

possible consecutive lactation cycles, and 3) lactation data for animals that were recorded 

during both the consecutive lactation cycles.  Therefore, instead of using as notation q  

lactation cycles for all animals in the data set,  q i = 1, 2 now denotes the number of lactation 

cycles under consideration for animal i. 

As a result the matrix R , which represents the covariances between the model parameters of 

the same animal in successive lactation cycles only when q >1, is affected by this recording 

scheme.  All other parameters and their full conditional distributions are only affected with 

respect to dimension as q  is now replaced by qi, while ∑
=

=
k

i
iqq

1
are the total number of 

lactation cycles over all animals contained in the data.  This affects the degrees of freedom of 
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the distribution of 1−Σ  so that it becomes q + g, to still reflect the number of lactation cycles 

in the data set plus the degrees of freedom reflected by g . 

The full conditional distributions therefore are: 
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The conditional distribution of R now becomes slightly more complex due to the fact that the 

matrix R i contains the covariances between the model parameters of the same animal in 

successive seasons only when qi = 2.  Therefore when an animal was recorded over two 

seasons Ri is of dimension (2 × 2), but when an animal was recorded only in one season R i is 

a scalar. 
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where )2(
)(

~
iM (uv × 2), )1(

)( im (uv × 1), )2(
)(iZ (m × 2), )1(

)(iz (m × 1) and ρ(1) is a scalar.  Also note that 

k2 denotes the number of animals recorded in both lactation cycles under consideration, while 

k1 denotes the number of animals recorded in only one lactation cycle, i.e. either the first or 

the second lactation cycle.  Similarly, the superscripts in parenthesis to M, m, Z and z refer to 

the parameters and covariate matrices of the animals recorded in both, or in only one cycle.  

The subscript in parenthesis to ρ  indicates that this scalar value is applicable to an animal 

recorded in only one lactation cycle.  However, when qi = 1, animal i under consideration may 

have been recorded during eithe r the first or the second of the two possible lactation cycle and 

therefore the full conditional distribution of R−1 is of the following form: 
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where k2 still denotes the number of animals recorded in both the first and second lactation 

cycle, while k11 denotes the number of animals recorded in only one cycle, the first lactation 

cycle, and k12 the animals recorded in only the second lactation cycle.  As before the same 

principle applies to the superscripts in parenthesis for M, m , Z and z.  In the case of the 

subscripts in parenthesis to ρ, the first subscript indicates that only one lactation cycle has 

been recorded, while the second subscript makes reference to which of the two consecutive 

lactation cycles is applicable to the animal under consideration. 

(4.32) 
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The joint conditional distribution on the elements of R may now be derived as follows: 
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When using the information from all records in obtaining marginal posterior distributions, a 

rather complicated sampling scheme is required.  The elements of R−1 are obtained 

individually conditional on certain restrictions based on the values of the rest of the elements 

of R −1 using the Metropolis Hastings algorithm. 

. 

. 

.      (4.33) 
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In the above discussion the simplest of such incomplete data cases was described, but the 

principle explained here may be expanded to any number of incomplete lactation cycles in a 

data set for a herd observed over a specified period. 

 

4.5 THE METROPOLIS -HASTINGS ALGORITHM 

The Metropolis-Hastings algorithm, developed in 1953 by Metropolis, Rosenbluth, 

Rosenbluth, Teller and Teller, is a Markov chain Monte Carlo (MCMC) method used to 

generate non-standard and often complex multivariate distributions through sampling.  This 

method was initially only used in field of physics, but in 1970 Hastings generalised it to be 

more applicable in a statistical setting.  It has, however, only really become popular in the 

area of Bayesian statistics since the 1990’s with the increasing availability of computing 

power through the use of faster and more powerful computers.  The Gibbs sampler described 

earlier is a special application of the Metropolis-Hastings algorithm (Gelman, 1992).  The 

most important feature of the Metropolis-Hastings algorithm is that it can simulate values 

from any distribution for which the analytical form of the distribution is known, without 

having any knowledge of the normalising constant of the distribution. 

A sample is required from a target posterior distribution, π (θ  | y), also known as a probability 

mass function.  To acquire such a sample, values of θ  are drawn from approximate 

distributions with the same restrictio ns as π(θ | y) and then corrected to obtain a sample that is 

closer in distribution to the target posterior distribution.  Sample draws form a Markov chain 

as a result of sequential sampling, form a distribution that depends on the last sample value 

drawn and converges to a unique stationary posterior distribution.  The success of this method 

is based on the improvement of the approximate distributions at each simulation step so that 

the result converges to the target distribution (Gelman et al., 1995).  The algorithm may also 

be used in an acceptance -rejection application when the applicable density is in a non-

identifiable form. 

To obtain a sample from the target distribution, π(θ  | y), by means of the Metropolis-Hastings 

algorithm, the first step is to select an arbitrary starting value θ (0) such that π (θ  (0)| y) >0.  Next 

for t = 1, 2, … the following iterative procedure is followed to each time update from θ (t −1) to 

θ  (t): 
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1) A candidate point θ * is sampled from a proposal density at time t, θ  * ~ qt(θ *|θ  (t −1)).   

2) Calculate the following: ( ) ( )
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Every time steps 1 to 3 above are performed, one iteration of the procedure has been 

performed.  In principle the above steps imply that when an observa tion has been drawn from 

the proposal density q (⋅ | ⋅), it is assumed that it originated from π(⋅ | y) with probability ρ .   

An infinite number of possible proposal densities exist that would result in a Markov chain 

that converges to the target density.  As long as the proposal density is symmetric it is evident 

that qt(θ (t −1) |θ *) = q t(θ  *|θ (t −1)) and therefore the probability with which the new value, θ  *, 

is accepted is the ratio of the density ordinate at the new value and the density ordinate at the 

current value.  The result is that if the new value is “more likely” than the current value the 

new value is accepted, else the current value is kept with probability 1 − ρ .  These retained 

values ultimately constitute a sample from the target distribution π (⋅ | y). 

Many options are available when constructing a proposal density, but the most frequent one 

used is the random-walk proposal where the candidate value is equal to the current value plus 

noise:       θ  * = θ  (t −1) + ε , 

where ε  is random variable symmetrically distributed around zero (Chib and Greenberg, 

1995).  This implies that the candidate value is selected by perturbing the current value of the 

chain at random, while still staying in the neighbourhood of the current value.  Once the 

candidate value has been generated the probability that it comes from the target distribution is 

assessed.  The chain will remain at the current value or θ   (t −1) w ith probability 1 − ρ if the 

posterior value or π (θ   (t −1) | y) is higher, i.e. it will then never generate candidate values where 

π (θ * | y) = 0. 

Standard options for use as proposal densities are the uniform, normal and t-distributions, 

with the choice usually determined by the parameter space.  If the parameter space is, for 

example, bounded, the uniform distribution is used, but for the real line as parameter space 

the normal or t-distribution are used.  One characteristic of the proposal density that deserves 
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careful consideration is its variance.  If the variance is too large, too many of the proposal 

values will not be accepted, resulting in a chain that will remain in one place for too long.  

However, if the variance is too small the chain will, as a result of a high acceptance ratio, 

move very slowly through the sample space, with high autocorrelation and a small effective 

sample size.  An acceptable acceptance rate for the proposal values is considered to usually be 

between 40% and 70% depending on the scenario to which it is applied.  The variance of the 

proposal density may be adjusted by first running samples of chains to investigate and if 

necessary correct the variance of the proposal density in order to adjust the acceptance rate. 

Earlier it was mentioned that, for the incomplete data case, the elements of R −1 are obtained 

individually conditional on certain restrictions based on the values of the rest of the elements 

of R  −1 using the Metropolis Hastings algorithm.  To now obtain the marginal posterior 

distributions of each of the elements of R, i.e. ρ11 ρ 22 and ρ12, from (4.33) the Metropolis-

Hastings algorithm is employed with the following restrictions that are placed on the values of 

these parameters: 

22

2
12

11 ρ
ρρ >                  (4.34) 

11

2
12

22 ρ
ρρ >                  (4.35) 

2211122211 ρρρρρ <<−                 (4.36) 

These restrictions are necessary to ensure that R remains positive definite and are used to 

obtain the specified probability mass functions used in the application of the Metropolis-

Hastings algorithm.  For example, when determining the marginal distribution 
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using this algorithm with the restrictions set out in (4.34) to (4.36), a candidate value, c
11ρ , of 

the following form is obtained: 

)exp(
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ρ              (4.38) 

where z is randomly sampled from a uniform distribution in the interval −0.5 to 0.5.  This 

candidate value is then accepted with probability  
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The marginal distributions of ρ12 and ρ 22 are obtained in a similar manner. 

In the incomplete data  case the full conditional distributions of the model parameters mi 

where i = 1, …, k , B, Φ -1 and Σ -1 as specified in (4.28) to (4.31), as well as the joint 

conditional distribution of the elements of R as found in (4.33) from which the marginal 

distribution of each element of R is determined, is used to obtain the marginal distributions of 

the parameters by means of MCMC methods.  For m i, i = 1, …, k , B, Φ -1 and Σ -1 the Gibbs 

sampler is used, while the marginal posterior distributions of each of the elements of R is 

obtained by using the Metropolis-Hastings algorithm. 
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CHAPTER 5 

THE WOOD MODEL AND THE JERSEY DATA 

5.1 THE JERSEY DATA 

The Jersey is one of the oldest dairy cattle breeds in the world.  It originated on the British 

Island of Jersey in the English Channel in the late 1700’s, but has since as a result of their 

adaptability to a wide range of climatic and geographical conditions, spread all over the 

world.  They are described not only as excellent grazers, but also as more tolerant of heat than 

the larger dairy breeds.  One outstanding characteristic of this breed of dairy cattle is that it 

produces more milk in relation to its own body weight than any other breed.  In most cases 

milk production in excess of thirteen times the bodyweight of the animal is recorded during 

any lactation cycle.  On average an adult female would weigh approximately 400 kg.  The 

breed is not only considered favourable as a result of its milk production ability, but also 

because of its butterfat production.  (Department of Animal Science, Oklahoma State 

University, 1997). 

The Jersey data used in this study forms part of a larger data set on the lactations of Jersey 

dairy cows that was obtained from the Animal Improvement Institute at the Agricultural 

Research Council, Irene, Pretoria.  The original data set contained lactation information on 

209 274 lactation cycles.  This data file consisted of almost 52 million entries in a total of 31 

fields (columns) that included information such as farmer member number, animal 

identification number, calving date, age of cow at calving, season of calving, parity number, 

test day date, number of times (or days) tested during lactation cycle, number of days from 

calving to test day, milk weight in kilograms as measured during each of either two or three 

milking session on each test day, the percentage of fat in milk composition, and the 

percentage of protein in milk composition.  Of the 31 fields in the file, 7 were duplicated, 

which leaves 24 unique fields.  Given the excessively large size of the data set available, a 

more manageable subset was obtained from this data set for Bayesian analysis purposes by 

performing several edits.  This would result in a reduction of the time spent on obtaining 

results through the computer intensive simulation techniques discussed in the previous 

chapter. 
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The subset from the above data considered in this study, only include cows recorded during 

all four years from 1995 to 1998, with at least eight test day records per lactation cycle for all 

four these cycles under consideration.  The resulting data set, referred to as the Jersey data 

from this point onwards, contains lactation data for 1141 cows recorded on at least eight, but 

no more than ten test days during four consecutive lactation cycles from 1995 to 1998.  This 

resulted in a total of 37 163 test day records for each of milk yield, protein percentage and fat 

percentage in milk composition.   Note that each test day milk measure is the sum of the milk 

yields measured during either two or three milking sessions on that test day, while for both fat 

and protein content in milk composition the average of the milking sessions, averaged by 

respective milk yields are considered.  The number of days from calving to test day was used 

as indicator of at which stage of lactation a lactation record was observed.  Additional 

information also included in the Jersey data for analysis purposes are parity number, region, 

calving year and calving season. 

Parities identified in the data ranged from first parity to eleventh parity, of which cows in 515 

first parities, 825 second parities, 987 third parities, 1066 fourth parities, 599 fifth parties, 306 

sixth parities, 153 seventh parities, 75 eighth parties, 29 ninth parities, 8 tenth parties and only 

one eleventh parity occurred in the 4564 lactation cycles observed.  To obtain a better balance 

among the number of lactation cycles observed in each parity, the seventh to eleventh parities 

were combined into one group referred to as parity seven or greater.  Animals from seven 

different regions were included in the data; these were referred to as regions one to five, seven 

and eight.  No cows in region six were recorded.  Although it is known that all seven these 

regions are within South Africa, the Animal Improvement Ins titute considered the 

geographical location of each of these regions to be confidential.  The year of parturition, 

1995 to 1998, served as an indicator of the lactation cycle under consideration.  The season of 

parturition was also denoted as belonging to one of six possible two-month seasons, but it was 

decided to reduce this to only two seasons by grouping together as season one, the warmer 

months October to March, while the colder months April to September occur as season two. 

Cows calve throughout the year usually at intervals of at least thirteen months.  The lactation 

cycle lasts 305 days and starts four days after parturition.  Colostrum is secreted during the 

first three days and only on the fourth day after parturition the secretion of true milk 

commences.  To make provision for this, the start of lactation is adjusted so that day one of 

the lactation cycle is considered to be on the fourth day after parturition by subtracting 3 days 
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form the number of days from calving to test day that is used to determine at which stage of 

lactation a lactation record was observed.  

 

5.2 FITTING THE WOOD MODEL 

From the discussion on the Wood model in Chapter 2 it is evident that this model is the model 

most often used to model lactation in dairy animals, including da iry cows such as the Jersey.  

The Wood model assumes that the expected milk yield (in kg/day) of an animal at time t can 

be represented over the lactation period by 

     ( ) ( )ctatWE b
t += exp         (5.1) 

where −∞ < a  < ∞, b  > 0 and c < 0.  The parameters a, b and c are unknown and may differ 

from one animal to another. 

In 1976 Wood showed that this model could also be used to estimate the various milk 

composition traits such as fat and protein content in milk yield of dairy cattle.  Sakul and 

Boylan (1992) found the Wood model to be useful in describing almost all milk composition 

traits in sheep breeds, except for lactose content.  As a result it was decided to also use the 

Wood model to model milk composition traits fat and protein content on which data are 

available in the Jersey data.  The percentages of fat and protein contained in milk are typically 

convex functions over time and therefore the restrictions placed on the model parameters in 

order to make provision, when modelling these composition traits, for the convex nature of 

these functions over time are b < 0 and c > 0, while −∞ < a  < ∞ remains. 

By assuming multiplicative errors for the model in (5.1) and after performing a natural log 

transformation, the observation model for the ith animal is written as: 

    ( ) ( ) ijpsijpijsijpijsijsijpijsijpijs etctbatWtY +++== ln)(ln)(     (5.2) 

where ( )2,0...~ sijps Ndiie σ , i = 1, … , k ,  j = 1, … , q  where for every animal in the herd a 

total of q  lactation cycles are observed,  s = 1, … , u where u  is the number of lactation traits 

observed, and  p  = 1, … , ijn  where ijn  is the number of test days for animal i during lactation 

cycle j.  For the Jersey data the number of animals is k  = 1141, for which q = 4 lactation 

cycles each have been observed for the u  = 3 lactation traits milk yield, percentage of fat and 
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percentage of protein in milk composition and the number of test days for animal i during 

lactation cycle j is 8 ≤ ijn  ≤ 10 for all values of i and j. 

The generalised linear model form of the model for animal i during lactation cycle j as 

described in (4.3) for the general case is: 

     ijijijij EMXY +=        (5.3) 

where ( ) ( )
ijnijij Nn IE ⊗×′ Φ,0 vec~13 vec .  For the Wood model the v = 3 regression 

coefficients of the generalised linear form of the lactation model for the ith animal during its jth 

lactation cycle for the lactation trait indicated by s = 1, 2, 3 are a ijs, bijs, cijs, so that 
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The r-th row of design matrix ( )3×ijij nX  contains the elements that would return the Wood 

model in generalised linear form when multiplied with the matrix of coefficients ijM ,  

     [ ]ijrijr
r

ij ttln1)( =X .       (5.5) 

Note that to make provision for the initial secretion of colostrum, time t would be measured 

from day 4 after parturition, i.e. on day 4 after parturition t = 1.   

For animal i over all q  = 4 lactation cycles observed, 
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From the earlier discussion it follows that the additional information available in the Jersey 

data, which are the factors parity number, region, calving year and calving season, has to also 

be included in the model.  This is done by means of the covariate matrix Zi(17 × 4) for the ith 
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animal, which is then used as described in section 4.1 of Chapter 4.  A full description of how 

this covariate matrix Zi is obtained for each animal follows in section 5.3 below. 

As was mentioned earlier, q = 4 lactation cycles, one for each of the years 1995 to 1998 were 

observed for all 1141 animal in the Jersey data.  As a result the matrix R, containing the 

covariances betwee n the model parameters of the same animal in successive lactation cycles 

now has the following form: 
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Through the use of the Gibbs sampler as described in section 4.2 of Chapter 4 and the full 

conditional distributions of all the model parameters of interest as set out in equations (4.17) 

to (4.21), the marginal posterior distributions conditional on the observed data only were 

obtained.  The hyperparameters P and G  required to generate marginal distributions for Σ -1 

and R-1, were taken as the moments estimators from the sampling distributions of Σ  and R, 

with degrees of freedom as small as possible, δ  = 4 and g  = 10. 

Applying the sampling approach suggested by MacEachern and Berliner (1994) the Gibbs 

sampler was put through a “burn-in” period of 2000 simulation iterations, after which 10 000 

sets of parameters were generated and kept using equations (4.17) to (4.21).  This required 

simulating from normal and Wishart distributions only.  The distributions of Mi  and B were 

obtained by sampling from two normal distributions, which is a relatively simple procedure in 

Matlab.  This required generating samples from the standard normal distribution that were 

then transformed to be normally distributed with the appropriate mean and standard deviation.  

The distributions of Φ -1, Σ -1 and R-1 were generated from their respective Wishart 

distributions.  To explain how this was done, it is assumed that the variable of interest has a 

Wishart distribution with parameter A and degrees of freedom ϕ .  To sample from this 

distribution a random matrix H from a standard normal distribution with the same number of 

rows as the parameter matrix A and number of columns equal to ϕ, is generated.  The matrix 

square root of A is then multiplied with this random normal matrix H just generated in the 

previous step.  The result of this, HA2
1

, is then multiplied with its transpose to obtain a 
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simulated parameter matrix, 
/

2
1

2
1

AHHA ′ , from a Wishart distribution with paramete r A and 

degrees of freedom ϕ. 

Due to both speed and storage constraints posed by Matlab, only the 10 000 sets of parameters 

generated for B, Φ -1, Σ -1 and R-1 were stored.  This was done because it is possible to 

regenerate the parameters contained in Mi, i = 1,…, 1141, with relative ease by either 

obtaining the product BZ i, where Zi is the covariate matrix applicable to animal i or by 

regenerating through Gibbs sampling the parameters of Mi only using the 10 000 stored 

parameter matrices B, Φ -1, Σ -1 and R-1.  This resulted in storing just over 41 million less 

parameter values than what otherwise would have been the case. 

 

5.3 THE COVARIATE MATRIX Zi 

In the Jersey data additional information available on various other factors that could possibly 

have a significant influence on lactation, is provided.  These factors, referred to as cofactors, 

are parity number, region, calving year and calving season.  The parity numbers in the data 

range from 1 to 7 or greater, regions under consideration are 1 to 5, 7 and 8, calving years are 

1995 to 1998, and calving season are warm season and colder season.  To include this 

information on the cofactors in the model a covariate matrix Zi for the ith animal has to be 

constructed. 

The additional information on these cofactors is translated into a covariate matrix Zi(17 × 4) 

for each animal i with a total of m = 17 covariates for each of the q  = 4 lactation cycles.  To 

explain how this covariate matrix is structured, we consider Zi = [zi1 zi2 zi3 zi4] where  

zij(17 × 1) for j = 1,…,4 form the column vectors of covariates for animal i over each of its 4 

lactation cycles.  In the vector zi1, for example, the first element or zi1 ⋅1 is always a constant, 1.  

Elements two to seven of this vector are used to identify the parity number.  If the animal is in 

the first parity all seven these elements are set at zero, for an animal in second parity zi1⋅2 is 

equal to 1 and zi1⋅3 to zi1 ⋅7 are set at zero, for an animal in third parity zi1⋅3 is equal to one, but 

zi1⋅2 and zi1 ⋅4 to zi1⋅7 are set at zero and so forth.  Elements eight to thirteen of zi1 are used to 

identify the region in which the animal is found.  As was the case with parity number zi1⋅8 to 

zi1⋅13 will all be set at zero if the applicable region is region 1, for an animal in region 2 zi1⋅8 



68 

would equal one, while zi1 ⋅9 to zi1 ⋅13 are all set at zero, and so forth.  Similarly, elements 14 to 

16 are coded as one and zeros to identify the calving year, with all elements set at base level 

zero for 1995.  The final element of such a vector is used to distinguish between the two 

seasons, with zi1 ⋅17 equal to zero if the calving season for the animal under consideration is 

during the warmer months and zi1 ⋅17 equal to one otherwise.  Note that in each case the 

number of covariates required to distinguish among the different levels of each possibly 

significant cofactor is one less than the number of possible cofactor levels.  For a particular 

cofactor, by setting all covariates equal to zero, the so-called base level of this cofactor is 

obtained.  The base levels of these cofactors are parity 1 for parity number, region 1 for region 

of occurrence, 1995 for year of calving and warmer season for season of calving.  A typical 

example of such a covariate matrix would be: 


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from which it is evident that this animal, which occurred in region 3, was in its first parity 

during 1995, when it calved in the warmer season; in its second parity during 1996, when it 

also calved in the warmer season; in its third parity during 1997, when it this time round 

calved in the colder season; and in its fourth parity during 1998, when it again calved in the 

colder season.  

 

5.4 THE RESULTS OF THE GIBBS SAMPLER 

To illustrate the stability of the result obtained, after convergence, when 10 000 sets of 

parameters have been generated through Gibbs sampling, the following scans of randomly 

selected elements of B, Φ , Σ and R are considered.  
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Figure 5.1:   Scans of nine randomly selected elements of the regression matrix B for the  

  10 000 simulations retained. 

From the result presented in Figure 5.1 it is evident that after convergence the parameters 

generated are stable.  Some of the parameter values, such as b8 11, display slower cyclical 

movement through the simulated sample space, but are still relatively stable with respect to 

the interval in which it varies. 

From Figure 5.2 that follows it is also clear that the elements on main diagonal of the diagonal 

matrix Φ  are stable for the 10 000 sets of parameters retained from the Gibbs sampler. 

 
Figure 5.2:   Scans of the three elements on the main diagonal of the matrix Φ  for the  

  10 000 simulations retained. 

b11  b35 b48 

b62  b69 b77 

b7 16  b8 11 b96 

   σ1 σ2   σ3 
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Figure 5.3:   Scans of nine randomly selected elements of the covariance matrix Σ  for the  

  10 000 simulations retained. 

 
Figure 5.4:   Scans of four randomly selected elements of the covariance matrix R for the  

  10 000 simulations retained. 

Σ 11 Σ 12 Σ16 

Σ 33 Σ 34 Σ45 

Σ 47 Σ 49 Σ78 

ρ11  ρ12 

ρ23  ρ34 
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From both Figures 5.3 and 5.4 it is seen that, although some of the parameter values display 

slower cyclical movement through the simulated sample space, all results of parameters 

contained in these covariance matrices are still relatively stable with respect to the interval 

within which they vary.  

As was described in Section 4.2, to apply the Gibbs sampler, starting-point values in the form 

of the least squares estimators were specified for B, Φ -1, Σ -1 and R-1.  These were considered 

to result in good starting-point values for the Gibbs sampler.  Upon further investigation, 

however, it was discovered that, as a result of the high efficiency of convergence of the 

method, “worse” starting-point values also resulted in relatively quick convergence of the 

parameters obtained through Gibbs sampling.  To illustrate scans of the initial simulations 

from starting-point values of the four parameters, b11, σ3, Σ 16 and ρ 32, are considered in Figure 

5.5.  

 
Figure 5.5:   Convergence obtained for the parameters b11, σ 3, Σ 16 and ρ 32 using different  

     starting point values 

For each of the parameters in Figure 5.5 either four or five different starting-point values, all 

“worse” than their least squares estimators, were used to illustrate the rate of convergence.  

For b11 convergence occurred very quickly in all cases, while for the other parameters 

b11 σ3 

Σ16 ρ32 
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considered convergence took slightly longer.  Depending on the quality of the starting-point 

value for the same parameter some simulation cycles converged faster than others as is 

evident in the case of Σ16 where the smallest starting values required a greater number of 

simulations (approximately 70 iterations) than any of the others to converge.  The other 

starting-point values used for Σ16 seem to already converge after about 20 iterations.  The 

slowest convergence in the above was obtained for the parameter ρ 32. 

From the marginal posterior distributions of the elements of the regression matrix B (9 × 17) 

that represents the effects of the covariates on the parameters of the three lactation trait 

curves, milk yield, percentage of fat and percentage of protein in milk composition, the effects 

of the covariates on these parameters can be assessed.  It is important to remember that not all 

covariates apply to all animals.  The matrix Zi is responsible for the identification of the 

covariates relevant to the ith animal.  If we consider the example of the matrix Zi given in (5.9) 

above, it is evident that only the effect of those covariates to which a one was awarded in the 

covariate matrix is relevant to this animal.  By multiplying the regression matrix B and the 

matrix of covariates Zi, the effects of relevant regression matrix elements applicable to animal 

i is extracted and added.  The first column of the regression matrix B contains the base level 

effects on the parameters of the three lactation trait curves, while the remaining columns 

contain the “added” effect on the parameters of the three lactation traits as a result of each of 

the covariates.  The base level effect would be the effect on the parameters resulting from 

base level settings of the covariate matrix Zi as described in Section 5.3 above.  By 

determining the product BZi, the sum of the base level effect and the additional effects of the 

covariates on the nine parameters of the three traits for animal i for the covariates identified 

by Zi, is determined. 

From the 90% highest posterior density (HPD) intervals, 92 of the 153 the elements of the 

regression matrix B significantly affect the parameters of the three lactation trait curves milk 

yield, percentage of fat and percentage of protein in milk composition.  All nine base level 

effects contained in B are significant.  It is also worth noting that the effects of all other 

covariates on the parameters of the trait curves are significant for 2 or more parameters.  The 

matrix B given below contains the mean of the 10 000 simulated matrices, with all values 

indicated in red representing the mean elements of this regression matrix for which the 90% 

HPD intervals indicate that the corresponding covariate significantly affects the parameters of 

the lactation trait curves. 
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B′  =    2,69719 1,33862 1,24774 0,02520 0,01180 -0,01328 -0,00144 0,00068 0,00078 
  0,20146 0,04852 0,06972 0,00507 -0,00748 -0,01462 -0,00078 -0,00003 0,00013 
  0,22380 0,06645 0,07129 0,02434 -0,01452 -0,01482 -0,00114 -0,00001 0,00012 
  0,21055 0,08431 0,09155 0,03666 -0,02213 -0,02057 -0,00132 0,00003 0,00016 
  0,15873 0,06926 0,08485 0,05264 -0,02124 -0,01794 -0,00147 0,00002 0,00011 
  0,22507 0,10066 0,07582 0,03940 -0,02881 -0,01559 -0,00147 0,00000 0,00007 
  0,12498 0,02311 0,09938 0,05711 -0,01315 -0,02314 -0,00158 -0,00004 0,00013 
  -0,10789 0,05630 -0,00462 0,04777 -0,01594 -0,00334 -0,00043 0,00001 -0,00005 
  0,01491 0,03874 -0,00029 0,02974 -0,00874 0,00368 -0,00030 -0,00001 -0,00018 
  -0,21668 0,01849 -0,01374 0,06927 -0,01317 -0,00251 -0,00046 0,00001 -0,00011 
  -0,09654 -0,02324 -0,02018 0,06980 0,00963 0,00345 -0,00079 -0,00018 -0,00015 
  -0,14731 -0,15891 -0,03259 0,07252 0,06206 0,01413 -0,00031 -0,00093 -0,00038 
  0,02310 0,05038 -0,03588 0,01279 -0,03021 0,00733 0,00016 0,00019 -0,00015 
  0,02474 0,01182 -0,00206 -0,01793 0,00064 -0,00608 0,00032 -0,00008 0,00012 
  0,04081 0,00889 0,02543 -0,00725 0,00867 -0,00805 0,00019 -0,00008 0,00008 
  0,07293 0,04018 0,00992 -0,01134 0,00041 -0,01697 0,00008 -0,00008 0,00025 
  -0,24694 0,13489 0,10385 0,09104 -0,03034 -0,02288 -0,00109 0,00011 0,00004 

No single covariate could therefore be removed from the model, although it is possible that, 

for one or more of the parameters of a specific animal, the “added” effects as a result of the  

covariates added to the base level effect could be very small or in some cases even 

insignificant. 

Once the Wood model had been fitted to the Jersey data and the marginal distributions of the 

parameters obtained by means of Gibbs sampling, the various aspects of interest in the 

lactation data of the Jerseys may be investigated.  One of the method employed as part of the 

investigation is the construction of highest posterior density (HPD) intervals, not credibility 

intervals, for the expected lactation trait curves.  It should be noted that, in some cases, the 

posterior distributions are very diffused so that 95% HPD intervals are of little practical value.  

In those cases the 90% HPD intervals are reported.  

 

5.5 THE LACTATION TRAIT MILK YIELD 

The Wood model, which is of the form ( ) ( )ctatWE b
t += exp , was fitted to the Jersey data to 

model the lactation process.  Once the 10 000 simulated Mi matrices for each animal i over all 

four its lactation cycles have been obtained, the lactation curve or milk yield curve for any 

animal i during each of its four lactation cycles for each of the 10 000 simulations can be 
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obtained.  The mean of the 10 000 lactation curves generated for each lactation cycle in this 

manner gives the expected lactation curve for animal i in each lactation cycle. As a result of 

not being able to store the 10 000 sets of the parameters contained in Mi (12 × 3) for i = 

1,…,1141, these values have to be redetermined.  Two alternative methods to do this exist.  

Alternative 1, the fastest and simplest of the two, is to estimate the parameters contained in 

iM~ (9 × 4) through calculating BZi for each of the 10 000 simulated B(9 × 17) matrices, using 

the Zi (17 × 4) relevant to animal i.  Alternative 2, slightly more cumbersome although 

probably more accurate, is to use each of the 10 000 simulated matrices B, Φ -1, Σ -1 and R-1, 

together with the matrix Zi (17 × 4) relevant to animal i, to again simulate by means of the 

Gibbs sampler the elements of Mi for 10 000 simulation iterations.  This means that only the 

matrix Mi has to be generated using the Gibbs sampler described in section 4.2 of Chapter 4, 

as all other parameter matrices from the 10 000 original simulation iterations are available. 
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Figure 5.6: For each of the four lactation cycle of Animal 135 the expected lactation 
curve is given by     , its 90% HPD interval by      and its 90% prediction 
interval by      .  The least squares estimate of the lactation curve is given by 
      .  The observed data for Animal 135 is  given by       . 

Using the second alternative to regenerate 10 000 Mi matrices through Gibbs sampling for 

two animals (i = 135 and i = 511), the estimates of the model parameters for milk yield 

contained in the 10 000 simulated Mi matrices for each of i = 135 and i = 511 were used to 
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determine 10 000 lactation curves for each animal.  The mean of the 10 000 lactation curves 

for each of the animals i = 135 and 511 gave the expected lactation curve for that animal.  

These expected lactation curves for each of the four lactation cycles are represented as a black 

solid line in Figures 5.6 and 5.7 for the two animals under consideration. 
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Figure 5.7: For each of the four lactation cycle of Animal 511 the expected lactation 
curve is given by     , its 90% HPD interval by      and its 90% prediction 
interval by      .  The least squares estimate of the lactation curve is given by 
      .  The observed data for Animal 511 is given by       . 

In Figures 5.6 and 5.7 the green line represents the observed lactation yield values connect by 

straight-line segments for the test day records of the four lactation cycles.  The red line is the 

result of least squares estimation of the lactation curve fitted to the data in a frequentistic 

context through linear least squares regression, after a log transformation had been performed 

on the data.  The magenta coloured broken lines provide the 90% HPD intervals for the 

expected lactation curve during each lactation cycle.  The blue broken lines in turn represent a 

90% prediction interval for the expected lactation curve during each lactation cycle.  The 90% 

prediction intervals were obtained by first finding the 10 000 lactation yield curves that would 

result when obtaining the product ii MX  for each of the 10 000 simulated Mi matrices and the 

design matrix Xi relevant to animal i.  The predictive density then follows from the fact that  

( )
inIMXNMY iiii ⊗ΦΦ ,~, .             (5.10) 
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As a result a predictive matrices f
iY  is simulated from a normal distribution of the form 

denoted in (5.10) for each of the 10 000 means, ii MX , and variances, 
inI⊗Φ .  The 

predictive matrices in f
iY  referring to lactation yield only are then used to construct 90% 

HPD intervals for these predictions.  These intervals are graphed as the 90% prediction 

intervals for the animals under consideration. 

The least squares estimate of the milk yield curve for the fourth lactation cycle of animal 135 

takes on an atypical from, so too does the least squares estimate of the milk yield curve for 

both the second and fourth lactation cycle of animal 511, but in all three the afore mentioned 

cases, however, the Bayesian curve estimate of the expected milk yield is not atypical.  This 

illustrates the ability of this method to reduce the number of atypical curves fitted to the herd.  

This reduction of atypical curves follows from the incorporation of information from the rest 

of the herd as a result of the inclusion of the other parameters estimated for all animals in the 

estimation process through the Gibbs sampler.  Although the matrix Mi estimates the 

regression coefficients relevant to animal i only, to estimate this matrix the Gibbs sampler 

requires that information from the whole herd be included in the conditional distribution of Mi  

through the parameters matrices B, Φ -1, Σ -1 and R-1 contained in it.  The values of these 

parameter matrices are also continually updated with every iteration of the Gibbs sampler. 

However, it most often happens that we are interested not in the expected lactation or milk 

yield curve of a particular animal, but rather in the expected lactation curve of the herd with 

respect to one of the levels of a certain cofactor.  For example, interest may be focused on the 

expected lactation curve for one of the seven parity groups.  Instead of calculating BZi for 

each of the 10 000 simulated B matrices using the Zi(17 × 4) relevant specifically to animal i 

as was suggested in Alternative 1 above to obtain Mi for that specific animal i, Zi is replaced 

with z*(17 ×1) which only considers the various levels of the covariates for the one cofactor 

of interest and eliminates all other cofactors by taking the averages over the levels of these 

other cofactors as the values of their covariates in the vector z*.  No distinction among the 

four lactation cycles are now required because interest is now focused on a level of one of the 

cofactors only irrespective of lactation cycle, allowing, therefore, for a reduction in the 

number of columns contained in z* to only one instead of the four contained in any of the 

matrices Zi , i = 1,…,1141 . 

If, for example, the expected milk yield curve of parity 3 has to be determined, the cofactors 

regions, calving year and calving season have to be averaged over their respective levels.  
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Because the cofactor “region” has 7 levels, the average effect of each of its cofactor levels 

would be 7
1 , and therefore the levels of the 6 covariates used to identify the 7 cofactor levels 

are set equal to 7
1  in order to average out its effect.  Similarly for the cofactor “calving year”, 

which has 4 cofactor levels identified by 3 covariates, the average effect of 4
1  is assigned to 

each covariate level to average out the effect of this cofactor.  For the cofactor “calving 

season” with its 2 cofactor levels, the covariate used to identify its levels has to be assigned a 

2
1  to average out its effect.  To identify parity 3 in the  covariate vector z* a one is still, as 

before, assigned to the second covariate, while all other parity covariates are set at 0.  This 

implies that to determine the expected lactation or milk yield curve of parity 3: 

[ ]2
1

4
1

4
1

4
1

7
1

7
1

7
1

7
1

7
1

7
10000101* =′z . 

Using z* and each of the 10 000 simulated B matrices, 10 000 vectors 

     *Bzm c =                  (5.11) 

are calculated.  The parameter values contained in m c related to milk yield are then used to 

construct the 10 000 lactation curves for the cofactor of interest.  The mean of this set of  

10 000 lactation curves then provides the expected lactation curve for a particular level of the 

cofactor of interest, in this case parity 3 of the cofactor parity, after all other cofactors have 

been eliminated.   

In Figure 5.8 below the expected lactation curves together with the 95% HPD intervals for 

four of the seven parities when the other cofactors, “region”, “calving year” and “calving 

season”, have been averaged out, are given.  Note that these curves are now valid with respect 

to the herd under consideration and do not refer to a specific animal.  From this result it seems 

as if the lowest level of peak milk yield in this herd is attained in the first parity, with a sharp 

increase in peak milk yield from first to second parity, after which a steady increase is 

maintained until about the sixth parity, when peak milk again seems to start declining.  The 

flattest lactation curve with lowest total milk yield seems to occur during the first parity, 

raising the suspicion that this parity is most persistent.  It also appears as if the time of peak 

milk yield is later during the first parity than during subsequent parities. 

When considering the expected lactation curves together with their 95% HPD intervals in 

Figure 5. 9 for regions 1, 4, 5 and 7 when the other cofactors have been averaged out, it seems 

evident that there are differences among the regions with respect to level of peak milk yield 

and time of peak milk yield.  Total yield in region 7 also seems higher with greater variability 

because of the much wider 95% HPD interval boundaries when compared to other regions. 
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Figure 5.8:   Expected lactation curves with 95% HPD intervals for parities 1, 2, 6 and  
     7 or greater when other cofactors have been averaged out. 
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Figure 5.9:   Expected lactation curves with 95% HPD intervals for regions 1, 4, 5 and 7  
     when other cofactors have been averaged out. 



79 

0 100 200 300
10

15

20

25
Season 1: Oct-Mar

Days into season

K
g

0 100 200 300
10

15

20

25
Season 2: Apr-Sep

Days into season

When comparing the expected lactation curves in Figure 5.10 for the four years under 

consideration after the other cofactors have been averaged out, it is evident that peak yield in 

1996 was much lower than during any other year, but it seems as if very little differences 

occurred among the four years with respect to time of peak yield. 
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Figure 5.10:   Expected lactation curves with 95% HPD intervals for 1995, 1996,  
      1997 and 1998 when other cofactors have been averaged out. 

From Figure 5.11 in which the expected lactation curves with 95% HPD intervals for the two 

seasons are displayed, it is clear that dur ing the cooler months of Season 2 peak milk yield, 

although attained slightly later, occurs at a higher level than is the case in Season 1.  Total 

milk yield would be greater during the cooler months. 

 

 

 

 

 

 

 
Figure 5.11:   Expected lactation curves with 95% HPD intervals for seasons 1 and 2  
      when all other cofactors have been averaged out. 
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To confirm the above and other suspected results, it is necessary to further investigate the 

lactation curve characteristics as specified by Wood (1967) and given in equations (4.24) to 

(4.27) in Chapter 4. 

 

5.5.1 Expected total milk yield 

For the Wood model total milk yield was defined as ∫ +=
300  

0  
)exp( dtctat bφ .  As explained 

in Section 4.3 in Chapter 4, by using the 10 000 simulated Mi matrices for each animal i over 

all four its lactation cycles, it would be possible to calculate this value φ  for each animal i 

during each of its four lactation cycles for each of the 10 000 simulations.  As mentioned 

before not being able to store the 10 000 sets of the parameters Mi, i = 1,…1141, requires 

either as first alternative estimating the parameters contained in iM
~  through calculating BZi  

for each of the 10 000 simulated B matrices, using the Zi relevant to animal i or as second 

alternative regenerating Mi through Gibbs sampling as described earlier in Section 5.5.  After 

reconstructing the 10 000 sets of the parameters contained in iM~ , the total milk yield for an 

animal i may be determined for each of these sets of parameters.  Once 10 000 values of total 

milk yield is obtained for animal i during a particular lactation cycle, a histogram is 

constructed for these values of φ  and a Pearson curve fitted to the histogram to determine the 

marginal posterior density of expected total milk yield. 

As was the case with the expected lactation or milk yield curve, it most often happens that we 

require the expected total milk yield with respect to one of the levels of a certain cofactors, 

rather than the expected total milk yield of a particular animal.  If this is the case, using z* 

constructed as explained earlier in order to average out the other cofactors, together with each 

of the 10 000 simulated B matrices, 10 000 vectors cm are obtained using equation (5.11).  

The parameter values for the lactation trait milk yield only as contained in m c are then used to 

obtain 10 000 values of total milk yield, φ , where only one level of the particular cofactor of 

interest applies to the result, while all other cofactors have been averaged out through the use 

of z*.  As before, a histogram is constructed for the values of φ  and a Pearson curve fitted to 

the histogram to determine the marginal posterior density of expected total milk yield for that 

cofactor level of interest.  If this is done for each of the seven parity groups, the marginal 

posterior distribution of expected total milk yield for all seven parities are as follows: 
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Figure 5.12: Expected total milk yields for the seven parities when all other cofactors 
have been averaged out. 

To investigate the differences in expected total milk yield for the seven parities when the 

other cofactors have been averaged out, 90% HPD intervals for the differences in expected 

total milk yield when parities are compared two at a time, were constructed.  Such HPD 

intervals are obtained by sorting the results from the calculation of the differences in total 

milk yield for two levels, say i and j, of the cofactor, or φ i − φ j, in ascending order and then 

finding, as the lower and the upper limit of the 90% HPD interval respectively, the values in 

positions 500 and 9 500 for the 10 000 sorted values of φ i − φ j.  The result of this investigation 

is summarised in Figure 5.13 below, where solid lines under parity numbers indicate groups 

of parities for which no significant differences in expected total milk yield were found. 

Parity number 
1  2  3  7  4  5  6 
                                                   

Figure 5.13: Summarised result of the comparison of expected total milk yields for 
the se ven parities using 90% HPD intervals for differences. 

Usually, when such comparison through the use of HPD intervals for differences is 

graphically illustrated in this manner, the sequence in which the compared characteristics 

occur is the same as that of the means of the marginal posterior distributions when listed in 

ascending order.  If this had been the case for the parities in Figure 5.13, the sequence would 

have been parity 1, 2, 7 or >, 3, 4, 5, and 6.  This is, however, not the case here.  The 
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difference in the order in which the parities are listed in this illustration occurs as a result of 

the influence of the variances of the marginal posterior distributions of the expected total milk 

yield for the seven parities. 

From Figures 5.12 it is evident that total milk yield in the first parity is the lowest as 

suspected earlier when the expected lactation curves were considered, but that it gradually 

increases with increasing parity number up until about the fourth parity, after which total milk 

yield remains relatively stable until the sixth parity.  A decline in total milk yield was then 

recorded for parity seven or greater.  As could be expected Figure 5.13 shows that no 

significant differences occur among the total milk yield levels of parities 4, 5 and 6, but 

surprisingly at the 90% HPD level parity group 7 or > also do not significantly differ from the 

afore mentioned parities.  Although the total milk yield in parity 3 differs significantly from 

that in parities 4, 5, and 6, there is no significant difference on the 90% HPD level between 

parities 3 and 7 or >.  Parities 1 and 2 differ significantly from all other parities on this level. 

Using the same method as explained above, the expected total milk yields for the different 

levels of the other cofactors were also investigated.  In each of these cases the levels of the 

cofactor that were of no interest were averaged out in order to obtain the expected total milk 

yield for the level of the particular cofactor of interest.  To average out the effect of the 

cofactor “parity” with its 7 levels, the 6 covariates used to identify its levels had to be 

assigned a 7
1 . 
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Figure 5.14: Expected total milk yields for the seven regions when all other cofactors 

have been averaged out. 



83 

Region 
1  4  2  8  3  5  7 
                                                    

Figure 5.15: Summarised result of the comparison of expected total milk yields for 
the seven regions using 90% HPD intervals for differences. 

The graph in Figure 5.14 also shows that the expected total milk yields are not the same in the 

seven regions.  The lowest expected total milk yield resulted in region 1, while not only the 

highest expected total milk yield, but also the one with the greatest variability was found in 

region 7 as was suspected when the expected lactation curves for the regions were considered.  

From Figure 5.15 it is seen that no significant difference in expected total milk yield occurred 

between regions 1 and 4, regions 2 and 4, and among regions 3, 5, 7 and 8. 

When considering the expected total milk yields for the four calving years, Figure 5.16 shows 

the lowest expected total milk yield to be that of 1996, while 1997 resulted in the largest 

value, with 1998 much the same as that of 1997.  Figure 5.17 confirmed that 1997 and 1998 

do not significantly differ with respect to expected total milk yield, but also that 1995 and 

1996 are not significantly different from one another in this respect. 
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Figure 5.16: Expected total milk yields for the four calving years whe n all other 

cofactors have been averaged out. 

Years 
1996  1995  1998  1997 

             
Figure 5.17: Summarised result of the comparison of expected total milk yields for 

the four calving years using 90% HPD intervals for differences. 
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Figure 5.18: Expected total milk yields for the two calving seasons when all other 

cofactors have been averaged out. 

The densities in Figure 5.18 show, as suspected when the expected lactation curves of the 

seasons were considered, that higher expected total milk yield was found in the cooler months 

than in the warmer months.  The result of the 90% HPD interval for the difference between 

the two seasons was [57,2038  ;  178,2050], indicating therefore that a significant difference 

in expected total milk yield during the two lactation season considered does exist. 

 

5.5.2 Expected peak milk yield 

As mentioned earlier, Wood defined peak milk yield as ( ) )exp( bab
c
b −−=η .  To investigate 

expected peak milk yield for the various levels of a cofactor, the same approach as explained 

above for expected total milk yield where the effect of the other cofactors are averaged out, is 

used. 

Expected peak milk yield for the seven parities in Figure 5.19 was found to indeed be lowest 

in the first parity after which there is an increase in expected peak milk yield with every parity 

up to the sixth parity.  Only in parity 7 or > did the expected peak milk yield again decrease to 

more or less the same level as that of parity 3, although with greater variability.  Figure 5.20 

shows that parities 1 and 2 are significantly different from all other parities with respect to 

expected peak milk yield, while parities 3 and 7 or >, parities 4, 5 and 7 or >, and parities 4, 5 
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and 6 do not differ significantly when the 90% HPD intervals for the differences between 

parities are considered. 
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Figure 5.19: Expected peak milk yields for the seven parities when all other 

cofactors have been averaged out. 

Parity number 
1  2  3  7  4  5  6 
                                                      

Figure 5.20: Summarised result for the comparison of expected peak milk yields of 
the seven parities using 90% HPD intervals for differences. 
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Figure 5.21: Expected peak milk yields for the seven regions when all other cofactors 

have been averaged out. 
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Region 
1  4  2  8  7  3  5 
                                                       

Figure 5.22: Summarised result of comparison of expected peak milk yields for the 
seven regions using 90% HPD intervals for differences. 

In Figure 5.21 it is evident that there are the  differences among the regions with respect to 

expected peak milk yield.  The lowest and least variable of the expected peak milk yields 

occurred in region 1, while the highest expected peak milk yield resulted in region 5.  Region 

7 a relatively high expected peak milk yield with the largest of variance all regions.  From 

Figure 5.22 it is seen that the expected peak milk yield in regions 1 and 4, regions 2 and 4, 

regions 2, 7 and 8, and regions 3, 5 and 7 do not differ significantly. 

From Figure 5.23 that considers the expected peak milk yield for the four years it is seen that 

there are considerable differences among the four years with respect to peak milk yield, 1996 

having the lowest expected peak milk yield.  Upon further investigation of these differences 

using 90% HPD intervals for differences between expected peak milk yields of years, in order 

to compare expected peak milk yield for the four years in pairs, all differences between years 

proved to be significant. 
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Figure 5.23: Expected peak milk yields for the four calving years when all other 
cofactors have been averaged out. 
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The result obtained when comparing the expected milk yields of the two seasons for which 

the marginal densities are given in Figure 5.24 also indicated significant difference between 

the two seasons, with April to September indeed having higher expected peak milk yield.  
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Figure 5.24: Expected peak milk yields for the two calving seasons when all other 

cofactors have been averaged out. 

 

5.5.3 Expected time of peak milk yield 

From the Wood model it follows that time of peak yield is defined as c
b−=τ .  To study 

expected time of peak yield for the herd at various levels of a certain cofactor, the approach 

explained earlier for expected total milk yield was again us ed.  The effect of cofactors that are 

of no interest at a particular time is, as before, averaged out through the use of the covariate 

vector z* as explained earlier. 

Expected time of peak milk yield was found in Figure 5.25 to be latest in the first parity, as 

mentioned when the expected lactation curves for parity were considered, and earliest in the 

second parity after which it becomes gradually later with each parity up until the fifth parity.  

Expected time of peak yield for parity 6 was midway between that of parities 3 and 4, while 

that of parity 7 or > is similar to parity 5.  Note that parity 1 has the greatest variability with 

respect to expected time of peak milk yield.  From Figure 5.26 it is seen that parities 2, 3, 4 

and 6, parities 3, 4, 6 and 7 or >, and parities 1, 5 and 7 or > do not differ significantly with 

respect to expected time of peak milk yield.  
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Figure 5.25: Expected time of peak milk yields for the seven parities when all other 

cofactors have been averaged out. 

Parity number 
2  3  6  4  7  5  1 
                                                          

Figure 5.26: Summarised result of comparison of expected time of peak milk yields 
for the seven parities using 90% HPD intervals for differences. 
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Figure 5.27: Expected time of peak milk yields for the seven regions when all other 

cofactors have been averaged out. 
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From the comparison of the marginal posterior distributions of time of peak milk yield using 

90% HPD intervals of differences between time of peak milk yield for regions, it follows that 

region 1 differs significantly from all regions except region 8.  Further more, as could be 

expected regions 2, 3, and 8, regions 2, 5, and 7, regions 4, 5, and 7, and regions 5, 7 and 8 do 

not differ significantly with respect to expected time of peak milk yield.  Region 8 only differs 

significantly from region 4 on the 90% HPD level, which is more as a result of the variance of 

the distribution of region 8, than because of its location parameter.  It was not possible to 

graphically summarise the result of comparison of expected time of peak milk yields for the 

seven regions by means of a line diagram as was done above, because of the influence of the 

variances of the above marginal posterior distributions.  As was mentioned earlier the 

sequence of regions in such a diagram would normally be the same as that of the means of the 

marginal distributions when sorted in ascending order.  Here large differences in variances of 

the marginal posterior distributions make this of form of illustration impossible, as it is not 

possible to arrange the regions in any illustratable order. 
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Figure 5.28: Expected time of peak milk yields for the four calving years when all 

other cofactors have been averaged out. 

Years 
1998  1996  1995  1997 

                               
Figure 5.29: Summarised result of comparison of expected time of peak milk yields 

for the four calving years using 90% HPD intervals for differences. 
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From Figures 5.28 and 5.29 it follows that only 1997 and 1998 differ significantly with 

respect to time of peak milk yield.  Furthermore, when Figure 5.30 is also considered greater 

distributional differences seem to occur between the two calving seasons than among calving 

years with respect to expected time of peak milk yield.  As was suspected when the expected 

lactation curves for the two seasons were considered, expected peak milk yield occurs later 

during the cooler months of April to September. 
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Figure 5.28: Expected time of peak milk yields for the two calving seasons when all 

othe r cofactors have been averaged out. 

 

5.5.4 Expected persistency of lactation 

The Wood definition of persistency of lactation is )ln()1( cb −+−=ψ  and is said to describe 

the ability of an animal to maintain peak milk yield.  The expected persistency of lactation for 

the various levels of a cofactor is again investigated using the same approach as described 

earlier for expected total milk yield, where the effect of the other cofactors are averaged out 

using the appropriate form of the covariate vector z* as previously explained. 

Figure 5.31 shows the level of expected persistency to be much greater during the first parity 

than is the case for later parities.  This was expected because of the flatter expected lactation 

curve that resulted during the first  parity when compared to later parities.  When the summary 

of the 90% HPD intervals of differences in persistency for parities in Figure 5.32 is 

considered we see that parity 1 differs from all other parities with respect to expected 
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persistency.  The only other significant difference that occurs is found between parities 5 and 

6, with parity 6 having the lowest persistency of all. 
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Figure 5.31: Expected persistency of lactation for the seven parities when all other 

cofactors have been averaged out. 

Parity number 
6  3  4  2  7  5  1 
                                                          

Figure 5.32: Summarised result of comparison of expected persistency of lactation 
for the seven parities using 90% HPD intervals for differences. 
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Figure 5.33: Expected persistency of lactation for the seven regions when other 

cofactors have been averaged out. 
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Region 
1  3  2  5  8  7  4 
                                                                                         

Figure 5.34: Summarised result of co mparison of expected persistency of lactation 
for the seven regions using 90% HPD intervals for differences. 

When considering Figures 5.33 and 5.34 it is seen that the region with the lowest expected 

persistency is region 1, while region 7 not only has the highest level of expected persistency, 

but also the greatest variability in persistency.  Because of this large variance in region 7, the 

sequence in which the regions are listed in the summary of results for the 90% HPD intervals 

of differences in persistency for regions in Figure 5.34 do not follow the sequence of the 

means of the marginal posterior distributions when listed in ascending order.  From Figure 

5.34 it is also evident that regions 1 and 3, regions 2, 3, 5 and 8, regions 2, 5, 7 and 8, and 

regions 4, 5, 7 and 8 do not differ significantly with respect to expected persistency.  
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Figure 5.35: Expected persistency of lactation for the four calving years when other 

cofactors have been averaged out. 

Years 
1998  1995  1996  1997 

                               

Figure 5.36: Summarised result of comparison of expected persistency of lactation 
for the four calving years using 90% HPD intervals for differences. 
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Similar to the results of expected time of peak yield, it follows from Figures 5.35 and 5. 36 

that only 1997 and 1998 differ significantly with respect to expected persistency of yield. 
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Figure 5.37: Expected persistency of lactation for the two calving seasons when 

other cofactors have been averaged out. 

In Figure 5.37 the expected persistency of lactation differs considerably for the two calving 

season, with greater persistency occurring during the cooler season that spans from April to 

September.  The result of the 90% HPD interval for the difference between the two seasons 

was [−0,1737  ;  −0,1008], also indicating that a significant difference in expected persistency 

between the two seasons does exist.  

 

5.5.5 Milk yield:  In summary 

It should be noted that the expected lactation or milk yield curves generated for each of the 

levels of the various cofactors when the effects of the other cofactors are eliminated through 

averaging, provide the Bayesian equivalent to the Standard lactation curves (SLAC’s) of milk 

yield for that level of the cofactor, as discussed in section 3.2 of Chapter 3, wit h respect to this 

particular herd.  The expected lactation curve for parity 3, for example, should therefore also 

be viewed as the herd standard with respect to lactation for all animals in their third parity. 

The isolated effects of the various levels of the four cofactors parity number, region, calving 

year and calving season, on the four characteristics total milk yield, peak milk yield, time of 
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peak milk yield and persistency of the lactation trait milk yield is summarised here.  How 

these results compa re to those of other researchers of lactation in cattle are also mentioned.  

For the seven parities under consideration the following were found.  Parity 1 had the lowest 

expected total and expected peak milk yield, together with the latest expected time of  peak 

yield and the greatest variance with respect to expected time of peak yield.  Parity 1 had the 

flattest lactation curve as a result of having the lowest peak and total milk yield, and the latest 

time of peak yield and therefore had a greater expected persistency than any other parity.  

Expected persistency in parity 1, however, also had the greatest variance.  Parity 1 differed 

significantly from all other parities with respect to expected total and expected peak milk 

yield, as well as expected persistency.  Wood (1969), Rowlands et al. (1982), Sölkner and 

Fuchs (1987), Stanton et al. (1992) and Tekerli et al. (2000) all found that, in dairy cows, 

persistency of lactation is greater during the first parity than during later parities.  Tekerli et 

al. (2000) also reported lower total and peak milk yields during first than during later parities.  

For the Jersey data parity 2 had the second lowest expected total and expected peak milk 

yields, with the earliest expected time of peak yield.  Parity 2 differed significantly form all 

other parities with respect to both expected total and expected peak milk yield.  Other studies 

of lactation by Rowlands et al. (1982), Keown et al. (1986) also found time of peak yield to be 

earlier in the second parity than in the first, while Keown et al. (1986) extended this result to 

time of peak in parity 3 being later than in parity 2.  For the Jersey data both the 

characteristics expected total and expected peak milk yield increased with parity increasing 

parity number up to parity 6.  Expected total milk yield in parity 7 or greater was less than 

that of parity 3.  The expected peak yield of parity 7 or greater was just higher than parity 3, 

while expected time of peak yield for parity 7 or greater was similar to that of parity 5.  

Expected persistency of parities 5 and 7 or greater were similar although these parities were a 

lot less persistent than the first parity.  Parity 6 was the least persistent, while parities 2, 3 and 

4 were similar with respect to persistency.  Furthermore, significant differences also exist 

between groups of parities with respect to all characteristics of lactation as described earlier. 

The effects of the seven regions on lactation indicated that region 1 has the lowest expected 

total and expected peak yield, the earliest expected time of peak yield and, as a result of this, 

the lowest expected persistency.  In contrast to region 1, region 7 had the highest expected 

total milk yield, relatively high expected peak milk yield and the latest expected time of peak 

yield and therefore the highest expected persistency.  For all four the afore mentioned 
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characteristics, however, region 7 had the greatest variance.  Region 4 also performed well 

with respect to expected persistency.  It had the second highest level of persistency, that 

followed from the second lowest expected total and expected peak milk yield levels, and the 

second latest expected time of peak yield after region 7.  Therefore, although region 4 is not 

the highest producing region, it produces milk at a highly persistent level.  Significant 

differences exist between regions with respect to all characteristics of lactation as described 

earlier.  Batra (1986) also noted that the influence of different stations as location of herds had 

a significant effect on lactation.  

As a result of some years being dry and others wet, it was expected that calving years would 

vary with respect to their influence on lactation.  The lowest expected total and expected peak 

yields, and second latest expected time of peak yield were recorded in 1996.  With respect to 

expected persistency, however, 1996 was second best.  The years 1997 and 1998 had the 

highest and second highest expected total milk yield, and the second highest and highest 

expected peak yield respectively.  However, 1998 had the earliest expected time of peak yield, 

while 1997 had the latest time of peak yield.  As a result, 1998 was the least persistent of the 

four years, while 1997 was most persistent.  The year 1995 never faired the best or worst with 

respect to any of these characteristics.  The years 1997 and 1998 differed significantly with 

respect to all the considered characteristics except expected total milk yield.  Other significant 

differences for the characteristics under consideration were as discussed earlier.  Other 

researchers of lactation, such as Batra (1986) and Tekerli (2000), also found calving year to 

have a significant influence on lactation. 

Season 2, representing the cooler months from April to September, performed better with 

respect to all characteristics of lactation.  This season had greater levels of expected total and 

expected peak milk yields, peaked later and had greater expected persistency of yield.  

Differences between the two seasons with respect to all characteristics considered were all 

significant.  This concurs with results published by, amongst others, Sölkner and Fuchs 

(1987), Stanton et al (1992) and Tekerli et al. (2000) who found calving season to 

significantly influence lactation.  Tekerli et al. (2000) found fall and winter to have higher 

total milk yield, while both Stanton et al. (1992) and Tekerli et al. (2000) found higher levels 

of peak milk yield during colder periods.  Sölkner and Fuchs (1987) and Tekerli et al. (2000) 

reported season of calving to be of considerable influence on persistency of lactation. 
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5.6 THE LACTATION COMPOSITION TRAITS  

Both fat and protein content of milk in the Jersey data were measured as the percentage 

contained in milk composition and are typically a convex function over time.  In 1976 Wood 

showed that the model ( ) ( )ctatWE b
t += exp  could also be used to estimate various milk 

composition traits such as fat and protein content in the milk of dairy cows.  The reason for 

this may be found in the fact that the Wood model becomes convex over time when the value 

of b  is negative and that of c is positive.  Sakul and Boylan (1992) found that the Wood model 

is useful in describing almost all milk composition traits, with the exception of lactose 

content, in sheep breeds.  In this study the Wood model was used to simultaneously  model not 

only milk yield, but also the milk composition traits fat content and protein content.  For each 

animal i the matrix Mi(12 × 3) therefore contains the parameters of the Wood model for all 

three lactation traits over all four lactation cycles under consideration.  Each column of Mi  

contains the parameters of one of the lactation traits for all four lactation cycles, where the 

parameters of the lactation cycles are listed as column vectors, one below the other. 

 

5.6.1 Fat content of milk  

Once the 10 000 simulated Mi matrices for each animal i over all four its lactation cycles have 

been obtained, 10 000 fat content curves for animal i during each of its four lactation cycles 

can be generated.  The mean of the 10 000 fat content curves for animal i in each lactation 

cycle then gives the expected fat content curve for animal i in that lactation cycle.  Because, 

as a result of storage constraints, no Mi matrices were stored, either one of the two alternatives 

described earlier in section 5.5 may again be used to regenerate Mi.  In Alternative 1 the 

values of the parameters contained in iM
~ (9 × 4) are estimated by calculating BZi for each of 

the 10 000 simulated B(9 × 17) matrices, using the Zi (17 × 4) relevant to animal i.  While 

using Alternative 2, 10 000 Mi matrices are obtained through Gibbs sampling using the  

10 000 previously simulated B, Φ -1, Σ -1 and R-1 matrices. 

Regenerating 10 000 Mi matrices by means of the second alternative for two animals (i = 135 

and i = 511) and using the parameters in Mi relevant to fat content only to find 10 000 fat 

content curves, the expected fat content for each of the four lactation cycles for animals 135 

and 511 were obtained as the mean of the 10 000 fat content curves and graphed as black 

solid lines in Figures 5.38 and 5.39.  
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Figure 5.38: For each of the four lactation cycle of Animal 135 the expected fat 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 135 is given by       . 
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Figure 5.39: For each of the four lactation cycle of Animal 511 the expected fat 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 511 is given by       . 
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In Figures 5.38 and 5.39 the green line represents the observed fat content values of the test 

day records connected by straight-line segments for the four lactation cycles of the two 

animals.  The red line is again the result of least squares estimation of the fat content curve 

fitted to the data.  The magenta coloured broken lines provide the 90% HPD intervals for the 

expected fat content curve during each lactation cycle.  The blue broken lines in turn represent 

a 90% prediction interval for the expected fat content curve during each lactation cycle 

obtained as the 90% HPD intervals for predictions resulting from the use of the predictive 

density that follows from (5.10) to simulate a predictive matrices f
iY  from the normal 

distribution denoted in (5.10) for each of its 10 000 means, ii MX , and variances, 
inI⊗Φ  as 

explained for milk yield in section 5.5 above. 

In the case of fat and protein content in milk composition when measured as percentages of 

composition, these functions are typically convex over time, and therefore curves for these 

traits of non-convex form are considered atypical.  For this reason when considering the least 

squares estimate of the fat content curve for the second and third lactation cycles of animal 

135 and the second lactation cycle of animal 511 these estimates are said to take on atypical 

forms.  In contrast to this the Bayesian curve estimate of the expected fat content for both 

third lactation cycle of animal 135 and the second lactation cycle of animal 511 are not 

atypical, while that of the second lactation cycle of animal 135 is considered “less” atypical 

than its least squares counterpart.  This again illustrates the ability of the Bayesian method to 

reduce the occurrence of curves of atypical nature as a result of the inclusion of information 

from the whole herd through the use of the parameter matrices B, Φ -1, Σ -1 and R -1 in the 

conditional distribution of Mi in the Gibbs sampler.  These parameter matrices, B, Φ -1, Σ -1 and 

R  -1, are updated in every iteration of the Gibbs sampler. 

It is worthwhile to note that atypical least squares estimates of the fat and protein content 

curves sometimes occur as a result of the first test day record occurring relatively late in the 

lactation cycle.  A good example of this would be first test day record of the second lactation 

cycle of animal 135 that only occurs on day 39 of the cycle.  Because a large portion of the 

lactation cycle that precedes this point in time is unknown or, more to the point, the portion 

where the greatest changes in fat content occurs is unknown, this is most probably the reason 

for the least squares estimate of the lactation curve being atypical in form.  The least squares 

estimate of the curve is only based on the actual observations, while the Bayesian estimate of 
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the expected fat content curve is supported by the information from the rest of the herd that, to 

a large extent, corrects the atypical result obtained by least squares estimation. 

As was the case with milk yield, interest is most often not focussed on the fa t content curve of 

an individual animal, but on the expected fat content curve of the herd with respect to one of 

the levels of a certain cofactor.  For this reason the same procedure explained earlier for of 

milk yield is again employed.  This means calculating the 10 000 vectors *Bzm c =  where 

z*(17 ×1) only considers one particular level of the cofactor of interest and eliminates all 

other cofactors by taking their averages as the values of their respective covariates in the 

vector z*.  The parameter values contained in m c related to fat content are then used to 

construct the 10 000 fat content curves of the level of interest for the cofactor under 

consideration.  The mean of this set of 10 000 fat content curves then provides the expected 

fat content curve for a particular level of the cofactor of interest after all other cofactors have 

been eliminated through averaging. 

The expected fat content curves together with the 95% HPD intervals for four of the seven 

parities when the other cofactors, “region”, “calving year” and “calving season”, have been 

averaged out, are given in Figure 5.40.  From this result the convex nature of the fat content 

curves are evident.  Parity 1 had the lowest expected percentage of fat through out lactation, 

while for parities 2 through to 6 the expected percentage of fat in milk composition remained 

much the same until approximately day 70 when slight differences began to occur.  By day 

300 milk in parity 2 contained the highest expected percentage of fat.  For parity 7 or greater 

the expected minimum percentage of fat occurred the latest, only on day 58.  The remainder 

of the results for expected percentage of fat in milk composition for the parities are 

summarised in Table 5.1 below. 
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Figure 5.40: Expected fat content curves with 95% HPD intervals for parities 1, 2, 6 
and 7 or greater when all other cofactors have been averaged out. 

Table 5.1: Summary of the expected fat content for the seven parities 

Parity 
Expected fat % 

on day 1 
Minimum 

expected fat % 
Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1 3,6458 3,3719 38 3,8821 

2 3,9093 3,4412 49 3,9848 

3 3,9153 3,4420 50 3,9731 

4 3,9956 3,4409 54 3,9718 

5 3,9688 3,4434 54 3,9370 

6 3,9332 3,4377 54 3,9109 

7 or > 4,0274 3,4265 58 3,9088 

 

In Figure 5.41 the expected fat content curves together with the 95% HPD intervals for four of 

the seven regions are given.  For all regions the level of expected fat content at on day 1 and 

day 300 of lactation are very similar.  Minimum expected fat content for all regions occurred 
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between day 46 and 56, with the greatest difference between regions with respect to minimum 

expected fat percentage only 0,1130%.  The variance in expected fat content was smallest for 

region 1 and largest for region 7, which was also the case for milk yield in these regions.   
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Figure 5.41: Expected fat content curves with 95% HPD intervals for regions 1, 4, 5 
and 7 when all other cofactors have been averaged out. 

Figure 5.42 and Table 5.2 considers the expected fat content for the four years.  The day of 

minimum expected fat content only varied by 5 days between the earliest and latest day for 

the four years, while the difference in minimum expected fat percentage was less than 0,15%. 

Table 5.2: Summary of the expected fat content for the  four years 

Year 
Expected fat % 

on day 1 
Minimum 

expected fat % 
Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1995 3,8789 3,4869 48 3,9468 

1996 3,8713 3,4184 49 3,9437 

1997 3,9790 3,4792 53 3,9592 

1998 3,9185 3,3371 53 3,9032 
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Figure 5.42: Expected fat content curves with 95% HPD intervals for 1995, 1996, 
1997 and 1998 when all other cofactors have been averaged out. 

 

 

 

 

 

 

Figure 5.43: Expected fat content curves with 95% HPD intervals for seasons 1 and 
2 when all other cofactors have been averaged out. 

From Figure 5.43 it is evident that the expected fat content with respect to the two seasons 

when all other cofactors have been averaged out, differed quite considerably with respect to 

day of minimum fat content.  For season 1 this minimum occurred on day 39, while for season 

2 it occurred only on day 63.  The expected minimum fat percentage, however, did not differ 

as much.  Minimums of 3,3982% and 3,4535% were recorded for seasons 1 and 2 

respectively.  The expected fat content on day 300 were similar for the two seasons, 3,9671 
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for season 1 and 3,9094 for season 2, although it differed more on day 1, with 3,7136% in 

season 1 and 4,1202% in season 2. 

 

5.6.2 Protein content of milk 

Using the same procedure as described for fat content in section 5.6.1, it is possible to obtain 

the expected protein content curves for any animal i.  Therefore the expected protein content 

curves for each of the four lactation cycles of animals 135 and 511 were again obtained as the 

mean of 10 000 protein content curves that resulted from the parameters relevant to protein 

for the 10 000 Mi matrices regenerated using the second alternative.  These expected protein 

content curves are graphed as black solid lines in Figures 5.44 and 5.45 below.  The green line 

represents the observed protein content values of the test day records connected by straight-

line segments for the four lactation cycles of the two animals.  The red line is again the result 

of least squares estimation of the protein content curve fitted to the data.  The magenta 

coloured broken lines provide the 90% HPD intervals for the expected protein content curve 

during each lactation cycle.  The blue broken lines in turn represent a 90% prediction interval 

for the expected protein content curve during each lactation cycle, obtained as the 90% HPD 

intervals for predictions resulting from the use of the predictive density through simulation as 

explained for milk yield in section 5.5 above.  When considering the first and fourth lactation 

cycles of both animals 135 and 511 the ability of the Bayesian method to reduce the 

occurrence of atypical curves is again evident. 

Using the same procedure explained earlier for milk yield and fat content curves, the expected 

protein content curve for a particular level of the cofactor of interest when all other cofactors 

have been averaged out is again obtained.  The expected protein content curves together with 

the 95% HPD intervals for four of the seven parities after the other cofactors, “region”, 

“calving year” and “calving season”, have been averaged out, are given in Figure 5.46.  From 

this result it is evident that protein content curves are mostly convex in nature.  When 

considering Figure 5.46, together with the results of the expected percentage of protein in 

milk composition for the seven parities as summarised in Table 5.3, the following is noted.  In 

parity 1 lowest expected percentage of protein occurs when lactation commences, while for 

all other parities the lowest expected percentage of protein occur later in lactation.  
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Figure 5.44: For each of the four lactation cycle of Animal 135 the expected protein 

content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the protein 
curve is given by      .  The observed data for Animal 135 is given by       . 
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Figure 5.45: For each of the four lactation cycle of Animal 511 the expected protein 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the protein 
curve is given by      .  The observed data for Animal 511 is given by       . 
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It seems as if greater variation occur with respect to the expected protein content of the 

various parities than was the case for the expected fat content of the seven parities.  This is 

especially evident when considering the various times at which the minimum expected protein 

percentage in the composition of milk for the different parities occur.  The lower boundaries 

of the 95% HPD intervals of parities 1 and 2 seem to take on “atypical” form.  This is 

attributed to the method used to obtain these intervals and not to the shape of the 10 000 

protein content curves used to obtain the expected protein content curve. 
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Figure  5.46: Expected protein content curves with 95% HPD intervals for parities 1, 
2, 6 and 7 or greater when all other cofactors have been averaged out. 

Table 5.3: Summary of the expected protein content for the seven parities 

Parity 
Expected protein 

% on day 1 
Minimum expected 

protein % 
Day of minimum 

expected protein % 
Expected protein 

% on day 300 

1 4,1353 4,1353 1 4,8503 

2 4,3400 4,2779 16 4,8302 

3 4,4184 4,2639 28 4,7523 

4 4,4982 4,2320 39 4,6919 

5 4,4309 4,1807 39 4,6307 

6 4,5726 4,1883 53 4,5574 

7 or > 4,2318 4,0983 27 4,5449 
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Figure 5.47 provides expected protein content curves together with the 95% HPD intervals for 

four of the seven regions.  Minimum expected protein content for region 5 occurred earliest 

(day 16) and at the highest level of the minima (4,2351%), and that of region 7 latest (day 56) 

and at the lowest level of the minima (4,0098%).  The difference between these two regions 

with respect to minimum expected protein percentage is 0,2253%.  The variance in expected 

protein content is again smallest for region 1 and largest for region 7, which was also the case 

for milk yield and fat content in these regions.   
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Figure 5.47: Expected protein content curves with 95% HPD intervals for regions 1, 
4, 5 and 7 when all other cofactors have been averaged out. 

 

Figure 5.48 and Table 5.4 considers the expected protein content for the four years.  The day 

of minimum expected protein content varied by 16 days between the earliest and latest time 

for the four years, while the difference in minimum expected protein percentage was less than 

0,17%. 

 



107 

 
Table 5.4: Summary of the expected protein content for the four years 

Year 
Expected protein 

% on day 1 
Minimum expected 

protein % 
Day of minimum 

expected protein % 
Expected protein 

% on day 300 

1995 4,3071 4,1188 31 4,3699 

1996 4,3576 4,1660 34 4,5977 

1997 4,4350 4,2643 18 4,8063 

1998 4,4833 4,2829 34 4,7289 
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Figure 5.48: Expected protein content curves with 95% HPD intervals for 1995, 
1996, 1997 and 1998 when all other cofactors have been averaged out. 

The expected protein content curves with 95% HPD interval for the two seasons are provided 

in Figure 5.49.  The minimum expected protein percentage for season 1 occurred on day 1 at a 

level of 4,0871%, while this minimum for season 2 was at 4,2664% on day 52.  There are 

considerable differences in the levels at which of expected protein content commences and in 

the shape of the curves of expected protein content for the two seasons, but on day 300 the 

expected protein content of the two seasons are ver y similar. 
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Figure 5.49: Expected protein content curves with 95% HPD intervals for seasons 1 
and 2 when all other cofactors have been averaged out. 

 

5.6.3 Milk composition traits fat and protein:  In summary 

The expected fat content and protein conte nt curves generated for each of the levels of the 

various cofactors when the effects of all other cofactors have been eliminated by averaging 

out these cofactors, provide the Bayesian equivalent to the Standard lactation curves 

(SLAC’s) of fat content and protein content, as discussed in section 3.2 of Chapter 3, with 

respect to this particular herd.  For the Jersey data the expected fat content curve of region 1, 

for example, should therefore also be viewed as the herd standard for the Jerseys in region 1 

with respect to fat content.  Therefore all Jersey cows in region 1 that may be considered 

similar to those animals included in the Jersey data are expected to have similar expected fat 

content curves. 

Whittemore (1980) noted the existence of an inverse relationship between the level of milk 

yield and the percentage of fat contained in the milk.  This is also true for the Jersey data, 

although the levels of minimum expected fat content generally occur later and that of protein 

content generally occur earlier than the level of peak milk yield for all cofactors.  Hurley 

(2003) noted that it is generally accepted that the percentage of fat and the percentage of 

protein contained in milk are positively correlated.  This was found to be true generally for the 

Jersey data as well.  Upon investigation it was found that correlation between expected fat 

content and expected protein content for the 7 parities were all above 90% with the highest 

value of 97,42% being that of parity 4.  According to Hurley (2003) milk fa t is usually the 

most variable component in the composition of milk.  This however was not the case for the 

Jersey data, where the expected protein content varied considerably more with respect to the 

form of the marginal posterior distributions for the va rious cofactor levels considered and 

with respect to the width of the 95% HPD intervals as a result of the variances. 
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Stanton et al. (1992) found that for cows calving in winter the protein percentage was slightly 

lower than for others.  This is not the case in the Jersey data.  Cows calving during the cooler 

months generally have higher levels of protein throughout lactation.  Very little published 

work on lactation with respect to dairy cows model fat and protein contained in milk 

composition. 

 

5.7 PREDICTIONS BASED ON THE WOOD MODEL 

In section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycle of 

an animal i based on the results from one or more the preceding lactation cycles is given for 

the general case.  For the Jersey data each cow has a total of 4 observed lactation cycles in the 

data for which lactation modelling has already been performed.  Using the method as 

described for the general case, it is possible to predict the results of the fifth lactation cycle for 

the ith animal based on the four preceding recorded lactation cycles. 

As first step the model parameters of the fifth lactation cycle, i.e. the lactation cycle to be 

predicted, or )2(
ifm  have to be determined if the model parameters of the four previously 

recorded lactation cycle are given by *)1()1(
ii mm = .  This is done through MCMC simulation 

using the conditional distribution of )2(
ifm  specified in equation (4.22).  In equation (4.22) 

when predicting the fifth lactation cycle for an animal in the Jersey data we use q = 5 as the 

total number of lactation cycles under consideration and h = 4 as the number of lactation 

cycles that are known.  The conditional distribution for predicting the fifth year’s model 

parameters for  an individual or )2(
ifm , given the performance in the previous four years then 

becomes: 
( ) ( ) ( )
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where ( )1
iz  is as applicable to the four known lactation cycles and ( )2

iz  contain the covariates 

expected to apply to the lactation cycle to be predicted.  For the Jersey data where the 

covariates contained in a covariate vector identify the cofactor levels of the cofactors parity 

number, region, calving year and calving season for one lactation cycle, these covariates in 

( )2
iz  for the fifth year to be predicted, are set as follows.  The cofactor parity number is 

(5.12) 
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increased by one from that in the fourth lactation cycle and the covariates identifying parity 

number is then set according to this value.  The cofactors region and calving season are kept 

as they were in the fourth of the recorded lactation cycles, while the calving year is averaged 

out by using 4
1  as the value of each of the covariates used to identify it.  It is necessary to 

average out the effect of calving year, because the fifth lactation cycle to be predicted here is 

expected to occur in 1999 for which no effect is included in the regression matrix B.   The 

years for which effects are include in matrix B are 1995 to 1998 and therefore their effects are 

removed by averaging out the cofactor calving year in the covariate vector of the fifth year.  

Remember that the covariate vector, ( )2
iz , serves as identifier of the effects in the regression 

matrix B relevant to animal i.  The marginal posterior distribution of )2(
ifm  is obtained through 

10 000 iterations of the Gibbs sampler employing the results of parameter matrices B, Φ -1, Σ -1 

and R-1 from the original Gibbs sampling used to model the four recorded lactation cycles. 

The predictive distribution of the fifth lactation cycle is: 

( ) ( ) ( ) ( )( ) ( )( )
ifnImXINmmy ififififif ⊗⊗= ∗∗ ΦΦ ,~, 22

3
222           (5.13) 

where ( )2
ify  is of order ( )13 ×ifn .  The mean of the result of ( )( ) ( )∗⊗ 22

3 ifif mXI  calculated for the 

10 000 simulated values of )2(
ifm  then gives the prediction for the fifth lactation cycle and, 

using the 10 000 means of the predictive distribution, the 90% HPD interval for the prediction 

of the fifth lactation cycle is obtained. 

To find a prediction interval for the prediction for the fifth lactation cycle, the predictive 

vector ( )2
ify  is simulated from a normal distribution of the form denoted in (5.13) for each of 

the 10 000 means, ( )( ) ( )∗⊗ 22
3 ifif mXI , and variances, 

ifnI⊗Φ .  The predictive vectors in ( )2
ify  

referring to each of the lactation traits milk yield, fat content and protein content are then used 

to construct 90% HPD intervals for the predictions of each of these traits.  These intervals are 

graphed as the 90% prediction intervals for the animal under consideration. 

To illustrate the result of this prediction procedure, the predicted lactation or milk yield curve, 

as well as the predicted fat and protein content curves for the fifth lactation cycle given the 

performance of the animal in preceding four recorded lactation cycles were graphed for 

animals 135 and 511 in the Jersey data.  In each of following graphs, the predicted curves are 

represented by a turquoise line, while the 90% HPD intervals are given as magenta broken 

lines and the 90% prediction intervals as blue broken lines.  The result follows. 
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Figure 5.50: For the fifth lactation cycle of Animal 135 the predicted milk  yield, fat 

content and protein content curves are given by     , their 90% HPD 
interval by        and 90% prediction interval by         . 
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Figure 5.51: For the fifth lactation cycle of Animal 511 the predicted milk yield, fat 

content and protein content curves are given by     , their 90% HPD 
interval by        and 90% prediction interval by         . 
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CHAPTER 6 

ALTERNATIVE MODELS FITTED TO JERSEY DATA 

6.1 OTHER LACTATION MODELS 

The Wood model had been an obvious choice when selecting models to test the approach used 

in this study, because it has thus far been used in most studies of lactation modelling as the 

benchmark model to which the performance of other models have been compared.  Of the 

other models discussed in Chapter 2 only those that, with the assumption of multiplicative 

errors and after a log transformation as discussed in section 3.5 of Chapter 3, are of linear 

form are appropriate to be used in the approach suggested in this research.  The condition of 

linearity of the resulting model after assuming multiplicative errors and performing a log 

transformation, limits the possible number of lactation models that may be used in the 

application of the Bayesian approach suggested here to 13, excluding the Wood model.  Of 

the 13 possible models some, such as Brody’s exponential decline function inherently do not 

have the ability to usefully describe lactation in dairy cows.  Some of the other possible 

models, such as Dhanoa’s reparameterised Wood model and the Jenkins and Ferrel 

adjustment of the Wood model, are so close to the Wood model applied in Chapter 5 that it 

did not make much sense from an illustration point of view to use these.  The 6-parameter 

Morant model suggested by Williams in 1993 was also considered of little use, as the high 

number of parameters in this model would fit the data well, but required a larger number of 

test day records per animal and probably represented an over-parameterisation of the model.  

Because of Morant and Gnanasakthy (1989) criticism of three of their own mode ls, as well as 

similarities between some of their models, some of their suggested models were also 

eliminated as possible models to use in illustration.  Ultimately, based on all of the preceding, 

the general exponential model and 4-parameter Morant model were chosen for further 

illustration.  

One other model, the Wilmink II model, also caught interest.  Although the Wilmink II model 

did not adhere to the condition of linearity after assuming multiplicative errors and 

performing a log transformation, it warranted further investigation.  The reason for this 

followed from the good result that was obtained by Olori et al. (1999) using the Wilmink II 
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model in comparison to the other model fitted, as well as because the Wilmink II model had 

in recent years been the model preferred by researchers of the Agricultural Research Council 

in South Africa to model lactation data of both South African Holstein and Jersey cows 

(Mostert et al., 2001).  It was therefore decided to use an adapted form of this model in this 

study. 

 

6.2 THE GENERAL EXPONENTIAL MODEL 

The general exponential model was introduced in 1989 by Morant and Gnanasakthy to model 

lactation in Friesian heifers.  This model assumes that the expected milk yield (in kg/day) of 

an animal at time t can be represented over the lactation period by 

     ( ) ( )( )tdtcAtWE b
t += exp        (6.1) 

where A = exp(a ).  The parameters a , b , c  and d are unknown and may differ from one animal 

to another.  This model is, because of its ability to take on a convex form, also used to 

estimate the various milk composition traits such as fat and protein content in milk.  

With the assumption of multiplicative errors for the model in (6.1), by performing a natural 

log transformation, the observation model for animal i becomes: 

  ( ) ( ) ijpsijpijsijpijsijpijsijsijpijsijpijs etdtctbatWtY ++++== 2ln)(ln)(     (6.2) 

where, ( )2,0...~ sijps Ndiie σ , i = 1, … , k , j = 1, … , q, s = 1, … , u, p = 1, … , ijn and ijn  is the 

number of test days for animal i during lactation cycle j..  The Jersey data contains k  = 1141 

animals, all of whom have been observed over q = 4 lactation cycles for the u = 3 lactation 

traits milk yield, and percentage of fat and percentage of protein in milk composition, with 

from 8 to 10 test day records observed for each animal during each of the four lactation 

cycles. 

The generalised linear model form of the model for animal i during lactation cycle j is, as 

described in (4.3) for the general case: 

     ijijijij EMXY +=         (6.3) 

where ( ) ( )
ijnijij Nn IE ⊗×′ Φ,0 vec~13 vec .  In the case of the general exponential model there 

are v = 4 regression coefficients in the generalised linear form of the lactation model for the ith 
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animal during its jth lactation cycle for the lactation trait indicated by s = 1, 2, 3.  These are 

a ijs, bijs, cijs and d ijs , so that 
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Row r of design matrix ( )4×ijij nX  contains the elements that would return the general 

exponential model in generalised linear form when multiplied with the matrix of regression 

coefficients ijM  in (6.4) above,  

     [ ]2)( ln1 ijrijrijr
r

ij ttt=X .       (6.5) 

The model extended for animal i to all q = 4 lactation cycles then is, 
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The matrix R, containing the covariances between the model parameters of the same animal in 

successive lactation cycles remains of the form: 
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=

44342414

34332313

24232212

14131211

ρρρρ
ρρρρ
ρρρρ
ρρρρ

R ,       (6.8) 

because q = 4 lactation cycles were observed for all 1141 animal in the Jersey data.  

Additional information on the cofactors parity number, region, calving year, and calving 

season available in the Jersey data have to again also be included in the model.  To do this a 

cova riate matrix Zi(17 × 4) is, as before, constructed for each animal i as explained in section 
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5.3 of Chapter 5.  This covariate matrix is then used as described in section 4.1 of Chapter 4 

for the generalised Bayesian model. 

Once the model for the generalised exponential model had been written in the above form, the 

Gibbs sampler as described in section 4.2 of Chapter 4 and the full conditional distributions of 

all the model parameters of interest as set out in equations (4.17) to (4.21) are used to obtain 

the marginal posterior distributions conditional on the observed data only.  The 

hyperparameters G and P required to generate marginal distributions for Σ -1 and R-1, were 

again set equal to the moments estimators from the sampling distributions of Σ  and R w ith 

degrees of freedom still as small as possible, δ  = 4 and g  = 13. 

As in Chapter 5 the Gibbs sampler was put through a “burn-in” period of 2000 simulation 

iterations, after which 10 000 sets of parameters were generated and kept using equations 

(4.17) to (4.21).  This again required simulating from normal and Wishart distributions only, 

as described in Chapter 5.  Speed and storage constraints posed by Matlab, again resulted in 

only the 10 000 sets of parameters generated for B, Φ -1, Σ -1 and R-1 being stored.  To 

regenerate the parameters of contained in Mi , i = 1,…, 1141, either of the two procedures 

referred to as Alternatives 1 and 2 respectively and explained in full in section 5.5 of Chapter 

5 may again be used.  

Using the 10 000 resulting regression matrices B (9 × 17) to construct 90% HPD intervals for 

the elements of B, it was found that only 85 of the 204 elements of this matrix significantly 

affect the parameters of the three lactation trait curves, milk yield, percentage of fat and 

percentage of protein in milk composition.  The affect of both the base level and the levels of 

the covariates on the parameter d  of the milk yield curve are not significant.  The base level 

effects on all 11 the other parameters of the model are however significant.  With respect to 

the effects of all covariates on the parameters of the traits curves, all covariates significantly 

affect at least one of the 12 parameters and therefore all cofactors were kept in the model.  It 

is noted though that it is possible that for a specific animal, the contributions of all included 

covariates to the parameters for that animal could be very small or perhaps even insignificant. 

Further investigation of the Jersey data when modelled by means of the general exponential 

model followed once the marginal distributions of the parameters had been obtained through 

Gibbs sampling. 
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6.2.1 The lactation trait milk yield 

Using the 10 000 Mi  (16×3) matrices for an animal i over all four lactation cycles regenerated 

through alternative 2 of the two possible methods to do so, the lactation or milk yield curves 

for each lactation cycle of each of the 10 000 simulations for such an animal can be obtained.  

Note that only the parameters in Mi (16×3) relevant to milk yield in each of the four lactation 

cycles are used to obtain milk yield curves.  The mean of the 10 000 lactation curves for each 

lactation cycle gives the expected lactation curve for animal i during each lactation cycle.  To 

illustrate such a result the expected lactation curves for each of the four lactation cycles of 

animal i = 135 are given as solid black lines in Figure 6.1 below. 
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Figure 6.1: For each of the four lactation cycle of Animal 135 the expected lactation 
curve is given by     , its 90% HPD interval by      and its 90% prediction 
interval by      .  The least squares estimate of the lactation curve is given by 
      .  The observed data for Animal 135 is given by       . 

In Figure 6.1 the green line represents the observed milk yield values during each lactation 

cycle connected by straight-line segments.  The red line is the least square estimate fitted to 

the data using the general exponential model.  The magenta broken lines provide the 90% 

HPD intervals for the expected lactation curves during each lactation cycle and the blue 
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broken lines represent a 90% prediction intervals for the expected lactation curve obtained 

using the 90% HPD intervals of the predictions that result from the predictive density as 

explained in section 5.5 of Chapter 5.  The least squares estimates of the milk yield curve of 

lactation cycles 2 and 4 were atypical, while that of lactation cycle 3 commences at an 

unrealistic point and has 2 turning points.  However, the Bayesian curve estimated in all three 

these cases are of typical lactation curve form, again demonstrating the ability of the method 

to reduce the occurrences of such unpractical results even when a lactation model other than 

that of Wood is used.  

The expected lactation or milk yield curve of the herd with respect to one of the levels of a 

certain cofactor may also be obtained as before by constructing a z* vector that only considers 

the level of the cofactor of interest and averages out the effect of all other cofactors.  The  

10 000 sets of parameter values that apply when this is done results, as before, from m c = Bz*  

for each of the 10 000 simulated B matrices.  The parameter values contained in m c 

applicable to milk yield are then used to construct 10 000 lactation curves for the particular 

level of the cofactor of interest.  The expected lactation curve for such a particular level of the 

cofactor of interest is then obtained as the mean of these 10 000 lactation curves.  The 

procedure was explained in greater detail in section 5.5 of Chapter 5.  

In Figure 6.2 below the expected lactation curves, together with their 95% HPD intervals for 

parities 1 and 6 when the other cofactors, “region’, “calving year” and “calving season”, have 

been averaged out, are given.  These curves are now valid with respect to the herd under 

consideration and are the Bayesian equivalent of the Standard lactation curves (SLAC’s), as 

discussed in section 3.2 of Chapter 3, when the general exponential model is used to model 

lactation.  In Figure 6.3 the expected lactation curve of parity 2 when the general exponential 

model is used to model lactation is compared to the result for the same parity obtained from 

the Wood model in Chapter 5.  In the figure on the left it is seen that there are considerable 

differences in shape between the two models, with the expected lactation curve for parity 2 of 

the Wood model always above that of general exponential model.  The figure on the right 

provides the differences in milk yield between the two curves on the left plotted over time.  

Initially the expected yields are very similar, but towards the end of the lactation cycle these 

differences increase up to almost 10 kilograms.   
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Figure 6.2: Expected lactation curves with 95% HPD intervals resulting from the general 
exponential model for parities 1 and 6 when the other cofactors have been 
averaged out. 

 

 

 

 

 

Figure 6.3: (1) On the left the expected lactation curves for parity 2 using the general 
exponential model (      ) and the Wood model (      ) when other cofactors 
have been averaged out.  (2) On the right the differences in milk yield 
between the two curves in (1) plotted over time. 

The results with respect to the expected lactation curves of all seven parity groups are 

summarised in Table 6.1.  The lowest level of peak milk yield occurs in first parity, with a 

sharp increase to second parity.  With the exception of parity 5, peak milk yield increases 

from first to sixth parity and then declines in parity 7 or >.  Time of expected peak yield is 

again latest in parity 1, but when fitting the general exponential model it is modelled to occur 

earlier than the mean time of peak yield that resulted on day 48 for the Wood model.  The 

expected lactation curves for all parities end in a lower expected yield on day 300 than what 

was the case for the Wood model. 
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Table 6.1: Summary of the expected milk yield for the seven parities using the general 
exponential model. 

Parity Expected kg’s 
milk on day 1 

Maximum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1 10,6888 16,6740 32 2,6184 

2 15,1086 20,2038 28 3,7242 

3 17,0189 21,7202 29 5,0600 

4 17,0379 22,1419 30 5,2354 

5 16,4348 22,0090 31 4,7181 

6 17,9320 22,3382 26 4,0648 

7 or > 15,5584 21,2362 28 3,0995 
 

The results with respect to the expected lactation curves of the four years are summarised in 

Table 6.2.  When using the general exponential model, the expected lactation curves of the 

four calving years commence, peak and end at lower levels than was the case for the Wood 

model.  The general exponential model also models the expected time of peak milk yield 

earlier for the four calving years than what is the case when using the Wood model for this 

purpose. 

Table 6.2: Summary of the expected milk yield for the four years using the general 
exponential model. 

Year Expected kg’s 
milk on day 1 

Maximum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1995 16,8993 20,4512 28 4,8500 

1996 14,8709 20,2076 31 4,2768 

1997 15,0523 21,2616 33 4,7667 

1998 15,2319 21,6145 31 4,1225 
 

In Figure 6.4 the expected lactation curves for the two seasons when the general exponential 

model is used to model lactation is compared to the result obtained from the Wood model in 

Chapter 5.  Expected milk yield for the first season is modelled to commence at a lower level, 

with slightly earlier peak at a lower peak level than expected milk yield for this season when 

employing the Wood model.  The result of this comparison for the second season is similar 

only with respect to expected peak and time of expected peak milk yield.  The la rgest 

difference in expected milk yield for the two models occurs at the end of lactation. 
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Figure 6.4: The expected lactation curves for seasons 1 and 2 using the general 
exponential model (      ) and the Wood model (      ) when other cofactors 
have been averaged out. 

 

6.2.2 The lactation trait fat content of milk 

The expected fat content curve for an animal during each lactation cycle may be obtained 

using the same approach described for milk yield in section 6.2.1.  
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Figure 6.5: For each of the four lactation cycle of Animal 135 the expected fat 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the fat content 
curve is given by      .  The observed data for Animal 135 is given by       . 

In Figure 6.5 the expected fat content curves for each of the four lactation cycles of animal  

i = 135 are given as solid black lines, the green lines represent the observed data, the red lines 
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the least squares estimated obtained using the general exponential model and the magenta 

lines the 90% HPD intervals for the expected fat content curves.  The blue lines represent the 

90% prediction intervals for the expected lactation curves obtained as explained before.  The 

least squares estimate of the fat content curves in the first three lactation cycles are atypical, 

but the expected fat content curves estimated using the Bayesian approach again successfully 

addresses this problem. 

Expected fat content curves for the herd with respe ct to one of the levels of a cofactor of 

interest were again obtained using the procedure briefly explained above with respect to milk 

yield.  As part of the obtained results, Figure 6.6 gives the expected fat content curves 

together with 95% HPD intervals for parities 1 and 7 or greater when the other cofactors in 

the model have been averaged out. 

 

 

 

 

 

Figure 6.6: Expected fat content curves with 95% HPD intervals resulting from the 
general exponential model for parities 1 and 7 or greater when the other 
cofactors have been averaged out. 
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Figure 6.7: (1) On the left the expected fat content curves for parity 6 using the General 
exponential model (      ) and the Wood model (      ) when other cofactors 
have been averaged out.  (2) On the right the difference s in fat content 
between the two curves in (1) the plotted over time. 
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In Figure 6.7 the expected fat content curves of parity 6 resulting from the general exponential 

and Wood models are compared.  In the figure on the left it is seen that there are very little 

differences in shape between the two models, while the figure on the right confirms that the 

scale of these differences is indeed small, with the largest differences at the start and end of 

the lactation cycle.  The results with respect to the expected fat content curves of all seven 

parities are summarised in Table 6.3.  On average expected fat content of the parities is 0,5% 

higher on the first day of the lactation cycle for the general exponential model than for the 

Wood model, while the level of the minimum expected fat content is 0,05% lower and occurs 

from 4 to 6 days later.  For the Wood model the expected fat content of the parities on day 

300 is on average 0,11% higher than for the general exponential model. 

Table 6.3: Summary of the expected fat content for the seven parities using the general 
exponential model. 

Parity Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1 4,1748 3,3208 42 3,7759 
2 4,3921 3,3923 46 3,8769 
3 4,4801 3,3876 47 3,8542 
4 4,4476 3,3979 49 3,8702 

5 4,4763 3,3969 49 3,8270 
6 4,4055 3,3975 50 3,8253 

7 or > 4,4923 3,3845 52 3,8162 
 

The results with respect to the expected fat content curves of the four years are summarised in 

Table 6.4.  When comparing the results for the expected fat content of the four years to that 

obtained using the Wood model the results are on average similar to that of the parities above, 

except for the time of minimum fat content which is now for 1 to 6 days later for the general 

exponential model than for the Wood model. 

Table 6.4: Summary of the expected fat content for the four years using the general 
exponential model. 

Year Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1995 4,4791 3,4371 47 3,8294 

1996 4,2983 3,3770 47 3,8525 
1997 4,4743 3,4264 47 3,8440 

1998 4,3844 3,2930 49 3,8121 
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Figure 6.8: The differences in expected fat content for seasons 1 and 2 when comparing 
the expected fat content curves that resulted from Wood model to that of the 
general exponential model over time. 

From Figure 6.8 it follows that the expected fat content curve that resulted from the Wood and 

general exponential models are more similar during the second calving season than the first. 

 

6.2.3 The lactation trait prote in content of milk 

The expected protein content curve for an animal during each lactation cycle may also be 

obtained using the approach described for milk yield in section 6.2.1.  In Figure 6.9 the 

expected protein content curves for each of the 4 lactation cycles of animal i = 135 are given.  
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Figure 6.9: For each of the four lactation cycle of Animal 135 the expected protein 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the protein 
curve is given by      .  The observed data for Animal 135 is given by       . 
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To illustrate the result for the expected protein content, Figure 6.10 gives the expected protein 

content curves together with 95% HPD intervals for parities 1 and 2 when the effects of all 

other cofactors have be eliminated by taking averages. 

 

 

 

 

 

Figure 6.10: Expected protein content curves with 95% HPD intervals resulting 
from the general exponential model for parities 1 and 2 when other 
cofactors have been averaged out. 

In Figure 6.11 the expected protein content curves of parity 3 resulting from the general 

exponential and Wood models are compared.  The greatest differences between the two 

models occur at the start and at the end of the lactation cycle.  The results with respect to the 

expected protein content of all seven parities are summarised in Table 6.5.   

 

 

 

 

 

Figure 6.11: (1) On the left the expected protein content curves for parity 6 using the 
general exponential model (      ) and the Wood model (      ) when other 
cofactors have been averaged out.  (2) On the right the differences in 
protein content between the two curves in (1) the plotted over time. 

The greatest variation in differences between the result of the Wood model and general 

exponential model occurs with respect to the protein content of milk.  This is clear when 

considering the results of protein content for the seven parities as no fixed pattern in the 

differences of the results for the two models may be discerned.  For example, when 

considering the expected protein percentages on day 1, day 300 and at minimum we find that 
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for one parity the values of the Wood model may be greater than that of the general 

exponential model, while for another parity it is the other way around.  The same kind of 

result also occurs with respect to the day on which minimum protein content is attained.  The 

same result is also observed with respect to the expected protein content for the four years 

when comparing the summarised results of Table 6.6 to that of the Wood model. 

Table 6.5: Summary of the expected protein content for the seven parities using the 

general exponential model. 

Parity Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1 4,1786 4,1427 8 4,8111 

2 4,3148 4,2955 11 4,8725 

3 4,7031 4,2516 40 4,7306 

4 4,6475 4,2271 46 4,6976 

5 4,6192 4,1753 46 4,6367 

6 4,3552 4,2099 74 4,6485 

7 or > 4,4148 4,1010 38 4,5695 
 

Table 6.6: Summary of the expected protein content for the  four years using the general 
exponential model. 

Year Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1995 4,6517 4,1006 41 4,6193 

1996 4,3094 4,1825 38 4,6390 

1997 4,2714 4,2649 6 4,8360 

1998 4,6117 4,2789 41 4,7337 
 

 

 

 

 

Figure 6.12: The differences in expected protein content for seasons 1 and 2 when 
comparing the expected protein content curves that resulted from 
Wood model to that of the general exponential model over time. 
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Figure 6.12 supports the statement that no fixed pattern in the differences of the results for the 

two models with respect to protein content may be discerned.  

 

6.2.4 Predictions based on the general exponential model 

In section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycles of 

an animal i based on the results from one or more preceding lactation cycles is discussed for 

the general case.  In section 5.7 of Chapter 5 this method was applied in order to predict a 

fifth lactation cycle of an animals based on the results from the preceding four lactation cycles 

making use of the Wood model.  This same prediction procedure will now be used here to 

predict the milk yield, fat content and protein content curves for the fifth lactation cycle of 

animal i = 135 given the performance in the preceding four lactation cycles modelled by 

means of the general exponential model.  The results are provided in Figure 6.13 where the 

solid turquoise line represents the predicted curve, while the 90% HPD intervals are given as 

magenta broken lines and the 90% prediction intervals as blue broken lines. 
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Figure 6.13: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat 
content and protein content curves resulting from the gene ral 
exponential model are given by       , their 90% HPD interval by        and 
90% prediction interval by        . 
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6.3 THE 4-PARAMETER MORANT MODEL 

The 4-parameter Morant model also resulted from research in 1989 by Morant and 

Gnanasakthy in an effort to model lactation in Friesian heifers.  This model assumes that the 

expected milk yield (in kg/day) of an animal at time t can be represented over the lactation 

period by 

     ( ) ( )tdctbtAWE 2
t ++= exp        (6.9) 

where A = exp(a ).  The parameters a , b , c  and d are unknown and may differ from one animal 

to another.  This model also has the ability to take on a convex form and is therefore also used 

to estimate the milk composition traits fat and protein content of milk for the Jersey data. 

With the assumption of multiplicative errors for the model in (6.9) and after performing a 

natural log transformation, the observation model for animal i is: 

   ( ) ijps
ijp

ijs
ijpijsijpijsijsijpijsijpijs et

d
tctbatWtY ++++== 2)(ln)(            (6.10) 

where ( )2,0...~ sijps Ndiie σ , i = 1, … , 1141, j = 1, … , 4, s  = 1, 2, 3, and p  = 1, … , ijn  where 

ijn  is the number of test days for animal i during lactation cycle j.  From 8 to 10 test day 

records were observed for each animal during each of the four lactation cycles. 

As described in (4.3) for the general case, the model for animal i during lactation cycle j in 

generalised linear model form is: 

     ijijijij EMXY +=                (6.11) 

where ( ) ( )
ijnijij Nn IE ⊗×′ Φ,0 vec~13 vec .  The 4-parameter Morant model has v = 4 

regression coefficients in the generalised linear form of the lactation model for animal i in its 

jth lactation cycle for the lactation trait indicated by s = 1, 2, 3.  These regression coefficients 

are denoted by  a ijs, bijs, cijs and dijs, so that 
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In the design matrix ( )4×ijij nX  row r contains the elements that would return the generalised 

linear form of the 4-parameter Morant model when multiplied with the matrix of regression 

coefficients ijM  in (6.12) above,  
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The model extended for animal i to all q = 4 lactation cycles then is, 

iii

i

i

i

i

i EMX

Y
Y
Y
Y

Y +=
















=

4

3

2

1

              (6.14) 
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Because q = 4 lactation cycles were observed for all 1141 animals in the Jersey data, the 

matrix R, containing the covariances between the model parameters of the same animal in 

successive lactation cycles remains of the form denote in (6.8).  As before the covariate 

matrix Zi(17 × 4) for each animal i contains the information on the cofactors. 

Next the Gibbs sampler as described in section 4.2 of Chapter 4 using the full conditional 

distributions of all the model parameters of interest as set out in equations (4.17) to (4.21) is 

employed to obtain the marginal posterior distributions conditional on the observed data only.  

The hyperparameters G and P required to generate marginal distributions for Σ -1 and R -1, were 

again set equal to the moments estimators from the sampling distributions of Σ  and R w ith 

degrees of freedom still as small as possible, δ = 4 and g = 13.  As before the Gibbs sampler 

was put through a “burn-in” period of 2000 simulation iterations, after which 10 000 sets of 

parameters were generated.  Again only the 10 000 sets of parameters generated for B, Φ -1,  

Σ -1 and R-1 were stored, because to regenerate the parameters contained in Mi, either of the 

two alternatives explained in full in section 5.5 of Chapter 5 may be used.  

The 90% HPD intervals for B, constructed from the 10 000 regression matrices B (9×17) 

resulting from the Gibbs sampler indicated that 109 of the 204 elements of this matrix 

significantly affect the parameters of the three lactation trait curves, milk yield, percentage of 

fat and percentage of protein in milk composition.  The affects of all levels of this matrix on 

the parameter c of the protein content curve are not significant.  However, the base level 

effects on all 11 the other parameters of the model are significant.  The effects of all 
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covariates on the parameters of the traits curves are significant for at least two of the 12 

parameters in the model and therefore all cofactors were kept. 

Once the marginal distributions of the parameters of the general exponential model had been 

obtained through Gibbs sampling, further investigation of the results for Jersey data based on 

this lactation model follows. 

 

6.3.1 The lactation trait milk yield 

Figure 6.14 shows the results, obtained as before, of the expected lactation curves for the four 

lactation cycles of animal 135 as black lines, while the observed data are given in green.  The 

red lines are the least squares estimates of the 4-parameter Morant model fitted to the data.  

The magenta broken lines represent the 90% HPD intervals of the expected lactation curve 

and the blue broken lines the 90% prediction intervals for the expected lactation curve 

obtained using the 90% HPD intervals of the predictions resulting from the predictive density 

as explained in section 5.5 of Chapter 5. 

0 100 200 300
10

20

30

40

50
Lactation cycle 1: Milk yield

K
g

0 100 200 300
10

20

30

40

50
Lactation cycle 2: Milk yield

0 100 200 300
10

20

30

40

50
Lactation cycle 3: Milk yield

Days into season

K
g

0 100 200 300
10

20

30

40

50
Lactation cycle 4: Milk yield

Days into season
 

Figure 6.14: For each of the four lactation cycle of Animal 135 the expected lactation 
curve is given by     , its 90% HPD interval by      and its 90% prediction 
interval by      .  The  least squares estimate of the lactation curve is 
given by      .  The observed data for Animal 135 is given by       . 
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Differences: a) Wood vs Morant and 
b) Morant vs General exponential

The expected lactation or milk yield curve of the herd with respect to one of the levels of a 

cofactor is again determined using the method applied in section 5.5 of Chapter 5 and section 

6.2.1 above.  The results of these curves are the Bayesian equivalents of the Standard lactation 

curves (SLAC’s) discussed in section 3.2 of Chapter 3 when the 4-parameter Morant model is 

used to model la ctation. 

Figure 6.15 below shows the expected lactation curves and their 95% HPD intervals for 

parities 1 and 6 when the other three cofactors (region, calving year and calving season) have 

be averaged out. 

 

 

 

 

 

Figure 6.15: Expected lactation curves with 95% HPD intervals resulting from the  
4-parameter Morant model for parities 1 and 6 when other cofactors 
have been averaged out. 

 

 

 

 

 

Figure 6.16: (1) On the left the expected lactation curves for parity 2 using the 4-
parameter Morant model (      ), the general exponential model (      ) and 
the Wood model (      ) when all other cofactors have been averaged out.   
(2) On the right the differences in milk yield between the expected curves 
for parity 2 the plotted over time for (a) Wood vs Morant model (       ) and 
(b) Morant vs general exponential model (       ). 
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The graph on the left in Figure 6.16 compares the expected lactation curves of parity 2 

obtained from the 4-parameter Morant model in green, the general exponential model in blue 

and the Wood model in red, while in the graph on the right the difference over time between 

the expected lactation curves of parity 2 for the Wood against the 4-parameter Morant model 

is plotted in magenta and that for the 4-parameter Morant model against the general 

exponential model is plotted in turquoise.  From this is clear that the resulting expected 

lactation curves of the Wood and 4-parameter Morant models are more similar in scale than 

the expected lactation curves of the 4-parameter Morant and general exponential models.  

This result also applies to the expected lactation curves of all other parities. 

The results with respect to the expected lactation curves of all seven parity groups are 

summarised in Table 6.7.  When compared to the expected lactation cur ves of the Wood 

model it is noted that the time of peak milk yield is considerably earlier in the curves resulting 

from the 4-parameter Morant model and even earlier than in the general exponential model, 

with the first three parities attaining peak yield on the first day of the lactation cycle.  From 

about day 50 in the lactation cycle the difference between expected lactation curves of the 

Wood and 4-parameter Morant model remains more or less constant for all parities, with the 

expected curves resulting from the Wood model always above that of the 4-parameter Morant 

model. 

Table 6.7: Summary of the expected milk yield for the seven parities using  
 4-parameter Morant model. 

Parity Expected kg’s 
milk on day 1 

Maximum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1 16,9478 16,9478 1 11,9704 

2 20,7641 20,7641 1 11,7074 

3 22,0742 22,0742 1 11,7733 

4 22,1666 22,2834 8 11,6906 

5 21,8394 21,9862 21 11,5007 

6 22,5006 22,5823 6 11,4014 

7 or > 21,0783 21,2422 17 10,8625 
 

A summary of the results of the expected lactation curves for the four calving years is 

provided in Table 6.8.  When comparing the expected lactation curves of the 4-parameter 

Morant, Wood and general exponential models for the four calving years results similar to 

that of parity are obtained.  
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Table 6.8: Summary of the expected milk yield for the four years using the 4-parameter 
Morant model. 

Year Expected kg’s 
milk on day 1 

Minimum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1995 20,4941 20,6620 15 11,0226 

1996 20,2700 20,3097 5 11,4851 

1997 21,1837 21,1981 10 11,9187 

1998 21,9733 21,9733 1 11,7412 
 

In Figure 6.17 the expected lactation curves of the two calving seasons for the 4-parameter 

Morant, Wood and general exponential models are compared.  From this is evident that the 

results are similar to the comparison for parity commented on earlier. 

 

 

 

 

Figure 6.17: The expected lactation curves for seasons 1 and 2 using the 4-parameter 
Morant model (      ), the  general exponential model (      ) and the 
Wood model (        ) when other cofactors have been averaged out. 

 

6.3.2 The lactation trait fat content of milk 

The expected fat content curve of an animal i for each lactation cycle may again be obtained 

as before.  To illustrate, the expected fat content curves for each of the four lactation cycles of 

animal i = 135 graphed in black in Figure 6.18 were obtained.  In this figure the observed data 

are again plotted in green, while the red lines represent the least squares estimate of the fat 

content curve obtained using the 4-parameter Morant model.  The 90% HPD intervals and 

90% prediction interval for the expected fat content curves obtained as explained before are 

represented by magenta and blue broken lines respectively.  The Bayesian approach again 

eliminates the atypical form of fat content curves obtained through least squares estimation in 

lactation cycles 1 through to 3.  
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Figure 6.18: For each of the four lactation cycle of Animal 135 the expected fat 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 135 is given by       . 

Figure 6.19 shows the expected fat content curves with 95% HPD intervals for parities 1 and 

7 or greater when all other cofactors have been averaged out using this method.  Very little 

difference between the results of the two parity groups is evident, although the 90% HPD 

interval for parity 7 or greater is wider towards the end of the lactation cycle. 

 

 

 

 

 

Figure 6.19: Expected fat content curves with 95% HPD intervals resulting from the 
4-parameter Morant model for parities 1 and 7 or greater when other 
cofactors have been averaged out. 
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Figure 6.20 compares the expected fat content curves of parity 6 that resulted from the 4-

parameter Morant model, the Wood model and the general exponential model.  The graph on 

the left shows that very little differences in both shape and scale occurred among the three 

models.  The graph on the right provides the actual differences between expected fat content 

curves of the Wood and 4-parameter Morant models (in magenta) and the 4-parameter Morant 

and general exponential models (in turquoise).  The greatest differences are observed at 

beginning and end of the lactation cycle, although these differences are relatively small when 

compared to the scale on which fat content is measured.  

 

 

 

 

Figure 6.20: (1) On the left the expected fat content curv es for parity 6 using the 
Morant model (      ), the general exponential model (      ) and the Wood 
model (      ) when other cofactors have been averaged out.   

(2) On the right the differences in fat content between the expected curves 
for parity 6 the plotted over time for (a) Wood vs Morant model (       ) and 
(b) Morant vs general exponential model (       ). 

The results with respect to the expected fat content curves of all seven parities for the 4-

parameter Morant model are summarised in Table 6.9.  On average the expected fat content of 

the parities on the first day of the lactation cycle for the Morant model is 7,1% higher than for 

the Wood model and 6,6% higher than for the general exponential model.  These high starting 

values resulting from the 4-parameter Morant model are however unrealistically high.  On 

average the minimum fat content of the parities for the Morant model are 0,055% lower and 

from 5 to 18 days earlier than for the Wood model, but 0,009% lower and from 9 to 12 days 

earlier than for the general exponential model.  On day 300 the expected fat content of the 

Morant model is on average 0,087% higher than that of the general exponential model, but 

when compared to the Wood model there is no consistent difference on day 300. 
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Table 6.9: Summary of the expected fat content for the seven parities using the  
4-parameter Morant model. 

Parity Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1 9,7567 3,3025 33 3,8703 

2 10,8073 3,3800 36 3,9555 

3 12,6422 3,3733 37 3,9143 

4 11,0194 3,3908 39 3,9341 

5 10,8564 3,3938 38 3,9063 

6 10,6673 3,3929 40 3,9324 

7 or > 11,3618 3,3838 40 3,9403 
 

Table 6.10 provides a summary of the expected fat content curves for the four years.  When 

comparing these results of the expected fat content for the four years from the 4-parameter 

Morant model to that of the Wood and general exponential models, the results are similar to 

that of the parities above, with the exception of the day of minimum fat content that occurs 10 

to 17 days earlier than in the case of the Wood model and 9 to 11 days earlier than for the 

general exponential model. 

Table 6.10: Summary of the expected fat content for the four years using the  
4-parameter Morant model. 

Year Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1995 13,2231 3,4251 38 3,9014 

1996 10,1939 3,3661 37 3,9150 

1997 9,9220 3,4207 36 3,9079 

1998 10,8413 3,2861 39 3,8824 
 

In Figure 6.21 the expected fat content curve of obtained from the 4-parameter Morant model 

for season 2 differs less from both that of the Wood and general exponential models than is 

the case for season 1.  
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Figure 6.21: For seasons 1 and 2 respectively, the differences in expected fat content 
curves plotted over time for (a) Wood vs Morant model (       ) and (b) 
Morant vs general exponential model (       ). 

 

6.3.3 The lactation trait protein content of milk 

To illustrate the result obtained with respect to the expected protein content for an individual 

animal using the 4-parameter Morant model, Figure 6.22 provides the expected protein 

content curves for each of the four lactation cycles of animal i = 135 in black. 
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Figure 6.22: For each of the four lactation cycle of Animal 135 the expected protein 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the protein 
curve is given by      .  The observed data for Animal 135 is given by       . 
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Expected protein content curves for the herd with respect to one of the levels of a cofactor of 

interest was again obtained by applying the same procedure as before.  The expected protein 

content curves for parities 1 and 3 when all other cofactors have been average out, together 

with the 95% HPD intervals of these expected curves are shown in Figure 6.23.  The expected 

protein curves of these two parities are very similar during the initial stages of lactation but 

differ in the final stages of lactation.  

 

 

 

 

 

Figure  6.23: Expected protein content curves with 95% HPD intervals resulting 
from the 4 -parameter Morant model for parities 1 and 3 when the other 
cofactors have been averaged out. 

The graph on the left in Figure 6.24 compares the expected protein content curve s of parity 6 

obtained from the 4-parameter Morant model in green, the general exponential model in blue 

and the Wood model in red, while in the graph on the right the difference over time between 

the expected protein content curves of parity 6 for the Wood model against the 4-parameter 

Morant model is plotted in magenta and that for the 4-parameter Morant model against the 

general exponential model is plotted in turquoise.  From these graphs it is clear that the 

expected protein content curves of the Wood and general exponential models are similar in 

shape and scale, but that that these models differ slightly from the 4-parameter Morant model 

with respect to expected protein content curve of parity 6.  In the initial stages of the 4-

parameter Morant model estimated the expected protein content to be at a higher level than 

the Wood and general exponential models.  After approximately day 80 until the end of the 

lactation cycle the 4-parameter Morant model estimates the expected protein content to be 

lower tha n that of the Wood and general exponential models.  On the final day of the lactation 

cycle the 4-parameter Morant model estimates the expected protein content to be lower than 

the other two models.  This result also applies to the expected lactation curves of all other 

parities, calving years and calving seasons.  The results with respect to the expected protein 

content of all seven parities are summarised in Table 6.11 below. 
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Figure 6.24: (1) On the left the expected protein content curves for parity 6 using the 
Morant model (      ), the general exponential model (      ) and the Wood 
model (      ) when other cofactors have been averaged out.  (2) On the 
right the differences in protein content between the expected curves for 
parity 6 the plotted over time for (a) Wood vs Morant model (       ) and (b) 
Morant vs general exponential model (       ). 

Table 6.11: Summary of the expected protein content for the seven parities 4-

parameter Morant model. 

Parity Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1 13,0102 4,3136 49 4,4249 

2 14,6219 4,1895 300 4,1895 

3 17,2458 3,9159 300 3,9159 

4 14,7471 3,9800 300 3,9800 

5 14,3695 3,8659 300 3,8659 

6 14,2351 3,7816 300 3,7816 

7 or > 14,6661 4,1122 280 4,1137 
 

When comparing the results form Table 6.11 for the expected protein content of the seven 

parities using the 4-parameter Morant model to the same results generated for the Wood and 

general exponential models, we see that the minimum expected protein content for parities 2 

to 6 from the 4-parameter Morant model is lower than those from the Wood model, while the 

minimum expected protein content for parities 2 to 7 or > are lower than those from general 

exponential models.  It should however also be noted that for both the Wood and general 

exponential model the minimum expected protein content is attained early in the lactation 

cycle (no later than day 74), while for the 4-parameter Morant model this minimum is on day 

49 for parity 1, on day 300 for parities 2 to 6 and on day 280 for parity 7 or greater.  Results 

similar to parities 2 to 6 also apply to the expected protein content curves of the four calving 

years summarised in Table 6.12 below. 
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Table 6.12: Summary of the expected protein content for the four years 4-
parameter Morant model. 

Year Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1995 17,0806 3,8262 300 3,8262 

1996 13,5405 3,8748 300 3,8748 

1997 13,1187 4,1921 300 4,1921 

1998 15,1139 4,1676 300 4,1676 
 

 

 

 

 

 

Figure 6.25: For seasons 1 and 2 respectively, the differences in expected protein 
content curves plotted over time for (a) Wood vs Morant model (       ) 
and (b) Morant vs general exponential model (       ). 

Figure 6.25 confirms that the expected protein content curves for the two seasons using the 

Morant model differ from that of the Wood and general exponential model in the same 

manner as explained above. 

6.3.4 Predictions based on the 4 -parameter Morant model 

To predict milk yield, fat content and protein content curves for the fifth lactation cycle of 

animal i = 135 given the performance in the preceding four lactation cycles modelled by 

means of the 4-parameter Morant model, the procedure applied in section 5.7 of Chapter 5 is 

again applied here.  In Figure 6.26 the predicted curves are represented by turquoise lines, 

while the 90% HPD and 90% prediction intervals are represented by magenta and blue broken 

lines respectively. 
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Figure 6.26: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat 
content and protein content curves is given by     , their 90% HPD 
interval by        and 90% prediction interval by         . 

 

6.4 THE ADAPTED WILMINK MODEL  

The Wilmink II model was introduced by Wilmink in 1987 to model lactation in Dutch 

Friesian cows.  This model assumes that the expected milk yield (in kg/day) of an animal at 

time t can be represented over the lactation period by 

     ( ) ( )wtctbaWE t −++= exp               (6.16) 

where w = 0,05.  Taking into account the discussion on assumptions made about the errors in 

section 3.5 of Chapter 3, the Wilmink II model is unsuitable to fit using the Bayesian 

approach suggested in Chapter 4.  To be suitable the lactation model should be such that, 

when the assumption of multiplicative errors is applied and a log transformation of the model 

is performed, the result is a model of linear form to which additive errors applies.  As a result 

the Wilmink II model had to be adapted in such a way that, with the assumption of 

multiplicative errors and after a natural log transformation, it would be of linear form. 
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The adapted Wilmink model suggested in this study, assumes that the expected milk yield (in 

kg/day) of an animal at time t can be represented over the lactation period by 

     ( ) ( )( )wtctbaWE t −++= expexp .             (6.17) 

where −∞ < a  < ∞, b  < 0, c < 0 and 0 < w < 1 instead of fixing the value of w at 0,05 or 0,61 

as previously done by researchers.  The parameters a, b and c are unknown and may differ 

from one animal to another, while the parameter w remains the same throughout the herd. 

The adapted Wilmink model also has the ability to take on a convex form and may therefore 

be applied to model the milk composition traits fat and protein content.  The parameters of the 

functions of the composition traits fat and protein content over time are required to be  

−∞ < a  < ∞, b  > 0, c > 0 and 0 < w < 1 in order for the functions to be convex in nature. 

If multiplicative errors are assumed for the adapted Wilmink model in (6.17), then by 

performing a natural log transformation on this model, the observation model for animal i is 

written as: 

  ( ) ( ) ijpsijpijsijpijsijsijpijsijpijs ewtctbatWtY +−++== exp)(ln)(             (6.18) 

where ( )2,0...~ sijps Ndiie σ , and for the Jersey data spec ifically i = 1, … ,1411, j = 1, … , 4,  

s = 1, 2, 3, p = 1, … , ijn  and ijn  is the number of test days for animal i during lactation cycle 

j, where 8 ≤ ijn  ≤ 10.  The parameter w applies to the herd of which animal i forms part and 

not to a lactation trait of a specific lactation cycle of animal i. 

The generalised linear model form of the model for animal i during lactation cycle j is as 

described in (4.3) for the general case: 

     ijijijij EMXY +=                (6.19) 

where ( ) ( )
ijnijij Nn IE ⊗×′ Φ,0 vec~13 vec .  In the case of the adapted Wilmink model there 

are v = 3 regression coefficients in the generalised linear form of the lactation model for the ith 

animal during its jth lactation cycle for the lactation trait indicated by s = 1, 2, 3.  These are 

a ijs, bijs and cijs, so that 
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The r-th row of design matrix ( )3×ijij nX  contains the elements that would return the adapted 

Wilmink model in generalised linear form when multiplied with the matrix of regression 

coefficients ijM  in (6.20) above, i.e. 

     ( )[ ]ijrijr
r

ij wtt −= exp1)(X .              (6.21) 

The model extended for animal i to all q = 4 lactation cycles then is, 
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where  ( )inii Nn IE ⊗×′ F,0 vec~)13( vec , ∑
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The matrix of covariances between the model parameters of the same animal in successive 

lactation cycles, R remains of same structural form as denoted in (6.8) for the Jersey data.  

The additional information on the factors parity number, region, calving year and calving 

season available in the Jersey data has to again be included in the model.  This is done as 

before by constructing a covariate matrix Zi(17 × 4) for each animal i as explained in section 

5.3 of Chapter 5.  This covariate matrix is then used as described in section 4.1 of Chapter 4 

for the generalised Bayesian model. 

The adapted Wilmink model has one additional parameter w, that is not included in the model 

as one of the regression coefficients of the generalised linear form of the lactation model for 

the ith animal during its jth lactation cycle for the lactation trait denoted by s = 1, 2, 3, or Mij.   

This requires the following prior be specified for this parameter: 

w
w

1
)( ∝π ,                 (6.24) 

The prior distributions of mi , B, Φ -1, Σ -1 and R-1 remain as specified in (4.12) to (4.16). 
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(6.25) 

The conditional distributions of the model parameters mi, B, Φ -1, Σ -1 and R-1 still are as given 

in equations (4.17) to (4.21), while conditional distribution of w, contained in row r of 

( )3×ijij nX  as ( )[ ]ijrijr
r

ij wtt −= exp1)(X , is derived as follows: 
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Next the Gibbs sampler as described in section 4.2 of Chapter 4 with the full conditional 

distributions of all the model parameters of interest as set out in equations (4.17) to (4.21) and 

the Metropolis-Hastings algorithm using equation (6.25) above were applied to obtain the 

marginal posterior distributions conditional on the observed data only.  The moments 

estimators from the sampling distributions of Σ  and R were again used as the hyperparameters 

G  and P required to generate marginal distributions for Σ -1 and R-1, while the degrees of 

freedom were again kept as small as possible, δ = 4 and g = 10.  

MCMC procedures applied were put through a “burn-in” period of 2000 simulation iterations, 

after which 10 000 sets of parameters were generated and kept using equations (4.17) to 

(4.21), together with (6.25) for w.  The distributions of Mi and B were as before obtained by 

sampling from two normal distributions, while the distributions of Φ -1, Σ -1 and R-1 were again 

generated from their respective Wishart distributions as explained at the end of section 5.2 in 

Chapter 5.  However, to obtain the distribution of w required a somewhat more complicated 

sampling scheme in the form of the Metropolis-Hastings algorithm discussed in section 4.5 of 

Chapter 4. 

To obtain the marginal posterior distribution of w from (6.25) the Metropolis-Hastings 

algorithm is employed with the restriction that 0 < w < 1 placed on the value of this 

parameter.  A candidate value wc of the following form is obtained: 
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( )zwwc exp=                (6.26) 

where z is randomly sampled from a uniform distribution in the interval –0,5 to 0,5.  This 

candidate value is then accepted with probability 

( )
( ) 





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

Φ
Φ

,,
,,|
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MY
MY

wf
wf c

.             (6.27) 

As starting point value to w a randomly selected value in the interval 0 to 1 was used.  As 

mentioned before, an acceptable acceptance rate for such proposal values is considered to 

usually be between 40% and 70%.  In the case of w the acceptance rate was 47%. 

Only the 10 000 sets of parameters generated for B, Φ -1, Σ -1, R-1 and w were stored due to 

both speed and storage constraints in Matlab.  The posterior distribution of the parameter w  

that resulted through MCMC simulation is depicted in Figure 6.27 below.  This posterior 

distribution has a mean of 0,0491.  
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Figure 6.27: The posterior distribution of the parameter w contained in the adapted 
Wilmink model. 

At 90% HPD level the intervals for the elements of the regression matrix B (9×17), 

constructed using the 10 000 B matrices resulting from the Gibbs sampler, indicated 94 of the 

153 elements of this matrix to significantly affect the parameters of the three lactation trait 

curves, milk yield, percentage of fat and percentage of protein in milk composition.  All nine 

base level effects are significa nt, while the effects of all covariates on the nine trait curve 

parameters are significant for at least 2, but in some cases all 9 parameters.  As a result all 

cofactors were kept in the model.  

w 
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Once the Wilmink model had been fitted to the Jersey data and the marginal distributions of 

the parameters obtained through Gibbs sampling, further investigation of the results for Jersey 

data based on this lactation model was performed. 

 

6.4.1 The lactation trait milk yield 

By following the usual procedure, the expected lactation curve for each of the four lactation 

cycles of animal i = 135, where lactation is modelled using the adapted Wilmink model, were 

determined.  These expected lactation curves are represented by the black solid lines in Figure 

6.28, together with their 90% HPD and 90% prediction intervals represented by magenta and 

blue broken lines respectively.  The observed data are represented by green lines and the least 

squares estimate of the adapted Wilmink model for milk yield by red lines. 
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Figure 6.28: For each of the four lactation cycle of Animal 135 the expected lactation 
curve is given by     , its 90% HPD interval by      and its 90% prediction 
interval by      .  The least squares estimate of the lactation curve is 
given by      .  The obse rved data for Animal 135 is given by       . 

Again using the procedure described in section 5.5 of Chapter 5, the expected lactation or 

milk yield curve of the herd with respect to one of the levels of a cofactor, which also 

provides the Bayesian equivalent of the Standard lactation curve (SLAC) with respect to this 
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cofactor level, may be obtained.  Figure 6.29 gives the expected lactation curves with 95% 

HPD intervals for parities 1 and 6 when all other cofactors have been averaged out. 

 

 

 

 

 

 

Figure 6.29: Expected lactation curves with 95% HPD intervals resulting from the 
adapted Wilmink model for parities 1 and 6 when other cofactors have 
been averaged out. 

Figure 6.30 compares the expected lactation curves of parity 2 obtained for all four lactation 

models.  From the graph on the left of this figure where the expected lactation curves of parity 

2 obtained for the adapted Wilmink model is given in black, for the 4-parameter Morant 

model in green, for the general exponential model in blue and for the Wood model in red, it 

follows that the result of the adapted Wilmink model most similar to that of the 4-parameter 

Morant model with respect to scale, followed by the Wood model and then only the general 

exponential model.  This is confirmed by the graph on the right of this figure in which the 

difference over time between the expected lactation curves of parity 2 for the Wood against 

the adapted Wilmink model is plotted in magenta, for the adapted Wilmink against the general 

exponential model in turquoise and the adapted Wilmink against the 4-parameter Morant 

model in yellow.  From this is clear that the resulting expected lactation curves of the adapted 

Wilmink and 4-parameter Morant models are more similar in scale than the expected lactation 

curves of the adapted Wilmink model either the Wood model or the general exponential 

model.  The shape of the adapted Wilmink model is however closer to that of the Wood 

model.  This result also applies to the expected lactation curves of all other parities. 
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Figure 6.30: (1) On the left the expected lactation curves for parity 2 using the adapted 
Wilmink model (      ), the Morant model (      ), the general exponential 
model (      ) and the Wood model (      ) when all other cofactors have been 
averaged out.  (2) On the right the differences in milk yield between the 
expected curves for parity 2 the plotted over time for (a) Wood vs adapted 
Wilmink (       ), (b) adapted Wilmink vs general exponential (      ) and (c) 
adapted Wilmink vs Morant (      ) mode ls. 

The full result of the expected lactation curves of all seven parity groups are summarised in 

Table 6.13.  The lowest level of expected peak milk yield occurs in first parity, a sharp rise in 

expected peak level occurs during the second parity followed by a steady increase in expected 

peak milk yield up to parity 6.  In parity 7 or > expected peak yield again drops off slightly.  

This is similar to the result obtained for the Wood model in section 5.5 of Chapter 5.  For the 

adapted Wilmink time of expec ted peak yield is latest in parity 1 and occurs on the same day 

as that of the Wood model. 

Table 6.13: Summary of the expected milk yield for the seven parities using the 
adapted Wilmink model. 

Parity Expected kg’s 
milk on day 1 

Maximum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1 13,8344 17,1406 48 12,0914 

2 17,2717 20,6966 40 12,0967 

3 18,2434 22,4932 41 12,4924 

4 18,2026 23,1510 42 12,5651 

5 17,7031 23,2800 44 12,5751 

6 18,6048 23,6892 42 12,4617 

7 or > 17,3409 22,9125 44 12,1696 
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In Table 6.14 the results with respect to the expected lactation curves of the four years are 

summarised.  The expected lactation curves commence at a slightly lower level than that of 

the Wood or 4-parameter Morant models, but at a higher level than the general exponential 

model.  Time of expected peak yield for the adapted Wilmink model is closest to that of the 

Wood model.  

Table 6.14: Summary of the expected milk yield for the four years using the 
adapted Wilmink model. 

Year Expected kg’s 
milk on day 1 

Minimum expected 
kg’s milk  

Day of maximum 
expected kg’s milk  

Expected kg’s 
milk on day 300 

1995 17,1853 21,7217 43 12,1161 

1996 16,8395 21,0316 43 12,2487 

1997 17,3553 22,0936 44 12,6990 

1998 17,5939 22,3162 43 12,3312 
 

 

 

 

 

 

Figure 6.31: The expected lactation curves for seasons 1 and 2 using the adapted 
Wilmink model (      ), the 4-parameter Morant model (      ), the  
general exponential model (      ) and the Wood model (        ) when the 
other cofactors have been averaged out. 

In Figure 6.31 the expected lactation curves for the two season resulting from the adapted 

Wilmink model, the Wood model, the 4-parameter Morant model and the general exponential 

model are compared.  The result of the expected lactation curve of the adapted Wilmink 

model again is closest in scale to that of the 4-parameter Morant model, while the shape of the 

curve for the adapted Wilmink model more closely resembles that of the Wood model. 
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6.4.2 The lactation trait fat content of milk 

The expected fat content curves for each of the four lactation cycles of animal i = 135, 

together with the 90% HPD and 90% prediction intervals of these expected fat content curves 

are given in Figure 6.32.  The observed data values, as well as the least squares estimate of the 

fat content curve using the adapted Wilmink model are also provided for each lactation cycle. 
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Figure 6.32: For each of the four lactation cycle of Animal 135 the expected fat 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 135 is given by       . 

For both lactation cycles 2 and 3 the expected fat content curves following from the Bayesian 

approach are not atypical, while the least squares estimates of the fat content curves for these 

lactation cycles are.  The Bayesian approach therefore again succeeds in preventing the 

occurrence of an atypical result. 

In Figure 6.33 the expected fat content curves and their 95% HPD intervals for parities 1 and 

7 or > when all other cofactors in the model have been averaged out, are given.  Both the 

shape and scale of the expected fat content curves for these parities are more similar to the 

equivalent results from the Wood model than to the other model discussed in this chapter. 
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Figure 6.33: Expected fat content curves with 95% HPD intervals resulting from the 
adapted Wilmink model for parities 1 and 7 or greater when other 
cofactors have been av eraged out. 

 

 

 

 

 

Figure 6.34: (1) On the left the expected fat content curves for parity 6 using the 
adapted Wilmink model (      ), the Morant model (      ), the general 
exponential model (      ) and the Wood model (      ) when all other 
cofactors have been averaged out.  (2) On the right the differences in fat 
content between the expected curves for parity 6 the plotted over time for 
(a) Wood vs adapted Wilmink (       ), (b) adapted Wilmink vs general 
exponential (       ) and (c) adapted Wilmink vs Morant (      ) models. 

Figure 6.34 compares the expected fat content curves of parity 6 obtained using the adapted 

Wilmink, the Wood, the 4-parameter Morant and the general exponential models.  In the 

graph on the left it follows that there are very little differences in these models with respect to 

scale and shape of the expected fat content curve for this parity.  This is confirmed by the 

graph on the right of this figure, which also indicates that the largest of these small differences 

occur at the start and end of the lactation cycle.  The results with respect to the expected fat 

content curves of all seven parities are summarised in Table 6.15.  On average the minimum 

expected fat content of the parities is 0,021% lower for the adapted Wilmink model than for 

the Wood model, 0,034% and 0,026% lower for the Morant and general exponential models 

than for the adapted Wilmink.  Time of minimum expected fat content for the adapted 

Wilmink model is closest to that of the Wood model. 
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Table 6.15: Summary of the expected fat content for the seven parities using the 
adapted Wilmink model. 

Parity Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1 3,6103 3,3617 46 3,8796 

2 3,7833 3,4227 50 3,9689 

3 3,8079 3,4210 51 3,9582 

4 3,8508 3,4182 53 3,9486 

5 3,8475 3,4206 54 3,9146 

6 3,8180 3,4154 53 3,8929 

7 or > 3,8701 3,3982 55 3,8825 
 

The results of the expected fat content curves for the four calving years are summarised in 

Table 6.16.  When the expected fat content curves for the four years using the adapted 

Wilmink model are compared to those obtained using the Wood, 4-parameter Morant and 

general exponential models, the results are similar to that of the parities mentioned above. 

Table 6.16: Summary of the expected fat content for the four years using the 
adapted Wilmink model. 

Year Expected fat % 
on day 1 

Minimum 
expected fat % 

Day of minimum 
expected fat %  

Expected fat % on 
day 300 

1995 3,7972 3,4673 51 3,9306 

1996 3,7596 3,3976 50 3,9244 

1997 3,8600 3,4572 53 3,9430 

1998 3,7733 3,3142 53 3,8833 
 

 

 

 
 

 

Figure 6.35: For seasons 1 and 2 respectively, the differences in expected fat content 
curves over time for  (a) Wood model vs adapted Wilmink model (       ), 
(b) adapted Wilmink model vs general exponential model (      ) and (c) 
adapted Wilmink model vs Morant model (        ). 
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From Figure 6.35 it follows that in season 1 the differences between the expected fat content 

curves of the adapted Wilmink model compared to the Wood model are smallest, while in 

season 2 these differences are smallest for the adapted Wilmink model compared to the 

general exponential model. 

 

6.4.3 The lactation trait protein content of milk 

The expected protein content curve for each of the four lactation cycles of anima l i = 135, the 

90% HPD and prediction intervals of the expected protein content curves, the observed data 

and the least squares estimate of the protein curve for this animal using the adapted Wilmink 

model are shown in Figure 6.36.  The atypical fit of the  least squares estimate of the adapted 

Wilmink model occurring in lactation cycles 1 and 4 are again successfully eliminated using 

the Bayesian approach.  
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Figure 6.36 For each of the four lactation cycle of Animal 135 the expected protein 
content curve is given by     , its 90% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the protein 
curve is given by      .  The observed data for Animal 135 is given by       . 
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By applying the same procedure as explained before, the expected protein content curve for 

the herd with respect to one of the levels of a cofactor of interest may again be obtained, for 

all cofactor levels.  To illustrate such a result, Figure 6.37 gives the expected protein content 

curves together with 95% HPD intervals for parities 1 and 7 or > when the effects of all other 

cofactors have been eliminated through averaging. 

 

 

 

 

 

Figure 6.37: Expected protein content curves with 95% HPD intervals resulting 
from the adapted Wilmink model for parities 1 and 7 or greater when 
the other cofactors have been averaged out. 

In Figure 6.38 the expected protein content curves of parity 6 obtained using the adapted 

Wilmink model, the Wood model and the general exponential model are compared.  The 

expected protein content curve of this parity obtained from the 4-parameter Morant model 

was dropped from this comparison after it was discovered that in the initial stages of lactation 

it differed considerably from the results of the other three models resulting in differences 

among these models being difficult to investigate.  From the graph on the left of this figure 

where the expected lactation curves of parity 6 obtained for the adapted Wilmink model is 

given in black, for the general exponential model in blue and for the Wood model in red, it 

follows that the result of the adapted Wilmink model is most similar to that of the Wood 

model with respect to both shape and scale.  This is confirmed by the graph on the right of 

this figure in which the differences over time between the expected lactation curves of parity 

6 for the Wood model against the adapted Wilmink model is plotted in magenta and for the 

adapted Wilmink model against the general exponential model in turquoise.  This result also 

applies to the expected lactation curves of all other parities. 

 

 



154 

0 100 200 300
4.1

4.3

4.5

4.7
Parity 6

Days into season

%

0 100 200 300
-0.2

-0.1

0

0.1

0.2

Differences a) Wood vs Wilmink and 
b) Wilmink vs General exponential

%

Days into season

 

 

 

 

 

Figure 6.38: (1) On the left the expected protein content curves for parity 6 using the 
adapted Wilmink model (      ), the general exponential model (      ) and 
the Wood model (        ) when all other cofactors have been averaged out.   
(2) On the right the differences in protein content between the expected 
curves for parity 6 the plotted over time for (a) Wood model vs adapted 
Wilmink model (   ) and (b) adapted Wilmink model vs general 
exponential model (       ). 

The results with respect to the expected protein content curves of all seven parities are 

summarised in Table 6.17 below.  The greatest variation in differences between the results of 

the adapted Wilmink model and any one of the other three models occur with respect to the 

expected protein content curves.  The same is true for the expected protein content curves for 

the four calving years summarised in Table 6.18.  

Table 6.17: Summary of the expected protein content for the seven parities us ing 
the adapted Wilmink model. 

Parity Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1 4,3543 4,2107 35 4,8862 

2 4,4453 4,2976 38 4,8435 

3 4,4851 4,2614 45 4,7595 

4 4,4900 4,2227 48 4,6881 

5 4,4968 4,1639 51 4,6367 

6 4,4638 4,1758 52 4,5412 

7 or > 4,4435 4,0775 51 4,5870 
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Table 6.18: Summary of the expected protein content for the four years using the 
adapted Wilmink model. 

Year Expected protein 
% on day 1 

Minimum expected 
protein % 

Day of minimum 
expected protein % 

Expected protein 
% on day 300 

1995 4,3678 4,1087 45 4,6513 

1996 4,3936 4,1577 47 4,6039 

1997 4,5257 4,2701 45 4,8335 

1998 4,5307 4,2767 47 4,7322 
 

 

 

 

 

 

Figure 6.39: For seasons 1 and 2 respectively, the diffe rences in expected protein content 
curves plotted over time for  (a) Wood vs adapted Wilmink model  (       ) 
and (b)  adapted Wilmink vs general exponential model (       ). 

Figure 6.39 also shows that the differences between the expected protein content curves of the 

adapted Wilmink and Wood models are smaller than those between the curves of the adapted 

Wilmink and general exponential models.  The greatest differences occur between the 

expected protein content curves of the adapted Wilmink and 4-parameter Morant models not 

shown in the illustration. 

 

6.4.4 Predictions based on the adapted Wilmink model 

Again using the prediction procedure applied in section 5.7 of Chapter 5, the milk yield, fat 

content and protein content curves for fifth lactation cycle of animal i = 135 based on the 

results from the preceding four lactation cycles modelled by means of the adapted Wilmink 

model, were predicted.  The results are provided in Figure 6.40 below, where the solid 

turquoise line represents the predicted curve, while the 90% HPD intervals are given as 

magenta coloured broken lines and the 90% prediction intervals as blue broken lines.  It is 
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noted that for the adapted Wilmink model these intervals are not as wide for predictions of the 

lactation traits in the fifth lactation cycle as they were for the general exponential and 4-

parameter Morant models discussed earlier in this chapter. 
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Figure 6.40: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat 
content and protein content curves is given by     , their 90% HPD 
interval by        and 90% prediction interval by         . 

 

6.5 ALTERNATIVE LACTATION MODELS IN SUMMARY 

When comparing the expected milk yield or lactation curves for the levels of the cofactor of 

interest, when the effects of all other cofactors were averaged out, obtained using the general 

exponential, 4-parameter Morant, adapted Wilmink and Wood models, it follows that the 

shape of the Wood and adapted Wilmink models are very similar, although the scale of the 

adapted Wilmink model with respect to expected milk yield corresponds more to that of the 4-

parameter Morant model.  The general exponential model differs most with respect to both 

shape and scale of the expected milk yield curves from that of the other models and possibly 

result in too low levels of expected milk yield towards the end of the lactation cycle, making 

its shape less desirable.  When considering the expected milk yield curves, the 4-parameter 
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Morant model is criticised for the fact that it often indicates pea k milk yield to occur when the 

lactation cycle commences which is considered not to be true for lactation in Jersey cows.  

Therefore, of the three models discussed in this chapter the adapted Wilmink model best 

describes expected milk yield. 

With respect to the expected fat content curves of the levels of a cofactor of interest, when the 

effects of the other cofactors have been eliminated through averaging, similar results in both 

shape and scale were obtained from all four lactation models considered in this study.  The 4-

parameter Morant model is however worth taking special note of with respect to the expected 

fat content curves, as this is the only lactation trait it seems to model effectively when 

considering the shapes of lactation trait curves that are considered realistic with respect to 

lactation in Jersey cows. 

Considering the results of the expected protein content curves for the levels of a cofactor of 

interest, when the effects of the other cofactors have been average out, the general exponential 

model, adapted Wilmink model and the Wood model are very similar in shape and scale, 

although the resulting expected protein content curves of the adapted Wilmink model are 

closest to that of the Wood model.  The 4-parameter Morant model, however, takes on a less 

realistic form with respect to the expected protein content curves.  This same result was also 

obtained when predicting the protein content curve of the fifth lactation cycle based on the 

results for the preceding four cycles using the 4-parameter Morant model. 

With respect to the 90% HPD and prediction intervals obtained for prediction of the fifth 

lactation cycle based on the results from the preceding four cycles, the adapted Wilmink 

model displayed the most consistent interval widths through out the lactation cycle in all three 

lactation traits. 

Considering all of the above, the adapted Wilmink model fares best of the three models 

considered in this chapter at describing the expected lactation curves of a level of the cofactor 

of interest when the effects of all other cofactors have been eliminated.  To further investigate 

the appropriateness of the four models considered in this study in modelling lactation for the 

Jersey data under consideration, a diagnostic comparison of these lactation models will be 

performed in the next chapter. 
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CHAPTER 7 

BAYES FACTORS AND MODEL COMPARISON 

7.1 BAYES FACTORS 

One of the first and probably most significant contributions to hypothesis testing in a 

Bayesian context was that of Jeffreys (1935, 1961).  His groundbreaking work allowed for the 

comparison of predictions resulting from two competing scientific theories through the 

introduction of statistical models that represent the probability of the data according to each 

theory.  The posterior probability that one of the theories is correct is then calculated by 

means of Bayes’ theorem.  This has since developed into formulating two the competing 

statistical models as two hypotheses and calculating, as the so-called Bayes factor, the 

posterior probability of the model under one of the hypotheses when it is assumed that the 

prior probabilities of the two hypotheses are equal.  

Kass and Raferty (1995) explain the approach used to determine Bayes factors as follows.  It 

is assumed that the data D  resulted under one of two models specified in the hypothesis H1 

and H2 respectively, according to probability density p(D|H1) or p (D |H2).  Using the prior 

probabilities p (H1) and p(H2) = 1 − p (H1), the data produce the posterior probabilities p(H1|D) 

and p(H2|D) = 1− p(H1|D).  From this result it follows that prior information is transformed 

through consideration of the data to posterior information, and therefore the transformation 

itself represents the evidence provided by the data.   

Next consider the odds ratio scale, 
y Probabilit 1

y Probabilit
  Odds

−
= , together with Bayes’ theorem: 

( ) ( ) ( )
( ) ( ) ( ) ( )2211 HpHpHpHp

HpHp
Hp kk

k DD

D
D

+
=      k  = 1, 2.     (7.1) 

To determine the posterior odds of hypothesis H1, the odds ratio scale results in 

( )
( )

( )
( )D

D

D

D

2

1

1

1

1 Hp

Hp

Hp

Hp
=

−
.       (7.2) 

Determining the odds ratio in (7.2) in terms of Bayes’ theorem given in (7.1) leads to the 

transformation of prior to posterior taking on a simple form: 
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This implies that the transformation for prior odds to posterior odds is multiplication by 

( )
( )2

1
12 Hp

Hp
B

D

D
=         (7.4) 

or the Bayes factor.  This means that the posterior odds of the hypothesis H1 is equal to the 

product of the Bayes factor and the prior odds of the hypothesis H1.  The Bayes factor 

therefore represents the ratio of the posterior odds of the hypothesis H1 to its prior odds, 

irrespective of the value of the prior odds.  If the prior probabilities of the two hypotheses 

under consideration may be assumed equal, the Bayes factor reduces to the posterior odds of 

H1.  This may, however, not always be the case. 

When the two hypotheses under consideration contain no free parameters, the Bayes factor 

would simply be the likelihood ratio.  However, if there are unknown parameters under either 

or both hypotheses, the Bayes factor is still calculated as in (7.4), but the probability densities 

p (D|Hk) (k  = 1, 2) then requires integration over the parameter space so that 

( ) ( ) ( ) kkkkkk dHHpHp θθπθ= ∫  DD ,      (7.5) 

where under hypothesis Hk the parameter is θk, with prior density ( )kk Hθπ  and likelihood 

function ( )kk Hp ,θD .  Note that θk may also be a vector and that if this is the case ( )kHp D  

is the marginal probability or marginal likelihood of the data.  Note that none of the constants 

obtained in determining ( )kHp D  may be discarded when calculating Bayes factors. 

It often happens that the marginal likelihood as denoted by equation (7.5) is intractable and 

therefore requires determination by computational methods.  This has proved to sometimes be 

extremely challenging.  Chib (1995) has however found a way out in this respect, by 

determining the marginal likelihood from the output of the Gibbs sampler as discussed in the 

next section. 

Using Bayes factors to evaluate the evidence in favour of a model has the benefit that it 

allows for all other information used in the modelling approach to be included in the 

assessment.  To summarise the Bayes factor, denoted by Bjk and interpreted as the Bayes 

factor for H j against Hk, is a measure of the evidence provide d by the data in favour of the 

model under hypothesis Hj as opposed that the model under hypothesis Hk.  
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7.2 MARGINAL LIKELIHOOD FROM GIBBS OUTPUT 

Chib (1995) introduced a simple approach to determine the marginal density of the sample 

data given parameter draws from the posterior distribution.  From this result the Bayes factors 

required for model comparison may easily be obtained as part of the output of the Gibbs 

sampler.  The approach, as described in detail below, is based on the fact that the marginal 

density of the data can be expressed as the prior times the likelihood function over the 

posterior density.  Note that it now follows that model M1 is the model specified under 

hypothesis H1, while model M2 is the model under hypothesis H2. 

The Bayes factor in favour of model M1 when compared to model M2 then is 

     ( )
( )2

1
12 |

|
Mm
Mm

BF
y
y

=         (7.6) 

where ( ) ( ) ( ) ? ?? dMMpMm iii ∫ π= |,|| yy  is the marginal likelihood under model Mi.  As 

mentioned before the problem is to find ( )iMm |y  if the integral is intractable as often 

happens. 

The joint posterior of the parameters ( )pθθ= ,,1 K?  is  
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which hold for any θ , and therefore also for the specified *? .  The numerator of ( )iMm |y  in 

(7.8) can be evaluated directly, since the functions are known.  The problem, however, is in 

the denominator of ( )iMm |y  in (7.8), because the value of the joint posterior at *?  is 

unknown.  The Gibbs sampler does, however, provide samples from the marginal posterior 

distributions.  But for specified 




 θθ= *,,*

1 p
* K?  

 
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The last term of (7.9) is the full conditional of *
pθ , which is known and can be evaluated 

exactly.  The first term is the marginal posterior of θ1 at *
1θ , and can therefore be obtained 

form the original Gibbs sampling: 

    ( )
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=
− 
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where K is the number of simulation iteration used in Gibbs sampling.  For each of the rest of 

the terms, additional Gibbs sampling is required.  For example, to find 


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 θθπ iM,,**
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successively from 
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Then 
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Similarly for 




 θθθπ iM,,*,**

213 y , and so forth.  For the best results, *?  should be a high 

density point, such as the mode or the mean. 

Furthermore, the approach described here to obtain the marginal likelihood from the output of 

the Gibbs sampling algorithm is fully automatic and stable and requires no input beyond the 

draws from the Gibbs simulation.  This means that no additional tuning functions are required 

when determining the marginal likelihood. 

 

7.3 BAYES FACTORS IN APPLICATION 

The above results are now applied to the general case as described for the Bayesian approach 

in Chapter 4 in order to find the marginal likelihood or marginal density of the data.  From 

this, Bayes factors are calculated in order to compare the evidence provided by the data in 
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   .     (7.13) 

favour of one model when compared to another for each of the four models that were fitted to 

the Jersey data in Chapters 5 and 6.  In general, to determine the marginal likelihood, let 

( ) ( )( ) ( ) ( ) ( ){ }uvuvqqmuvuuvqk ××××= ΣΦ   ,  ,  ,diag  , RBM? , it therefore follows that 
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The five terms on the right hand side of (7.13) can be evaluated as follows:  Determine a *?  

from the marginal posteriors, including for all elements of ( )uv ×ijM  for all i, j.  We start out 

with: 
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This is the product of equation (4.17) in Chapter 4 for all i = 1,…, k , evaluated at *M  

for each set of the original number of K Gibbs simulations for the other parameters. 
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



 ∗π − YRBM ,,,1Σ  in (4.20).  The output for R and Σ  is then used to 

obtain ( ) ( )∑
=




 ∗π=


 ∗∗π
K

j

jj YRMB
K

YMB
1

,,,*1
, Σ . 

3) 




 ∗∗∗π
−

YBM ,,
1

Σ  requires a cycle with two distributions, the first 






 ∗∗π − YRBM ,,,1Σ  in (4.20) and thereafter 





 ∗∗π − YBMR ,,,1 Σ  in (4.21) from 

which ( )∑
=

−−






 ∗∗∗π=




 ∗∗∗π
K

j

j YRBM
K

YBM
1

11

,,,1,, ΣΣ  is obtained.  

4) 




 ∗∗∗∗π
−

YBMR ,,,
1

Σ  is the full conditional distribution and is evaluated exactly 

from (4.21). 
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5) 




 ∗∗π
−

YM ,
1

Φ  is also evaluated exactly from (4.19) since Φ  only depends on M. 

The product of these five terms then provides the denominator of the marginal likelihood in 

(7.8).  The joint distribution of all quantities is 




π





 ** ??Yp , which is the product: 






 ∗π





 ∗π


 ∗π





π



 ∗∗∗∗π



 −−− 111*,,*,* RBRBMMY ΣΦΣΦp . 

and forms the numerator of the marginal likelihood: 

( )




π




π





=
Y

Y
Y

*

**

?

??p
m .              (7.14) 

The same procedure must now be followed for another model.  Once the marginal likelihood 

for two competing models have been obtained as explained above, the evidence in favour of 

one model may be determined through calculation of the Bayes factor in favour of that model 

using: 

( )
( )2

1
12 |

|
Mm
Mm

BF
Y
Y

= .              (7.15) 

At this point it is worth noting that it is sometimes computationally more convenient when 

calculating the marginal likelihood to do so on natural logarithm scale, so that 

( )( ) 











−





 


+












= YYY *ln*ln*lnln ??? ππpm .          (7.16) 

The natural logarithms of the marginal likelihoods are then used to obtain the natural 

logarithm of the Bayes factor: 

( ) ( )( ) ( )( )2112 |ln|lnln MmMmBF YY −= .            (7.17) 

Good (1985) referred to the ln  Bayes factor as the “weight of the evidence”.  We therefore 

consider the ln  Bayes factor as the weight of the evidence in favour of model M1. 

 

7.4 MODEL COMPARISON USING BAYES FACTORS 

For computational convenience all four the models fitted to the Jersey data in Chapters 5 and 

6 required determination of the marginal likelihoods on the natural logarithm scale through 

the use the method suggested by Chib (1995) as discussed in sections 7.2 and 7.3 above.  The 
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results for the natural logarithm of the marginal likelihood of each of the four models were as 

follows. 

Table 7.1: The natural logarithm of the marginal  likelihoods for the four lactation 

models fitted to the Jersey data using the Chib procedure  

Model ( )( )Ymln  

Wood                       : ( ) ( )ctatWE b
t += exp  −1.338887914040548×1011 

General Exponential: ( ) ( )( )wtctbaWE t expexp ++=  −8.626831563671578×1013 

4-parameter Morant: ( ) ( )tdctbtaWE 2
t +++= exp  −5.179540981122800×1015 

Adapted Wilmink    : ( ) ( )( )wtctbaWE t expexp ++=  −1.282449628353239×1011 

 

If the Bayes factors of these models are now evaluated, starting with the weight of evidence in 

favour of the model with the largest ( )( )Ymln , the results are as follows: 

Table 7.2: The ln Bayes factors measuring the weight of evidence in favour of the 

adapted Wilmink model compared to each of the other three lactation models 

fitted. 

Adap ted Wilmink model vs ln(BF) 

Wood model 5.643828568730896×109 

General exponential model 8.614007067388045×1013 

4-parameter Morant model 5.179412736159965×1015 

From the results of Table 7.2 is evident that when the adapted Wilmink model suggested by 

this study is compared to any of the other three models fitted to the Jersey data, it is the most 

appropriate model to use in modelling lactation for these cows. 

Table 7.3: The ln Bayes factors measuring the weight of evidence in favour of the Wood 

model compared to the general exponential and 4-parameter Morant models 

fitted. 

Wood model vs ln(BF) 

General exponential model 8.613442684531172×1013 

4-parameter model Morant  5.179407092331396×1015 
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From the results of Table 7.3 in which the ln Bayes factors comparing the Wood model to the 

general exponential and 4-parameter Morant models respectively are considered, the weight 

of evidence in favour of the Wood model is in both cases overwhelming. 

When comparing the general exponential model to the 4-parameter Morant model using the 

natural logarithm of the Bayes factor, the value 5.093272665486084×1015 that represents the 

weight of evidence in favour of the general exponential model, indicates it to be preferred 

over the 4-parameter Morant model. 

From the above results it follows that the adapted Wilmink model should be the model of 

preference when modelling the Jersey data, followed by the Wood and general exponential 

models, while the 4-parameter Morant model seem to be the worst choice of lactation model 

of the four to fit to the data.  These results support the suspicion that arose through visual 

inspection of the seemingly good results that were obtained for the adapted Wilmink model 

when the expected lactation trait curves of the levels of a cofactor of interest after the effects 

of all other cofactors have been averaged out are considered, while the 4-parameter Morant 

model did not really seem to provide realistic expected curves for two of the three lactation 

traits. 

It is interesting to note the two models (W ood and adapted Wilmink) containing three 

parameters per lactation trait in the matrix of regression coefficients, or Mij , perform better 

than the two models with four parameters per lactation trait in Mij.  The four-parameter 

models could possibly be over-parameterisations of the lactation process. 
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CHAPTER 8 

FURTHER PREDICTION BASED ON MODELS 

FITTED 

8.1 INTRODUCTION 

So far, with respect to prediction of lactation trait curves for individual animals, only 

prediction of the fifth lactation cycle for a cow contained in the Jersey data, i.e. where the 

records of the preceding four lactation cycles are known and were used in developing the 

lactation model, were considered.  Two further aspects of importance with respect to 

prediction of lactation trait curves of individual animals will be considered in this chapter.  

The first is how the lactation model fitted to the Jersey data may be used to predict lactation 

trait curves for an individual animal that do not form part of the Jersey data used to develop 

the model, on condition that it may be assumed that such an individual animal is similar to 

those used in the model development.  The second is how the availability of lactation records 

and lactation trait curves fitted to a group of animals in a preceding lactation cycle or cycles, 

aid the prediction of lactation trait curves for such a group of animals in coming lactation 

cycles if these animals did not form part of the Jersey data set used to develop the lactation 

model, but may be assumed similar to the animals in the Jersey data for which the lactation 

model was developed. 

To perform this part of the study, lactation records for 10 Jersey cows that originate from the 

same larger data set as the so-called Jersey data were obtained.  These 10 Jersey cows were all 

observed during each of the four lactation cycles in the calving years from 1995 to 1998, but 

were excluded from the originally constructed Jersey data because seven test day records 

occurred in at least one of the observed four lactation cycles.  For inclusion in the originally 

constructed Jersey data the condition was set that an animal had to have at least eight test day 

records per lactation cycle.  In the data on these 10 Jersey cows all of the cofactors, parity 

number, region, calving year and calving season, present in the original Jersey data were also 

included.  The data on these 10 Jersey cows will from this point onwards be referred to as the 

Further Jersey data.  The only difference in characteristics between the Jersey data set and the 

Further Jersey data is that in the latter the number of test day records per lactation cycle over 
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all four lactation cycles for all ten animals ranged from 7 to 9, with the majority having 8 

observed test day records. 

 

8.2 PREDICTION FOR FURTHER DATA:  THE GENERAL CASE 

Suppose that for a cow in the Further Jersey data the lactation trait curves of milk yield, fat 

content and protein content of the four lactation cycles from 1995 to1998 have to be predicted 

before any test day records for these lactation cycles become available.  On condition that this 

cow is similar to those used in the development of the lactation model considered, such a 

model developed for the original Jersey data may be used to do so.  

It is reasonable to assume that for cows similar to those in the original Jersey data certain 

information will be readily available.  One could expect to at least know most, if not all the 

information pertaining to the cofactors included in a lactation model through the use of the 

covariate matrix, Zi, discussed in section 5.3 of Chapter 5.  These cofactors are the parity of 

the cow, region is which it occurred and season it is expected to calve in.  The cofactor year of 

calving is related to the lactation cycle to be predicted and is therefore anyway considered 

known.  If any of these cofactors are not known for the animal of which the lactation trait 

curves are to be predicted, the effect of such cofactor(s) may be averaged out as explained in 

section 5.5 in Chapter 5, by taking as the values of the covariate s of the cofactor the value one 

divide by the number of levels in the cofactor to be averaged out. 

Before the test day records of any of the lactation cycles of an individual animal i for which 

the lactation traits are to be predicted are known, the predic tive density follows from the fact 

that      ( )
inIMXNMY iiii ⊗ΦΦ ,~, ,      (8.1) 

where Mi (uv×q) follows from the product BZ i.  The matrix B(uv×m) refers to the regression 

matrix obtained for the original Jersey data during modelling   The covariate matrix Zi is 

constructed from the known cofactor information of animal i for which the lactation trait 

curves are to be predicted or by averaging out the effects of unknown cofactors as briefly 

explained above. 

Next it is assumed that the test day records of the first of the q lactation cycle under 

consideration become available, but that the test day data for remaining (q  − 1) lactation 

cycles are still unknown.  Thereafter it is assumed that the test day records of the first two 
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lactation cycles are known, but that the remaining (q − 2) lactation cycles have to be 

predicted, and so forth until all q lactation cycles under consideration have been observed.  In 

section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycle of an 

animal i based on the results from one or more the preceding lactation cycles is given for the 

general case when the lactation model have been developed specifically for these animals.  

Lactation trait curves for all animals that did not form part of the data for which the model 

was developed, but that may be assumed similar to the animals for which the model was 

developed may then also be predicted using this procedure. 

Assuming that h  lactation cycles were observed, it is possible to predict the results of (q  − h ) 

lactation cycles for an animal similar to those for which the model was developed.  This 

means that if the test day records of the first lactation cycle of an animal are available, the 

method allows for the prediction of the remaining (q − 1) lactation cycles.  Using Gibbs 

simulation and  

( ) ( )

( ) ki ,1,        ,                                           
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the 10 000 set of parameters of the model for the first lactation cycle, ( )∗1
im , is drawn where B, 

Φ , Σ  and R have the values obtained from Gibbs sampling for the original Jersey data and zi is 

constructed for the observed lactation cycle.  Next, based on the values of ( )∗1
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using Gibbs sampling.  Finally the predictive density, which again follows from (8.1), for the 

(q  − h) future lactation cycles becomes: 

( ) ( ) ( ) ( )( ) ( )
( )( )hqififuififif ImXINmmy −

∗∗ ⊗⊗=
ifnΦΦ ,~, 22222 . 

The mean of the 10 000 expected values of this distribution provides the predicted lactation 

trait curves for the (q − h) lactation cycles to be predicted. 

No efficient method exists to measure the performance of the model prediction of a future 

lactation cycle of an animal i if the data of that lactation cycle of animal i are not available at 

(8.2) 

(8.3) 

(8.4) 
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some point.  However, if the data are or become available the efficiency of prediction can be 

measured.  This is done by obtaining the sum of squared errors (SSE) for animal i, which is 

the sum of the squared differences between each observed data point and the value of the 

predicted lactation trait curve at the same point in time as the observed data point over all 

observed data points.  If this is done for all previously predicted lactation cycles as data 

become available, it is possible to investigate whether the inclusion of data improved the 

efficie ncy of prediction of future lactation cycles. 

To explain, suppose four lactation cycles are predicted with respect to milk yield.  This 

prediction process may be broken down into four phases.  In phase 1, initially no data will be 

present and all four cycles will as a consequence have to be predicted.  Then the milk yield 

records in the first of the four lactation cycles are observed and a milk yield curve fitted to it.  

In phase 2 only the remaining three unknown lactation cycles have to be predicted, now 

however with knowledge of the fitted milk yield curve on the first included in the prediction.  

Once the milk yield records of the second cycle are also observed and a milk yield curve fitted 

to it, then in phase 3 the prediction of the last two cycles will be done by incorporating the 

knowledge of the curves fitted to the first and second lactation cycles in the prediction.  Once 

the third lactation cycle has also been observed and a milk yield curve fitted to it, then in 

phase 4 the fourth lactation cycle will be predicted through the inclusion of the knowledge of 

the fitted milk yield curves from all three preceding lactation cycles.  Once the data on all four 

the lactation cycles have been observed, the improvement in prediction of the unknown milk 

yield curves in every phase may be evaluated by calculating the SSE for each of the predicted 

curves in every phase.  By comparing the SSE of the same lactation cycle over all phases for 

which the cycle was predicted, the efficiency of the inclusion of data in the improvement of 

the prediction may be evaluated.  An improvement is simply based on a reduction in to the 

sum of the squared errors for that lactation cycle from one phase to the next. 

In the application that follows, prediction as explained through the  four phases above is 

applied to the 10 animals in the Further Jersey data.  Based on the result, the improvement in 

prediction is assessed by means of the SSE values.  This is done for the group of 10 animals 

by obtaining the sum of the SSE values for the individual animals for each lactation cycle in 

each prediction phase, as well as by considering for how many animals an improvement 

through the addition of data occurred for each lactation cycle predicted in each phase. 
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Finally, once the test day records on all four lactation cycles have been obtained, the 

efficiency of the lactation model in finding the expected lactation trait curves for animals 

similar to, but not included in the development of the model may be compared for the four 

different lactation models fitted using this Bayesian method.  To do this the SSE values for 

the expected lactation trait curve for all four lactation cycles of the ten animals are obtained 

for each of the four lactation models fitted in this study.  

 

8.3 PREDICTION AND THE WOOD MODEL 

Using the results of the Wood model fitted to the Jersey data by means of the Bayesian 

method proposed in this study, the four lactation cycles of each of the 10 animals in the 

Further Jersey data were predicted through the 4-phase prediction process explained above.  

To illustrate, the results for the prediction of the lactation or milk yield curves of each phase 

of the 4-phase prediction process for the four lactation cycles of animal 3 are given in Figures 

8.1 to 8.4 below. 
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Figure 8.1: Prediction phase 1.  Predicting milk yield curves for all 4 lactation cycles of 
animal 3, where milk yield test day records are represented by      and 
predicted milk yield curves are represented by         . 

In Figure 8.1 where the predicted milk yield curves that result from phase 1 in the prediction 

process are represented by the turquoise lines and the data on the milk yield test day records 

of each lactation cycle that would supposedly only be known later are represented by green 
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lines (consecutive data points were connected by straight line segments).  The predictions of 

the milk yield curves of animal 3 in this phase include no information on milk yield test day 

records of this animal.  These predictions are based solely on the information on milk yield 

test day records from the Jersey data.  The only information from animal 3 included in these 

prediction are the information supplied by the cofactors parity number, region, calving year 

and calving season.  When calculating the SSE for each of lactation cycles 1, 2, 3 and 4 of 

animal 3 in this phase of prediction the results are 83,122; 333,382; 263,775 and 207,3042 

respectively. 

In Figure 8.2 the result of phase 2 of the prediction process is illustrated, where the black line 

now represents the fitted milk yield curve in lactation cycle 1 of animal 3 after the milk yield 

test day records of this cycle were observed.  Lactation cycles 2, 3 and 4 are now again 

predicted, but this time incorporating the additional information that became available 

through the observed milk yield test day records of the first lactation cycle.  When 

considering the SSE values for lactation cycles 2, 3 and 4 these values are 168,988; 133,580 

and 103,804 respectively.  When comparing these values to the SSE calculated for the 

corresponding lactation cycles in the first phase of prediction a reduction is seen for all 

lactation cycles. 
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Figure 8.2: Prediction phase 2.  Predicting milk yield curves for lactation cycles 2, 3 and 
4 of animal 3 after the milk yield curve of lactation cycle 1 has been fitted.  
Milk yield test day records are represented by       , predicted milk yield 
curves are represented by        , and the fitted milk yield curve by        . 
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Figure 8.3: Prediction phase 3.  Predicting milk yield curves for lactation cycles 3 and 4 
of animal 3 after milk yield curves of lactation cycles 1 and 2 have been 
fitted.  Milk yield test day records are represented by        predicted milk 
yield curves are represented by        , and fitted milk yield curves by        . 
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Figure 8.4: Prediction phase 4.  Predicting the milk yield curve for lactation cycle 4 of 
animal 3 after milk yield curves of lactation cycles 1, 2 and 3 have been 
fitted.  Milk yield test day records are represented by        , the predicted 
milk yield curve is represented by        and fitted milk yield curves by        . 
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Figure 8.3 now shows the result of phase 3 of the prediction process, where only the milk 

yield curves of lactation cycles 3 and 4 of animal 3 are predicted.  The resulting predicted 

milk yield curves of lactation cycles 3 and 4 are now much closer to the data that would later 

be observed.  The SSE values of lactation cycles 3 and 4 now are 77,472 and 99,516 

respectively, which is again a reduction in SSE values for these two cycles when compared to 

their result from phase 2 of the prediction process. 

Finally in Figure 8.4 illustrating phase 4 of the prediction process, only the milk yield curve 

of the fourth lactation cycle has to be predicted this time based on the results of the Jersey 

data and the information from the preceding three lactation cycles of animal 3.  When the SSE 

value for the prediction in the lactation cycle 4 is calculated the resulting value is 77,243 and 

is down from an SSE value of 99,516 for this lactation cycle in the phase 3 of the prediction 

process. 

When all four the figures representing the results of prediction for the 4-phase prediction 

process, together with the SSE values of each phase for animal 3 are considered, it is clear 

that as data from preceding lactation cycles become available the prediction ability of the 

method applied improves.  The results obtained for the remaining 9 animals in the Further 

Jersey data are similar, although a reduction in SSE of a predicted lactation cycle is not 

always obtained from one prediction phase to the next as data on test day records of preceding 

lactation cycles become available.  A summary of the results now follows. 

To assess the improvement over all animals in the Further Jersey data, the sum of the SSE 

values for each lactation trait curve over all ten animals for each lactation cycle in each phase 

of the prediction process was obtained.  The results are given in Tables 8.1, 8.3 and 8.5 below 

for the lactation traits milk yield, fat content and protein content res pectively.  In Tables 8.2, 

8.4 and 8.6 the number of animals for which the predicted milk yield curve, predicted protein 

content curve and predicted fat content curve improved in fit as data on preceding lactation 

cycles became available, are provided.  An improvement is based on a reduction in the sum of 

the squared errors for that lactation cycle when compared to actual data only available when 

the lactation cycle is eventually observed. 
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Table 8.1: Sum of squared errors over all animals for the predicted milk yield curve 
fitted using the Wood model before and as data on preceding lactation 
cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 3977,761 2541,331 3592,989 1767,084 

1 only (Phase 2) ♦ 1276,762 1591,863 1059,939 

1 and 2 (Phase 3) ♦ ♦ 1296,605   844,827 

1, 2 and 3 (Phase 4) ♦ ♦ ♦   993,519 

 

From Table 8.1 it is evident that for the whole of the Further Jersey data set the prediction 

ability of the method improved with respect to predicted milk yield curves during each of the 

first three phases of the prediction process.  Only in the fourth phase did the inclusion of the 

test day records  of all animals on the preceding three lactation cycles not improve the result 

with respect to predicting the milk yield curves. 

Table 8.2: The number of animals for which, according to the SSE, the predicted 
milk yield curve  from the Wood model improved in fit as data on previous 
lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 7 7 8 

1 and 2 (Phase 3) ♦ 8 7 

1, 2 and 3 (Phase 4) ♦ ♦ 6 

 

The results in Table 8.2 show that in every phase of the prediction process, except the final 

phase, there was an improvement in the prediction of milk yield curves for all lactation cycle 

in at least seven of the ten animals in the Further Jersey data.  In the final prediction phase the 

inclusion of milk yield test day data on the third lactation cycle only improved the prediction 

of the milk yield curve of the fourth lactation cycle in six animals.  This is decline in the 

number of animals for which the SSE reduced in the fourth phase of prediction is probably 

why the corresponding SSE in Table 8.1 was not smaller than the SSE for lactation cycle 4 in 

the phase 3 of the prediction process when sum of the SSE’s over all animals are obtained for 

each cycle during each prediction phase. 
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Table 8.3: Sum of squared errors over all animals for the predicted fat content curve  
fitted using the Wood model before and as data on preceding lactation 
cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 7,8121 6,2111 7,6299 12,8373 

1 only (Phase 2) ♦ 3,9946 4,7064 10,8117 

1 and 2 (Phase 3) ♦ ♦ 3,6902   9,8881 

1, 2 and 3 (Phase 4) ♦ ♦ ♦   9,7885 

 

Table 8.3 shows that for the whole of the Further Jersey data set the prediction ability of the 

method improved in all phases of the prediction process with respect to predicted fat content.  

This is surprising when considering the result of Table 8.4, where in two lactation cycles the 

prediction of fat content curve improved in less than 6 animals.  However, in all cases where 

no improvement resulted the difference between the SSE’s for the same lactation cycle from 

one phase to the next is small compared to difference in cases where improvements did occur. 

Table 8.4: The number of animals for which, according to the SSE, the predicted fat 
content curve  from the Wood model improved in fit as data on previous 
lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 5 6 6 

1 and 2 (Phase 3) ♦ 8 8 

1, 2 and 3 (Phase 4) ♦ ♦ 3 

 

From the overall SSE results provided in Table 8.5 it was only during the third phase of 

prediction for protein content that no improvement occurred.  When considering the number 

of animals in each lactation cycle during each phase of prediction for which the SSE values 

reduced as provided in Table 8.6, it follows that phase 3 of the prediction process also 

improved prediction for protein content in the smallest number of animals (4 only). 
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Table 8.5: Sum of squared errors over all animals for the predicted protein content 
curve fitted using the Wood model before and as data on preceding 
lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 55,1751 42,5692 28,7319 35,2074 

1 only (Phase 2) ♦ 39,9202 22,0870 34,2604 

1 and 2 (Phase 3) ♦ ♦ 24,7528 37,4509 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 35,3853 

 

Table 8.6: The numbe r of animals for which, according to the SSE, the predicted 
protein content curve  from the Wood model improved in fit as data on 
previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 6 9 6 

1 and 2 (Phase 3) ♦ 4 4 

1, 2 and 3 (Phase 4) ♦ ♦ 6 

 

8.4 PREDICTION AND THE GENERAL EXPONENTIAL MODEL 

For the general exponential model fitted to the Jersey data by means of the Bayesian method, 

the four lactation cycles for each of the 10 animals in the Further Jersey data were also 

predicted through the 4-phase process explained earlier.  This time the results of the 

prediction of the fat content curve for each phase in the 4-phase prediction process for the 

four lactation cycles of animal 10 are given in Figures 8.5 to 8.8. 

Through visual inspection of the graphs in Figures 8.5 to 8.8 it seems as if in each phase of 

the prediction process the predicted fat content curve of the lactation cycles moved closer to 

the actual data that was later observed.  When, for animal 10, the SSE values of the lactation 

cycles in a prediction phase is compared to that of the next, these values confirm this results.  

For example, the SSE values of lactation cycle 4 in prediction phase 1 through to 4 are 2,502; 

0,824; 0,649 and 0,426 respectively.  
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Figure 8.5: Prediction phase 1.  Predicting fat content curves for all 4 lactation cycles of 
animal 10, where fat content test day records are represented by      and 
predicted milk yield curves are represented by         . 
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Figure 8.6: Prediction phase 2.  Predicting fat content curves for lactation cycles 2, 3 
and 4 of animal 10 after the fat content curve of lactation cycle 1 has been 
fitted.  Fat content test day records are represented by        , predicted milk 
yield curves are represented by         and the fitted fat content curve by       . 
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Figure 8.7: Prediction phase 3.  Predicting fat content curves for lactation cycles 3 and 4 
of animal 10 after fat content curves of lactation cycles 1 and 2 have been 
fitted. Fat content test day records are represented by        , predicted fat 
content curves are represented by        , and fitted fat content curves by        . 
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Figure 8.8: Prediction phase 4.  Predicting the fat content curve for lactation cycle 4 of 
animal 10 after fat content curves of lactation cycles 1, 2 and 3 have been 
fitted.  Fat content test day records are represented by        , predicted fat 
content curves are represented by        and fitted fat content curves by        . 
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From the results of the sum of the SSE values of the predicted milk yield curves over all 10 

animals in the data provided Table 8.7 it follow that for the whole of the Further Jersey data 

set the prediction ability of the method improved with respect to predicted milk yield curves 

during all of the phases of the prediction process.  When considering the number of individual 

animals in the Further Jersey data for which this is true, Table 8.8 shows that an improvement 

in the prediction of milk yield as data from preceding cycles are obtained occur for at least 5 

animals in a lactation cycle in any phase of prediction. 

Table 8.7: Sum of squared errors over all animals for the predicted milk yield curve 
fitted using the general exponential model before and as data on preceding 
lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 4145,351 2601,262 3570,845 1774,791 

1 only (Phase 2) ♦ 1673,640 1744,586 1554,898 

1 and 2 (Phase 3) ♦ ♦ 1210,771 1307,678 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 1273,962 

 

Table 8.8: The number of animals for which, according to the SSE, the predicted 
milk yield curve from the general exponential model improved in fit as 
data on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 8 5 7 

1 and 2 (Phase 3) ♦ 7 8 

1, 2 and 3 (Phase 4) ♦ ♦ 5 

 

In Table 8.9 the results of the sum of squared errors over all animals in the case of the 

predicted fat content curves indicates an improvement in prediction in all but the last phase of 

prediction, where there is only a slight increase in the SSE value for lactation cycle 4 when 

compare to the SSE value of this lactation cycle in phase 3 of prediction.  It also follows from 

Table 8.10 that for the fourth phase of prediction an improvement in the prediction of the fat 

content curve for lactation cycle 4 only occurred in 3 animals. 
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Table 8.9: Sum of squared errors over all animals for the predicted fat content curve  
fitted using the general exponential model before and as data on preceding 
lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle  3 

Lactation  
cycle 4 

No cycle  (Phase 1) 7,3844 6,3534 7,3795 12,3854 

1 only (Phase 2) ♦ 4,1259 4,5116 10,2579 

1 and 2 (Phase 3) ♦ ♦ 3,6451 9,2508 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 9,4466 
 

Table 8.10: The number of animals for which, according to the SSE, the predicted fat 
content curve  from the general exponential model improved in fit as data 
on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 5 6 6 
1 and 2 (Phase 3) ♦ 8 7 

1, 2 and 3 (Phase 4) ♦ ♦ 3 
 
To consider the improvement in the prediction ability with respect to the predicted protein 

content curves over all animals in the data set, the sum of the SSE’s over all animals in the 

data for this lactation trait are given in Table 8.11.  The only SSE values of that indicate 

improvements in the prediction of the protein content curves are those of lactation cycles 2 

and 3 in phase 2, and that of lactation cycle 4 in phase 4.  Table 8.12 provides the numbers of 

animals in each lactation cycle of each phase for which such an improvement in predicted 

protein content curve occurred.  

Table 8.11: Sum of squared errors over all animals for the predicted protein content 
curve fitted using the general exponential model before and as data on 
preceding lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 54,7181 42,8749 27,4354 34,1457 
1 only (Phase 2) ♦ 41,3787 21,8013 35,2503 

1 and 2 (Phase 3) ♦ ♦ 23,9290 38,6943 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 35,3198 
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Table 8.12: The number of animals for which, according to the SSE, the predicted 
protein content curve from the general exponential model improved in fit 
as data on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 5 7 5 
1 and 2 (Phase 3) ♦ 3 4 

1, 2 and 3 (Phase 4) ♦ ♦ 8 

 

8.5 PREDICTION AND THE 4-PARAMETER MORANT MODEL 

Figures 8.9 to 8.12 provide the results of the prediction of the  milk yield curve for each of the 

4 phases of the prediction process for the 4 lactation cycles of animal 5 in the Further Jersey 

data when the 4-parameter Morant model fitted to the original Jersey data by means of the 

Bayesian method is used in prediction.  When considering these graphs, the improvement is 

not very clear from a visual perspective, but when studying the SSE values for the predicted 

milk yield curves of each lactation cycle in the four phases of prediction, the SSE values of 

each of the lactation cycle are reduced in every consecutive phase of prediction and therefore 

indicted an improvement in the prediction ability of the predicted milk yield curves for the 

lactation cycles as test day records in preceding lactation cycles become available . 
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Figure 8.9: Prediction phase 1.  Predicting milk yield curves for all 4 lactation cycles of 
animal 5, where milk yield test day records are represented by      and 
predicted milk yield curves are represented by         . 
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Figure 8.10: Prediction phase 2.  Predicting milk yield curves for lactation cycles 2, 3 
and 4 of animal 5 after the milk yield curve of lactation cycle 1 has been 
fitted.  Milk yield test day records are represented by        , predicted milk 
yield curves are represented by        and the fitted milk yield curve by        . 
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Figure 8.11: Prediction phase 3.  Predicting milk yield curves for lactation cycles 3 and 
4 of animal 5 after milk yield curves of lactation cycles 1 and 2 have been 
fitted.  Milk yield test day records are represented by        , predicted milk 
yield curves are represented by         and fitted milk yield curves by         . 
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Figure 8.12: Prediction phase 4.  Predicting the milk yield curve for lactation cycle 4 of 
animal 5 after milk yield curves of lactation cycles 1, 2 and 3 have been 
fitted.  Milk yield test day records are represented by        , the predicted 
milk yield curve is represented by         , fitted milk yield curves by        . 

From the sum of the SSE values over all 10 animals in the Further Jersey data for predicted 

milk yield curves given in Table 8.13 it follows that overall prediction of milk yield curves 

continued to improve for all lactation cycles from one phase to the next.  From Table 8.14 it 

follows that when the predicted milk yield curves of individual animals are considered, this 

improvement occurs in at least 7 animals for the lactation cycles of any phase of prediction.  

For lactation cycles in the second phase of prediction the number of individual animals to 

which an improvement applies is exceptionally high. 

Table 8.13: Sum of squared errors over all animals for the predicted milk yield curve 
fitted using the 4-parameter Morant model before and as data on 
preceding lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 4179,922 2701,934 3759,006 1793,776 

1 only (Phase 2) ♦ 1724,578 2611,169 1170,907 

1 and 2 (Phase 3) ♦ ♦ 2078,987 969,9002 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 844,2139 



184 

Table 8.14: The number of animals for which, according to the SSE, the predicted 
milk yield curve from the 4-parameter Morant model improved in fit as 
data on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) 

Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 10 9 10 

1 and 2 (Phase 3) ♦ 7 8 

1, 2 and 3 (Phase 4) ♦ ♦ 7 

 

A result similar to the above also follows from Table 8.15 with respect to the SSE values for 

the predicted fat content curves.  In Table 8.16 it, however, follows that numbers of individual 

animals to which such an improvement in the prediction of fat content curve for lactation 

cycles of each prediction phase apply, are lower. 

Table 8.15: Sum of squared errors over all animals for the predicted fat content curve  
fitted using the 4-parameter Morant model before and as data on 
preceding lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 7,5603 6,5498 7,5923 12,6259 

1 only (Phase 2) ♦ 5,4710 6,3302 10,9788 

1 and 2 (Phase 3) ♦ ♦ 5,2154 10,5165 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 9,7103 

 

Table 8.16: The number of animals for which, according to the SSE, the predicted fat 
content curve  from the 4 -parameter Morant model improved in fit as data 
on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 5 8 6 

1 and 2 (Phase 3) ♦ 6 6 

1, 2 and 3 (Phase 4) ♦ ♦ 6 
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When compared to how the inclusion of data from preceding lactation cycles benefited the 

prediction of curves for the previous two lactation traits using the 4-parameter Morant model, 

the model fared worst at predicting protein content curves using the 4-phase prediction 

process.  When considering Table 8.17 and 8.18, this is especially true for the second phase of 

prediction using the 4-parameter Morant model.  When considering the sum of the SSE values 

over all 10 animals in the Further Jersey data the prediction of the protein content curve did 

not improve for any of the lactation cycles in the second phase.  For the individual animals 

there was only an improvement in the prediction for one animal during all the lactation cycles 

in the second phase of prediction.  This poor performance of the 4-parameter Morant model 

should however have been expected when taking into account the less realistic shape 

produced by this model for the expected protein content curves of a level of the cofactor of  

interest when eliminating the effects of all other cofactors as discussed in section 6.3.3 of 

Chapter 6. 

Table 8.17: Sum of squared errors over all animals for the predicted protein content 
curve fitted using the 4-parameter Morant model before and as dat a on 
preceding lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 63,4016   40,2124   28,1340   35,4038 

1 only (Phase 2) ♦ 4030,256 7211,573 277,4784 

1 and 2 (Phase 3) ♦ ♦ 3349,729 504,6070 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 301,1018 

 

Table 8.18: The number of animals for which, according to the SSE, the predicted 
protein content curve from the 4-parameter Morant model improved in fit 
as data on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 0 0 1 

1 and 2 (Phase 3) ♦ 6 7 

1, 2 and 3 (Phase 4) ♦ ♦ 3 
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8.6 PREDICTION AND THE ADAPTED WILMINK MODEL 

From the results of the adapted Wilmink model fitted to the Jersey data by using the Bayesian 

method, the four lactation cycles of each of the 10 animals in the Further Jersey data were 

predicted by means of the 4-phase prediction process.  The results for the prediction of the 

protein content curves of each phase of the 4-phase prediction process for the four lactation 

cycles of animal 2 follow in Figures 8.13 to 8.16 below. 

By considering the SSE values of the predicted protein content curves of the lactation cycles 

in each phase of the prediction process together with these graphs, it is clear that an 

improvement in prediction of the protein content occurs in all predictions up the third phase of 

prediction.  No reduction in the value of SSE for the prediction of the protein content curve of 

lactation cycle 4 however occurs from phase 3 to phase 4. 
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Figure 8.13: Prediction phase 1.  Predicting protein content curves for all 4 lactation 
cycles of animal 2, where protein content test day records are represented 
by        and predicted milk yield curves are represented by         . 
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Figure 8.14: Prediction phase 2.  Predicting protein content curves for lactation cycles 2, 
3 and 4 of animal 2 after the protein content curve of lactation cycle 1 has 
been fitted. Protein content test day records are represented by    , predicted 
protein content curves by         and the fitted protein co ntent curve by        . 
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Figure 8.15: Prediction phase 3.  Predicting protein content curves for lactation cycles 3 
and 4 of animal 2 after protein content curves of lactation cycles 1 and 2 
have been fitted. Protein content test day records are repre sented by       , 
predicted protein content curves by         and fitted protein curves by         . 
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Figure 8.16: Prediction phase 4.  Predicting the protein content curve for lactation cycle 

4 of animal 2 after protein content curves of lactation cycles 1, 2 and 3 have 
been fitted.  Protein content test day records are represented by      , the 

predicted protein content curves by       and the fitted protein content curves 
by        . 

From Tables 8.19 and 8.21 it follows that for both the lactation traits milk yield and fat 

content the sum of the SSE values over all 10 animals in the Further Jersey data indicate an 

improvement in each prediction phase, except the fourth, for all lactation cycles for which 

trait curves are predicted.  In Tables 8.20 and 8.22 when considering the numbers of animals 

in the predicted lactation cycles of each phase for which there is an improvement in 

prediction, these however differ for the two traits. 

Table 8.19: Sum of squared errors over all animals for the predicted milk yield curve 

fitted using the adapted Wilmink model before and as data on preceding 
lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 3862,066 2468,901 3521,751 1763,617 

1 only (Phase 2) ♦ 1311,834 1437,660 1236,904 

1 and 2 (Phase 3) ♦ ♦ 1163,581   908,764 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 1104,218 
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Table 8.20: The number of animals for which, according to the SSE, the predicted 
milk yield curve from the adapted Wilmink model improved in fit as data 
on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 7 7 8 

1 and 2 (Phase 3) ♦ 8 6 

1, 2 and 3 (Phase 4) ♦ ♦ 6 

 
Table 8.21: Sum of squared errors over all animals for the predicted fat content curve  

fitted using the adapted Wilmink model before and as data on preceding 
lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 7,6878 6,2944 7,6691 12,8178 

1 only (Phase 2) ♦ 4,2416 4,4920 10,7805 

1 and 2 (Phase 3) ♦ ♦ 3,4783 9,6613 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 9,8153 

 
Table 8.22: The number of animals for which, according to the SSE, the predicted fat 

content curve  from the  adapted Wilmink model improved in fit as data on 

previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 5 6 6 

1 and 2 (Phase 3) ♦ 9 7 

1, 2 and 3 (Phase 4) ♦ ♦ 4 

 
Table 8.23 provides the sum of the SSE values over all ten animals in the Further Jersey data 

when the protein content curves are predicted using the 4-phase prediction process.  The total 

SSE values over all animals are not reduced in lactation cycle 4 of the second phase of 

prediction or in any of the lactation cycles of the third phase of prediction.  From Table 8.24 it 

follows that these lactation cycles just mentioned also have low numbers of animals for which 

no improvement in prediction resulted when data on more preceding lactation records became 

available. 
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Table 8.23: Sum of squared errors over all animals for the predicted protein content 
curve fitted using the adapted Wilmink mode l before and as data on 
preceding lactation cycles became available. 

Sum of squared errors summed over all ten animals for 

Data available on 
lactation cycle(s) 

Lactation  
cycle 1 

Lactation  
cycle 2 

Lactation  
cycle 3 

Lactation  
cycle 4 

No cycle  (Phase 1) 55,5602 43,1743 29,4088 35,4958 

1 only (Phase 2) ♦ 38,9655 23,2168 36,0907 

1 and 2 (Phase 3) ♦ ♦ 26,3870 39,0673 

1, 2 and 3 (Phase 4) ♦ ♦ ♦ 36,2666 

 

Table 8.24: The number of animals for which, according to the SSE, the predicted 
protein content curv e from the adapted Wilmink model improved in fit as 
data on previous lactation cycle became available. 

The number of animals for which the prediction improved in Data available on 
lactation cycle(s) Lactation cycle 2 Lactation cycle 3 Lactation cycle 4 

1 only (Phase 2) 6 9 5 

1 and 2 (Phase 3) ♦ 6 4 

1, 2 and 3 (Phase 4) ♦ ♦ 7 

 

8.7 PREDICTION OF FURTHER DATA IN SUMMARY 

The number of improvements in the predictions for each trait curve over all 60 lactation 

cycles where improvement for the individual animals in the Further Jersey data is possible 

(i.e. phases 2, 3 and 4 of the prediction process) with respect to the four lactation models 

fitted follow in Table 8.25. 

Table 8.25: The number of lactation cycles for which prediction improved as data on 
preceding lactation cycles became available for the three lactation models 
applied.  Improvement is possible in a total of 60 lactation cycles. 

Predicted curves for Wood 
General  

Exponential 
4-parameter 

Morant 
Adapted  
Wilmink 

Milk yield 43 40 51 42 

Fat content 36 35 37 37 

Protein content 35 32 17 37 
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On condition that the data for which such prediction have to made is similar to that for which 

a lactation model was developed through the Bayesian method in this study, this method is 

useful in predicting outside of the data set for which modelling initially took place.  It is also 

clear that the Bayesian method is effective in improving the prediction ability of a model as 

data on preceding lactation cycles become available.  It is however important to consider such 

an improvement in the correct context, i.e. even if the prediction ability of the model 

improves using this method it does not imply that the model fitted to the data is necessarily 

the best possible model for the data. 

When considering the sum of the SSE values over all 10 animals in the Further Jersey data for 

each of the expected lactation trait curves in each of the four lactation cycles, the results for 

each lactation model used to model the original Jersey data are as follow in Table 8.26.  Take 

note that expected lactation trait curves refer to the resulting lactation trait curves obtained 

when using the results from the original Jersey data and the known test day records of each of 

the four the lactation cycles.  

Table 8.26: The sum of the SSE values over all 10 animals in the Further Jersey data 
for each of the expected lactation trait curves in each of the four lactation 
cycles and the total of the sum of the SSE values over all four lactation 
cycles for the lactation models  

  Sum of SSE values over all 10 animals for:  

Model 
Lactation 
trait 

Lactation 
cycle 1  

Lactation 
cycle 2  

Lactation 
cycle 3 

Lactation 
cycle 4 

Total of sum of 
SSE’s over 

lactation cycles 

Wood Milk yield 270,1961 262,4482 264,3009 295,6840 1092,6293 

 Fat content 2,9999 1,6861 2,3723 4,1843 11,2426 

 Protein content 35,1771 28,8601 21,0316 28,2097 113,2786 

Milk yield 273,0856 216,5720 224,7424 255,6289 934,0289 General 
Exponential Fat content 2,0573 1,4295 1,6902 2,7165 7,8936 

 Protein content 26,9857 23,4978 18,3482 23,5944 92,4261 

Milk yield 274,9743 282,2374 294,5502 230,0762 1081,8381 4-parameter 
Morant Fat content 2,0670 1,4505 1,6470 2,9170 8,0816 

 Protein content 25,2571 22,5437 17,4763 21,9867 87,2638 

Milk yield 272,8605 271,2695 283,7072 331,1656 1159,0028 Adapted 
Wilmink  Fat content 2,9133 1,7233 2,1744 3,7227 10,5337 

 Protein content 39,0549 30,7830 22,2458 30,2439 122,3277 
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In the above table the sum of SSE values highlighted in red indicates the lowest values for 

each lactation cycle, as well as for the total of the sum of the SSE values over the lactation 

cycles with respect to the expected milk yield curves.  Similar lowest SSE values with respect 

to the expected fat content curves are highlighted in blue and those for the expected protein 

content curve  in orange.  From the total of the sum of the SSE values over all ten animals 

obtained over all four lactation cycles in the Further Jersey data as provided in the last column 

of Table 8.26 for each of the lactation traits, it follows that for expected milk yield curves in 

the Further Jersey data the best result over all animals and all lactation cycles is obtained 

using the General exponential model fitted to the original Jersey data.  This result is followed 

in second place by the expected milk yield curves obtained by means of the 4-parameter 

Morant model, but only because for lactation cycle 4 in case of milk yield the Morant model 

resulted in a very low sum of SSE values compared to the sum of SSE values for all lactation 

cycles in the other models.  In the other three lactation cycles the Morant model actually 

always fared worst. 

When considering the expected fat content curves, the lowest overall SSE value for the 

expected curves of this trait in the last column of the table is also that of General exponential 

model.  This is also true for three of the four lactation cycles with respect to expected fat 

content curves.  It is only in lactation cycle 3 that the 4-parameter Morant model fares slightly 

better.  Overall with respect to expected fat content curves the Morant model is the second 

best model when considering the sum of the SSE values over all animals. 

With respect to the expected protein content curves the 4-parameter Morant model out 

performed all other models with respect to the fit obtained.  When considering the shape of 

the expected protein content curve for a level of the cofactor of interest when the effect of all 

other cofactors have been eliminated in section 6.3.3 of Chapter 6, the question arises as to 

whether the observed protein content values in the Further Jersey data are indeed such that the 

more traditionally shaped convex protein content curve should be fitted to it. 

Even though through the use of Bayes factors the adapted Wilmink model was found to be 

best suited to model lactation in the original Jersey data, for the Further Jersey data the best 

choice of model with respect to obtaining the expected lactation curves of all traits 

simultaneously would be the General exponential model fitted to the Jersey data, when the 

sum of SSE values are studied.  The 4-parameter Morant model follows in second place, with 

the Wood and adapted Wilmink models in third and fourth place respectively.  It is important 
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to remember that the expected trait curves for the Further Jersey data are based the observed 

test day records of the Further Jersey data, together with the results from the relevant model 

fitted to the original Jersey data. 

When considering all of the above, the comment by Wood (1974) that “It is a truism that a 

model fits best the data from which it was constructed, …” comes to mind. 
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CHAPTER 9 
THE WOOD MODEL AND THE INCOMPLETE 

SAANEN DATA 

9.1 THE SAANEN DATA 

The Saanen dairy goats are the most popular dairy goats in the world and have their origin in 

the Saanen Valley of Switzerland.  Saanen does are exceptionally high yielding milk 

producers when compared to other goat species and milk usually has a fat content of three to 

four percent. (Department of Animal Science, Oklahoma State University, 1996.)  When 

compared to cow’s milk, milk from Saanen does are very similar in fat and protein content to 

that of Friesland cows, although it may be a little sweeter in taste (The South African Stud 

Book and Livestock Improvement Association, 2001).  The Saanen is, however, a rela tively 

new breed of goat in South Africa, where the population developed from 1923 onward only, 

when animals were imported from Switzerland, England and Germany.  Goat’s milk has two 

main uses in South Africa.  It is often used as baby feed for babies allergic to cow’s milk, or 

as a substitute for cow’s milk by people with digestive disorders.  An important benefit of 

goats as milk producers over cows is that they do not contract tuberculosis, which saves on 

the cost of inoculating animals and testing of milk (SA Milch Goat Breeders’ Society, 2001). 

The data used in this study was obtained from the South African Stud Book and Livestock 

Improvement Association in Bloemfontein.  The original data set contained information on  

1 057 lactation cycles that included a total of 8 941 test day records, collected from 1990 to 

1992 for 713 lactating Saanen does kept by a number of registered Saanen goat breeders in 

South Africa.  Information such as farmer member number, animal identification number, 

kidding date, birth date of doe, parity number, test day date, milk weight in kilograms as 

measured during each of either two or three milking sessions on each test day, as well as the 

percentages of fat, protein and lactose in milk composition were included in the data.  Of the  

1 057 lactation cycles, 90 contained less than 5 test day records, while only 3 lactation cycles 

were collected for 1992.  Removing these lactation cycles together with all lactation cycles for 

which either parity number or year of kidding or both were unknown, as well as all lactation 

cycles containing obvious errors, left a data set referred to from this point onwards as the 

Saanen data. 
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The Saanen data consist of 755 lactation cycles, collected during 1990 and 1991, for 493 

lactating Saanen does.  Of the 493 does, 117 were recorded in 1990 only, 114 were recorded 

in 1991 only, and the remaining 262 were recorded during both years.  In total 6 842 

observations of test day records for does in various stages of lactations and different parities, 

with a minimum of 5 and a maximum of 11 test day records for all lactation cycles are 

contained in the Saanen data.  Parity numbers ranged from first to fifth, with 151 lactation 

cycles in the first parity, 211 in the second parity, 254 in the third parity, 131 in the fourth 

parity and only eight in fifth parity.  It was decided, however, that only four parities should be 

considered in order to obtain a better balance among the parity groups.  For this reason the 

fourth and fifth parities were combined into a single group referred to as does in parity four or 

greater. 

The number of days from kidding to test day had to be calculated using the kidding date and 

the test day date for each test day record.  Once the number of days from kidding to test day 

had been established, this value had to be corrected by subtracting 3 days in order to make 

provision for the initial secretion of colostrum in the first three days after kidding as it is 

assumed that the secretion of true milk only commences on the fourth day after parturition.  In 

the case of South African Saanen goats the kidding season starts at the end of July and lasts 

approximately four months, with kidding usually occurring at intervals of at least twelve 

months.  For this reason no attention will be paid in this study to the season of kidding, but 

rather to the point in time during the season at which kidding occurred.  The lactation cycle of 

a Saanen dairy goat is considered to be 300 days and commences on day four once the 

secretion of colostrum have ended. 

A summarised version of the results in Chapter 9 was published in the Journal of 

Agricultural, Biological and Environmental Statistics (Groenewald and Viljoen, 2003). 

 

9.2 THE WOOD MODEL FITTED TO INCOMPLETE DATA 

In the discussion above it was pointed out that, in the case of the Saanen data, lactation cycles 

were observed over a two-year period.  For some of the does in the data two consecutive 

lactation cycles were observed, one in each year.  For other does in this data set only one 

lactation cycle, which could possibly have occurred in either the first or the second year of 
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this two-year period, was observed.  The resulting data therefore has the same structure as that 

of incomplete data discussed in section 4.4 of Chapter 4.  

The Wood model and the Bayesian approach, with the inclusion of the amendments required 

in order to handle incomplete data, was used to model lactation in these Saanen does.  The 

Wood model assumes that the expected milk yield (in kg/day) of an animal at time t is 

represented over the lactation period by  

     ( ) ( )ctatWE b
t += exp         (9.1) 

where −∞ < a  < ∞, b  > 0 and c < 0.  The parameters a, b and c are unknown and may differ 

from one animal to another. 

As discussed in section 5.2 of Chapter 5, the Wood model maybe used to estimate the milk 

composition traits fat and protein content when measured as percentages of composition.  

However, based on the finding by Sakul and Boylan (1992) that the Wood model was unable 

to describe the percentage of lactose contained in sheep milk, it  was decided not to include the 

lactose contained in the Saanen milk as part of the modelling process.  As a result of the 

convex nature of the functions of percentages of fat and protein in milk composition over 

time, model parameters b and c for these traits should again be b  < 0 and c > 0. 

With the assumption of multiplicative errors in (9.1), and after a log transformation the 

observation model of the ith animal is written as 

    ( ) ( ) ijpsijpijsijpijsijsijpijsijpijs etctbatWtY +++== ln)(ln)(     (9.2) 

where ( )2,0...~ sijps Ndiie σ , i = 1, … , k  as before.  Now, however, j serves to index the year in 

which the lactation cycle occurs (year 1 or 2), while iq  is the number of lactation cycles 

observed for animal i , which for this analysis is iq = 1 or 2.  As before s = 1, … , u where u  is 

the number of lactation traits observed, and  p = 1, … , ijn  where ijn  is the number of test 

days for animal i during lactation cycle j, with 8 ≤ ijn  ≤ 10 for all values of i and j.  For the 

Saanen data the number of does are k  = 493, while the u  = 3 lactation traits milk yield, 

percentage of fat and percentage of protein in milk composition are modelled here. 

The generalised linear model form of the model for animal i during lactation cycle j as 

described in (4.3) for the general case is: 

     ijijijij EMXY +=         (9.3) 
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where ( ) ( )
ijnNn IE ijij ⊗×′ Φ,0 vec~13 vec . 

For the Wood model the v = 3 regression coefficients of the generalised linear form of the 

lactation model for the ith animal during its jth lactation cycle for the lactation trait indicated 

by s = 1, 2, 3 are aijs, bijs, and cijs, so that as before 
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The r-th row of design matrix ( )3×ijij nX  contains the elements that would return the Wood 

model in generalised linear form when multiplied with the matrix of coefficients ijM , 

therefore     [ ]ijrijr
r

ij ttln1)( =X .        (9.5) 

For animal i over all iq = 1 or 2 lactation cyc les observed, 
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The dimensions of both iY  and iM  therefore depends on the number of lactation cycles iq  

observed for animal i.  For example, if iq = 1 then [ ]1)33( ii MM =× , but if iq = 2 then 





=×

2

1)36(
i

i
i M

MM . 

From the earlier discussion on factors that could possibly have a significant influence on 

lactation, it follows that the additional information on year of kidding, parity number and 

kidding date available in the Saanen data has to also be included in the model.  This is done 

by means  of the covariate matrix or vector Zi(6 × iq ) for the ith animal, which is then used as 

described in Chapter 4.  A full description of how this covariate matrix Zi is obtained for each 

animal follows in section 9.3 below. 

Because iq  = 1 or 2 lactation cycles, the matrix R ( iq × iq ) only contains the covariances 

between the model parameters of the same animal in successive lactation cycles when iq > 1.  
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In this application where max( iq ) = 2, R i is a (2 × 2) matrix if an animal has been recorded 

over both the lactation cycles observed for 1990 and 1991,  

     



=

2212

1211

ρρ
ρρ

iR          (9.8) 

otherwise R i is a scalar.  If an animal has been recorded in one lactation cycle only, depending 

on the year this lactation cycle was observed, Ri = 11ρ  if the does has been recorded in 1990 

and Ri = 22ρ  if it has been recorded in 1991. 

Through the use of the  Gibbs sampler as described in section 4.2 of Chapter 4 and the full 

conditional distributions of the model parameters mi, B, Φ −1 and Σ -1 as set out in equations 

(4.28) to (4.31), and the joint conditional distribution on the elements of R given in equation 

(4.33) together with the Metropolis-Hastings algorithm with restrictions as described in 

section 4.5 of Chapter 4, the marginal posterior distributions conditional on the observed data 

only was obtained.  The hyperparameters P and G required to generate marginal distributions 

for Σ -1 and R-1, were taken as the moments estimators from the sampling distributions of Σ  

and R with degrees of freedom as small as possible, δ  = 2 and g  = 10.  Applying the approach 

suggested by MacEachern and Berliner (1994), the sampling process using the Gibbs sampler 

and Metropolis-Hastings algorithm was put through a “burn-in” period of 2000 simulation 

iterations, after which 12 000 sets of parameters were generated and kept using equations 

(4.28) to (4.31) and (4.33).  This re quired simulating from normal distributions to obtain the 

distributions of Mi and B, from Wishart distributions for Φ -1 and Σ -1, and using the 

Metropolis-Hastings algorithm with restrictions as set out in section 4.5 of Chapter 4 to obtain 

the elements of R-1 from their joint distributions. 

 

9.3 SETTING THE COVARIATES CONTAINED Zi 

Additional information available in the Saanen data on cofactors that could possibly have a 

significant influence on lactation is again included in the model using covariates. The  

cofactors for the Saanen data are year of kidding, parity number and kidding date.  Does 

kidding in two years, 1990 and 1991, were included in the data, while parity numbers range 

from 1 to 4 or greater.  Kidding date was provided as the actual date of parturition.  To 

include these cofactors in the model, a covariate vector zi  or matrix Zi has to be constructed 

for each animal i, where i = 1, …, 493.  
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For does recorded during one lactation cycle only ( iq = 1), the cofactors were translated into a 

vector of covariates zi(6 × 1), while for animal recorded during both of lactation cycles ( iq = 2) 

a matrix of covariates Zi(6 × 2) = [zi1 zi2] was constructed, where the column vectors zi1(6 × 1) 

and zi2(6 × 1) are the covariate vectors of the first and second of the two lactation cycles of 

animal i respectively.  A total of m = 6 covariates were required for each lactation cycle. 

In a covariate vector zi , for example, the first element or zi⋅1 is always a constant, 1.  The 

second element of this vector is used to identify the year of kidding, with zi ⋅2 equal to zero if 

the doe kidded in 1990 and one if the doe kidded in 1991.  Elements three, four and five of 

such a covariate vector are used to identify the parity number.  For an animal in first parity all 

three these elements are set at zero, for an animal in second parity zi ⋅3 is equal to 1 and zi⋅4 and 

zi⋅5 are set at zero, for an animal in third parity zi ⋅4 is equal to one, but zi ⋅3 and zi ⋅5 are set at zero 

and so forth.  The final element of the covariate vector zi is used to indicate the kidding date.  

However, instead of setting zi⋅6 equal to zero or one, a positive numerical value is assigned to 

this position in the covariate vector.  This value is determined by using the earliest kidding 

date in the Saanen data for that particular year as reference point and assigning it the time 

code 1.  Other kidding dates for that particular year are then coded as days after earliest 

kidding date.  The kidding date time code of animal i is then used as its zi ⋅6 covariate value.  

For 1990 the latest kidding date was coded as day 124 after the start of the kidding season, 

while for 1991 the last kidding date was day 115. 

By setting covariates one and six of the covariate vector zi equal to one and covariates two to 

five equal to zero, the so-called base levels of the cofactors are obtained.  The base levels of 

these cofactors are 1990 in the case of year of kidding, parity 1 for parity number and time 

code zero for kidding date.  A typical example of such a covariate vector would be: 
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from which it is evident that this doe, was observed during 1991 in its third parity, when it 

kidded on the 34th day since the start of the kidding season if it is assumed that the first doe to 

kid in that year indicates the start of the kidding season.  
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A covariate matrix Zi(6 × 2) = [zi1 zi2] simply consist of two such vectors, one for each of the 

lactation cycles on which lactation records for doe i are available. 

 

9.4 THE RESULTS OF THE GIBBS SAMPLER 

After convergence, like in the case of the Jersey data described in section 5.4 of Chapter 5, the 

results of the parameter sample values obtained through Gibbs sampling for B, Σ  and Φ  are 

stable.  To illustrate the stability of the results, after convergence, of the three elements of the 

matrix R when 12 000 sets of parameters have been generated by means of the Metropolis-

Hastings algorithm, the scans of these elements of R are considered in Figure 9.1 below. 

 
Figure 9.1:   Scans of the three elements of the covariance matrix R for the 12 000  

  simulations retained. 

The correlation between the model parameters of the same animal in successive years is 

estimated from the elements of R as 0,412 with 95% HPD interval [0,343 ; 0,477]. 

The regression matrix B(9 × 6) represents the effects of the covariates on the parameters of 

the three lactation trait curves, milk yield, percentage of fat and percentage of protein in milk 

composition, while the covariate vector zi or matrix Zi is responsible for the identification of 

the levels of the cofactors relevant to animal i.  The first column of the matrix B contains the 

base level effects on the three lactation trait curve parameters, while the elements in columns 

two through to six represent the additional effect on the parameters as a result of the cofactors 

for which the “levels” are indicated by the covariates.  The product of B and the covariate 

vector or matrix of animal i is used to determine the sum of the base level effects and the 

additional effects as a result of the settings of the covariates of animal i on the nine parameters 

of the three traits curves for that animal.  From the 90% HPD intervals of the marginal 

posterior distributions of the elements of the matrix B, it was found that 45 of the 54 elements 

ρ 11 ρ12 ρ 22 
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significantly affect the parameters of the three lactation trait curves milk yield, percentage of 

fat and percentage of protein.  All nine base level effects contained in B are significant, while 

the effects of all other covariates on the parameters of the trait curves are significant for at 

least five parameters.  The matrix B that follows contains the mean of the 12 000 simulated 

matrices resulting from the Gibbs sampler, with all values indicated in red representing the  

mean elements of this matrix for which the 90% HPD intervals were found to be significant 

with respect to their affect on the parameters of the lactation trait curves.  All covariates 

included in the model were kept as a consequence of the results obtained from the 90% HPD 

intervals. 

B  =  0,29637 0,21546 0,24473 0,13795 0,09278 -0,00454  
  0,27593 -0,11905 0,02769 0,07598 0,09794 0,00143  
  -0,00423 0,00186 -0,00152 -0,00182 -0,00243 -0,00002  
  2,97572 -0,80337 -0,23708 -0,54179 -0,90765 -0,01452  
  -0,52978 0,22953 0,07117 0,14541 0,24751 0,00342  
  0,00422 -0,00165 -0,00075 -0,00118 -0,00211 -0,00001  
  1,69588 -0,08635 -0,10075 -0,06122 -0,12391 -0,00052  
  -0,16655 0,02324 0,02570 0,00570 0,01935 -0,00013  
  0,00136 -0,00006 -0,00020 0,00004 -0,00011 0,00001  

 

9.5 THE LACTATION TRAIT MILK YIELD 

Once the 12 000 simulated Mi matrices for each animal i over the lactation cycle or cycles 

relevant to it have been obtained as a result of Gibbs sampling, 12 000 lactation or milk yield 

curves may be generated from this result for the lactation cycle or cycles of animal i.  The 

mean of the 12 000 lactation curves of a lactation cycle of animal i then gives the expected 

lactation curve for that animal in the particular lactation cycle under consideration. 

To illustrate, this was done for three does in the Saanen data.  The first, doe 35 was recoded in 

1990 only, when it was in its third parity and kidded on the 14th day of the kidding season.  

The second, doe 162 was recorded in 1991 only, when it was in its first parity and kidded on 

the 52nd day of the kidding season.  The expected lactation curve for these does are 

represented by black solid lines in Figure 9.2 and 9.3 respectively, while the green lines 

represent the observed milk yield values connected by straight-line segments and the red lines 

represent the least squares estimate of the lactation curves fitted to the data.  The 95% HPD 

intervals for the expected lactation curves are represented by the magenta coloured broken 
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lines, while the 95% prediction intervals are displayed as blue broken lines.  The same method 

used to obtain the prediction interval as 95% HPD interval of the predictive density applied to 

the Jersey data in section 5.5 of Chapter 5 was again used here. 
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Figure 9.2: The expected lactation curve of Animal 35 is given by     , its 95% HPD 
interval by      and its 95% prediction interval by      .  The least squares 
estimate of the lactation curve is given by      .  The observed data for Animal 
35 is given by       . 

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

K
g

Days into season

 

 
Figure 9.3: The expected lactation curve of Animal 162 is given by     , its 95% HPD 

interval by      and its 95% prediction interval by      .  The least squares 
estimate of the lactation curve is given by      .  The observed data for Animal 
162 is given by       . 
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The third doe or doe 232 was recoded in both 1990 and 1991.  In 1990 it was in its fourth 

parity and kidded on the 18th day of the kidding season, while in 1991 it was in its fifth party 

and kidded on the 21st day of the kidding season.  For both these years this doe was grouped 

into the parity group “parity 4 or greater”.  The expected lactation curves for each of the two 

lactation cycles of this doe are represented as a black solid line Figure 9.4, while as before the 

green line represents the observed milk yield data of each lactation cycle, the red line the least 

squares estimate of the lactation curve, the magenta coloured broken lines the 95% HPD 

intervals of the expected lactation curve and the blue broken lines the 95% prediction 

intervals for the expected lactation curves of the two cycles. 

 

 

 

 

 

Figure 9.4: For each of the two lactation cycle of Animal 232 the expected lactation curve 
is given by     , its 95% HPD interval by      and its 90% prediction interval by 
      .  The least squares estimate of the lactation curve is given by      .  The 
observed data for Animal 232 is given by       . 

It is also possible to obtain the expected lactation curve of a herd or breed with respect to one 

of the levels of the cofactors year of kidding and parity number.  First 12 000 vectors, 

m c = Bz*,                 (9.10) 

for each of the 12 000 simulated B matrices are calculated, where z*  is a vector that identifies 

through its covariates the cofactor level of interest and eliminates the other cofactors by 

taking the averages over the levels of these cofactors as the values of their covariate(s) in this 

vector z* .  For the cofactor “year of kidding”, which only has 2 levels, the average effect of 

each of its cofactor levels would by 2
1 .  To average out the effect of the cofactor year of 

kidding, the value 2
1  is assigned to the one covariate used to indicate its level.  Similarly for 

the cofactor “parity number” which has 4 levels identified by 3 covariates, the average effect 

of 4
1  has to be assigned to all 3 these covariates to eliminate its effect through averaging.  The 

only other cofactor present in the model is kidding date, which is in its covariate coded as the 
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number of days since the start of the kidding season.  The time codes since the start of the 

kidding season is modelled as a Gamma variate, with parameters estimated for each different 

parity number. 

The parameter values contained in m c related to milk yield are then used to construct 12 000 

lactation curves for the cofactor level of interest and the mean of these curves then gives the 

expected lactation curve for that cofactor level only.  Figure 9.5 below provides the expected 

lactation curves, together with 95% HPD intervals, for the two years of kidding after the 

cofactors parity number and kidding date were averaged out as explained above.   

 

 

 

 

 

Figure 9.5: Expected lactation curves with 95% HPD intervals for 1990 and 1991 after 
all other cofactors have been averaged out. 

From Figure 9.5 it is seen that peak yield in 1990 is at a much higher level than in 1990, 

although time of peak yield seems to be very similar for the two years.  It is expected that the 

total yield in 1990 would be higher than that in 1991.  The extent to which the above is true 

for the mentioned characteristics of milk yield was also investigated using the functions 

suggested by Wood for these lactation characteristics.  The results of this investigation follow 

in the next section. 

In Figure 9.6 expected lactation curves with 95% HPD intervals for the four parity numbers 

are given after the effects of year of kidding and kidding date were averaged out.  After 

careful consideration of these expected lactation curves for the four parities, it could be 

commented that parity 1 has the lowest and latest occurring peak milk yield, the flattest curve 

and, as a result, probably the greatest persistency.  Peak milk yields increase with parity 

number in parities 2 and 3, but in parity 4 or > there again is a slight reduction in peak level.  

Time of peak milk yield is earliest in parity 2, followed by parity 4 or >, parity 3 and then 

parity 1.  
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Figure 9.6: Expected lactation curves with 95% HPD intervals for the four parities after 
all other cofactors have been averaged out. 

 

9.6 THE WOOD LACTATION CURVE CHARACTERISTICS 

Posterior distributions of the following characteristics as defined by Wood (1967) may again 

be obtained:  

Total milk yield:    ∫ +=
300  

0  
)exp( dtctat bφ ,             (9.11) 

Peak milk yield:    ( ) )exp( bab
c
b −−=η ,              (9.12) 

Time of peak yield:   c
b−=τ     and            (9.13) 

Persistency of lactation:  )ln()1( cb −+−=ψ .              (9.14) 

Once 12 000 function values have been obtained for animal i using the parameters associated 

with milk yield in the simulated Mi matrices for that animal, a histogram is constructed for 

these values and a Pearson curve fitted to the histogram to find the marginal posterior density 

of the function. 
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The distributions of these functions with respect to one of the levels of a specified cofactor, 

rather than for an individual animal, may also be determined by using the same approach 

applied in sections 5.5.1 to 5.5.4 of Chapter 5.  When considering the marginal posterior 

distributions of these functions per cofactor, the results are as given in Figure 9.7 to 9.14 

below.  Note that it was not possible to efficiently assess persistency of lactation from Figures 

9.5 and 9.6.  The marginal posterior distributions of this characteristic for the cofactors 

kidding year and parity number, however, now enables us to do so. 
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Figure 9.7: Expected total milk yields for two kidding years after all other cofactors 

have been averaged out. 
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Figure 9.8: Expected peak milk yields for two kidding years  after all other cofactors 

have been averaged out. 
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Figure 9.9: Expected time of peak milk yields for two kidding years after all other 

cofactors have been averaged out. 
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Figure 9.10: Expected persistency of lactation for two kidding years after all othe r 

cofactors have been averaged out. 

From the results in Figures 9.7 to 9.10 above it is confirmed that expected total milk yield, 

peak milk yield and persistency of lactation is higher in 1990 than in 1991.  Expected time of 

peak milk yield is also later in 1990 than in 1991.  When considering 95% HPD intervals for 

the differences in these characteristics between 1990 and 1991, only the differences in 

expected total milk yield and expected peak milk yield between the kidding years were found 

to be significa nt.  When considering the expected time of peak milk yield in Figure 9.9, the 

mean of 1990 is only approximately 2 days later than that of 1991.  The kidding year 1990, 

however, out-performed 1991 in all respects as far milk yield in the Saanen goats is 

concerned.  These results corresponds to that of other studies on lactation of dairy goats from 
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which it was found that the year of kidding significantly affects milk yield.  Kominakis et al. 

(2000) found that the effect of production year was statistically significant in Skopelos dairy 

goats.  Mavrogenis et al. (1984) found that year of kidding had a significant effect on milk 

yield of Damascus goats in Cyprus.  Year of kidding also accounted for variation of milk 

yield in two Indian goat breeds (Kala and Prakash, 1990) and the production year had a 

significant effect on the milk yield of Spanish Verata goats (Rabasco et al., 1993).  Note that 

Gipson and Grossman (1990) stated that differences in goat breed are usually not important in 

accounting for variation in shape of the lactation curve, but that it does play a role in the in the 

scale of the curve.  The shape of a lactation curve usually remains unaffected by breed, but the 

curve shifts upward for higher producing breeds and downward for breeds with lower 

production levels. 
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Figure 9.11 Expected total milk yields for four parities after all other cofactors have 

been averaged out. 
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Figure 9.12 Expected peak milk yields for four parities after all other cofactors 

have been averaged out. 
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Figure 9.13 Expected time of peak milk yields for four parities after all other 

cofactors have been averaged out. 
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Figure 9.14 Expected persistency of lactation for four parities after all other 

cofactors have been averaged out. 

Figure 9.11 to 9.14 show parity 1 to have the lowest expected total and expected peak milk 

yields.  Expected time of peak yield is, however, latest for parity 1, while persistency is 

greatest in parity 1.  For parities 2 and 3 expected total and expect peak milk yield increase 

with parity number, but for parity 4 or > there is again a slight drop in expected total milk 

yield to just less than parity 3 level.  Expected peak yield is, however, greatest in parity  

4 or >.  Expected time of peak milk yield is significantly later for parity 1 than for the other 

parities and, as a result of the combined effect of all the afore mentioned characteristics, parity 

1 has the greatest persistency followed by parity 3, 4 or >, and then parity 2 with the lowest 

persistency.  For all four these lactation characteristics parity 4 or > had the greatest variance.   
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The above results are consistent with the results of other studies on the lactation curves of 

dairy goats as discussed in Gipson and Grossman (1990) and the numerous references therein.  

In these studies it was found that the initial and peak yields for first -parity does were usually 

lower than for later parity does and that time of peak yield was generally later in the lactation 

cycle of first -parity does than for later-parity does.  Because of the flatter lactation curve 

resulting in the first parity, persistency was found to be greatest in first parity does and 

decreased with increasing parity.  Ruvuna et al. (1995) also found that older does, i.e. those in 

later parities, have a higher peak yield and lower persistency than younger does or those in 

earlier parities.  Note that there is a negative relationship between the level of production (or 

total yield) and persistency, as the level of production increases the persistency decreases. 

Eight possible combinations of kidding year and parity number are possible for these two 

cofactors in the data set and any doe in the Saanen data will belong to one of these eight 

combinations.  The only cofactor that could potentially be different for the does in the Saanen 

data is the time code of kidding date.  It was therefore decided to also determine the mean 

values together with 90% HPD intervals for the marginal posterior distributions of the 

lactation curve characteristics in equations (9.11) to (9.14) for the eight combinations of the 

cofactors kidding year and parity number.  This was done as explained earlier by obtaining 

the functions of the characteristics of lactation from the parameter values of milk yield in the  

12 000 vectors m c = Bz* , where z* was complied using each of the eight combinations of 

cofactor levels for the cofactors “kidding year” and “parity number”, while the average 

kidding date time code of 50 days since the start of the kidding season was used as value of 

the cofactor kidding date.  The result is given in Table 9.1 below. 

Table 9.1: Mean value of four characteristics of the lactation curve, 90% HPD intervals 
in parenthesis. 

  Parity 

Characteristic Year First Second Third Fourth and > 

Total yield 
(kg milk) 

1990 
1991 

755 (732-780) 
698 (678-720) 

896 (868-926) 
823 (792-854) 

967 (935-999) 
887 (854-920) 

945 (895-997) 
865 (828-904) 

Peak yield 
(kg milk) 

1990 
1991 

3.22 (3.11-3.33) 
2.75 (2.63-2.97) 

4.21 (4.06-4.36) 
3.60 (3.46-3.74) 

4.53 (4.36-4.69) 
3.86 (3.70-4.01) 

4.57 (4.30-4.83) 
3.89 (3.70-4.07) 

Time of peak  
yield (days) 

1990 
1991 

64.6 (60.6-68.2) 
64.9 (57.7-71.8) 

54.4 (51.3-57.3) 
50.8 (46.4-55.0) 

58.8 (55.8-51.7) 
57.0 (53.0-60.9) 

57.0 (53.1-60.8) 
54.8 (50.9-58.7) 

Persistency 
1990 
1991 

7.04 (6.91-7.16) 
6.94 (6.80-7.08) 

6.84 (6.72-6.96) 
6.65 (6.53-6.76) 

7.02 (6.89-7.15) 
6.83 (6.77-6.95) 

7.01 (6.83-7.18) 
6.80 (6.67-6.93) 
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The results in table 9.1 correspond in most part to that obtained from the characteristics of the 

lactation curves for the cofactors year of kidding and parity number in Figures 9.7 to 9.14. 

The third cofactor, or kidding date, in the Saanen data had as many as 124 level settings in 

1990, making it difficult to meaningfully display its results.  Probably the best way of 

considering the cofactor kidding date, which was coded as days from the start of the kidding 

season, is to graph the expected posterior characteristics of the lactation curve for the parities 

as a function of time since the start of the kidding season, i.e. over the levels of the cofactor 

kidding date, for each or t he two kidding years.   

 
Figure 9.15: Expected posterior characteristics of the lactation curve of does in 

parity 1 for 1990 (     ) and 1991(     ) as a function of kidding date coded 
as days since start of the kidding season. 

From Figure 9.15 above it is evident that for first parity does the kidding year 1990 most 

definitely out-performed 1991.  However, the only characteristic that is significantly affected 

is total milk yield, where the mean yield is highest for animals lactating early during the 

season, and dropping by more than 90kg for animals lactating at the end of the season.  It 

would also be possible to use the same form of graphical representation to display the effects 

of the cofactor year of kidding on the characteristics when the effect of the cofactor parity 

number is averaged out, or the effects of the cofactor parity number when the effect of the 

cofactor kidding year is averaged out. 
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9.7 THE LACTATION COMPOSITION TRAITS 

The Wood model was used to simultaneously model not only milk yield, but also the milk 

composition traits fat content and protein content both measured as percentages in the 

composition of milk.  The mean of the 12 000 curves generated for a composition trait of 

animal i provides the expected composition trait (fat or protein) curve for that animal in the 

particular lactation cycle under consideration.  This procedure was again followed to obtain 

the expected trait curves for does 35, 162 and 232 with respect to fat and protein content in 

milk yield.  The results are given in Figures 9.17 to 9.21.  In all cases the expected curve is 

represented by a black solid line, the green line is the observed data, the red line represents the 

least squares estimate of the curve fitted to the data, the 95% HPD interval of the expected 

curve is represented by magenta broken lines, and the 95% prediction interval is displayed as 

blue broken lines.  The prediction intervals are again obtained as the 95% HPD intervals of 

the predictive density in equation (5.10) in section 5.5 of Chapter 5 as mentioned earlier. 
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Figure 9.16: The expected fat content curve for Animal 35 is given by     , its 95% 
HPD interval by      and its 95% prediction interval by      .  The least 
squares estimate of the lactation curve is given by      .  The observed 
data for Animal 35 is given by       . 

In Figure 9.17 the ability of this Bayesian method in reducing the number of atypical curves 

fitted to individual animals in the data as result of the influence of information from the whole 

herd on the expected curve of an individual animal is again demonstrated.  The least squares 

estimate of the fat content curve of animal 162 is atypical in nature, but the expected lactation 

curve fitted through this Bayesian method is not atypical. 
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Figure 9.17: The expected fat content curve for Animal 162 is given by     , its 95% 

HPD interval by      and its 95% prediction interval by      .  The least 
squares estimate of the lactation curve is given by      .  The observed 
data for Animal 162 is given by       . 

 

 

 

 

 

 

 

 

Figure 9.18: For each of the two lactation cycle of Animal 232 the expected fat 
content curve is given by     , its 95% HPD interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 232 is given by       . 
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Figure 9.19: The expected protein content curve for Animal 35 is given by     , its 

95% HPD interval by      and its 95% prediction interval by      .  The 
least squares estimate of the lactation curve is given by      .  The 
observed data for Animal 35 is given by       . 
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Figure 9.20: The expected protein content curve for Animal 162 is given by     , its 
95% HPD interval by      and its 95% prediction interval by      .  The 
least squares estimate of the lactation curve is given by      .  The 
observed data for Animal 162 is given by       . 
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Figure 9.21: For each of the two lactation cycle of Animal 232 the expected protein 
content curve is given by     , its 95% HPD  interval by      and its 90% 
prediction interval by      .  The least squares estimate of the lactation 
curve is given by      .  The observed data for Animal 232 is given by       . 

 

Figure 9.22: The mean, 50% and 95% contours of the joint posterior distribution of 
fat and protein content after 20 and 100 days since the start of lactation 
for 1990 and parity 1. 

Figure 9.22 shows the joint posterior distribution of fat and protein percentage in the 

composition of milk after 20 days and also after 100 days of from the start of lactation by 

plotting the mean, 50% and 95% contours of the joint posterior distribution for the cofactor 

levels 1990 and parity 1, when the effect of the cofactor kidding date is averaged out.  This 

clearly shows that the higher content in both composition traits occur early in the lactation 

cycle of the Saanen does.  Although not much work has been done in the past on the 
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composition of goat milk with respect to fat and protein content, Kominakis et al. (2000) and 

other references therein draw attention to the negative genetic correlation between milk yield 

and fat content, and milk yield and protein content. 

The expected fat and protein content curves for the herd with respect to one of the levels of 

the cofactors year of kidding and parity number may be obtained as before.  Figures 9.23 to 

9.26 provide these expected fat and protein content curves together with 95% HPD intervals. 

 

 

 

 

 

 
Figure 9.23: Expected fat content curves with 95% HPD intervals for 1990 and 1991 

after all other cofactors have been averaged out. 
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Figure 9.24: Expected fat content curves with 95% HPD intervals for the four 
parities after all other cofactors have been averaged out. 

220 
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Figure 9.24 shows that parities 1 and 2 are very similar with respect to the expected fat 

content of milk, except that parity 1 commences with and ends in slightly higher expected 

percentages.  Parity 4 or greater commences with and ends in the lowest expected fat content 

when compared to all other parities. 

 
 

 

 

 

 

Figure 9.25: Expected protein content curves with 95% HPD intervals for 1990 and 
1991 after all other cofactors have been averaged out. 
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Figure 9.26: Expected protein content curves with 95% HPD intervals for the four 
parities after all other cofactors have been averaged out. 

Figure 9.26 shows that the expected protein content of milk in parity 1 commences and ends 

with slightly higher percentages than the other parities.  Parity 4 or greater seems to have the 

221 
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lowest expected protein content throughout most of the lactation cycle when compared to all 

other parities. 

 

9.8 PREDICTING MISSING LACTATION RECORDS 

Lactation records in the Saanen data were recorded over two kidding years or lactation cycles, 

1990 and 1991.  Of the total of 493 does in the data, only 262 were recorded during both 

lactation cycles.  For 117 does recorded in 1990 only, it is possible to predict the missing 

lactation record for 1991. 

In section 4.1 of Chapter 4 the procedure for the general case where, of a possible number of 

q  consecutive lactation cycles for animal i of which the lactation records of h  < q cycles are 

known and (q − h) cycles have to be predicted, is explained.  For the Saanen data each doe has 

a total of q  = 2 possible lactation cycles and for all does recorded in 1990 only this implies 

that h = 1 lactation cycle is known and that one further lactation cycle has to be predicted to 

complete missing lactation records for those does. 

To do so the model parameters of the lactation cycle to be predicted or )2(
ifm  have to be 

determined if the model parameters of the known lactation cycle is given by *)1()1(
ii mm = .  

This is done through MCMC simulation using the conditional distribution of )2(
ifm  specified 

in equation (4.22).  For the Saanen data, how ever, where q  = 2 and h = 1, this conditional 

distribution for predicting the second year’s model parameters for an individual or )2(
ifm , 

given the first year’s performance reduces to: 









−+ SS ||1 , )(~,,,|

11
1

)1(

11

12
2

)1()2( RzBmzBRBmm iiiiif ρρ
ρN .          (9.15) 

For predicting the second years performance, ifY~ , we then use 

( ) ( ) ( ) ( )( ) ( )( )
ifnImXINmmy ififififif ⊗⊗= ∗ ΦΦ ,~, 22

3
222 .            (9.16) 

From the result of equation (9.16) the lactation or milk yield curve, as well as the fat and 

protein content curves for the second year given first year’s performance may then be 
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graphed.  If this is done for doe 35 in the data for which only the lactation record of 1990 was 

observed, the results are as follows. 

 
Figure 9.27: Predicted lactation curve with 90% HPD intervals for doe 35 in 1991. 

 

 

Figure 9.28: Predicted fat content curve with 90% HPD intervals for doe 35 in 1991. 
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Figure 9.29: Predicted protein content curve with 90% HPD intervals for doe 35 in  
1991. 

 

9.9 SAANEN DATA RESULTS:  A SUMMARY 

In general, the season of lactation, 1990 or 1991, significantly affected total yield and peak 

yield, with 1991 resulting in lower values of both these characteristics in all four parities.  

Total milk yield was in turn affected by the time of kidding.  Total milk yield was higher for 

does that started lactation early during the season and declined for does that started lactation 

later during the season. 

Parity had a large effect on the characteristics of the lactation curve in dairy goats.  It was 

found that peak yield increased with increasing parity up to about the third or fourth parity, 

while time of peak yield is later for first-parity does than for later parity does.  The effect of 

parity on total milk yield was again similar to the effect on peak yield, with total milk yield 

increasing up to the third parity, where after the total milk yield starts to decline.  Persistency 

was influenced by parity in the same way as total milk yield.  The effect of parity on total 

milk yield and persistency could play an important role in management of dairy animals with 

respect to culling. 
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CHAPTER 10 

EPILOGUE 

10.1  THE RESULTS IN SUMMARY 

The Wood, general exponential, 4-parameter Morant and adapted Wilmink models were used 

to simultaneously model the lactation traits milk yield, percentage of fat and percentage of 

protein in the milk composition from test day records observed for Jersey cows by means of a 

Bayesian approach using MCMC methods.  The results obtained from the Wood model, when 

applied to lactation of dairy cows, in the main corresponds to the results and conclusions 

obtained in other studies with respect to the effects of cofactors, such as parity, region and 

season of calving, on the lactation curve characteristics total milk yield, peak milk yield, time 

of peak milk yield, and persistency, as discussed in Chapter 5.  Although not much research 

on modelling the fat and protein content of milk by means of the Wood model have 

previously been done, the results and conclusions obtained in this research also mainly 

corresponds to those of other studies. 

When considering the expected lactation curves with respect to the levels of a cofactor of 

interest obtained from the general exponential, 4-parameter Morant and adapted Wilmink 

models, the adapted Wilmink model fared best at describing milk yield.  The 4-parameter 

Morant model often resulted in curves that peak when lactation commenced which is 

considered an unrealistic scenario with respect to lactation in Jersey cows, while the general 

exponential model tends to under estimate milk yield in the final stages of lactation.  

Considering the expected fat curves with respect to the levels of a cofactor of interest very 

similar results were obtained for the four models.  Fat content was also the only lactation trait 

in the original Jersey data that the 4-parameter Morant model seemed to model effectively.  

With respect to expected protein content of the levels of a cofactor of interest the 4-parameter 

Morant model seemed unable to take on the shape expected for such curves, while the results 

from the Wood, adapted Wilmink and general exponential models were similar in scale and 

shape. 

When comparing the ability of all four models in modelling the three lactation traits of the 

Jersey data using Bayes factors, the adapted Wilmink model is the model of preference, 
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followed by the Wood and general exponential models, while the 4-parameter Morant model 

fared worst. 

The results from the Bayesian approach for these models obtained from the original Jersey 

data were also used to predict and model lactation with respect to the Further Jersey data that 

contains animals similar to those in the original Jersey data but that do not form part of the 

original Jersey data.  Here it was found that the general exponential model resulted in the 

lowest total sum of SSE values over all lactation cycles of all 10 animals in the Further Jersey 

data with respect to the lactation traits milk yield and fat content, while for protein content the 

4-parameter Morant model provided the lowest total sum of SSE values over all lactation 

cycles of all 10 animals.  This was however the case when using results generated for the 

models fitted to the original Jersey data and not by modelling the Further Jersey data using 

these models and the Bayesian approach.  

To illustrate the use of the Bayesian approach in modelling incomplete lactation data, the 

Wood model was used to model the Saanen data.  The results obtained with respect to the 

effects of cofactors such as year of kidding, parity and kidding date on the lactation curve 

characteristics total milk yield, peak milk yield, time of peak milk yield and persistency also 

on the whole corresponds to those of other studies in which the Wood model was used to 

model lactation in goats.  This correspondence was also found with respect to the results of 

the fat and protein content of the milk of goats modelled by means of the Wood model. 

It was also illustrated how the Bayesian approach also allows for the prediction of lactation 

trait curves in future lactation cycles of animals contained in the Jersey using the Wood, 

general exponential, 4-parameter Morant and adapted Wilmink model, as well as for animals 

in the Saanen data using the Wood model. 

The ability of the Bayesian approach in reducing the occurrence of atypical curves fitted to 

milk yield, fat content and protein content is also very evident throughout this study. 

 

10.2  CONTRIBUTION TO LACTATION RESEACH IN PERSPECTIVE 

In this research a hierarchical Bayesian approach was applied in modelling lactation data with 

the intention of investigating lactation traits and not for the purpose of genetic evaluation and 
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selection as was done before.  For the first time consideration is given to the effect that the 

assumption about errors has on fitting the various forms of lactation models to the data and 

the problems encountered with respect to some of the models based on the error assumption. 

A generalised hierarchical Bayesian approach to modelling lactation using any lactation 

model, together with the assumption of multiplicative errors, that may then be re -written in 

linear form by means of a logarithmic transformation so that the errors then become additive, 

was developed. 

The effects of cofactors were included into the model through the use of covariates in order to 

enable the study of the effects of the various levels of such cofactors on the lactation trait 

curves. 

The method that averages out the effects of certain cofactors in order to obtain the lactation 

trait curve applicable to a certain level of the specific cofactor of interest was introduced.  

This provides a Bayesian equivalent to Standard Lactation Curves (SLAC’s) obtained by 

means of IRIS-Dairy.  

This modelling approach has the ability to handle both complete and incomplete data.  

Complete data referring to the case where the same lactation cycles were recorded for all 

animals in the data, while in the case of incomplete data not all animals were recorded during 

all the considered lactation cycles.  From the results of such a model it is possible to predict 

missing lactation cycles for animals based on preceding lactation cycles for which test day 

records were observed and included in modelling.  Future lactation cycles of the animals in 

the data following those already included in modelling may also be predicted. 

It is also possible to predict lactation trait curves for animals that did not form part of the data 

set for which modelling took place, on condition that it may be assumed that such animals are 

similar to those for which modelling was done. 

An adaptation of the Wilmink model II was performed in order to enable its use as a model 

that, when multiplicative errors are assumed, may be transformed using a logarithmic 

transformation so that the model becomes linear with additive errors.  In addition to this w in 

the adapted Wilmink model is used as a parameter applicable to the herd under investigation 

instead of as a constant as was previously done in the Wilmink II model.  The resulting 
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adapted Wilmink model has proved to be a model that is worthy of further consideration in all 

the studies of lactation in dairy animals. 

In summary, the main advantages of the Bayesian approach, combined with MCMC methods, 

is, firstly, the ease with which it can handle the estimation of parameters in complex multi-

level hierarchical models, and, secondly, the ability to generate accurate credibility intervals 

for these parameters.  Also, credibility intervals for non-linear combinations of these 

parameters, such as the lactation characteristics, and prediction intervals follow directly.  This 

is not possible when applying the classical methods, except with the use of approximations. 
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APPENDIX 

A1: An example of MATLAB® code:  Finding marginal posterior 

distribution through Gibbs sampling in the case of complete data 

The MATLAB program code below illustrates how the marginal distributions of the 

parameters of the three lactation traits using the adapted Wilmink model were obtained by 

means of the Gibbs sampler when applied to complete data, i.e. where all animals in the data 

were observed during all of the considered lactation cycles.  In the case of the Jersey data this 

means that all animals in the data were observed during each of four lactation cycles.  Similar 

code, with the necessary adjustments relevant to the lactation model applied, were also used 

to obtain the marginal distributions of the parameters of the three lactation traits using the 

Wood, general exponential and 4-parameter Morant models. 

 

%%ADAPTED WILMINK: Jersey data  
%%(Gibbs sampling: Equal numbers of lactation cycles for all 
animals) 
clear 
jersey 
format compact 
k=length(ni);   p=3;   Nij=[0;cumsum(nij)]; 
Y=log(D);    t=X-3; 
clear D X 
n=sum(nij);   Z=Z'; 
 
%STARTING VALUES 
%--------------- 
randn('seed',sum(100*clock)); 
load startwm17k      % File with starting values loaded 
R=Rst; Sig=Sigst;  B=Bst;  s=sst;  Phi=diag(s);   w=wst; 
S=[];  TMc=[];  BB=[];  RR=[];  SIG=[];  Kor=[];  W=[]; TEL=[]; 
 
for jj=1:10000    %Perform 10 000 iterations of Gibbs sampler 
 
   %SIMULATING Mic  
   %--------------- 
   MB1=0; MB2=0; E=0; GG=0; Mc=[]; M=[]; Mi=[]; ZZ=[];  Mw=[]; 
   for i=1:4:4*k-1 
      y1=Y(Nij(i)+1:Nij(i+1),:); 
      y2=Y(Nij(i+1)+1:Nij(i+2),:); 
      y3=Y(Nij(i+2)+1:Nij(i+3),:); 
      y4=Y(Nij(i+3)+1:Nij(i+4),:); 
      y=[y1;y2;y3;y4]; 
      yr=y'; 
      yc=yr(:); 



236 

      ti1=[t(Nij(i)+1:Nij(i+1))]; 
      ti2=[t(Nij(i+1)+1:Nij(i+2))]; 
      ti3=[t(Nij(i+2)+1:Nij(i+3))]; 
      ti4=[t(Nij(i+3)+1:Nij(i+4))]; 
  Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
  Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)]; 
      xi1=[ones(length(ti1),1) (ti1) exp(-w*ti1)]; 
      xi2=[ones(length(ti2),1) (ti2) exp(-w*ti2)]; 
      xi3=[ones(length(ti3),1) (ti3) exp(-w*ti3)]; 
      xi4=[ones(length(ti4),1) (ti4) exp(-w*ti4)]; 
      xi=[xi1 zeros(length(xi1),9) 
         zeros(length(xi2),3) xi2 zeros(length(xi2),6) 
         zeros(length(xi3),6) xi3 zeros(length(xi3),3) 
         zeros(length(xi4),9) xi4]; 
      vmc=inv(kron(xi'*xi,inv(Phi))+kron(inv(R),inv(Sig))); 
    mmc=vmc*(kron(xi',inv(Phi))*yc + kron(inv(R),inv(Sig)*B)*Zc); 
    mc=sqrtm(vmc)*randn(size(mmc)) + mmc; 
      mi=[mc(1:9) mc(10:18) mc(19:27) mc(28:36)]; 
      
m=[mc(1:3)';mc(4:6)';mc(7:9)';mc(10:12)';mc(13:15)';mc(16:18)';mc(19
:21)';mc(22:24)';mc(25:27)';mc(28:30)';mc(31:33)'; mc(34:36)']; 
 
     mB1=mi*inv(R)*Zr'; 
   mB2=Zr*inv(R)*Zr'; 
     MB1=MB1+mB1;  
     MB2=MB2+mB2; 
      e=(y-xi*m)'*(y-xi*m);  
     E=E+e; 
      Mw=[Mw m]; 
      M=[M mi]; 
      Mi=[Mi;mi];  
      ZZ=[ZZ;Zr]; 
 end 
 
  %SIMULATING B 
  %------------ 
  iZRZ=inv(MB2); 
  mB=(MB1)*iZRZ; 
  Bg=sqrtm(kron(iZRZ,Sig))*randn(size(mB(:)))+mB(:); 
  B=[Bg(1:9) Bg(10:18) Bg(19:27) Bg(28:36) Bg(37:45) Bg(46:54) 
Bg(55:63) Bg(64:72) Bg(73:81) Bg(82:90) Bg(91:99) Bg(100:108) 
Bg(109:117) Bg(118:126) Bg(127:135) Bg(136:144) Bg(145:153)]; 
   
  %SIMULATING Phi 
  %-------------- 
  C=diag(E); 
  s=C'./sum((randn(n,3).^2)); 
  Phi=diag(s) 
   
  %SIMULATING Sig 
  %-------------- 
  q=4*k; 
  g=3*p+1; 
 G=diag([0.1414822 
       0.0000029 
       0.3448342 
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       0.0512994 
       0.0000011 
       0.2515051 
       0.0161449 
       0.0000003 
          0.0665536]); 
  ke=kron(speye(k),inv(R)); 
  F=(M-B*Z)*full(ke)*(M-B*Z)'; 
  H=inv(g*G+F); 
  r1=randn(3*p,q+g); 
  r2=sqrtm(H)*r1; 
  Sig=inv(r2*r2'); 
   
  %SIMULATING R 
  %------------ 
  G2=0;   wr=4;      %wr=delta and Wr=hyperparameter P 
  Wr=[1.1751    1.1243    1.1635    1.1617 
      1.1243    1.2290    1.1907    1.1907 
      1.1635    1.1907    1.3001    1.2395 
      1.1617    1.1907    1.2395    1.3259]; 
 
for j=1:k 
   g2=M(:,1+4*(j-1):4*j)-B*Z(:,1+4*(j-1):4*j); 
   GG=g2'*inv(Sig)*g2; 
   G2=G2+GG; 
end 
  L=inv(wr*Wr+G2); 
  r3=randn(4,wr+3*p*k); 
  r4=sqrtm(L)*r3; 
  R=inv(r4*r4') 
 
%SIMULATING w 
%------------- 
ym=0; 
for i=1:4:4*k-1 
   ii=(i+3)/4; 
      y1=Y(Nij(i)+1:Nij(i+1),:); 
      y2=Y(Nij(i+1)+1:Nij(i+2),:); 
      y3=Y(Nij(i+2)+1:Nij(i+3),:); 
      y4=Y(Nij(i+3)+1:Nij(i+4),:); 
      y=[y1;y2;y3;y4]; 
      yr=y'; 
      yc=yr(:); 
      ti1=[t(Nij(i)+1:Nij(i+1))]; 
      ti2=[t(Nij(i+1)+1:Nij(i+2))]; 
      ti3=[t(Nij(i+2)+1:Nij(i+3))]; 
      ti4=[t(Nij(i+3)+1:Nij(i+4))]; 
  Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
  Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)]; 
      xi1=[ones(length(ti1),1) (ti1) exp(-w*ti1)]; 
      xi2=[ones(length(ti2),1) (ti2) exp(-w*ti2)]; 
      xi3=[ones(length(ti3),1) (ti3) exp(-w*ti3)]; 
      xi4=[ones(length(ti4),1) (ti4) exp(-w*ti4)]; 
      xi=[xi1 zeros(length(xi1),9) 
         zeros(length(xi2),3) xi2 zeros(length(xi2),6) 
         zeros(length(xi3),6) xi3 zeros(length(xi3),3) 
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         zeros(length(xi4),9) xi4]; 
      m=Mw(:,(3*(ii-1)+1):(3*(ii-1)+3)); 
   yma=(-.5*trace((y-xi*m)*inv(Phi)*(y-xi*m)')); 
   ym=ym+yma; 
end 
lnfw=ym;  
a1=-20; zw=rand(1,1); 
tel=0; 
while zw>=exp(a1) 
   tel=tel+1; 
 w0=w*(0.75+(rand(1,1)*.5)) 
   ym0=0;  
for i=1:4:4*k-1 
   ii=(i+3)/4; 
      y1=Y(Nij(i)+1:Nij(i+1),:); 
      y2=Y(Nij(i+1)+1:Nij(i+2),:); 
      y3=Y(Nij(i+2)+1:Nij(i+3),:); 
      y4=Y(Nij(i+3)+1:Nij(i+4),:); 
      y=[y1;y2;y3;y4]; 
      yr=y'; 
      yc=yr(:); 
      ti1=[t(Nij(i)+1:Nij(i+1))]; 
      ti2=[t(Nij(i+1)+1:Nij(i+2))]; 
      ti3=[t(Nij(i+2)+1:Nij(i+3))]; 
      ti4=[t(Nij(i+3)+1:Nij(i+4))]; 
  Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
  Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)]; 
      xi10=[ones(length(ti1),1) (ti1) exp(-w0*ti1)]; 
      xi20=[ones(length(ti2),1) (ti2) exp(-w0*ti2)]; 
      xi30=[ones(length(ti3),1) (ti3) exp(-w0*ti3)]; 
      xi40=[ones(length(ti4),1) (ti4) exp(-w0*ti4)]; 
      xi0=[xi10 zeros(length(xi10),9) 
         zeros(length(xi20),3) xi20 zeros(length(xi20),6) 
         zeros(length(xi30),6) xi30 zeros(length(xi30),3) 
         zeros(length(xi40),9) xi40]; 
      m=Mw(:,(3*(ii-1)+1):(3*(ii-1)+3)); 
   yma=(-.5*trace((y-xi0*m)*inv(Phi)*(y-xi0*m)')); 
   ym0=ym0+yma; 
end 
lnfw0=ym0;%-log(w0); 
a1=min([0 lnfw0-lnfw]); 
ea1=exp(a1); 
zw=rand(1,1); 
end 
w=w0 
TEL=[TEL;tel]; 
 
  S=[S;s]; 
  BB=[BB;B]; 
  RR=[RR;R]; 
  SIG=[SIG;Sig]; 
  W=[W;w]; 
 
End 
 
save sim17wm S BB RR SIG W jj TEL 
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A2: An example of MATLAB® code:  Determining the marginal 

likelihood required for calculation of Bayes factors 

The MATLAB program code below illustrates how the marginal likelihood required in the 

calculation of Bayes factors is determined using the procedure suggested by Chib (1995) 

when the general exponential model is used to model lactation data for the three lactation 

traits.  With only minor adjustments to make provision for the difference in generalised linear 

form, the marginal likelihood for the Wood, 4-parameter Morant or adapted Wilmink models 

may also be determined. 

 
%For Marginal likelihood required in Bayes factors - Part 1:  (Chib)   
%Finding means for Mi's in general exponential model 
clear 
load sim17ge   %Load data from 10 000 original Gibbs simulations 
B=0;  R=0;  Sig=0; 
for ii=1:jj 
   b=BB((12*(ii-1)+1):(12*(ii-1)+12),:); 
   B=B+b; 
   r=RR((4*(ii-1)+1):(4*(ii-1)+4),:);    
   R=R+r; 
   sig=SIG((12*(ii-1)+1):(12*(ii-1)+12),:); 
 Sig=Sig+sig; 
end 
 
%%Means from original simulations%% 
mB=B/jj; mR=R/jj ; mS=mean(S);  mSig=Sig/jj; mPhi=diag(mS) 
 
jersey 
k=length(ni);  Nij=[0;cumsum(nij)]; 
Y=log(D); t=X-3; 
clear D X 
n=sum(nij); Z=Z'; 
MMi=[]; 
for i=1:4:4*k-1 
      y1=Y(Nij(i)+1:Nij(i+1),:); 
      y2=Y(Nij(i+1)+1:Nij(i+2),:); 
      y3=Y(Nij(i+2)+1:Nij(i+3),:); 
      y4=Y(Nij(i+3)+1:Nij(i+4),:); 
      y=[y1;y2;y3;y4]; 
      yr=y';  yc=yr(:); 
      ti1=[t(Nij(i)+1:Nij(i+1))]; 
      ti2=[t(Nij(i+1)+1:Nij(i+2))]; 
      ti3=[t(Nij(i+2)+1:Nij(i+3))]; 
      ti4=[t(Nij(i+3)+1:Nij(i+4))]; 
      xi1=[ones(length(ti1),1) log(ti1) ti1 ti1.^2]; 
      xi2=[ones(length(ti2),1) log(ti2) ti2 ti2.^2]; 
      xi3=[ones(length(ti3),1) log(ti3) ti3 ti3.^2]; 
      xi4=[ones(length(ti4),1) log(ti4) ti4 ti4.^2]; 
      xi=[xi1 zeros(length(xi1),12) 
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         zeros(length(xi2),4) xi2 zeros(length(xi2),8) 
         zeros(length(xi3),8) xi3 zeros(length(xi3),4) 
         zeros(length(xi4),12) xi4]; 
      Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
  Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)]; 
      Mvar=inv(kron(xi'*xi,inv(mPhi))+kron(inv(mR),inv(mSig))); 
    Mmi=Mvar*(kron(xi',inv(mPhi))*yc + 
kron(inv(mR),inv(mSig)*mB)*Zc); 
      MMi=[MMi Mmi];      %orde:  48 x 1141 
      mm=[Mmi(1:12) Mmi(13:24) Mmi(25:36) Mmi(37:48)]; 
      MM=[MM mm];       %order:  12 x 4564 
   end 
   save bf1.mat MMi MM mB mR mSig mS mPhi 
 
 
 
% For Marginal likelihood required in Bayes factors:  
% General exponential model - Part 2:  (Chib)   
clear 
load sim17gex 
load bf1       
jersey 
k=length(ni); Nij=[0;cumsum(nij)]; 
Y=log(D); t=X-3; 
qi=4;     %number of consecutive cycle per animal 
p=4;     %number of parameters in model 
kof=17;    %number of cofactors in model 
s=3;     %number of traits investigated (Prod, Pt & BV) 
clear D X 
n=sum(nij); 
Z=Z'; 
 
randn('seed',sum(100*clock)); 
 
LBSTER=[];  LSigSTER=[]; 
BBt=[]; RRb=[]; SIGb=[];  SIGt=[];  RRsig=[];      
R=mR;  Sig=mSig;   
 
jj=10000    %number of Gibbs iterations 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  B*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
logMPBst=0; 
 
for j=1:jj 
 
%Draw B: mean of R and Sig from simulations as start & fixed M*% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MB1=0; MB2=0; 
for i=1:k 
 Mi=MMi(:,i);              %fixed Mi* 
   mi=[Mi(1:12) Mi(13:24) Mi(25:36) Mi(37:48)]; 
   ii=4*i; 
 Zr=[Z(:,ii-3) Z(:,ii-2) Z(:,ii-1) Z(:,ii)]; 
   mB1=mi*inv(R)*Zr'; 
 mB2=Zr*inv(R)*Zr'; 
   MB1=MB1+mB1;  
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   MB2=MB2+mB2; 
end 
iZRZ=inv(MB2); 
gmB=(MB1)*iZRZ; 
Bg=real(sqrtm(kron(iZRZ,Sig)))*randn(size(gmB(:)))+gmB(:); 
B=[Bg(1:12) Bg(13:24) Bg(25:36) Bg(37:48) Bg(49:60) Bg(61:72) 
Bg(73:84) Bg(85:96) Bg(97:108) Bg(109:120) Bg(121:132) Bg(133:144) 
Bg(145:156) Bg(157:168) Bg(169:180) Bg(181:192) Bg(193:204)]; 
BBt=[BBt;B];  
 
%Draw R: mean(Sig) from simulations as start, B as above & fixed M*% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
G2=0; w=4; 
W=[1.183312777   0.789010185   0.826199702   0.806821427 
   0.789010185   1.246930017   0.832558042   0.800748753 
   0.826199702   0.832558043   1.204569336   0.854740445 
   0.806821427   0.800748753   0.854740445   1.239184366]; 
for i=1:k 
 Mi=MMi(:,i);              %fixed Mi* 
   mi=[Mi(1:12) Mi(13:24) Mi(25:36) Mi(37:48)]; 
   g2=mi-B*Z(:,1+4*(i-1):4*i); 
   GG=g2'*inv(Sig)*g2; 
   G2=G2+GG; 
end 
L=inv(w*W+G2); 
r3=randn(4,w+3*p*k); 
r4=sqrtm(L)*r3; 
R=inv(r4*r4'); 
RRb=[RRb;R]; 
 
%%Draw Sig with B & R drawn and fixed M*%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
q=4*k;  g=3*p+1; 
  G=diag([ 1.88732364997719 
        0.21803441972297 
      0.00010366578937 
        0.0000047229 
      2.19366342439675 
      0.25209117888476 
      0.00010727024472 
      0.0000043419 
      0.42040640140500 
      0.04872026647853 
      0.00002081770497 
      0.0000008403]); 
ke=kron(speye(k),inv(R)); 
F=(MM-B*Z)*full(ke)*(MM-B*Z)'; 
H=inv(g*G+F); 
r1=randn(3*p,q+g); 
r2=sqrtm(H)*r1; 
SigB=inv(r2*r2'); 
SIGb=[SIGb;SigB]; 
 
MB1=0; MB2=0; 
for i=1:k 
 Mi=MMi(:,i);              %fixed Mi* 
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   mi=[Mi(1:12) Mi(13:24) Mi(25:36) Mi(37:48)]; 
   ii=4*i; 
 Zr=[Z(:,ii-3) Z(:,ii-2) Z(:,ii-1) Z(:,ii)]; 
   mB1=mi*inv(R)*Zr'; 
 mB2=Zr*inv(R)*Zr'; 
   MB1=MB1+mB1;  
   MB2=MB2+mB2; 
end 
 
%%Determine marginal posterior of B* from simulation results.%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iZRZ=inv(MB2); 
gmB=(MB1)*iZRZ; 
cons=(-.5*(3*p)*kof)*log(2*pi); 
logMPb=cons-.5*(3*p)*log(det(iZRZ))-.5*kof*log(det(SigB))+((trace(-
.5*inv(SigB)*(mB-gmB)*inv(iZRZ)*(mB-gmB)'))); 
logMPBst=logMPBst+logMPb; 
end 
 
logBSTER=logMPBst/jj; 
LBSTER=[LBSTER;logBSTER]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sig* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R=mR;         
 
logMPSigst=0; 
q=4*k; 
g=3*p+1; 
Gamln=[]; 
for ii=1:(3*p) 
   gamln=gammaln(.5*(q+g+1-ii)); 
   Gamln=[Gamln;gamln]; 
end 
consj=((.25*(3*p)*(3*p-1))*log(pi)+sum(Gamln)); 
 
for j=1:jj 
 
%%Draw Sig with mean(R) from simulations as start and fixed M* & 
B*%%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
G=diag([ 1.88732364997719 
        0.21803441972297 
      0.00010366578937 
        0.0000047229 
      2.19366342439675 
      0.25209117888476 
      0.00010727024472 
      0.0000043419 
      0.42040640140500 
      0.04872026647853 
      0.00002081770497 
      0.0000008403]); 
ke=kron(speye(k),inv(R)); 
F=(MM-mB*Z)*full(ke)*(MM-mB*Z)';    %mB=fixed B*;  MM=fixed M* 
H=inv(g*G+F); 
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r1=randn(3*p,q+g); 
r2=sqrtm(H)*r1; 
Sig=inv(r2*r2'); 
SIGt=[SIGt;Sig];          
 
%%Draw R with Sig drawn and fixed M* & B*%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
G2=0; w=4; 
W=[1.183312777   0.789010185   0.826199702   0.806821427 
   0.789010185   1.246930017   0.832558042   0.800748753 
   0.826199702   0.832558043   1.204569336   0.854740445 
   0.806821427   0.800748753   0.854740445   1.239184366]; 
for i=1:k 
 Mi=MMi(:,i);               
   mi=[Mi(1:12) Mi(13:24) Mi(25:36) Mi(37:48)]; 
   g2=mi-mB*Z(:,1+4*(i-1):4*i); 
   GG=g2'*inv(Sig)*g2; 
   G2=G2+GG; 
end 
L=inv(w*W+G2); 
r3=randn(4,w+3*p*k); 
r4=sqrtm(L)*r3; 
R=inv(r4*r4'); 
RRsig=[RRsig;R]; 
 
%%Determine marginal posterior of Sig* from simulation results.%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ke=kron(speye(k),inv(R)); 
F=(MM-mB*Z)*full(ke)*(MM-mB*Z)';    %mB=fixed B*;  MM=fixed M* 
H=inv(g*G+F); 
logMPSigi=-consj+(-.5*(q+g))*log(det(2*H))+(trace(-
.5*inv(H)*inv(mSig)))+(.5*((q+g)-(3*p)-1))*log(det(inv(mSig))); 
logMPSigst=logMPSigst+logMPSigi; 
end 
 
logSigSTER=logMPSigst/jj; 
LSigSTER=[LSigSTER;logSigSTER]; 
 
 
  save resbf2 LSigSTER LBSTER BBt SIGt RRb SIGb RRsig jj 
   
  clear  
  load resbf2 
  p=4;    
  Rb=RRb((jj*4)-4+1:jj*4,:); 
  Sigb=SIGb((jj*(3*p))-(3*p)+1:jj*(3*p),:); 
  Rsig=RRsig((jj*4)-4+1:jj*4,:); 
  save bayesfst Rb Sigb Rsig 
 
 
 
%%For Marginal likelihood required in Bayes factors:  
%%General exponential model - Part 3  (Chib)   
clear 
load sim17gex 
load bf1       
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load bayesfst 
jersey 
k=length(ni); Nij=[0;cumsum(nij)];  
Y=log(D); t=X-3; 
qi=4;  p=4;  kof=17;  s=3;      
clear D X 
n=sum(nij); Z=Z'; 
 
randn('seed',sum(100*clock)); 
 
LBSTER=[]; LSigSTER=[]; BBt=[]; RRb=[]; SIGb=[]; SIGt=[]; RRsig=[];  
R=mR;  Sig=mSig;  
 
jj=10000    %number of simulations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  M*  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Find marginal posterior of Mi* from simulation results (log vorm) 
%%Use as good estimate of Mi* the value from the mean of the normal 
%%distribution from which it originated, calculate the mean values 
of 
%%B, R, Phi and Sig from the 10000 simulations. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
logMPmst=0; 
 
for j=1:jj 
 j 
   phi=diag(S(j,:)); 
   B=BB(((3*p)*(j-1)+1):((3*p)*(j-1)+(3*p)),:); 
   R=RR((4*(j-1)+1):(4*(j-1)+4),:);    
   Sig=SIG(((3*p)*(j-1)+1):((3*p)*(j-1)+(3*p)),:); 
   Em=0;  Ps=0;   
   for i=1:k 
      Mi=MMi(:,i); 
      y1=Y(Nij(((i-1)*4)+1)+1:Nij((((i-1)*4)+1)+1),:); 
      y2=Y(Nij(((i-1)*4)+2)+1:Nij((((i-1)*4)+1)+2),:); 
      y3=Y(Nij(((i-1)*4)+3)+1:Nij((((i-1)*4)+1)+3),:); 
      y4=Y(Nij(((i-1)*4)+4)+1:Nij((((i-1)*4)+1)+4),:); 
      y=[y1;y2;y3;y4];       
      yr=y';  yc=yr(:); 
      ti1=[t(Nij(((i-1)*4)+1)+1:Nij((((i-1)*4)+1)+1))]; 
      ti2=[t(Nij(((i-1)*4)+2)+1:Nij((((i-1)*4)+1)+2))]; 
      ti3=[t(Nij(((i-1)*4)+3)+1:Nij((((i-1)*4)+1)+3))]; 
      ti4=[t(Nij(((i-1)*4)+4)+1:Nij((((i-1)*4)+1)+4))]; 
      xi1=[ones(length(ti1),1) log(ti1) ti1 ti1.^2]; 
      xi2=[ones(length(ti2),1) log(ti2) ti2 ti2.^2]; 
      xi3=[ones(length(ti3),1) log(ti3) ti3 ti3.^2]; 
      xi4=[ones(length(ti4),1) log(ti4) ti4 ti4.^2]; 
      xi=[xi1 zeros(length(xi1),12) 
         zeros(length(xi2),4) xi2 zeros(length(xi2),8) 
         zeros(length(xi3),8) xi3 zeros(length(xi3),4) 
         zeros(length(xi4),12) xi4]; 
      Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
      Mvar=inv(kron(xi'*xi,inv(phi))+kron(inv(R),inv(Sig))); 
      Mmu=Mvar*(kron(xi',inv(phi))*yc + kron(inv(R),inv(Sig)*B)*Zc); 
      em=(Mi-Mmu)'*inv(Mvar)*(Mi-Mmu); 
      Em=Em+em; 
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      ps=(-1/2)*(log(det(Mvar))); 
      Ps=Ps+ps; 
   end 
   con=(-(3*p)*qi*k/2)*log(2*pi); 
   logMPmsti=con+(trace((-1/2)*Em))+Ps; 
   logMPmst=logMPmst+logMPmsti; 
end 
logMSTER=logMPmst/jj;    
 
save bf3 logMSTER 
 
 
 
% For Marginal likelihood required in Bayes factors - Part 4:  
(Chib) % General exponential model 
clear 
load sim17gex 
load bf1       
jersey 
k=length(ni); Nij=[0;cumsum(nij)]; 
Y=log(D); t=X-3; 
qi=4;  p=4;  kof=17; s=3; (Prod, Pt & BV) 
clear D X 
n=sum(nij); Z=Z'; 
 
randn('seed',sum(100*clock)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y|M*,Phi* 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Determin p(y|Mi*,Phi*) (in log form)!!! 
 
   Ey=0;  Ps=0;   
   for i=1:k 
      Mi=MMi(:,i); 
      y1=Y(Nij(((i-1)*4)+1)+1:Nij((((i-1)*4)+1)+1),:); 
      y2=Y(Nij(((i-1)*4)+2)+1:Nij((((i-1)*4)+1)+2),:); 
      y3=Y(Nij(((i-1)*4)+3)+1:Nij((((i-1)*4)+1)+3),:); 
      y4=Y(Nij(((i-1)*4)+4)+1:Nij((((i-1)*4)+1)+4),:); 
      y=[y1;y2;y3;y4];       
      yr=y';  yc=yr(:); 
      ti1=[t(Nij(((i-1)*4)+1)+1:Nij((((i-1)*4)+1)+1))]; 
      ti2=[t(Nij(((i-1)*4)+2)+1:Nij((((i-1)*4)+1)+2))]; 
      ti3=[t(Nij(((i-1)*4)+3)+1:Nij((((i-1)*4)+1)+3))]; 
      ti4=[t(Nij(((i-1)*4)+4)+1:Nij((((i-1)*4)+1)+4))]; 
      xi1=[ones(length(ti1),1) log(ti1) ti1 ti1.^2]; 
      xi2=[ones(length(ti2),1) log(ti2) ti2 ti2.^2]; 
      xi3=[ones(length(ti3),1) log(ti3) ti3 ti3.^2]; 
      xi4=[ones(length(ti4),1) log(ti4) ti4 ti4.^2]; 
      xi=[xi1 zeros(length(xi1),12) 
         zeros(length(xi2),4) xi2 zeros(length(xi2),8) 
         zeros(length(xi3),8) xi3 zeros(length(xi3),4) 
         zeros(length(xi4),12) xi4]; 
      Yvar=(kron(mPhi,eye(ni(i)))); 
      Ymu=(kron(eye(3),xi))*Mi; 
      ey=(yc-Ymu)'*inv(Yvar)*(yc-Ymu); 
      Ey=Ey+ey; 
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      ps=(-3*ni(i)/2)*log(2*pi)+(-ni(i)/2)*log(det(mPhi)); 
      Ps=Ps+ps; 
   end 
   logpY=Ps+(trace((-1/2)*Ey)) 
save bf4 logpY 
%General exponential priors evaluated at *-values {for Bayesfactors}  
clear 
load bf1       
jersey 
k=length(ni); Nij=[0;cumsum(nij)]; 
Y=log(D); t=X-3; 
qi=4;  p=4; kof=17; s=3;  
clear D X 
n=sum(nij); Z=Z'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% Prior of M* %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Em=0; 
for i=1:k 
      Mi=MMi(:,i); 
      Zc=[Z(:,i);Z(:,i+1);Z(:,i+2);Z(:,i+3)]; 
      Mvar=kron(mR,mSig); 
      Mmu=kron(eye(qi),mB)*Zc; 
      em=(Mi-Mmu)'*inv(Mvar)*(Mi-Mmu); 
      Em=Em+em; 
   end 
   con=(-p*s*qi*k/2)*log(2*pi)+(-qi*k/2)*log(det(mSig))+(-
p*s*k/2)*log(det(mR)); 
   logPM=con+(trace((-1/2)*Em)); 
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%% Prior of Phi* %%%%%%%%%%%%%%%%%%%%%%%%%% 
logPPhi=log(inv(prod(diag(mPhi)))); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% Prior of B*  %%%%%%%%%%%%%%%%%%%%%%%%%%% 
logPB=log(1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% Prior of R*  %%%%%%%%%%%%%%%%%%%%%%%%%%% 
w=4;  
W=[1.183312777   0.789010185   0.826199702   0.806821427 
   0.789010185   1.246930017   0.832558042   0.800748753 
   0.826199702   0.832558043   1.204569336   0.854740445 
   0.806821427   0.800748753   0.854740445   1.239184366]; 
 
Gamlnr=[]; 
for ii=1:w 
   gamlnr=gammaln(.5*(w+1-ii)); 
   Gamlnr=[Gamlnr;gamlnr]; 
end 
consjr=((.25*qi*(qi-1))*log(pi)+sum(Gamlnr)); 
 
logPR=-consjr+(-.5*w)*log(det(2*inv(w*W)))+(trace(-
.5*(w*W)*inv(mR)))+(.5*(w-qi-1))*log(det(inv(mR))) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% Prior of Sig*  %%%%%%%%%%%%%%%%%%%%%%%%% 
g=3*p+1; 
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  G=diag([ 1.88732364997719 
      0.21803441972297 
      0.00010366578937 
      0.0000047229 
      2.19366342439675 
      0.25209117888476 
      0.00010727024472 
      0.0000043419 
      0.42040640140500 
      0.04872026647853 
      0.00002081770497 
      0.0000008403]); 
 
GamlnS=[]; 
for ii=1:(3*p) 
   gamlnS=gammaln(.5*(g+1-ii)); 
   GamlnS=[GamlnS;gamlnS]; 
end 
consjs=((.25*(3*p)*(3*p-1))*log(pi)+sum(GamlnS)); 
 
logPS=-consjs-0.5*g*log(det(2*inv(g*G)))+(trace(-
.5*(g*G)*inv(mSig)))+0.5*(g-(3*p)-1)*log(det(inv(mSig))) 
 
save prior logPM logPPhi logPB logPR logPS 
 
 
 
%% Determine Marginal likelihood for general exponential model  %% 
clear 
load ster   %contains all *-matrices generated 
load bf1 
load prior 
jersey 
k=length(ni); p=4; s=3;  Z=Z'; ZiRZ=0; 
for i=1:k 
    ii=4*i; 
 Zr=[Z(:,ii-3) Z(:,ii-2) Z(:,ii-1) Z(:,ii)]; 
    ziRz=Zr*inv(mR)*Zr'; 
   ZiRZ=ZiRZ+ziRz; 
end 
m=17;       %number of cofactors 
cons=(-p*s*m/2)*log(2*pi)+(-m/2)*log(det(mSig))+(-
p*s/2)*log(det(ZiRZ)) 
num=logpY+logPM+logPPhi+logPB+logPS+logPR+cons 
den=logMSTER+logPhiSTER+LBSTER+LSigSTER+logRSTER 
ml=num-den 
mlgexp=ml 
 
save mlg mlgexp 
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A3: An example of MATLAB® code:  Finding marginal posterior 

distribution through Gibbs sampling in the case of incomplete data 

The MATLAB program code below illustrates how the marginal distributions of the 

parameters for the three lactation traits using the Wood model were obtained by means of the 

Gibbs sampler when applied to incomplete data, i.e. where not all animals in the data were 

observed during all of the considered lactation cycles.  For the Saanen data modelled here, a 

number of does were observed during both of the possible two lactation cycles, while others 

were observed only once which could either have been during the first or the second of the 

two lactation cycles. 

 
%%WOOD MODEL: Saanen data  

%%(Gibbs sampling: Unequal numbers of lactation cycles for animals) 

clear 
melkbok 
format compact 
k1=length(ni1); k2=length(ni2); k=k1+k2; p=3;  
af=sum(nij1); bf=sum(nij2); 
nij=[nij1;nij2]; 
Nij1=[0;cumsum(nij1)]; Nij2=[0;cumsum(nij2)]; Nij=[0;cumsum(nij)]; 
Y1=log(D1); Y2=log(D2); 
X1=X1-3; X2=X2-3; 
t1=X1; t2=X2; 
clear D1 D2 X1 X2 
n1=sum(nij1); n2=sum(nij2); n=n1+n2; 
%Y=[Y1;Y2]; 
Z1(:,6)=Z1(:,6); Z2(:,6)=Z2(:,6); 
 Z1=Z1'; Z2=Z2'; 
 II1=find(Z1(2,:)==0);  %Finds doe with only a cycle in year 1 
 II2=find(Z1(2,:)==1);  %Finds doe with only a cycle in year 2 
 
 %STARTING VALUES 
 %--------------- 
 randn('seed',sum(100*clock)); 
 load start2 
 s=sst(1:p); R=Rst; Sig=Sigst; B=Bst; 
 Phi=diag(s); 
   
 S=[]; TM1c=[]; TM2c=[]; BB=[]; RO=[]; SIG=[]; Kor=[]; 
   
 for jj=1:12000 
 
 %SIMULATING Mic 
 %--------------- 
 MB11=0; MB12=0; E1=0; M1c=[]; M1=[]; Rp=[]; 
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 for i=1:k1 
    if Z1(2,i)==0 
       Rr=R(1,1); 
    else 
       Rr=R(2,2); 
    end 
    Rp=[Rp;Rr]; 
    y1=Y1(Nij1(i)+1:Nij1(i+1),:); 
    y1c=y1(:); 
    ti1=[t1(Nij1(i)+1:Nij1(i+1))]; 
    xi1=[ones(length(ti1),1) log(ti1) ti1]; 
    vm1c=inv(kron(inv(Phi),xi1'*xi1)+inv(Rr*Sig)); 
    mm1c=vm1c*(kron(inv(Phi),xi1')*y1c + inv(Rr*Sig)*B*Z1(:,i)); 
    m1c=sqrtm(vm1c)*randn(size(mm1c)) + mm1c; 
    m1=[m1c(1:3) m1c(4:6) m1c(7:9)]; 
     
    mB11=m1c*Z1(:,i)'/Rr; mB12=Z1(:,i)*Z1(:,i)'/Rr; 
    MB11=MB11+mB11; MB12=MB12+mB12; 
     
    e1=(y1-xi1*m1)'*(y1-xi1*m1); 
    E1=E1+e1; 
     
    M1c=[M1c;m1c]; M1=[M1 m1c]; 
 end 
 I1=2; I2=35; I3=62; I4=76; I5=162; I6=194; 
 M1cc=[M1c(9*(I1-1)+1:9*I1);M1c(9*(I2-1)+1:9*I2);M1c(9*(I3-
1)+1:9*I3);M1c(9*(I4-1)+1:9*I4);M1c(9*(I5-1)+1:9*I5);M1c(9*(I6-
1)+1:9*I6)]; 
 MB21=0; MB22=0; E2=0; G2=0; M2c=[]; M2=[]; Mi2=[]; Z222=[]; 
 for i=1:2:2*k2-1 
    y21=Y2(Nij2(i)+1:Nij2(i+1),:); 
    y22=Y2(Nij2(i+1)+1:Nij2(i+2),:); 
    y2=[y21;y22]; 
    y2c=[y21(:);y22(:)]; 
    ti21=[t2(Nij2(i)+1:Nij2(i+1))]; 
    ti22=[t2(Nij2(i+1)+1:Nij2(i+2))]; 
    Z2c=[Z2(:,i);Z2(:,i+1)]; 
    Z22=[Z2(:,i) Z2(:,i+1)]; 
    xi21=[ones(length(ti21),1) log(ti21) ti21]; 
    xi22=[ones(length(ti22),1) log(ti22) ti22]; 
    xi2=[xi21 zeros(length(xi21),3) 
       zeros(length(xi22),3) xi22]; 
    vm2c=inv(kron(inv(Phi),xi2'*xi2)+kron(inv(R),inv(Sig))); 
    mm2c=vm2c*(kron(inv(Phi),xi2')*y2c + 
kron(inv(R),inv(Sig)*B)*Z2c); 
    m2c=sqrtm(vm2c)*randn(size(mm2c)) + mm2c; 
    mi2=[m2c(1:9) m2c(10:18)]; 
    m2=[m2c(1:3) m2c(4:6) m2c(7:9) 
       m2c(10:12) m2c(13:15) m2c(16:18)]; 
        
    mB21=mi2*inv(R)*Z22'; mB22=Z22*inv(R)*Z22'; 
    MB21=MB21+mB21; MB22=MB22+mB22; 
     
    e2=(y2-xi2*m2)'*(y2-xi2*m2); 
    E2=E2+e2; 
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    g2=(mi2-B*Z22)'*inv(Sig)*(mi2-B*Z22); 
    G2=G2+g2; 
    M2c=[M2c;m2c]; M2=[M2 mi2]; Mi2=[Mi2;mi2]; Z222=[Z222;Z22]; 
 end 
 J1=246; J2=1; J3=70; J4=150; J5=185; J6=144; 
 M2cc=[M2c(18*(J1-1)+1:18*J1);M2c(18*(J2-1)+1:18*J2);M2c(18*(J3-
1)+1:18*J3);M2c(18*(J4-1)+1:18*J4);M2c(18*(J5-
1)+1:18*J5);M2c(18*(J6-1)+1:18*J6)]; 
 
  %SIMULATING B 
  %------------ 
 iZRZ=inv(MB12+MB22); 
 mB=(MB11+MB21)*iZRZ; 
 %vB=kron(iZRZ,Sig); 
 B=sqrtm(Sig)*randn(size(mB))*sqrtm(iZRZ)+mB; 
  
 %SIMULATING Phi 
 %------------- 
 E=E1+E2; 
 C=diag(E); 
 s=C'./sum((randn(n,p).^2)); 
 Phi=diag(s); 
  
 %SIMULATING Sig 
 %-------------- 
 iRp=Rp.^(-1); 
 q=k1+2*k2; g=3*p+1; G=(eye(3*p))/10; 
 F1=(M1-B*Z1)*diag(iRp)*(M1-B*Z1)'; 
 F2=(M2-B*Z2)*kron(eye(k2),inv(R))*(M2-B*Z2)'; 
 F=F1+F2; 
 H=inv(g*G + F); 
 r1=randn(3*p,q+g); 
 r2=sqrtm(H)*r1; 
 Sig=inv(r2*r2'); 
 [jj;R(1,1);Sig(1,1);rank(iZRZ)] 
  
 %SIMULATING R - Metropolis-Hastings%% 
 %------------ 
format compact 
M11=M1(:,II1); M12=M1(:,II2); 
n1r=length(M11); n2r=length(M12); n12r=0.5*length(M2); 
r11=R(1,1); r12=R(1,2); r22=R(2,2); 
d=4; P=[0.002 0;0 0.003]/10; 
R11=[]; R12=[]; R22=[]; 
mb11=M11-B*Z1(:,II1); x11=0; 
for j=1:n1r 
   fx11=mb11(:,j)'*inv(Sig)*mb11(:,j); 
   x11=x11+fx11; 
end 
mb12=M12-B*Z1(:,II2); x12=0; 
for j=1:n2r 
   fx12=mb12(:,j)'*inv(Sig)*mb12(:,j); 
   x12=x12+fx12; 
end 
mb2=M2-B*Z2; x2=zeros(2,2); 
for j=1:2:2*n12r-1 
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   fx2=mb2(:,j:j+1)'*inv(Sig)*mb2(:,j:j+1); 
   x2=x2+fx2; 
end 
for i=1:10 
R=[r11 r12;r12 r22]; 
lnfr111=-((9*n12r+d-3)/2)*log(det(R))-0.5*trace(inv(R)*(d*P + x2)); 
lnfr112=-9*n1r/2*log(r11)-0.5*x11/r11; 
lnfr11=lnfr111+lnfr112; 
l11=(R(1,2)^2)/R(2,2); 
a1=-100; z2=rand(1,1); 
while z2>=exp(a1); 
z1=rand(1,1)-0.5; 
r110=(r11-l11)*exp(z1)+l11; 
R1=[r110 r12;r12 r22]; 
lnfr1110=-((9*n12r+d-3)/2)*log(det(R1))-0.5*trace(inv(R1)*(d*P + 
x2)); 
lnfr1120=-9*n1r/2*log(r110)-0.5*x11/r110; 
lnfr110=lnfr1110+lnfr1120; 
a1=min([0 lnfr110-lnfr11]); 
z2=rand(1,1); 
end  
r11=r110; 
%R11=[R11;r11]; 
 
R=[r11 r12;r12 r22]; 
lnfr221=-((9*n12r+d-3)/2)*log(det(R))-0.5*trace(inv(R)*(d*P + x2)); 
lnfr222=-9*n2r/2*log(r22)-0.5*x12/r22; 
lnfr22=lnfr221+lnfr222; 
l22=(R(1,2)^2)/R(1,1); 
a3=-100; z5=rand(1,1); 
while z5>=exp(a3); 
z4=rand(1,1)-0.5; 
r220=(r22-l22)*exp(z4)+l22; 
R3=[r11 r12;r12 r220]; 
lnfr2210=-((9*n12r+d-3)/2)*log(det(R3))-0.5*trace(inv(R3)*(d*P + 
x2)); 
lnfr2220=-9*n2r/2*log(r220)-0.5*x12/r220; 
lnfr220=lnfr2210+lnfr2220; 
a3=min([0 lnfr220-lnfr22]); 
z5=rand(1,1); 
end  
r22=r220; 
 
R=[r11 r12;r12 r22]; 
lnfr12=-((9*n12r+d-3)/2)*log(det(R))-0.5*trace(inv(R)*(d*P + x2)); 
l12=sqrt(r11*r22); 
a2=-100; z3=rand(1,1); 
while z3>=exp(a2); 
  r120=l12*randn(1,1)/3+r12; 
while r120<=-l12 | r120>=l12 
   r120=l12*randn(1,1)/3+r12; 
end 
R2=[r11 r120;r120 r22]; 
lnfr120=-((9*n12r+d-3)/2)*log(det(R2))-0.5*trace(inv(R2)*(d*P + 
x2)); 
a2=min([0 lnfr120-lnfr12]); 
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z3=rand(1,1); 
end 
r12=r120; 
%R12=[R12;r12];  
end 
 
R=[r11 r12;r12 r22]; 
 
 
Ro=[R(1,:) R(2,2)]; kor=R(1,2)/sqrt(R(1,1)*R(2,2)); 
S=[S;s];TM1c=[TM1c M1cc]; TM2c=[TM2c M2cc];  
BB=[BB;B]; RO=[RO;Ro]; Kor=[Kor;kor]; 
SIG=[SIG;Sig]; 
save final Kor S TM1c TM2c BB RO SIG Y1 Y2 t1 t2 nij1 nij2 I1 I2 I3 
I4 I5 I6 J1 J2 J3 J4 J5 J6 jj 
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SUMMARY 

This thesis was written with the aim of modelling the lactation process in dairy cows and 

goats by applying a hierarchical Bayesian approach.  Information on cofactors that could 

possibly affect lactation is included in the model through a novel approach using covariates.  

Posterior distributions of quantities of interest are obtained by means of the Markov chain 

Monte Carlo methods.  Prediction of future lactation cycle(s) is also performed. 

In chapter one lactation is defined, its characteristics considered, the factors that could 

possibly influence lactation mentioned, and the reasons for modelling lactation explained. 

Chapter two provides a historical perspective to lactation models, considers typical lactation 

curve shapes and curves fitted to the lactation composition traits fat and protein of milk.  

Attention is also paid to persistency of lactation.  

Chapter three considers alternative methods of obtaining total yield and producing Standard 

Lactation Curves (SLAC’s).  Attention is paid to methods used in fitting lactation curves and 

the assumptions about the errors. 

In chapter four the generalised Bayesian model approach used to simultaneous ly model more 

than one lactation trait, while also incorporating information on cofactors that could possibly 

influence lactation, is developed.  Special attention is paid not only to the model for complete 

data, but also how modelling is adjusted to make provision for cases where not all lactation 

cycles have been observed for all animals, also referred to as incomplete data.  The use of the 

Gibbs sampler and the Metropolis-Hastings algorithm in determining marginal posterior 

distributions of model parameters and quantities that are functions of such parameters are also 

discussed.  Prediction of future lactation cycles using the model is also considered. 

In chapter five the Bayesian approach together with the Wood model, applied to 4564 

lactation cycles of 1141 Jersey cows, is used to illustrate the approach to modelling and 

prediction of milk yield, percentage of fat and percentage of protein in milk composition in 

the case of complete data.  The incorporation of cofactor information through the use of the 

covariate matrix is also considered in greater detail.  The results from the Gibbs sampler are 

evaluated and convergence there-of investigated.  Attention is also paid to the expected 

lactation curve characteristics as defined by Wood, as well as obtaining the expected lactation 
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curve of one of the levels of a cofactor when the influence of the other cofactors on the 

lactation curve has be eliminated.  

Chapter six considers the use of the Bayesian approach together with the general exponential 

and 4-parameter Morant model, as well as an adaptation of a model suggested by Wilmink, in 

modelling and predicting milk yield, fat content and protein content of milk for the Jersey 

data. 

In chapter seven a diagnostic comparison by means of Bayes factors of the results from the 

four models in the preceding two chapters, when used together with the Bayesian approach, is 

performed.  As a result the adapted form of the Wilmink model fared best of the models 

considered! 

Chapter eight illustrates the use of the Bayesian approach, together with the four lactation 

models considered in this study, to predict the lactation traits for animals similar to, but not 

contained in the data used to develop the respective models. 

In chapter nine the Bayesian approach together with the Wood model, applied to 755 lactation 

cycles of 493 Saanen does collected during either or both of two consecutive year, is used to 

illustrate the approach to modelling and predicting milk yield, percentage of fat and 

percentage of protein in milk in the case of incomplete data. 

Chapter ten provides a summary of the results and a perspective of the contribution of this 

research to lactation modelling. 

 

KEYWORDS: 4-parameter Morant model, adapted Wilmink model, Bayes factors, 

Bayesian modelling, covariate, general exponential model, lactation curves, 

Markov chain Monte Carlo, Standard Lactation Curves, Wood model 
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OPSOMMING 

Hierdie tesis is geskryf met die doel om die laktasieproses in suiwelkoeie en suiwelbokke te 

modelleer deur ‘n hierargiese Bayesbenadering toe te pas.  Inligting aangaande kofaktore wat 

moontlik laktasie kan beïnvloed, is in die model ingesluit deur middel van ‘n unieke 

benadering wat van koveranderlikes gebruik maak.  Posteriorverdelings van hoeveelhede van 

belang word deur middel van die Markovketting Monte Carlo metodes verkry.  Voorspelling 

van toekomstige laktasiesiklus(se) is ook uitgevoer. 

In hoofstuk een word laktasie gedefinieer, die eienskappe daarvan beskou, die faktore wat 

moonlik laktasie mag beïnvloed genoem, en die redes vir die modellering van laktasie 

verduidelik. 

Hoofstuk twee lewer ‘n historiese perspektief tot laktasiemodelle, beskou tipiese 

laktasiekurwe vorms, asook kurwes gepas aan die laktasiesamestellingskenmerke vet en 

proteïen van melk.  Aandag word ook aan die volhoubaarheid van laktasie geskenk.  

Hoofstuk drie beskou alternatiewe metodes om totale opbrengs te verkry en Standaard 

Laktasiekurwes (SLAC’s) voort te bring.  Aandag word geskenk aan metodes wat gebruik 

word in die passing van laktasiekurwes en die aannames aangaande die foute. 

In hoofstuk vier word die veralgemeende Bayesmodelbenadering ontwikkel om meer as een 

laktasiekenmerk gelyktydig te modelleer, terwyl inligting aangaande kofaktore wat moonlik 

laktasie kan beïnvloed ook ingesluit word.  Spesiale aandag word nie net aan die model vir 

volledige data geskenk nie, maar ook aan hoe modellering aangepas moet word om 

voorsiening te maak vir gevalle waar nie al die laktasiesiklusse vir alle diere waargeneem is 

nie, wat ook na verwys word as onvolledige data.  Die  gebruik van Gibbssteekproefneming en 

die Metropolis-Hastings algoritme in die bepaling van posterior randverdelings van die model 

parameters en hoeveelhede wat funksies van sulke parameters is, word ook bespreek.  

Voorspelling van toekomstige laktasiesiklusse deur die model te gebruik word ook beskou.  

In hoofstuk vyf word die Bayesbenadering saam met die Woodmodel, toegepas op 4564 

laktasiesiklusse van 1141 Jerseykoeie, ter illustrasie van die benadering tot modellering en 

voorspelling van melkopbrengs, pe rsentasie vet en persentasie proteïen in die samestelling 

van melk in die geval van volledige data gebruik.  Die insluiting van kofaktorinligting deur 
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die gebruik van die matriks van koveranderlikes word ook in meer besonderhede beskou.  Die 

resultaat vanaf Gibbssteekproefneming word evalueer en die konvergensie daarvan 

ondersoek.  Aandag word ook geskenk aan die verwagte laktasiekurwe eienskappe soos 

gedefinieer deur Wood, asook die bepaling van verwagte laktasiekurwes vir een van die 

vlakke van ‘n kofaktor indien die invloed van die ander kofaktore op die laktasiekurwe 

uitgeskakel word. 

Hoofstuk ses beskou die gebruik van die Bayesbenadering saam met die veralgemeende 

eksponensiaal en 4-parameter Morant model, asook ‘n aanpassing van ‘n model wat deur 

Wilmink voorgestel is, in die modellering en voorspelling van melkopbrengs, asook die 

samestellingskenmerke vet en proteïen in melk vir die Jerseydata. 

In hoofstuk sewe word ‘n diagnostiese vergelyking deur middel van Bayesfaktore uitgevoer 

op die resultate va n die vier modelle in die voorafgaande twee hoofstukke wanneer dit saam 

met die Bayesbenadering gebruik word.  As resultaat hiervan het die aangepaste vorm van die 

Wilmink model die beste van die modelle wat oorweeg is, gevaar! 

Hoofstuk agt illustreer die gebruik van die Bayesbenadering, saam met die vier 

laktasiemodelle onder beskouing in hierdie studie, om die laktasiekenmerke te voorspel van 

diere soortgelyk aan, maar nie ingesluit in die data wat gebruik is in die ontwikkelling van die 

onderskeie modelle nie. 

In hoofstuk nege word die Bayesbenadering saam met die Wood model toegepas op 755 

laktasiesiklusse van 493 Saanenooie om die benadering tot modellering en voorspelling van 

melkopbrengs, persentasie vet en persentasie proteïene in die samestelling van melk in die 

geval van onvolledige data te illustreer. 

Hoofstuk tien lewer ‘n opsomming van die resultate en ‘n perspektief van die bydrae van 

hierdie navorsing tot laktasiemodellering. 

 

 

 

 


