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DEFINING NOTATION

N.1 Mathematical

di ag{x} the elements of the vector x written on the main diagona of the
formed matrix and all other elements of the matrix taking on the value
zero.

etr[A] exp[trace of the matrix A]

ft)p glt) the functions of f and g are proportional

G(x) gamma function (x > 0)

h=[h h, ... h] boldfacesignifiesavector

H =|h] uppercase signifies a matrix

I identity matrix of order (h ™ h)

In x natural logarithm of x or loge(x)

tr(A) trace of the matrix A

R= aRr;; R,0(a Ris a partitioned matrix such that partition Ry is of order a rows by a

“&R,, R,plb columns, partition Ry, is of order a rowsby b columns, etc.
a)  (b)
vec A’ the elements of matrix A stacked row-wise into one column
X (n" v) matrix X of order n rows by v columns

N.2 Probabilistic

ii.d. independent and identically distributed
f(x|?) density of variable X, conditional on parameter q
Y~ f(y|?) Y is distributed with density f (y| ?)

viii



N.3 Distributional

Iw,(P,d) inverse Wishart distribution of order a with parameter P and d degrees
of freedom

N(q ,S) multivariate normal distribution

N(ms 2) univariate normal distribution

TN (ms 2) truncated univariate normal distribution

Wa(P'l,d) Wishart distribution of order a with parameter P> and d degrees of
freedom

N.4 Statistical

B2 Bayes factor in favour of Modd 1 relative to Model 2

fq]x) generic posterior density of q given data x

f(r 1wl 20,010 | M, B) joint conditional distribution of r,,,r,and r,

Hi hypothesis under model 1
H> hypothesis under model 2
p (q) generic prior density of q



CHAPTER 1

INTRODUCTION

1.1 WHAT ISLACTATION

The term lactation may be defined as the secretion of milk manufactured from simple blood
nutrients by the milk-synthesising cells of the mammary glands, together with the removal
thereof from the mammary gland (Hurley, 2003). These specia glands, aso known as
mammae, are found in the udder of the females of mammal species and have the same simple

and relatively homogeneous basic structure for all mammal species.

In mammals the purpose of milk is to feed the newborn and therefore lactation usually begins
a the end of pregnancy. The stimulation of the mammary gland to start producing milk
around the time of birth or parturition is controlled by changes in the levels of certain
hormones, some of which are involved in the action process of parturition. It is the removal

of milk from the udder, usually but not necessarily by the newborn, that initiates lactation.

A fluid, known as colostrum, is secreted before true milk is produced. This first secretion
from the udder occurs shortly after or sometimes even before parturition of the infant.
Colostrum is arelatively clear fluid containing, amongst others, serum, white blood cells, and
protective antibodies and is mainly responsible for immunity transfer during the first few
hours of life, making it vital to the survival of the newborn. The composition of the colostrum
secretion gradually changes over a period of 2 to 3 days after parturition, depending on the
mammal species under consideration, to that of mature milk. Both colostrum and milk are
secreted in response to the sucking action of the infant on the nipple or teat. This sucking
action can also be simulated by artificiad means, such as milking by hand and the milk

machines used in the dairy industry (Mepham, 1976).

Lactation is controlled by hormones resulting in different amounts of milk secreted at various
stages of lactation. It is generally accepted that as a result of the influence of hormones,
together with the stimulus of milk removal, milk yield rises to a peak, where after for the rest
of lactation milk yield is in continua decline. The daily milk yield, length of time until an

animal reaches peak milk yield, as well as the duration o lactation differs from mammal



species to mammal species and sometimes even for different breeds within a certain species.
Total milk yield is the result of the combination of the amount of daily milk produced and the
duration of lactation. Secretion of milk stops when the infant is no longer alowed to suckle

or when artificial stimulation of the mammary glands end (Whittemore, 1980).

1.2 MILK COMPOSITION

Milk may be described as a white liquid designed for the nourishment of the infant, of which
water congtitutes over 80% by weight in most mammal species (Mepham, 1976). Cow milk,
for example, contains approximately 87,4% water (Whittemore, 1980). The remaining
congtituents are solids in the form of lipids, carbohydrate and proteins, as well as various
vitamins and minerals. Milk is secreted as a complex mixture of these components. The
composition of milk, however, varies considerably between species and even within the same
species, as well as during lactation — with the major changes usually occurring soon after the

start of lactation.

Milk is synthesised in specialised secretory cells of the mammary glands from substances
absorbed from the blood of the mother. Through a process known as biosynthesis lipids,
commonly known as milk fat, are synthesised mainly from triglycerides that are derivatives of
glycerol, but also from other fatty acids and glucose in the blood. Milk fat droplets form the
cream of milk. Milk fat is the most variable component of milk and ranges from a little over
1% to greater than 50%, depending on the mammal species under consideration.

Considerable variation in milk fat content may also occur within mammal species.

Lactose, present in the milk of most mammals, is unique to the mammary gland and plays an
important role in milk synthesis. It aso forms the major carbohydrate in milk. Lactose is
defined as the sugar of milk synthesised from blood glucose of the mother. As aresult of the
close relationship between lactose synthesis and the amount of water drawn into milk through

the process of osmosis, the lactose content of milk is the least variable component of milk.

Several types of proteins are found in milk, but the mgjor milk proteins are unique to milk.
The major milk proteins may be divided into two main groups, @seins and whey proteins.
Whey proteins found in milk are mainly b-lactoglobulin, a-lactalbumin, serum albumin and

immunoglobulins, although long list of enzymes, hormones, growth factors, and other protein



components also form part of the whey protein cantent of milk. Milk proteins are synthesised
form amino acids. The protein content of milk also varies considerably among species and
sometimes even within species (from 1% to 14%), although not as much as milk fat. Hurley
(2003) points out that it is generally accepted that protein percentage is positively correlated
with milk fat percentage.

Because milk is the only source of food in mammal infants, the nutritional composition there-
of is important with respect to skeletal and soft tissue development. Milk mineras provide
these necessary components in the form of calcium and phosphorus, secreted into milk in a
complex with caseins. Milk also contains most other minerals found in the body; these
include sodium, iron and potassium, to name a few. In @der to contribute to the general
health of the infant, milk also contains all the major vitamins. Fat-soluble vitamins contained
primarily in milk fat are vitamins A, D, E and K. The B vitamins are found in the agqueous
phase of milk, as these are water-soluble. In addition to all of the above, milk also contains a
number of other biochemical components, including bioactive factors such as growth

hormones, enzymes and various others (Hurley, 2003).

1.3 IMPORTANT CHARACTERISTICSOF LACTATION

The purpose of milk produced by mammals in nature is to feed the infants of these mammals,
which are at parturition totally dependent on the mother and unable to find food by
themselves. Therefore, milk production commences at arelatively high rate at parturition. As
the infant grows, the amount of milk secreted continues to increase over a period of time in
order to satisfy the needs of the growing infant until a peak production level is reached. Once
this peak levd is reached, the mother can no longer fulfil inthe growing nutrient requirements
of the infant. The duration of this increase in milk production until pesk level, as well as the
level of peak yield, differ for different species of mammals. After peak production is attained,
milk production gradually declines. This decline is generally associated with the infant
becoming more independent from its mother, resulting in the development of the ability of the
infant to feed by itsalf. Subsequently, weaning of the infant by its mother takes place (Lee et
al., 1991). Hurley (2003) refers to the rate of decline in milk production as the persistency of
milk production. In the dairy industry, where the infant is removed from the mother a few

days after parturition, machine milking simulates the same effect.



The variation in the milk production during lactation produces what is termed a lactation
curve. According to Ruvuna et al. (1995) lactation curves represent the relationship between
milk yield and time after parturition. The shape of the standard lactation curve may be
described as increasing, at a relatively high rate, up to the point where peak production is
obtained, after which it declines at a slower rate until the end of the milk production cycle.

Standard curves of this form are often referred to as type | curves. Variations from this
standard pattern can however sometimes occur. In some red deer, for example, a
continuously decreasing curve has also been found. Lactation curves of this nature are
generaly referred to as so-called type Il curves (Landete-Casitllejos and Gallego, 2000), but
may sometimes also be referred to as atypical curves (Ferris et a., 1985). These atypical

curves are commonly found in cases where no lactation records prior to peak are observed.

Since the first research m lactation has taken place, a variety of functions have been used to
model lactation. The majority of these functions, however, have the two important
characteristics in common. Milk yield as a function of time is firstly peaked and secondly
skewed to he right, to represent a lactation curve that is desirable with respect to the
biological progression of the process (Tozer and Huffaker, 1999).

Whittemore (1980) noted that at the start of lactation, the first milk or colostrum contains
twice the normal concentration of solids, five times the protein, approximately twice the fat
and half the lactose. Once this composition has settled down and true milk is produced, a
certain pattern in both yield and composition becomes apparent. Fat and protein content
usualy vary inversely to yield, while lactose in most cases goes into steady decline over the
whole lactation. There is little day-to-day variation in protein and lactose content of milk and
any changes that occur are gradual. The fat content of milk, however, does vary considerably

from day to day.

To make provision for the production of colostrum, ailmost all studies of lactation consider
changes in milk production and composition only from the point in time that true milk is
produced. This means that the study of lactation in mammals only commences 2 to 3 days

after parturition, depending on the mammal species under consideration.

According to Hurley (2003), fat is the most variable constituent of milk, while lactose is the
least variable, but differerces among individuals within a breed are often greater than

differences among breeds. Although it is generally accepted that production of fat and protein



are correlated, the production of these composition constituents seem to be inversely related
to lactation yield (Groenewald and Viljoen, 2003).

1.4 WHY ISIT IMPORTANT TO MODEL LACTATION

Describing lactation in mammals using a lactation curve aims at providing a concise summary
of the pattern of milk yield. The shape of the resulting lactation curve povides valuable
information about the biological and economic efficiency (Grossman and Koops, 1988) of the

animal or herd under consideration.

Milk is extracted from dairy animals for the purpose of feeding people. Around the world,
mainly cow milk is used for this purpose, athough a small volume of goat and sheep milk is
also consumed. From a management point of view, knowledge of the lactation curve of
lactating dairy animals is required for feeding, breeding and economic management of a dairy
herd. Lactation curves are especialy important when making decisions that are time-
dependent. Knowing when to expect an animal to reach peak yield, would affect the feeding
strategy followed, allowing economic management of feed to the extent that would satisfy the
animal’s requirement during various stages of lactation, reduce cost, and possibly maintaining
peak yield for as long as possible (Tozer and Huffaker, 1999).

Lactation curves aso alow for the identification of animals with a relatively constant yield
throughout lactation, as well as animals with a high peak yield, but sudden decline thereafter.
Information provided by lactation curves could also assist management, where decisions
concerning aspects such as culling and milking strategies are concerred. It may for instance
not be worthwhile to carry on milking an animal for an extended period of time, if it yields
most of its milk early in lactation and then shows a sudden decline with respect to yield
thereafter (Sakul and Boylan, 1992).

Lactation models may also be used in prediction of future milk yields of an individua animal
or aherd. The objective when using a lactation curve in prediction, is to predict yield on each
day of lactation with minimum error in the presence of variation as a result of environmental
and other factors, in order to determine the underlying pattern of milk yield. The extent of the
usefulness of a lactation model depends on how well it succeeds in imitating the biological

lactation process and how well it adjust for environmental and other factors that could



influence production (Olori et a., 1999). Management decisions may also be made based on
yield early in lactation, together with prediction of remaining yield. For example, in
identifying sick animals before the manifestation of clinical signs and in identifying animals
with special dietary needs (Gipson and Grossman, 1989). Prediction information may also be
of value in deciding on culling or keeping breeding stock (Sherchand et a., 1995).

In genera, two possible payment schemes are applicable to the dairy industry. The producer
may be paid for his milk based on quantity alone, or paid according to quantity once it has
been adjusted for quality. Depending on the ultimate use of the milk as intended by the
purchaser, premium payments for milk could be related to the content of the milk with respect
to milk-fat, protein or total milk solids and therefore it is often important to also consider
curves fitted to the lactation traits, fat and protein, as well as curves fitted to milk yield when
studying lactation. Selection of contributors to a dairy herd could therefore be based on all of
milk, protein and fat yield.

In some countries milk quotas have been introduced, resulting in an increase in yield above
the specified quota not being desirable. For this reason it might be more beneficial to include
animalsin adairy herd that peak at a lower, but more sustainable yield level, i.e. animals that
produce milk at a greater level of persistency (Ferris et d., 1985). Animals with a high level
of pesk yield followed by a sharp decline in production thereafter would be undesirable.
Tekerli et al. (2000) points out that cows with flatter lactation curves, seem to be less prone to
incidences of metabolic and reproductive disorders, which often occurs as a result of the
physiological stress of high levels of yield. Lactation that follows a flatter curve may,
however, result in a dlight reduction in total milk yield (Varonaet al., 1998).

One should not only be focusing on the dairy industry when considering lactation curves. For
example, milk yield of the dam is the single most influential factor in the weaning weight of a
beef calf and for this reason it is important when managing beef cattle to understand the shape
of the lactation curve in a beef cow. The pattern of milk production would impact on the
feeding and weaning strategies followed, so that economically beneficia decisions may be
taken (Kim et al., 1998).

Whittemore (1980) warns that the use of lactation curves in both research and farm
management should be approached with caution. The ideais not that a herd should follow the

predetermined curve, but that once such a curve has been set up for a herd, it should act as a



reference point from which deviations may be observed and causes for such deviations be
investigated.

By fitting a parametric curve to the pattern of milk yield and to the yields of the traits of milk

production, statistical analysis of the parameter estimates are also made possible.

1.5 FACTORSINFLUENCING LACTATION

As early as 1969, Wood already commented on the fact that the shape of the lactation curvein
cows is affected by not only biological factors such as age and fertility of the cow, but also by
various environmental factors. He specifically noted that season of parturition probably has
the most drastic effect on the shape of the lactation curve.

According to Whittemore (1980), environmental and seasonal changes all bring about
compositional changesin milk. The so-called comfort zone for most breeds of dairy cattle for
instance, is between BC and 25°C, with temperatures below or above this generaly being
responsible for areduction in yield. With respect to composition traits, low temperatures may
increase the fat content of milk, while high temperatures are usually associated with a decline
in milk fat. Hurley (2003) points out that at elevated temperatures the reason for this is that
milk production and feed consumption are reduced automatically in an effort to counter the
production of heat associated with these metabolic processes. Reduced milk yields are the
result of depressed appetite. Heat stressis especially harmful to peak milk production.

Season of parturition is also expected to have a significant effect on total milk production.

For cows, milk yields over the entire lactation seems to be higher when parturition takes place
in autumn and decreases progressively when parturition occurs in winter, spring or summer.

The reason for this is probably related to both temperature and the quality and availability of
digestible feeds. Ferris, Mao and Anderson (1985) reported that season of parturition affected
initial yield, peak yield, rise to peak and decline thereafter, and time of pesk yield in dairy
cows. Tekerli et a. (2000) specificaly found that peak yield in dairy cows is higher when
parturition takes place in autumn or winter. In the case of dairy goats, Ruvuna et a. (1995)
noted that the greatest yield was obtained from does kidding in the hot dry season and the
lowest yield form does kidding in the cold dry season. Gipson and Grossman (1990) confirm
that season of kidding in dairy goats affects both initial and peak yield.



In cows, milk yields increase, be it at a decreasing rate, until about 8 years of age and then
decrease at an increasing rate (Hurley, 2003). The production of mature cows is about 25%
more than that of 2-year-old heifers, with approximately one fifth of this increase attributed to
body weight while the remaining 80% results from increased udder development as a result of
recurring parturitions. Although alarge cow generally produces more milk than a small cow,
the relationship between body weight and milk production is not directly proportional. Freeze
and Richards (1992) aso confirmed the effect of age on the lactation curve of Holstein dairy
cows, but in their study maximum yield was attained at an age of roughly 6% years. With
respect to the composition traits, their study showed that the fat content increased with age,
but that protein content starts declining as soon as the total yield starts declining, that is after
about 6¥2 years. Mostert, Theron and Kanfer (2001) found that during the first two parities,
younger dairy cows have lower total milk yield. Franci et a. (1999) reported that in the case
of Massese sheep ewes, only total milk yield was affected by the age of an ewe.

Batra (1986), however, found that the effect of age of dairy cows on the lactation curve was
not significant. Factors that he found to have a significant effect on the lactation curve were
the station at which the herd is located, both year and month of parturition, and the number of
days since the end of previous lactation. Jamrozik and Schaeffer (1997) mention that test day
yields for Holstein dairy caws are affected by factors such as breed, region, how the herd is
managed, day of the year (including weather conditions), parity, age at calving, month of
calving, days in milk, pregnancy status, medical treatments and number of milking times per

day.

Other studies considered parity number, which is the number of a particular parturition when
considered in sequential order, rather than the age of the mother as having a significant effect
on the lactation curve. Rowlands et a. (1982) notes that peak yield in dairy cows occurs later
during first parity than is the case for second parity. Portolano et a. (1996) in their study of
the lactation of Comisana sheep found a positive correlation between parity and peak yield,
while parity and time of peak yield w ere negatively correlated.

Gipson and Grossman (1989) reported that in dairy goats, time of peak yield was later for first
than for third parity does and aso that initia yield, peak yield and total yield were lower in
first parity does than in third parity does. They also mention that breed has little effect on the
shape of the lactation curve. In 1990, however, Gipson and Grossman reported that the breed
of dairy goat did affect both the level and time of peak yield, but their finding on parity



remained that initial and peak yield were lower for first than for later parity does and that time
of peak yield was later for first parity does. Apkaet a. (2001) found that in Red Sokoto goat
herds, season of parturition and parity affected the shape of the lactation curve, with highest
yield aso occurring in the third parity. Groenewad and Viljoen (2003) found that in dairy
goats, peak yield increased with increasing parity up until about the third or fourth parity and
time of peak yield was later for first than for later parity does. Total milk yield was affected
by the time during the season that kidding occurred, with higher yields occurring in does
kidding earlier in the season, and that year of kidding significantly affected both total yield
and peak yield. These results corresponded with that of others studying lactation in dairy
goats (Mavrogenis, Constantinou, and Louca, 1984; Kala and Prakash, 1990; Rabasco et al.,
1993; Kominakis et al., 2000).

Wood (1970) noted that differences in management of herds, including the intervals between
milk extraction sessions, did not seem to really affect the shape of the lactation curve. He also
noted that parity and season of calving were the two factors with the greatest influence on the
lactation curve ard as a result, inclusion of these two factors in a model would lead to more

accurate prediction.

Tozer and Huffaker (1999) pointed out that amost all research to that point in time had been
carried out on lactation records of animals that roam in the northern hemisphere, where
environmental conditions and management practices are very different from that which occur
in the southern hemisphere. They found that in the case of Australian Holstein-Friesian dairy
cows, the resulting lactation curve shapes and yield characteristics differ from the results
obtained from studies of dairy cows in Europe, North America and the United Kingdom. Our
study of lactation was carried out on data acquired under South African conditions and will
therefore make a valuable cantribution to the knowledge of lactation curves under southern
hemisphere conditions.



CHAPTER 2

HISTORICAL DEVELOPMENT OF LACTATION
CURVES

21 WHEREDIDIT ALL START

In al the models described it is assumed that y, denotes daily mik yield, t denotes time in

days after parturition, and a, b, ¢, d, m, k and w denote model parameters.

The first attempt at the development of a mathematical model to describe the lactation curve
was as early as 1923. Brody, Ragsdale and Turner (1923) used an exponentia decline
function of the following form for this purpose:
y, =aexp(-ct). (21

Although this model* resulted in a good attempt to describe the declining phase of lactation, it
was unable to model the initial rise in production to peak yield. To overcome this limitation,
Brody, Turner and Ragsdale presented an improved version of their model in 1924. Thistime
the model made provision for the initia rise to peak production by incorporating an inclining
function into the model:

y, = aexp(- bt) - aexp(-ct). (22
This model meant that increase in yield to peak production took place at a rate of
In(€)/(c- b). Although this was a great improvement on their first model, later researchers
such as Cobby and Le Du (1978) found on fitting this model to lactation data of cows, that it
resulted in underestimation of milk yield in mid-lactation and overestimated milk yield in late
lactation.

This was followed by a parabolic exponential function introduced by Sikka (1950) to model
milk yield. This model:

y, = aexp(bt- ct?) 2.3

! Note that Wood attributes this model to Gaines, but work by Ganes in this field was only published in 1927,
whereas Brody et al. already published their paper in 1923.

10



resulted in a bell shaped truncated curve that, as a result of the curve symmetry around peak
yield, only fitted milk yield reasonably during first lactation.

In 1958 Fischer attempted to improve on the Brody, Ragsdale and Turner model in (2.2), by
substituting the exponential decline built into this model with a linear decline:

y, =a- bt- aexp(-ct). (24
The result was a model that tends to the straight line a - bt after peak yield has been obtained.
Peak yield for this model occurs at ¢ *In(ac/b) and theratio a/b estimates the duration of

lactation. This model underestimated peak milk yield and also peaked relatively early
(Rowlands, Lucey and Russdll, 1982).

Vujicic and Bacic (1961) attempted a modification of the model in (2.1):
y, =tc * exp(- ct). (25)
This model seems to be the first attempt at developing a model that varies both directly and

exponentially with time.

In an effort to improve on al models that existed at the time, Nelder (1966) suggested an
inverse polynomial model be fitted to lactation data:

y, =t/(a+Dbt+ct?). (2.6)

For this model pesk milk yield of (2/(ac)+b)* occurs at time ./(a/c). The result was a

model with a good fit when lactation started at a relatively low initial yield and peaked
relatively early.

This was followed by what has been described as one of the mgjor advances in modelling
lactation - the model suggested by Wood (1967). Wood proposed a gamma function of the

following form be used:

y; = at® exp(- ct). (2.7)
In this model, the parameter a approximates the level at which production of milk commences
at parturition. According to Shanks et a. (1981) the parameter b is an index of the ability of a
cow to make effective use of energy in producing milk, but mathematically according to
Wood (1972) the parameter b represents the rate at which the rise to peak yield takes place
and the parameter ¢ in turn represents the rate of decline after peak yield was attained. Cobby
and Le Du (1978) states that these interpretations of the parameters b and ¢ “is a considerable
over-smplification and could be mideading”. In 1977 Wood tried to justify the use of his
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model from a physiological point of view, but still does not interpret the parameters b and ¢
from a practical biological point of view. From this model Wood (1967) also defined the
following lactation curve characteristics:

Total milk yield: y=——Gb+1) 2.9)
C

Yieldtotime n: y, = agn’ exp(- cnjdn (29

Time of peak milk yield: t=b/c (2.10)

Peak milk yield: ymax = a(b/c)” exp(- b) (2.11)

Wood also realised the need for a measure that could describe the ability of an animal to

maintain peak production or the so-called measure of persistency of lactation. As a first

attempt Wood noted that, because total yield or y is a function of ¢ | this may be used a

measure of persstency. It was reasoned that variation in total yield was almost entirely as a
result of variation in a and in ¢ ®?, and because a describes the level at which lactation

commences then, for al lactations commencing at the same level, variation in ¢ ®*Ywould
describe the remaining variation or the extent to which peak yield is maintained. In 1970
Wood used this measure of persistency in log form so that the measure of persistency of
lactation became: S=-(b+1)Inc. (212)

Rowland et al. (1982) mentions that because the Wood persistency measure is dimensionless,
it is a valuable measure in comparison of persistency among both the various lactations of the
same cow and lactations of different cowswithin a herd. Grossman et a. (1999) criticised the

Wood persistency measure as being “difficult to interpret biologicaly”.

To this day Wood's equation is still widely used and generally regarded by animal scientists
as one of the best models that exist for modelling lactation. There is, however, one justifiable
criticism of the Wood model in that it implicitly results in a production level of zero at time
t = 0, which is known not to be true in most mammal species. Tozer and Huffaker (1999) do,
however, state that a cow initidly yields colostrum instead of true milk, which is not
considered to have any economic value, and therefore a cow only enters a dairy herd as
contributor once it comes into true milk. From an economic and management point of view,
fixing milk yield at zero therefore does not represent a significant problem. Some studies of
the Wood model (Scott et al., 1996) found that this model has the tendency to overestimate
milk yield prior to peak yield and in late lactation. Underestimation of milk yield in mid-
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lactation sometimes also occurs. This has resulted in the ongoing search for an even better
lactation mode.

In the study of lactation curvesin dairy goats Fuller (1969) used grafted polynomials to obtain
alactation model of the following form:

y, =a+bt+ct? +dr? +nr} (2.13)
where r, hasthevalue t- 52 when t > 52 and O otherwise and r, has the vaue t- 85 when
t > 85 and O otherwise. No reference could however be found d this model being used in

animals other than dairy goats and therefore the reason for the choice of the values 52 and 85

in the above could not be ascertained.

In 1971 the search for an improvement on the then existing lactation models continued with

the proposal of the quadratic model by Dave:
y, =a+bt+ct?. (2.14)

The next attempt at finding a good lactation model was that of Madaena, Martinez and
Freitas (1979) with the use of a simple linear regression model:

y, =a- bt. (2.15)
The ingenuity of this model is questionable as it only represents a straight line with declining
dope and is therefore unable to model the initia rise to peak yield.

To improve on the previous effort Molina and Boschini (1979) proposed the combination of

two straight lines of equal but opposite slopes that intersect at peak yield at time to:

_ja+bt t <t, 216
Y lasp(2t,- 1) tot, (2.16)

The idea of equal but opposite dopes may be questionable, because milk yield in most

mammal species rises to peak at a faster rate than the subsequent decline after peak yield has
been reached.

Working from a popular model as base, Dhanoa (1981) attempted to reparameterise the
gamma function proposed by Wood in (2.6), with the following resullt:

y, = at™ exp(- ct) (2.17)
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where, m = time until peak milk yield is reached. This model resulted in a lower correlation
between parameters mand c, than was the case between parameters b and c in the original
Wood model.

In 1982 Singh and Gopal proposed two new models. The first was the sacalled linear cum
log mode!:
y, =a-bt+cint (2.18)

and the second the quadratic cum log model:
y, =a+bt+ct® +dint. (2.19)

In linear cum log model time of peak yield isa ¢/b. Time of pesk yield for the quadratic

- b++/b? - 8d
—

cum log model is a Unfortunately at time t = O both these models are

undefined, because In t= - ¥.

In an attempt to include a seasonality effect in the Wood's model, Goodall (1983) proposed
the inclusion of a categorical variable D that takes on the value O in the colder 6 month period
from October to March in the northern hemisphere and the value 1 from April to September,

resulting in the model:
y, = at” exp(- ct+ dD) (2.20)

where d then estimates the seasonality factor. This technique allowed for quantitative
assessment of the effect of seasonal changes on yield.

Another modification of the gamma function proposed by Wood was attempted by Jenkins
and Ferrell (1984) by setting the exponent of t, which is the value of b in the Wood model,

equal to 1:

Y, =atexp(-ct) . (2.21)
This model has one important limitation in that the rise to peak yield is relatively slow,
rendering this moddl of little use in practise (Landete-Castillgjos and Gallego, 2000).

In 1987 Ali and Scheaffer suggested a polynomia regression model of the following form be
used to model |actation:
y, =a+bt+ct?> +dint +k(Int)? (2.22)

This model only adds one term, k(Int)Z, to the model fitted by Singh and Gopal (1982).

14



Working from the model introduced by Fischer as basis, Wilmink (1987) introduced two
lactation models. In the first model a quadratic term was added and an adjustment made to
the exponentia term, resulting in

y, = a+bt+ cexp(- wt) + dt>. (2.23)
This model was then adjusted to obtain the second model by dropping the quadratic term from
hisinitia function:

y, =a+bt+cexp(- wt). (2.24)
In bah (2.23) and (2.24) a may be interpreted as the level at which production commences, b
as the decrease after peak yield is reached and c as the initial rise to peak. The factor w was
set equal to 0,05 and is related to the time of peak yield, which for the data on Dutch Friesians

used in this study was approximately 50 days after parturition. The model in (2.24) was again
applied by Olori et a. in 1999, but they estimated this factor to be w = 0,61.

In 1988 Papajcsik and Bodero searched for a better performing model by combining into
functional pairs combinations of certain increasing functions t°, 1- exp(- t), In(t) and
arctan(t), and decreasing functions exp(- t) and %/cosh(t), where arctan and cosh

respectively refers to the arctangent and hyperbolic cosine functions. This resulted in the

following six models:

y, = at®/cosh(ct) (2.25)
y, =al1- e™)/cosh(ct) (2.26)
y; = aarctan(bt)/cosh(ct) (2.27)
y, = aln(bt) exp(- ct) (2.28)
y, = aln(bt)/cosh(ct) (229
and y, = aarctan(bt) exp(- ct) . (2.30)

Their study compared these six models to those described in (21) to (2.3), (2.6) and (2.7),
(2.14) to (2.16), and (2.18). The models of Wood and (2.25) where found to be the best

representations of the lactation curve for the data on Holstein cows considered.

Next a novel approach was introduced by Grossman and Koops (1988) in that they suggested
that lactation could be viewed as a multiphasic biological process. Although at this point it
was not uncommon to view lactation as a two stage process, usually divided into incline until

peak yield as first stage and decrease after peak yield as second, nobody thought of suggesting
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lactation to have more than two stages. The suggested multiphasic logistica function
determines the total milk yield by obtaining the sum of the yield resulting from each of the
lactation phases.
v =afabli- a2 (b t- ¢ )] (2.31)
i=1

where n is the number of lactation phases considered and tanh is the hyperbolic tangent. For
each phase i, pesk yidd equas ajb; and occurs at time ¢. The duration of each phase is
related to 2bi"! that repr esents the time it takes to acquire 75% of asymptotic total yield during
that phase. This model was applied as a two stage or diphasic and a three stage or triphasic
model only, with a better fit resulting from the triphasic model due to smaler and less
correlated residuals. This is attributed to the fact that early in lactation the diphasic model
results in a poor fit because the hyperbolic tangent requires symmetry in both phases, and
when only two phases are considered a symmetric curve does not fit the possible steep rise
that occurs early in lactation. Gipson and Grossman (1989) noted that, athough more
research in this regard is required, for a diphasic model the first phase could possibly be
considered as the socalled “peak” phase because of its “proximity to overall peak and short
duration”. Similarly the second phase could perhaps be referred to as the “persistency” phase.
This moddl is criticised by Rook et la. (1993), because, although it seems to behave well when
fitted to lactation data, no judtification could at the time be given for why lactation may be
viewed as a multiphasic process.

In 1989 Morant and Gnanasakthy considered curves that resulted from the study of the
proportional rates of changes in lactation yield. Mathematically the pattern of the
proportional changes is defined by (dy/dt)/y. Lactation curves were obtained from these

proportiona rates of change by determining the integral of (dy/dt)/ y which then results in

the natural logarithm of yield a timet, or Iny,. The result:

y, = aexp(- bt +d exp(- kt)/K) (2.32)
y, =at®exp(- (c- dt)t) (2.33)
yi = aexp(- bt +ct? +d exp(- kt)/k) (2.34)
y, =aexp(- bt +ct® +d/t) (2.35)
y, = aexp(- bt+ct® + d/(t +K)). (2.36)
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They experienced problems in fitting the models denoted in (2.32), (2.34) and (2.36). Fitting
the curves in (2.33) and (2.35) were, however, straight forward, with the smallest correlation
among parameters obtained for (2.35). This lead to the reparameterisation of (2.35) resulting
in the modd:

y, = aexp(— bt'+ct?+ d/t) (2.37)
where t'= (t - t,)/100 and to is a constant, which for the purpose of their study was fixed at
the value 150 days. Later researchers of lactation models, such as Williams (1993), referred

to this model as the 4parameter Morant model. Morant and Gnanasakthy then rearranged
this model so that it became
y; = aexp(— bt'(1+ rt')+ ct2+ d/t) (2.39)
wherer is a constant determined as the slope of the regression for the estimates of parameter ¢
on the estimates of parameter b as obtained from (2.37). It was noted that as a result of the
increase in the value of t as time goes by, the parameter d only readly affects the shape of the
curve in the early days of lactations with its effect becoming more and more negligible as
time goes by. A major advantage of this model is that the parameters have relatively simple
interpretations. The logarithm of parameter a represents the expected yield on day to.
Parameter b is defined at the rate of change in yield at tp and is the main shape-affecting
parameter of the curve. The parameter ¢ also affects the shape of the lactation curve and is
said to measure “the extent to which persistency changes during lactation”. They, however
defined persistency as the extent to which day-to-day yields at any stage of lactation are
maintained and may be determined using
1- [b+2(br - c)t']/100- dft?. (2.39)

The parameter d provides the rate at which yield increase during early lactation. This model
was aso adopted by Williams (1993) to fit lactation curves to British dairy goats, but he
comments on the fact that effective estimation of d is problematic as a result of the drastic
effect of errors in observation early in lactation, as well as because of the small amount of
data available prior to peak yield when compared to that after peak yield. To overcome this
he used the mean of the estimated d's in the model instead of calculating a unique estimate for
every lactation curve fitted. This, however, till does not imply that d is a constant. Gipson
and Grossman (1990) in a review of lactation curves fitted to lactation data obtained from
dairy goats noted that the model in (2.33) may be referred to as the general exponential, and
that by setting both b and d equal to zero the model becomes the exponential function
suggested by Brody, Ragsdale and Turner (1923), by setting b equal to zero the model results
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in the parabolic exponential function suggested by Sikka (1950), and by setting d equal to
zero the incomplete gamma function fitted by Wood (1967) is obtained.

In order to limit the number of parameters to be estimated in case of a multiphasic model, a
diphasic model is preferred over one with more than two phases. Weigd et a. (1992)
attempted to improve the diphasic version of the Grossman and Koops model by means of a
power transformation of time and replacing ajb; by a new parameter di. This was the applied
to lactation data as both a single stage or monophasic mode! :

ye =dfi- tanh?(lt* - ¢ (2.40)

and a diphasic model:

o = dift- tanh?(orlt - o]+ do- tanh?(o,(t- )] . (241)

In 1993 Rook, France and Dhanoa again attempted to model lactation as the product of a

constant, A, a monotonically increasing function of time, f (t), ard a monotonicaly

decreasing function of time, f,(t). The following six monotonicaly increasing functions

were considered:

the Mitscherlich function 1- aexp(- bt), (2.42)
the Michalis-Menten function Yp+alb+t)), (2.43)
the generalised saturation kinetic function  1/j1+ afp+t°)), (2.44)
the logistic function 1/(1+aexp(- bt)), (2.45)
the Gompertz function aexp|(- Ina)(1- exp(- bt))] (2.46)
and the hyperbolic tangent [L+ tanh(a + bt)]/2. (2.47)
Only two monotonically decreasing functions were considered:

the exponential function exp(- dt) (2.48)
and the inverse straight line 1Y(1+ct). (2.49)

This resulted in twelve lactation curves of the form y, = Af 1(t) ,(t), that were fitted, together

with the model proposed by Wood, to lactation data obtained from dairy cows. It was found
that the Wood model together with the following function combinations fitted the data well:
Mitscherlich ~ exponential, MichaelisMenten ~ exponential, logistic ©~ exponential and

logistic” inverse straight line.
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Williams (1993) suggested that the 4parameter Morant model be extended to a six parameter
model to make it more comparable to the diphasic model suggested by Grossman and Koops
in (2.31) with its six parameters. The result was a model Williams referred to as the 6

parameter Morant model:
y, = aexp(- bt'+ct'?+d/t + kt'3+nt'4) (2.50)
where t'=(t - t,)/100 andt is a constant that Williams also fixed at the value 150 days. Asa

result of the large number of parameters in this model, it provided a good fit to lactation data

of white British dairy goats.

In an effort to overcome the underestimation of peak yield and overestimation of yield later in
lactation that occurs as a result of using the Wood model, Cappio-Borlino, Pulina and Rossi

(1995) introduced a non-linear modification of the Wood model:

y, =at?e® (251)
Although a lot more complex than the Wood model, this model reduced the extent of both
underestimation early in lactation and overestimation in the final stage of lactation for the data
used. Franci et al. (1999) refers to this model as the bi-exponential function. They aso found
that this model was well suited to describe lactation with an initia sharp rise in milk

production.

Guo and Swalve (1995) introduced a model, referred to as the mixed log model, of the

following form:

1
y, =a+bt? +cint. (2.52)

This model differs from that suggested by Singh and Gopal (1982), referred to as the linear
cum log model, in that the square root of t is obtained in the second term. The model,
however, tends to underestimate peak yield, while overestimating the post-peak yield (Olori et
al., 1999).

In 1999 Grossman, Hartz and Koops in their research on the persistency of lactation yield also
introduced a novel approach to modelling lactation. They viewed the lactation curve of an
average cow as the result of three intersecting straight lines. The first of these lines is said to
describe the initial rise in yield to peak, the second line has a slope of zero and represents the
peak yield over the period for which it is sustained, while the third line represents subsequent
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decline after peak. Asaresult, two very similar models were suggested, the first the socalled

lactation persistency model:

4 AN 4 “+P)/ 6
SrA T4 LI 74 S /A

Vi = Yp +bl(t- t')- alblln(:a—.Q@JraZbE» Ing §(t'+P)) 5 u (2.53)
§ 146727 ] § 1+e® /o

where y, isthe level of constant yield during the peak phase; by, is the slope of the straight
line during the initial inclining phase, b, is the slope of the straight line during the final
declining phase, t' isthe transition time from the slope of the first straight line to the slope of
the second straight line, a and a, are the durations of transition from the slopes of the first
to the second, and from the second to the third straight line, and P is the number of days
during which the level of constant yield of the peak phase is maintained. The second model is

simply a reduced form of the first model and referred to as the reduced lactation persistency
model:

é——utbsIng——+ (2.54)
1+e™

_ Yo, YpGei+el - €e'+e"l
t' t' agl+e )

Yi

with the same parameter interpretations as in the lactation persistency model above. The main
advantage of both these models is that persistency, P, forms part of the model in the form of a

parameter.

As commented by Tozer and Huffaker (1999), a wide variety of different mathematical
equations for modelling lactation are found in the literature and these have been applied to

lactation data from a variety of different mammals. Some of these resulting lactation curves
perform better in certain studies than others, but so far no single lactation model has emerged
as a congistent best performer in al cases. Rekaya, Carabaiio and Toro (2000) point out that
the most desirable model would be one with a limited number of parameters ard a biological

interpretation that is of value from a practical point of view.

Recently the focus in the study of lactation has moved away from attempts to find a standard
robust model. Instead researchers are now more concerned with the methods used to fit the

existing models.

Table 2.1 contains a summary of the above lactation models and the different animals to

which these lactation models have been applied, together with the reference numbers of the
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literature in the References where data on these animals have be used in the application of the

various models. Models that have the same origin or that are similar in structural nature have

been grouped together in chronological order within blocks.

Table2.1: Lactation mode and application summary

Brody et al. (1923) - exponential decline function:

y, = aexp(- ct)
Dairy cows: [5]
Red deer: [55]

Sikka (1950) - parabolic exponential function:
y, =aexp(bt - ct?)

Dairy cows. [87]

Red deer: [55]

Fischer (1958):

y, =a- bt- aexp(- ct)

Wrttemberg Spotted Mountain cows: [20]
British Friesian cows: [78]

Dairy cows: [13] [95]

Holstein cows: [86]

Vujicic and Bacic (1961):
y, =tc*exp(- ct)
Dairy cows. [97]

Wilmink | (1987):
Vi = a+bt +cexpl wt) +dt>  for (w = 0,05)
Dutch Friesian cows. [101]

Fischer (1958):
y, =a- bt- aexp(- ct)
Wirttemberg Spotted Mountain cows: [20]
British Fiiesian cows. [78]
Dairy cows: [13] [95]
Holstein cows: [86]

Wilmink 11 (1987):
y; = a+bt+ cexp(- wt)

South African Holsteins cows: [68] (w= 0,05)

South African Jerseys cows: [68] (w = 0,05)
Holstein-Friesian cows. [70] (w=0,61)
Dutch Friesian cows. [101] (w =0,05)
Dairy cows: [95] (w=0,05)

Nelder (1966) - inverse polynomial:
y, =t/(a+bt+ct?)

Red deer: [55]

Dairy cows: [4]

Holstein-Friesian cows: [70] [94]
Holstein cows: [83] [86]

Wood (1967) - gamma function:

y, = at” exp(- ct)

Friesian cows: [103] [104] [105]
British Friesian cows: [57] [78] [106]
Dutch Friesian cows: [42]
Holstein-Friesian cows: [70] [75] [94]
Holstein cows. [19] [83] [86] [91]
Simmental cows: [89]

Spanish dairy cows: [96]

Brown Swiss cows: [82]

Dairy cows: [13] [36] [37] [77] [85] [95] [107] [109]
Hanwoo Korean beef cows: [53]

US Sheep breeds: [81]

Massese sheep: [21]

Dairy sheep: [9] [10]

Comisana sheep: [73]

Merino sheep: [38] [39]

Crossbred sheep: [93]

Saanen diary goats. [40]

White British dairy goats: [100]

Red Sokoto goats. [2]

Goats: [79]

Red deer: [55]

Dhanoa (1981) - reparameterise Wood:
y, =at™ exp(- ct)
Friesian cows: [18]

Goodall (1983) - seasonally adjusted Wood:
y, = at’ exp(- ct +dD)
British Friesian cows. [34] [35] [57]

Jenkins and Ferrell (1984) - adjustment of Wood:
y, = atexp(- ct)

Dairy cows: [49]

Red deer. [55]

Fuller (1969) - grafted polynomials:
y, =a+bt+ct?+di® +nr)

Cappio-Borlino et al. (1995) - hi-exponential function:
y = atbexp(— ct)

Sardinian diary sheep: [7]

Massese sheep: [21]

Dave (1971) - quadratic function:
y, =a+bt+ct?

Dairy sheep: [10]

Indian water buffalo: [14]

Morant and Gnanasakthy (1989) - general exponential:
y =at"eq(- (c- dik)
Friesian heifers: [67]
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Madalena et a. (1979) - smple linear regression:
y, =a- bt

Holstein-Friesian cows: [15]

Holstein-Friesian~ Gir cows: [15]

Morant and Gnanasakthy (1989) — 4-parameter Morant:
y, = aexp(- bt +ct® +d/t)
Friesian heifers: [38] [67]

Molina and Boschini (1979) - straight lines of equal,
but opposite slopes:

_jatht t<t,

Tla+b(2t,-t) tet,

Holsteincows: [66]

Y

Singh and Gopal (1982) - linear cum | og:
y, =a- bt+cint

Indian dairy buffalo: [88]

Holstein cows: [86]

Morant and Gnanasakthy (1989):

y, =aexp(- bt'@L+rt)+ct?+dt)
where t'= t - t,)/100 and to = 150 days.
Friesian heifers: [67]

Dairy cows: [95]

British Friesian cows. [57]

White British dairy goats: [100]

Singh and Gopal (1982) - quadratic cum log:
y, =a+bt+ct®+dInt

Indian dairy buffalo: [88]
Holstein cows: [86]

Ali and Scheaffer (1987) - polynomial regression
model:

y, =a+bt+ct® +dInt +k(Int)’

Holstein-Friesian cows: [70]

Dairy cows: [1]

Guo and Swalve (1995) - mixed log model:

y, =a+ bt* +clint
Dairy cows. [43]
Holstein-Friesian cows: [70]

Papajcsik and Bodero (1988):
y, =at’/cosh¢t)

y, =afl- e )/coshet)

y, = aarctan(bt)/cosh(ct)

Holstein cows: [86]
Friesian cows: [72]

Williams (1993) — 6-parameter model Morant:
y, =aep(- bt+ct?+d/t+kt*+mt*)
where t'= t - t,)/100 and to =150 days.
White British dairy goats: [100]

Morant and Gnanasakthy (1989):

y, =aexp(- bt +dexp(- k)/k)

y, =aexp(- bt +ct? + d exp(- kt)/k)

y, =aexp(- bt +ct? + d/(t +k))

Friesian heifers. [67]

Grossman and Koops (1988)
function:

v.= & fabL- @ o - o))

Dutch Friesian cows: [42]
Holstein-Friesian cows: [94]
Israeli Holstein cows: [15
Dairy cows. [95]

White British dairy goats: [100]
Dairy goats: [31]

- multiphasic logistical

Weigel et al. (1992) - adapted monophasic function:
y, =d[1- tant? (b(t* - c))

Dairy cows. [99]

Holstein cows. [86]

Papajcsik and Bodero (1988):
y, = aln(t) exp(- ct)

y, =aln(bt)/cosh¢t)

y, = aarctanpt) exp(- ct)
Friesian cows: [72

Weigel et d. (1992) - adapted diphasic function:

y, =dfi- tant (b (t* - ¢ )]+ d,fi- tankt (b, t - )
Dairy cows. [99]
Holstein cows: [86]
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Rook et al. (1993):
MichaelisMenten” exponential:

Y = A[L+alo+t)] " ep(- dt)
Generalised saturation kinetic” exponential:

Yo =Af+al+t)] " ep(- dt)
Logistic” exponential:

Yi = A (L+aexp(- bt)) " ep(- dt)
Gompertz” exponential:

v = A (aep[(- Ina)(t- eq(- bY))) exp(- dt)
Hyperbolic” exponential:

v = A (L+tanH{a+bt)]/2) ep(- dt)
Mitscherlich” inverse straight line:

Y = A (1- aexp(- b)) (1+ ) *
MichaelisMenten” inverse straight line;

yi =A [1+a(b +t)]'1 (1+ct)?
Generalised saturation kinetic

" inverse straight line:
y = Afrafpr] (e a)?

Grossman et al. (1999) - lactation persistency model:

€ Ths, Tail

, ,\e B+e 2 ,
yz:yp+b1(t't)' albllng ?/9 H
e 1+e¥™ ¢

e?w P)a2 g l}l

S 83,
+a,b, Iné -

at+P))/ o
é l+ eg ){zb
Dairy cows. [41] [95]

Grossman et al. (1999) - reduced lactation persistency

model:
Yo, Yo, €€+€U ée' +e""u

==2t- =2In —q+b,In —
RTIT g1+e' § g1+e™ §
Dairy cows. [41] [95]
Rook et al. (1993):
Mitscherlich” exponential:

yi = A (L- aexp(- b)) exp(- dt)

Holstein-Friesian cows: [94]

Logistic” inverse straight line: Dairy cows: [77] [99]

y, = A (1+aexp(-bt)) * (1+ct)”
Gompertz” inverse straight line:

ye = A (aep|(- Ina)L- ep(- ))) (1+a)”
Hyperbolic” inverse straight line:

y, = A ([L+tanHa +bt)]/2) (1+ct)*
Dairy cows:. [77]

2.2 TYPICAL LACTATION CURVE SHAPES

It is generally accepted that the standard lactation curve that applies to most mammal species
increases up to the point where peak yield is attained, whereafter a gradual decline takes place
until the end of the lactation process is reached. Standard lactation curves of this nature are
often also referred to as type | curves (Landete-Castillgjos and Gallego, 2000). In fitting the
various theoretical lactation curve models to data researcher have, however, also come across
another lactation curve shape, one that has no peak and graphically represents a curve that is
in continual decline. Lactation curves of this form are generally referred to as atypical (Ferris
et a., 1985) or type Il (Landete-Castillgjos and Gallego, 2000) lactation curves.

There are a number of possible reasons for the occurrence of these atypical or type Il lactation

curves. Inamost al cases where lactation is study, test day records are obtained by weighing
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milk yield and measuring milk composition traits at various intervals after parturition. These
intervals are often based on certain days preferred by management, and do not occur at the
same stage of lactation for all animals. As a result, it sometimes happens that for a particular
animal the first observation is made after peak yield had already been reached. If thisis the
case, when fitting a lactation curve to this data, the illusion is created that no rise to peak yield
and subsequent peak have occurred, resulting in an atypical lactation curve as best fit. The
same kind of result could also occur in cases where the intervals between test day records
collected during the early days of lactation is so great that it is unable to successfully depict
peak yield, for example where the first observation occurs diring the rise to peak and the
second during the declining phase after peak, but the resulting weight is lower for the second
observation than for the first observation. Observationa errors when weighing milk yield
could also attribute to fitting atypical lactation curves. In a small number of nondairy
mammals such as Red deer (Arman et a., 1974) and Iberian Red deer (Loudan et al., 1983;
Garciaet a., 1999; Landete-Castillgjos and Gallego, 2000) atypical or type Il lactation curves
have been found as the applicable lactation curve. Landete-Castillgos and Gallego (2000)
mentions the possibility that atypical or type Il lactation curves might not be uncommon in

wild ungulates.

Researchers differ in opinion on how such atypical or type Il lactation curves should be
handled. Some researchers feel that these curves imply that peak yield occurred prior to
parturition and that for this reason these curves represent an unrealistic picture and should not
be dlowed in the study of lactation in dairy animals (Ferris et a., 1985; Tekerli et al., 2000).

Another school of thought is that when fitting a parametric lactation model to data the
possible occurrence of atypical or type Il lactation curves should be limited by placing
restriction on the values the parameters of the curve can take and thereby forcing the lactation
curve to be typical. In such cases the parameter values that would lead to atypical or type Il
curves are determined, restrictions on the values of these parameters formulated and
appropriate estimation methods employed so that these values are not obtained. In this
respect Bayesian analysis using the Gibbs sampler, together with an acceptance-rejection step,
is a useful tool to reduce the occurrence of atypical or type Il lactation curves (Varona et a.,
1998; Rekaya et al., 2000; Groenewald and Viljoen, 2003). Varona et al. (1998) reported a
reduction in atypical or type Il lactation curves from 29% to 0,25% in Spanish dairy cows

using Wood's model and a Bayesian analysis of this nature.
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A third approach to handling atypical or type Il lactation curves was considered by Landete-
Castillgjos and Gallego (2000) after determining that an atypical or type |l lactation curve was
most often the lactation curve of choice in Iberian Red deer. They pointed out that one should
carefully inspect your data before selecting the model(s) to fit to ensure that the model(s)
fitted do indeed have the ability to accommodate atypical or type Il lactation curves when
required. Models such as the inverse polynomal in (2.6) developed by Nelder (1966) and the
model in (2.21) developed by Jenkins and Ferrel (1984) are unable to produce atypical or type

Il lactation curves.

Schneeberger (1981) found that in dairy cows the percentage of atypical or type Il lactation
curves decreased with increasing parity number. This result makes it plausible that atypical or
type Il curves may also occur in the ordinary course of lactation in dairy animals. For this
reason using a Bayesian analysis that would reduce, but not totally eliminate the occurrence of
this curve type would possibly be the golden mean.

2.3 CURVESFITTED TO COMPOSITION TRAITS

As pointed out earlier depending on the intended use of milk produced, the composition traits
of milk could also be important. When this is the case a composition trait curve may be fitted
to the milk fat, protein and lactose content of the milk. The percentages of milk fat and
protein are typically convex functions over time, which means that they vary inversely to
yield. Considerable day-to-day variation has been noted in the fat content of milk
(Whittemore, 1980). The percentage of lactose, however, does not vary in relation to yield,
but goes into a steady decline over the whole lactation. As a result of this both milk fat and
protein are often also modelled with the same functions that is used to model milk yield, on
condition that they are able to take on a convex form. Lactose, on the other hand, requires a
function that has the ability to model decline, as no rise to peak is present. Very little work

has been done on modelling the lactose content of milk.

The earliest reference found on lactation models fitted to composition traits, was that of
Goodall (1986) who fitted the seasonally adjusted Wood model of (2.20) to both the milk fat

and the protein percentages of milk.
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In 1987 Wilmink fitted both the models that he suggested in (2.23) and (2.24) to model milk
yield, to the milk fat and protein content of milk as measured in terms of weight. The factor w
in these models was again set equal to 0,05 for estimating fat and protein content curves.

Morant and Gnanasakthy (1989) use the rearranged reparameterisation of their model as given
in (2.38) to model milk fat, protein and lactose content as measured in kilograms. This was
the first reference found in which an attempt was made to also model lactose. The model
used seemed to fit protein and lactose content, but in the case of fat alarger residual variation

was obtained. This should be expected due to the day-to-day variation in fat content of milk.

De Boer et a. (1989) only attempted to model the fat content of milk by fitting a diphasic
function, i.e. the model in (2.31) with n = 2, to the fat content of milk as measured by weight.

Sakul and Boylan (1992) fitted the Wood model of (2.7) to the proportions of fat, protein and

lactose contained in milk. The Wood model provided a satisfactory fit with respect to the fat
and protein content of milk, but was unable to adequately model the proportion of lactose

contained in milk.

In 2001 Mostert, Theron and Kanfer again used the reduced Wilmink model provided in
(2.24) and fitted it to the milk fat and protein content of milk measured in kilograms. They
also used 0,05 as value of the factor w in this study

Groenewald and Viljoen (2003) aso fitted the Wood model in (2.7) to the fat and protein

content of milk measured in kilograms.

2.4 PERSISTENCY

The earliest reference to the persistency of lactation found, was that of Wood (1967) in which
he defined persistency as “the extent to which peak yield is maintained”. Wood then also
developed a measure of persistency to correspond to this definition (see (2.12)). Since then a
number of other researchers have also attempted to not only define persistency, but also to
develop a measure of persistency. No single consistent definition of persistency, however,
exists within the framework of lactation research and as a result the defined measures of
persistency are also inconsistent. Morant and Gnanasakthy (1989) defined persistency as “the
extent to which yield is maintained from day to day at any stage of lactation” and then
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developed the measure given in (2.39), which is greater than one when yield increases, equal
to one when yield is constant, and less than one in case of declining yield. The most widely
used definition seems to be that persistency is the rate of decline in milk yield after peak, and
the measures of persistency developed as a result of this definition include ratios of yield
during various stages of lactation, variation in test day yields and formulations of measures

from lactation model parameters (Grossman, Hartz and K oops, 1999).

The first and to date only attempt at developing model that contains persistency as a model
parameter was that of Grossman, Hartz and Koops (1999). They first defined persistency as
the number of days during which the level of milk yield remains constant and then developed
the models in (2.52) and (2.53) referred to respectively as the lactation persistency and
reduced lactation persistency models.

Various factors seem to influence persistency, but parity seems to have the greatest influence.
In studies of the lactation of dairy cows it was reported that the Wood measure of persistency
is significantly higher in first lactation than in later lactations (Rowlands et al., 1982).
Solkner and Fuchs (1987) obtained the same result for dairy cows by using both ratios of
yields during different stages of lactation, as well as measures expressed as ratios of variation
that occurred in test day yields. They also found that the season of parturition, as well as the
total milk yield had a significant effect on measures of persistency obtained through these two
methods. Tekerli et a. (2000) employed three persistency measures in their study of dairy
cows, Wood measure of persistency, ratios of yields during different stages of lactation, and
ratios of variation that occurred in test day yields, and in all cases persistency during first
lactation proved greatest. In the study of lactation in dairy goats using parameter based
persistency formulas (Gipson and Grossman, 1990; Ruvuna et al., 1995), it was found that
persistency was significantly affected by parity, season of kidding and level of tota
production, with higher yielding does being less persistent than lower yielding does.
Persistency was greatest during cooler seasons and during first parity, declining there after.

Portolano et a. (1996) found that for Comisana sheep significant positive correlation existed
between persistency and time of peak yield, while persistency and peak yield, and persistency
and parity were negatively correlated. A more persistent ewe would therefore have a curve
with lower peak that occurred later relative to less persistent ewes. Schneeberger (1981) also
found negative genetic correlation between initial yield and persistency when studying Swiss
Brown dairy cows. Gipson and Grossman (1989) aso noted a negative relationship between
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both persistency and parity, and persistency and yield for dairy goats. Lectation curve of
dairy goats were found to in general be flatter and as a result more persistent than those of
dairy cows (Ruvuna et a., 1995; Apka et al., 2001).

To summarise, four groups of persistency measures have, been identified: 1) measures
derived from the lactation model, containing estimated parameters from the afore mentioned
model; 2) measures that express persistency as the ratio of yields during different stages of
lactation; 3) measures derived from variation that occurs in test day milk yield;, and 4) the
duration (in number of days) for which the level of milk yield remains constant (Grossman,
Hartz and Koops, 1999). Because of these differences in the nature of persistency measures,
it is not possible to directly compare the persistency values obtained by the various measures,
although there seems to be general consensus with respect to the effect of different biological

and environmental factors on the various persistency measures.

Persistency of lactation is considered a very importart characteristic of the lactation curve.
Aswas mentioned in Chapter 1, dairy animals producing milk at a greater level of persistency
are preferred in the dairy industry, because this would reduce and stabilise productions cost
and ultimately maximise profit. For example, cows with aflatter lactation curveis considered
more persistent and would have an increased proportion of roughage in their rations, which
would reduce their production cost (Tekerli et al., 2000).
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CHAPTER 3

METHODSAPPLIED INFITTING LACTATION
CURVES

3.1 INTERPOLATION TO OBTAIN TOTAL MILK PRODUCTION

Often in the management of a dairy herd interest is focussed on the total milk yield of an
individual animal over the lactation period. As aresult of both the time and labour cost factor
involved in weighing milk produced during every extraction session, the milk yield of an
animal is weighed at intervals determined by management. The result is test day records that
do not provide a complete picture of the animal’s lactation process, but from which the total
yield have to be obtained. One method commonly used in the dairy industry approximates the
total yield of an animal from the incomplete test day records using various interpolation
procedures, sometimes also referred to as standardisation and projection procedures (Serrano
et a., 2001).

One interpolation method commonly used is the socalled Test Interval Method (TIM) that
makes use of aform of linear interpolation (Olori and Galesloot, 1999). This method assumes
that theyield on any test day is the mean yield for the interval of time from halfway between
this test day and the immediately preceding test day up to halfway between this test day and
the one immediately thereafter. To make provision for the periods before the first day and
after the last test day, however, the yield on the first test day is assumed to be the daily yield
since calving, and the yield on the last test day is assumed to be the daly yield until

termination of lactation. The total yield over the lactation is then determined through

summation to be as follows: y=py, + 5 {0.5p,(yi.. + Vi } + PraVn
i=2
where, y = tota yidd
yi = test day yield as measured on test day |
p1 = number of daysin the interval from calving date to first test date
pi = number of daysin the interval between test day i and the preceding test day
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Pr+1 = Number of daysin the interval between test day i and termination day

Olori and Galedoot (1999) pointed out that for this method to produce valid results, the first
test day has to occur before day 50 in the cows lactation cycle. This method is also criticised
for being unable to take into account the pattern of lactation that occurs around peak yield
because of its dependence on the interval between test days.

3.2 IRIS

IRIS is a computer software package that was developed in the Netherlands for the collection
and sensible organisation of data for management purposes on cattle farms. One module of
this package makes provision for milk recording, and is referred to as IRIS-Dairy. IRIS aso
includes modules on herd book registration, type classification and statistics on cattle data.

Olori and Galedoot (1999) fully describe the procedure employed by IRIS-Dairy, which is

summarised below.

IRIS-Dairy makes provision for prediction of the lactation of a cow very early in lactation.

Using IRIS-Dairy it is already possible to predict lactation as soon as the first test-day record
becomes available. Predicting the next lactation cycle based on the yield in the immediately
preceding lactation is also possible on condition that the cow and herd of which it forms part
participates in milk performance testing so that information on calving date and age, as well

as production leve of the herd crucia to these predictions are available.

This program uses what is known as the Standard Lactation Curve (SLAC) method to make
such predictions. Standard lactation curves (SLAC) are obtained from the mean yield of a
comparable group of cows referred to as contemporaries. A contemporary group consists of
cows of similar age, with the same herd production level, calving in the same season. Based
on the assumption that cows from the same contemporary group have similar production
patterns, these standard lactation curves indicate the expected pattern of production for a cow
similar to the contemporaries and guides the prediction of daily yields in the future part of
lactation. Predictions are then based on the stage of lactation, and the yield of the cow on the
last test day, together with the cumulative yield from its previous lactation as indicators of

that cow’s potential. The lactation curve of an individua cow is then obtained from the
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standard lactation curve by incorporating the deviation of the observed yields from the

expected yields.

Standard lactation curves relevant to the specific environmental and biological factors
influencing a particular breed of dairy cow have been derived. SLAC curves for a breed had
to be developed for class combinations of twenty herd level classes, eighteen parity/age
classes and six calving seasons, which resulted in 2160 standard lactation curves for each of
the lactation traits milk yield, fat content and protein content for that breed. This was done by
using the test day records of the group of contemporaries from which the standard lactation
curve had to be constructed and determining their yield at 15 fixed days, from the 10" day in
intervals of 20 days up to day 290, during the lactations of these animals. To derive the yield
on fixed days prior to the first test day and after the last test day the lactation model developed
by Wilmink (1987) as denoted in (2.24), together with w = 0,05 was used. The yields of fixed
days between the first and last test days were obtained by means of interpolation between
successive test day yields. The expected or mean yields on these fixed days were then
obtained for the group of contemporary cows and, once these yields had been adjusted for the
effect of herd level, age and calving season, they then represented (when connected) the
standard lactation curve for such a contemporary group of cows. A fixed effects model with
herd level, age class and calving season as fixed effects was used to estimate the effect of

these factors.

To predict a daily yield level after the last actual test day using the standard lactation curve
method, the following calculation is employed:

Y, = E(Y,) +by[y305,, - E(Y305, )] +b,[X; - E(X,)]

Y, = predicted yield on day t of lactation
E(Yt) = expected yiddd on day t of lactation obtained from SLAC
Y305, = tota yield of preceding lactation
E(YSOSPL) = expected tot yield of preceding lactation obtained from SLAC
X. = vyield measured on last test day of lactation in progress
E(X,) = expected yield for last test day of lactation in progress obtained from SLAC

= prediction factors

=
&
[
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The prediction factors b and b, are determined for each interval of 20 days from the 10" day
of lactation for three parity groups (parities 1, 2, and 3 or higher) for each of the lactation
traits milk yield, fat content and protein content. This is done by estimating the deviation of
the observed yield from the expected yield for each cow included in the derivation of the
standard lactation curves. Least squares regression of the model

Y- E(Y,) = & +B,[Y305,, - E(r305,, )]+ &,[X; - E(X,)]
is used and the resulting estimates of the regression coefficients b, and b, provide the

projection factor values of by and b,.

This method of prediction is used in predicting milk yield, fat content and protein content
curves. As may be expected, as lactation progresses the accuracy of prediction using this
method improves. This method of prediction has two main advantages. 1) the lactation yield
a the start of lactation (i.e. at time t = Q) in not assumed equal to zero; and 2) it is relatively
easy to use on farm management level, because all information required is either already
available to management from historic or current lactation records or built into the program in
the form of the standard lactation curves required.

3.3 LINEAR AND NON-LINEAR METHODS OF CURVE FITTING

As dternative to the approximation methods above, the lactation curve models discussed in
Chapter 2, together with the test day records of an animal, may be used to model the lactation
of the animal. The total yield over the duration of the lactation may then be acquired using
the method relevant to the lactation model fitted. Both non-linear and linear estimation
methods have been employed to fit lactation curve models, where the method employed is
determined by the nature of the model to be fitted. Some lactation models may be fitted by

means of both non-linear and linear estimation.

Some of the lactation models are linear by nature, while others may be transformed into linear
models. Wood aready noted in 1967 that the gamma function converts o a simple linear
regression model by performing a natural log transformation, making it possible to determine
the values of a, b and ¢ by means of least squares estimation. This principle was applied by
Cobby and Le Du (1978), TorresHernandez and Hohenboken (1980), Sakul and Boylan
(1992), Tekerli et al. (2000) and others when fitting the Wood model. This approach to model
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estimation by performing a natural log transformation to obtain a linear model may also be
applied to other models, such as Brody’s exponential decline function (Brody et a., 1923),
Sikka's parabolic exponential function (Sikka, 1950), Goodall’s seasonally adjusted Wood
model (Goodall, 1983; Lennox et a, 1992), the Jenkins adjustment of the Wood model
(Jenkins and Ferrell, 1984), the 4-parameter Morant model (Lennox et a., 1992, Groenewald
et a., 1995) and other models suggested by Morant and Gnanasakthy (Morant and
Gnanasakthy, 1989), and the 6 parameter Morant model (Williams, 1993). Nelder’s inverse
polynomial model (1966) may aso be transformed to a multiple regression model, but this
time using an inverse transformation (Batra, 1986). Models that are intrinsically already
linear without a natural log transformation are the grafted polynomia (Fuller, 1969), the
quadratic model (Dave,1971), the simple linear regression model of Madalena et a. (1979),
the model of Molina and Boshini (1979), the linear cum log and quadratic cum log models
(Singh and Gopal, 1982), the polynomial regression model (Ali and Scheaffer, 1987), and the
mixed log model (Guo and Swalve, 1995).

Non-linear regression by means of the iterative Marquardt’s compromise method (Marquardt,
1963) as available in SAS, has been the most common method of fitting nonlinear lactation
models to data thus far, and has been used to fit Nelder’'s inverse polynomial function, the
Mitscherlich exponentia function, the multiphasic model with n = 1 or monophasic fit (Tozer
and Huffaker, 1999) and the Wood model (Ferris et al, 1985; Cappio-Borlino et a., 1995;
Ruvuna et a., 1995; Portolano et a., 1996; Franci et al., 1999; Tozer and Huffaker, 1999).
Another method frequently employed is nonlinear regression using the GaussNewton
iterative method also available in SAS. This was done for the Wood model, and the
multiphasic function fitted with n = 2 as diphasic to milk yield (Grossman and Koops, 1988;
De Boer et d., 1989) and with n = 3 astriphasic to fat (De Boer et al., 1989). Other models
for which unspecified methods of non-linear fitting were used include the 1924-Brody model;
the Fischer model (Cobby and Le Du, 1978; Rowlands et al., 1982), the Wilmink | model
(Wilmink, 1987; Olori et a. 1999), the Wilmink Il model (Wilmink, 1987; Olori et a. 1999;
Vargas et a. 2000; Mostert et al. 2001), the Mitscherlich exponertial model (Rook et al.,
1993; Vargas et al., 2000), the 4parameter Morant model (Williams, 1993; Vargas et d.,
2000), and both the lactation persistency and reduced lactation persistency models (Grossman
et a., 1999; Vargas et d., 2000).
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Often, in studies where multiple regression and least squares estimation were employed to fit
lactation models, further analysis of the regression coefficients were performed by means of
analysis of variance to study the effect of various environmental and other cofactors on the
lactation model. This was done using a generdised linear model that combines both fixed
effects, representing the cofactors at their various levels, and a random error in order to
describe either a function of the estimates of the parameters d the model fitted or the actual
observed data. Interaction effects were very seldom included in such a model, because these
were mostly not significant and random effects were only found in models where genetic
effects were included. Analysis of variance then indicated the presence of significant effects.
(Batra, 1986; Grossman and Koops, 1988; Gipson and Grossman, 1989; Olori et a., 1999;
Akpaet d., 2001)

34 BAYESIAN APPROACH TO LACTATION CURVE FITTING

Although using a Bayesian approach in statistical research of animal genetics is a common
practise, a Bayesian approach was applied in a very small proportion of research work done
on lactation models thus far. The first attempt at modelling lactation by means of an approach
that also forms part of the Bayesian framework, was that of Goodall and Sprevak (1984),
where a Monte Carlo simulation procedure was employed to generate ssimulated values of
milk yield in dairy cows. A year later in 1985 Goodall and Sprevak formally used the
Kaman filter as a Bayesian estimation procedure that included prior information on the herd,
as well as observed lactation records, to estimate the parameters of the lactation curve of dairy

cows. In both these studies the lactation model proposed by Wood was fitted.

In 1996 Groenewald et al., to fit the Wood modd to lactation data of Merino sheep, assumed
a hierarchical Bayesian model and applied the Gibbs sampler to obtain the marginal posterior
distributions of functions of parameters, including lactation curve characteristics such as peak

yield, time of peak yield, persistency and total milk yield for the Wood model.

Jamrozik et a. (1997) required information on lactation test day records for the purpose of
genetic evaluation of first lactation Holstein cows. For this purpose the Wilmink model
described in (2.24) with w = 0,05 and a random regression model with both fixed and random
effects was used to analyse test day records of dairy cows. They wanted to then compare

three different random regression models using combinations of the Wilmink model and a

34



linear function of five covariates suggested by Ali and Schaeffer (1987) as linear functions of
covariates for fixed and random regression coefficients. Model variances and covariances
were estimated by means of Bayesian methods utilising the Gibbs sampler to generate

samples from the marginal posterior distribution.

In 1998 Varona et a. analysed test day records of Spanish dairy cows using the Wood model
and a hierarchical Bayesian procedure. They specifically point out that the main advantage of
this approach is that posterior marginal distributions of covariance components, breeding
values and systematic effects for Wood's model are easily obtained and comment on the
usefulness of this form of analysis in reducing the occurrence of type Il or atypica lactation
curves by restricting the values of parameter estimates in the model. Restricting the values of
the parameter estimates are made possible by including an acceptance-regjection step in the
Gibbs sampler. Special reference is also made to the “solid estimates of systematic effects
and breeding values’ obtained for the parameters of the lactation curve through the Bayesian

procedure.

Rekaya et a. (2000) employed a three-stage hierarchical Bayesian approach, together with the
Wood function, to model lactation in Holstein-Friesian cows. Restrictions were placed on
two of the parameters in the Wood model, which required the use of the adaptive regjection
Metropolis within Gibbs scheme. In this case the ultimate objective again was estimating
genetic correlation between parameters of the Wood lactation curve and functions thereof
such as total yield, persistency, and peak yield. The obtained estimates indicated that
modifying the shape of the lactation curve through genetic selection is possible.

Chang et al. (2001) also used the Wood model and a three-stage hierarchical Bayesian
approach, with Gibbs sampling and the Metropolis-Hastings agorithm to draw samples from
the posterior distributions of the model parameters to model lactation in dairy sheep. Asin
preceding studies where the Bayesian approach was applied, the objective was the
investigation of genetic variation of features of lactation curves. In 2002 Chang et a.
revisited this approach to the investigation of genetic variation to compare results from the
quadratic function of (2.14) proposed by Dave in 1971 and that of the Wood function.

Groenewald and Viljoen (2003) used a hierarchical Bayesian approach, together with Wood' s
mode to model not only lactation trait curves for milk yield of Saanen dairy goats, but also

for the protein and fat composition of milk. Margina posterior distributions were again
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obtained through Markov chain Monte Carlo methods. Various covariates and environmental
factors were also built into the Bayesian model to enable the integrated study of the effects of
these factors on lactation curves.

It is evident from the above discussion that very little work has been done on prediction of
lactation records from a Bayesian point d view, and that the majority of the research in this

field to date was done for the purpose of genetic evaluation and selection.

3.5 ASSUMPTION ABOUT ERRORS

When the general form of a function is e*®, where x; (1~ p) is some vector function of time

t, the estimation and inferences made dependent crucially on the assumptions made about the

errors. Here are three possible approaches:

1)  Often the modd is fitted by non-linear least squares methods. This is basicaly non-
parametric and implies no distributional assumptions. However, no statistical inferences
(such as variance estimation, confidence intervals, etc.) made from the results are strictly
valid. From a dtatistical point of view, such a method of fitting the model implies an additive

error,
y, =e"®+e i=1, ...,n (3.1)
where e ~iid.N(0;s 2), which in turn implies that - ¥ <y, <¥, while vy is a strictly
positive variable. Thiscan lead to nonsensical inferences. The only way (3.1) can be used as
a statistical model is if the error is bounded from below so that - €** <e, <¥. This makes

statistical inferences extremely complicated, as the sample space for the error term is a
function of the unknown parameter, as with a truncated normal distribution.

2)  The most common method of fitting the model is to assume a multiplicative error, so
that

y =", , i=1 ...,n (3.2)
and
Iny, =xR+Ine (€X)

Then the least squares estimate of b is aso the maximum likelihood estimator if we assume
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that Ine; ~iid.N(0,s ?),ie B=(X'X) X'z, with X (0" p)and z=In(y). This means

>

that e has a lognormal distribution with mean E[g]= e and variance
Vale]=¢€° ’ (€ - D). Thisis areasonable model and works well, but there are a couple of
points that are often overlooked when analysing the error terms. If e, is estimated by
& =ye*t, i=1 .. ,n (34)
then E(In€)=E(Iny; - x; @) =0, but researchers often use the log transformation to estimate

b and then define  the  eror etimate as the  direct deviation,

g=y - e’ i=1 .. ,n (35)
Since E[Y] = € Ele,] = & *° (36)
and
Efe""] = ¢, e *n(B: b, (X"X) s 25
— B X ()]
it follows that
Em]=€£%§h-§§M““W””} (3.7)

Since x;(X'X)x '<1, it meansthat E[&] >0 aways. So e“* is not an unbiased predictor of
y. and tends to underfit the true function €% 5 Yet € isoften used to compare models and to

determine goodness of fit.
The variance of & is given by

Var[g]=e*" lesz (esz - 1)+ e’ (ef"'s ‘- 1)+ 2@ +1)J- 2 "@i*Y) (3.8)
where a; = x,(X'X) 'x;".

Secondly, the expectation as well as the variance of & are monotonic functions of the function

e*® itself. So astudy of the residuals é after fitting alinear model should show a pattern,
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and that is not evidence of a lack of fit or autocorrelation between residuals. The residuals in
(3.5) resulting from the fitting as in (3.3) should show discernable pattern

The estimator (3.4) of e isaso not an unbiased estimator of E[e, ] =¢* " since
E[é]=Hye “*] i=1..n

— E[ezi e xi(X'X)X'z]

Py} -4z
=He 5O Ee ]
j=1

where g; = x(X'X)'x;" and z; ~ N(x;R,s?).

Then

2

E[6]=e® ®a) i=1 ...,n (3.9)

whichissmaller than E[g ], since 0<a; <1, and so tends to underestimate the true error.

3)  In paragraph (2) the condition on the error isthat Fle >1] =0,5. Since the lognormal

distribution is skewed, this condition is achieved when E[g]=¢ % ", Instead, we could

impose the condition that E[g]=1, i = 1,..., n. This means that we assume that

Ine, ~N(- 4s%,5%) sothat & ~INN(1,€ - 1. Then
z=Iny ~N(B- 35%,7%). (3.10)

Now vy is an unbiased estimaior of the function vaue e*% e

y ~InN@E*®, &% -1). The variances of y,,...,y, are not homogeneous. The

maximum likelihood estimator of b in (3.10) is given by

R=(X'X)X'(z+1$21), (3.12)
which only increases the constant term of the usual estimator, B, = (X'X)*X'z, by 1$2.
Interestingly, the variance estimator remains the same as before,

S2=1(z- XBy)'(z- XBy). (3.12)
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So in paragraph (2) the assumption is that the median of the error distribution is equal to one,

while in paragraph (3) the mean is assumed equal to one. When s 2 isrelatively small, there
is little difference between the fitted functions from the two approaches. From a convenience
point of view the method of paragraph (2) is preferable.

The expectation of the estimated error is

Elé]=e®™, (3.13)
whichmakes ¢, again a biased estimator of E[e; ].
4)  TheWilmink model

y, =a+bt+ce" = f(t) (3.14)
is often used for the estimation of the lactation curves of cows. However, it has the flaw that

a fitted curve can be negative. Least squares fitting implies a statistical model with additive
errors that are normally distributed,

v =ft)+e e, ~ N(0,s ?). (3.15)

Inferences from this model can often yield unrealistic results. The only way to use this model
as a statistical model isto (a) assumethat Iny, = f(t)+e, , € ~N(0,s?), sothat we are

back with the general form of paragraph 2 for w known, or (b) assume that e; has atruncated

distribution, i.e.
e, ~TN(0,s ?), -f(t)Ee £¥ (3.16)

and f(t)3 0. Then

f(er) 2 Lt Ee £Y,  (317)

1 -
)= ———F—¢€ "~
f(f®)Vps?
but the expectation of e, is no longer zero.

In summary, the multiplicative moddl (3.2) isin genera preferable to the additive model (3.1)

for fitting lactation models for the following reasons:
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1) As mentioned before, (3.1) implies that the production can be negative unless restrictions

are placed on the distribution of the error term. This greatly complicates statistical inferences.

2) Usualy when model (3.1) is employed the assumption of a common error variance is
made, which means a constant variation in production y over the lactation period. For
lactation data it is reasonable to assume that the error variance will decrease with production,
due to both less variation in production and smaller measurement errors. The multiplicative
model (3.2) naturally allows for this, as the variance in production is an increasing function of

the expected production.

3) When the lactation model can be linearised by a log transformation, a log-normal

distribution on the error term is appropriate, and normal theory is available for inferences.

It should be remembered that a maximum likelihood cuve fitted after a log (or any other)
transformation is not the best non-linear least squares fit in the sense of (3.5). This, however,
is not a major drawback as the maximum likelihood estimate will in most cases be the more

reasonabl e fit.

Care should also be taken when creating a linear model with a transformation other than alog

transformation. For example, the inverse polynomial model (Nelder (1966)),

y, =t/(a+bt+ct?), (3.18)
can be linearised as

1y, =b+alt+ct, (3.19
but least squares estimation of the parameters can give nonsensical answers when applied to
the originad model, with the estimated lactation curve tending to infinity at the roots of the
denominator. The problem is that if a multiplicative error is assumed for the original model,
then

1/y, =(b+alt+ct)/e, , (3.20)
and no distributional assumptions about e, can make maximum likelihood estimation

feasible. If this model is to be used, non-linear least square estimation is the best option, but
with the drawback that no statistical inference is possible.
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CHAPTER 4

A BAYESIAN APPROACH

4.1 THE GENERALISED BAYESIAN MODEL

Any lactation model to which the assumption of multiplicative errors is applied and that may
be re-written in linear form by means of a transformation in such a manner that, as a result,
additive errors for the transformed linear form there of holds, may be analysed in the manner
as discussed below. Keeping in mind the discussion on the error assumptions in section 3.5,
this basically implies that a log transformation of the original model (with multiplicative
errors) is required to transform the model to linear (with resulting additive errors). Once a
model has been obtained in generalised linear form, a hierarchical model similar to that
introduced by Lindley and Smith (1972) is assumed and a Bayesian approach is used to model
lactation. In general the methodology used is as follows:

Suppose that for every animal i in a herd of k animals the lactation observations are denoted

by Wi(t;, ), where | serves as an index of only those lactation cycles under consideration, s

ip
denotes the relevant lactation trait among those that were observed (e.g. milk yield, protein
content, fat content, or lactose content), p refers to the index of the test day during the

lactation cycle on which the observation was made, and t;;, is the time of the p-th test day.

Note that initially it is assumed that over a specified period the same number of consecutive

lactation cycles has been observed for each animal in the herd. Asaresult, i =1, ..., Kk,
j =1 ..., g where for every anima in the herd a total of q lactation cycles are observed,
s=1, ..., uwhereu isthe number of lactation traits observed, and p =1, ..., n; where n; is

the number of test days for animal i during lactation cycle j. If a non-linear model with the
assumption of multiplicative errors has to be fitted to the origina data and by performing a
natural log transformation on the data the result is:

Yt = I gt,) (4.)
to which an observation model of generadised linear mode form, with additive
€, ~11.d.N(0,52), may now be fitted. If it is assumed that ajs b, ..., dijs are the v

regression coefficients of the generaised linear form of the lactation model for the i-th animal
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during its j-th lactation cycle for the lactation trait indicated by s, then the model for lactation
trait sof animal i during lactation cyclej is:

Yiis = XijMys + € (4.2)
where vy, is the vector of transformed data values for the lactation trait sof animal i initsj-th

observed lactation cycle, my is the vector containing the v regression coefficients for the
generalised linear form of the lactation model fitted for this lactation trait of the i-th animal in
lactation cycle j and when multiplied with the design matrix X, it returns the appropriate

generalised model form of the fitted lactation model.

If this moddl is applied to milk yield and al of the composition traits contained in the data
simultaneously, then the model for animal i in the j-th observed lactation cycle is:

Y = XMy +E; (4.3)
where vecE( (un”. 1)~ N(vecO,F Al ) Note that vec A¢ denotes the elements of matrix

A when stacked row-wise into one column. The r-th row of X, (n,~ v) contains the

elements of the r-th row of a design matrix that would return the appropriate generalised

linear model when multiplied with the matrix of coefficients M., where v denotes the

ij !
number of coefficients that every lactation trait in the generalised linear model contains. The
matrix of coefficients has u columns, each containing the coefficients of the generalised linear
model for one of the lactation traits, milk yield, protein contents and fat content etc.,

therefore;

éa; a;, - gl
e u
4 — @i ij2 ju
M,;(v u) =% : S u 4.9

e 4
e u
gjijl dij2 dijug

s u)=[s? s3 .. s?] (4.5)
and F(u” u)=diag{s?}. (4.6)

To further generalise this model, al of the q consecutive lactation cycles of anima i as
indexed by j are included in the model. As a result for animal i over al q of its observed

lactation cycles, the model becomes:
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u
0= XM, +E, 4.7
H

q
where Y, (n, " u), vecE{un "~ 1) ~ N (vecO,F Al, ) n=3a n, the number of test days for

=1

animal i during all q lactation cycles observed, X;(n; ~ vq) = diag{ X;} and

D

M, 0
0. 4.8

M;(vq" u) = -
qu

(‘D£> D

The modd can similarly be extended to include all records observed for al animals in the
herd, resulting in the following complete model:
Y=XM +E 4.9

k
where Y (n” u), vecE¢(un” 1) ~ N(vecO,F A1) n=§ n thetotal number of test day over
i=1

al k animals in the herd during all observed lactation cycles, X (n” vgk) = diag{ X ;} and
(4.10)

Often the lactation data available for analysis purposes do not only include information on the
milk yield and composition traits of production on each test day, but also information on other
factors such as parturition date, parity number, season of parturition, age of the mother and
region in which the herd islocated. From the discussion in section 1.5 other researchers have
found that some these factors could significantly influence lactation. As aresult it is therefore
necessary to make provision for this information in the formulation of a lactation model. To
include the factors considered to be possible significant covariates, it was decided to include a
covariate matrix as part of the prior information of the model. Therefore, let Z; denote the

(m” g) matrix of m covariates for animal i.

Because the interests of lactation research focuses on the lactation curves and lactation

characteristics of the individual animals within the herd, this analysis is conducted with
respect to the model of anima i, in other words by considering the model in the form

Y, =X;M, +E,. For analysis purposes the vector form of this model and the covariates
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applicable to the data is considered, with z =vecZ,; denoting the (mq ~ 1) column vector
formed by arranging the columns of Z; into one long column. Similarly for m; (uv” 1) = vec

Mj which then gives the parameters of the model for animal i during lactation cycle j as one
column, with the first set of v rows containing the parameters of the first trait, the second set
of v rows that of the second trait and so forth up until set u. As aresult of earlier work by
Lindley and Smith (1972), Groenewald et a. (1996), Chang et al. (2001), and Groenewald
and Viljoen (2003), the prior distribution of m, is assumed to be

m; |B,S ~ N(Bz,S) (4.11)

where B (uv ™ m) is amatrix of regression coefficients and z;(m~ 1) isthe j-th column of Z;.
i K¢
Further, if m, (uvq "~ 1) = gmil(t---miqq'g represents the column vector of the parameters of
animal i over al the lactation cycles considered, then
m, |B,S,R~N((I,AB)z,RAS). (4.12)
The g~ qmatrix R ={rj} represents the covariances between the model parameters of the

same animal in successive lactation cycleswhen g > 1.

The prior distributions on the other parameters are as follows:

p(B)uL, (4.13)
o s2? (419
€sa1 a
R*~W,((dP),d) (4.15)
and St ~W,((gG)* g) (4.16)

where d, P, g and G are assumed known. Priors (4.13) and (4.14) are the standard Jeffreys
priors for the location and scale parameters, while priors (4.15) and (4.16) have to be proper,

but noninformative. The choice of their parameters will be discussed in Section 5.2.

The full conditional distributions of al the model parameters of interest from which the
margina posterior distributions (conditional on the observed data only) will be obtained by

mears of Gibbs sampling procedure, are derived as follows:
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Supposeyi = vec Yi¢ then, fori=,1, ...,k :

f(m| y;.B,F.SR)

puf(y, |Im,B,F,S,R)xf(m, |B,F,SR)
pepl 30y, - (1, AX )m ) F AL JH(y - (1, AX )m, )

epf- 3(m - (1, ABJz J(RAS)*(m, - (1, Al

" expg— %}mi‘?u Axi‘rgF'lA 1L AX m, - 2mi¢§u Axi¢gF'lA 1)y,

|
mR*As ), - 2m (R As 1, AB) Y

+

uexpgéim(?le x0+(R Ast “ 2m? Ax.T +(R*AS B 5\23
e | 4

Completing the square:
f(m| vy,.B,F,S,R)

é 1 ¢
pexpg ;}ém T A ., O+(R*AS )glg'lAXi(tgyi+(R'1AS'1B)zi%g
%]

& LAX %, 8+ (R Ast)

-1 & TAX %, 8+ RUAS &8 2 Ax By, +(RAS B B2
ol ( b & Ax D+ ) d:
1

A %y +(R*ASB) ggle‘tx%( )E
g x.¢gyI+R AsB) W %H

As aresult the conditional distribution of mj is;

m, |y,.B.,F,S,R~ Né?lAX O ;+(R As )Eig'le‘%y +(RASB), W

g AX X G+ (R A S

u9
gz
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f(B| Y,M,F,S,R)

X
nO f(y, IM,,B,F,SR)xf (M, |BF,S,R)xf(B|F,SR)

i=1

O f(m, [B,F,SR)x (B)

i=1

wOeng 3{m,- (1,4 Bz fRAS) (m, - (1, A BJz Ji

1O

H é)exp[— %{miq(R‘lA S'l)mi - 2m, Q(R‘lA S'lXI A B)zi

: +2%1 ABYRASI, A B)zi}g
quxp -—{ R*ABEB), - 22(R*ABE m }g

wherez (Mg~ 1) =vec Z, is the column vector formed by arranging the columns of

Zi(m” q) into onelong column. Similarly m; (uv " 1) = vec Mj;, where Mij(v " u). Defining

Mi(uv’ q):[mil miq] and reverting back to Z; (m” q):

f(B| Y,M,F,S,R)

povg 14z Rz Bee- 24 2R S8
é | i=1 i=1 u

M expg 1trlB(BlBagZRlz¢Q- zscslalvl Rz,
§ E’)

6 e
wexps 1trfCB- 4 MRz, %R zR1Z,®R Tst
g {8 i=1 €ia g g
® Ko 18 .4U
B-aNRZE zr2% B 2Rz %
i=1 €= g gi= H
So that:
-1 -1
B M. SR-NGZMRZBEZrRZY Bzr1z% asd
. ¢ ¢
8 €i=1 g €=z a9 17
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Also
f(F*Y,M,B,SR)

L
HQOf(y, IM,B,F,SSR xf(F*|M,B,SR)
i=1

1Oy, IM,,B.F,SR)xT(F)

uff)|FA|n'%exp-—(y (L AX)mYEAL Yy - (1,4 X,)m,)
ki "3 ? lg 1 - m\:jx—
| FIF eirg 2§1(Y' XM, F Ay, XMi)H TRl

sG2

k
F| Y.M,B,S,R~IW,gidiag| 3 (¥,
I —

and therefore,
Yok 0
FY,M,B,S,R~ chduagiév XM, - xmgo 2_.
li= %)
Similarly,

f(S* Y,M,B,F,R)

u é‘) f(y,|M.,B,F,S,R)xf(M, | B,F,S,R)xf (S|B,F,R)
X
n O f(M; |B,F,SR xf(S)

1 ORAY e0g 4 - (1,AB)2)(RAS) m - (1,4 ) )}

set]- +(gG)s™ | #
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o et g %ffl R'l(l\7ii - BZ, )(ts;-l(n?ii - BZi)g
-1

R & & U L

so that,
-1

s’ Y,M,B,F,R~ WE%(Mi -BZ,R'(M, - Bzi)¢+geg ,kq+gg_
! 2
And finaly,

f(RY Y,M,B,F,S)

Y
uOf(y, IM,,B,F,S,R)xf(M, |B,F,SR)xf(R|B,F,S)
i=1
X
u O f(M,;|B,F,S,R)xf(R)
i=1

b SUNILL LR Y-

2
etr|- 1(dP)R-2| R #*

uvk kg

w[R 1S Ferg 14 R(w, - 82, )5 (v, - B2 )]
i=1

setr]- 4 (dP)R R

uvk+d g- 1)etrgR'1§ lz}ék (M| _ BZI)¢Sl(MI )+dP
é li=1 [V)m
so that,
.._l 0
R y,M,,BF,S~W, ?g(Mi -B2,)8(M, - BZi)+dP§ wk+d=
li=1 ﬂ
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To summarise;

m| y..B,F,S,R~ Né?lAXq:

?ﬁ AX X 8+ (RTA S

0
o

..'1" O
Bl M,S,R~ NCA M RZ, & riz% Bz riz% As
&ia €i=1 g €z [ &
FYY,M WQ aglaY XM, - x.m, 2 D=
g | i=1 7} 26

M, - BZ,)R*(M. - BZ, ¢+gGU-l,kq+g%
9

-96
- Qox

sY,M,B,R~W,,

1

g

RY Y,M ,B,s~wq§§ (M, - BZ;)

| i=1

.1 0
%s1(m, - Bzi)+dP\2 vk +d

2

X 8+(RMAS )ggt AX By, +(RASB):
ul
b

(4.18)

(4.19)

(4.20)

(4.21)

Estimation of the model parameters for an individual animal follows from (4.17), while

predicting the model parameters of one or more of the q lactation cycles under consideration

for an individua animal i, or mi(fz), given the performance in the h < g previous lactation

cycle, for which the parameters are m® , may now be derived as follows. From (4.12) it is

known that:
m; |B,S,R~N((I,AB)z,RAS).

Therefore the m; may be partitioned as follows

O(uvh 1)

é.fg(wqh

where h=1,...,(q-1),

so that h represents the number of previous lactation cycles considered in the prediction of the

remaining g - h lactation cycles and
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— aeRl(“) AS Rl(h) A Sg(uvh)
RPVAs RIASuv(a-h))

() (ada-n)

Note that if:
ax ¥ ¢
X =§ o=~ N(1S) then
X%
X (2)|X W= X(l) ~N (U(z) + Szlsii (X(l) - p.(l)),Szz- S21Si11812)'
Therefore

mi(f2)|mi(1) :mi(l)* B,S,R

- N(( anAB B)2" +[RY ASIRY AS) (m? - (1, AB)Y),
(RWAS)- (REASIRY As) (RDAS)

(1.0 AB)? + R2l Rll YA m® - (1, A B)ZY),
. "

(RY As)- (RURY R A

(( . AB)z® (R21 uv)(m - (1,AB)Z"), (R, A S)) 4.22)

In the Markov chain Monte Carlo simulationm®" is drawn from m®|y",B,F S, R in (4.17)

with X;®, y!¥ and 2% as applicable to the lactation cycles assumed known. Then m(? is

drawn from (4.22).

Once m? =m@" is drawn, the predictive density follows from the fact that

Y|MF~N(XMFAT)

So the predictive distribution of (q - j) future lactation cycles becomes:

yi(f2)|mi(f2) =m{"F ~N ((I oA Xi(fZ)),ni(fZ)* FAI nf(q-h)) (4.23)

where y(? is of order (un, (q- h)" 1).
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4.2 THE GIBBSSAMPLER

The Gibbs sampler is a highly efficient, computer intensive sampling algorithm that provides
a technique to indirectly generate random variables in the absence of the density using

" with the same

elementary Markov chain properties as base. A sample, YO, ..., Y
distributional form as that of the unknown density is generated provided that al the full
conditional distributions are known and available. When this sample simulated through Gibbs
sampling becomes large enough, i.e. when n becomes large enough, any of the characteristics
of the marginal distribution, such as the mean, variance and others, may be calculated with
great accuracy. It is, however, important to note that although the method generates a sample,
the end result of calculations based on such a sample actually yield population values. In
1984 Geman and Geman showed that the distribution of such a sample of n vaues generated
by means of the Gibbs sampler under reasonably genera conditions, converges to the
marginal distribution of the variable for which the sampling was performed as n ® ¥. In
other words, if we for example consider the mean of f(y) from a simulated sampleY®, ..., YV
obtained by means of the Gibbs sampler then:
n'&%é{ YO =0,y f(y)dy=E(y).

i=1
If the sample size is large enough the claracteristics obtained from it would be that of the

population itself. In this manner even the actua density may be determined.

To explain the Gibbs sampling procedure, consider the two variables U and V with their
respective conditional distributions f(ulv) and f(vju). Through Gibbs sampling the following
sequence of random variables is generated: U@, VO u® v y@ v@A - y® v Thisis
done by first specifying a starting value for one of the variable, say U = u©, and then
iteratively sampling from the two full conditional distributions alternatively as follows until n
sets of random variables have been obtained to form the required sequence of random
variables:
VO~ fvju®=u)  and Ui ~ fuv® =v0))

Casellaand George (1992) noted that the rate of convergence (in distribution) of the sequence
generated determines the socalled “efficiency of the Gibbs sampler”. This convergence may
be handled in a number of different ways in order to find an approximate sample from the
marginal distributions of interest. One method would be to generate k samples of size n by
means of the Gibbs sampler and then using the n™ simulated value from each of the k samples,
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e Y v oy®, which will then, on condition hat n is sufficiently large, form an
independent sample from the marginal distribution, f(y). If k is chosen to be large enough,
f (y) itself or any characteristic there-of may be calculated to the desired degree of accuracy

(Gelfand and Smith, 1990). Gelfand, Hills, Racine-Poon and Smith (1990) noted the
appropriate values of n and k required for convergence would depend on the application
considered at the time and that these values cannot be pre-specified unilateraly. They also
suggested checking for convergence graphically. This is done by simulating a large number
of values through Gibbs sampling and then plotting the data generated for each of the random
variables univariately to see when the simulated values seem to stabilise. Convergence of the
Gibbs sampler was also considered by Wang, Rutledge and Gianola (1993), Roberts and
Polson (1994), Zellner and Min (1995) and many others.

In 1991 Geyer suggested that instead of sampling the n™ or last smulated value from each of
k independently generated sequences, one long sequence may be generated and every " value
from such a sequence may then be extracted to form, on condition that r is large enough, an

independent sample from the marginal distribution, f(y). MacEachern and Berliner (1994)

described another popular approach in using the Gibbs sampler to generate a marginal
distribution. A long sequence of dependent variables are generated by means of the Gibbs
sampler and then the sets variables generated during the first few iterations are discarded as
the so-called “burn-in” period of the process. The result of the remaining iterations is then
used, without any further subsampling, as the marginal distributions for the variables under

corsideration.

As mentioned earlier, the Gibbs sampler is used to obtain the posterior distributions of the
model parameters from the full conditional distributions found in equations (4.17) to (4.21).
To apply the Gibbs sampler to equations (4.17) to (4.21) , starting values in the form of the
least squares estimators were specified for B, F %, S™® and R™, and then the observations m;,
i=1, ..., k, were generated from (4.17). These values of M, together with the starting values
of the other parameters, were then used in turn in (4.18) to (4.21) and then in (4.17) to
generate the second set of observations in the sequence. The result of this second set of
observations in the sequence were then again used in another iteration of the process to
generate the third set of observation in the sequence, and so forth. This is repeated r times,
after which the results of first | iterations were discarded as “burrrin” period, from which it

then follows that in the case of B, for example:

52



f(BIY)» Ly é f.(B|Y,M,F,S,R)

i=l+1

The posterior distributions of any function of these parameters, such as those of the

characteristics of the production curve itself may now be obtained very easily.

43 THE CHARACTERISTICSOF THE LACTATION CURVE

In the case of the Wood model of (2.7) as described in Chapter 2, certain lactation curve
characteristics have been written in terms of functions of model parameters. These

characteristics of the lactation curve of interest are:

total milk yield (kg),

f= (‘)Ogootb exp(a + ct)dt, (4.24)
peak milk yield (kg),

h=(2f exp(a- b), (4.25)
time of peak yield (days),

t=-b, (4.26)

and persistency of production (Wood, 1968),
y =-(b+1)In(-c). (4.27)

For the above quantities the conditional distributions are unspecified, but because they are
functions of model parameters of which the posterior distributions are easily obtained through
the use of the Gibbs sampler, they are still easily obtainable. Note that the above quantities as
givenin (4.24) to (4.27) are of very little value when considering the composition trait curves
such as that of fat and protein, and are therefore only considered in term of milk production.
As a result, the reduced model only containing the parameters relevant to milk yield have to
be considered.

The marginal posterior densities of the mean of each of these characteristics are obtained as
follows. For each set of simulated values of m;; values, i =1, ..., kad j =1, ..., q for milk
yield only as obtained through Gibbs sampling, the value of the quantity under consideration
is caculated. A histogram for the values of this quantity is then constructed. After
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standardising such a histogram to make the area under the histogram equal to one, it is
smoothed by means of Pearson curve fitting. Note that the system of Pearson curves makes
use of the first four moments about the mean to describe the shape of the distribution
according to its location (mean), dispersion (variance), skewness and kurtosis, and then fits
the resulting curve based on these descriptive measures. The resulting curve provides a good

approximation to the posterior of the expected value of the characteristic under consideration.

4.4 HANDLING INCOMPLETE DATA

Initially it was assumed that over a specified period a total of q consecutive lactation cycles
were observed for each animal in the herd. This is, however, often not the case, resulting in
what could be considered as incomplete lactation cycle data. 1n such a case it might happen
that, over the same specified period, test day data might be recorded for some animals over all
g lactation cycles under consideration, while for other animals test day data on only some of

these |lactation cycles are available.

To illustrate the simplest possible case where this could occur, assume that lactation data over
a period that would include at most two consecutive lactation cycles are available. Included
in such a data set are three possible recording schemes of lactation cycle data; 1) lactation
data for animals that were recorded during the first of the two possible consecutive lactation
cycles only; 2) lactation data for animals that were recorded only during the second of the two
possible consecutive lactation cycles, and 3) lactation data for animals that were recorded
during both the consecutive lactation cycles. Therefore, instead of using as notation q
lactation cycles for al animals in the data set, g; = 1, 2 now denotes the number of lactation

cycles under consideration for animal i.

As aresult the matrix R, which represents the covariances between the model parameters of
the same animal in successive lactation cycles only when q >1, is affected by this recording

scheme. All other parameters and their full conditional distributions are only affected with
respect to dimension as q is now replaced by q;, while q= 5 g, are the total number of
i=1

lactation cycles over al animals contained in the data. This affects the degrees of freedom of
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the distribution of S! so that it becomes q + g, to still reflect the number of lactation cycles
in the data set plus the degrees of freedom reflected by g.

The full conditional distributions therefore are:

-1,

m| y,.B.F,S,R ~ NG & A x:%, o+(R As) 1AX % +(Ri'1AS'lB);€9,
| §§ g g Ax &)

g'lePxi%(Ri'lAsl)“g % =1k 4.29)
BMSR~N§aMR zi%lzR z¢; ﬁlzR zwzlAsg (4.29)
FY Y, M, Wé?dlagiél(Y X MY - X M, )tv)zl 2? (4.30)
S Y,M,B,R ~Ww§ié;(|\ﬁi - Bz, )R*(M, - BZ, [+ gGg_l,q+ gg (4.31)

The conditiona distribution of R now becomes dightly more complex due to the fact that the
matrix R; contains the covariances between the model parameters of the sme animal in
successive seasons only when i = 2. Therefore when an animal was recorded over two
seasons R; is of dimension (2 © 2), but when an animal was recorded only in one season R; is

ascaar.
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where M Puv 2, mfu 1), ZM" 2), z{)(m” 1)andr yisascaar. Alsonote that
k> denotes the number of animals recorded in both lactation cycles under consideration, while
ki denotes the number of animals recorded in only one lactation cycle, i.e. either the first or
the second lactation cycle. Similarly, the superscriptsin parenthesisto M, m, Z and z refer to
the parameters and covariate matrices of the animals recorded in both, or in only one cycle.

The subscript in parenthesis to r indicates that this scalar value is applicable to an animal

recorded in only one lactation cycle. However, when g; = 1, anima i under consideration may
have been recorded during either the first or the second of the two possible lactation cycle and

therefore the full conditional distribution of R™*is of the following form:

Lluvk,+ > i gz > v
f(R Hodere tridp +4 (M - B2 s (W3 - Bzfﬁ))k;
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where ky still denotes the number of animals recorded in both the first and second lactation
cycle, while ki1 denotes the number of animals recorded in only one cycle, the first lactation
cycle, and ki, the animals recorded in only the second lactation cycle. As before the same
principle applies to the superscripts in parenthesis for M, m, Zand z In the case of the
subscripts in parenthesis to r, the first subscript indicates that only one lactation cycle has
been recorded, while the second subscript makes reference to which of the two consecutive

lactation cycles is applicable to the animal under consideration.
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However,
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For the hyperparameter P the expansion is
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The joint conditional distribution on the elements of R may now be derived as follows:
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When using the information from al records in obtaining marginal posterior distributions, a
rather complicated sampling scheme is required. The elements of R™* are obtained

individually conditional on certain restrictions based on the values of the rest of the elements
of R"! using the Metropolis Hastings algorithm.
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In the above discussion the simplest of such incomplete data cases was described, but the
principle explained here may be expanded to any number of incomplete lactation cycles in a
data set for a herd observed over a specified period.

45 THE METROPOLIS-HASTINGSALGORITHM

The Metropolis-Hastings algorithm, developed in 1953 by Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller, is a Markov chain Monte Carlo (MCMC) method used to
generate non standard and often complex multivariate distributions through sampling. This
method was initially only used in field of physics, but in 1970 Hastings generalised it to be
more applicable in a statistical setting. It has, however, only really become popular in the
area of Bayesian statistics since the 1990’'s with the increasing availability of computing
power through the use of faster and more powerful computers. The Gibbs sampler described
earlier is a special application of the Metropdis-Hastings agorithm (Gelman, 1992). The
most important feature of the MetropolisHastings algorithm is that it can smulate values
from any distribution for which the analytical form of the distribution is known, without

having any knowledge of the normalising constant of the distribution.

A sample is required from a target posterior distribution, p(q | y), aso known as a probability
mass function. To acquire such a sample, values of q are drawn from approximate
distributions with the samerestrictions as p(q | y) and then corrected to obtain a sample that is
closer in distribution to the target posterior distribution. Sample draws form a Markov chain
as a result of sequential sampling, form a distribution that depends on the last sample value
drawn and converges to a unique stationary posterior distribution. The success of this method
is based on the improvement of the approximate distributions at each simulation step so that
the result converges to the target distribution (Gelman et a., 1995). The algorithm may also
be used in an acceptance-rejection application when the applicable density is in a non-

identifiable form.

To obtain a sample from the target distribution, p(q |y), by means of the Metropolis-Hastings
algorithm, the first step is to select an arbitrary starting value q (9 such that p(q ©] y) >0. Next
fort=1, 2, ... the following iterative procedure is followed to each time update from g €D to

q0:
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1) A candidate point g * is sampled from a proposal density at time t,q * ~ qi(q *jg ¢ ).

- _ 1 p(Z 1yl 2421
2)  Cdculate the following: ?=mnjl, p(?(t_l) | y)‘ql (% EG 1)%
3  Set:

o _1?* with probetilit y ?
~ 129 otherwise

Every time steps 1 to 3 above are performed, one iteration of the procedure has been
performed. In principle the above steps imply that when an observation has been drawn from

the proposal density q(X| %, it is assumed that it originated from p(>| y) with probability r .

An infinite number of possible proposal densities exist that would result in a Markov chain
that converges to the target density. Aslong as the proposal density is symmetric it is evident
that gi(q ¢ Y ]g *) = q4q *|g ¢ -) and therefore the probability with which the new value, g *,
is accepted is the ratio of the dendity ordinate at the new value and the density ordinate at the
current value. The result is that if the new value is “more likely” than the current value the
new value is accepted, else the current value is kept with probability 1 - r . These retained
values ultimately constitute a sample from the target distribution p (4| y).

Many options are available when constructing a proposal density, but the most frequent one
used is the randomwalk proposal where the candidate value is equal to the current value plus
noise: q*=q “V+e,

where e is random vargble symmetrically distributed around zero (Chib and Greenberg,

1995). Thisimplies that the candidate value is selected by perturbing the current value of the
chain a random, while still staying in the neighbourhood of the current value. Once the

candidate value has been generated the probability that it comes from the target distribution is
assessed. The chain will remain at the current value or q ¢ 2 with probability 1 - r if the

posterior value or p(q ¥ |y) is higher, i.e. it will then never generate candidate values where

p@* |y =0

Standard options for use as proposal densties are the uniform, normal and t-distributions,
with the choice usually determined by the parameter space. If the parameter space is, for
example, bounded, the uniform distribution is used, but for the real line as parameter space
the normal or t-distribution are used. One characteristic of the proposal density that deserves
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careful consideration is its variance. If the variance is too large, too many of the poposal
values will not be accepted, resulting in a chain that will remain in one place for too long.

However, if the variance is too small the chain will, as a result of a high acceptance ratio,
move very slowly through the sample space, with high autocorrelation and a small effective
sample size. An acceptable acceptance rate for the proposal valuesis considered to usually be
between 40% and 70% depending on the scenario to which it is applied. The variance of the
proposal density may be adjusted by first running samples of chains to investigate and if

necessary correct the variance of the proposal density in order to adjust the acceptance rate.

Earlier it was mentioned that, for the incomplete data case, the elements of R™ are obtained
individually conditiona on certain restrictions based on the values of the rest of the elements
of R "1 using the Metropolis Hastings agorithm. To now obtain the margina posterior
distributions of each of the elements of R, i.e. r11r »and r 1o, from (4.33) the Metropolis-

Hastings agorithm is employed with the following restrictions that are placed on the values of
these parameters:

(2

ry>—2 (4.34)
I
;2

(> (4.35)
ST

=M1l 2 <P <Ml o (4.36)

These restrictions are necessary to ensure that R remains positive definite and are used to
obtain the specified probability mass functions used in the application of the Metropolis-

Hastings algorithm. For example, when determining the margina distribution
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using this algorithm with the restrictions set out in (4.34) to (4.36), a candidate value, r [, , of

the following form is obtained:

2 2 .

r x r (0]
ro=—>= FEru- —2 Yexp( 2) (4.38)

M2 M2 g

where z is randomly sampled from a uniform distribution in the interval - 0.5 to 0.5. This
candidate value is then accepted with probability

F(ri|r .0, M ,B,S)g
f(rilr 0, M,B,S)g

(4.39)

m'ngia[ ,
The marginal distributions of r ;;and r » are obtained in a similar manner.

In the incomplete data case the full conditional distributions of the model parameters m;
where i = 1, ..., k, B, F* and S™ as specified in (4.28) to (4.31), as well as the joint
conditional distribution of the elements of R as found in (4.33) from which the marginal
distribution of each element of R is determined, is used to obtain the marginal distributions of
the parameters by means of MCMC methods. For m;, i=1, ..., k, B, F *and S™ the Gibbs
sampler is used, while the margina posterior distributions of each of the elements of R is
obtained by using the Metropolis-Hastings algorithm.
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CHAPTER 5

THEWOOD MODEL AND THE JERSEY DATA

5.1 THEJERSEY DATA

The Jersey is one of the oldest dairy cattle breeds in the world. It originated on the British
Isand of Jersey in the English Channel in the late 1700's, but has since as a result of their
adaptability to a wide range of climatic and geographical conditions, spread all over the
world. They are described not only as excellent grazers, but aso as more tolerant of heat than
the larger dairy breeds. One outstanding characteristic of this breed of dairy cattle is that it
produces more milk in relation to its own body weight than any other breed. In most cases
milk production in excess of thirteen times the bodyweight of the animal is recorded during
any lactation cycle. On average an adult female would weigh approximately 400 kg. The
breed is not only considered favourable as a result of its milk production ability, but aso
because of its butterfat production. (Department of Animal Science, Oklahoma State
University, 1997).

The Jersey data used in this study forms part of a larger data set on the lactations of Jersey
dairy cows that was obtained from the Animal Improvement Institute at the Agricultural
Research Council, Irene, Pretoria.  The origina data set contained lactation information on
209 274 lactation cycles. This data file consisted of amost 52 million entries in a total of 31
fields (columns) that included information such as farmer member number, animal
identification number, calving date, age of cow at calving, season of calving, parity number,
test day date, number of times (or days) tested during lactation cycle, number of days from
calving to test day, milk weight in kilograms as measured during each d either two or three
milking session on each test day, the percentage of fat in milk composition, and the
percentage of protein in milk composition. Of the 31 fields in the file, 7 were duplicated,
which leaves 24 unique fields. Given the excessively large size of the data set available, a
more manageable subset was obtained from this data set for Bayesian analysis purposes by
performing severa edits. This would result in a reduction of the time spent on obtaining
results through the computer intensive simulation techniques discussed in the previous

chapter.
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The subset from the above data considered in this study, only include cows recorded during
all four years from 1995 to 1998, with at least eight test day records per lactation cycle for al
four these cycles under consideration. The resulting data set, referred to as the Jersey data
from this point onwards, contains lactation data for 1141 cows recorded on at least eight, but
no more than ten test days during four consecutive lactation cycles from 1995 to 1998. This
resulted in atotal of 37 163 test day records for each of milk yield, protein percentage and fat
percentage in milk composition. Note that each test day milk measure is the sum of the milk
yields measured during either two or three milking sessions on that test day, while for both fat
and protein content in milk composition the average of the milking sessions, averaged by
respective milk yields are considered. The number of days from calving to test day was used
as indicator of at which stage of lactation a lactation record was observed. Additional
information also included in the Jersey data for analysis purposes are parity number, region,

calving year and calving season.

Parities identified in the data ranged from first parity to eleventh parity, of which cows in 515
first parities, 825 second parities, 987 third parities, 1066 fourth parities, 599 fifth parties, 306
sixth parities, 153 seventh parities, 75 eighth parties, 29 ninth parities, 8 tenth parties and only
one eleventh parity occurred in the 4564 lactation cycles observed. To obtain a better balance
among the number of lactation cycles observed in each parity, the seventh to eleventh parities
were combined into one group referred to as parity seven or greater. Animals from seven
different regions were included in the data; these were referred to as regions one to five, seven
and eight. No cows in region six were recorded. Although it is known that all seven these
regions are within South Africa, the Anima Improvement Institute considered the
geographical location of each of these regions to be confidential. The year of parturition,
1995 to 1998, served as an indicator of the lactation cycle under consideration. The season of
parturition was also denoted as belonging to one of six possible two-month seasons, but it was
decided to reduce this to only two seasons by grouping together as season one, the warmer

months October to March, while the colder months April to September occur as season two.

Cows calve throughout the year usually at intervals of at least thirteen months. The lactation
cycle lasts 305 days and starts four days after parturition. Colostrum is secreted during the
first three days and only on the fourth day after parturition the secretion of true milk
commences. To make provision for this, the start of lactation is adjusted so that day one of

the lactation cycle is considered to be on the fourth day after parturition by subtracting 3 days
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form the number of days from calving to test day that is used to determine at which stage of

|actation a lactation record was observed.

5.2 FITTING THEWOOD MODEL

From the discussion on the Wood model in Chapter 2 it is evident that this model is the model
most often used to model lactation in dairy animals, including dairy cows such as the Jersey.
The Wood model assumes that the expected milk yield (in kg/day) of an animal at time t can

be represented over the lactation period by
E(W,) =t"exp(a +ct) (5.1)
where-¥ <a<¥,b>0and c <0. The parameters a, b ad ¢ are unknown and may differ

from one animal to another.

In 1976 Wood showed that this model could also be used to estimate the various milk
composition traits such as fat and protein content in milk yield of dairy cattle. Sakul and
Boylan (1992) found the Wood model to be useful in describing almost all milk composition
traits in sheep breeds, except for lactose content. As a result it was decided to also use the
Wood model to model milk composition traits fat and protein content on which data are
available in the Jersey data. The percentages of fat and protein contained in milk are typically
convex functions over time and therefore the restrictions placed on the model parameters in
order to make provision, when modelling these composition traits, for the convex nature of

these functions over timeareb <0and ¢ > 0, while- ¥ <a <¥ remains.

By assuming multiplicative errors for the model in (5.1) and after performing a natural log

transformation, the observation mode! for the i™ animal is written as;
Yis(tip) =1In Mijs(tijp )) = q + by In(tijp )"‘ Cijstijp T €ijps (5.2

where e, ~i.i.d.N(0,s§), i=1 ..,k j=1 .., g wherefor every animal in the herd a

ijps
total of q lactation cycles are observed, s=1, ..., uwhere u isthe number of |actation traits
observed, and p =1, ..., n; where n; isthe number of test daysfor animal i during lactation

cycle j. For the Jersey data the number of animals is k = 1141, for which q = 4 lactation

cycles each have been observed for the u = 3 lactation traits milk yield, percentage of fat and
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percentage of protein in milk composition and the number of test days for animal i during

lactation cyclej is8 £ n; £ 10 for all values of i and j.
The generalised linear model form of the model for animal i during lactation cycle | as
described in (4.3) for the general caseis:

Yij = XijM i + Eij (53)
where vec Ei(](Snij’ 1)~ N(vecO,FA | r\_). For the Wood model the v = 3 regression

coefficients of the generalised linear form of the lactation model for the it animal during its j™

lactation cycle for the lactation trait indicated by s= 1, 2, 3 are ajjs, bijs Gjs, SO that

) Q@ 3, a
Mij(3 3)= 23.11 b|j2 busu' (5.4
&€ix G2 G

The r-th row of design matrix X, (nq * 3) contains the elements that would return the Wood
model in generalised linear form when multiplied with the matrix of coefficients M

ij 1

X0 = g, (55)

ijr ijr

Note that to make provision for the initial secretion of colostrum, timet would be measured

from day 4 after parturition, i.e. on day 4 after parturitiont = 1.

For animal i over all q = 4 lactation cycles observed,

(5.6)

M (127 3)_§M G (5.7)

From the earlier discussion it follows that the additional information available in the Jersey
data, which are the factors parity number, region, calving year and calving season, has to also

be included in the model. This is done by means of the covariate matrix z;(17 * 4) for thei™
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animal, which is then used as described in section 4.1 of Chapter 4. A full description of how

this covariate matrix Z; is oltained for each animal follows in section 5.3 below.

Aswas mentioned earlier, q = 4 lactation cycles, one for each of the years 1995 to 1998 were
observed for al 1141 anima in the Jersey data. As a result the matrix R, containing the
covariances between the model parameters of the same animal in successive lactation cycles

now has the following form:

1 N Tz U

r r r,.u

12 T Toz Togy
G- (5.8
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Through the use of the Gibbs sampler as described in section 4.2 of Chapter 4 and the full
conditiona distributions of all the model parameters of interest as set out in equations (4.17)
to (4.21), the margina posterior distributions conditional on the observed data only were
obtained. The hyperparameters P and G required to generate margina distributions for S*
and R, were taken as the moments estimators from the sampling distributions of S and R,

with degrees of freedom as small as possible, d =4and g = 10.

Applying the sampling approach suggested by MacEachern and Berliner (1994) the Gibbs
sampler was put through a “burnrin” period of 2000 simulation iterations, after which 10 000
sets of parameters were generated and kept using equations (4.17) to (4.21). This required
simulating from normal and Wishart distributions only. The distributions of M; and B were
obtained by sampling from two normal distributions, which is arelatively simple procedure in
Matlab. This required generating samples from the standard normal distribution that were
then transformed to be normally distributed with the appropriate meanand standard deviation.
The distributions of F ™, S* and R' were generated from their respective Wishart
distributions. To explain how this was done, it is assumed that the variable of interest has a
Wishart distribution with parameter A and degrees of freedom j . To sample from this
distribution a random matrix H from a standard normal distribution with the same number of
rows as the parameter matrix A and number of columns equal to j , is generated. The matrix

square root of A is then multiplied with this random normal matrix H just generated in the

previous step. The result of this, ATH , is then multiplied with its transpose to obtain a
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simulated parameter matrix, ATHH (A';/, from a Wishart distribution with parameter A and
degrees of freedom j .

Due to both speed and storage constraints posed by Matlab, only the 10 000 sets of parameters
generated for B, F 1, STand R were stored. This was done because it is possible to
regenerate the parameters contained in M;, i = 1,..., 1141, with relative ease by either
obtaining the product BZ;, where Z; is the covariate matrix applicable to animal i or by
regenerating through Gibbs sampling the parameters of M; only using the 10 000 stored
parameter matrices B, F %, STand R. This resulted in storing just over 41 million less

parameter values than what otherwise would have been the case.

5.3 THE COVARIATE MATRIX Z

In the Jersey data additional information available on various other factors that could possibly
have a significant influence on lactation, is provided. These factors, referred to as cofactors,
are parity number, region, calving year and calving season. The parity numbers in the data
range from 1 to 7 or greater, regions under consideration are 1to 5, 7 and 8, calving years are
1995 to 1998, and calving season are warm season and colder season. To include this
information on the cofactors in the model a covariate matrix Z; for the i animal has to be

constructed.

The additional information on these cofactors s trandlated into a covariate matrix Zj(17 "~ 4)

for each animal i with atotal of m = 17 covariates for each of the q = 4 lactation cycles. To

explain how this covariate matrix is structured, we consider Zi = [z1 Z» z3 Z4] Where
z;(17 " 1) for j = 1,...,4 form the column vectors of covariates for animal i over each of its 4
lactation cycles. In the vector zz1, for example, the first element or z11 is always a constant, 1.
Elements two to seven of this vector are used to identify the parity number. If the animal isin
the first parity al seven these elements are set at zero, for an animal in second parity Zig IS
equal to 1 and z15t0 Z15 are set at zero, for an animal in third parity zig is equal to one, but
Z1gand Z1410 Z17 are set at zero and so forth. Elements eight to thirteen of z, are used to
identify the region in which the animal is found. As was the case with parity number z 5 to

z143 Will all be set at zero if the applicable region is region 1, for an animal in region 2 z1s
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would equal one, while z19t0 z123 are al set a zero, and so forth. Similarly, elements 14 to
16 are coded as one and zeros to identify the calving year, with all elements set at base level
zero for 1995. The final element of such a vector is used to distinguish between the two
seasons, with z;47 equa to zero if the calving season for the animal under consideration is
during the warmer months and z;47 equal to one otherwise. Note that in each case the
number of covariates required to distinguish among the different levels of each possibly
significant cofactor is one less than the number of possible cofactor levels. For a particular
cofactor, by setting all covariates equal to zero, the so-called base level of this cofactor is
obtained. The base levels of these cofactors are parity 1 for parity number, region 1 for region
of occurrence, 1995 for year of calving and warmer season for season of calving. A typical

example of such a covariate matrix would be:

Z,(17" 4)= (5.9)

PRSI SHPIIBBBBB R
POOFRPROOOORrRrROOOOOORE
OORrRPROOOOORrROOOO0OOrOoOr
=
<

from which it is evident that this animal, which occurred in region 3, was in its first parity
during 1995, when it calved in the warmer season; in its second parity during 1996, when it
also calved in the warmer season; in its third parity during 1997, when it this time round
calved in the colder season; and in its fourth parity during 1998, when it again caved in the

colder season.

54 THERESULTSOF THE GIBBSSAMPLER

To illustrate the stability of the result obtained, after convergence, when 10 000 sets of
parameters have been generated through Gibbs sampling, the following scans of randomly
selected elementsof B, F , S and R are considered.
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Figure5.1: Scans of ninerandomly selected elements of the regression matrix B for the

10 000 simulationsretained.

From the result presented in Figure 5.1 it is evident that after convergence the parameters
generated are stable. Some of the parameter values, such as bg 11, display slower cyclical
movement through the simulated sample space, but are still relatively stable with respect to
the interval in which it varies.

From Figure 5.2 that follows it is aso clear that the elements on main diagonal of the diagonal
matrix F are stable for the 10 000 sets of parameters retained from the Gibbs sampler.
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Figure5.2: Scans of the three elements on the main diagonal of the matrix F for the

10 000 simulationsretained.
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Figureb5.3: Scans of nine randomly selected elements of the covariance matrix S for the

10 000 simulations retained.
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Figure5.4: Scansof four randomly selected elements of the covariance matrixR for the
10000 simulationsretained.
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From both Figures 5.3 and 5.4 it is seen that, although some of the parameter values display
slower cyclical movement through the simulated sample space, all results of parameters
contained in these covariance matrices are till relatively stable with respect to the interval

within which they vary.

Aswas described in Section 4.2, to apply the Gibbs sampler, starting-point values in the form
of the least squares estimators were specified for B,F %, S* and R™. These were considered
to result in good starting-point values for the Gibbs sampler. Upon further investigation,
however, it was discovered that, as a result of the high efficiency of convergence of the
method, “worse” starting point values also resulted in relatively quick convergence of the
parameters obtained through Gibbs sampling. To illustrate scans of the initial simulations
from starting-point values of the four parameters, b1y, S3,Sisand r p, are considered in Figure
5.5.
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Figureb5.5: Convergence obtained for the parameters by, S 3 Sisand r p using different

starting point values

For each of the parameters in Figure 5.5 either four or five different starting-point vaues, all
“worseg’ than their least squares estimators, were used to illustrate the rate of convergence.
For bj; convergence occurred very quickly in all cases, while for the other parameters
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considered convergence took slightly longer. Depending on the quality of the starting-point
value for the same parameter some simulation cycles converged faster than others as is
evident in the case of Sig where the smallest starting values required a greater number of
simulations (approximetely 70 iterations) than any of the others to converge. The other
starting-point values used for Sis seem to already converge after about 20 iterations. The

slowest convergence in the above was obtained for the parameter r .

From the marginal posterior distributions of the elements of the regression matrix B (9 = 17)
that represents the effects of the covariates on the parameters of the three lactation trait
curves, milk yield, percentage of fat and percentage of protein in milk composition, the effects
of the covariates on these parameters can be assessed. It isimportant to remember that not all
covariates apply to al animals. The matrix Z; is responsible for the identification of the
covariates relevant to the i animal. If we consider the example of the matrix Z; given in (5.9)
above, it is evident that only the effect of those covariates to which a one was awarded in the
covariate matrix is relevant to this animal. By multiplying the regression matrix B and the
matrix of covariates Z;, the effects of relevant regression matrix elements applicable to animal
i is extracted and added. The first column of the regression matrix B contains the base level
effects on the parameters of the three lactation trait curves, while the remaining columns
contain the “added” effect on the parameters of the three lactation traits as a result of each of
the covariates. The base level effect would be the effect on the parameters resulting from
base level settings of the covariate matrix Z; as described in Section 5.3 above. By
determining the product BZ;, the sum of the base level effect and the additional effects of the
covariates on the nine parameters of the three traits for animal i for the covariates identified
by Z;, is determined.

From the 90% highest posterior density (HPD) intervals, 92 of the 153 the elements of the
regression matrix B significantly affect the parameters of the three lactation trait curves milk
yield, percentage of fat and percentage of protein in milk composition. All nine base level
effects contained in B are significant. It is aso worth noting that the effects of al other
covariates on the parameters of the trait curves are significant for 2 or more parameters. The
matrix B given below contains the mean of the 10 000 simulated matrices, with all values
indicated in red representing the mean elements of this regression matrix for which the 90%
HPD intervals indicate that the corresponding covariate significantly affects the parameters of

the lactation trait curves.
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B¢=| 269719 1,33862 1,24774 0,02520 0,01180-0,01328-0,00144 0,00068 0,00078
0,20146 0,04852 0,06972 0,00507-0,00748 -0,01462 -0,00078 -0,00003 0,00013
0,22380 0,06645 0,07129 0,02434-0,01452 -0,01482 -0,00114 -0,00001 0,00012
0,21055 0,08431 0,09155 0,03666-0,02213-0,02057 -0,00132 0,00003 0,00016
0,15873 0,06926 0,08485 0,05264-0,02124-0,01794 -0,00147 0,00002 0,00011
0,22507 0,10066 0,07582 0,03940-0,02881 -0,01559 -0,00147 0,00000 0,00007
0,12498 0,02311 0,09938 0,05711-0,01315-0,02314-0,00158 -0,00004 0,00013
-0,10789 0,05630 -0,00462 0,04777-0,01594 -0,00334 -0,00043 0,00001-0,00005
0,01491 0,03874 -0,00029 0,02974-0,00874 0,00368 -0,00030 -0,00001-0,00018
-0,21668 0,01849 -0,01374 0,06927-0,01317 -0,00251 -0,00046 0,00001-0,00011
-0,09654 -0,02324 -0,02018 0,06980 0,00963 0,00345 -0,00079 -0,00018-0,00015
-0,14731-0,15891 -0,03259 0,07252 0,06206 0,01413-0,00031 -0,00093-0,00038
0,02310 0,05038 -0,03588 0,01279-0,03021 0,00733 0,00016 0,00019-0,00015
0,02474 0,01182 -0,00206 -0,01793 0,00064 -0,00608 0,00032 -0,00008 0,00012
0,04081 0,00889 0,02543-0,00725 0,00867 -0,00805 0,00019 -0,00008 0,00008
0,07293 0,04018 0,00992-0,01134 0,00041 -0,01697 0,00008 -0,00008 0,00025

| -0,24694 0,13489 0,10385 0,09104-0,03034 -0,02288 -0,00109 0,00011 0,00004

No single covariate could therefore be removed from the model, although it is possible that,
for one or more of the parameters of a specific animal, the “added” effects as a result of the
covariates added to the base level effect could be very small or in some cases even
insignificant.

Once the Wood model had been fitted to the Jersey data and the marginal distributions of the
parameters obtained by means of Gibbs sampling, the various aspects of interest in the
lactation data of the Jerseys may be investigated. One of the method employed as part of the
investigation is the construction of highest posterior density (HPD) intervals, not credibility
intervals, for the expected lactation trat curves. It should be noted that, in some cases, the
posterior distributions are very diffused so that 95% HPD intervals are of little practical value.
In those cases the 90% HPD intervals are reported.

5.5 THELACTATION TRAIT MILK YIELD

The Wood model, which is of the form E(W, ) =t"exp(a + ct), was fitted to the Jersey data to

model the lactation process. Once the 10 000 ssimulated M; matrices for each animal i over al
four its lactation cycles have been obtained, the lactation curve or milk yield curve for any
animal i during each of its four lactation cycles for each of the 10 000 simulations can be
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obtained. The mean of the 10 000 lactation curves generated for each lactation cycle in this
manner gives the expected lactation curve for animal i in each lactation cycle. As a result of
not being able to store the 10 000 sets of the parameters contained in M; (12 ~ 3) for i =
1,...,1141, these values have to be redetermined. Two aternative methods to do this exist.

Alternative 1, the fastest and simplest of the two, is to estimate the parameters contained in
Mi (9" 4) through calculating BZ; for each of the 10 000 simulated B(9 " 17) matrices, using

the Zi (17 ~ 4) relevant to animal i. Alternative 2, slightly more cumbersome athough
probably more accurate, is to use each of the 10 000 simulated matrices B,F *, S*and R,
together with the matrix Z;j (17 ~ 4) relevant to animal i, to again smulate by means of the
Gibbs sampler the elements of M; for 10 000 simulation iterations. This means that only the
matrix M; has to be generated using the Gibbs sampler described in section 4.2 of Chapter 4,

as al other parameter matrices from the 10 000 original simulation iterations are available.
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Figureb5.6: For each of the four lactation cycle of Animal 135 the expected lactation
curve is given by —, its 90% HPD interval by - - and its 90% prediction

interval by - - . Theleast squares estimate of the lactation curve is given by
——. Theobserved datafor Animal 135is given by

Using the second alternative to regenerate 10 000 M; matrices through Gibbs sampling for
two animals ( = 135 and i = 511), the estimates of the model parameters for milk yield
contained in the 10 000 simulated M; matrices for each of i =135 and i = 511 were used to
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determine 10 000 lactation curves for each animal. The mean of the 10 000 lactation curves
for each of the animals i = 135 and 511 gave the expected lactation curve for that animal.
These expected lactation curves for each d the four lactation cycles are represented as a black

solid line in Figures 5.6 and 5.7 for the two animals under consideration.
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Figureb.7:For each of the four lactation cycle of Animal 511 the expected lactation
curve is given by— its 90% HPD interval by - - and its 90% prediction
interval by == . Theleast squares estimate of the lactation curveis given by
—. Theobserved data for Animal 511 isgiven by

In Figures 5.6 and 5.7 the green line represents the observed |actation yield values connect by

straight-line segments for the test day records of the four lactation cycles. The red line is the

result of least squares estimation of the lactation curve fitted to the data in a frequentistic
context through linear least squares regression, after a log transformation had been performed
on the data. The magenta coloured broken lines provide the 90% HPD intervals for the

expected lactation curve during each lactation cycle. The blue broken lines in turn represent a

90% prediction interval for the expected lactation curve during each lactation cycle. The 90%

prediction intervals were obtained by first finding the 10 000 lactation yield curves that would

result when obtaining the product X, M, for each of the 10 000 simulated M; matrices and the
design matrix X; relevant to animal i. The predictive density then follows from the fact that

YIMF ~N(XM, FAI) (5.10)
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As a result a predictive matrices Y," is simulated from a normal distribution of the form
denoted in (5.10) for each of the 10 000 means, X;M;, and variances, F Al,. The

predictive matrices in Y;" referring to lactation yield only are then used to construct 0%

HPD intervals for these predictions. These intervals are graphed as the 90% prediction
intervals for the animals under consideration.

The least squares estimate of the milk yield curve for the fourth lactation cycle of animal 135
takes on an atypical from, so too does the least squares estimate of the milk yield curve for
both the second and fourth lactation cycle of anima 511, but in al three the afore mentioned
cases, however, the Bayesian curve estimate of the expected milk yield is not atypical. This
illustrates the ability of this method to reduce the number of atypical curves fitted to the herd.
This reduction of atypical curves follows from the incorporation of information from the rest
of the herd as a result of the inclusion of the other parameters estimated for all animalsin the
estimation process through the Gibbs sampler. Although the matrix M; estimates the
regression coefficients relevant to animal i only, to estimate this matrix the Gibbs sampler
requires that information from the whole herd be included in the conditional distribution of M;
through the parameters matrices B, F ™, S* and R™ contained in it. The values of these

parameter matrices are also continually updated with every iteration of the Gibbs sampler.

However, it most often happens that we are interested not in the expected lactation or milk
yield curve of a particular animal, but rather in the expected lactation curve of the herd with
respect to one of the levels of a certain cofactor. For example, interest may be focused on the
expected lactation curve for one of the seven parity groups. Instead of calculating BZ; for
each of the 10 000 simulated B matrices using the Z;j(17 "~ 4) relevant specificaly to animal i
as was suggested in Alternative 1 above to obtain M; for that specific animal i, Z; is replaced
with z*(17 “ 1) which only considers the various levels of the covariates for the one cofactor
of interest and eliminates all other cofactors by taking the averages over the levels of these
other cofactors as the values of their covariates in the vector z*. No distinction among the
four lactation cycles are now required because interest is now focused on alevel of one of the
cofactors only irrespective of lactation cycle, alowing, therefore, for a reduction in the
number of columns contained in z* to only one instead of the four contained in any of the
matrices Z;,i=1,...,1141 .

If, for example, the expected milk yield curve of parity 3 has to be determined, the cofactors

regions, calving year and calving season have to be averaged over their respective levels.
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Because the cofactor “region” has 7 levels, the average effect of each of its cofactor levels

would be 1, and therefore the levels of the 6 covariates used to identify the 7 cofactor levels
areset equal to < in order to average out its effect. Similarly for the cofactor “calving year”,

which has 4 cofactor levels identified by 3 covariates, the average effect of 1 isassigned to

4
each covariate level to average out the effect of this cofactor. For the cofactor “calving
season” with its 2 cofactor levels, the covariate used to identify its levels has to be assigned a

1 to average out its effect. To identify parity 3 in the covariate vector z* a one is lill, as

before, assigned to the second covariate, while al other parity covariates are set at 0. This

implies that to determine the expected lactation or milk yield curve of parity 3:
7=flL0100004 4433341444

7 7

ENT

Using z* and each of the 10 000 ssimulated B matrices, 10 000 vectors

m¢ = Bz* (5.11)
are calculated. The parameter values contained in m ° related to milk yield are then used to
construct the 10 000 lactation curves for the cofactor of interest. The mean of this set of
10 000 lactation curves then provides the expected lactation curve for a particular level of the
cofactor of interest, in this case parity 3 of the cofactor parity, after all other cofactors have
been eliminated.

In Figure 5.8 below the expected lactation curves together with the 95% HPD intervals for
four of the seven parities when the other cofactors, “region”, “calving year” and “calving
season”, have been averaged out, are given. Note that these curves are now valid with respect
to the herd under consideration and do not refer to a specific animal. From this result it seems
asif the lowest level of peak milk yield in this herd is attained in the first parity, with a sharp
increase in peak milk yield from first to second parity, after which a steady increase is
maintained until about the sixth parity, when peak milk again seems to start declining. The
flattest lactation curve with lowest total milk yield seems to occur during the first parity,
raising the suspicion that this parity is most persistent. It aso appears as if the time of peak
milk yield is later during the first parity than during subsequent parities.

When considering the expected lactation curves together with their 95% HPD intervals in
Figure 5.9 for regions 1, 4, 5 and 7 when the other cofactors have been averaged out, it seems
evident that there are differences among the regions with respect to level of peak milk yield
and time of peak milk yield. Total yield in region 7 also seems higher with greater variability
because of the much wider 95% HPD interval boundaries when compared to other regions.
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Figure5.8: Expected lactation curves with 95% HPD intervals for parities 1, 2, 6 and
7 or greater when other cofactorshave been averaged out.
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Figure5.9: Expected lactation curves with 95% HPD intervalsfor regions 1, 4, 5and 7
when other cofactor s have been aver aged out.
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When comparing the expected lactation curves in Figure 5.10 for the four years under
consideration after the other cofactors have been averaged out, it is evident that peak yield in
1996 was much lower than during any other year, but it seems as if very little differences
occurred among the four years with respect to time of peak yield.
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Figureb5.10: Expected lactation curves with 95% HPD intervals for 1995, 1996,

1997 and 1998 when other cofactor s have been averaged out.

From Figure 5.11 in which the expected lactation curves with 95% HPD intervals for the two
seasons are displayed, it is clear that dur ing the cooler months of Season 2 peak milk yield,
although attained dlightly later, occurs at a higher level than is the case in Season 1. Tota
milk yield would be greater during the cooler months.

Season 1: Oct-Mar
25 25

20 &\ 20
\\

Season 2: Apr-Sep

(=2]
4
15 15
\ \
10 10
0 100 200 300 0 100 200 300
Figure5.11: Expaysedioaaaaidn curves with 95% HPESiRterea#sTor seasons 1 and 2

when all other cofactors have been averaged out.
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To confirm the above and other suspected results, it is necessary to further investigate the
lactation curve characteristics as specified by Wood (1967) and givenin equations (4.24) to
(4.27) in Chapter 4.

551  Expected total milk yield

For the Wood model total milk yield was defined as f = (‘)jootb exp(a + ct)dt. Asexplained

in Section 4.3 in Chapter 4, by using the 10 000 simulated M; matrices for each animal i over
al four its lactation cycles, it would be possible to calculate this value f for each animal i
during each of its four lactation cycles for each of the 10 000 simulations. As mentioned
before not being able to store the 10 000 sets of the parameters M;, i = 1,...1141, requires
either as first alternative estimating the parameters contained in Mi through calculating BZ;

for each of the 10 000 simulated B matrices, using the Z; relevant to animal i or as second
alternative regenerating M; through Gibbs sampling as described earlier in Section 5.5. After
reconstructing the 10 000 sets of the parameters contained in Mi , the total milk yield for an

animal i may be determined for each of these sets of parameters. Once 10 000 values of total
milk yield is obtained for anima i during a particular lactation cycle, a histogram is
constructed for these values of f and a Pearson curve fitted to the histogram to determine the

marginal posterior density of expected total milk yield.

As was the case with the expected lactation or milk yield curve, it most often happens that we
require the expected total milk yield with respect to one of the levels of a certain cofactors,
rather than the expected total milk yield of a particular animal. If this is the case, usng z*

constructed as explained earlier in order to average out the other cofactors, together with each
of the 10 000 smulated B matrices, 10 000 vectors m°are obtained using equation (5.11).

The parameter values for the lactation trait milk yield only as contained in m ©are then used to
obtain 10 000 values of total milk yield, f , where only one level of the particular cofactor of
interest applies to the result, while al other cofactors have been averaged out through the use
of z*. As before, a histogram is constructed for the values of f and a Pearson curve fitted to
the histogram to determine the marginal posterior density of expected total milk yield for that
cofactor level of interest. If this is done for each of the seven parity groups, the margina

posterior distribution of expected total milk yield for all seven parities are as follows:
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Figureb5.12: Expected total milk yieldsfor the seven paritieswhen all other cofactors
have been averaged out.
To investigate the differences in expected total milk yield for the seven parities when the
other cofactors have been averaged out, 90% HPD intervals for the differences in expected
total milk yield when parities are compared two at a time, were constructed. Such HPD
intervals are obtained by sorting the results from the calculation of the differences in total
milk yield for two levels, say iand j, of the cofactor, or f ; - f;, in ascending order and then
finding, as the lower and the upper limit of the 90% HPD interval respectively, the values in
positions 500 and 9 500 for the 10 000 sorted values of f ;- f ;. The result of this investigation
is summarised in Figure 5.13 below, where solid lines under parity numbers indicate groups

of parities for which no significant differences in expected total milk yield were found.

Parity number
1 2 3 7 4 5 6

Figureb.13: Summarised result of the comparison of expected total milk yields for
the seven paritiesusing 90% HPD intervalsfor differences.

Usually, when such comparison through the use of HPD intervals for differences is

graphically illustrated in this manner, the sequence in which the compared characteristics

occur is the same as that of the means of the marginal posterior distributions when listed in

ascending order. If this had been the case for the parities in Figure 5.13, the sequence would

have been parity 1, 2, 7 or >, 3, 4, 5, and 6. This is, however, not the case here. The
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difference in the order in which the parities are listed in this illustration occurs as a result of
the influence of the variances of the margina posterior distributions of the expected total milk
yield for the seven parities.

From Figures 5.12 it is evident that total milk yield in the first parity is the lowest as
suspected earlier when the expected lactation curves were considered, but that it gradually
increases with increasing parity number up until about the fourth parity, after which total milk
yield remains relatively stable until the sixth parity. A decline in total milk yield was then
recorded for parity seven or greater. As could be expected Figure 5.13 shows that no
significant differences occur among the total milk yield levels of parities 4, 5 ard 6, but
surprisingly at the 90% HPD level parity group 7 or > also do not significantly differ from the
afore mentioned parities. Although the total milk yield in parity 3 differs significantly from
that in parities 4, 5, and 6, there is no significant dfference on the 90% HPD level between
parities 3 and 7 or >. Parities 1 and 2 differ significantly from all other parities on this level.

Using the same method as explained above, the expected total milk yields for the different
levels of the other cofactors were also investigated. In each of these cases the levels of the
cofactor that were of no interest were averaged out in order to obtain the expected total milk
yield for the level of the particular cofactor of interest. To average out the effect of the
cofactor “parity” with its 7 levels, the 6 covariates used to identify its levels had to be

i 1
assigneda 4.
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Figureb.14: Expected total milk yields for the seven regions when all other cofactors
have been averaged out.
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Region
1 4 2 8 3 5 7

Figureb5.15: Summarised result of the comparison of expected total milk yields for
the seven regionsusing 90% HPD intervalsfor differences.

The graph in Figure 5.14 a so shows that the expected total milk yields are not the same in the
seven regions. The lowest expected total milk yield resulted in region 1, while not only the
highest expected total milk yield, but also the one with the greatest variability was found in

region 7 as was suspected when the expected |actation curves for the regions were considered.
From Figure 5.15 it is seen that no significant difference in expected total milk yield occurred

between regions 1 and 4, regions 2 and 4, and among regions 3, 5, 7 and 8.

When considering the expected total milk yields for the four calving years, Figure 5.16 shows
the lowest expected total milk yield to be that of 1996, while 1997 resulted in the largest
value, with 1998 much the same as that of 1997. Figure 5.17 confirmed that 1997 and 1998
do not significantly differ with respect to expected total milk yield, but also that 1995 and

1996 are not significantly different from one another in this respect.
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Figureb.16: Expected total milk yields for the four calving years when all other
cofactor s have been averaged out.

Years
1996 1995 1998 1997

Figureb.17: Summarised result of the comparison of expected total milk yields for
thefour calving yearsusing 90% HPD intervalsfor differences.
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x 107 Expected total milk yield: Seasons

T T
e Oct-Mar

. /\ /\ e Apr-Sep

5 AV
4 VAR

2 /AR
1 /AN
/

0
4800 4900 5000 5100 5200 5300 5400 5500 5600 5700
Kg

Figureb.18: Expected total milk yields for the two calving seasons when all other
cofactor s have been averaged out.

The densities in Figure 5.18 show, as suspected when the expected lactation curves of the

seasons were considered, that higher expected total milk yield was found in the cooler months

than in the warmer months. The result of the 90% HPD interval for the difference between

the two seasons was [57,2038 ; 178,2050], indicating therefore that a significant difference

in expected total milk yield during the two lactation season considered does exist.

55.2 Expected peak milk yield

As mentioned earlier, Wood defined peak milk yield ash =(— %)b exp(a- b). To investigate

expected peak milk yield for the various levels of a cofactor, the same approach as explained
above for expected total milk yield where the effect of the other cofactors are averaged out, is
used.

Expected peak milk yield for the seven parities in Figure 5.19 was found to indeed be lowest
in the first parity after which there is an increase in expected peak milk yield with every parity
up to the sixth parity. Only in parity 7 or > did the expected peak milk yield again decrease to
more or less the same level as that of parity 3, athough with greater variability. Figure 5.20
shows that parities 1 and 2 are significantly different from all other parities with respect to
expected peak milk yield, while parities 3 and 7 or >, parities 4, 5 and 7 or >, and parities 4, 5
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and 6 do not differ significantly when the 90% HPD intervals for the differences between
parities are considered.

Expected peak milk yield for seven parities
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Figureb5.19: Expected peak milk yields for the seven parities when all other
cofactor s have been averaged out.

Parity number
1 2 3 7 4 5 6

Figurebh.20: Summarised result for the comparison of expected peak milk yields of
the seven paritiesusing 90% HPD intervalsfor differences.
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Figureb.21: Expected peak milk yieldsfor the seven regions when all other cofactors
have been averaged out.
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Region
1 4 2 8 7 3 5

Figureb5.22: Summarised result of comparison of expected peak milk yields for the
seven regionsusing 90% HPD intervalsfor differences.

In Figure 5.21 it is evident that there are the differences among the regions with respect to
expected peak milk yield. The lowest and least variable of the expected peak milk yields
occurred in region 1, while the highest expected peak milk yield resulted in region 5. Region
7 a relaively high expected peak milk yield with the largest of variance al regions. From
Figure 5.22 it is seen that the expected peak milk yield in regions 1 and 4, regions 2 and 4,
regions 2, 7 and 8, and regions 3, 5 and 7 do not differ significantly.

From Figure 5.23 that considers the expected peak milk yield for the four yearsit is seen that
there are considerable differences among the four years with respect to peak milk yield, 1996
having the lowest expected peak milk yield. Upon further investigation of these differences
using 90% HPD intervals for differences between expected peak milk yields of years, in order

to compare expected peak milk yield for the four years in pairs, al differences between years
proved to be significant.
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Figureb.23: Expected peak milk yields for the four calving years when all other
cofactor s have been averaged out.
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The result obtained when comparing the expected milk yields of the two seasons for which
the margina densities are given in Figure 5.24 aso indicated significant difference between
the two seasons, with April to September indeed having higher expected peak milk yield.
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Figureb.24: Expected peak milk yields for the two calving seasons when all other
cofactor s have been aver aged out.

553  Expected time of peak milk yield

From the Wood modd it follows that time of peak yield is defined ast =- 2. To study

[
expected time of peak yield for the herd at various levels of a certain cofactor, the approach
explained earlier for expected total milk yield was again used. The effect of cofactors that are
of no interest at a particular time is, as before, averaged out through the use of the covariate

vector ¢ asexplained earlier.

Expected time of peak milk yield was found in Figure 5.25 to be latest in the first parity, as
mentioned when the expected lactation curves for parity were considered, and earliest in the
second parity after which it becomes gradually later with each parity up until the fifth parity.
Expected time of peak yield for parity 6 was midway betweenthat of parities 3 and 4, while
that of parity 7 or > is similar to parity 5. Note that parity 1 has the greatest variability with
respect to expected time of peak milk yield. From Figure 5.26 it is seen that parities 2, 3, 4
and 6, parities 3, 4, 6 and 7 or >, and parities 1, 5 and 7 or > do not differ significantly with
respect to expected time of peak milk yield.
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Expected time of peak milk yield for seven parities
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Figureb.25: Expected time of peak milk yields for the seven parities when all other
cofactor s have been averaged out.

Parity number
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Figureb.26: Summarised result of comparison of expected time of peak milk yields
for the seven paritiesusing 90% HPD intervalsfor differences.
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Figureb.27: Expected time of peak milk yields for the seven regions when all other
cofactor s have been aver aged out.
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From the comparison of the marginal posterior distributions of time of peak milk yield using
90% HPD intervals of differences between time of peak milk yield for regions, it follows that
region 1 differs significantly from all regions except region 8. Further more, as could be
expected regions 2, 3, and 8, regions 2, 5, and 7, regions 4, 5, and 7, and regions 5, 7 and 8 do
not differ significantly with respect to expected time of peak milk yield. Region 8 only differs
significantly from region 4 on the 90% HPD level, which is more as a result of the variance of
the distribution of region 8, than because of its location parameter. It was not possible to
graphically summarise the result of comparison of expected time of peak milk yields for the
seven regions by means of a line diagram as was done above, because of the influence of the
variances of the above marginal posterior distributions. As was mentioned earlier the
seguence of regions in such a diagram would normally be the same as that of the means of the
margina distributions when sorted in ascending order. Here large differences in variances of
the marginal posterior distributions make this of form of illustration impossible, as it is not

possible to arrange the regions in any illustratable order.

Expected time of peak milk yield: Years (1995-1998)
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Figureb.28: Expected time of peak milk yields for the four calving years when all
other cofactors have been averaged out.

Years
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Figureb.29: Summarised result of comparison of expected time of peak milk yields
for thefour calving yearsusing 90% HPD intervalsfor differences.
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From Figures 5.28 and 5.29 it follows that only 1997 and 1998 differ significantly with
respect to time of peak milk yield. Furthermore, when Figure 5.30 is also considered greater
distributional differences seem to occur between the two calving seasons than among calving
years with respect to expected time of peak milk yield. As was suspected when the expected
lactation curves for the two seasons were considered, expected peak milk yield occurs later
during the cooler months of April to September.

Expected time of peak milk yield: Seasons
0.35

T
e Oct-Mar
—— ApDr-Sep

A A
/ ||
[\ ||
\
0 Y,

20 25 30 35 40 45 50 55 60
Days into season

Figureb.28: Expected time of peak milk yields for the two calving seasons when all
other cofactor s have been averaged out.

554 Expected persistency of lactation

The Wood definition of persistency of lactation isy =-(b+1)In(-c) and is said to describe
the ability of an animal to maintain peak milk yield. The expected persistency d lactation for
the various levels of a cofactor is again investigated using the same approach as described
earlier for expected total milk yield, where the effect of the other cofactors are averaged out

using the appropriate form of the covariate vector z* as previously explained.

Figure 5.31 shows the level of expected persistency to be much greater during the first parity
than is the case for later parities. This was expected because of the flatter expected lactation
curve that resulted during the first parity when compared to later parities. When the summary
of the 90% HPD intervals of differences in persistency for parities in Figure 5.32 is

considered we see that parity 1 differs from all other parities with respect to expected
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persistency. The only other significant difference that occurs is found between parities 5 and

6, with parity 6 having the lowest persistency of al.

Figureb.31:

Figureb.32:

Figureb.33:

Expected persistency of lactation for seven parities
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Expected persistency of lactation for the seven parities when all other
cofactor s have been averaged out.
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Summarised result of comparison of expected persistency of lactation
for the seven paritiesusing 90% HPD intervalsfor differences.
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Expected persistency of lactation for the seven regions when other
cofactor s have been aver aged out.
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Figureb.34: Summarised result of comparison of expected persistency of lactation
for the seven regionsusing 90% HPD intervalsfor differences.

When considering Figures 5.33 and 5.34 it is seen that the region with the lowest expected
persistency is region 1, while region 7 not only has the highest level of expected persistency,
but also the greatest variability in persistency. Because of this large variance in region 7, the
seguence in which the regions are listed in the summary of results for the 90% HPD intervals
of differences in persistency for regions in Figure 5.34 do not follow the sequence of the
means of the margina posterior distributions when listed in ascending order. From Figure
5.34 it is also evident that regions 1 and 3, regions 2, 3, 5 and 8, regions 2, 5, 7 and 8, and
regions 4, 5, 7 and 8 do not differ significantly with respect to expected persistency.
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Figureb.35: Expected persistency of lactation for the four calving years when other
cofactor s have been aver aged out.
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Figureb.36: Summarised result of comparison of expected persistency of lactation
for thefour calving yearsusing 90% HPD intervalsfor differences.
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Similar to the results of expected time of peak yield, it follows from Figures 5.35 and 5.36
that only 1997 and 1998 differ significantly with respect to expected persistency of yield.

Expected persistency of lactation: Seasons

15

-—— Oct-Mar
——— Apr-Sep

Al

10

0
6.2 6.3 6.4 6.5 6.6 6.7 6.8

Figureb.37: Expected persistency of lactation for the two calving seasons when
other cofactors have been averaged out.

In Figure 5.37 the expected persistency of lactation differs considerably for the two calving
season, with greater persistency occurring during the cooler season that spans from April to
September. The result of the 90% HPD interval for the difference between the two seasons
was [- 0,1737 ; - 0,1008], also indicating that a significant difference in expected persistency

between the two seasons does exist.

555 Milkyield: In summary

It should be noted that the expected lactation or milk yield curves generated for each of the
levels of the various cofactors when the effects of the other cofactors are eliminated through
averaging, provide the Bayesian equivalent to the Standard lactation curves (SLAC's) of milk
yield for that level of the cofactor, as discussed in section 3.2 of Chapter 3, with respect to this
particular herd. The expected lactation curve for parity 3, for example, should therefore also

be viewed as the herd standard with respect to lactation for al animals in their third parity.

The isolated effects of the various levels of the four cofactors parity number, region, calving

year and calving season, on the four characteristics total milk yield, peak milk yield, time of
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peak milk yield and persistency of the lactation trait milk yield is summarised here. How

these results compare to those of other researchers of lactation in cattle are also mentioned.

For the seven parities under consideration the following were found. Parity 1 had the lowest
expected total and expected peak milk yield, together with the latest expected time of peak
yield and the greatest variance with respect to expected time of peak yield. Parity 1 had the
flattest lactation curve as a result of having the lowest peak and total milk yield, and the latest
time of peak yield and therefore had a greater expected persistency than any other parity.
Expected persistency in parity 1, however, dso had the greatest variance. Parity 1 differed
significantly from all other parities with respect to expected total and expected peak milk
yield, as well as expected persistency. Wood (1969), Rowlands et a. (1982), Solkner and
Fuchs (1987), Stanton et al. (1992) and Tekerli et a. (2000) all found that, in dairy cows,
persistency of lactation is greater during the first parity than during later parities. Tekerli et
al. (2000) also reported lower total and peak milk yields during first than during later parities.
For the Jersey data parity 2 had the second lowest expected total and expected peak milk
yields, with the earliest expected time of peak yield. Parity 2 differed significantly form all
other parities with respect to both expected total and expected peak milk yield. Other studies
of lactation by Rowlands et al. (1982), Keown et al. (1986) aso found time of peak yield to be
earlier in the second parity than in the first, while Keown et al. (1986) extended this result to
time of pesk in parity 3 being later than in parity 2. For the Jersey data both the
characteristics expected total and expected peak milk yield increased with parity increasing
parity number up to parity 6. Expected total milk yield in parity 7 or greater was less than
that of parity 3. The expected peak yield of parity 7 or greater was just higher than parity 3,
while expected time of peak yield for parity 7 or greater was similar to that of parity 5.
Expected persistency of parities 5 and 7 or greater were similar although these parities were a
lot less persistent than the first parity. Parity 6 was the least persistent, while parities 2, 3 and
4 were similar with respect to persistency. Furthermore, significant differences also exist

between groups of parities with respect to al characteristics of lactation as described earlier.

The effects of the seven regions on lactation indicated that region 1 has the lowest expected
total and expected peak yield, the earliest expected time of peak yield and, as a result of this,
the lowest expected persistency. In contrast to region 1, region 7 had the highest expected
total milk yield, relatively high expected peak milk yield and the latest expected time of peak
yield and therefore the highest expected persistency. For al four the afore mentioned
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characteristics, however, region 7 had the greatest variance. Region 4 also performed well
with respect to expected persistency. It had the second highest ével of persistency, that
followed from the second lowest expected total and expected peak milk yield levels, and the
second latest expected time of peak yield after region 7. Therefore, although region 4 is not
the highest producing region, it produces mlk at a highly persistent level. Significant
differences exist between regions with respect to al characteristics of lactation as described
earlier. Batra (1986) also noted that the influence of different stations as location of herds had
a significant effect on lactation.

As aresult of some years being dry and others wet, it was expected that calving years would
vary with respect to their influence on lactation. The lowest expected total and expected peak
yields, and second latest expected time of peak yield were recorded in 1996. With respect to
expected persistency, however, 1996 was second best. The years 1997 and 1998 had the
highest and second highest expected total milk yield, and the second highest and highest
expected peak yield respectively. However, 1998 had the earliest expected time of peak yield,
while 1997 had the latest time of peak yield. As aresult, 1998 was the least persistent of the
four years, while 1997 was most persistent. The year 1995 never faired the best or worst with
respect to any of these characteristics. The years 1997 and 1998 differed significantly with
respect to all the considered characteristics except expected total milk yield. Other significant
differences for the characteristics under consideration were as discussed earlier. Other
researchers of lactation, such as Batra (1986) and Tekerli (2000), also found calving year to

have a significant influence on lactation.

Season 2, representing the cooler months from April to September, performed better with
respect to all characteristics of lactation. This season had greater levels of expected total and
expected peak milk yields, peaked later and had greater expected persistency of yield.
Differences between the two seasons with respect to all characteristics considered were all
significant. This concurs with results published by, amongst others, Solkner and Fuchs
(1987), Stanton et a (1992) and Tekerli et a. (2000) who found calving season to
significantly influence lactation. Tekerli et a. (2000) found fall and winter to have higher
total milk yield, while both Stanton et a. (1992) and Tekerli et a. (2000) found higher levels
of peak milk yield during colder periods. Solkner and Fuchs (1987) and Tekerli et a. (2000)

reported season of caving to be of considerable influence on persistency of lactation.
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5.6 THELACTATION COMPOSITION TRAITS

Both fat and protein content of milk in the Jersey data were measured as the percentage

contained in milk composition and are typicaly a convex function over time. In 1976 Wood
showed that the model E(W, ) =t"exp(a+ct) could also be used to estimate various milk

composition traits such as fat and protein content in the milk of dairy cows. The reason for
this may be found in the fact that the Wood model becomes convex over time when the value
of b is negative and that of cis positive. Sakul and Boylan (1992) found that the Wood model
is useful in describing amost al milk composition traits, with the exception of lactose
content, in sheep breeds. In this study the Wood model was used to simultaneously model not
only milk yield, but also the milk composition traits fat content and protein content. For each
animal i the matrix M;(12 *~ 3) therefore contains the parameters of the Wood model for all
three lactation traits over all four lactation cycles under consideration. Each column of M;
contains the parameters of one of the lactation traits for al four lactation cycles, where the

parameters of the lactation cycles are listed as column vectors, one below the other.

56.1 Fat content of milk

Once the 10 000 simulated M; matrices for each animal i over al four its lactation cycles have
been obtained, 10 000 fat content curves for animal i during each of its four lactation cycles
can be generated. The mean of the 10 000 fat content curves for animal i in each lactation
cycle then gives the expected fat content curve for animal i in that lactation cycle. Because,
as aresult of storage constraints, no M; matrices were stored, either one of the two aternatives

described earlier in section 5.5 may again be used to regenerate M;. In Alternative 1 the
values of the parameters contained in M (97 4) are estimated by calculating BZ; for each of
the 10 000 smulated B(9 ~ 17) matrices, using the Z; (17 ~ 4) relevant to anima i. While

using Alternative 2, 10 000 M; matrices are obtained through Gibbs sampling using the
10 000 previously smulated B, F % S™tand R matrices.

Regenerating 10 000 Mi matrices by means of the second alternative for two animals (i = 135
and i = 511) and using the parameters in M; relevant to fat content only to find 10 000 fat
content curves, the expected fat content for each of the four lactation cycles for animals 135
and 511 were obtained as the mean of the 10 000 fat content curves and graphed as black
solid lines in Figures 5.38 and 5.39.
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Figureb.38: For each of the four lactation cycle of Animal 135 the expected fat
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by - - . The least squares estimate of the lactation
curveisgiven by—. The observed data for Animal 135 isgiven by
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Figureb.39: For each of the four lactation cycle of Animal 511 the expected fat

content curveis given by—, its 90% HPD interval by - - and its 90%
prediction interval by - - . Theleast squares estimate of the lactation
curveisgiven by—. The observed data for Animal 511 isgiven by

97



In Figures 5.38 and 5.39 the green line represents the observed fat content values of the test
day records connected by straight-line segments for the four lactation cycles of the two
animals. The red line is again the result of least squares estimation of the fat content curve
fitted to the data. The magenta coloured broken lines provide the 90% HPD intervals for the
expected fat content curve during each lactation cycle. The blue broken lines in turn represent
a 90% prediction interval for the expected fat content curve during each lactation cycle
obtained as the 90% HPD intervals for predictions resulting from the use of the predictive

density that follows from (5.10) to simulate a predictive matrices Y," from the normal

distribution denoted in (5.10) for each of its 10 000 means, X;M,,andvariances, F A |, as
explained for milk yield in section 5.5 above.

In the case of fat and protein content in milk composition when measured as percentages of
composition, these functions are typically convex over time, and therefore curves for these
traits of non-convex form are considered atypical. For this reason when considering the least
squares estimate of the fat content curve for the second and third lactation cycles of animal
135 and the second lactation cycle of animal 511 these estimates are said to take on atypica
forms. In contrast to this the Bayesian curve estimate of the expected fat content for both
third lactation cycle of anima 135 and the second lactation cycle of animal 511 are not
atypical, while that of the second lactation cycle of animal 135 is considered “less’ atypical
than its least squares counterpart. This again illustrates the ability of the Bayesian method to
reduce the occurrence of curves of atypical nature as a result of the inclusion of information
from the whole herd through the use of the parameter matrices B, F 1, S*and R in the

conditional distribution of M; in the Gibbs sampler. These parameter matrices, B,F *, Stand

R *, are updated in every iteration of the Gibbs sampler.

It is worthwhile to note that atypical least squares estimates of the fat and protein content
curves sometimes occur as a result of the first test day record occurring relatively late in the
lactation cycle. A good example of this would be first test day record of the second lactation
cycle of animal 135 that only occurs on day 39 of the cycle. Because a large portion of the
lactation cycle that precedes this point in time is unknown or, more to the point, the portion
where the greatest changes in fat content occurs is unknown, this is most probably the reason
for the least squares estimate of the lactation curve being atypical in form. The least squares
estimate of the curve is only based on the actual observations, while the Bayesian estimate of
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the expected fat content curve is supported by the information from the rest of the herd that, to
a large extent, corrects the atypical result obtained by least squares estimation.

As was the case with milk yield, interest is most often not focussed on the fat content curve of
an individual animal, but on the expected fat content curve of the herd with respect to one of

the levels of a certain cofactor. For this reason the same procedure explained earlier for of

milk yield is again employed. This means calcuating the 10 000 vectors m® = Bz* where
z*(17 1) only considers one particular level of the cofactor of interest and eiminates al
other cofactors by taking their averages as the values of their respective covariates in the
vector z*. The parameter values contained in m © related to fat content are then used to
construct the 10 000 fat content curves of the level of interest for the cofactor under
consideration. The mean of this set of 10 000 fat content curves then provides the expected
fat content curve for a particular level of the cofactor of interest after all other cofactors have

been eliminated through averaging.

The expected fat content curves together with the 95% HPD intervals for four of the seven
parities when the other cofactors, “region”, “calving year” and “calving season”, have been
averaged out, are given in Figure 5.40. From this result the convex nature of the fat content
curves are evident. Parity 1 had the lowest expected percentage of fat through out lactation,
while for parities 2 through to 6 the expected percentage of fat in milk composition remained
much the same until approximately day 70 when dight differences began to occur. By day
300 milk in parity 2 contained the highest expected percentage of fat. For garity 7 or greater
the expected minimum percentage of fat occurred the latest, only on day 58. The remainder
of the results for expected percentage of fat in milk composition for the parities are
summarised in Table 5.1 below.
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Figureb.40: Expected fat content curves with 95% HPD intervalsfor parities 1, 2, 6
and 7 or greater when all other cofactors have been averaged out.

Table5.1: Summary of the expected fat content for the seven parities

_ Expected fat % Minimum Day of minimum | Expected fat % on
Parity on day 1 expected fat % expected fat % day 300
1 3,6458 3,3719 38 3,8821
2 3,9093 3,4412 49 3,9848
3 3,9153 3,4420 50 39731
4 3,9956 3,4409 54 3,9718
5 3,9688 3,4434 54 3,9370
6 3,9332 3,4377 54 3,9109
70> 4,0274 3,4265 58 3,9088

In Figure 541 the expected fat content curves together with the 95% HPD intervals for four of
the seven regions are given. For al regions the level of expected fat content at on day 1 and

day 300 of lactation are very similar. Minimum expected fat content for al regions occurred
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between day 46 and 56, with the greatest difference between regions with respect to minimum

expected fat percentage only 0,1130%. The variance in expected fat content was smallest for

region 1 and largest for region 7, which was also the case for milk yield in these regions.

Figureb5.41:
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Expected fat content curves with 95% HPD intervalsfor regions 1, 4, 5

and 7 when all other cofactors have been averaged out.

Figure 5.42 and Table 5.2 considers the expected fat content for the four years. The day of

minimum expected fat content only varied by 5 days between the earliest and latest day for

the four years, while the difference in minimum expected fat percentage was less than 0,15%.

Table5.2: Summary of the expected fat content for the four years

Expected fat % Minimum Day of minimum | Expected fat % on
Year onday 1 expected fat % expected fat % day 300
1995 3,8789 3,4869 48 3,9468
1996 3,8713 3,4184 49 3,9437
1997 3,9790 3,4792 53 3,9592
1998 3,9185 3,3371 53 3,9032
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Figureb.42: Expected fat content curves with 95% HPD intervals for 1995, 1996,
1997 and 1998 when all other cofactorshave been averaged out.
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Figureb.43: Expected fat content curves with 95% HPD intervals for seasons 1 and
2 when all other cofactors have been averaged out.

From Figure 5.43 it is evident that the expected fat content with respect to the two seasons
when all other cofactors have been averaged out, differed quite considerably with respect to
day of minimum fat content. For season 1 this minimum occurred on day 39, while for season
2 it occurred only on day 63. The expected minimum fat percentage, however, did not differ
as much. Minimums of 3,3982% and 3,4535% were recorded for seasons 1 and 2
respectively. The expected fat content on day 300 were similar for the two seasons, 3,9671

102



for season 1 and 3,9094 for season 2, athough it differed more on day 1, with 3,7136% in
season 1 and 4,1202% in season 2.

56.2 Protein content of milk

Using the same procedure as described for fat content in section 5.6.1, it is possible to obtain
the expected protein content curves for any animal i. Therefore the expected protein content
curves for each of the four lactation cycles of animals 135 and 511 were again obtained as the
mean of 10 000 protein content curves that resulted from the parameters relevant to protein
for the 10 000 M; matrices regenerated using the second alternative. These expected protein
content curves are graphed as black solid lines in Figures 5.44 and 5.45 below. The green line
represents the observed protein content values of the test day records connected by straight-
line segments for the four lactation cycles of the two animals. The red line is again the result
of least squares estimation of the protein content curve fitted to the data. The magenta
coloured broken lines provide the 90% HPD intervals for the expected protein content curve
during each lactation cycle. The blue broken lines in turn represent a 90% prediction interval
for the expected protein content curve during each lactation cycle, obtained as the 90% HPD
intervals for predictions resulting from the use of the predictive density through simulation as
explained for milk yield in section 5.5 above. When considering the first and fourth lactation
cycles of both animals 135 and 511 the ability of the Bayesian method to reduce the
occurrence of atypical curvesis again evident.

Using the same procedure explained earlier for milk yield and fat content curves, the expected
protein content curve for a particular level of the cofactor of interest when al other cofactors
have been averaged out is again obtained. The expected protein content curves together with
the 95% HPD intervals for four of the seven parities after the other cofactors, “region”,
“calving year” and “calving season”, have been averaged out, are given in Figure 5.46. From
this result it is evident that protein content curves are mostly convex in nature. When
considering Figure 5.46, together with the results of the expected percentage of protein in
milk composition for the seven parities as summarised in Table 5.3, the following is noted. In
parity 1 lowest expected percentage of protein occurs when lactation commences, while for

al other parities the lowest expected percentage of protein occur later in lactation.
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For each of the four lactation cycle of Animal 135 the expected protein
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by-- . The least squares estimate of the protein
curve isgiven by— . Theobserved datafor Animal 135 isgiven by
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For each of the four lactation cycle of Animal 511 the expected protein
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by - - . The least squares estimate of the protein
curveisgiven by—. The observed data for Animal 511 isgiven by
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It seems as if greater variation occur with respect to the expected protein content of the

various parities than was the case for the expected fat content of the seven parities. Thisis

especially evident when considering the various times at which the minimum expected protein

percentage in the composition of milk for the different parities occur. The lower boundaries

of the 95% HPD intervals of parities 1 and 2 seem to take on “atypical” form. This is
attributed to the method used to obtain these intervals and not to the shape of the 10 000

protein content curves used to obtain the expected protein content curve.
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Table5.3: Summary of the expected protein content for the seven parities

_ Expected protein | Minimum expected | Day of minimum | Expected protein
Parity % on day 1 protein % expected protein %| % on day 300
1 4,1353 4,1353 1 4,8503
2 4,3400 4,2779 16 4,8302
3 4,4184 4,2639 28 4,7523
4 4,4982 4,2320 39 4,6919
5 4,4309 4,1807 39 4,6307
6 4,5726 4,1883 53 4,5574
7o0r> 4,2318 4,0983 27 4,5449
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Figure 5.47 provides expected protein content curves together with the 95% HPD intervals for
four of the seven regions. Minimum expected protein content for region 5 occurred earliest
(day 16) and at the highest level of the minima (4,2351%), and that of region 7 latest (day 56)
and at the lowest level of the minima (4,0098%). The difference between these two regions
with respect to minimum expected protein percentage is 0,2253%. The variance in expected
protein content is again smallest for region 1 and largest for region 7, which was a so the case

for milk yield and fat content in these regions.
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Figureb5.47: Expected protein content curves with 95% HPD intervalsfor regions 1,
4,5 and 7 when all other cofactors havebeen averaged out.

Figure 5.48 and Table 5.4 considers the expected protein content for the four years. The day
of minimum expected protein content varied by 16 days between the earliest and latest time

for the four years, while the difference in minimum expected protein percentage was less than
0,17%.
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Table5.4: Summary of the expected protein content for the four years

Expected protein | Minimum expected | Day of minimum | Expected protein
Y ear % onday 1 protein % expected protein %| % on day 300
1995 4,3071 4,1188 31 4,3699
1996 4,3576 4,1660 34 45977
1997 4,4350 4,2643 18 4,8063
1998 4,4833 4,2829 34 4,7289
1995 1996
5 5
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Figureb5.48: Expected protein content curves with 95% HPD intervals for 1995,

1996, 1997 and 1998 when all other cofactors have been averaged out.

The expected protein content curves with 95% HPD interval for the two seasons are provided

in Figure 5.49. The minimum expected protein percentage for season 1 occurred on day 1 at a

level of 4,0871%, while this minimum for season 2 was at 4,2664% on day 52. There are

considerable differences in the levels at which of expected protein content commences and in

the shape of the curves of expected protein content for the two seasons, but on day 300 the

expected protein content of the two seasons are very similar.
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Figureb.49: Expected protein content curves with 95% HPD intervals for seasons 1
and 2 when all other cofactor s have been averaged out.

5.6.3  Milk composition traitsfat and protein: In summary

The expected fat content and protein content curves generated for each of the levels of the
various cofactors when the effects of al other cofactors have been eliminated by averaging
out these cofactors, provide the Bayesian equivalent to the Standard lactation curves
(SLAC's) of fat content and protein content, as discussed in section 3.2 of Chapter 3, with
respect to this particular herd. For the Jersey data the expected fat content curve of region 1,
for example, should therefore also be viewed as the herd standard for the Jerseys in region 1
with respect to fat content. Therefore all Jersey cows in region 1 that may be considered
similar to those animals included in the Jersey data are expected to have similar expected fat

content curves.

Whittemore (1980) noted the existence of an inverse relationship between the level of milk
yield and the percentage of fat contained in the milk. This is aso true for the Jersey data,
although the levels of minimum expected fat content generally occur later and that of protein
content generally occur earlier than the level of peak milk yield for all cofactors. Hurley
(2003) noted that it is generaly accepted that the percentage of fat and the percentage of
protein contained in milk are positively correlated. This was found to be true generaly for the
Jersey data as well. Upon investigation it was found that correlation between expected fat
content and expected protein content for the 7 parities were all above 90% with the highest
vaue of 97,42% being that of parity 4. According to Hurley (2003) milk fat is usualy the
most variable component in the composition of milk. This however was not the case for the
Jersey data, where the expected protein content varied considerably more with respect to the
form of the margina posterior distributions for the various cofactor levels considered and

with respect to the width of the 95% HPD intervals as aresult of the variances.
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Stanton et al. (1992) found that for cows calving in winter the protein percentage was slightly
lower than for others. Thisis not the case in the Jersey data. Cows calving during the cooler
months generally have higher levels of protein throughout lactation. Very little published
work on lactation with respect to dairy cows model fat and protein contained in milk

composition.

5.7 PREDICTIONSBASED ON THEWOOD MODEL

In section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycle of
an animal i based on the results from one or more the preceding lactation cycles is given for
the general case. For the Jersey data each cow has atotal of 4 observed lactation cyclesin the
data for which lactation modelling has aready been performed. Using the method as
described for the general case, it is possible to predict the results of the fifth lactation cycle for

the i animal based on the four preceding recorded lactation cycles.

As first step the model parameters of the fifth lactation cycle, i.e. the lactation cycle to be

predicted, or m{ have to be determined if the model parameters of the four previously

recorded lactation cycle are given by m® = mi(l)*. This is done through MCMC simulation
using the conditiona distribution of m® specified in equation (4.22). In equation (4.22)

when predicting the fifth lactation cycle for an animal in the Jersey data we use q = 5 as the
total number of lactation cycles under consideration and h = 4 as the number of lactation

cycles that are known. The conditional distribution for predicting the fifth year’s model

parameters for an individual or m{?, given the performance in the previous four years then

becomes:
ml(f2)|ml(1) :mi(l)* , B1 S, R

Nz + (RERG AT fme - (1, A B)20), (RY A 9)- (RURY 'R A S| 512
where z% is as applicable to the four known lactation cycles and z? contain the covariates

expected to apply to the lactation cycle to be predicted. For the Jersey data where the
covariates contained in a covariate vector identify the cofactor levels of the cofactors parity

number, region, calving year and calving season for one lactation cycle, these covariates in

;(2) for the fifth year to be predicted, are set as follows. The cofactor parity number is
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increased by one from that in the fourth lactation cycle and the covariates identifying parity
number is then set according to this value. The cofactors region and calving season are kept
as they were in the fourth of the recorded lactation cycles, while the calving year is averaged

out by using 4 as the value of each of the covariates used to identify it. It is necessary to
average out the effect of calving year, because the fifth lactation cycle to be predicted here is
expected to occur in 1999 for which no effect is included in the regression matrix B. The
years for which effects are include in matrix B are 1995 to 1998 and therefore their effects are
removed by averaging out the cofactor calving year in the covariate vector of the fifth year.

Remember that the covariate vector, zi(z), serves as identifier of the effects in the regression
matrix B relevant to animal i. The marginal posterior distribution of m® is obtained through
10 000 iterations of the Gibbs sampler employing the results of parameter matrices B, F %, S™
and R from the original Giblbs sampling used to model the four recorded lactation cycles.
The predictive distribution of the fifth lactation cycleis:
yPm@ = mF ~N (0,4 x@)m@ F A1) (5.13)

where vy isof order (3n, * 1). The mean of the result of (1, A X?)m@" calculated for the
10 000 simulated values of m@ then gives the prediction for the fifth lactation cycle and,
using the 10 000 means of the predictive distribution, the 90% HPD interval for the prediction

of the fifth lactation cycle is obtained.

To find a prediction interval for the prediction for the fifth lactation cycle, the predictive
vector yi(f) is smulated from a normal distribution of the form denoted in (5.13) for each of
the 10 000 means, (I, A X?)m@, and variances, F A | .. - The predictive vectors in y(?
referring to each of the lactation traits milk yield, fat content and protein content are then used

to construct 90% HPD intervalsfor the predictions of each of these traits. These intervals are

graphed as the 90% prediction intervals for the animal under consideration.

To illustrate the result of this prediction procedure, the predicted lactation or milk yield curve,

as well as the predicted fat and protein content curves for the fifth lactation cycle given the
performance of the anima in preceding four recorded lactation cycles were graphed for
animals 135 and 511 in the Jersey data. In each of following graphs, the predicted curves are
represented by a turquoise line, while the 90% HPD intervals are given as magenta broken

lines and the 90% prediction intervals as blue broken lines. The result follows.
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For the fifth lactation cycle of Animal 135 the predicted milk yield, fat

content and protein content curves are given by

, their 90% HPD

interval by — — and 90% prediction interval by = - .
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CHAPTER 6

ALTERNATIVEMODELSFITTED TO JERSEY DATA

6.1 OTHERLACTATION MODELS

The Wood model had been an obvious choice when selecting models to test the approach used
in this study, because it has thus far been used in most studies of lactation modelling as the
benchmark model to which the performance of other models have been compared. Of the
other models discussed in Chapter 2 only those that, with the assumption of multiplicative
errors and after a log transformation as discussed in section 3.5 of Chapter 3, are of linear
form are appropriate to be used in the approach suggested in this research. The condition of
linearity of the resulting model after assuming multiplicative errors and performing a log
transformation, limits the possible number of lactation models that may be used in the
application of the Bayesian approach suggested here to 13, excluding the Wood model. Of
the 13 possible models some, such as Brody’s exponential decline function inherently do not
have the ability to usefully describe lactation in dairy cows. Some of the other possible
models, such as Dhanoa's reparameterised Wood model and the Jenkins and Ferrel
adjustment of the Wood model, are so close to the Wood model applied in Chapter 5 that it
did not make much sense from an illustration point of view to use these. The 6 parameter
Morant model suggested by Williams in 1993 was also considered of little use, as the high
number of parameters in this model would fit the data well, but required a larger number of
test day records per animal and probably represented an over-parameterisation of the model.
Because of Morant and Gnanasakthy (1989) criticism of three of their own models, as well as
similarities between some of their models, some of their suggested models were aso
eliminated as possible models to use in illustration. Ultimately, based on all of the preceding,
the genera exponential model and 4-parameter Morant model were chosen for further
illustration.

One other model, the Wilmink 1l model, also caught interest. Although the Wilmink |1 model
did not adhere to the condition of linearity after assuming multiplicative errors and
performing a log transformation, it warranted further investigation. The reason for this
followed from the good result that was obtained by Olori et al. (1999) using the Wilmink 11
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model in comparison to the other model fitted, as well as because the Wilmink 1l model had
in recent years been the model preferred by researchers of the Agricultural Research Council
in South Africa to model lactation data of both South African Holstein and Jersey cows
(Mostert et al., 2001). It was therefore decided to use an adapted form of this model in this
study.

6.2 THE GENERAL EXPONENTIAL MODEL

The general exponential model was introduced in 1989 by Morant and Gnanasakthy to model
lactation in Friesian heifers. This model assumes that the expected milk yield (in kg/day) of
an animal at timet can be represented over the lactation period by

E(W,) = AtPexp((c +dt)t) (6.1)
where A = exp(a). The parameters a, b, ¢ and d are unknown and may differ from one animal
to another. This model is, because of its ability to take on a convex form, also used to

estimate the various milk composition traits such as fat and protein content in milk.

With the assumption of multiplicative errors for the model in (6.1), by performing a natural

log transformation, the observation model for animal i becomes:

Y, dt,) = In(W, ()= a +b, It )+ ¢t +d, 12 + e (6.2)

ijstijp ijstijp

where, e ~i.i.d.N(O,s§),i =1 ..,kj=1..,0,s=1,...,up=1.., nyand n, isthe

ijps
number of test days for animal i during lactation cycle j.. The Jersey data contains k = 1141
animals, al of whom have been observed over q = 4 lactation cycles for the u = 3 lactation

traits milk yield, and percentage of fat and percentage of protein in milk composition, with
from 8 to 10 test day records observed for each anima during each d the four lactation

cycles.

The generalised linear model form of the model for animal i during lactation cycle j is, as
described in (4.3) for the general case:

Yij =X i M i + Eij (63)
where vec Ei(J(Bnij ’ 1) ~ N(veco, FAI N ) In the case of the general exponential model there

are Vv = 4 regression coefficients in the generalised linear form of the lactation model for the i
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animal during its j™ lactation cycle for the lactation trait indicated by s =1, 2, 3. These are

aijs bijs, Cijs and dijs, so that

&y, a;U
€ u
.. b. b.Y
M (4 3):§QJl Pz Dieg (6.4)
€€pn G CplU
é a
& diz dig

Row r of design matrix X, (n, ~ 4) contains the elements that would return the general

exponential model in generalised linear form when multiplied with the matrix of regression

coefficients M in (6.4) above,

XO= Int, t, t2] (65)

The model extended for animal i to al g = 4 lactation cyclesthenis,

=X M, +E (6.6)

4
where vecE((3n " ) ~N(vecOF A1, ). n =& n;, X,(n"16)=diag{ X;} and
j=1

=

> D
<
oo oo o

Ny

M, (16" 3) = (6.7)

=

(ED) %) D>
z

The matrix R, containing the covariances between the model parameters of the same animal in

successive lactation cycles remains of the form:

f‘ u T T r14l;|
R = Fo Ny Ty T 248 (6.8)
T 13 Tz T Tag
e u
@ To Ta Twg

because q = 4 lacttion cycles were observed for all 1141 animal in the Jersey data.

Additional information on the cofactors parity number, region, calving year, and calving
season available in the Jersey data have to again aso be included in the model. To do this a

covariate matrix Zij(17 "~ 4) is, as before, constructed for each animal i as explained in section
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5.3 of Chapter 5. This covariate matrix is then used as described in section 4.1 of Chapter 4
for the generalised Bayesian mode!.

Once the model for the generalised exponential model had been written in the above form, the
Gibbs sampler as described in section 4.2 of Chapter 4 and the full conditional distributions of
all the model parameters of interest as set out in equations (4.17) to (4.21) are used to obtain
the margina posterior distributions conditiona on the observed data only. The
hyperparameters G and P required to generate margina distributions for S*and R%, were

again set equa to the moments estimators from the sampling distributions of S and R with
degrees of freedom till as small as possible, d =4andg = 13.

As in Chapter 5 the Gibbs sampler was put through a “burnin” period of 2000 simulation
iterations, after which 10 000 sets of parameters were generated and kept using equations
(4.17) to (4.21). This again required simulating from normal and Wishart distributions only,
as described in Chapter 5. Speed and storage constraints posed by Matlab, again resulted in
only the 10 000 sets of parameters generated for B, F ¥, S™ and R™* being stored. To
regenerate the parameters of contained in M;, i = 1,..., 1141, either of the two procedures
referred to as Alternatives 1 and 2 respectively and explained in full in section 5.5 of Chapter
5 may again be used.

Using the 10 000 resulting regression matricesB (9~ 17) to construct 90% HPD intervals for
the elements of B, it was found that only 85 of the 204 elements of this matrix significantly
affect the parameters of the three lactation trait curves, milk yield, percentage of fat and
percentage of potein in milk composition. The affect of both the base level and the levels of
the covariates on the parameter d of the milk yield curve are not significant. The base level
effects on al 11 the other parameters of the model are however significant. With respect to
the effects of al covariates on the parameters of the traits curves, al covariates significantly
affect at least one of the 12 parameters and therefore all cofactors were kept in the model. It
is noted though that it is possible that for a specific animal, the contributions of all included

covariates to the parameters for that animal could be very small or perhaps even insignificant.

Further investigation of the Jersey data when modelled by means of the general exponential
model followed once the marginal distributions of the parameters had been obtained through
Gibbs sampling.

115



6.2.1  Thelactation trait milk yield

Using the 10 000 M; (16" 3) matrices for an animal i over all four lactation cycles regenerated
through alternative 2 of the two possible methods to do so, the lactation or milk yield curves
for each lactation cycle of each of the 10 000 simulations for such an animal can be obtained.
Note that only the parametersin M; (16" 3) relevant to milk yield in each of the four lactation
cycles are used to obtain milk yield curves. The mean of the 10 000 lactation curves for each
lactation cycle gives the expected lactation curve for animal i during each lactation cycle. To
illustrate such a result the expected lactation curves for each of the four lactation cycles of

animal i = 135 are given as solid black linesin Figure 6.1 below.

Lactation cycle 1: Milk yield Lactation cycle 2: Milk yield
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Figure6.1: For each of the four lactation cycle of Animal 135 the expected lactation
curve is given by—, its 90% HPD interval by - - and its 90% prediction
interval by - - . Theleast squares estimate of the lactation curve is given by
——. Theobserved data for Animal 135isgiven by

In Figure 6.1 the green line represents the observed milk yield values during each lactation
cycle conrected by straight-line segments. The red line is the least square estimate fitted to
the data using the general exponential model. The magenta broken lines provide the 90%
HPD intervals for the expected lactation curves during each lactation cycle and the blue
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broken lines represent a 90% prediction intervals for the expected lactation curve obtained
using the 90% HPD intervals of the predictions that result from the predictive density as
explained in section 5.5 of Chapter 5. The least squares estimates of the milk yield curve of
lactation cycles 2 and 4 were atypical, while that of lactation cycle 3 commences a an
unrealistic point and has 2 turning points. However, the Bayesian curve estimated in all three
these cases are of typical lactation curve form, again demonstrating the ability of the method
to reduce the occurrences of such unpractical results even when a lactation model other than
that of Wood is used.

The expected lactation or milk yield curve of the herd with respect to one of the levels of a
certain cofactor may also be obtained as before by constructing a z* vector that only considers
the level of the cofactor of interest and averages out the effect of all other cofactors. The
10 000 sets of parameter values that apply when this is done results, as before, from m =Bz
for each of the 10 000 simulated B matrices. The parameter values contained in m °©
applicable to milk yield are then used to construct 10 000 lactation curves for the particular
level of the cofactor of interest. The expected lactation curve for such a particular level of the
cofactor of interest is then obtained as the mean of these 10 000 lactation curves. The

procedure was explained in greater detail in section 5.5 of Chapter 5.

In Figure 6.2 below the expected lactation curves, together with their 95% HPD intervals for
parities 1 and 6 when the other cofactors, “region’, “calving year” and “calving season”, have
been averaged out, are given. These curves are now valid with respect to the herd under
consideration and are the Bayesian equivalent of the Standard lactation curves (SLAC's), as
discussed in section 3.2 of Chapter 3, when the general exponential model is used to model
lactation. In Figure 6.3 the expected lactation curve of parity 2 when the genera exponential
model is used to model lactation is compared to the result for the same parity obtained from
the Wood model in Chapter 5. In the figure on the left it is seen that there are considerable
differences in shape between the two models, with the expected lactation curve for parity 2 of
the Wood model always above that of general exponential model. The figure on the right
provides the differences in milk yield between the two curves on the left plotted over time.

Initially the expected yields are very similar, but towards the end of the lactation cycle these

differences increase up to amost 10 kilograms.
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Figure6.2: Expected lactation curveswith 95% HPD intervalsresulting from the general
exponential model for parities 1 and 6 when the other cofactors have been

aver aged out.
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Figure6.3: (1) On the left the expected lactation curves for parity 2 using the general
exponential model (——) and the Wood model (- — =) when other cofactors
have been averaged out. (2) On the right the differences in milk yield
between thetwo curvesin (1) plotted over time.

The results with respect to the expected lactation curves of al seven parity groups are
summarised in Table 6.1. The lowest level of peak milk yield occurs in first parity, with a
sharp increase to second parity. With the exception of parity 5, peak milk yield increases
from first to sixth parity and then declines in parity 7 or >. Time of expected peak yield is
again latest in parity 1, but when fitting the general exponential model it is modelled to occur
earlier than the mean time of peak yield that resulted on day 48 for the Wood model. The
expected lactation curves for al parities end in a lower expected yield on day 300 than what

was the case for the Wood mode!.
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Table6.1: Summary of the expected milk yield for the seven parities using the general
exponential model.

Parity E)_(pected kg's Maximl,Jm e_xpected Day of ma>fi mum E_xpected kg's
milk on day 1 kg's milk expected kg's milk [ milk on day 300
1 10,6888 16,6740 32 2,6184
2 15,1086 20,2038 28 3,7242
3 17,0189 21,7202 29 5,0600
4 17,0379 22,1419 30 5,2354
5 16,4348 22,0090 31 4,7181
6 17,9320 22,3382 26 4,0648
7or> 15,5584 21,2362 28 3,0995

The results with respect to the expected lactation curves of the four years are summarised in
Table 6.2. When using the general exponential model, the expected lactation curves of the
four calving years commence, peak and end at lower levels than was the case for the Wood
model. The genera exponential model also models the expected ime of peak milk yield
earlier for the four calving years than what is the case when using the Wood model for this

pUrpose.

Table6.2: Summary of the expected milk yield for the four years using the general
exponential model.

Year E>§pected kg's |Maximum e_xpected Day of maximum E_xpected kg's
milk on day 1 kg's milk expected kg's milk [ milk on day 300
1995 16,8993 20,4512 28 4,8500
1996 14,8709 20,2076 31 4,2768
1997 15,0523 21,2616 33 4,7667
1998 15,2319 21,6145 31 4,1225

In Figure 6.4 the expected lactation curves for the two seasons when the general exponential
model is used to model lactation is compared to the result obtained from the Wood model in
Chapter 5. Expected milk yield for the first season is modelled to commence at a lower level,
with dightly earlier peak at a lower peak level than expected milk yield for this season when
employing the Wood model. The result of this comparison for the second season is similar
only with respect to expected peak and time of expected peak milk yield. The largest
difference in expected milk yield for the two models occurs at the end of |actation.
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Figure6.4: The expected lactation curves for seasons 1 and 2 using the general
exponential model (——) and the Wood model (- — -) when other cofactors
have been aver aged out.

6.2.2 Thelactation trait fat content of milk

The expected fat content curve for an animal during each lactation cycle may be obtained
using the same approach described for milk yield in section 6.2.1.

Lactation cycle 1: Fat Lactation cycle 2: Fat
5 5
4 \ = /% 4k P
3 T — 3 /
2 2
0 100 200 300 0 100 200 300
Lactation cycle 3: Fat Lactation cycle 4: Fat
5 5
4 \S‘ /—/,—/// 4 —
o\o /-—-—_ N
2 2
0 100 200 300 0 100 200 300
Days into season Days into season
Figure6.5: For each of the four lactation cycle of Animal 135 the expected fat

content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by - -. Theleast squares estimate of the fat content
curveisgiven by— . The observed datafor Animal 135isgiven by

In Figure 6.5 the expected fat content curves for each of the four lactation cycles of animal

i = 135 are given as solid black lines, the green lines represent the observed data, the red lines
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the least squares estimated obtained using the general exponential model and the magenta
lines the 90% HPD intervals for the expected fat content curves. The blue lines represent the
90% prediction intervals for the expected lactation curves obtained as explained before. The
least squares estimate of the fat content curves in the first three lactation cycles are atypical,
but the expected fat content curves estimated using the Bayesian approach again successfully

addresses this problem.

Expected fat content curves for the herd with respect to one of the levels of a cofactor of
interest were again obtained using the procedure briefly explained above with respect to milk
yield. As part of the obtained results, Figure 6.6 gives the expected fat content curves
together with 95% HPD intervals for parities 1 and 7 or greater when the other cofactors in
the model have been averaged out.

Parity 1 Parity 7 or >
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Figure6.6: Expected fat content curves with 95% HPD intervals resulting from the

general exponential model for parities 1 and 7 or greater when the other
cofactor s have been averaged out.
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Figure6.7:(1) On theleft the expected fat content curvesfor parity 6 using the General
exponential model (—) and the Wood model & — ) when other cofactors
have been averaged out. (2) On the right the differences in fat content
between thetwo curvesin (1) the plotted over time
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In Figure 6.7 the expected fat content curves of parity 6 resulting from the general exponential
and Wood models are compared. In the figure on the l€ft it is seen that there are very little
differences in shape between the two models, while the figure on the right confirms that the
scale of these differences is indeed small, with the largest differences at the start and end of
the lactation cycle. The results with respect to the expected fat content curves d all seven
parities are summarised in Table 6.3. On average expected fat content of the parities is 0,5%
higher on the first day of the lactation cycle for the general exponential model than for the
Wood model, while the level of the minimum expected fat content is 0,05% lower and occurs
from 4 to 6 days later. For the Wood model the expected fat content of the parities on day
300 is on average 0,11% higher than for the general exponential model.

Table6.3: Summary of the expected fat content for the seven parities using the general
exponential model.

Parity Expected fat % Minimum Day of minimum | Expected fat % on
onday 1 expected fat % expected fat % day 300

1 4,1748 3,3208 42 3,7759

2 4,3921 3,3923 46 3,8769

3 4,4801 3,3876 47 3,8542

4 4,4476 3,3979 49 3,8702

5 4,4763 3,3969 49 3,8270

6 4,4055 3,3975 50 3,8253

7or> 4,4923 3,3845 52 3,8162

The results with respect to the expected fat content curves of the four years are summarised in
Table 6.4. When comparing the results for the expected fat content of the four years to that
obtained using the Wood model the results are on average similar to that of the parities above,
except for the time of minimum fat content which is now for 1 to 6 days later for the genera
exponential model than for the Wood model.

Table6.4: Summary of the expected fat content for the four years using the general
exponential model.

Year Expected fat % Minimum Day of minimum | Expected fat % on
onday 1 expected fat % expected fat % day 300

1995 4,4791 3,4371 47 3,8294

1996 4,2983 3,3770 47 3,8525

1997 4,4743 3,4264 47 3,8440

1998 4,3844 3,2930 49 3,8121
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Season 1: Wood vs General exponential ~ Season 2: Wood vs General exponential
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Figure6.8: The differences in expected fat content for seasons 1 and 2 when comparing
the expected fat content curves that resulted from Wood modéd to that of the
general exponential model over time.

From Figure 6.8 it follows that the expected fat content curve that resulted from the Wood and

general exponential models are more similar during the second calving season than the first.

6.2.3  Thelactation trait protein content of milk

The expected protein content curve for an animal during each lactation cycle may aso be
obtained using the approach described for milk yield in section 6.2.1. In Figure 6.9 the
expected protein content curves for each of the 4 lactation cycles of animal i = 135 are given.

Lactation cycle 1: Protein Lactation cycle 2: Protein
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Figure6.9: For each of the four lactation cycle of Animal 135 the expected protein
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by-- . The least squares estimate of the protein

curveisgiven by—. The observed datafor Animal 135 isgiven by

123



To illustrate the result for the expected protein content, Figure 6.10 gives the expected protein
content curves together with 95% HPD intervals for parities 1 and 2 when the effects of all
other cofactors have be eliminated by taking averages.
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Figure6.10: Expected protein content curves with 95% HPD intervals resulting
from the general exponential model for parities 1 and 2 when other

cofactor s have been aver aged out.

In Figure 6.11 the expected protein content curves of parity 3 resulting from the general
exponential and Wood models are compared. The greatest differences between the two
models occur at the start and at the end of the lactation cycle. The results with respect to the
expected protein content of all seven parities are summarised in Table 6.5.

Parity 6 Difference: Wood vs General exponential
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Figure6.11: (1) On the left the expected protein content curves for parity 6 using the
general exponential model (——) and the Wood model (= =) when other
cofactors have been averaged out. (2) On the right the differences in
protein content between thetwo curvesin (1) the plotted over time.

The greatest variation in differences between the result of the Wood model and general
exporential model occurs with respect to the protein content of milk. This is clear when
considering the results of protein content for the seven parities as no fixed pattern in the
differences of the results for the two models may be discerned. For example, when

considering the expected protein percentages on day 1, day 300 and at minimum we find that
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for one parity the values of the Wood model may be greater than that of the genera
exponential model, while for another parity it is the other way around. The same kind of
result also occurs with respect to the day on which minimum protein content is attained. The
same result is aso observed with respect to the expected protein content for the four years
when comparing the summarised results of Table 6.6 to that of the Wood moddl.

Table6.5: Summary of the expected protein content for the seven parities using the
general exponential model.

Parity Exopected protein | Mini mum_expected Day of mini mum Expected protein
% on day 1 protein % expected protein %| % onday 300
1 4,1786 4,1427 8 48111
2 4,3148 4,2955 11 4,8725
3 4,7031 4,2516 40 4,7306
4 4,6475 4,2271 46 4,6976
5 4,6192 4,1753 46 4,6367
6 4,3552 4,2099 74 4,6485
7or> 4,4148 4,1010 38 4,5695

Table6.6: Summary of the expected protein content for the four yearsusing the general
exponential model.

Year Expected protein | Minimum expected | Day of minimum | Expected protein
% on day 1 protein % expected protein %| % on day 300
1995 4,6517 4,1006 41 4,6193
1996 4,3094 4,1825 38 4,6390
1997 4,2714 4,2649 6 4,8360
1998 4,6117 4,2789 41 4,7337
Season 1: Wood vs General exponential ~ Season 2: Wood vs General exponential
0.3 0.3
0 \,_// 0 \\__,, '*\\
X ( X
-0.3 0.3
-0.6 -0.6
0 100 200 300 0 100 200 300
Days into season Days into season

Figure6.12: The differences in expected protein content for seasons 1 and 2 when
comparing the expected protein content curves that resulted from
Wood model to that of the general exponential model over time.
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Figure 6.12 supports the statement that no fixed pattern in the differences of the results for the
two models with respect to protein content may be discerned.

6.2.4 Predictions based on the general exponential model

In section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycles of
an animal i based on the results from one or more preceding lactation cycles is discussed for
the genera case. In section 5.7 of Chapter 5 this method was applied in order to predict a
fifth lactation cycle of an animals based on the results from the preceding four lactation cycles
making use of the Wood model. This same prediction procedure will now be used here to
predict the milk yield, fat content and protein content curves for the fifth lactation cycle of
anima i = 135 given the performance in the preceding four lactation cycles modelled by
means of the general exponential model. The results are provided in Figure 6.13 where the
solid turquoise line represents the predicted curve, while the 0% HPD intervals are given as

magenta broken lines and the 90% prediction intervals as blue broken lines.
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Figure6.13: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat
content and protein content curves resulting from the general
exponential model are given by, their 90% HPD interval by — — and
90% prediction interval by = = .
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6.3 THE 4-PARAMETER MORANT MODEL

The 4-parameter Morant model also resulted from research in 1989 by Morant and
Gnanasakthy in an effort to model lactation in Friesian heifers. This model assumes that the
expected milk yield (in kg/day) of an animal at time t can be represented over the lactation
period by

E(W ) = Aexp(bt +ct? +d/t) (6.9)
where A = exp(a). The parameters a, b, ¢ and d are unknown and may differ from one animal
to another. This model also has the ability to take on a convex form and is therefore also used

to estimate the milk composition traits fat and protein content of milk for the Jersey data.

With the assumption & multiplicative errors for the model in (6.9) and after performing a

natural log transformation, the observation model for animal i is:
d.
- — 2 ijs
Yoty =W (t,))= 8 bt e g, + by, " s (6.10)

where e, ~iid.N(0,s?),i=1 ...,1141,j=1,..,4,5=1,23 adp=1, .., n, where

ijps

n;

; is the number of test days for animal i during lactation cycle j. From 8 to 10 test day

records were observed for each animal during each of the four lactation cycles

As described in (4.3) for the general case, the model for animal i during lactation cycle j in

generalised linear model formis:
Y”. =X i M it E”. (6.12)

where vecEi(](Snij' 1)~N(vecO,FA|m). The 4-parameter Morant model has v = 4

regression coefficients in the generalised linear form of the lactation model for anima i in its
j" lactation cycle for the lactation trait indicated by s = 1, 2, 3. These regression coefficients
aredenoted by ajjs, bijs Gjsand dijs, SO that

& aij3l;|

é a
M (4" 3) _&%n B Py (6.12)

ij A T

~ACijl Cij2 Cij3 H

éjijl dijz dijsa

In the design matrix X (nij * 4) row r contains the elements that would return the generalised

linear form of the 4 parameter Morant model when multiplied with the matrix of regression

coefficients M in (6.12) above,
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Xiﬁ” :l_l t; ti?r turl] (6.13)
The model extended for animal i to al g = 4 lactation cyclesthenis,
&, u
- a
Y, =g‘({'2l]:xi|\/|i +E, (6.14)
A iBU
&riaQ
4
where vecE{(3n ~ 1) ~N(vecO,F A1, ), n =& n,, X,(n " 16) = diag{ X} and
j=1
eM;, U
™Y
M (16" 3) =€ U (6.15)
&M , U
& U
eVlia

Because q = 4 lactation cycles were observed for all 1141 animals in the Jersey data, the
matrix R, containing the covariances between the model parameters of the same animal in
successive lactation cycles remains of the form denote in (6.8). As before the covariate

matrix Z;(17" 4) for each animal i contains the information on the cofactors.

Next the Gibbs sampler as described in section 4.2 of Chapter 4 using the full conditional
distributions of al the model parameters of interest as set out in equations (4.17) to (4.21) is
employed to obtain the margina posterior distributions conditional on the observed data only.
The hyperparameters G and P required to generate marginal distributions for S*andR™, were
again set equal to the moments estimators from the sampling distributions of S and R with
degrees of freedom still as small as possible, d =4 and g = 13. As before the Gibbs sampler
was put through a “burnin” period of 2000 simulation iterations, after which 10 000 sets of
parameters were generated. Again only the 10 000 sets of parameters generated for B,F ™,
St and R* were stored, because to regenerate the parameters contained in M;, either of the

two aternatives explained in full in section 5.5 of Chapter 5 may be used.

The 90% HPD intervas for B, constructed from the 10 000 regression matrices B (9" 17)
resulting from the Gibbs sampler indicated that 109 of the 204 elements of this matrix
significantly affect the parameters of the three lactation trait curves, milk yield, percentage of
fat and percentage of protein in milk composition. The affects of al levels of this matrix on
the parameter ¢ of the protein content curve are not significant. However, the base level

effects on al 11 the other parameters of the model are significant. The effects of all
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covariates on the parameters of the traits curves are significant for at least two of the 12

parameters in the model and therefore al cofactors were kept.

Once the margind distributions of the parameters of the general exponential model had been
obtained through Gibbs sampling, further investigation of the results for Jersey data based on
this lactation model follows.

6.3.1  Thelactation trait milk yield

Figure 6.14 shows the results, obtained as before, of the expected lactation curves for the four
lactation cycles of animal 135 as black lines, while the observed data are given in green. The
red lines are the least squares estimates of the 4parameter Morant model fitted to the data.
The magenta broken lines represent the 90% HPD intervals of the expected lactation curve
and the blue broken lines the 90% prediction intervals for the expected lactation curve
obtained using the 90% HPD intervals of the predictions resulting from the predictive density
as explained in section 5.5 of Chapter 5.
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Figure6.14: For each of thefour lactation cycle of Animal 135 the expected lactation
curveisgiven by—, its 90% HPD interval by- - and its 90% prediction
interval by == . The least squares estimate of the lactation curve is
given by—. The observed data for Animal 135 isgiven by
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The expected lactation or milk yield curve of the herd with respect to one of the levels of a
cofactor is again determined using the method applied in section 5.5 of Chapter 5 and section
6.2.1 above. The results of these curves are the Bayesian equivalents of the Standard lactation
curves (SLAC's) discussed in section 3.2 of Chapter 3 when the 4-parameter Morant model is
used to modd lactation.

Figure 6.15 below shows the expected lactation curves and their 95% HPD intervals for

parities 1 and 6 when the other three cofactors (region, calving year and calving season) have

be averaged out.
Parity 1 Parity 6
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Figure6.15: Expected lactation curves with 95% HPD intervals resulting from the

4-parameter Morant model for parities 1 and 6 when other cofactors
have been averaged out.
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Figure6.16: (1) On the left the expected lactation curves for parity 2 using the 4
parameter Morant model ¢
the Wood model ¢ - -) when all other cofactors have been averaged out.
(2) On theright the differences in milk yield between the expected curves
for parity 2theplotted over timefor (a) Wood vs M orant model < — ) and
(b) Morant vs general exponential model ().

), the general exponential model (- -

130

-) and



The graph on the left in Figure 6.16 compares the expected lactation curves of parity 2
obtained from the 4parameter Morant model in green, the general exponential model in blue
and the Wood model in red, while in the graph on the right the difference over time between
the expected lactation curves of parity 2 for the Wood against the 4 parameter Morant model
is plotted in magenta and that for the 4 parameter Morant model against the general
exponential model is plotted in turquoise. From this is clear that the resulting expected
lactation curves of the Wood and 4 parameter Morant models are more similar in scale than
the expected lactation curves of the 4-parameter Morant and general exponential models.

This result also applies to the expected lactation curves of al other parities.

The results with respect to the expected lactation curves of al seven parity groups are
summarised in Table 6.7. When compared to the expected lactation cur ves of the Wood
model it is noted that the time of peak milk yield is considerably earlier in the curves resulting
from the 4 parameter Morant model and even earlier than in the general exponential model,
with the first three parities attaining peak yield on the first day of the lactation cycle. From
about day 50 in the lactation cycle the difference between expected lactation curves of the
Wood and 4 parameter Morant model remains more or less constant for all parities, with the
expected curves resulting from the Wood model always above that of the 4 parameter Morant
model.

Table6.7: Summary of the expected milk yield for the seven parities using
4-parameter Morant model.

Parity Expected kg's Maximl’Jm expected| Day of max,i mum Expected kg's
milk on day 1 kg's milk expected kg's milk | milk on day 300
1 16,9478 16,9478 1 11,9704
2 20,7641 20,7641 1 11,7074
3 22,0742 22,0742 1 11,7733
4 22,1666 22,2834 8 11,6906
5 21,8394 21,9862 21 11,5007
6 22,5006 22,5823 6 11,4014
7or> 21,0783 21,2422 17 10,8625

A summary of the results of the expected lactation curves for the four calving years is
provided in Table 6.8. When comparing the expected lactation curves of the 4parameter
Morant, Wood and genera exponential models for the four calving years results similar to
that of parity are obtained.
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Table6.8: Summary of the expected milk yield for the four yearsusing the 4-parameter
Morant model.

Year Expected kg's | Minimum expected | Day of maximum Expected kg's
milk on day 1 kg's milk expected kg's milk [ milk on day 300
1995 20,4941 20,6620 15 11,0226
1996 20,2700 20,3097 5 11,4851
1997 21,1837 21,1981 10 11,9187
1998 21,9733 21,9733 1 11,7412

In Figure 6.17 the expected lactation curves of the two calving seasons for the 4 parameter
Morant, Wood and general exponential models are compared. From this is evident that the

results are similar to the comparison for parity commented on earlier.
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Figure6.17: The expected lactation curvesfor seasons 1 and 2 using the 4-parameter
Morant model ( ), the general exponential model (- - =) and the
Wood model ¢ = =) when other cofactors have been averaged out.

6.3.2 Thelactation trait fat content of milk

The expected fat content curve of an animal i for each lactation cycle may again be obtained
asbefore. Toillustrate, the expected fat content curves for each of the four lactation cycles of
animal i = 135 graphed in black in Figure 6.18 were obtained. In this figure the observed data
are again plotted in green, while the red lines represent the least squares estimate of the fat
content curve obtained using the 4parameter Morant model. The 90% HPD intervals and
90% prediction interval for the expected fat content curves obtained as explained before are
represented by magenta and blue broken lines respectively. The Bayesian approach again
eliminates the atypical form of fat content curves obtained through least squares estimation in
lactation cycles 1 through to 3.
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Figure6.18: For each of the four lactation cycle of Animal 135 the expected fat

content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by-- . Theleast squares estimate of the lactation
curveisgiven by—. Theobserved datafor Animal 135isgiven by

Figure 6.19 shows the expected fat content curves with 95% HPD intervals for parities 1 and
7 or greater when all other cofactors have been averaged out using this method. Very little
difference between the results of the two parity groups is evident, although the 90% HPD

interval for parity 7 or greater is wider towards the end of the lactation cycle.
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Figure6.19: Expected fat content curveswith 95% HPD intervalsresulting from the
4-parameter Morant model for parities 1 and 7 or greater when other

cofactor s have been aver aged out.
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Figure 6.20 compares the expected fat content curves of parity 6 that resulted from the 4
parameter Morant model, the Wood model and the general exponential model. The graph on
the left shows that very little differences in both shape and scale occurred among the three
models. The graph on the right provides the actual differences between expected fat content
curves of the Wood and 4 parameter Morant models (in magenta) and the 4 parameter Morant
and general exponential models (in turquoise). The greatest differences are observed at
beginning and end of the lactation cycle, although these differences are relatively small when

compared to the scale on which fat content is measured.
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Figure6.20: (1) On the left the expected fat content curves for parity 6 using the
Morant model ¢ ), the general exponential model (= - -) and the Wood
model & =) when other cofactor s have been averaged out.

(2) On theright the differencesin fat content between the expected curves

for parity 6 the plotted over timefor (a) Wood vs Morant model (~ —) and

(b) Morant vs general exponential model (—).
The results with respect to the expected fat content curves of all seven parities for the 4
parameter Morant model are summarised in Table 6.9. On average the expected fat content of
the parities on the first day of the lactation cycle for the Morant model is 7,1% higher than for
the Wood model and 6,6% higher than for the general exponential model. These high starting
values resulting from the 4-parameter Morant model are however unredistically high. On
average the minimum fat content of the parities for the Morant model are 0,055% lower and
from 5 to 18 days earlier than for the Wood model, but 0,009% lower and from 9 to 12 days
earlier than for the general exponential model. On day 300 the expected fat content of the
Morant model is on average 0,087% higher than that of the general exponential model, but

when compared to the Wood model there is no consistent difference on day 300.
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Table6.9: Summary of the expected fat content for the seven parities using the
4-parameter Morant model.

Parity Expected fat % Minimum Day of minimum | Expected fat % on
onday 1 expected fat % expected fat % day 300

1 9,7567 3,3025 33 3,8703

2 10,8073 3,3800 36 3,9555

3 12,6422 3,3733 37 3,9143

4 11,0194 3,3908 39 3,9341

5 10,8564 3,3938 38 3,9063

6 10,6673 3,3929 40 3,9324

7or> 11,3618 3,3838 40 3,9403

Table 6.10 provides a summary of the expected fat content curves for the four years. When
comparing these results of the expected fat content for the four years from the 4 parameter
Morant model to that of the Wood and general exponential models, the results are similar to
that of the parities above, with the exception of the day of minimum fat content that occurs 10
to 17 days earlier than in the case of the Wood model and 9 to 11 days earlier than for the

general exponential model.

Table6.10: Summary of the expected fat content for the four years using the

4-parameter M orant model.

Year Expected fat % Minimum Day of minimum | Expected fat % on
on day 1 expected fat % expected fat % day 300

1995 13,2231 3,4251 38 3,9014

1996 10,1939 3,3661 37 3,9150

1997 9,9220 3,4207 36 3,9079

1998 10,8413 3,2861 39 3,8824

In Figure 6.21 the expected fat content curve of obtained from the 4-parameter Morant model

for season 2 differs less from both that of the Wood and general exponential models than is
the case for season 1.
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Figure6.21: For seasons 1 and 2 respectively, the differencesin expected fat content
curves plotted over time for (a) Wood vs Morant model (— — ) and (b)
Morant vs general exponential model ().

6.3.3  Thelactation trait protein content of milk

To illustrate the result obtained with respect to the expected protein content for an individual

animal using the 4 parameter Morant model, Figure 6.22 provides the expected protein
content curves for each of the four lactation cycles of animal i = 135 in black.
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Figure6.22: For each of the four lactation cycle of Animal 135 the expected protein
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by-- . The least squares estimate of the protein
curveisgiven by—. Theobserved data for Animal 135 isgiven by
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Expected protein content curves for the herd with respect to one of the levels of a cofactor of
interest was again obtained by applying the same procedure as before. The expected protein
content curves for parities 1 and 3 when all other cofactors have been average out, together
with the 95% HPD intervals of these expected curves are shown in Figure 6.23. The expected
protein curves of these two parities are very similar during the initial stages of lactation but
differ in the final stages of lactation.
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Figure 6.23: Expected protein content curves with 95% HPD intervals resulting
from the4 -parameter Morant model for parities1 and 3 when the other
cofactor s have been aver aged out.

The graph on the left in Figure 6.24 compares the expected protein content curves of parity 6
obtained from the 4parameter Morant model in green, the general exponential model in blue
and the Wood modéd in red, while in the graph on the right the difference over time between
the expected protein content curves of parity 6 for the Wood model against the 4 parameter
Morant model is plotted in magenta and that for the 4-parameter Morant model against the
genera exponential model is plotted in turquoise. From these graphs it is clear that the
expected protein content curves of the Wood and general exponential models are similar in
shape and scale, but that that these models differ dightly from the 4 parameter Morant model
with respect to expected protein content curve of parity 6. In the initial stages of the 4
parameter Morant model estimated the expected protein content to be at a higher level than
the Wood and general exponential models. After approximately day 80 until the end of the
lactation cycle the 4parameter Morant model estimates the expected protein content to be
lower than that of the Wood and general exponential models. On the final day of the lactation
cycle the 4 parameter Morant model estimates the expected protein content to be lower than
the other two models. This result also applies to the expected lactation curves of al other
parities, calving years and calving seasons. The results with respect to the expected protein
content of all seven parities are summarised in Table 6.11 below.
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Figure6.24: (1) On the left the expected protein content curves for parity 6 using the
Morant model ¢ ), the general exponential model (- - -) and the Wood
model (= —= ) when other cofactors have been averaged out. (2) On the
right the differences in protein content between the expected curves for
parity 6 the plotted over timefor (a) Wood vs Morant model (- —) and (b)
Morant vs general exponential model ).

Table6.11: Summary of the expected protein content for the seven parities 4
parameter Morant model.

Parity Exopected protein | Mini mum_expected Day of mini mum Expected protein
% on day 1 protein % expected protein %| % on day 300
1 13,0102 4,3136 49 4,4249
2 14,6219 4,1895 300 4,1895
3 17,2458 3,9159 300 3,9159
4 14,7471 3,9800 300 3,9800
5 14,3695 3,8659 300 3,8659
6 14,2351 3,7816 300 3,7816
70> 14,6661 4,1122 280 4,1137

When comparing the results form Table 6.11 for the expected protein content of the seven
parities using the 4-parameter Morant model to the same results generated for the Wood and
general exponential models, we see that the minimum expected protein content for parities 2
to 6 from the 4 parameter Morant model is lower than those from the Wood model, while the
minimum expected protein content for parities 2 to 7 or > are lower than those from general
exponential models. It should however aso be noted that for both the Wood and general
exponential model the minimum expected protein content is attained early in the lactation
cycle (no later than day 74), while for the 4 parameter Morant model this minimum is on day
49 for parity 1, on day 300 for parities 2 to 6 and on day 280 for parity 7 or greater. Results
similar to parities 2 to 6 also apply to the expected protein content curves of the four calving

years summarised in Table 6.12 below.
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Table6.12: Summary of the expected protein content for the four years 4-
parameter Morant model.

Year Expected protein | Minimum expected | Day of minimum | Expected protein
% on day 1 protein % expected protein %| % on day 300
1995 17,0806 3,8262 300 3,8262
1996 13,5405 3,8748 300 3,8748
1997 13,1187 4,1921 300 4,1921
1998 15,1139 4,1676 300 4,1676
Season 1: Oct-Mar Season 2: Apr-Sep
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Figure6.25: For seasons 1 and 2 respectively, the differences in expected protein
content curves plotted over time for (a) Wood vs Morant model (= = )
and (b) Morant vsgeneral exponential model ().

Figure 6.25 confirms that the expected protein content curves for the two seasons using the

Morant model differ from that of the Wood and general exponential model in the same

manner as explained above.

6.3.4  Predictionsbased on the4-parameter Morant model

To predict milk yield, fat content and protein content curves for the fifth lactation cycle of
animal i = 135 given the performance in the preceding four lactation cycles modelled by
means of the 4parameter Morant model, the procedure applied in section 5.7 of Chapter 5 is
again applied here. In Figure 6.26 the predicted curves are represented by turquoise lines,
while the 90% HPD and 90% prediction intervals are represented by magenta and blue broken
lines respectively.
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Figure6.26: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat
content and protein content curves is given by , their 90% HPD
interval by — — and 90% prediction interval by = = .

6.4 THE ADAPTED WILMINK MODEL

The Wilmink Il model was introduced by Wilmink in 1987 to model lactation in Dutch

Friesian cows. This model assumes that the expected milk yield (in kg/day) of an animal at
timet can be represented over the lactation period by

E(W,) = a+bt + cexp(- wt) (6.16)

where w = 0,05. Taking into account the discussion on assumptions made about the errors in
section 3.5 of Chapter 3, the Wilmink Il model is unsuitable to fit using the Bayesian
approach suggested in Chapter 4. To be suitable the lactation model should be such that,
when the assumption of multiplicative errors is applied and a log transformation of the model
is performed, the result is a model of linear form to which additive errors applies. As aresult
the Wilmink Il model had to be adapted in such a way that, with the assumption of

multiplicative errors and after a natura log transformation, it would be of linear form.
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The adapted Wilmink model suggested in this study, assumes that the expected milk yield (in
kg/day) of an animal at time t can be represented over the lactation period by

E(W, ) = exp(a + bt + cexp(- wt)). (6.17)
where-¥ <a<¥,b <0 c<0and0< w< 1instead of fixing the value of w at 0,05 or 0,61
as previously done by researchers. The parameters a, b and ¢ are unknown and may differ

from one animal to another, while the parameter w remains the same throughout the herd.

The adapted Wilmink model also has the ability to take on a convex form and may therefore
be applied to model the milk composition traits fat and protein content. The parameters of the
functions of the composition traits fat and protein content over time are required to be

-¥<a<¥,b>0,c>0and0<w < 1inorder for the functions to be convex in nature.

If multiplicative errors are assumed br the adapted Wilmink model in (6.17), then by
performing a natural log transformation on this model, the observation mode for animal i is
written as:

Yis(tip) =1In Mijs(tijp )) = ays + byt + G exp(— Wi, )"' €ijps (6.18)

where e, ~iid.N(0,s2), and for the Jersey data specifically i =1, ... ,1411, j = 1, ..., 4,

ijps
s=1,23p=1, ..., n; and n; isthe number of test days for animal i during lactation cycle
j,where8 £ n; £10. The parameter w gpplies to the herd of which animal i forms part and

not to a lactation trait of a specific lactation cycle of animal i.

The generalised linear modedl form of the model for animal i during lactation cycle j is as
described in (4.3) for the general case:

Y; =X ;M +E; (6.19)

where vec Ei(J(E;nij ’ 1)~ N(vecO, FAI m)' In the case of the adapted Wilmink model there

are v = 3 regression coefficients in the generalised linear form of the lactation model for the i*"
animal during its j™ lactation cycle for the lactation trait indicated by s = 1, 2, 3. These are
Ajjs bijsmd Gjs, SO that

By & aij38
M; (@3 3)= goujl b bijaﬂ' (6.20)
&in G2 G
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The r-th row of design matrix X; (nij ’ 3) contains the elements that would return the adapted
Wilmink model in gereralised linear form when multiplied with the matrix of regression
coefficients M;; in (6.20) above, i.e.

X0 =l t, expl-w,) (6.21)

The model extended for animal i to al g = 4 lactation cyclesthenis,

=X M, +E (6.22)

4
where vecE((3n " 1) ~N(vecO,F A1 ). n =& n;, X,(n " 12) = diag{ X} and

j=1

WY
M, (12" 3) = & %0 (6.23)

The matrix of covariances between the model parameters of the same animal in successive
lactation cycles, R remains of same structural form as denoted in (6.8) for the Jersey data.

The additional information on the factors parity number, region, calving year and calving
season available in the Jersey data has to again be included in the model. This is done as
before by constructing a covariate matrix Zj(17 =~ 4) for each animal i as explained in section

5.3 of Chapter 5. This covariate matrix is then used as described in section 4.1 of Chapter 4
for the generalised Bayesian model.

The adapted Wilmink model has one additional parameter w, that is not included in the model
as one of the regression coefficients of the generalised linear form of the lactation model for
the i"™ animal during its j" lactation cycle for the lactation trait denoted by s = 1, 2, 3, or M;;.
This requires the following prior be specified for this parameter:

pw) p L, (6.24)
w

The prior distributions of m;, B, F 1, S and R remain as specified in (4.12) to (4.16).
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The conditional distributions of the model parameters mi, B, F 7, S and R ill are as given

in equations (4.17) to (4.21), while conditional distribution of w, contained in row r of

X, (n, 3 as X" =h s exp(- ur) is derived as follows:

fW y;.m;.F)

u f(y, Im,,B,F,S,R)xf (W)

w Ol 4y - (1, AX m Y (F AL F(y - (1, A% Jm ]
é | & quxl
etrg 7?}1(Y X, MF Y - XM, )Hw
wwterdE e 28 (v - XM - XM, )%u (6.25)
e | i=1

Next the Gibbs sampler as described in section 4.2 of Chapter 4 with the full conditional
distributions of al the model parameters of interest as set out in equations (4.17) to (4.21) and
the Metropolis-Hastings algorithm using equation (6.25) above were applied to obtain the
marginal posterior distributions conditional on the observed data only. The moments
estimators from the sampling distributions of S and R were again used as the hyperparameters
G and P required to generate margina distributions for S*and R?, while the degrees of
freedom were again kept as small as possible, d =4 and g = 10.

MCMC procedures applied were put through a “burrrin” period of 2000 simulation iterations,
after which 10 000 sets of parameters were generated and kept using equations (4.17) to
(4.21), together with (6.25) for w. The distributions of M; and B were as before obtained by
sampling from two normal distributions, while the distributions of F %, S™ and R™* were again
generated from their respective Wishart distributions as explained at the end of section 5.2 in
Chapter 5. However, to obtain the distribution of w required a somewhat more complicated
sampling scheme in the form of the Metropolis-Hastings algorithm discussed in section 4.5 of
Chapter 4.

To obtain the margina posterior distribution of w from (6.25) the MetropolisHastings
algorithm is employed with the restriction that 0 < w < 1 placed on the vaue of this

parameter. A candidate valuew® of the following form is obtained:
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W =wexp(z) (6.26)
where z is randomly sampled from a uniform distribution in the interval —0,5 to 0,5. This

candidate value is then accepted with probability

& 0
. Lf(wc |Y,M,F)i_

é flwy,m,F) 5
As starting point value to w a randomly selected value in the interval 0 to 1 was used. As

(6.27)

mentioned before, an acceptable acceptance rate for such proposal values is considered to

usually be between 40% and 70%. In the case of w the acceptance rate was 47%.

Only the 10 000 sets of parameters generated for B, F %, S, R* and w were stored due to
both speed and storage constraints in Matlab. The posterior distribution of the parameter w
that resulted through MCMC simulation is depicted in Figure 6.27 below. This posterior
distribution has amean of 0,0491.

Posterior distribution of W
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Figure6.27: The posterior distribution of the parameter w contained in the adapted
Wilmink model.

At 90% HPD level the intervals for the elements of the regression matrix B (9 17),
constructed using the 10 000 B matrices resulting from the Gibbs sampler, indicated 94 of the
153 eements of this matrix to significantly affect the parameters of the three lactation trait
curves, milk yield, percentage of fat and percentage of protein in milk composition. All nine
base level effects are significant, while the effects of al covariates on the nine trait curve
parameters are significant for at least 2, but in some cases al 9 parameters. As a result al
cofactors were kept in the model.
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Once the Wilmink model had been fitted to the Jersey data and the marginal distributions of
the parameters obtained through Gibbs sampling, further investigation of the results for Jersey
data based on this lactation model was performed.

6.4.1  Thelactation trait milk yield

By following the usual procedure, the expected lactation curve for each of the four lactation
cycles of animal i = 135, where lactation is modelled using the adapted Wilmink model, were
determined. These expected lactation curves are represented by the black solid linesin Figure
6.28, together with their 90% HPD and 90% prediction intervals represented by magenta and
blue broken lines respectively. The observed data are represented by green lines and the least
sguares estimate of the adapted Wilmink model for milk yield by red lines.
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Figure6.28: For each of thefour lactation cycle of Animal 135 the expected lactation
curveisgiven by—, its90% HPD interval by- - and its 90% prediction

interval by == . The least squares estimate of the lactation curve is
given by—. Theobserved datafor Animal 135 isgiven by

Again using the procedure described in section 5.5 of Chapter 5, the expected lactation or

milk yield curve of the herd with respect to one of the levels of a cofactor, which aso
provides the Bayesian equivakent of the Standard lactation curve (SLAC) with respect to this
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cofactor level, may be obtained. Figure 6.29 gives the expected lactation curves with 95%

HPD intervals for parities 1 and 6 when &l other cofactors have been averaged out.

Parity 1 Parity 6
25 25

20 20 'k\

A\
15 \% \:\\\

0 100 200 300 0 100 200 300
Days into season Days into season

Kg

15

I

Figure6.29: Expected lactation curves with 95% HPD intervals resulting from the
adapted Wilmink model for parities 1 and 6 when other cofactors have
been averaged out.

Figure 6.30 compares the expected lactation curves of parity 2 obtained for all four lactation
models. From the graph on the left of this figure where the expected lactation curves of parity
2 obtained for the adapted Wilmink model is given in black, for the 4-parameter Morant
model in green, for the general exponential model in blue and for the Wood model in red, it
follows that the result of the adapted Wilmink model most similar to that of the 4 parameter
Morant model with respect to scale, followed by the Wood model and then only the genera
exponential model. This is confirmed by the graph on the right of this figure in which the
difference over time between the expected lactation curves of parity 2 for the Wood against
the adapted Wilmink model is plotted in magenta, for the adapted Wilmink against the general
exponential model in turquoise and the adapted Wilmink against the 4-parameter Morant
model in yellow. From thisis clear that the resulting expected lactation curves of the adapted
Wilmink and 4 parameter Morant models are more similar in scale than the expected lactation
curves of the adapted Wilmink model either the Wood model or the general exponentia
model. The shape of the adapted Wilmink model is however closer to that of the Wood

model. Thisresult aso applies to the expected lactation curves of al other parities.
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Parity 2 Parity 2: Differences for all models
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Figure6.30: (1) On the left the expected lactation curves for parity 2 using the adapted
Wilmink model (), the Morant model ( ), the general exponential
model &« =) and the Wood modé (=+:=*) when all other cofactors have been
averaged out. (2) On the right the differences in milk yield between the
expected curvesfor parity 2 the plotted over timefor (a) Wood vs adapted
Wilmink (- =), (b) adapted Wilmink vs general exponential {- - -) and (c)
adapted Wilmink vsMorant () models.

The full result of the expected lactation curves of al seven parity groups are summarised in

Table 6.13. The lowest level of expected peak milk yield occursin first parity, asharp risein
expected peak level occurs during the second parity followed by a steady increase in expected
peak milk yield up to parity 6. In parity 7 or > expected peak yield again drops off dightly.

Thisis similar to the result obtained for the Wood model in section 5.5 of Chapter 5. For the
adapted Wilmink time of expected peak yield is latest in parity 1 and occurs on the same day
as that of the Wood mode.

Table6.13: Summary of the expected milk yield for the seven parities using the
adapted Wilmink model.

Parity E>§pected kg's MaximL’Jm e_xpected Day of ma>fimu_m E_xpected kg's
milk on day 1 kg's milk expected kg's milk | milk on day 300
1 13,8344 17,1406 48 12,0914
2 17,2717 20,6966 40 12,0967
3 18,2434 22,4932 41 12,4924
4 18,2026 23,1510 42 12,5651
5 17,7031 23,2800 44 12,5751
6 18,6048 23,6892 42 12,4617
7or> 17,3409 22,9125 44 12,1696
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In Table 6.14 the results with respect to the expected lactation curves of the four years are
summarised. The expected lactation curves commence at a slightly lower level than that of
the Wood or 4parameter Morant models, but at a higher level than the genera exponential
model. Time of expected peak yield for the adapted Wilmink model is closest to that of the
Wood modd.

Table6.14: Summary of the expected milk yield for the four years using the
adapted Wilmink model.

Year Expected kg's | Minimum expected | Day of maximum Expected kg's
milk on day 1 kg's milk expected kg's milk [ milk on day 300
1995 17,1853 21,7217 43 12,1161
1996 16,8395 21,0316 43 12,2487
1997 17,3553 22,0936 44 12,6990
1998 17,5939 22,3162 43 12,3312
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Figure6.31:  The expected lactation curves for seasons 1 and 2 using the adapted
Wilmink model (—— ), the 4-parameter Morant model ( ), the
general exponential model (= - 3 and the Wood model (:+- ) when the
other cofactors have been averaged out.

In Figure 6.31 the expected lactation curves for the two season resulting from the adapted

Wilmink model, the Wood model, the 4 parameter Morant model and the general exponential

model are compared. The result of the expected lactation curve of the adapted Wilmink

model again is closest in scale to that of the 4 parameter Morant model, while the shape of the
curve for the adapted Wilmink model more closely resembles that of the Wood model.
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6.4.2 Thelactation trait fat content of milk

The expected fat content curves for each of the four lactation cycles of anima i = 135,
together with the 90% HPD and 90% prediction intervals of these expected fat content curves
are given in Figure 6.32. The observed data values, as well as the least squares estimate of the
fat content curve using the adapted Wilmink model are also provided for each lactation cycle.
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Figure6.32: For each of the four lactation cycle of Animal 135 the expected fat
content curveis given by —, its 90% HPD interval by = = and its 90%
prediction interval by-- . Theleast squares estimate of the lactation
curveisgiven by— . The observed data for Animal 135 isgiven by

For both lactation cycles 2 and 3 the expected fat content curves following from the Bayesian
approach are not atypical, while the least squares estimates of the fat content curves for these
lactation cycles are. The Bayesian approach therefore again succeeds in preventing the

occurrence of an atypical result.

In Figure 6.33 the expected fat content curves and their 95% HPD intervals for parities 1 and
7 or > when al other cofactors in the model have been averaged out, are given. Both the
shape and scale of the expected fat content curves for these parities are more similar to the

equivalent results from the Wood model than to the other model discussed in this chapter.
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Figure6.33: Expected fat content curveswith 95% HPD intervalsresulting from the
adapted Wilmink model for parities 1 and 7 or greater when other
cofactor s have been av eraged out.
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Figure6.34: (1) On the left the expected fat content curves for parity 6 using the
adapted Wilmink model (——), the Morant model ( ), the general
exponential model (=+ =) and the Wood model (=== ) when all other
cofactors have been averaged out. (2) On the right the differences in fat
content between the expected curves for parity 6 the plotted over time for
(a) Wood vs adapted Wilmink ( — = ), (b) adapted Wilmink vs general
exponential (- - -) and (c) adapted Wilmink vsMorant () models.

Figure 6.34 compares the expected fat content curves of parity 6 obtained using the adapted
Wilmink, the Wood, the 4 parameter Morant and the general exponential models. In the
graph on the left it follows that there are verylittle differences in these models with respect to
scale and shape of the expected fat content curve for this parity. This is confirmed by the
graph on the right of this figure, which also indicates that the largest of these small differences
occur at the start and end of the lactation cycle. The results with respect to the expected fat
content curves of al seven parities are summarised in Table 6.15. On average the minimum
expected fat content of the parities is 0,021% lower for the adapted Wilmink model than for
the Wood model, 0,034% and 0,026% lower for the Morant and genera exponential models

than for the adapted Wilmink. Time of minimum expected fat content for the adapted
Wilmink model is closest to that of the Wood model.

150



Table6.15:

Summary d the expected fat content for the seven parities using the
adapted Wilmink model.

Parity Expected fat % Minimum Day of minimum | Expected fat % on
onday 1 expected fat % expected fat % day 300

1 3,6103 3,3617 46 3,8796

2 3,7833 3,4227 50 3,9689

3 3,8079 3,4210 51 3,9582

4 3,8508 3,4182 53 3,9486

5 3,8475 3,4206 54 3,9146

6 3,8180 3,4154 53 3,8929

7or> 3,8701 3,3982 55 3,8825

The results of the expected fat content curves for the four calving years are summarised in
Table 6.16. When the expected fat content curves for the four years using the adapted
Wilmink model are compared to those obtained using the Wood, 4parameter Morant and

general exponential models, the results are similar to that of the parities mentioned above.

Table6.16: Summary of the expected fat content for the four years using the

adapted Wilmink model.

Year Expected fat % Minimum Day of minimum | Expected fat % on
on day 1 expected fat % expected fat % day 300

1995 3,7972 3,4673 51 3,9306

1996 3,7596 3,3976 50 3,9244

1997 3,8600 3,4572 53 3,9430

1998 3,7733 3,3142 53 3,8833
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Figure6.35: For seasons 1 and 2 respectively, the differences in expected fat content
curves over time for (a) Wood model vs adapted Wilmink model (— — ),
(b) adapted Wilmink model vs general exponential model ( ) and (c)
adapted Wilmink model vs M orant model ( ).
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From Figure 6.35 it follows that in season 1 the differences between the expected fat content
curves of the adapted Wilmink model compared to the Wood model are smallest, while in
season 2 these differences are smallest for the adapted Wilmink model compared to the

general exponential model.

6.4.3  Thelactation trait protein content of milk

The expected protein content curve for each of the four lactation cycles of animal i = 135, the
90% HPD and prediction intervals of the expected protein content curves, the observed data
and the least squares estimate of the protein curve for this animal using the adapted Wilmink
model are shown in Figure 6.36. The atypical fit of the least squares estimate of the adapted
Wilmink model occurring in lactation cycles 1 and 4 are again successfully eliminated using

the Bayesian approach.
Lactation cycle 1: Protein Lactation cycle 2: Protein
7 7
6 6
P emneasmensne] ¥ |
L4 b 4= = ]
3 / ‘ ]
2| 2
1 1
0 100 200 300 0 100 200 300
Lactation cycle 3: Protein Lactation cycle 4: Protein
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Figure6.36 For each of the four lactation cycle of Animal 135 the expected protein
content curve is given by —, its 90% HPD interval by - - and its 90%
prediction interval by-- . The least squares estimate of the protein

curveisgiven by—. The observed data for Animal 135 isgiven by
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By applying the same procedure as explained before, the expected protein content curve for
the herd with respect to one of the levels of a cofactor of interest may again be obtained, for
all cofactor levels. To illustrate such a result, Figure 6.37 gives the expected protein content
curves together with 95% HPD intervals for parities 1 and 7 or > when the effects of all other

cofactors have been eliminated through averaging.

Parity 1 Parity 7 or greater
5 5

4.8 ] 4.8

46 A 4.6 ]
= 4ah v 7 4.4 ’?Z
42 M/ 42 A/

~ N
4 4
0 100 200 300 0 100 200 300
Days into season Days into season

Figure6.37: Expected protein content curves with 95% HPD intervals resulting
from the adapted Wilmink model for parities 1 and 7 or greater when
the other cofactor s have been averaged out.

In Figure 6.38 the expected protein content curves of parity 6 obtained using the adapted

Wilmink model, the Wood model and the general exponential model are compared. The

expected protein content curve of this parity obtained from the 4parameter Morant model

was dropped from this comparison after it was discovered that in the initial stages of lactation
it differed considerably from the results of the other three models resulting in differences
among these models being difficult to investigate. From the graph on the left of this figure
where the expected lactation curves of parity 6 obtained for the adapted Wilmink model is
given in black, for the genera exponential model in blue and for the Wood model in red, it
follows that the result of the adapted Wilmink model is most similar to that of the Wood
model with respect to both shape and scale. This is confirmed by the graph on the right of
this figure in which the differences over time between the expected lactation curves of parity

6 for the Wood model against the adapted Wilmink model is plotted in magenta and for the

adapted Wilmink model against the general exponential model in turquoise. This result also

appliesto the expectedlactation curves of all other parities.
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Differences a) Wood vs Wilmink and

47 Parity 6 O.Zb) Wilmink vs General exponential
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Figure6.38: (1) On the left the expected protein content curves for parity 6 using the
adapted Wilmink model (—), the general exponential model (— - -) and
the Wood model (:---- - ) when all other cofactorshave been averaged out.

(2) On theright the differences in protein content between the expected

curves for parity 6 the plotted over time for (a) Wood model vs adapted
Wilmink model (- —=) and (b) adapted Wilmink model vs general

exponential model (- - ).

The results with respect to the expected protein content curves of all seven parities are
summarised in Table 6.17 below. The greatest variation in differences between the results of
the adapted Wilmink model and any one of the other three models occur with respect to the
expected protein content curves. The same is true for the expected protein content curves for

the four calving years summarised in Table 6.18.

Table6.17: Summary of the expected protein content for the seven parities using
the adapted Wilmink model.

Parity Exopected protein | Mini mum_expected Day of mini mum Expected protein
% on day 1 protein % expected protein %| % on day 300
1 4,3543 4,2107 35 4,8862
2 4,4453 4,2976 38 4,8435
3 4,4851 4,2614 45 4,7595
4 4,4900 4,2227 48 4,6881
5 4,4968 4,1639 51 4,6367
6 4,4638 4,1758 52 45412
7or> 4,4435 4,0775 51 4,5870
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Table6.18: Summary of the expected protein content for the four years using the
adapted Wilmink model.

Year Expected protein | Minimum expected | Day of minimum | Expected protein
% on day 1 protein % expected protein %| % on day 300
1995 4,3678 4,1087 45 4,6513
1996 4,3936 4,1577 47 4,6039
1997 45257 4,2701 45 4,8335
1998 4,5307 4,2767 47 47322
Season 1: Oct-Mar Season 2: Apr-Sep
0.2 0.3
0.1 - 0.2
Of—7—= e — 0.1F
= -0.1 / Of—+4A—=
[ v/
-0.2 -0.1 1
-0.3 -0.2 l
0 100 200 300 0 100 200 300
Days into season Days into season

Figure6.39:For seasons 1 and 2 respectively, the differencesin expected protein content
curves plotted over time for (a) Wood vs adapted Wilmink model (- — )
and (b) adapted Wilmink vs general exponential model (= - 9.

Figure 6.39 also shows that the differences between the expected protein content curves of the

adapted Wilmink and Wood models are smaller than those between the curves of the adapted

Wilmink and general exponential models. The greatest differences occur between the

expected protein content curves of the adapted Wilmink and 4 parameter Morant models not

shown in the illustration.

6.4.4  Predictionsbased on the adapted Wilmink model

Again using the prediction procedure applied in section 5.7 of Chapter 5, the milk yield, fat
content and protein content curves for fifth lactation cycle of animal i = 135 based on the
results from the preceding four lactation cycles modelled by means of the adapted Wilmink
model, were predicted. The results are provided in Figure 6.40 below, where the solid
turquoise line represents the predicted curve, while the 90% HPD intervals are given as
magenta coloured broken lines and the 90% prediction intervals as blue broken lines. It is
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noted that for the adapted Wilmink model these intervals are not as wide for predictions of the
lactation traits in the fifth lactation cycle as they were for the general exponentia and 4
parameter Morant models discussed earlier in this chapter.

Predicted Milk yield: Lactation 5 Predicted Protein: Lactation 5
50 F\ 6

40 /\k B
20

0 100 200 300 0 100 200 300
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/
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|
|

Predicted Fat: Lactation 5

§4%

0 100 200 300
Days into season

A\

I

Figure6.40: For the fifth lactation cycle of Animal 135 the predicted milk yield, fat
content and protein content curves is gven by , their 90% HPD
interval by = = and 90% prediction interval by = = .

6.5 ALTERNATIVE LACTATION MODELSIN SUMMARY

When comparing the expected milk yield or lactation curves for the levels of the cofactor of
interest, when the effects of dl other cofactors were averaged out, obtained using the general
exponential, 4parameter Morant, adapted Wilmink and Wood models, it follows that the
shape of the Wood and adapted Wilmink models are very similar, athough the scale of the
adapted Wilmink model with respect to expected milk yield corresponds more to that of the 4-
parameter Morant model. The general exponential model differs most with respect to both
shape and scale of the expected milk yield curves from that of the other models and possibly
result in too low levels of expected milk yield towards the end of the lactation cycle, making
its shape less desirable. When considering the expected milk yield curves, the 4 parameter
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Morant modél is criticised for the fact that it often indicates peak milk yield to occur when the
lactation cycle commences which is considered not to be true for lactation in Jersey cows.
Therefore, of the three modes discussed in this chapter the adapted Wilmink model best
describes expected milk yield.

With respect to the expected fat content curves of the levels of a cofactor of interest, when the
effects of the other cofactors have been eliminated through averaging, similar results in both
shape and scale were obtained from al four lactation models considered in thisstudy. The 4-
parameter Morant model is however worth taking special note of with respect to the expected
fat content curves, as this is the only lactation trait it seems to model effectively when
considering the shapes of lactation trait curves that are considered realistic with respect to

lactation in Jersey cows.

Considering the results of the expected protein content curves for the levels of a cofactor of
interest, when the effects of the other cofactors have been average out, the general exponential
model, adapted Wilmink model and the Wood model are very similar in shape and scale,
although the resulting expected protein content curves of the adapted Wilmink model are
closest to that of the Wood model. The 4parameter Morant model, however, takes on a less
realistic form with respect to the expected protein content curves. This same result was also
obtained when predicting the protein content curve of the fifth lactation cycle based on the

results for the preceding four cycles using the 4parameter Morant model.

With respect to the 90% HPD and prediction intervals obtained for prediction of the fifth
lactation cycle based on the results from the preceding four cycles, the adapted Wilmink
model displayed the most consistent interval widths through ou the lactation cycle in al three
lactation traits.

Considering all of the above, the adapted Wilmink model fares best of the three models
considered in this chapter at describing the expected lactation curves of alevel of the cofactor
of interest when the effects of al other cofactors have been eliminated. To further investigate
the appropriateness of the four models considered in this study in modelling lactation for the
Jersey data under consideration, a diagnostic comparison of these lactation modek will be

performed in the next chapter.
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CHAPTER 7

BAYESFACTORSAND MODEL COMPARISON

7.1 BAYESFACTORS

One of the first and probably most significant contributions to hypothesis testing in a
Bayesian context was that of Jeffreys (1935, 1961). His groundbreaking work allowed for the
comparison of predictions resulting from two competing scientific theories through the
introduction of statistical models that represent the probability of the data according to each
theory. The posterior probability that ore of the theories is correct is then calculated by
means of Bayes theorem. This has since developed into formulating two the competing
statistical models as two hypotheses and calculating, as the socaled Bayes factor, the
posterior probability of the nodel under one of the hypotheses when it is assumed that the
prior probabilities of the two hypotheses are equal.

Kass and Raferty (1995) explain the approach used to determine Bayes factors as follows. It
is assumed that the data D resulted under one of two models specified in the hypothesis H;
and H, respectively, according to probability density p(D|H1) or p(DH2). Using the prior
probabilitiesp(Hq) and p(H2) =1 - p(H1), the data produce the posterior probabilities p(H4|D)
and p(H2|D) = 1- p(H4|D). From this result it follows that prior information is transformed
through consideration of the data to posterior information, and therefore the transformation

itself represents the evidence provided by the data.

Prababilit y
1- Probabilit y
p(D[H . Jp(H,)
D|H,)p(H.) + p(D[H)Jp(H.)
To determine the posterior odds of hypothesis H;, the odds ratio scale results in
p(H,D) _ p(H,D)
1- p(H:D)  p(H.[D)
Determining the odds ratio in (7.2) in terms of Bayes theorem given in (7.1) leads to the

Next consider the odds ratio scale, Odds = , together with Bayes' theorem:

H,|D)= =12 7.1
p(H,|D) n 1, (7.)

(72)

transformation of prior to posterior taking on a simple form:
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p(H1|D) _ p(D|H1) p(Hl).
p(H.|D) ~ p(D[H.) p(H.)
This implies that the transformation for prior odds to posterior odds is multiplication by

_ p(DH,)

B, = m (7.9

or the Bayes factor. This means that the posterior odds of the hypothesis H; is equal to the

(7.3)

product of the Bayes factor and the prior odds of the hypothesis Hi. The Bayes factor
therefore represents the ratio of the posterior odds o the hypothesis H; to its prior odds,
irrespective of the value of the prior odds. If the prior probabilities of the two hypotheses
under consideration may be assumed equal, the Bayes factor reduces to the posterior odds of
H.. This may, however, not aways be the case.

When the two hypotheses under consideration contain no free parameters, the Bayes factor
would simply be the likelihood ratio. However, if there are unknown parameters under either
or both hypotheses, the Bayes factor is still calculated as in (7.4), but the probability densities
p(D|Hy (k =1, 2) then requires integration over the parameter space so that

p(DJH, )= op(Dja,. H, Jplay|H ) da (7.5)
where under hypothesis Hy the parameter is qy, with prior density p(qk|H k) and likelihood

function p(D|qk H k). Note that qx may aso be a vector and that if this is the case p(D|Hk)
is the marginal probability or marginal likelihood of the data. Note that none of the constants
obtained in determining p(D|Hk) may be discarded when calculating Bayes factors.

It often happens that the margina likelihood as denoted by equation (7.5) is intractable and
therefore requires determination by computational methods. This has proved to sometimes be
extremely challenging. Chib (1995) has however found a way out in this respect, by
determining the marginal likelihood from the output of the Gibbs sampler as discussed in the

next section.

Using Bayes factors to evauate the evidence in favour of a model has the benefit that it
dlows for dl other information used in the modelling approach to be included in the
assessment. To summarise the Bayes factor, denoted by By and interpreted as the Bayes
factor for H; against Hy, is a measure of the evidence provided by the data in favour of the
model under hypothesis H; as opposed that the model under hypothesis Hy.
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7.2 MARGINAL LIKELIHOOD FROM GIBBSOUTPUT

Chib (1995) introduced a simple approach to determine the marginal density of the sample
data given parameter draws from the posterior distribution. From this result the Bayes factors
required for model comparison may easily be obtained as part of the output of the Gibbs
sampler. The approach, as described in detail below, is based on the fact that the margina
dersity of the data can be expressed as the prior times the likelihood function over the
posterior density. Note that it now follows that model M; is the model specified under
hypothesis Hy, whilemodel M, is the model under hypothesis H..

The Bayes factor in favour of model M1 when compared to model M, thenis

m(y [M,)
BE.. = 7.6
2 m(yle) 9

where m(y|M,)=gp(y[?2M,)p(?|M,)d? is the margina likelihood under model Mi. As
mentioned before the problem is to find m(y|M,) if the integral is intractable as often
happens.

The joint posterior of the parameters ? =(ql ..... qp) is

p(yl?vMi)p(?lMi)

p(?lvai): m(ylM.) (7.7)
p&1?" M, HB*|m. 9
so that, m(y|M.)= g - : 2 (7.8)
p?‘y,l\/lﬁ

which hold for any g, and therefore also for the specified ?". The numerator of m(y| Mi) in

(7.8) can be evaluated directly, since the functions are known. The problem, however, isin

the denominator of m(y|M;) in (7.8), because the value of the joint posterior at 2" s

unknown. The Gibbs sampler does, however, provide samples from the marginal posterior

distributions. But for specified ?* =& ,....q" 9
l’ 1 pg

p?’*‘MMig: pgﬁf y,Migpgaa:

* 0 x| * * O
ql,y,MiB...pgﬁpql,...,qp_l,y,MiB (7.9
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The last term of (7.9) is the full conditional of qz, which is known and can be evaluated

exactly. The first term is the marginal posterior of 1 a qf, and can therefore be obtained
form the original Gibbs sampling:

" = 1 K *| /. "

M, 9==3 20, yM, 2 7.10
p?ll y 5 K 21p§1 E—l) y 5 (7.10)
where K is the number of simulation iteration used in Gibbs sampling. For each of the rest of

the terms, additional Gibbs sampling isrequired. For example, to find pgﬁz q: Y. M, 9 draw
[

successively from
* )
pS%Z ql 7q3""1qp1 y!Mi 9!
[
p??: ql ’q2'q4""’qp’ y1Mi %ﬂ’
PECl (0 G- y,Mig- (7.10)
Then

pg%f;

* = 1 K *
ql,y,Migf—a pgaz

gl gy m 8 7.12
K j:l ql!q?, l~"1qp ly! Ib ( )

Similarly for pga%f; qj,q:, y,M, 9 and so forth. For the best results, 7 should be a high
[

density point, such as the mode or the mean.

Furthermore, the approach described here to obtain the marginal likelihood from the output of

the Gibbs sampling algorithm is fully automatic and stable and requires no input beyond the
draws from the Gibbs simulation. This means that no additional tuning functions are required

when determining the marginal likelihood.

7.3 BAYESFACTORSIN APPLICATION

The above results are now applied to the genera case as described for the Bayesian approach
in Chapter 4 in order to find the marginal likelihood or marginal density of the data. From

this, Bayes factors are calculated in order to compare the evidence provided by the data in
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favour of one model when compared to another for each of the four models that were fitted to
the Jersey data in Chapters 5 and 6. In genera, to determine the margina likelihood, let
={M(vgk" u), F(diag(u)), B(uv" m), R(q" q), S(uv" uv}, it therefore follows that

* YgxpgaB*‘M *,nggas*_l‘l\/l *,B* ,Ygx
7] (%]

2

v9=p3&u
5 &
pgh*-l I\/I*,B* ,S*,Ygxp?
[}

The five terms on the right hand side of (7.13) can be evauated as follows. Determine a 7"

p?i*

. )
N VRS (7.13)
9

from the marginal posteriors, including for al elements of M (v u) foralli,j. We start out

with:

1 pg ’Y_:_ap B(j),F(j),R(j),S(j),Yg

This is the product of equation (4.17) in Chapter 4 for dl i =1,..., k, evaluated at M
for each set of the origina number of K Gibbs simulations for the other parameters.

2 pgaB*‘M* ,YE_" requires a cycle of three distributions.  First, draw B from
pgaB‘ M ,R,S)Y 9 i.e. (4.18) in Chapter 4 with fixed M . The starting values for R
a
and S remain as before. Second, draw R from pg??'l M*,B,S,YQ in (4.21). Third,
[7]

draw S from pg‘%'l

M”* B .RY2in (420). The output for Rand S is then used to
|7

. 5 1 & * * ) ) T
obtain &B*‘M*,Ygz_o $B ‘M ,R(J),S(‘),YQ.

= 0 : : T :
"Mt BN Y = requires a cycle with two distributions, the first
2

3 paPS

g

&M B R Y2 in (4.20) and thereafter pge‘R'l
9

P
which pgs*-l M*,B*,Yg: %{’; apS*-l
[} j=1

* * o .
M ,B ,SY=in (4.21) from
a

* * . 6 .
M™,B",RUY £ is obtained.
7

-1 "
*IM*,B8”,s",¥2 is the full conditiona distribution and is evaluated exactly
g

4) pg??
from (4.21).
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M ,Yg is also evaluated exactly from (4.19) since F only dependson M.
[

5) D?*-l

The product of these five terms then provides the denominator of the margina likelihood in

(7.8). Thejoint distribution of all quantities is pgf‘?* 9p§> g which is the product:
(%]

i

. e
B" 8" R"GF" Sas" H&* &R 2
e ST ST ot

(%]

and forms the numerator of the marginal likelihood:
&|>" Spe* 8
il
&0 |
%

The same procedure must now be followed for another model. Once the marginal likelihood

m(Y)= (7.14)

for two competing models have been obtained as explained above, the evidence in favour of
one model may be determined through calculation of the Bayes factor in favour of that model
using:

= % : (7.15)
At this point it is worth noting that it is sometimes computationally more convenient when

calculating the marginal likelihood to do so on natural logarithm scale, so that

In(m(Y)) = In??

The natural logarithms of the marginal likelihoods are then used to obtain the natura

270, B0 a%*‘vg'i. 7.16
m+n§%?ﬂz n?é%g - (7.16)

logarithm of the Bayes factor:
In(BF,,)=In(m(Y | M,))- In(m(Y |M,)). (7.17)
Good (1985) referred to the In Bayes factor as the “weight of the evidence’”. We therefore

consider theIn Bayes factor as the weight of the evidence in favour of model M.

74 MODEL COMPARISON USING BAYESFACTORS

For computational convenience al four the models fitted to the Jersey data in Chapters 5 and
6 required determination of the marginal likelihoods on the natural logarithm scake through
the use the method suggested by Chib (1995) as discussed in sections 7.2 and 7.3 above. The
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results for the natural logarithm of the marginal likelihood of each of the four models were as
follows.

Table7.1: The natural logarithm of the marginal likelihoods for the four lactation
modelsfitted to the Jer sey data using the Chib procedure

M odel In(m(Y))

Wood 0 E(W,)=t" exp(a+ct) - 1.338887914040548 10"
General Exponential:  E(W,) =exp(a + bt +cexp(wt)) | - 8.626831563671578 10"
4-parameter Morant: ~ E(W, ) = exp(a + bt +ct? +d/t) | -5.179540981122800° 10"

)

Adapted Wilmink :  E(W,)=exp(a+bt +cexp(wt)) | -1.282449628353239" 10"

If the Bayes factors of these models are now evaluated, starting with the weight of evidencein

favour of the model with the largest In(m(Y ), the results are as follows:

Table7.2: The In Bayes factors measuring the weight of evidence in favour of the

adapted Wilmink model compared to each of the other three lactation models

fitted.
Adapted Wilmink model vs In(BF)
Wood model 5.643828568730896 107
General exponential model 8.614007067388045 10"
4 parameter Morant model 5.179412736159965  10'°

From the results of Table 7.2 is evident that when the adapted Wilmink model suggested by
this study is compared to any of the other three models fitted to the Jersey data, it is the most

appropriate model to use in modelling lactation for these cows.

Table7.3: Theln Bayesfactors measuring the weight of evidence in favour of the Wood

model compared to the general exponential and 4-parameter Morant models

fitted.
Wood mode vs In(BF)
General exponential model 8.613442684531172" 10"
4-parameter model Morant 5.179407092331396" 10'°
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From the results of Table 7.3 in which the In Bayes factors comparing the Wood model to the
general exponential and 4 parameter Morant models respectively are considered, the weight
of evidence in favour of the Wood model is in both cases overwhelming.

When comparing the general exponential model to the 4 parameter Morant model using the
natural logarithm of the Bayes factor, the value 5.093272665486084° 10™ that represents the
weight of evidence in favour of the general exponential model, indicates it to be preferred
over the 4parameter Morant model.

From the above reallts it follows that the adapted Wilmink model should be the model of
preference when modelling the Jersey data, followed by the Wood and general exponential
models, while the 4 parameter Morant model seem to be the worst choice of lactation model
of the four to fit to the data. These results support the suspicion that arose through visual
ingpection of the seemingly good results that were obtained for the adapted Wilmink model
when the expected lactation trait curves of the levels of a cofactor of interest after the effects
of all other cofactors have been averaged out are considered, while the 4parameter Morant
model did not really seem to provide readlistic expected curves for two of the three lactation

traits.

It is interesting to note the two models (Wood and adapted Wilmink) containing three
parameters per lactation trait in the matrix of regression coefficients, or Mj;, perform better
than the two models with four parameters per lactation trait in M;;. The four-parameter

models could possibly be over-parameterisations of the lactation process.
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CHAPTER 8

FURTHER PREDICTION BASED ON MODELS
FITTED

8.1 INTRODUCTION

So far, with respect to prediction of lactation trait curves for individua animals, only
prediction of the fifth lactation cycle for a cow contained in the Jersey data, i.e. where the
records of the preceding four lactation cycles are known and were used in developing the
lactation model, were considered. Two further aspects of importance with respect to
prediction of lactation trait cuves of individual animals will be considered in this chapter.

The first is how the lactation modd fitted to the Jersey data may be used to predict lactation
trait curves for an individual animal that do not form part of the Jersey data used to develop
the model, on condition that it may be assumed that such an individua animal is similar to
those used in the model development. The second is how the availability of lactation records
and lactation trait curves fitted to a group of animals in a preceding lactation cycle or cycles,
aid the prediction of lactation trait curves for such a group of animals in coming lactation
cycles if these animals did not form part of the Jersey data set used to develop the lactation
model, but may be assumed similar to the animals in the Jersey data for which the lactation
model was developed.

To perform this part of the study, lactation records for 10 Jersey cows that originate from the
same larger data set as the so-called Jersey data were obtained. These 10 Jersey cows were all
observed during each of the four lactation cycles in the calving years from 1995 to 1998, but
were excluded from the originally constructed Jersey data because seven test day records
occurred in at least one of the observed four lactation cycles. For inclusion in the originally
constructed Jersey data the condition was set that an animal had to have at least eight test day
records per lactation cycle. In the data on these 10 Jersey cows al of the cofactors, parity
number, region, calving year and calving season, present in the original Jersey data were also
included. The data on these 10 Jersey cows will from this point onwards be referred to as the
Further Jersey data. The only difference in characteristics between the Jersey data set and the
Further Jersey data is that in the latter the number of test day records per lactation cycle over
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al four lactation cycles for al ten animals ranged from 7 to 9, with the maority having 8
observed test day records.

8.2 PREDICTION FOR FURTHER DATA: THE GENERAL CASE

Suppose that for a cow in the Further Jersey data the lactation trait curves of milk yield, fat
content and protein content of the four lactation cycles from 1995 t01998 have to be predicted
before any test day records for these lactation cycles become available. On condition that this
cow is similar to those used in the development of the lactation model considered, such a
model developed for the original Jersey data may be used to do so.

It is reasonable to assume that for cows similar to those in the original Jersey data certain
information will be readily available. One could expect to at least know mosgt, if not al the
information pertaining to the cofactors included in a lactation model through the use of the
covariate matrix, Zi, discussed in section 5.3 of Chapter 5. These cofactors are the parity of
the cow, region is which it occurred and season it is expected to calve in. The cofactor year of
calving is related to the lactation cycle to be predicted and is therefore anyway considered
known. If any of these cofactors are not known for the animal of which the lactation trait
curves are to be predicted, the effect of such cofactor(s) may be averaged out as explained in
section 5.5 in Chapter 5, by taking as the values of the covariate s of the cofactor the value one

divide by the number of levels in the cofactor to be averaged out.

Before the test day records of any of the lactation cycles of an individual animal i for which
the lactation traits are to be predicted are known, the predictive density follows from the fact
that Y|M,F ~N(XM FAI), (8.1)
where Mi (uv' ) follows from the product BZi. The matrix B(uv" m) refers to the regression
matrix obtained for the origina Jersey data during modelling The covariate matrix Z; is
constructed from the known cofactor information of animal i for which the lactation trait

curves are to be predicted or by averaging out the effects of unknown cofactors as briefly

explained above.

Next it is assumed that the test day records of the first of the q lactation cycle under
consideration become available, but that the test day data for remaining ¢ - 1) lactation
cycles are still unknown. Thereafter it is assumed that the test day records of the first two
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lactation cycles are known, but that the remaining @ - 2) lactation cycles have to be
predicted, and so forth until al q lactation cycles under consideration have been observed. In
section 4.1 of Chapter 4 the procedure for the prediction of one or more lactation cycle of an
animal i based on the results from one or more the preceding lactation cycles is given for the
general case when the lactation model have been developed specifically for these animals.

Lactation trait curves for all animals that did not form part of the data for which the model
was developed, but that may be assumed similar to the animals for which the model was
developed may then aso be predicted using this procedure.

Assuming that h lactation cycles were observed, it is possible to predict the results of ( - h)
lactation cycles for an animal similar to those for which the model was developed. This
means that if the test day records of the first lactation cycle of an animal are available, the
method allows for the prediction of the remaining @ - 1) lactation cycles. Using Gibbs

simulation and

m| yi,B,F,S,R~N§§§'1Axi¢xig+ R*A S'l)glég'lei‘tgyi +(R*ASB)Z %
|
ig'lAXi¢XiQ+(R'1AS'l)@_1% , i=1...k (8.2)
P o

the 10 000 set of parameters of the model for the first lactation cycle, mi(l)* , isdrawn where B,
F ,S and R have the values obtained from Gibbs sampling for the origina Jersey dataand z is

constructed for the observed lactation cycle. Next, based on the values of m%,B, S and R

above, 10 000 sets of m?" are drawn from

mPm® =m,B,S,R~ N1, AB) + [RORGA 1, [m - (1, A B)0),

(RY As)- (RO RE A) 3
using Gibbs sampling. Finaly the predictive density, which again follows from (8.1), for the
(g - h) future lactation cycles becomes:

yi(f2)|mi(f2) = mi(fZ)* ,F ~N ((I u A Xi(fZ))ni(fZ)* FAI m(Q-h))' (8.4)

The mean of the 10 000 expected values of this distribution provides the predicted lactation
trait curves for the (q - h) lactation cycles to be predicted.

No efficient method exists to measure the performance of the model prediction of a future
lactation cycle of an animal i if the data of that lactation cycle of animal i are not available at
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some point. However, if the data are or become available the efficiency of prediction can be
measured. This is done by obtaining the sum of squared errors (SSE) for animal i, which is
the sum of the squared differences between each observed data point and the value of the
predicted lactation trait curve at the same point in time as the observed data point over all
observed data points. If this is done for all previously predicted lactation cycles as data
become available, it is possible to investigate whether the incluson of data improved the

efficiency of prediction of future lactation cycles.

To explain, suppose four lactation cycles are predicted with respect to milk yield. This
prediction process may be broken down into four phases. In phase 1, initidly no data will be
present and all four cycles will as a consequence have to be predicted. Then the milk yield
records in the first of the four lactation cycles are observed and a milk yield curve fitted to it.

In phase 2 only the remaining three unknown lactation cycles have to be predicted, now
however with knowledge of the fitted milk yield curve on the first included in the prediction.

Once the milk yield records of the second cycle are also observed and a milk yield curve fitted
to it, then in phase 3 the prediction of the last two cycles will be done by incorporating the
knowledge of the curves fitted to the first and second lactation cycles in the prediction. Once
the third lactation cycle has also been observed and a milk yield curve fitted to it, then in

phase 4 the fourth lactation cycle will be predicted through the inclusion of the knowledge of
the fitted milk yield curves from all three preceding lactation cycles. Once the data on all four
the lactation cycles have been observed, the improvement in prediction of the unknown milk
yield curves in every phase may be evaluated by calculating the SSE for each of the predicted
curves in every phase. By comparing the SSE of the same lactation cycle over all phases for
which the cycle was predicted, the efficiency of the inclusion of datain the improvement of
the prediction may be evaluated. An improvement is simply based on a reduction in to the
sum of the squared errors for that lactation cycle from one phase to the next.

In the application that follows, prediction as explained through the four phases above is
applied to the 10 animals in the Further Jersey data. Based on the result, the improvement in
prediction is assessed by means of the SSE values. This is done for the group of 10 animals
by obtaining the sum of the SSE values for the individual animals for each lactation cycle in
each prediction phase, as well as by considering for how many animals an improvement

through the addition of data occurred for each lactation cycle predicted in each phase.
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Findly, once the test day records on al four lactation cycles have been obtained, the
efficiency of the lactation model in finding the expected lactation trait curves for animals
similar to, but not included in the development of the model may be compared for the four
different lactation models fitted using this Bayesian method. To do this the SSE values for
the expected lactation trait curve for al four lactation cycles of the ten animals are obtained
for each of the four lactation models fitted in this study.

8.3 PREDICTION AND THE WOOD MODEL

Using the results of the Wood model fitted to the Jersey data by means of the Bayesian
method proposed in this study, the four lactation cycles of each of the 10 animals in the
Further Jersey data were predicted through the 4phase prediction process explained above.
To illustrate, the results for the prediction of the lactation or milk yield curves of each phase
of the 4 phase prediction process for the four lactation cycles of animal 3 are given in Figures
8.1 to 8.4 below.

Lactation cycle 1: Milk yield Lactation cycle 2: Milk yield
30 30
25 25
2 20 S 20 |~
15 15
10 t 10 t
0 100 200 300 0 100 200 300
Lactation cycle 3: Milk yield Lactation cycle 4: Milk yield
30 25
25
20 | e 7
2 20}
15
15
10 10
0 100 200 300 0 100 200 300
Days into season Days into season

Figure8.1: Prediction phase 1. Predicting milk yield curvesfor all 4 lactation cycles of
animal 3, where milk yield test day records are represented by and
predicted milk yield curvesarerepresented by

In Figure 8.1 where the predicted milk yield curves that result from phase 1 in the prediction
process are represented by the turquoise lines and the data on the milk yield test day records
of each lactation cycle that would supposedly only be known later are represented by green
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lines (consecutive data points were connected by straight line segments). The predictions of
the milk yield curves of anima 3 in this phase include no information on milk yield test day
records of this animal. These predictions are based solely on the information on milk yield
test day records from the Jersey data. The only information from animal 3 included in these
prediction are the information supplied by the cofactors parity number, region, calving year
and calving season. When calculating the SSE for each of lactation cycks 1, 2, 3 and 4 of
anima 3 in this phase of prediction the results are 83,122; 333,382; 263,775 and 207,3042
respectively.

In Figure 8.2 the result of phase 2 of the prediction process is illustrated, where the black line
now represents the fitted milk yield curve in lactation cycle 1 of animal 3 after the milk yield
test day records of this cycle were observed. Lactation cycles 2, 3 and 4 are now again
predicted, but this time incorporating the additional information that became available
through the observed milk yield test day records of the first lactation cycle. When
considering the SSE values for lactation cycles 2, 3 and 4 these values are 168,988; 133,580
and 103,804 respectively. When comparing these values to the SSE calculated for the
corresponding lactation cycles in the first phase of prediction a reduction is seen for all

lactation cycles.

Lactation cycle 1: Milk yield Lactation cycle 2: Milk yield
30 30
- 76\\ )
S 20 ‘\ 20 |+ i
15 ~ 15 -
10 10
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Lactation cycle 3: Milk yield Lactation cycle 4: Milk yield
30 30
25 25
2 20 < 20 N i S
15 = 15 —
10 10 l
0 100 200 300 0 100 200 300
Days into season Days into season

Figure8.2: Prediction phase2. Predicting milk yield curvesfor lactation cycles 2, 3 and
4 of animal 3 after the milk yield curve of lactation cycle 1 has been fitted.
Milk yield test day records are represented by , predicted milk yield
curves arerepresented by , and thefitted milk yield curve by—.
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Figure8.3: Prediction phase 3. Predicting milk yield curvesfor lactation cycles 3 and 4
of animal 3 after milk yield curves of lactation cycles 1 and 2 have been

fitted. Milk yield test day records are represented by

yield curves arerepresented by
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Figure8.4: Prediction phase 4. Predicting the milk yield curve for lactation cycle 4 of
animal 3 after milk yield curves of lactation cycles 1, 2 and 3 have been

fitted. Milk yield test day records are represented by
milk yield curveisrepresented by
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Figure 8.3 now shows the result of phase 3 of the prediction process, where only the milk
yield curves of lactation cycles 3 and 4 of anima 3 are predicted. The resulting predicted
milk yield curves of lactation cycles 3 and 4 are now much closer to the data that would later
be observed. The SSE vaues of lactation cycles 3 and 4 now are 77,472 and 99,516
respectively, which is again areduction in SSE values for these two cycles when compared to

their result from phase 2 of the prediction process.

Finally in Figure 8.4 illustrating phase 4 of the prediction process, only the milk yield curve
of the fourth lactation cycle has to be predicted this time based on the results of the Jersey
data and the information from the preceding three lactation cycles of animal 3. When the SSE
value for the prediction in the lactation cycle 4 is calculated the resulting value is 77,243 and
is down from an SSE value of 99,516 for this lactation cycle in the phase 3 of the prediction

process.

When all four the figures representing the results of prediction for the 4phase prediction
process, together with the SSE values of each phase for animal 3 are considered, it is clear
that as data from preceding lactation cycles become available the prediction ability of the
method applied improves. The results obtained for the remaining 9 animals in the Further
Jersey data are similar, athough a reduction in SSE of a predicted lactation cycle is not
always obtained from one prediction phase to the next as data on test day records of preceding

lactation cycles become available. A summary of the results now follows.

To assess the improvement over all animals in the Further Jersey data, the sum of the SSE
values for each lactation trait curve over al ten animals for each lactation cycle in each phase
of the prediction process was obtained. The results are given in Tables 8.1, 8.3 and 8.5 below
for the lactation traits milk yield, fat content and protein content respectively. In Tables 8.2,
8.4 and 8.6 the number of animals for which the predicted milk yield curve, predicted protein
content curve and predicted fat content curve improved in fit as data on preceding lactation
cycles became available, are provided. Animprovement is based on a reduction in the sum of
the squared errors for that lactation cycle when compared to actual data only available when

the lactation cycle is eventually observed.
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Table8.1:  Sum of squared errors over all animalsfor the predicted milk vield curve
fitted using the Wood model before and as data on preceding lactation
cycles became available.

Sum of squared errors summed over al ten animals for
Dataavailable on Lactation Lactation L actation L actation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocycle (Phasel) 3977,761 2541,331 3592,989 1767,084
1 only (Phase 2) " 1276,762 1591,863 1059,939
land?2 (Phase 3) " " 1296,605 844,827
1,2and 3 (Phase4) - : - 993,519

From Table 8.1 it is evident that for the whole of the Further Jersey data set the prediction
ability of the method improved with respect to predicted milk yield curves during each of the
first three phases of the prediction process. Only in the fourth phase did the inclusion of the
test day records of all animals on the preceding three lactation cycles not improve the result

with respect to predicting the milk yield curves.

Table8.2:  The number of animals for which, according to the SSE, the predicted
milk vield curve from the Wood model improved in fit as data on previous
lactation cycle became available.

Data available on The number of animals for which the prediction improved in
|actation cycle(s) Lactation cycle2 | Lactation cycle 3 | Lactation cycle 4
1 only (Phase 2) 7 7 8
land2  (Phase 3) " 8 7
1,2and 3 (Phase 4) - - 6

The results in Table 8.2 show that in every phase of the prediction process, except the final
phase, there was an improvement in the prediction of milk yield curves for al lactation cycle
in at least seven of the ten animals in the Further Jersey data. In the final prediction phase the
inclusion of milk yield test day data on the third lactation cycle only improved the prediction
of the milk yield curve of the fourth lactation cycle in six animals. This is decline in the
number of animals for which the SSE reduced in the fourth phase of prediction is probably
why the corresponding SSE in Table 8.1 was not smaller than the SSE for lactation cycle 4 in
the phase 3 of the prediction process when sum of the SSE’'s over all arimals are obtained for

each cycle during each prediction phase.
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Table8.3:  Sum of squared errorsover all animalsfor the predicted fat content curve
fitted using the Wood model before and as data on preceding lactation
cycles became available.

Sum of squared errors summed over all ten animals for
Data avail able on Lactation Lactation Lactation Lactation
|lactation cycle(s) cycle 1 cycle 2 cycle 3 cycle 4
Nocycde (Phasel) 7,8121 6,2111 7,6299 12,8373
1 only (Phase 2) - 3,9946 4,7064 10,8117
land2  (Phase3) ” ” 3,6902 9,8881
1,2and 3 (Phase4) " - ” 9,7885

Table 8.3 shows that for the whole of the Further Jersey data set the prediction ability of the
method improved in al phases of the prediction process with respect to predicted fat content.
This is surprising when considering the result of Table 8.4, where in two lactation cycles the
prediction of fat content curve improved in less than 6 animals. However, in al cases where
no improvement resulted the difference between the SSE’s fa the same lactation cycle from

one phase to the next is small compared to difference in cases where improvements did occur.

Table8.4: The number of animals for which, according to the SSE, the predicted fat
content curve from the Wood model improved in fit as data on previous
lactation cycle became available.

Data available on The number of animals for which the prediction improved in
|lactation cycle(s) Lactation cycle2 | Lactation cycle 3 | Lactation cycle 4
1 only (Phase 2) 5 6 6
land2  (Phase 3) N 8 8
1,2and 3 (Phase 4) ” - 3

From the overal SSE results provided in Table 8.5 it was only during the third phase of
prediction for protein content that no improvement occurred. When considering the number
of animals in each lactation cycle during each phase of prediction for which the SSE values
reduced as provided in Table 8.6, it follows that phase 3 of the prediction process aso

improved prediction for protein content in the smallest number of animals (4 only).
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Table85: Sum of squared errorsover all animals for the predicted protein content
curve fitted using the Wood model before and as data on preceding
lactation cycles became available.

Sum of squared errors summed over al ten animals for
Dataavailable on Lactation Lactation L actation Lactation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocyde (Phasel)| 55,1751 42,5692 28,7319 35,2074
lonly  (Phae?) . 39,9202 22,0870 34,2604
land2 (Phase3) - - 24,7528 37,4509
1,2and 3 (Phase4) N " N 35,3853

Table8.6: Thenumber of animals for which, according to the SSE, the predicted
protein content curve from the Wood model improved in fit as data on
previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phase 2) 6 9 6
land2  (Phase 3) - 4 4
1,2and 3 (Phase 4) - - 6

8.4 PREDICTION AND THE GENERAL EXPONENTIAL MODEL

For the general exponential model fitted to the Jersey data by means of the Bayesian method,
the four lactation cycles for each of the 10 animals in the Further Jersey data were aso
predicted through the 4-phase process explained earlier. This time the results of the
prediction of the fat content curve for each phase in the 4phase prediction process for the

four lactation cycles of animal 10 are given in Figures 8.5 to 8.8.

Through visual inspection of the graphs in Figures 8.5 to 8.8 it seems as if in each phase of
the prediction process the predicted fat content curve of the lactation cycles moved closer to
the actual data that was later observed. When, for animal 10, the SSE values of the lactation
cycles in a prediction phase is compared to that of the next, these values confirm this results.
For example, the SSE values of lactation cycle 4 in prediction phase 1 through to 4 are 2,502;
0,824; 0,649 and 0,426 respectively.
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Figure8.5:

Figure8.6:
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Prediction phase 2. Predicting fat content curves for lactation cycles 2, 3
and 4 of animal 10 after the fat content curve of lactation cycle 1 has been
fitted. Fat content test day records are represented by , predicted milk
yield curves arerepresented by and thefitted fat content curve by —.
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Figure8.7:

Figure8.8:
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From the results of the sum of the SSE values of the predicted milk yield curves over all 10
animals in the data provided Table 8.7 it follow that for the whole of the Further Jersey data
set the prediction ability of the method improved with respect to predicted milk yield curves
during all of the phases of the prediction process. When considering the number of individual
animals in the Further Jersey data for which thisis true, Table 8.8 shows that an improvement
in the prediction of milk yield as data from preceding cycles are obtained occur for at least 5

animals in a lactation cycle in any phase of prediction.

Table8.7:  Sum of squared errorsover all animalsfor the predicted milk vield curve
fitted using the general exponential model befor e and asdata on preceding
lactation cycles became available.

Sum of squared errors summed over all ten animals for
Data available on Lactation Lactation Lactation Lactation
lactation cycle(s) cycle 1 cycle?2 cycle 3 cycle 4
Nocycle (Phasel) 4145,351 2601,262 3570,845 1774,791
1 only (Phase 2) " 1673,640 1744,586 1554,898
land?2 (Phase 3) " " 1210,771 1307,678
1,2and 3 (Phased) . - . 1273,962

Table8.8: The number of animals for which, according to the SSE, the predicted
milk vield curve from the general exponential model improved in fit as
data on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle2 | Lactation cycle 3 | Lactation cycle 4
1 only (Phase 2) 8 5 7
land2  (Phase 3) N 7 8
1,2and 3 (Phase 4) - - 5

In Table 8.9 the results of the sum of squared errors over al animals in the case of the
predicted fat content curves indicates an improvement in prediction in al but the last phase of
prediction, where there is only a dlight increase in the SSE value for lactation cycle 4 when
compare to the SSE value of this lactation cycle in phase 3 of prediction. It aso follows from
Table 8.10 that for the fourth phase of prediction an improvement in the prediction of the fat
content curve for lactation cycle 4 only occurred in 3 animals.
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Table8.9:  Sum of squared errorsover all animalsfor the predicted fat content curve
fitted using the general exponential model before and asdata on preceding
lactation cyclesbecame available.

Sum of squared errors summed over all ten animals for
Data available on Lactation Lactation Lactation Lactation
lactation cycle(s) cycle 1 cycle2 cyde 3 cycle 4
Nocyce (Phasel) 7,3844 6,3534 7,3795 12,3854
1 only (Phase 2) . 4,1259 4,5116 10,2579
land2  (Phase?d) ) - 3,6451 9,2508
1,2 and 3 (Phase4) ) - - 9,4466

Table8.10: The number of animals for which, according to the SSE, the predicted fat
content curve from the general exponential model improved in fit as data
on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phase 2) 5 6 6
land2  (Phase 3) " 8 7
1,2and 3 (Phase 4) - - 3

To consider the improvement in the prediction ability with respect to the predicted protein
content curves over al animals in the data set, the sum of the SSE’s over all animals in the
data for this lactation trait are given in Table 8.11. The only SSE values of that indicate
improvements in the prediction of the protein content curves are those of lactation cycles 2
and 3 in phase 2, and that of lactation cycle 4 in phase 4. Table 8.12 provides the numbers of
animals in each lactation cycle of each phase for which such an improvement in predicted

protein content curve occurred.

Table8.11: Sum of squared errors over all animals for the predicted protein content
curve fitted using the general exponential model before and as data on
preceding lactation cycles became available.

Sum of squared errors summed over al ten animals for
Dataavailable on Lactation Lactation L actation Lactation
lactation cycle(s) cycle 1 cycle 2 cycle 3 cycle 4
Nocyde (Phasel)| 54,7181 42,8749 27,4354 34,1457
lonly  (Phase2) - 41,3787 21,8013 35,2503
land?2 (Phase 3) " " 23,9290 38,6943
1,2and3 (Phase4) - - . 35,3198
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Table8.12: The number of animals for which, according to the SSE, the predicted
protein content curve from the general exponential model improved in fit

asdata on previous lactation cycle became available.

Data available on
lactation cycle(s)

The number of animals for which the prediction improved in

Lactation cycle 3

Lactation cycle 4

1 only (Phase
land2  (Phase

1,2and 3 (Phese

Lactation cycle 2
2) 5
3) .
4)

=
3

5
4

8

8.5 PREDICTION AND THE 4-PARAMETER MORANT MODEL

Figures 8.9 to 8.12 provide the results of the prediction of the milk yield curve for each of the

4 phases of the prediction process for the 4 lactation cycles of animal 5 in the Further Jersey

data when the 4-parameter Morant model fitted to the origina Jersey data by means of the

Bayesian method is used in prediction. When considering these graphs, the improvement is

not very clear from a visual perspective, but when studying the SSE values for the predicted

milk yield curves of each lactation cycle in the four phases of prediction, the SSE values of

each of the lactation cycle are reduced in every consecutive phase of prediction and therefore

indicted an improvement in the prediction ability of the predicted milk yield curves for the

lactation cycles as test day records in preceding lactation cycles become available.
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Figure8.9: Prediction phase 1. Predicting milk yield curvesfor all 4 lactation cycles of
animal 5, where milk yield test day records are represented by
predicted milk yield curvesarerepresented by
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Figure8.10: Prediction phase 2. Predicting milk yield curves for lactation cycles 2, 3
and 4 of animal 5 after the milk yield curve of lactation cycle 1 has been
fitted. Milk yield test day records are represented by
yield curves arerepresented by and thefitted milk yield curve by —.
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Figure8.11: Prediction phase 3. Predicting milk yield curvesfor lactation cycles 3 and
4 of animal 5 after milk yield curves of lactation cycles 1 and 2 have been
fitted. Milk yield test day recordsarerepresented by
yield curves arerepresented by and fitted milk yield curvesby —.
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Figure8.12: Prediction phase4. Predicting the milk yield curvefor lactation cycle 4 of
animal 5 after milk yield curves of lactation cycles 1, 2 and 3 have been
fitted. Milk yield test day records are represented by , the predicted
milk yield curveisrepresented by , fitted milk yield curves by —.

From the sum of the SSE values over al 10 animals in the Further Jersey data for predicted
milk yield curves given in Table 8.13 it follows that overall prediction of milk yield curves
continued to improve for all lactation cycles from one phase to the next. From Table 8.14 it
follows that when the predicted milk yield curves of individua animals are considered, this
improvement occurs in at least 7 animals for the lactation cycles of any phase of prediction.
For lactation cycles in the second phase of prediction the number of individual animals to

which an improvement applies is exceptionally high.

Table8.13: Sum of squared errorsover all animalsfor the predicted milk vield curve
fitted using the 4-parameter Morant model before and as data on
preceding lactation cycles became available.

Sum of sguared errors summed over al ten animals for
Dataavailable on Lactation Lactation Lactation Lactation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocycle (Phasel) 4179,922 2701,934 3759,006 1793,776
1 only (Phase 2) " 1724,578 2611,169 1170,907
land 2 (Phase 3) " " 2078,987 969,9002
1,2and 3 (Phase4) - : : 844,2139
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Table8.14: The number of animals for which, according to the SSE, the predicted
milk vield curve from the 4-parameter Morant model improved in fit as
data on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s)

Lactation cycle2 | Lactation cycle 3 | Lactation cycle 4
1 only (Phase 2) 10 9 10

land2  (Phase3) - 7
1,2and 3 (Phase 4) '

A result similar to the above also follows from Table 8.15 with respect to the SSE values for
the predicted fat content curves. In Table 8.16 it, however, follows that numbers of individual
animals to which such an improvement in the prediction of fat content curve for lactation

cycles of each prediction phase apply, are lower.

Table8.15: Sum of squared errorsover all animalsfor the predicted fat content curve
fitted using the 4-parameter Morant model before and as data on
preceding lactation cycles became available.

Sum of squared errors summed over all ten animals for
Dataavailable on Lactation Lactation L actation Lactation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocycde (Phasel) 7,5603 6,5498 7,5923 12,6259
1 only (Phase 2) ) 5,4710 6,3302 10,9788
land2 (Phese?3) . . 5,2154 10,5165
1,2and 3 (Phase4) - - - 9,7103

Table8.16: The number of animals for which, according to the SSE, the predicted fat
content curve from the4 -parameter Morant model improved in fit as data
on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phase 2) 5 8 6
land2  (Phase 3) " 6 6
1,2and 3 (Phase 4) - ” 6
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When compared to how the inclusion of data from preceding lactation cycles benefited the
prediction of curves for the previous two lactation traits using the 4 parameter Morant model,
the model fared worst at predicting protein content curves using the 4-phase prediction
process. When considering Table 8.17 and 8.18, this is especially true for the second phase of
prediction using the 4-parameter Morant model. When considering the sum of the SSE values
over al 10 animals in the Further Jersey data the prediction of the protein content curve did
not improve for any of the lactation cycles in the second phase. For the individual animals
there was only an improvement in the prediction for one animal during all the lactation cycles
in the second phase of prediction. This poor performance of the 4parameter Morant model
should however have been expected when taking into account the less redlistic shape
produced by this model for the expected protein content curves of a level of the cofactor of

interest when eliminating the effects of all other cofactors as discussed in section 6.3.3 of
Chapter 6.

Table8.17: Sum of squared errors over all animals for the predicted protein content
curve fitted using the 4-parameter Morant model before and as data on

preceding lactation cycles became available.

Sum of squared errors summed over al ten animals for
Dataavailable on Lactation Lactation Lactation Lactation
lactation cycle(s) cycle 1 cycle? cycle 3 cycle 4
Nocycle (Phasel) 63,4016 40,2124 28,1340 35,4038
1 only (Phase 2) 4030,256 7211,573 277,4784
land 2 (Phase 3) " 3349,729 504,6070
1,2and 3 (Phase4) " 301,1018

Table8.18: The number of animals for which, according to the SSE, the predicted
protein content curve from the 4-parameter Morant model improved in fit

as data on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in

lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phase 2) 0 0 1
land2  (Phase 3) 6 7
1,2ad3 (Phase 4) 3
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8.6 PREDICTION AND THE ADAPTED WILMINK MODEL

From the results of the adapted Wilmink model fitted to the Jersey data by using the Bayesian

method, the four lactation cycles of each of the 10 animals in the Further Jersey data were

predicted by means of the 4 phase prediction process. The results for the prediction of the

protein content curves of each phase of the 4 phase prediction process for the four lactation

cycles of animal 2follow in Figures 8.13 to 8.16 below.

By considering the SSE values of the predicted protein content curves of the lactation cycles

in each phase of the prediction process together with these graphs, it is clear that an

improvement in prediction of the protein content occurs in all predictions up the third phase of

prediction. No reduction in the value of SSE for the prediction of the protein content curve of

lactation cycle 4 however occurs from phase 3 to phase 4.

Lactation cycle 1: Protein
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Lactation cycle 3: Protein
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Lactation cycle 2: Protein

Lactation cycle 4: Protein

0 100 200 300
Days into season

Figure8.13: Prediction phase 1. Predicting protein content curves for all 4 lactation
cycles of animal 2, where protein content test day records are represented

by

and predicted milk yield curves arerepresented by
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Figure8.14:Prediction phase 2. Predicting protein content curves for lactation cycles 2,
3 and 4 of animal 2 after the protein content curve of lactation cycle 1 has
been fitted. Protein content test day records arerepresented by—, predicted
protein content curves by and thefitted protein content curve by —.
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Figure8.15:Prediction phase 3. Predicting protein content curves for lactation cycles 3
and 4 of animal 2 after protein content curves of lactation cycles 1 and 2
have been fitted. Protein content test day records are represented by ,
predicted protein content curves by and fitted protein curvesby —.
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Figure8.16:Prediction phase 4. Predicting the protein content curve for lactation cycle
4 of animal 2 after protein content curves of lactation cycles 1, 2 and 3 have
been fitted. Protein content test day records are represented by , the

predicted protein content curves by

by —.

and thefitted protein content curves

From Tables 8.19 and 8.21 it follows that for both the lactation traits milk yield and fat

content the sum of the SSE values over all 10 animals in the Further Jersey data indicate an

improvement in each prediction phase, except the fourth, for all lactation cycles for which

trait curves are predicted. In Tables 8.20 and 8.22 when considering the numbers of animals

in the predicted lactation cycles of each phase for which there is an improvement in

prediction, these however differ for the two traits.

Table8.19: Sum of squared errorsover all animals for the predicted milk vield curve
fitted using the adapted Wilmink model before and as data on preceding
lactation cycles became available.

Sum of squared errors summed over all ten animals for
Data available on Lactation Lactation L actation Lactation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocycle (Phasel) 3862,066 2468,901 3521,751 1763,617
1 only (Phase 2) 1311,834 1437,660 1236,904
land?2 (Phase 3) 1163,581 908,764
1,2and 3 (Phase4) 1104,218
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Table8.20: The number of animals for which, according to the SSE, the predicted
milk vield curve from the adapted Wilmink model improved in fit as data
on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle2 | Lactation cycle 3 | Lactation cycle 4
1 only (Phase 2) 7 7 8
land2  (Phase 3) " 8 6
1,2and 3 (Phase 4) - - 6

Table8.21: Sum of squared errorsover all animalsfor the predicted fat content curve
fitted using the adapted Wilmink model before and as data on preceding
lactation cycles became available.

Sum of sguared errors summed over al ten animals for
Data available on L actation Lactation Lactation L actation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocyde (Phael)| 7.6878 6,2944 7,6691 12,8178
1only (Phase 2) - 4,2416 4,4920 10,7805
land2 (Phase?d) " " 3,4783 9,6613
1,2and 3 (Phase4) - - - 9,8153

Table8.22: The number of animals for which, according to the SSE, the predicted fat
content curve from the adapted Wilmink model improved in fit as data on

previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phease 2) 5 6 6
land2  (Phase 3) " 9 7
1,2and3 (Phase 4) " " 4

Table 8.23 provides the sum of the SSE vaues over al ten animals in the Further Jersey data
when the protein content curves are predicted using the 4 phase prediction process. The total
SSE values over al animals are not reduced in lactation cycle 4 of the second phase of
prediction or in any of the lactation cycles of the third phase of prediction. From Table 8.24 it
follows that these lactation cycles just mentioned also have low numbers of animals for which
no improvement in prediction resulted when data on more preceding lactation records became

available.
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Table8.23: Sum of squared errors over all animals for the predicted protein content
curve fitted using the adapted Wilmink model before and as data on
preceding lactation cycles became available.

Sum of squared errors summed over al ten animals for
Dataavailable on Lactation Lactation L actation L actation
lactation cycle(s) cycle 1 cycle2 cycle 3 cycle 4
Nocycle (Phasel) 55,5602 43,1743 29,4088 35,4958
1 only (Phase 2) " 38,9655 23,2168 36,0007
land?2 (Phase 3) " " 26,3870 39,0673
1,2and 3 (Phase4) - : - 36,2666

Table8.24: The number of animals for which, according to the SSE, the predicted
protein content curve from the adapted Wilmink model improved in fit as
data on previous lactation cycle became available.

Data available on The number of animals for which the prediction improved in
lactation cycle(s) Lactation cycle 2 | Lactation cycle3 | Lactation cycle 4
1 only (Phase 2) 6 9 5
land2  (Phase 3) " 6 4
1,2and 3 (Phase 4) N " 7

8.7 PREDICTION OF FURTHER DATA IN SUMMARY

The number of improvements in the predictions for each trait curve over al 60 lactation
cycles where improvement for the individual animals in the Further Jersey data is possible
(i.e. phases 2, 3 and 4 of the prediction process) with respect to the four lactation models
fitted follow in Table 8.25.

Table8.25: The number of lactation cycles for which prediction improved as data on
preceding lactation cycles became available for the three lactation models
applied. Improvement ispossiblein atotal of 60 lactation cycles.

Genera 4- parameter Adapted
Predicted curves for Wood Exponential Morant Wilmink
Milk yield 43 40 51 42
Fat contert 36 35 37 37
Protein content 35 32 17 37
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On condition that the data for which such prediction have to made is similar to that for which
a lactation model was developed through the Bayesian method in this study, this method is
useful in predicting outside of the data set for which modelling initially took place. It isaso
clear that the Bayesian method is effective in improving the prediction ability of a model as
data on preceding lactation cycles become available. It is however important to consider such
an improvement in the correct context, i.e. even if the prediction ability of the model
improves using this method it does not imply that the model fitted to the data is necessarily
the best possible model for the data.

When considering the sum of the SSE values over al 10 animals in the Further Jersey data for
each of the expected lactation trait curves in each of the four lactation cycles, the results for
each lactation model used to model the origina Jersey data are as follow in Table 8.26. Take
note that expected lactation trait curves refer to the resulting lactation trait curves obtained
when using the results from the original Jersey data and the known test day records of each of
the four the lactation cycles.

Table8.26: The sum of the SSE values over all 10 animals in the Further Jersey data
for each of the expected lactation trait curves in each of the four lactation
cycles and the total of the sum of the SSE values over all four lactation
cyclesfor thelactation models

Sum of SSE valuesover all 10 animalsfor: | Total of sum of
L actation Lactation Lactation Lactation Lactation| SSE’sover
IModel trait cyclel cycle2 cycle3 cycle4 [lactationcycles
\W ood Milk yield 270,1961 262,4482 264,3009 295,6840 1092,6293
Fat content 2,9999 1,6861 2,3723 4,1843 11,2426
Protein content| 35,1771 28,8601 21,0316 28,2097 113,2786
General Milk yield 273,0856 216,5720 224,7424 255,6289 934,0289
Exponential g4 content 20573 14295 16902 27165 7,8936
Protein content| 26,9857 23,4978 18,3482 23,5944 92,4261
4-parameter Milk yield 274,9743 282,2374 294,5502 230,0762 1081,8381
[Morant Fat content 2,0670 14505 1,6470  2,9170 8,0816
Protein content
Adapted Milk yield 272,8605 271,2695 283,7072 331,1656 1159,0028
Wilmink 4t content 20133 17233 21744 37227 10,5337
Protein content| 39,0549 30,7830 22,2458 30,2439 122,3277
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In the above table the sum of SSE values highlighted in red indicates the lowest values for
each lactation cycle, as well as for the total of the sum of the SSE values over the lactation
cycles with respect to the expected milk yield curves. Similar lowest SSE values with respect
to the expected fat content curves are highlighted in blue and those for the expected protein
content curve in orange. From the total of the sum of the SSE values over all ten animals
obtained over al four lactation cycles in the Further Jersey data as provided in the last column
of Table 8.26 for each of the lactation traits, it follows that for expected milk yield curvesin
the Further Jersey data the best result over all animals and all lactation cycles is obtained
using the Genera exponential model fitted to the original Jersey data. This result is followed
in second place by the expected milk yield curves obtained by means of the 4parameter
Morant model, but only because for lactation cycle 4 in case of milk yield the Morant model
resulted in avery low sum of SSE values compared to the sum of SSE values for all lactation
cycles in the other models. In the other three lactation cycles the Morant model actually

always fared worst.

When considering the expected fat content curves, the lowest overal SSE vaue for the
expected curves of this trait in the last column of the table is aso that of General exponential
model. This is also true for three of the four lactation cycles with respect to expected fat
content curves. It isonly in lactation cycle 3 that the 4 parameter Morant model fares sightly
better. Overall with respect to expected fat content arves the Morant model is the second
best model when considering the sum of the SSE values over al animals.

With respect to the expected protein content curves the 4-parameter Morant model out
performed all other models with respect to the fit obtained. When considering the shape of
the expected protein content curve for a level of the cofactor of interest when the effect of all
other cofactors have been eliminated in section 6.3.3 of Chapter 6, the question arises as to
whether the observed protein content values in the Further Jersey data are indeed such that the

more traditionally shaped convex protein content curve should be fitted to it.

Even though through the use of Bayes factors the adapted Wilmink model was found to be
best suited to model lactation in the original Jersey data, for the Further Jersey data the best
choice of model with respect to obtaining the expected lactation curves of al trats
simultaneously would be the General exponential model fitted to the Jersey data, when the
sum of SSE values are studied. The 4 parameter Morant model follows in second place, with

the Wood and adapted Wilmink models in third and fourth place respectively. It is important
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to remember that the expected trait curves for the Further Jersey data are based the observed
test day records of the Further Jersey data, together with the results from the relevant model
fitted to the original Jersey data.

When considering al of the above, the comment by Wood (1974) that “It is a truism that a

mode! fits best the data from which it was constructed, ...” comes to mind.
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CHAPTER9

THE WOOD MODEL AND THE INCOMPLETE
SAANEN DATA

9.1 THE SAANEN DATA

The Saanen dairy goats are the most popular dairy goats in the world and have their origin in
the Saanen Valley of Switzerland. Saanen does are exceptionaly high yielding milk
producers when compared to other goat species and milk usually has a fat content of three to
four percent. (Department of Animal Science, Oklahoma State University, 1996.) When
compared to cow’s milk, milk from Saanen does are very similar in fat and protein content to
that of Friedand cows, although it may be a little sweeter in taste (The South African Stud
Book and Livestock Improvement Association, 2001). The Saanen is, however, a relatively
new breed of goat in South Africa, where the population developed from 1923 onward only,
when animals were imported from Switzerland, England and Germany. Goat’s milk has two
main uses in South Africa. It is often used as baby feed for babies alergic to cow’s milk, or
as a substitute for cow’s milk by people with digestive disorders. An important benefit of
goats as milk producers over cows is that they do not contract tuberculosis, which saves on
the cost of inoculating animals and testing of milk (SA Milch Goat Breeders' Society, 2001).

The data used in this study was obtained from the South African Stud Book and Livestock
Improvement Association in Bloemfontein. The original data set contained information on
1 057 lactation cycles that included a total of 8 941 test day records, collected from 1990 to
1992 for 713 lactating Saanen does kept by a number of registered Saanen goat breeders in
South Africa. Information such as farmer member number, animal identification number,
kidding date, birth date of doe, parity number, test day date, milk weight in kilograms as
measured during each of either two or three milking sessions on each test day, as well as the
percentages of fat, protein and lactose in milk composition were included in the data. Of the
1 057 lactation cycles, 90 contained less than 5 test day records, while only 3 lactation cycles
were collected for 1992. Removing these lactation cycles together with al lactation cycles for
which either parity number or year of kidding or both were unknown, as well as al lactation
cycles containing obvious errors, left a data set referred to from this point onwards as the
Saanen data.
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The Saanen data consist of 755 lactation cycles, collected during 1990 and 1991, for 493
lactating Saanen does. Of the 493 does, 117 were recorded in 1990 only, 114 were recorded
in 1991 only, and the remaining 262 were recorded during both years. In tota 6 842
observations of test day records for does in various stages of lactations and different parities,
with a minimum of 5 and a maximum of 11 test day records for al lactation cycles are
contained in the Saanen data. Parity numbers ranged from first to fifth, with 151 lactation
cycles in the first parity, 211 in the second parity, 254 in the third parity, 131in the fourth
parity and only eight in fifth parity. It was decided, however, that only four parities should be
considered in order to obtain a better balance among the parity groups. For this reason the
fourth and fifth parities were combined into a single group referred to as does in parity four or
greater.

The number of days from kidding to test day had to be calculated using the kidding date and
the test day date for each test day record. Once the number of days from kidding to test day
had been established, this value had to be corrected by subtracting 3 days in order to make
provision for the initial secretion of colostrum in the first three days after kidding as it is
assumed that the secretion of true milk only commences on the fourth day after parturition. In
the case of South African Saanen goats the kidding season starts at the end of July and lasts
approximately four months, with kidding usually occurring at intervals of at least twelve
months. For this reason no attention will be paid in this study to the season of kidding, but
rather to the point in time during the season at which kidding occurred. The lactation cycle of
a Saanen dairy goat is considered to be 300 days and commences on day four once the

secretion of colostrum have ended.

A summarised version of the results in Chapter 9 was published in the Journal of

Agricultural, Biological and Environmental Satistics (Groenewald and Viljoen, 2003).

9.2 THEWOOD MODEL FITTED TOINCOMPLETE DATA

In the discussion above it was pointed out that, in the case of the Saanen data, lactation cycles
were observed over a twoyear period. For some of the does in the data two consecutive
lactation cycles were observed, one in each year. For other does in this data set only one
lactation cycle, which could possibly have occurred in either the first or the second year of
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this two-year period, was observed. The resulting data therefore has the same structure as that
of incomplete data discussed in section 4.4 of Chapter 4.

The Wood model and the Bayesian approach, with the inclusion of the amendments required
in order to handle incomplete data, was used to modd lactation in these Saanen does. The
Wood model assumes that the expected milk yield (in kg/day) of an animal at time t is
represented over the lactation period by

E(W,) =t"exp(a +ct) (9.2)

where-¥ <a<¥,b>0and c <0. The parameters a, b and ¢ are unknown and may differ

from one animal to another.

As discussed in section 5.2 of Chapter 5, the Wood model maybe used to estimate the milk
composition traits fat and protein content when measured as percentages of composition.

However, based on the finding by Sakul and Boylan (1992) that the Wood model was unable
to describe the percentage of lactose contained in sheep milk, it was decided not to include the

lactose contained in the Saanen milk as part of the modelling process. As a result of the
convex nature of the functions of percentages of fat and protein in milk composition over

time, model parameters b and c for these traits should again be b <Oand ¢ > 0.

With the assumption of multiplicative errors in (9.1), and after a log transformation the
observation mode of thei™ animal iswritten as
Yis(tip) =1In Mijs(tijp )) = a + by In(tijp )"' Cistijp T €ips 9.2)

where e ~i.i.d.N(O,s§),i =1, ... .k asbefore. Now, however, j serves to index the year in

ijps
which the lactation cycle occurs (year 1 or 2), while g, is the number of lactation cycles
observed for anima i , which for this analysisis ¢, = 1or 2. Asbefores=1, ..., uwhereu is
the number of lactation traits observed, and p =1, ..., n; where n; is the number of test
days for animal i during lactation cycle j, with8 £ n;; £ 10 for all vaues of i and j. For the

Saanen data the number of does are k = 493, while the u = 3 lactation traits milk yield,

percentage of fat and percentage of protein in milk composition are modelled here.

The generalised linear model form of the model for animal i during lactation cycle j as
described in (4.3) for the general caseis:

Y; =X ;M +E; 9.9
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where vec Ei(J(Bn”. : 1) ~ N(vecO,F A L )

For the Wood model the v = 3 regression coefficients of the generalised linear form of the
lactation model for the i animal during its j™ lactation cycle for the lactation trait indicated
by s =1, 2, 3 are ajjs bjjs, and ¢js, S0 that as before

&, a;, a; ;U
M ij (3, 3) = ngjl b|j2 buSH' (94)
&1 GCj2 Gjz(

The r-th row of design matrix X (n”. ’ 3) contains the elements that would return the Wood

model in generalised linear form when multiplied with the matrix of coefficients M,

therefore X”(r) _[1 In tur t”r (95)

For animal i over al g, =1 or 2 lactation cycles observed,
::X.M.+E. (96)

G
where vecE((3n " 1) ~ N(vecOF A o ) 1, :é n;, X;(n "~ 3q;) =diag{ X;} and

1
.=

DD D> D

M;(3a " 3) 9.7)

<
=z
oo

The dimensions of both Y, and M, therefore depends on the number of lactation cycles g,
observed for animal i. For example, if g =1then M (3" 3 =[Mil], but if g, =2then

éM, U

Mi" 3 =gu g

From the earlier discussion on factors that could possibly have a significant influence on
lactation, it follows that the additional information on year of kidding, parity number and
kidding date available in the Saanen data has to also be included in the model. This is done

by means of the covariate matrix or vector Z;(6 " q,) for the i animal, which is then used as

described in Chapter 4. A full description of how this covariate matrix Z; is obtained for each

animal follows in section 9.3 below.

Because g, = 1 or 2 lactation cycles, the matrix R (g, " ¢;) only contains the covariances

between the model parameters of the same animal in successive lactation cycles when g, > 1.
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In this application where max( g,) =2, Riisa(2 "~ 2) matrix if an animal has been recorded

over both the lactation cycles observed for 1990 and 1991,

a r,u
Ri -9 n 12 Y 08
8. 1l (58)

otherwiseRj isascalar. If an animal has been recorded in one lactation cycle only, depending
on the year this lactation cycle was observed, Ri = r ,, if the does has been recorded in 1990

andR; = r,, if it has been recorded in 1991.

Through the use of the Gibbs sampler as described in section 4.2 of Chapter 4 and the full
conditional distributions of the model parameters m;, B, F "t and S™ as set out in equations
(4.28) to (4.31), and the joint conditiona distribution on the elements of R given in equation
(4.33) together with the Metropolis-Hastings agorithm with restrictions as described in
section 4.5 of Chapter 4, the marginal posterior distributions conditional on the observed data
only was obtained. The hyperparameters P and G required to generate marginal distributions
for St and R?, were taken as the moments estimators from the sampling distributions of S
and R with degrees of freedom as small as possible, d = 2 and g = 10. Applying the approach
suggested by MacEachern and Berliner (1994), the sampling process using the Gibbs sampler
and Metropolis-Hastings algorithm was put through a “burnin” period of 2000 simulation
iterations, after which 12 000 sets of parameters were generated and kept using equations
(4.28) to (4.31) and (4.33). This required simulating from normal distributions to obtain the
distributions of Mi and B, from Wishart distributions for F* and S™, and using the
Metropolis-Hastings algorithm with restrictions as set out in section 4.5 of Chapter 4 to obtain

the elements of R from their joint distributions.

9.3 SETTING THE COVARIATESCONTAINED Z;

Additional information available in the Saanen data on cofactors that could possibly have a
significant influence on lactation is again included in the model using covariates. The
cofactors for the Saanen data are year of kidding, parity number and kidding date. Does
kidding in two years, 1990 and 1991, were included in the data, while parity numbers range
from 1 to 4 or greater. Kidding date was provided as the actua date of parturition. To
include these cofactors in the model, a covariate vector z or matrix Z; has to be constructed

for each animal i, wherei =1, ..., 493.
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For does recorded during one lactation cycle only (g, = 1), the cofactors were trandated into a
vector of covariatesz (6~ 1), while for animal recorded during both of lactation cycles (g, = 2)

amatrix of covariates Zj(6 ~ 2) = [71 z2] was constructed, where the column vectorsz1(6~ 1)
and z2(6 ~ 1) are the covariate vectors of the first and second of the two lactation cycles of

animal i respectively. A total of m = 6 covariates were required for each lactation cycle.

In a covariate vector z, for example, the first element or z is dways a constant, 1. The
second element of this vector is used to identify the year of kidding, with 7 equal to zero if
the doe kidded in 1990 and one if the doe kidded in 1991. Elements three, four and five of
such a covariate vector are used to identify the parity number. For an animal in first parity all
three these elements are set at zero, for an animal in second parity z isequa to 1 and z, and
Z s are set at zero, for an animal in third parity z 4 is equa to one, but zgand z s are set at zero
and so forth. The final element of the covariate vector z is used to indicate the kidding date.
However, instead of setting zs equal to zero or one, a positive numerical value is assigned to
this position in the covariate vector. This value is determined by using he earliest kidding
date in the Saanen data for that particular year as reference point and assigning it the time
code 1. Other kidding dates for that particular year are then coded as days after earliest
kidding date. The kidding date time code of animal i is then used as its 7z covariate value.
For 1990 the latest kidding date was coded as day 124 after the start of the kidding season,
while for 1991 the last kidding date was day 115.

By setting covariates one and six of the covariate vector z equalto one and covariates two to
five equal to zero, the socalled base levels of the cofactors are obtained. The base levels of
these cofactors are 1990 in the case of year of kidding, parity 1 for parity number and time
code zero for kidding date. A typical example of such a covariate vector would be:

élu

¢lu

76 =501 (9.9)

€od

g344
from which it is evident that this doe, was observed during 1991 in its third parity, when it
kidded on the 34" day since the start of the kidding season if it is assumed that the first doe to
kid in that year indicates the start of the kidding season.
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A covariate matrix Zi(6 = 2) = [z1 zi2] Smply consist of two such vectors, one for each of the

lactation cycles on which lactation records for doe i are available.

94 THE RESULTSOF THE GIBBSSAMPLER

After convergence, like in the case of the Jersey data described in section 5.4 of Chapter 5, the
results of the parameter sample values obtained through Gibbs sampling for B, S and F are
stable. To illustrate the stability of the results, after convergence, of the three elements of the
matrix R when 12 000 sets of parameters have been generated by means of the Metropolis-

Hastings algorithm, the scans of these elements of R are considered in Figure 9.1 below.

5 rn

a5t | i |
o 4000 000 12000 0 4000 5000 12000 4000 8000 12000

Figure9.1: Scans of the three elements of the covariance matrix R for the 12 000
simulationsretained.

The correlation between the model parameters of the same animal in successive years is

estimated from the elements of R as 0,412 with 95% HPD interval [0,343; 0,477].

The regression matrix B(9 ~ 6) represents the effects of the covariates on the parameters of
the three lactation trait curves, milk yield, percentage of fat and percentage of protein in milk
composition, while the covariate vector z or matrix Z; is responsible for the identification of
the levels of the cofactors relevant to animal i. The first column of the matrix B contains the
base level effects on the three lactation trait curve parameters, while the elements in columns
two through to six represent the additional effect on the parameters as a result of the cofactors
for which the “levels’ are indicated by the covariates. The product of B and the covariate
vector or matrix of animal i is used to determine the sum of the base level effects and the
additional effects as aresult of the settings of the covariates of animal i on the nine parameters
of the three traits curves for that animal. From the 90% HPD intervals of the margina

posterior distributions of the elements of the matrix B, it was found that 45 of the 54 elements
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significantly affect the parameters of the three lactation trait curves milk yield, percentage of
fat and percentage of protein. All nine base level effects contained in B are significant, while
the effects of al other covariates on the parameters of the trait curves are significant for at
least five parameters. The matrix B that follows contains the mean of the 12 000 simulated
matrices resulting from the Gibbs sampler, with all values indicated in red representing the
mean elements of this matrix for which the 90% HPD intervals were found to be significant
with respect to their affect on the parameters of the lactation trait curves. All covariates
included in the model were kept as a consequence of the results obtained from the 90% HPD
intervals.

B = [ 0,29637 0,21546 0,24473 0,13795 0,09278 -0,00454 |
0,27593 -0,11905 0,02769 0,07598 0,09794 0,00143
-0,00423 0,00186 -0,00152 -0,00182 -0,00243 -0,00002
2,97572 -0,80337 -0,23708 -0,54179 -0,90765 -0,01452
-0,52978 0,22953 0,07117 0,14541 0,24751 0,00342
0,00422 -0,00165 -0,00075 -0,00118 -0,00211 -0,00001
1,69588 -0,08635 -0,10075 -0,06122 -0,12391 -0,00052

-0,16655 0,02324 0,02570 0,00570 0,01935 -0,00013
| 0,00136 -0,00006 -0,00020 0,00004 -0,00011 0,00001

9.5 THELACTATION TRAIT MILK YIELD

Once the 12 000 smulated M; matrices for each animal i over the lactation cycle or cycles
relevant to it have been obtained as a result of Gibbs sampling, 12 000 lactation or milk yield
curves may be generated from this result for the lactation cycle or cycles of anima i. The
mean of the 12 000 lactation curves of a lactation cycle of animal i then gives the expected
lactation curve for that animal in the particular lactation cycle under consideration.

To illustrate, this was done for three does in the Saanen data. The first, doe 35 was recoded in
1990 only, when it was in its third parity and kidded on the 14" day of the kidding season.

The second, doe 162 was recorded in 1991 only, when it was in its first parity and kidded on
the 52™ day of the kidding season. The expected lactation curve for these does are

represented by black solid lines in Figure 9.2 and 9.3 respectively, while the green lines
represent the observed milk yield values connected by straight-line segments and the red lines
represent the least squares estimate of the lactation curves fitted to the data. The 95% HPD

intervals for the expected lactation curves are represented by the magenta coloured broken
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lines, while the 95% predction intervals are displayed as blue broken lines. The same method
used to obtain the prediction interval as 95% HPD interval of the predictive density applied to
the Jersey data in section 5.5 of Chapter 5 was again used here.
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Figure9.2: The expected lactation curve of Animal 35 is given by —, its 95% HPD

interval by- - and its 95% prediction interval by —-—-. The least squares
estimate of the lactation curveisgiven by—. The observed data for Animal
35isgiven by
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Figure9.3: The expected lactation curve of Animal 162 is given by —, its 95% HPD
interval by- - and its 95% prediction interval by ==~ The least squares
estimate of thelactation curveisgiven by—. The observed data for Animal
162 is given by
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The third doe or doe 232 was recoded in both 1990 and 1991. In 1990 it was in its fourth
parity and kidded on the 18" day of the kidding season, while in 1991 it was in its fifth party
and kidded on the 21% day of the kidding season. For both these years this doe was grouped
into the parity group “parity 4 or greater”. The expected lactation curves for each of the two
lactation cycles of this doe are represented as a black solid line Figure 9.4, while as before the
green line represents the observed milk yield data of each lactation cycle, the red line the least
squares estimate of the lactation curve, the magenta coloured broken lines the 95% HPD
intervals of the expected lactation curve and the blue broken lines the 95% prediction
intervals for the expected lactation curves of the two cycles.
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Figure9.4: For each of the two lactation cycle of Animal 232 the expected lactation curve
isgiven by—, its 95% HPD interval by- - and its 90% prediction interval by
- = . Theleast squares estimate of the lactation curveis given by=— . The
observed data for Animal 232 is given by
It is also possible to obtain the expected lactation curve of a herd or breed with respect to one
of the levels of the cofactors year of kidding and parity number. First 12 000 vectors,
m°®= Bz*, (9.10)
for each of the 12 000 ssimulated B matrices are calculated, where z* is a vector that identifies
through its covariates the cofactor level of interest and eliminates the other ®factors by
taking the averages over the levels of these cofactors as the values of their covariate(s) in this
vector z*. For the cofactor “year of kidding”, which only has 2 levels, the average effect of

each of its cofactor levels would by $. To average out the effect of the cofactor year of

kidding, the value 3 is assigned to the one covariate used to indicate its level. Similarly for

the cofactor “parity number” which has 4 levels identified by 3 covariates, the average effect

of < hasto be assigned to all 3 these covariates to eliminate its effect through averaging. The

only other cofactor present in the model is kidding date, which isin its covariate coded as the
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number of days since the start of the kidding season. The time codes since the start of the
kidding season is modelled as a Gamma variate, with parameters estimated for each different
parity number.

The parameter values contained in m © related to milk yield are then used to construct 12 000
lactation curves for the cofactor level of interest and the mean of these curves then gives the
expected lactation curve for that cofactor level only. Figure 9.5 below provides the expected
lactation curves, together with 95% HPD intervals, for the two years of kidding after the

cofactors parity number and kidding date were averaged out as explained above.

1990 1991
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Figure9.5: Expected lactation curves with 95% HPD intervals for 1990 and 1991 after
all other cofactorshave been averaged out.

From Figure 9.5 it is seen that peak yidd in 1990 is at a much higher level than in 1990,

although time of peak yield seems to be very similar for the two years. It is expected that the

total yield in 1990 would be higher than that in 1991. The extent to which the above is true

for the mentioned characteristics of milk yield was also investigated using the functions

suggested by Wood for these lactation characteristics. The results of this investigation follow

in the next section.

In Figure 9.6 expected lactation curves with 95% HPD intervals for the four parity numbers
are given after the effects of year of kidding and kidding date were averaged out. After
careful consideration of these expected lactation curves for the four parities, it could be
commented that parity 1 has the lowest and latest occurring peak milk yield, the flattest curve
and, as a result, probably the greatest persistency. Peak milk yields increase with parity
number in parities 2 and 3, but in parity 4 or > there again is a dight reduction in peak level.
Time of peak milk yield is earliest in parity 2, followed by parity 4 or >, parity 3 and then
parity 1.
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Figure9.6: Expected lactation curves with 95% HPD intervalsfor the four parities after
all other cofactorshavebeen averaged out.

9.6 THEWOOD LACTATION CURVE CHARACTERISTICS

Posterior distributions of the following characteristics as defined by Wood (1967) may again
be obtained:

Total milk yield: f =g t°expla+ctyt, (9.11)
Peak milk yield: h=( 2 exp(a- b), (9.12)
Time of peak yield: t=-2 and (9.13)
Persistency of lactation: y =-(b+1)In(-c). (9.14)

Once 12 000 function values have been obtained for animal i using the parameters associated
with milk yield in the ssmulated M; matrices for that animal, a histogram is constructed for
these values and a Pearson curve fitted to the histogram to find the margina posterior density

of the function.

205



The distributions of these furctions with respect to one of the levels of a specified cofactor,

rather than for an individual animal, may aso be determined by using the same approach

applied in sections 5.5.1 to 5.5.4 of Chapter 5. When considering the marginal posterior

distributions of these functions per cofactor, the results are as given in Figure 9.7 to 9.14

below. Note that it was not possible to efficiently assess persistency of lactation from Figures

9.5 and 9.6. The margina posterior distributions of this characteristic for the cofactors

kidding year and parity number, however, now enables us to do so.

Figure9.7:

Figure9.8:
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Expected time of peak milk yield for kidding years
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Figure9.9: Expected time of peak milk yields for two kidding years after all other
cofactor shave been aver aged out.
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Figure9.10:Expected persistency of lactation for two kidding years after all other
cofactor shave been averaged out.
From the results in Figures 9.7 to 9.10 above it is confirmed that expected total milk yield,
peak milk yield and persistency of lactation is higher in 1990 than in 1991. Expected time of
peak milk yield is adso later in 1990 than in 1991. When considering 95% HPD intervals for
the differences in these characteristics between 1990 and 1991, only the differences in
expected total milk yield and expected peak milk yield between the kidding years were found
to be significant. When considering the expected time of peak milk yield in Figure 9.9, the
mean of 1990 is only approximately 2 days later than that of 1991. The kidding year 1990,
however, out-performed 1991 in al respects as far milk yield in the Saanen goats is

concerned. These results corresponds to that of other studies on lactation of dairy goats from
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which it was found that the year of kidding significantly affects milk yield. Kominakis et al.
(2000) found that the effect of production year was statistically significant in Skopelos dairy
goats. Mavrogenis et a. (1984) found that year of kidding had a significant effect on milk
yield of Damascus goats in Cyprus. Year of kidding also accounted for variation of milk
yield in two Indian goat breeds (Kala and Pekash, 1990) and the production year had a
significant effect on the milk yield of Spanish Verata goats (Rabasco et al., 1993). Note that
Gipson and Grossman (1990) stated that differences in goat breed are usually not important in
accounting for variation in shape of the lactation curve, but that it does play arole in the in the
scale of the curve. The shape of alactation curve usually remains unaffected by breed, but the
curve shifts upward for higher producing breeds and downward for breeds with lower

production levels.
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Figure9.11 Expected total milk yields for four parities after all other cofactors have
been averaged out.
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Figure9.12 Expected peak milk yields for four parities after all other cofactors
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Expected time of peak milk yield for parities
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Figure9.13 Expected time of peak milk yields for four parities after all other
cofactor s have been aver aged out.
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Figure9.14 Expected persistency of lactation for four parities after all other
cofactor s have been averaged out.

Figure 9.11 to 9.14 show parity 1 to have the lowest expected total and expected peak milk
yields. Expected time of peak yield is, however, latest for parity 1, while persistency is
greatest in parity 1. For parities 2 and 3 expected total and expect peak milk yield increase
with parity number, but for parity 4 or > there is again a dight drop in expected total milk
yield to just less than parity 3 level. Expected peak yield is, however, greatest in parity
4 or >. Expected time of pesk milk yield is significantly later for parity 1 than for the other
parities and, as aresult of the combined effect of all the afore mentioned characteristics, parity
1 has the greatest persistency followed by parity 3, 4 or >, and then parity 2 with the lowest
persistency. For al four these lactation characteristics parity 4 or > had the greatest variance.
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The above results are consistent with the results of other studies on the lactation curves of
dairy goats as discussed in Gipson and Grossman (1990) and the numerous references therein.
In these studies it was found that the initial and peak yields for first-parity does were usually
lower than for later parity does and that time of peak yield was generaly later in the lactation
cycle of first-parity does than for later-parity does. Because of the flatter lactation curve
resulting in the first parity, persistency was found to be greatest in first parity does and
decreased with increasing parity. Ruvunaet al. (1995) also found that older does, i.e. thosein
later parities, have a higher peak yield and lower persistency than younger does or those in
earlier parities. Note that there is a negative relationship between the level of production (or
total yield) and persistency, as the level of production increases the persistency decreases.

Eight possible combinations of kidding year and parity humber are possible for these two
cofactors in the data set and any doe in the Saanen data will belong to one of these eight
combinations. The only cofactor that could potentially be different for the does in the Saanen
data is the time code of kidding date. It was therefore decided to also determine the mean
values together with 90% HPD intervals for the marginal posterior distributions of the
lactation curve characteristics in equations (9.11) to (9.14) for the eight combinations of the
cofactors kidding year and parity number. This was done as explained earlier by obtaining
the functions of the characteristics of lactation from the parameter values of milk yield in the
12 000 vectors m ¢ = Bz*, where z* was complied using each of the eight combinations of
cofactor levels for the cofactors “kidding year” and “parity number”, while the average
kidding date time code of 50 days since the start of the kidding season was used as value of
the cofactor kidding date. The result is given in Table 9.1 below.

Table9.1: Mean value of four characteristics of the lactation curve, 90% HPD intervals
in parenthesis.

Parity

Characteristic ~ Year First Second Third Fourth and >
Tota yield 1990  755(732780) 896 (868926) 967 (935-999) 945 (895-997)
(kg milk) 1991 698 (678720)  823(792854) 887 (854-920) 865 (828-904)
Peak yield 1990 3.22(3.11-333) 4.21(406-436) 453(4.36-4.69) 457 (4.30-4.83)
(kg milk) 1991 2.75(2.63297) 360(346-374) 3.86(3.70-401) 3.89(3.70-4.07)
Timeof pesk 1990 64.6 (60.668.2) 544 (51.3-57.3) 58.8(55.8-51.7) 57.0(53.1-60.8)
yield (days) 1991 649 (57.7-71.8) 50.8(464-550) 57.0(53.0-60.9) 54.8(50.958.7)

_ 1990 7.04(6.91-7.16) 6.84 (6.72-6.96) 7.02(6.89-7.15) 7.01(6.83-7.18)
Persistency 1991 6.94(6.80-7.08) 6.65(6.53-6.76) 6.83 (6.77-6.95) 6.80 (6.67-6.93)
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The results in table 9.1 correspond in most part to that obtained from the characteristics of the
lactation curves for the cofactors year of kidding and parity number in Figures 9.7 to 9.14.

The third cofactor, or kidding date, in the Saanen data had as many as 124 level settings in
1990, making it difficult to meaningfully display its results. Probably the best way of
considering the cofactor kidding date, which was coded as days from the start of the kidding
season, is to graph the expected posterior characteristics of the lactation curve for the parities
as a function of time since the start of the kidding season, i.e. over the levels of the cofactor
kidding date, for each or the two kidding years.
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Figure9.15: Expected posterior characteristics of the lactation curve of does in
parity 1 for 1990 () and 1991(¢ - ) asa function of kidding date coded

asdayssincestart of thekidding season.

From Figure 9.15 above it is evident that for first parity does the kidding year 1990 most
definitely out-performed 1991. However, the only characteristic that is significantly affected
is total milk yield, where the mean yield is highest for animals lactating early during the
season, and dropping by more than 90kg for animals lactating at the end of the season. It
would aso be possible to use the same form of graphical representation to display the effects
of the cofactor year of kidding on the characteristics when the effect d the cofactor parity
number is averaged out, or the effects of the cofactor parity number when the effect of the
cofactor kidding year is averaged out.
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9.7 THELACTATION COMPOSITION TRAITS

The Wood model was used to simultaneously model not only milk yield, but also the milk
composition traits fat content and protein content both measured as percentages in the
composition of milk. The mean of the 12 000 curves generated for a composition trait of
animal i provides the expected composition trait (fat or protein) curve for that animal in the
particular lactation cycle under consideration. This procedure was again followed to obtain
the expected trait curves for does 35, 162 and 232 with respect to fat and protein content in
milk yield. The results are given in Figures 9.17 to 9.21. In al cases the expected curve is
represented by a black solid line, the green line is the observed data, the red line represents the
least squares estimate of the curve fitted to the data, the 95% HPD interva of the expected
curve is represented by magenta broken lines, and the 95% prediction interval is displayed as
blue broken lines. The prediction intervals are again obtained as the 95% HPD intervals of
the predictive density in equation (5.10) in section 5.5 of Chapter 5as mentioned earlier.
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Figure9.16: The expected fat content curve for Animal 35 is given by =, its 95%
HPD interval by = = and its 95% prediction interval by=== The least
squares estimate of the lactation curve is given by — . The observed
datafor Animal 35isgiven by

In Figure 9.17 the ability of this Bayesian method in reducing the number of atypical curves
fitted to individual animals in the data as result of the influence of information from the whole
herd on the expected curve of an individua animal is again demonstrated. The least squares
estimate of the fat content curve of animal 162 is atypical in nature, but the expected lactation
curve fitted through this Bayesian method is not atypical.
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Figure9.17:  Theexpected fat content curve for Animal 162 is given by—, its 95%
HPD interval by - - and its 95% prediction interval by - - = The least
squares estimate of the lactation curve is given by —. The observed
datafor Animal 162 isgiven by
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Figure9.18: For each of the two lactation cycle of Animal 232 the expected fat
content curve is given by —, its 95% HPD interval by - - and its 90%
prediction interval by - - . The least squares estimate of the lactation
curveisgiven by—. The observed data for Animal 232 isgiven by



Figure9.19:

Figure9.20:
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The expected protein content curve for Animal 35 is given by —, its

95% HPD interval by-= and its 95% prediction interval by -—~ The
least squares estimate of the lactation curve is given by — . The
observed data for Animal 35isgiven by
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The expected protein content curve for Animal 162 is given by—, its
95% HPD interval by- - and its 95% prediction interval by- - -. The

least squares estimate of the lactation curve is given by — . The
observed data for Animal 162 is given by
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Figure9.21: For each of the two lactation cycle of Animal 232 the expected protein
content curve is given by —, its 95% HPD interval by - - and its 90%
prediction interval by - - . The least squares estimate of the lactation
curveisgiven by—. The observed data for Animal 232 isgiven by
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Figure9.22: The mean, 50% and 95% contours of the joint posterior distribution of
fat and protein content after 20 and 100 days since the start of lactation
for 1990 and parity 1.
Figure 9.22 shows the joint posterior distribution of fat and protein percentage in the
composition of milk after 20 days and aso after 100 days of from the start of lactation by
plotting the mean, 50% and 95% contours of the joint posterior distribution for the cofactor
levels 1990 and parity 1, when the effect of the cofactor kidding date is averaged out. This
clearly shows that the higher content in both composition traits occur early in the lactation
cycle of the Saanen does. Although not much work has been done in the past on the
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composition of goat milk with respect to fat and protein content, Kominakis et a. (2000) and
other references therein draw attention to the negative genetic correlation between milk yield
and fat content, and milk yield and protein content.

The expected fat and protein content curves for the herd with respect to one of the levels of
the cofactors year of kidding and parity number may be obtained as before. Figures 9.23 to
9.26 provide these expected fat and protein content curves together with 95% HPD intervals.
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Figure9.23: Expected fat content curveswith 95% HPD intervalsfor 1990 and 1991
after all other cofactor s have been averaged out.
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Figure9.24: Expected fat content curves with 95% HPD intervals for the four
parities after all other cofactorshave been averaged out.
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Figure 9.24 shows that parities 1 and 2 are very similar with respect to the expected fat
content of milk, except that parity 1 commences with and ends in dightly higher expected
percentages. Parity 4 or greater commences with and ends in the lowest expected fat content

when compared to all other parities.
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Figure9.25: Expected protein content curves with 95% HPD intervals for 1990 and
1991 after all other cofactors have been averaged out.
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Figure9.26: Expected protein content curves with 95% HPD intervals for the four

parities after all other cofactorshave been averaged out.

Figure 9.26 shows that the expected protein content of milk in parity 1 commences and ends

with dlightly higher percentages than the other parities. Parity 4 or greater seems to have the
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lowest expected protein content throughout most of the lactation cycle when compared to al

other parities.

9.8 PREDICTING MISSING LACTATION RECORDS

Lactation records in the Saanen data were recorded over two kidding years or lactation cycles,

1990 and 1991. Of the total of 493 does in the data, only 262 were recorded during both
lactation cycles. For 117 does recorded in 1990 only, it is possible to predict the missing

|actation record for 1991.

In section 4.1 of Chapter 4 the procedure for the general case where, of a possible number of
g consecutive lactation cycles for animal i of which the lactation records of h < q cycles are
known and (g - h) cycles have to be predicted, is explained. For the Saanen data each doe has
atotal of q = 2 possible lactation cycles and for al does recorded in 1990 only this implies
that h = 1 lactation cycle is known and that one further lactation cycle has to be predicted to

complete missing lactation records for those does.

To do so the model parameters of the lactation cycle to be predicted or m® have to be

determined if the model parameters of the known lactation cycle is given by m® = m®@" .
This is done through MCMC simulation using the conditional distribution of m specified
in equation (4.22). For the Saanen data, how ever, where q = 2 and h = 1, this conditiona
distribution for predicting the second year's model parameters for an individua or m(?,

given the first year’ s performance reduces to:

m® |m®, B,R,S ~ NE%;Z +%(mi@ _Bz,)),—|R|S% (9.15)

11 11 a

For predicting the second years performance, \7” , we then use

P =m =N AXPmEF AL ) (016)

yi(fZ) m

From the result of equation (9.16) the lactation or milk yield curve, as well as the fat and

protein content curves for the second year given first year's performance may then be
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graphed. If thisis done for doe 35 in the data for which only the lactation record of 1990 was

observed, the results are as follows.

Predicted Lactation Curve for 2nd Year with 90% HPD Interval for specific Animal
7 T T T T

Figure9.27: Predicted lactation curve with 90% HPD intervalsfor doe 35in 1991.

Predicted Fat % for 2nd Year with 90% HPD Interval for specific Animal
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Figure9.28: Predicted fat content curvewith 90% HPD intervalsfor doe 35in 1991.

219



Predicted Protein % for 2nd Year with 90% HPD Interval for specific Animal
T T T T T

= i L i 1 —
0o 50 100 150 200 250 300

Figure9.29: Predicted protein content curve with 90% HPD intervals for doe 35 in
1991.

9.9 SAANEN DATA RESULTS: A SUMMARY

In general, the season of lactation, 1990 @ 1991, significantly affected total yield and peak
yield, with 1991 resulting in lower values of both these characteristics in all four parities.
Total milk yield was in turn affected by the time of kidding. Total milk yield was higher for
does that started lactation early during the season and declined for does that started lactation

later during the season.

Parity had a large effect on the characteristics of the lactation curve in dairy goats. It was
found that peak yield increased with increasing parity up to about the third or fourth parity,
while time of peak yield is later for first-parity does than for later parity does. The effect of
parity on total milk yield was again similar to the effect on peak yield, with total milk yield
increasing up to the third parity, where after the total milk yield starts to decline. Persistency
was influenced by parity in the same way as total milk yield. The effect of parity on total
milk yield and persistency could play an important role in management of dairy animals with
respect to culling.
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CHAPTER 10

EPILOGUE

10.1 THE RESULTSIN SUMMARY

The Wood, general exponential, 4parameter Morant and adapted Wilmink models were used
to simultaneously model the lactation traits milk yield, percentage of fat and percentage of
protein in the milk composition from test day records observed for Jersey cows by means of a
Bayesian approach using MCMC methods. The results obtained from the Wood model, when
applied to lactation of dairy cows, in the main corresponds to the results and conclusions
obtained in other studies with respect to the effects of cofactors, such as parity, region and
season of calving, on the lactation curve characteristics total milk yield, peak milk yield, time
of peak milk yield, and persistency, as discussed in Chapter 5. Although not much research
on modelling the fat and protein content of milk by means of the Wood mode have
previously been done, the results and conclusions obtained in this research also mainly

corresponds to those of other studies.

When considering the expected lactation curves with respect to the levels of a cofactor of
interest obtained from the general exponential, 4parameter Morant and adapted Wilmink
models, the adapted Wilmink model fared best at describing milk yield. The 4-parameter
Morant model often resulted in curves that peak when lactation commenced which is
considered an unrealistic scenario with respect to lactation in Jersey cows, while the general
exponential model tends to under estimate milk yield in the final stages of lactation.
Considering the expected fat curves with respect to the levels of a cofactor of interest very
similar results were obtained for the four models. Fat content was also the only lactation trait
in the original Jersey data that the 4parameter Morant model seemed to model effectively.
With respect to expected protein content of the levels of a cofactor of interest the 4-parameter
Morant model seemed unable to take on the shape expected for such curves, while the results

from the Wood, adapted Wilmink and general exponential models were similar in scale and

shape.

When comparing the ability of all four models in modelling the three lactation traits of the
Jersey data using Bayes factors, the adapted Wilmink model is the model of preference,
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followed by the Wood and general exponential models, while the 4 parameter Morant model
fared worst.

The results from the Bayesian approach for these models obtained from the original Jersey
data were also used to predict and model lactation with respect to the Further Jersey data that
contains animals similar to those in the original Jersey data but that do not form part of the
origina Jersey data. Here it was found that the general exponential model resulted in the
lowest total sum of SSE values over al lactation cycles of all 10 animalsin the Further Jersey
data with respect to the lactation traits milk yield and fat content, while for protein content the
4-parameter Morant model provided the lowest total sum of SSE values over al lactation
cycles d al 10 animals. This was however the case when using results generated for the
models fitted to the original Jersey data and not by modelling the Further Jersey data using
these models and the Bayesian approach.

To illustrate the use of the Bayesian approach in modelling incomplete lactation data, the
Wood model was used to model the Saanen data. The results obtained with respect to the
effects of cofactors such as year of kidding, parity and kidding date on the lactation curve
characteristics total milk yield, peak milk yield, time of peak milk yield and persistency aso
on the whole corresponds to those of other studies in which the Wood model was used to
model lactation in goats. This correspondence was aso found with respect to the results of

the fat and protein content of the milk of goats modelled by means of the Wood model.

It was dso illustrated how the Bayesian approach aso alows for the prediction of lactation
trait curves in future lactation cycles of animals contained in the Jersey using the Wood,
general exponential, 4parameter Morant and adapted Wilmink model, as well as for animals
in the Saanen data using the Wood model.

The ability of the Bayesian approach in reducing the occurrence of atypical curves fitted to
milk yield, fat content and protein content is also very evident throughout this study.

10.2 CONTRIBUTION TO LACTATION RESEACH IN PERSPECTIVE

In this research a hierarchical Bayesian approach was applied in modelling lactation data with

the intention of investigating lactation traits and not for the purpose of genetic evaluation and
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selection as was done before. For the first time consideration is given to the effect that the
assumption about errors has on fitting the various forms of lactation models to the data and
the problems encountered with respect to some of the models based on the error assumption.

A generalised hierarchica Bayesian approach to modelling lactation using any lactation
model, together with the assumption of multiplicative errors, that may then be re-written in
linear form by means of a logarithmic transformation so that the errors then become additive,

was devel oped.

The effects of cofactors were included into the model through the use of covariates in order to
enable the study of the effects of the various levels of such cofactors on the lactation trait

curves.

The method that averages out the effects of certain cofactors in order to obtain the lactation
trait curve applicable to a certain level of the specific cofactor of interest was introduced.
This provides a Bayesian equivalent to Standard Lactation Curves (SLAC's) obtained by
means of IRIS-Dairy.

This modelling approach has the ability to handle both complete and incomplete data
Complete data referring to the case where the same lactation cycles were recorded for al
animals in the data, while in the case of incomplete data not all animals were recorded during
all the considered lactation cycles. From the results of such a modéd it is possible to predict
missing lactation cycles for animals based on preceding lactation cycles for which test day
records were observed and included in modelling. Future lactation cycles of the animals in
the data following those aready included in modelling may aso be predicted.

It is also possible to predict lactation trait curves for animals that did not form part of the data
set for which modelling took place, on condition that it may be assumed that such animals are

similar to those for which modelling was done.

An adaptation of the Wilmink model 11 was performed in order to enable its use as a model
that, when multiplicative errors are assumed, may be transformed using a logarithmic
transformation so that the model becomes linear with additive errors. In addition to thisw in
the adapted Wilmink model is used & a parameter applicable to the herd under investigation

instead of as a constant as was previously done in the Wilmink Il model. The resulting
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adapted Wilmink model has proved to be a model that is worthy of further consideration in all
the studies of lactation in dairy animals.

In summary, the main advantages of the Bayesian approach, combined with MCMC methods,
is, firstly, the ease with which it can handle the estimation of parameters in complex multi-
level hierarchical models, and, secondly, the ability to generate accurate credibility intervals
for these parameters. Also, credibility intervals for nonlinear combinations of these
parameters, such as the lactation characteristics, and prediction intervals follow directly. This

is not possible when aplying the classical methods, except with the use of approximations.
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APPENDI X

Al: An example of MATLAB® code: Finding marginal posterior
distribution through Gibbs sampling in the case of complete data

The MATLAB program code below illustrates how the margina distributions of the
parameters of the three lactation traits using the adapted Wilmink model were obtained by
means of the Gibbs sampler when applied to complete data, i.e. where al animals in the data
were observed during all of the considered lactation cycles. In the case of the Jersey data this
means that all animals in the data were observed during each of four lactation cycles. Similar
code, with the necessary adjustments relevant to the lactation model applied, were also used

to obtain the margina distributions of the parameters of the three lactation traits using the

Wood, general exponential and 4 parameter Morant models.

%WADAPTED W LM NK: Jersey data

%4 G bbs sanpling: Equal nunbers of lactation cycles for all
ani mal s)

cl ear

j ersey

format conpact

k=l engt h(ni); p=3; N j=[0; cunsunm(nij)];

Y=l og(D); t =X 3;

clear D X

n=sun(nij); z=7";

YSTARTI NG VALUES

%-----mmmmm -

randn(' seed', sun{ 100*cl ock));

| oad startwrl7k %File with starting val ues | oaded
R=Rst; Sig=Sigst; B=Bst; s=sst; Phi=diag(s); wWEwst ;

S=[1; Twe=[]; BB=[]; RR=[]; SIG[]; Kor=[]; W{]; TEL=[];

for jj=1:10000 %erform 10 000 iterations of G bbs sanpler
%8l MULATING M ¢

MB1=0; MB2=0; E=0; GG=0; Mmc=[]; M[]; M=[]; ZZ=[]; Mw[];
for i=1:4:4*k-1

yI=Y(Nj(i)+1:Nij(i+1),:);

y2=Y(Nij (i +1)+1:Nij(i+2),:);

y3=Y(Nj (i +2)+1:Nij (i +3),:);

yA=Y(Nij (i +3)+1L:Nij(i+4),:);

y=[y1;y2;y3;y4];

yr=y ;

ye=yr(:);
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til=[t(Nj(I)+L:Nj(i+1))];
ti2=[t(Nij (i +1)+1:Nj(i+2))];
ti3=[t(Nij(i+2)+1:Nj(i+3))];
tid=[t(Nij(i+3)+1:Nj(i+4))];
Ze=[Z(:,i);Z(:,i+1);Z(:,1+2);Z(:,1+3)];
Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)];
xi 1=[ones(length(til),1) (til) exp(-wtil)];
xi 2=[ones(length(ti2),1) (ti2) exp(-wti2)];
xi 3=[ones(length(ti3),1) (ti3) exp(-wti3)];
xi 4=[ ones(length(ti4),1) (tid) exp(-wtid)];
xi =[xi 1 zeros(l ength(xi1l),9)
zeros(length(xi2),3) xi2 zeros(length(xi?2),6)
zeros(l ength(xi 3),6) xi3 zeros(length(xi3),3)
zeros(l ength(xi 4),9) xid4];
vine=i nv(kron(xi' *xi,inv(Phi))+kron(inv(R),inv(Sig)));
mrec=vnec* (kron(xi',inv(Phi))*yc + kron(inv(R),inv(Sig)*B)*Zc);
nmc=sqrt m(vnc) *randn(si ze(mt)) + mt;
m=[nc(1l:9) nc(10:18) nt(19:27) nt(28:36)];

me[nt(1:3)" ;nc(4:6)" ;nc(7:9)" ;nc(10: 12)" ; nc(13:15)" ; nc(16:18)"'; nc(19
:21) ", ne(22:24) ; ne(25:27)" ;nmc(28:30)" ;nc(31:33)'; nc(34:36)'];

mBl=m *i nv(R) *Zr";
nmB2=Zr*i nv(R) *Zr" ;
MB1=MBl+nBl,
MB2=NMB2+nB2;
e=(y-xi*m"*(y-xi*m;
E=E+e;
MA=[ Mv nf ;
M[Mmi];
M=[M;m];
Z2Z=[ZZ; Zr];

end

%8l MULATI NG B

% -----------

i ZRZ=i nv(MB2) ;

nmB=(MB1) *i ZRZ,;

Bg=sqgrt m(kron(i ZRz, Si g)) *randn(si ze(nmB(:))) +nB(:);

B=[ Bg(1:9) Bg(10:18) Bg(19:27) Bg(28:36) Bg(37:45) Bg(46:54)
Bg(55: 63) Bg(64:72) Bg(73:81) Bg(82:90) Bg(91:99) Bg(100:108)
Bg(109: 117) Bg(118:126) Bg(127:135) Bg(136:144) Bg(145:153)];

%5l MULATI NG Phi

C=di ag(E);
s=C ./sun((randn(n, 3).72));
Phi =di ag(s)

%Sl MULATI NG Si g

U -mmmmmmmmm -

g=4*k;

g=3*p+1;

G=di ag([ 0. 1414822
0. 0000029
0. 3448342
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. 0512994

. 0000011

. 2515051

. 0161449

. 0000003

. 0665536] ) ;
ke=kron(speye(k),inv(R));
F=(MB*Z)*full (ke)*(MB*2)";
H=i nv(g*G+F) ;

r 1=r andn( 3*p, q+g) ;
r2=sqrtm(H *r1;
Sig=inv(r2*r2');

[cNeolololeNo)

%Sl MULATI NG R

&X=0; wr =4; %w =del ta and W =hyper par anet er
W=[1.1751 1.1243 1.1635 1.1617

1.1243 1. 2290 1. 1907 1. 1907

1.1635 1. 1907 1. 3001 1. 2395

1.1617 1. 1907 1. 2395 1.3259];

for j=1:k
02=M:, 1+4*(j -1): 4*j)-B*Z(:, 1+4*(j-1): 4*));
GG=g2' *inv(Sig)*g2;
R=2+CG
end
L=i nv(w *W +R) ;
r3=randn( 4, w +3*p*k) ;
rd=sqrtm(L)*r3;
R=inv(r4*r4')

%Sl MULATI NG w
% ------------
yme0;
for i=1:4:4*k-1
ii=(i+3)/4;
yI=Y(Nj(i)+1:Nj(i+1),:);
y2=Y(Nij (i +1)+1L:Nj(i+2),:);
y3=Y(Nj (i +2)+1L:Nij (i +3),:);
yA=Y(Nij (i +3)+1L:Nij(i+4),:);
y=[y1;y2;y3;y4];
yr=y ;
ye=syr(:); o
til=[t(Nj(i)+L:Nj(i+1))];
ti2=[t(Nij(i+1)+1L:Nj(i+2))];
ti3=[t(Nj(i+2)+1:Nj(i+3))];
tid=[t(Nij(i+3)+1:Nj(i+4))];
Ze=[Z(:,i);Z(:,i+1);Z(:,i+2);2Z(:,i+3)];
Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)];
xi 1=[ones(length(til),1) (til) exp(-wtil)];
xi 2=[ones(length(ti2),1) (ti2) exp(-wti2)];
xi 3=[ ones(length(ti3),1) (ti3) exp(-wti3)];
xi 4=[ones(l ength(ti4),1) (tid) exp(-wtid)];
xi =[xi 1 zeros(l ength(xi1),9)
zeros(l ength(xi2),3) xi2 zeros(length(xi?2),6)
zeros(l ength(xi 3),6) xi3 zeros(length(xi3), 3)

[ S

[ —
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zeros(l ength(xi 4),9) xid4];
meEMM:, (3*(T1-2)+1): (3*(ii-1)+3));
yma=(-.5*trace((y-xi *m*inv(Phi)*(y-xi*m"'));
ynmrymeyne;
end
[ nf w=ym
al=-20; zwerand(1l,1);
t el =0;
whi | e zw>=exp(al)
tel =tel +1;
wo=w* (0. 75+(rand(1, 1) *.5))
yn0=0;
for i=1:4:4*k-1
ii=(i+3)/4;
y1=Y(Nj(i)+1:Nj(i+1),:);
y2=Y(Nij (i +1)+1:Nij(i+2),:);
y3=Y(Nj (i +2)+1:Nij (i +3),:);
yA=Y(Nij (i +3)+1L:Nij(i+4),:);
y=[yl;y2;y3;y4];
yr=y';
ye=yr(:);
tid=[t(Nij(i)+1:Nj(i+1))];
ti2=[t(Nij(i+1)+1:Nj(i+2))];
ti3=[t(Nij(i+2)+1:Nj(i+3))];
tid=[t(Nij(i+3)+1:Nj(i+4))];
Ze=[Z(: i) Z(:, i +1);Z(:,1+2);Z(:,1+3)];
Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)];
xi 10=[ ones(length(ti1l),1) (til) exp(-wo*til)
xi 20=[ ones(length(ti2),1) (ti2) exp(-wo*ti?2)
xi 30=[ ones(length(ti3),1) (ti3) exp(-wo*ti3)
xi 40=[ ones(l ength(ti4),1) (tid) exp(-wo*tid)
xi 0=[ xi 10 zeros(!l engt h(xi 10), 9)
zeros(l ength(xi 20),3) xi 20 zeros(I|ength(xi20), 6)
zeros( 1 engt h(xi 30), 6) xi 30 zeros(!ength(xi30),3)
zeros( |l engt h(xi 40), 9) xi 40];
meEMAM:, (3*(T1-2)+1): (3*(ii-1)+3));
yma=(-.5*trace((y-xi 0*m*inv(Phi)*(y-xi0*m"'));
ynmd=ynD+yne;
end
[ nf wO=yn0; %1 og(w0) ;
al=mn([O0 I nfwo-Infw);
eal=exp(al);
zw=rand(1, 1) ;
end
w=w0
TEL=[ TEL; tel ];

l;
1
l;
1;

S S;s];

BB=[ BB; B] ;
RR=[RR R|;
SIG[SIGSig];
WE[ W W ;

End

save sinl7wm S BB RR SIG Wjj TEL

238



A2: An example of MATLAB® code. Determining the marginal
likelihood required for calculation of Bayes factors

The MATLAB program code below illustrates how the marginal likelihood required in the
caculation of Bayes factors is determined using the procedure suggested by Chib (1995)
when the general exponential model is used to model lactation data for the three lactation
traits. With only minor adjustments to make provision for the difference in generalised linear

form, the marginal likelihood for the Wood, 4parameter Morant or adapted Wilmink models
may also be determined.

%-or MNarginal likelihood required in Bayes factors - Part 1: (Chib)
%-i nding means for M's in general exponential nodel
cl ear
| oad sinl7ge % oad data from 10 000 origi nal G bbs simnulations
B=0; R=0; Sig=0;
for ii=1:jj
b=BB((12*(ii-1)+1):(12*(ii-1)+12),:);
B=B+b;
Fr=RR((4*(ii-21)+1):(4*(ii-1)+4),:);
R=R+r ;
sig=SI G (12*(ii-1)+1):(12*(ii-1)+12),:);
Si g=Si g+si g;
end

%eans fromoriginal sinulations%n
nB=B/jj; mR=R/jj; nB=mean(S); nSGig=Sig/jj; nPhi=diag(nb)

j ersey

k=l engt h(ni); Nij=[0; cumsum(nij)];

Y=l og(D); t=X-3;

clear D X

n=sum(nij); Z=Z';

M =[1;

for i=1:4:4*k-1
y1=Y(Nj(i)+1:Nj(i+1),:);
y2=Y(Nij (i +1)+1:Nj(i+2),:);
y3=Y(Nj (i +2)+1:Nij (i +3),:);
yA=Y(Nij (i +3)+1:Nij(i+4),:);
y=[yl;y2;y3;y4];
yr=y'; oye=yr(:);
til=[t(Nij(i)+1:Nij(i+1))];
ti2=[t(Nij (i +1)+1:Nj(i+2))];
ti3=[t(Nij(i+2)+1:Nj(i+3))];
tid=[t(Nij(i+3)+1:Nj(i+4))];
xi 1=[ones(length(til),1) log(til) tiltil. ~2];
xi 2=[ones(length(ti2),1) log(ti2) ti2 ti2.72];
xi 3=[ones(length(ti3),1) log(ti3) ti3 ti3."2];
xi 4=[ones(length(ti4),1) log(tid) tid tid. "2];
xi =[xi 1 zeros(l ength(xil), 12)
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zeros(length(xi2),4) xi2 zeros(length(xi?2), 8)
zeros(l ength(xi 3),8) xi3 zeros(length(xi3), 4)
zeros(l ength(xi4),12) xi4];
Ze=[Z(:,i);Z(:,i+1); Z(:,142);Z(:,1+3)];
Zr=[Z(:,i) Z(:,i+1) Z(:,i+2) Z(:,i+3)];
Mrar =i nv(kron(xi ' *xi, i nv(nPhi))+kron(inv(nR),inv(nSig)));
Mr =Mrar *(kron(xi ', inv(nPhi))*yc +
kron(inv(nR),inv(nsi g)*nmB)*Zc);

M =[M Mn]; Y%orde: 48 x 1141
my[ Mri (1:12) M (13:24) M (25:36) Mm (37:48)];
MVE[ MM mm ; Yorder: 12 x 4564

end
save bf .. mpat M MV nB nR nGi g nB nPhi

% For Marginal likelihood required in Bayes factors:
% Ceneral exponential nodel - Part 2: (Chib)

cl ear

| oad sinl7gex

| oad bfl

j ersey

k=l ength(ni); Nij=[0;cunsum(nij)];
Y=l og(D); t=X-3;

qi =4; % unber of consecutive cycle per animal

p=4; % unber of paraneters in nodel

kof =17; Y%munber of cofactors in nodel

s=3; %nunber of traits investigated (Prod, Pt & BVY)
clear D X

n=sum(nij);

z=7";

randn(' seed', sum(100*cl ock));

LBSTER=[ ] ; LSi gSTER=[] ;
BBt=[]; RRb=[]; SICGb=[]; SIG=[]; RRsig=[];
R=nR; Si g=nti g;

j j =10000 omunber of G bbs iterations

for j=1:jj

M=MM (:,i):; 9% i xed M *
m=[M(1:12) M (13:24) M (25:36) M (37:48)]:

i =4 ;

Zr=[Z(:,ii-3) Z(:,ii-2) z(:,ii-1) z(:,ii)]:

nBl=m *i nv(R) *Zr"' ;
mB2=Zr*i nv(R) *Zr "' ;
MB1=MB1+nB1;
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VB2=NVB2+nB2;
end
i ZRZ=i nv( MB2) ;
gmB=(MB1) *i ZRZ;
Bg=real (sqgrtn(kron(i ZRzZ, Si g)))*randn(si ze(gnB(:)))+gnmB(:);
B=[ Bg(1:12) Bg(13:24) Bg(25:36) Bg(37:48) Bg(49:60) Bg(61:72)
Bg(73:84) Bg(85:96) Bg(97:108) Bg(109: 120) Bg(121:132) Bg(133: 144)
Bg(145: 156) Bg(157:168) Bg(169: 180) Bg(181:192) Bg(193:204)];
BBt =[ BBt ; B] ;

WA 1. 183312777  0.789010185  0.826199702  0.806821427
0. 789010185 1.246930017 0.832558042 0.800748753
0. 826199702 0. 832558043  1.204569336  0.854740445

0. 806821427  0.800748753  0.854740445 1.239184366] ;
for i=1:k
M=MM(:,1); % ixed M*
m=[M(1:12) M(13:24) M (25:36) M (37:48)];
g2=mi -B*Z(:, 1+4*(i -1):4*i);
GG=g2' *inv(Sig)*g2
R=@2+6G
end
L=i nv(wWQR) ;
r 3=r andn( 4, w+3* p*k) ;
rd=sqrtnm(L)*r3
R=i nv(r4*r4');
RRo=[ RRo; R] ;

+
. 88732364997719
. 21803441972297
. 00010366578937
. 0000047229
. 19366342439675
.25209117888476
. 00010727024472
. 0000043419
. 42040640140500
. 04872026647853
. 00002081770497
. 0000008403]) ;
ke=kron(speye(Kk),inv(R));
F=(M\B*Z2) *full (ke)*(MMB*2)" ;
H=i nv(g* GtF) ;
r 1=randn(3*p, q+g) ;
r2=sqgrtnm(H *rl
SigB=inv(r2*r2');
S| Go=[ SI Gb; Si gB] ;

*
1

QOO O0OO0OOONOOO

MB1=0; WNB2=0;
for i=1:k
M=MW (:,i); % ixed M*
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m=[M(1:12) M (13:24) M (25:36) M (37:48)];
ii=4*i;
Zr=[Z(:,ii-3) Z(:,ii-2) Z(:,ii-1) Z(:,ii)];
nBl=m *i nv(R) *Zr" ;
mB2=Zr*i nv(R) *Zr " ;
MB1=NMB1+nB1;
MB2=MB2+nB2;
end

i ZRZ=i nv( MB2) ;

gnB=( MB1) *i ZRZ;

cons=(-.5*(3*p)*kof)*l og(2*pi);

| ogMPb=cons-. 5*(3*p) *| og(det (i ZRZ))- . 5*kof *| og(det (Si gB)) +((trace(-
.5%inv(SigB)*(nmB-gnB)*inv(i ZRZ)*(nB-gnB)')));

| ogPBst =I ogPBst +| ogVPb;

end

| ogBSTER=I ogVWPBst /|| ;
LBSTER=[ LBSTER; | 0gBSTER] ;

| ogMPSi gst =0;
q=4*k;
g=3*p+1;
Gam n=[];
for ii=1:(3*p)
gam n=ganmal n(. 5*(g+g+1-ii));
Gam n=[ Gam n; gam n] ;
end
consj =((.25*(3*p) *(3*p-1)) *l og(pi ) +sun(Gam n) ) ;

for j=1:jj

%Whraw Sig with nean(R) fromsinulations as start and fixed M &

G=di ag([ 1. 88732364997719

. 21803441972297
. 00010366578937
. 0000047229

. 19366342439675
. 252091178884 76
. 00010727024472
. 0000043419

. 42040640140500
. 04872026647853
. 00002081770497
. 0000008403] ) ;
ke=kron(speye(k),inv(R));
F=(MWnB*Z) *ful | (ke)*(MM nB*2)"; %B=fi xed B*; MVfixed M
H=i nv(g* G+F) ;

QOO O0OOCOONOOO
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r1=randn( 3*p, q+9g);
r2=sqrtn(H *ri
Sig=inv(r2*r2');
Sia=[SIG; Sig];

V¢[1.183312777 0. 789010185 0.826199702 0.806821427
0. 789010185 1.246930017  0.832558042 0.800748753
. 826199702  0.832558043  1.204569336  0.854740445
. 806821427  0.800748753  0.854740445  1.239184366] ;
for i=1:k
M=MM (:,i);
m=[M(1:12) M (13:24) M (25:36) M (37:48)];
g2=m -nmB*Z(:, 1+4*(i-1):4*i);
GG=g2' *inv(Sig)*g2
R=@+G6G
end
L=i nv(wWQR) ;
r 3=randn( 4, w+3* p*Kk) ;
rd=sqrtn(L)*
R=inv(r4*r4');
RRsi g=[ RRsi g; Rl ;

ke kron(speye
F=( MM mB* 2) *f
H=i nv(g* GtF) ;
| ogMPSi gi =-consj +(-.5*(g+g)) *l og(det (2*H)) +(trace( -
-S*inv(H)*inv(nsdig)))+(.5*((g+g) -(3*p) -1))*l og(det (i nv(nSig)));
| ogMPSi gst =l ogMPSI gst +l ogMPSi gi

end

(k)
ul

(MAnB*2)"; %B=fi xed B*; MMVfixed M

| ogSi gSTER=I ogPSi gst/jj;
LSi gSTER=[ LSi gSTER; | 0gSi gSTER] ;

save reshf2 LSi gSTER LBSTER BBt SIG RRb SIGh RRsig jj

cl ear

| oad resbf2

p=4,

Rb=RRb((jj*4)-4+1:jj*4,:);

Si gb=SI Go((]]*(3*p))-(3*p) +1:jj*(3*p),:);
Rsi g=RRsi g((j]*4)-4+1:jj*4,:);

save bayesfst Rb Sigh Rsig

%4-or Marginal likelihood required in Bayes factors:
%%xneral exponential nodel - Part 3 (Chib)

cl ear

| oad sinl7gex

| oad bfl
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| oad bayesf st

j ersey

k=length(ni); N j=[0;cunsunm(nij)];
Y=l og(D); t=X-3;

qi =4; p=4; kof=17; s=3;

clear D X

n=sum(nij); Z=Z';

randn(' seed', sun{ 100*cl ock));

LBSTER=[]; LSigSTER=[]; BBt=[]; RRb=[]; SI®=[]; SI&=[]; RRsig=[];
R=nR; Si g=nti g;

10000 % unber of si nul ations

084 nd mar gi nal posterlor of M* fromsinulation results (log vorm
%4Jse as good estimate of M* the value fromthe nmean of the nornal
%4di stribution fromwhich it originated, calculate the nmean val ues
of

%8B, R Phi and Sig fromthe 10000 sinulations.

phi =di ag(S(j,:));

B=BB(((3*p) *(j-1)+1): ((3*p) *(j-1)+(3*p)).:);
RERR((4*(j - 1) +1): (4%(j -1)+4), 1)

Sig=SI G ((3*p)*(j-1)+1): ((3*p)*(j -1) +(3*P)), :);

Em=0; Ps=0;

for i=1:k
M=MM(:,i);
YI=Y(Nj (((1-1)*4) +1) +1: N j ((((i-1)*4)+1)+1), 1)
Yy2=Y(Nj (((i-1)*4)+2)+1:Nj ((((i-1)*4)+1)+2),1);
y3=Y(Nj(((i-2)*4)+3)+L:Nj((((i-D)*4)+1)+3),:);
YASY(Nj(((I1 -D)*A)+4) LN j((((T-D)*4)+1) +4),:);

y=[yl;y2;y3;y4];
yr=y'; ye=syr(:);
til=[t(Nj(((i-2)*4)+1)+1:Nj ( )
ti2=[t(Nj(((i-21)*4)+2)+1:Nj (i-1)*4)+1)+2))
ti3=[t(Nj(((i-21)*4)+3)+1:Nj (i-1)*4)+1)+3))
tid=[t(Nj(((i-2)*4)+4)+1: N j (i-1)*4)+1) +4))
xi 1=[ones(length(til),1) log(til) tiltil. ~2];
xi 2=[ones(length(ti2),1) log(ti2) ti2 ti2."2];
xi 3=[ones(length(ti3),1) log(ti3) ti3 ti3."2];
xi 4=[ ones(length(ti4),1) log(tid) tid4 tid."2];
xi =[xi 1 zeros(length(xi1l),12)
zeros(l ength(xi 2),4) xi2 zeros(length(xi2),8)
zeros(l ength(xi 3),8) xi 3 zeros(length(xi3),4)
zeros(l ength(xi 4),12) xi4];
Ze=[zZ(:,i);Z(: i +1) ;5 Z2(:,1+2);2(:,1+3) ;5
Mrar =i nv(kron(xi' *xi, i nv(phi))+kron(inv(R),inv(Sig)));
Mru=Mrar * (kr on(xi "' |nv(ph|)) yc + kron(inv(R),inv(Sig)*B)*Zc);
eme(M - M)’ *|nv(M/ar) (M -Mm);
EnrEmtem

i - 1) *4) +1) +1)

~ASNN A~
TN NN N
~ N~
[ P —
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ps=(-1/2)*(l og(det (Mar)));
Ps=Ps+ps;

end

con=(-(3*p)*qi *k/ 2) *I og(2*pi);

| ogPrrst i =con+(trace((-1/2)*Em) +Ps;
| ogVvPnst =I ogMPnst +l ogMPnsti ;

end

| o gMSTER=I ogMPITBt / j | ;

save bf3 | ogMSTER

% For

Mar gi nal |ikelihood required in Bayes factors -

(Chi b) % CGeneral exponential nodel

cl ear

| oad sinl7gex

| oad bfl

j ersey

k=l ength(ni); N j=[0;cunmsun(nij)];
Y=l og(D); t=X-3;

qi =4;
cl ear

p=4; kof=17; s=3; (Prod, Pt & BV)
D X

n=sum(nij); Z=Z';

randn(' seed', sunm( 100*cl ock));

O/RADetermn p(y|M* Phl*) (|nlog form!!!

Part 4:

Ey=0; Ps=0;

for i=1:k
M=M (:,1);
yI=Y(Nj(((i-D)*4)+D)+L:Nij((((i-2)*4)+1)+1),:);
y2=Y(Nij (((i-1)*4)+2) +1L:Nij((((i-21)*4)+1)+2),:);
y3=Y(Nj (((i-1)*4)+3)+L:Nij((((i-21)*4)+1)+3),:);
VA=Y(Nj (((i-D)*4)+4)+L: N j((((i1-2)*4)+1)+4),:);
y=[y1,y2;y3;y4];
yr=y'; yc=yr(:);
til=[t(Nj(((T-D)*4)+D)+L:Nj((((i-1)*4)+1)+1))];
ti2=[t(Nj(((T1-D)*4)+2)+L:Nj((((i-1)*4)+1)+2))];
ti3=[t(Nj(((I-D)*4)+3)+L:Nj((((i-1)*4)+1)+3))];
tiA=[t(Nj(((i-1)*4)+4)+1:Nj((((i-1)*4)+1)+4))];

xi 1=[ones(length(til),1) log(til) tiltil. ~2];

xi 2=[ones(length(ti2),1) log(ti2) ti2 ti2."2];

xi 3=[ones(length(ti3),1) log(ti3) ti3 ti3."2];

xi 4=[ones(length(ti4),1) log(tid) tid tid4."2];

xi =[xi 1 zeros(length(xi1l),12)
zeros(length(xi2),4) xi2 zeros(length(xi?2),8)
zeros(l ength(xi 3),8) xi3 zeros(length(xi3),4)
zeros(l ength(xi 4), 12) xi4];

Yvar =(kron(nPhi, eye(ni(i))));

Ymu=(kron(eye(3),xi))*M;

ey=(yc-Ymu) "' *i nv(Yvar)*(yc-Ynu);

Ey=Ey+ey;
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ps=(-3*ni (i)/2)*l og(2*pi)+(-ni (i)/2)*1 og(det (nPhi));
Ps=Ps+ps;
end
| ogpY=Ps+(trace((-1/2)*Ey))
save bf4 | ogpY
%eneral exponential priors evaluated at *-values {for Bayesfactors}
cl ear
| oad bfl
j ersey
k=length(ni); N j=[0; cumsunm(nij)];
Y=l og(D); t=X-3;
qi =4; p=4; kof=17; s=3;
clear D X
n=sun(nij), Z=Z';

EmFO;
for i=1:k
M=M (:,i);
Ze=[Z(:,i);Z(:,i+1); Z(:,i1+42);2Z(:,1+3)];
Mrar =kr on(nR, i g) ;
Mru=kr on(eye(qi), nB) *Zc;
eme(M -Mmu)' *i nv(Mar) *(M -Mm) ;
Em=Emtem
end

con=(-p*s*qi *k/ 2)*1 og(2*pi ) +( -qi *k/ 2) *| og(det (nGi g)) +(-
p*s*k/2)*| og(det (nR));
| ogPM=con+(trace((-1/2)*Em);

=4;
[1.183312777 0. 789010185 0. 826199702 0. 806821427
0. 789010185 1. 246930017 0. 832558042 0. 800748753
0. 826199702 0. 832558043 1. 204569336 0. 854740445
0. 806821427 0. 800748753 0. 854740445 1.239184366] ;

Gam nr=[];
for ii=1l:w
gam nr=ganmal n(. 5*(w+1-ii));
Gam nr=[ Gaml nr; gam nr];
end
consjr=((.25*qi*(qi-1))*l og(pi)+sumGam nr));

| ogPR=-consj r+(-.5*w) *| og(det (2*i nv(wW)) +(trace( -
S (wWW*rinv(nR))) +(.5%(w-qi-1))*l og(det (i nv(nR)))

o Prior of Sig*
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G=di ag([ 1.88732364997719
0.21803441972297
0. 00010366578937
0. 0000047229
2. 19366342439675
0. 25209117888476
0. 00010727024472
0. 0000043419

0. 42040640140500

0. 04872026647853

0. 00002081770497

0. 0000008403] ) ;

Gam nS=[];

for ii=1:(3*p)
gam nS=ganmal n(.5*(g+1-ii));
Ganl nS=[ Gam nS; ganm nS] ;

end

consj s=((.25*(3*p)*(3*p-1))*l og(pi) +sum( Gam nS)) ;

| ogPS=-consj s- 0. 5*g*| og(det (2*i nv(g*Q)) +(trace(-
-5*(g*Q*inv(nsig)))+0.5%(g-(3*p)- 1) I og(det (i nv(nig)))

save prior | ogPM I ogPPhi |ogPB | ogPR | ogPS

%% Det erm ne Marginal |ikelihood for general exponential nodel %%
cl ear
| oad ster %ontains all *-natrices generated
| oad bf1l
| oad prior
j ersey
k=l ength(ni); p=4; s=3; Z=Z'; Zi RzZ=0;
for i=1:k

ii=4*i;

Zr=[Z(:,ii-3) Z(:,ii-2) Z(:,ii-1) Z(:,ii)];

Zi Rz=Zr*inv(nR) *Zr ' ;

Zi RZ=7Zi RZ+zi Rz;
end
nm=17; Y%munber of cofactors
cons=(-p*s*nl 2)*1 og(2*pi ) +(-m 2) *1 og(det (nGi g) ) +( -
p*s/ 2)*1 og(det (Zi RzZ))
nun=l ogpY+l ogPM+l ogPPhi +l ogPB+l ogPS+l ogPR+cons
den=| ogMSTER+| ogPhi STER+LBSTER+LSI gSTER+| 0gRSTER
m =num den
m gexp=m

save m g m gexp

247



A3: An example of MATLAB® code: Finding marginal posterior
distribution through Gibbs sampling in the case of incompletedata

The MATLAB program code below illustrates how the margina distributions of the
parameters for the three lactation traits using the Wood model were obtained by means of the
Gibbs sampler when applied to incomplete data, i.e. where not al animals in the data were
observed during all of the considered lactation cycles. For the Saanen data modelled here, a
number of does were observed during both of the possible two lactation cycles, while others
were observed only once which could either have been during the first or the second of the

two lactation cycles.

%%WOOD MODEL: Saanen data

%%(Gibbs sampling: Unequal numbers of lactation cycles for animals)

cl ear
mel kbok
format conpact
k1=l ength(ni 1l); k2=length(ni2); k=kl+k2; p=3;
af =sunm(nij1); bf=sum(nij2);
nij=[nijl;nij2];
Nij1=[O; cunmsum(nij1)]; N j2=[0; cunmsum(nij2)];
Y1l=l og(D1); Y2=log(D2);
X1=X1-3; X2=X2-3;
t1=X1; t2=X2;
clear D1 D2 X1 X2
nl=sum(nij1l); n2=sum(nij2); n=nl+n2;
%r=[ Y1; Y2];
Z1(:,6)=Z1(:,6); Z2(:,6)=22(:,6);
Z1=71'; Z72=72';

Nij=[0; cumsun(nij)];

I11=find(Z1(2,:)==0); %inds doe with only a cycle in year 1
[12=find(Z1(2,:)==1); %inds doe with only a cycle in year

YSTARTI NG VALUES

randn(' seed', sum( 100*cl ock));

| oad start2

s=sst(1:p); R=Rst; Sig=Sigst; B=Bst;
Phi =di ag(s) ;

S=[], TMlc=[]; TM2c=[]; BB=[];, ROS[]; SIGA[];

for jj=1:.12000
%Sl MULATI NG M ¢

Oy - mm e mme e
l\/%llZO; MB12=0; E1=0; Mic=[]; M=[]; Rp=[];
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for i=1:k1l
if z1(2,i)==0
Rr=R(1, 1);
el se
Rr=R(2, 2);
end
Rp=[Rp; Rr]; o
yI=YI(NijL1(i)+1:Nj21(i+1),:);
yle=yl(:);
ti I=[tL(Nj2I(i)+L:Nj2(i+1))];
xi 1=[ones(length(ti1),1) log(til) til];
viilc=i nv(kron(i nv(Phi),xi 1" *xi 1)+inv(Rr*Sig));
mrilc=vmlc* (kron(i nv(Phi),xi1" )*ylc + inv(R*Sig)*B*Z1(:,i));
mlc=sqgrt n{vmic) *randn(si ze(mmic)) + mnic;
ml=[ nlc(1:3) mlc(4:6) mlc(7:9)];

nBll=nmilc*Z1(:,i)' /Rr; mB12=z1(:,i)*Z1(:,i)' /Rr;
MB11=MB11+nB11l; MB12=NMB12+nB12;

el=(yl-xil1*nml)"' *(yl-xil*nl);
El=El+el,

Mic=[ MLc; mlc]; ML=[ML nic];

end

| 1=2; 12=35; 13=62; |4=76; 15=162; |6=194;

MLcc=[ MLc(9* (1 1-1) +1: 9*11); MLc(9* (I 2-1) +1: 9*1 2) ; MLc(9* (I 3-
1) +1: 9*1 3) ; MLc(9* (1 4- 1) +1: 9*1 4) ; MLc(9* (1 5-1) +1: 9*I 5) ; MLc(9* (I 6-
1) +1: 9*16)];

MB21=0; MB22=0; E2=0; &X=0; Mec=[]; Me=[]; M2=[]; Z2229[];

for i=1:2:2*k2-1

y21=Y2(Nij2(i)+1:Nij2(i+1),:);
y22=Y2(N j2(i +1)+1: N j 2(i +2), :);
y2=[y21;y22];
y2c=[y21(:);y22(:)];
ti21=[t2(Nij2(i)+1:Nij2(i+1))];
ti22=[t2(Nij2(i +1)+1: Nij2(i +2))];
Z2c=[Z2(:,i);Z2(:,i+1)];
222=[Z2(:,i) Z2(:,i+1)];
xi 21=[ones(length(ti21),1) log(ti2l) ti?2l];
xi 22=[ones(l ength(ti22),1) log(ti22) ti?22];
Xi 2=[ xi 21 zeros(Il ength(xi 21), 3)

zeros(l ength(xi22),3) xi?22];
vn2c=i nv(kron(i nv(Phi), xi 2" *xi 2) +tkron(inv(R),inv(Sig)));
m2c=vnRc*(kron(inv(Phi),xi2")*y2c +

kron(inv(R),inv(Sig)*B)*Z2c);

n2c=sqrt m(vnRc) *randn(si ze(m2c)) + mic;
m 2=[ nRc(1:9) nRc(10:18)];
n2=[ nRc(1: 3) n2c(4:6) nRc(7:9)

n2c(10:12) nRc(13:15) nRc(16:18)];

nB21=mi 2*i nv(R) *Z22' ; nB22=722*i nv(R) *Z22" ;
MB21=MB21+nB21; MB22=MB22+nB22;

e2=(y2-xi 2*nmR) "' *(y2-xi 2*n) ;
E2=E2+e2;
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g2=(m 2-B*Z22)' *i nv(Si g) *(m 2- B*Z22);
@R=@2+g2;
Mec=[ M2c; nRc]; M2=[M2 mi2]; M2=[M 2;m 2], Z222=[Z222;722];
end
J1=246; J2=1; J3=70; J4=150; J5=185; J6=144;
Mecc=[ M2c(18*(J1-1)+1:18*J1); M2c(18*(J2-1)+1:18*J2); M2c(18*(J3-
1) +1:18%*J3); M2c(18*(J4-1) +1: 18*J4) ; M2c(18*(J5-
1) +1:18*J5); M2c(18*(J6-1) +1: 18*J6) ] ;

%8l MULATI NG B

i ZRZ=i nv( MB12+MB22) ;

nB=( MB11+MB21) *i ZRZ;

% B=kron(i ZRz, Si g);

B=sqrt m( Si g) *randn(si ze(nmB) ) *sqrt m(i ZRZ) +nB;

%8l MULATI NG Phi

E=E1+E2;

C=di ag(E);

s=C ./sum((randn(n, p)."2));
Phi =di ag(s) ;

%8l MULATI NG Si g

%o---mmmmmeeea

i Ro=Rp. *(-1);

g=k1+2*k2; g=3*p+l; G=(eye(3*p))/10;
Fl=(ML-B*Z1) *di ag(i Rp) *( ML-B*Z1) ' ;
F2=(M2-B*z2) *kron(eye(k2),inv(R))*(M-B*Z2)";
F=F1+F2;

Heinv(g*G + F);

r 1=r andn( 3*p, q+g) ;

r2=sqrtm(H *r1;

Sig=inv(r2*r2');
[17;R(1,1);Sig(1,1);rank(i ZR7)]

%5l MULATI NG R - Metropol i s-Hasti ngs%hb

format conpact
ML1=ML(:,111); ML2=ML(:,112);
nlr=Il engt h(ML1); n2r=length(ML2); nl2r=0.5*] engt h(M);
r11=R(1, 1); r12=R(1,2); r22=R(2, 2);
d=4; P=[0.002 0;0 0.003]/10;
R11=[]; R12=[]; R22=[];
mh11=ML1-B*Z1(:,111); x11=0;
for j=1:nlr
fx11=nb11(:,j) " *inv(Sig)*nmbll(:,j);
x11=x11+f x11;

end
mb12=ML2-B*Z1(:,112); x12=0;
for j=1:n2r

fx12=nb12(:,j)" *inv(Sig)*nmbl2(:,j);
Xx12=x12+f x12;

end

nb2=Me- B*Z2; x2=zeros(2, 2);

for j=1:2:2*n12r-1
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fx2=nb2(:,j:j+1)" *inv(Sig)*nmb2(:,j:j+1);
X2=x2+f x2
end
for i=1:10
R=[r1l1 r12;r12 r22];
[ nfr111=-((9*n1l2r+d-3)/2)*l og(det(R))-0.5*trace(i nv(R) *(d*P + x2));
[ nfr112=-9*nlr/2*|l og(r11)-0.5*x11/r11
[ nfr1l=Infrl11+l nfr1l2;
11=(R(1,2)"2)/R(2, 2);
al=-100; z2=rand(1,1);
whil e z2>=exp(al);
zl=rand(1, 1)-0.5;
r110=(r11-111)*exp(zl)+l 11
R1=[r110 r12;r12 r22];
I nfr1110=- ((9*nl2r+d-3)/2)*l og(det (R1))-0.5*trace(i nv(RLl)*(d*P +
X2));
| nfr1120=- 9*nlr/2*1 og(r110) -0. 5*x11/r 110;
| nfr110=I nfr1110+| nfr1120;
al=mn([O0 Infrl110-1nfri11]);
z2=rand(1, 1);
end
ril=r110;
OR11=[ R11;r11];

R=[r1l1 r12;r12 r22];

[ nfr221=-((9*n12r+d-3)/2)*l og(det (R))-0.5*trace(i nv(R) *(d*P + x2));
I nfr222=-9*n2r/ 2*| og(r22) - 0. 5*x12/r 22;

I nfr22=l nfr221+| nfr222;

| 22=(R(1,2)"2)/R(1,1);

a3=-100; z5=rand(1,1);

whi | e z5>=exp(a3);

z4=rand(1, 1)-0. 5;

r220=(r22-122)*exp(z4) +l 22;

R3=[r11 r12;r12 r220];

I nfr2210=- ((9*nl2r+d-3)/2)*l og(det (R3))-0.5*trace(i nv(R3)*(d*P +
X2));

| nfr2220=- 9*n2r/ 2*1 og(r220) -0. 5*x12/r 220;

| nf r220=I nfr 2210+| nfr2220;

a3=m n([0 I nfr220-1nfr22]);

z5=rand(1, 1);

end

r22=r220;

R=[r1l1 r12;r12 r22];
[ nfr12=-((9*nl2r+d-3)/2)*l og(det(R))-0.5*trace(inv(R *(d*P + x2));
| 12=sqrt(rll*r22);
a2=-100; z3=rand(1,1);
whi | e z3>=exp(a2);

r120=I 12*randn(1, 1)/ 3+r 12;
while r120<=-112 | r120>=l12

r120=Il 12*randn(1, 1)/ 3+r12;

end
R2=[r11 r120;r120 r22];
| nfr120=-((9*n12r+d-3)/2)*l og(det (R2))-0.5*trace(i nv(R2)*(d*P +
X2));
a2=mn([0 I nfr120-1nfri2]);
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z3=rand(1, 1);
end

r12=r120;
OR12=[ R12;r12];
end

R=[r1l1 r12;r12 r22];

Ro=[R(1,:) R(2,2)]; kor=R(1,2)/sqrt(R(1,1)*R(2,2));

S=[S; s]; TMle=[ TMLc Mlcc]; TM2c=[ TM2c Mecc];

BB=[ BB; B] ; RO=[ RG, Ro]; Kor=[ Kor; kor];

SIG[SIG Sig];

save final Kor S TMic TMc BB ROSIG Y1 Y2 t1 t2 nijlnij2 111213
141516 J1 J2 J3 J4 J5 06 jj
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SUMMARY

This thesis was written with the aim of modelling the lactation process in dairy cows and
goats by applying a hierarchical Bayesian approach. Information on cofactors that could
possibly affect lactation is included in the model through a novel approach using covariates.
Posterior distributions of quantities of interest are obtained by means of the Markov chain

Monte Carlo methods. Prediction of future lactation cycle(s) is aso performed.

In chapter one lactation is defined, its characteristics considered, the factors that could

possibly influence lactation mentioned, and the reasons for modelling lactation explained.

Chapter two provides a historical perspective to lactation models, considers typical lactation
curve shapes and curves fitted to the lactation composition traits fat and protein of milk.

Attention is also paid to persistency of lactation.

Chapter three considers aternative methods of obtaining total yield and producing Standard
Lactation Curves (SLAC's). Attention is paid to methods used in fitting lactation curves and

the assumptions about the errors.

In chapter four the generalised Bayesian model approach used to simultaneously model more
than one lactation trait, while also incorporating information on cofactors that could possibly
influence lactation, is developed. Special attention is paid not only to the model for complete
data, but also how modelling is adjusted to make provision for cases where not all lactation
cycles have been observed for al animals, also referred to as incomplete data. The use of the
Gibbs sampler and the Metropolis-Hastings agorithm in determining marginal posterior
distributions of model parameters and quantities that are functions of such parameters are also
discussed. Prediction of future lactation cycles using the model is also considered.

In chapter five the Bayesian approach together with the Wood model, applied to 4564
lactation cycles of 1141 Jersey cows, is used to illustrate the approach to modelling and
prediction of milk yield, percentage of fat and percentage of protein in milk composition in
the case of complete data. The incorporation of cofactor information through the use of the
covariate matrix is also considered in greater detail. The results from the Gibbs sampler are
evaluated and convergence there-of investigated. Attention is aso paid to the expected

lactation curve characteristics as defined by Wood, as well as obtaining the expected |actation
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curve of one of the levels of a cofactor when the influence of the other cofactors on the
|actation curve has be eiminated.

Chapter six considers the use of the Bayesian approach together with the general exponential
and 4 parameter Morant model, as well as an adaptation of a model suggested by Wilmink, in
modelling and predicting milk yield, fat content and protein content of milk for the Jersey
data.

In chapter seven a diagnostic comparison by means of Bayes factors of the results from the
four models in the preceding two chapters, when used together with the Bayesian approach, is
performed. As a result the adapted form of the Wilmink model fared best of the models
considered!

Chapter eight illustrates the use of the Bayesian approach, together with the four lactation

models considered in this study, to predict the lactation traits for animals similar to, but not
contained in the data used to develop the respective models.

In chapter nine the Bayesian approach together with the Wood model, applied to 755 lactation
cycles of 493 Saanen does collected during either or both of two consecutive year, is used to
illustrate the approach to modelling and predicting milk yield, percentage of fat and
percentage of protein in milk in the case of incomplete data.

Chapter ten provides a summary of the results and a perspective of the contribution of this

research to lactation modelling.

KEYWORDS: 4-parameter Morant model, adapted Wilmink model, Bayes factors,
Bayesian modelling, covariate, general exponential model, |actation curves,

Markov chain Monte Carlo, Standard L actation Curves, Wood model
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OPSOMMING

Hierdie tesis is geskryf met die doel om die laktasieproses in suiwelkoeie en suiwelbokke te
modelleer deur ‘n hierargiese Bayesbenadering toe te pas. Inligting aangaande kofaktore wat
moontlik laktasie kan beinvioed, is in die mode ingeduit deur middel van ‘n unieke
benadering wat van koveranderlikes gebruik maak. Posteriorverdelings van hoeveelhede van
belang word deur middel van die Mar kovketting Monte Carlo metodes verkry. Voorspelling

van toekomstige laktasiesiklus(se) is ook uitgevoer.

In hoofstuk een word laktasie gedefinieer, die eienskappe daarvan beskou, die faktore wat
moonlik laktase mag beinvioed genoem, en die redes vir die modellering van laktasie
verduidelik.

Hoofstuk twee lewer ‘n historiese perspektief tot laktasiemodelle, beskou tipiese
laktasiekurwe vorms, asook kurwes gepas aan die laktasiesamestellingskenmerke vet en

proteien van melk. Aandag word ook aan die volhoubaarheid van laktasie geskenk.

Hoofstuk drie beskou aternatiewe metodes om totale opbrengs te verkry en Standaard
Laktasiekurwes (SLAC’s) voort te bring. Aandag word geskenk aan metodes wat gebruik

word in die passing van laktasiekurwes en die aannames aangaande die foute.

In hoofstuk vier word die veralgemeende Bayesmodel benadering ontwikkel om meer as een
laktasiekenmerk gelyktydig te modelleer, terwyl inligting aangaande kofaktore wat moonlik
laktasie kan beinvioed ook ingesluit word. Spesiadle aandag word nie net aan die model vir
volledige data geskenk nie, maar ook aan hoe modellering aangepas moet word om
voorsiening te maak vir gevale waar nie a die laktasiesiklusse vir alle diere waargeneem is
nie, wat ook na verwys word as onvolledige data. Die gebruik van Gibbssteekproefneming en
die Metropolis-Hastings algoritme in die bepaling van posterior randverdelings van die model
parameters en hoeveelhede wat funksies van sulke parameters is, word ook bespreek.
Voorspelling van toekomstige laktasiesiklusse deur die model te gebruik word ook beskou.

In hoofstuk vyf word die Bayesbenadering saam met die Woodmodel, toegepas op 4564

laktasiesiklusse van 1141 Jerseykoeie, ter illustrasie van die benadering tot modellering en
voorspelling van melkopbrengs, persentasie vet en persentasie proteien in die samestelling

van melk in die geva van volledige data gebruik. Die induiting van kofaktorinligting deur
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die gebruik van die matriks van koveranderlikes word ook in meer besonderhede beskou. Die
resultaat vand Gibbssteekproefneming word evalueer en die konvergensie daarvan
ondersoek. Aandag word ook geskenk aan die verwagte laktasiekurwe eienskappe soos
gedefinieer deur Wood, asook die bepaling van verwagte laktasiekurwes vir een van die
vlakke van ‘n kofakta indien die invioed van die ander kofaktore op die laktasiekurwe
uitgeskakel word.

Hoofstuk ses beskou die gebruik van die Bayesbenadering ssam met die veralgemeende
eksponensiaal en 4parameter Morant model, asook ‘n aanpassing van ‘n model wat deur
Wilmink voorgestel is, in die modellering en voorspelling van melkopbrengs, asook die

samestellingskenmerke vet en proteien in melk vir die Jerseydata.

In hoofstuk sewe word ‘n diagnostiese vergelyking deur middel van Bayesfaktore uitgevoer
op die resultate van die vier modelle in die voorafgaande twee hoofstukke wanneer dit saam
met die Bayesbenadering gebruik word. As resultaat hiervan het die aangepaste vorm van die
Wilmink model die beste van die modelle wat oorweeg is, gevaar!

Hoofstuk agt illustreer die gebruik van die Bayesbenadering, ssam met die vier
laktasiemodelle onder beskouing in hierdie studie, om die laktasiekenmerke te voorspel van
diere soortgelyk aan, maar nie ingedluit in die data wat gebruik is in die ontwikkelling van die
onderskeie modell e nie.

In hoofstuk nege word die Bayesbenadering saam met die Wood model toegepas op 755
laktasiesiklusse van 493 Saanenooie om die benadering tot modellering en voorspelling van
melkopbrengs, persentasie vet en persentasie proteiene in die samestelling van melk in die

geva van onvolledige data te illustreer.

Hoofstuk tien lewer ‘n opsomming van die resultate en ‘n perspektief van die bydrae van

hierdie navorsing tot laktasiemodellering.
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