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Abstract
This thesis discusses mode-identification from multicolour photometry. First, the need for a

better mode identification technique for stars that have significant phase differences between

the light curves in different colours is addressed. The necessary equation needed for mode-

identification from photometry is then derived and briefly discussed. Then, a new, statistically

based algorithm for mode-identification is developed by extending and adapting a method that

has been applied to pulsating white dwarfs, to include the information provided by the different

phases of the light curves in different wavelengths. This new algorithm allows the best estimate

of the spherical harmonic degree l to be determined, as well as a confidence level from which

the uniqueness of the mode-identification can be ascertained. The algorithm is then applied to

a selection of well-observed 8 Seuti stars with the necessary multicolour photometry. It is found

that it works well for high amplitude 8 Set stars, but that discrimination between the l = 0 and

l'= 1 modes is sometimes poor for the low amplitude stars.

An algorithm to deduce the effective temperature, luminosity and equatorial velocity from the

observed frequencies is also proposed. It is found that some mode-identification is necessary to

obtain a unique solution of the stellar parameters. The method is applied to a subset of the 8

Set stars which have a suitable number of frequencies and suitable mode identifications.
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Chapter 1

Introduction

1.1 A brief history

Aristotle's beliefs about the heavens dominated much of Western astronomy until the 16th

century. One of these beliefs was the idea that the stars, attached to a moving sphere, were

constant in brightness. It is now known that this is not true of any star. As stars evolve,

their properties such as size, composition, temperature and luminosity change. In this sense,

all stars are variable, although the evolutionary time-scale is very long and the changes that

occur in a star due to it ageing are not usually discernible over the relatively short lengths of

time measurable by astronomers. Some stars, however, are observed to undergo changes in their

properties, either regularly or irregularly, in time scales ranging from a few fractions of a second

to a few years. It is these stars which are called the variable stars. Cox (1980) defines a variable

star as one whose properties change appreciably at a rate fairly easily detectable by astronomers.

Chinese astronomers recorded 'guest stars' (supernovae) even BC. In 134 BC, Hipparchus, a

Greek astronomer, observed a nova, which led him to develop the first catalogue of stellar

magnitude". The reluctance to give up Aristotle's beliefs, despite much evidence against his

ideas, is the most likely reason that the next variable star recorded in Western astronomy

was only in 1572, when Tycho Brahe noticed a supernova. A few years later, in 1596, David

IHipparchus divided stars into 6 categories. The brightest he called 1st magnitude stars, and the stars just
visible to the naked eye he called 6th magnitude stars. This is a logarithmic scale, so that 6th magnitude stars
are about 100 times fainter than 1st magnitude stars. Today the magnitude differencebetween two stars, or a
variable star at two different times, is expressed by Pogson's rule: ml - m2 = -2.5Iog(h/12) where mi is the
apparent magnitude and li is the observed luminosity. The zero point of the magnitude scale is set by certain
standard stars.
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Fabricius noticed that the star Mira was sometimes visible and sometimes not, and that the

cycle of visibility repeated every 11 months. Another supernova was noticed 8 years later, by

Kepler, in 1604. Almost two centuries later, in 1784, Goodricke discovered the regular variable

8 Cephei, the prototype of the class of Cepheid Variables. These early observations were, of

course, made by eye. As the techniques of photography, and later photoelectric photometry

were developed and applied to astronomy, an increasing nwnber of variables were detected. By

1865, 113 stars were known to be variable, and by 1915 the nwnber had increased to 1 700.

Naturally, as the sensitivity of the instrwnents increased, variable stars with smaller brightness

variations, including the sun, were detected. Today, with the photometer able to measure the

brightness of a star to within approximately 0.001 mag, the General Catalogue of Variable Stars

(GCVS) lists over 15 000 variable stars.

1.2 Types of variable stars

As suggested above, there are many different types of variable stars. They can be divided into

two groups - the extrinsic variables (e.g. binary stars, where the observed changes in apparent

brightness are due to partial eclipses, total eclipses, tidal distortions, ete, in a system of two stars)

and the intrinsic variables, where the changes in the properties of the stars are due to effects

within the stars themselves. Some of the intrinsic variables are plotted on a Hertzprung-Russell

(H-R) diagram in Figure 1.1. The ordinate in this diagram is the absolute visual magnitude,

Mv, which is related to luminosityê, The abscissa is effective temperature, with the spectral

type also indicated. The effective temperature of a star is the temperature that a black body

would have to be raised to in order to emit the same amount of radiant energy per second per

unit area as that of the star. The spectral type describes what lines are most prominent in

the spectrum of a star, and is directly related to temperature. An A star, for example, has a

temperature between 7500 and 10000 K, and has strong hydrogen lines in its spectrum, lines

of ionized metals, where metals in this sense refers to all elements heavier than helium, such as

silicon, iron, and calcium, and also weak lines of neutral metals. An F star, which is slightly

cooler, has weaker hydrogen lines and stronger neutral metal lines.

The line which stretches from the upper left of the diagram to the lower right is the Main.

2The absolute magnitude is the magnitude that a star would have if it were at a distance of 10 pc from the
observer. It is defined as M). = m). -5Iog(rl10), where r is the star's actual distance in pc, and m is the apparent
magnitude of the star in wavelength Á.



Figure 1.1: The location of the Main Sequence and various types
of variable stars on the H-R diagram. Diagram adapted from Cox
(1980)

Sequence, where most stars lie. Stars are formed in dense molecular clouds when regions with

masses comparable to that of a star decreases in size, and thus increase in density, under the

influence of the force of gravity. Eventually, the temperature of the protostars becomes hot

enough for them to start burning hydrogen in their cores. At this stage they become stars and,

depending on their masses, occupy certain places on the Zero Age Main Sequence (ZAMS) of the

H-R diagram. As the hydrogen in the core of a star is converted into helium, the luminosity of

the star slowly rises, so that the star moves away from the ZAMS. Eventually, all the hydrogen

in the core of the star is converted to helium, so that the core consists of helium, with a shell

of hydrogen around it. At this point the star leaves the main sequence. This is known as the

end of core hydrogen burning (ECHB). After ECHB, the core contracts under gravity until it

becomes hot enough for the star to start burning the hydrogen in the shell around the helium

core, and so the evolution of the star continues.

The evolution of a star is due to the finite nature of its energy supply. As it radiates energy

(~
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Classical Cepheids
W Virginis Stars
RR Lyrae Stars
6 Set Stars
{3 Cephei Stars
ZZ Ceti stars

5-10
12-20
0.5

0.08 (2 hours)
0.2 (5 hours)
0.006 (500 s)

F6-K2
F2-G6
A2-F2
A2-F5
81-82
A5-F5

-0.5 to-6
o to-3

0.0 to +1.0
+2 to +3
-3.5 to -4.5
+10 to +15

it depletes and eventually exhausts its thermonuclear energy supply. As the star evolves, its

temperature, luminosity and chemical composition change, and so the star traces out an evolu-

tionary path on the H-R diagram. At certain times during its evolution, the star may become

unstable against pulsations or eruptions, and become a variable star. As can be seen in Figure

1.1, the variable stars are not distributed randomly over the H-R diagram. This suggests that

certain combinations of temperature and luminosity favour a state of pulsation as opposed to a

state of equilibrium. These different types of variable stars are discussed in many books, such

as Motz & Duveen (1977) and Aller (1971).

The intrinsic variables can be subdivided according to the type of variability into irregular stars

(e.g novae and supernovae), the semi-regular stars (e.g. the red semi-regular variables), and the

periodic stars (e.g. Cepheid and 8 Set variables). They can also be divided according to the

cause of the variation e.g. pulsation or eruption. This thesis is concerned with the periodic

pulsating stars, which are subdivided further according to Populatiorr", and length of pulsation

period. Table 1.1 lists some of the periodic pulsating variables, including the 8 Set stars, which

are the specific subjects of this study.

Table 1.1: Some of the Periodic Pulsating Variables.

Type of star Characteristic Period
(days)

Range of Spectral Types Absolute Magnitude Mv
(mag)

Adapted from Cox (1980)

1.3 A brief look at pulsation in the Cepheid Instability Strip

A pulsating variable brightens and fades because of a cyclical expansion and contraction of the

star. As the star pulsates, the motion of the stellar surface produces a periodic Doppler shift

in the lines of the stellar spectrum. This shift in the lines can be measured, and the velocity of

the surface can hence be determined, allowing a velocity curve (radial velocity vs time) to be

3Stars are classified according to their spectral characteristics, chemical compositions, radial velocities and
ages as either Pop I or Pop II.
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plotted. These velocity variations were first observed in the Cepheid 8 Cep by A.A. Belopolsky in

1894. The cause of these variations was initially attributed to the orbital motion of an invisible

companion, but later (1914) shown to be best explained by pulsation.

In a stable star, the weight of each layer in the star is balanced by the gas and radiation pressure

from within. In a pulsating star, the stars contracts until the internal pressure becomes greater

than the weight of the outer layers. These layers then start to move outwards, but, because of

their inertia, they overshoot the equilibrium position, and the star continues to expand until the

pressure has decreased to such an extent that it can no longer support the weight of these layers,

and the star then begins to contract under gravity, again overshooting the equilibrium position

and so the cycle continues. If a pulsation were to start in any star, it would quickly be damped

out through friction. Hence, for a star to continue to pulsate, there must be a driving force

which continually feeds mechanical energy into the system. The star must therefore function as

a thermodynamic heat engine, absorbing energy when it is most compressed. This heat will then

be released as mechanical energy during the expansion phase of the pulsation. When atoms are

in a state of partial ionisation, they can become more opaque to radiation under compression,

and hence absorb energy. The helium and hydrogen ionisation zones are particularly effective at

driving pulsation. In the Helium ionisation zone for example, when the star is most compressed

the temperature becomes high enough to strip an electron off the helium nucleus. Any energy

that is absorbed above that needed for ionisation is converted into kinetic energy of the free

. electrons. These free electrons heat the gas through collisions, so that the heat is dammed up in

the atmosphere rather than being radiated away. This results in a build up of pressure so that

the overlying layers are forced to expand. Once most of the helium is ionized, then radiation can

again flow freely through the region, the temperature will drop, and the overlying layers will move

inwards under the influence of gravity, thus increasing the pressure. The increase of pressure

results in a recombination of the free electrons and the helium nuclei, and the whole process

is then ready to start again. Cox (1980), among others, discusses these driving mechanisms in

more detail. In the region marked with a dashed line in Figure 1.1, i.e. the Cepheid Instability

Strip and its extension, the positions of the helium and hydrogen ionisation zones are close

enough to the surface to be able to lift off the overlaying layers, but also deep enough so that

the mass of the overlying layers is sufficient to allow them to be pulled back into the star by

gravity, and so pulsation can occur here.

Stellar pulsation is similar to the vibration of a column of air inside an organ pipe, closed at

5



The above discussion reveals two reasons for studying pulsating stars: to understand how and

why the stars pulsate, and to use the pulsations as a probe of the structure of the stars, which is

known as asteroseismology. The study of pulsating stars has also yielded other important infor-

mation. The study of the Classical Cepheids by Henrietta Leavitt yielded the Period-Luminosity

law for these stars, which has provided a valuable means of measuring distance in the universe.

The study of the 'high amplitude double-mode' stars, for which the physical parameters are

easily obtainable from the period ratio (see e.g. Petersen & Christensen-Dalsgaard (1996), and

Andreasen (1983)), has led to the revision of the opacity tables used in many branches of as-

tronomy. The 6 Scuti stars are of particular interest to astronomers, since, unlike the sun, they

have convective cores, and hence have the potential to provide valuable information about stellar

structure and evolution.

one end and open at the other. A star is a sphere of gas, confined at the centre but free at

the surface. In both cases, the gas can vibrate in one or more of several modes. In a star,

the simplest of these modes, the fundamental mode, decreases in amplitude towards the centre,

where it is zero. There are also overtone modes, which differ from the fundamental in that the

periods are shorter and in that there are stationary points or nodes within the gas. The mode

in which a star pulsates depends on where the driving mechanism is applied. In an organ pipe,

the harmonic frequencies are multiples of the fundamental frequency, but this is not true of a

star, since the density and temperature are not constant throughout the star. The modes in a

star which behave analogously to sound waves, as described above, are called p-modes (pressure

modes). These modes provide information about the structure of the star, but do not allow the

core to be probed. There are also g-modes (gravity modes), where, unlike the p-modes where

pressure is the restoring force, buoyancy is the restoring force. These g-modes are useful since

they tend to have large amplitudes in the centre of the star, and thus allow the structure of

the core to be probed. The p-rnodes usually have higher frequencies than the g-rnodes. FUrther

information on these two different types of modes can be obtained from Christensen-Dalsgaard

(1997) and also from Cox (1980).

6
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1.4 Delta Scuti stars

The prototype of the 8 Seuti stars was first observed by E.A. Fath in 1935. The DSN (8 Seuti

Network)" defines 8 Set stars'' as variable stars of spectral type A or F, with luminosity classes

V to nr>, and with pulsation periods between 30 minutes and 8 hours. Most of the 8 Set stars

are Pop I, but some have the lower metal content typical of Pop II. The 8 Set stars lie within

the Cepheid instability strip and its extension on the H-R diagram. The position of the Pop I

8 Set stars on this diagram implies that they have masses between 1.4 and 2.5 M8'

The 8 Seuti stars can be roughly divided into two groups. Those stars that exhibit an amplitude

of variation of the order of 0.3 mag in their light curves are known as high amplitude 8 Seuti

stars (HADS) and those with lower amplitudes (of the order of 0.03 mag) are known as the low

amplitude 8 Set stars (LADS). Many of the 8 Sct stars are multiperiodic. Both radial and non-

radial pulsations have been observed among them. In radial pulsation, the properties of the star

vary radially, while in non-radial pulsation, the spherical symmetry of the star is not preserved.

Most of the HADS appear to pulsate radially, while both radial and non-radial pulsations are

observed among the LADS. These stars pulsate in p-modes, g-modes, and modes which are not

either completely p- or g-modes, but have a mixed character.

One of the problems associated with these stars, which is outside the scope of this thesis, is

that of mode selection : models of the 8 Set stars predict many more modes than are actually

observed. Possibly these modes are not excited, or have amplitudes below the detection level.

Another area in which there is much work to be done is that of asteroseismology, Although

asteroseismology has been successful for the sun and PG 1159 stars (pulsating white dwarfs),

the use of pulsation frequencies for asteroseismology in other stars such as the 8 Set stars has

been very limited. The main obstacle is the correct identification of the mode of pulsation,

which is the topic of this thesis.

4http://dsn.ast.univie.ac.at/dsn/deltascuti.html
5Following Breger (1979), dwarf cepheids and AI Vel stars are also included in this group. The metal-poor

objects are called SX Phe stars
6This means that they are either main-sequence, sub-giants or giants.

http://4http://dsn.ast.univie.ac.at/dsn/deltascuti.html


(1.1 )

1.5 Mode identification

In linear oscillation theory, the time dependency of the pulsations is assumed to be of the form

eiwt where w is the angular frequency of pulsation. The angular dependence of the pulsations is

described in terms of spherical harmonics. Then

where e is the relative amplitude which is assumed to be much less than unity, 8r is the radial

displacement, and Ra is the radius of the star in its equilibrium position. If e = 0, then "Ytm(O, CP)

is a constant, and the pulsation is radial. Determination of the spherical harmonic degree e, the
azimuthal number m and the number of radial nodes n is known as mode identification. Some

examples of different modes are shown in Figure 1.2.

In stars with large numbers of modes at very high or very low frequencies, such as the sun and

the PG1159 stars, the relative spacings in period (for g-modes) or frequency (for p-modes) for

the low degree modes form a pattern predicted by asymptotic theory, which is easily recognised

and may be used to identify the modes. Most pulsating stars, however, do not have a large

number of excited modes, and their periods do not fall in the asymptotic range, so this method

of mode-identification cannot be applied to them. More information on asymptotic theory is

available in Unno et al. (1989), chapter 16.

Each mode of pulsation introduces a distinctive velocity field on the surface of the star, which is

observed not only by the Doppler shifts in the spectral lines, but also as a periodic variation in

the line profiles. These line profile variations can be modelled and compared with observation to

identify the mode (See Balona (1987)). The changes in the line profiles are small, which means

that high dispersion and high signal-to-noise spectra are required in order to detect then'. If

the star is multiperiodic, then the star needs to be observed for a length of time sufficient to

resolve the individual pulsation frequencies. These requirements mean that a moderately sized

telescope is needed for the observations, and that the method is limited to the brightest stars

only.

Clearly neither of these methods is suitable for the vast majority of stars, including the 8 Set

stars.

Pulsation also affects the light curve of a star. It can be shown that the variation of amplitude

and phase with wavelength depends on the spherical harmonic degree e. These small effects can

8



Figure 1.2: Contour plots of the real part of the spherical harmonic yr, taken from Christensen-
Dalsgaard (1997). Positive contours are indicated by continuous lines, and negative contours by
dashed lines. The 0 = ° axis is inclined at 45° towards the viewer, and the equator is marked by
'+++'. The following cases are illustrated a) e = 1,m = 0, b) e = 1,m = 1, c) e = 2,m = 0, d)
l = 2, m = 1, e) e = 2,m = 2, f) e = 3,m = 0, g) l = 3, m = 1, h) e = 3,m = 2, i) e = 3,m = 3.

be detected in accurate multicolour photometry, which is easy to obtain, and already exists for

many Ó Set stars. It should be noted here that the azimuthal order m cannot be obtained from

photometric means alone.

Many of the methods currently used to identify the modes from photometry do not use all the

available information, nor provide a measure of the probability of the identification. The aim of

the study presented in this thesis was to develop and apply a method which improves upon the

current methods of mode-identification. This was done by using all the available information

given in the light curves, and by also assigning a probability to the results.

9



1.6 Outline

In photometric observations of pulsating stars, one measures the light integrated over the visible

disk of the star. This averaging effect increases with i, so that modes with e > 2 are not

expected to have amplitudes sufficiently large to be detected. Hence, for the ó Set stars it is

usually assumed that e :::;2.

Mode identification in ó Set stars is complicated not only by the presence of the g-rnodes and

modes of mixed character, but also by stellar rotation. Rotation modifies the frequency expected

in a non-rotating star, and introduces a fine structure in the modes. At the higher rates of

rotation found in the lower amplitude stars (50 -100 km.s'<") the fine structure is not the easily

recognisable equidistant pattern observed in the PG1159 stars.

The plan for the rest of this thesis is as follows. In the next chapter the equation that describes

the change in observed magnitude in terms of the mode and stellar parameters will be derived

and discussed. In Chapter 3, some of the methods currently used for mode-identification are

outlined. The method used for white dwarfs by Fonteine, Brassard. Bergeron and Wesemael

(1996) is adapted and extended for application to the ó Scuti stars.

In Chapter 4, the procedure followed in identifying modes of pulsation for some specific ó Seuti

stars is given. The data for the selected stars was obtained largely from published articles for two

reasons. Firstly, photometric data for these stars is easily obtainable from the available literature.

Secondly, these stars need long periods of observation (at least two weeks) to adequately resolve

all the periods present, and there was not enough time available to observe many stars. The

results of the mode identification are listed and discussed in Chapter 5.

As already stated, the ultimate aim of mode-identification is asteroseismology. One frequency

provides information about the mean densi ty of the star. Two frequencies may allow the mass

and temperature to be inferred. The more modes that are obtained in any particular star, the

more information can be deduced. The number of detected modes in the ó Set stars is not

sufficient to determine the radial structure of the star, as has been done for the sun which has

over 1 million modes, with e between 0 and 1000. It should, however, be possible to determine

the physical parameters of mass, luminosity and temperature by comparing the observed fre-

quencies and those predicted from stellar models. Chapter 6 describes an algorithm to deduce

10
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the temperature and luminosity for a subset of the selected stars.

Chapter 7 gives a summary of this work and the conclusions. The work presented in this thesis

has also been published as an article in Balona & Evers (1999).
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Chapter 2

Light from a Pulsating Star

The light from a pulsating star was first discussed by Dziembowski (1977). By assuming that

the surface brightness is correlated with a colour index, Balona & Stobie (1979) were able to

show that the mode could be identified from the phasing of the light and colour curves or from

colour to light amplitude ratios. Stamford and Watson (1981) placed the method of Balona &

Stobie on a sounder theoretical basis. They also discussed how modes could be identified with

the help of model atmospheres. Heynderickx, Waelkens & Smeyers (1994) extended the work

of Stamford & Watson to include the effects of the limb darkening variation". The derivation

given here is based on the more detailed one of Heynderickx, Waelkens & Smeyers (1994) to

which the reader is referred.

2.1 The apparent magnitude in terms of the stellar parameters
and the pulsation mode.

Consider a non-rotating, non-magnetic, spherically-symmetric star which is pulsating either

radially or non-radially in a Cartesian coordinate system x, y, z with the origin at the centre

1A star emits a certain light intensity from its surface. Suppose that a photon travels on average a distance
d before being reabeorbed by the stellar material. At the centre of the observed stellar disk, the depth of the
photosphere in the direction from the stellar surface to the observer is smallest, so that an observer can see to
the deep hot levels of the atmosphere. Near the edge (limb) of the observed stellar disk, the light must travel
through more of the stellar atmosphere to reach the observer i.e. the light that is observed originates higher up
in the atmosphere than at the centre of the disk. Hence the observer sees only the higher, cooler layers of the
atmosphere, and so the limb appears darker than the centre. This apparent intensity variation over the stellar
disk in known as 'limb darkening' and is usually modelled by a linear or quadratic function in I-' where I-' is the
angle between the point on the stellar surface under consideration and the direction to the observer, as measured
from the centre of the star.



y T sin 0 sin cl> (2.1 )

of the star and. the a-axis coinciding with the direction to the observer. A system of spherical

coordinates T, 0, cl>can be defined, with the polar axis coinciding with the z-axis so that

x = r sin ê cos é

Z TCOSO.

If P( T, 0, cI» is a point on the surface of the star in its equilibrium state then this point P is

displaced to a point Q(Tp, Op, cl>p) during a pulsation where the subscript p denotes the perturbed

surface of the star. The difference in the spherical coordinates between Pand Q can, in the linear

approximation, be identified with the corresponding components of the Lagrangian displacement

of the matter element at point P, i.e. if the spherical coordinates T, 0, cl> are represented by

ql,q2,q3, then

The star's perturbed surface is then determined by the Lagrangian displacements of the motions

of the mass elements on the equilibrium surface i.e.

Tp(r,~, 0, cI» =

Op(T,~, 0, cI»

cl>p(r,~, 0, cI» =

~ + 8T(t,~, 0, cI»

0+ 80(t,~, 0, cI»

cl>+ 8c1>(t,~, 0, cI»

(2.2)

(dA) I
a(xp, Yp) IdOdA.

p,z = a( 0, cl>) 'I'

{
8T 2 . 2 . 2 1 a(8T)

:::::: ~ sinOcosO(l + 2 ~) + (cos 0 - sin 0)80 + sin 0 ~ 7iO

• li Il [8(80) a( 8c1»] } dll..J A.+ sin 17 cos 17 80 + acl> 17ti'l"

(2.3)

where Ra is the equilibrium radius of the star.

Substitution of 2.2 into 2.1 yields equations for xp, Yp and Zp. If second and higher order terms

in the Lagrangian variations are ignored, then the z-component (dA)p,z of the surface normal

(dA)p at point Q on the perturbed surface in the spherical coordinate system is given by:

This equation will be useful in the derivation of the observed magnitude of a pulsating star in

terms of the stellar parameters and the pulsation mode, which is considered below.
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!:lO = [_!_ o(6r), - 00] ,
f4J 00 8=/2

(2.9)

2.1.1 The observed magnitude

The observed magnitude of a star is given by

meA, t) = constant - 2,51og E(..\, t) (2.4)

where E(A, t) is the energy radiated towards the observer in wavelength A at time t.

The radiation field of a star can be described by a specific radiation intensity, [)..(t, r, 0, <jJ, n),

which is defined as the energy per unit wavelength interval per unit time interval per unit

area per unit solid angle passing into the direction n at the point (r, 0, <jJ). The direction to

the observer no is denoted in the Cartesian coordinate system by the vector no = (0,0,1).

The energy radiated through the perturbed surface element (dA)p at the point Q on the star's

perturbed surface in the direction no to the observer at wavelength A at time t is given by

(2.5)

The total energy radiated in the direction of the observer at wavelength A at time t is then

(2.6)

where the integral is over the visible part of the star's perturbed surface, Ap. Setting

(2.7)

where 6[)..(t, f4J, 0, <jJ, no) is the Lagrangian perturbation of the specific radiation intensity at the

point (f4J, 0, <jJ) in the direction no, then

(2.8)

The visible perturbed surface is determined by the condition (dA)p,z ~ 0 and is covered by the

ranges 0 ::; <jJ ::; 211"and 0 ::; 0 ::; j + !:lO, where 6,0 is determined by setting (dA)p,z = 0 and to

first order is given by

By substituting equation (2.3) into equation (2.8) the integration becomes an integration over

the angles 0 and <jJ. The integration can be split into two parts: an integration over the interval

o < <jJ < 211",0 < 0 < j and then over the interval 0 < <jJ < 211",j < 0 < j + !:lO. Many terms in

14



(2.13)

the resulting integrals contain products of Lagrangian variations or tend to 0 as 6.0 ---.O. The

terms which survive are:

E(>', t) =
(21f r/2

~ Jo Jo lA(~' no) sin Ocos OdOdc/>

{21f r= {8r 1 8(8r)
+~ Jo Jo lA(~'no) 2sinOcosO~ +(cos20-sin20)80+sin20~ 80

. [8(80) 8(8c/>] }+ sin ()cos () ---aB + 8c/> d()dc/>

la21fL/2+t:l8
+ ~ lA (~, no) sin ()cos ()d()dc/>

o 1f/2
2 (21f r/2+~ Jo Jo 8h.(t,~, e. c/>,no) sin ()cos ()dOdc/>.

(2.10)

The second and third integrals in the above equation account for the changes in the area of

the radiating surface element and the changes in the direction of the local surface normal with

respect to the observer respectively. The fourth integral accounts for changes in the radiation

due to pulsation. The first integral corresponds to the outward normal radiation flux Ft taken

over all directions n at any point on the equilibrium surface i.e.

(21f r/2
Ft(~) = Jo Jo I.~(~,n)sin()cos()d()dc/>, (2.11)

The expression for the radiation field l(~, n) across the stellar disk at the star's equilibrium

surface is assumed to be the product of an angle-independent intensity l,x,o and a limb-darkening

function h,x(IL), where IL = cosO and e is the angle between the local surface normal and the

positive z-axis direction. The limb darkening function is normalised so that

Then

(2.12)

and

ITexpression (2.13) is substituted into the third integral of equation (2.10) and integration over

the a~le e is performed, then the result is of second order in !l.() and hence (from equation

(2.9)) also in 8r and 8(). This integral can therefore be ignored.
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(2.18)

The fourth integral in equation (2.10) can be developed as follows. Assuming that the Lagrangian

perturbation 8I).(t, Ro, (J, </J, n) can be obtained by taking the Lagrangian perturbation of (2.13)

then

(2.14)

Assuming that the flux r; is a function of the effective temperature Teff and surface gravity 9,

then

~F+ F+ (8Teff 89)u x = x =r: + ag-
efT 9

(2.15)

where

(
alog Ft) (alog Ft)

aT = a log TefT g and ag = a log 9 ToR .

The Lagrangian perturbation of the limb-darkening function h(J.L) depends on 8J.L and is also

assumed to depend on TefT and 9, so that

ah= ah8 +h[alogh8Teff + alogh89].
aJ.L J.L alogT T alog9 9

At the star's equilibrium surface, J.L= cos (J. At the star's perturbed surface,

no· (dA)p
f.Lp = I (dA)p I

The Lagrangian perturbation 8J.L to first order is given by

. [1 a(8r) ]8J.L= sin ê Ro {jj} - 86 , (2.16)

so that

(2.17)

with

After substitution of the above equations, and some rearrangement of terms, equation (2.10)

becomes

16



6r(t,~, 0, 4» Ul(~) Y,k(6 4» iwtHJ l , e

Vl(~) oYl(6, 4» iwt
=~ oe e

Vl(~) oYl(6,4» iwt---,:;...;__~___;~__;__;_e
~sin20 04>

(2.24)

Partial integration of the term J.l~h).. 8b~) yields

lol 2J.l2 - 1 [r;--;] 1 lol rr=; 060 lol tr:": ohvi 260h)..dJ.l = -J.lV 1 - J.l260h).. + J.lV 1 - J.l2h)..-dJ.l + J.lV 1 - J.l26()_).. dJ.l
o 1- J.l 0 0 OJ.l 0 OJ.l

(2.20)

so that the terms in equation (2.19) containing MJ vanish. Equation (2.19) can therefore be

expressed as

(2.21 )

where

(2.23)

2.1.2 The variations in terms of spherical harmonics

The two integrals VI and V2 can be developed further by expressing the Lagrangian variations in

terms of spherical harmonics. Since the star is spherically symmetric, any pulsation modes with

time-dependence eiwt, where w is the angular frequency of pulsation, can be represented in terms

of a spherical harmonic 11"'(6,4». From the linear theory of stellar oscillations (see for example

Cox (1980), Ledoux & Walraven (1958)) it can be shown that the Lagrangian perturbation Sr

can be written in component form as

6O(t,~, 0, 4»

64>(t,~, 0, 4» =

where u(r) and v(r) are functions depending on r only, and the angles 6 and 4> are the angles

in the coordinate system where the Z-axis is inclined at an angle i to the z-axis, which is the

direction to the observer. The spherical harmonic Yl(6,4» can be expressed as the sum of

spherical harmonics in the coordinate system (r, 0, 4» as

l

Yl(6,4» = 2: Alkmyr(O,4»
m=-l

where the Alkm are constants that are not determined, but can be calculated given i, k and the

angle of inclination i.

17



= 1"
= p. (8p)l where p. = ( 8logg )

p 8logpg 7"=1
(2.31)

Defining
Ut(Ilo) d Vt(Ilo)

e = R;3 an eh = ~

and using the above relations for the spherical harmonics, the equations (2.24) can be rewritten

as:

8r( t, RÁ), 0, 4»
t
L AtkmeIlolT(O,4»eiwt

m=-l

80( t, Ilo, 0, 4» (2.25)

Now

(2.26)

where the P]" are the Legendre functions. Upon substitution of these expressions, the integral

V1 (equation (2.22)) becomes separable in ° and 4>.The integral over 4>is given by J0271' eimc/>d4>

which is only non-zero for m = O. Hence, after integration over 4>,V1 becomes

(2.27)

where

(2.28)

Integrating the term JJ.h<lJff by parts, and using Legendre's equation

d(I-:- x
2
) dy + i(i + l)y = 0

ux dx
with x = JJ. and y = JJ.h>. d~fr) and discarding the terms in d2~~), the result is

(2.29)

where

(2.30)

The integral V2 (equation (2.23)) can be developed as follows by setting

(8T)t

18



that 0 < R < 1 and R = 1 describes the adiabatic case. A phase difference 'IjJ between the

Lagrangian perturbation of temperature and the radial component of the Lagrangian displace-

ment is also introduced. This phase difference 'IjJ has a value between 0 and - radians. Then,

introducing the time and angular dependencies of Teft" and 9

t
Rr2r-

1 Cg 2: Atkmyr(O, </J)ei(wt+1/J),
2 m=-t

8Teff
=

Teff

89
=

9

(2.35)

where p is the pressure, and T is the optical depthé. The factor p" is a measure of the variation

of the atmospheric gas pressure with surface gravity in the layers that give rise to the observed

continuum flux.

From the boundary conditions of pressure, and the gravitational potential and its gradient at

the surface, the expression

(8p)t = C8r = Ce where C = l(l + 1) GM _ w2 ~ _ 4
p r w2 ~ GM

(2.32)

is obtained, if the Eulerian perturbation of the gravitational perturbation for non-radial oscilla-

tions is neglected. (See, for example, Cox (1980) or Ledoux & Walraven (1958)).

In the adiabatic approximation for a gas, it is can be shown that

(8T)t r2 - 1(8p)t
--=-----
T r2 p

(2.33)

where
r2 - 1 == (8IogT) ,
r2 8logp s

and S is the entropy. To describe the non-adiabatic situation, a parameter R is introduced such

(2.34)

t
p·Cg L Atkm}'[(O, </J)eiwt.

m=-t

and substitution into V2 yields

Once again, the integral can be separated into an integral over ° and an integral over </J.The

latter integral is, once again, only non-zero if m = 0 when it takes the value 271".After integration

2The optical depth of a layer determines the fraction of the intensity from that layer which reaches the surface
without absorption by the overlying layers. If a layer within the star has an optical depth T, then the intensity
from that layer that reaches the surface, 1(0), is the intensity of the layer 1(T) multiplied by a factor e~. Optical
depth increases with distance from the surface. The photosphere of a star is sometimes considered as a single
layer at a specificoptical depth of T = ~ or 1.
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Aa = 2.5doge = 1.08&
Im[T31

(2.44)

(2.45)

(2.46)

over </J, V2 takes the form

TT A C iwt { Rr2 - 1( ",p. }v2 = lO €bo,e ---r;- aT + /Jr )e' + p (ag + /3g) , (2.37)

where

f3r(JI.) = (81og bo, ) and /3g(Jl.) = (81og bo, ) .
8log Teff 9 8log 9 Toff

(2.38)

Substituting the expressions for Vl and V2 back into equation (2.21) gives

~~f= 1+ Alo€bl"eiwt{ - (i -l)(i + 2) + p·C(O'.g + /3g) +CRr2r~ 1 (aT + f3r)ei,p}. (2.39)

The observed magnitude of the star (equation (2.4)) can be written as

[
E(>..,t)]m(>.., t) = constant - 2.5Iog(~F,n - 2.51og 2 + .
RfJF"

(2.40)

The variability of the magnitude is described by the last term, i.e.

[
E(>", t)]

.óm" = 2.51og 2 + .
RfJF"

Defining

Tl = -(i - l)(i + 2)

T2 p·C(O'.g + /3g)

T3 r2 - 1 ",p
= CR---r;-(O'.T + f3r)e' ,

(2.41)

then
E(>", t) A iwt{ }~F': = 1+ lo€bl"e Tl + T2 + T3 .

Making use of the fact that loge 1 + x) ~ x log e for x small, and using equation (2.28) then

(2.42)

(2.43)

where

tan-v =
Tl + T2 + Re[T31~--------------------

= AaP;n(cosi)bl"V(Im[T3])2 + (Tl + T2 + Re[T3])2.and Al"

Equation (2.43) is the expression that will be used in the mode identification. Note that this

expression is written in complex form: the observed quantities result by taking the real part of

this expression.
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The 1defined above is not to be confused. with the 1 (denoted f* here and throughout) of Cugier,

Dziembowski & Pamyatnykh (1994). These authors introduce the local luminosity instead of

the effective temperature in the following form:

c5(47r;2F) = f*(r): (2.51)

2.2 The terms Tl, T2 and T3

2.2.1 Alternative formulation of T3

The relative flux variation is usually written as follows (see Dziembowski (1977)):

c5F =fc5r
F ~. (2.47)

The factor 1 is thus the ratio of the local flux variation to the local amplitude variation. Since

Foe r:fT'
(2.48)

A comparison of equations (2.48) and (2.35) reveals that

f = 4Rr2r~ 1C. (2.49)

The term T3 can then be written as

(2.50)

where F is the flux, and, in the case of radial pulsation, the eigenfunction f*(r) describes the

radial dependence of the variation of the local luminosity relative to the local radial displacement

Sr. As above, since L oe R2r:ff

This can be expanded to reveal that

f* = 1+2.

2.2.2 The dependence of the amplitude and phase of the light curve on Tl, T2

and T3

Mode identification using the amplitudes and phases is possible as long as the amplitudes and

phases (defined by equations (2.45) and (2.46)) in different wavelengths or passbands have differ-

ent values for different modes i.e. when the amplitudes and phases depend on both wavelength
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The term Tl arises from purely geometrical effects (i.e. variations in the surface area and the

direction of the surface normal). It depends only on the value of the spherical harmonic degree

i, and has values of 2, 0 and -4 for i = 0,1 and 2 respectively. For f. > 2, Tl becomes increasingly

negative. T2 is due to changes in the local luminosity and limb darkening as a result of changes

in the local surface gravity, and T3 to changes in the local luminosity and limb darkening as a

result of changes in the local temperature. These latter two terms depend on the surface gravity,

effective temperature, mass, frequency of pulsation, the spherical harmonic degree i, and the

wavelengths in which the star is observed.

and spherical harmonic degree i. Under certain conditions, such as very high frequency pul-

sations, the amplitudes and phases lose their sensitivity to the mode. Under these conditions

other information, such as the pattern produced by the spacing of the frequencies, must be used

to identify the modes. The amplitudes and phases depend on the three terms Tl, T2 and T3.

The amplitude also depends on the limb-darkening integral bv. and the constant AoPf(cosi).

The wavelength dependence of the amplitudes and phases comes only from the wavelength

dependence of the limb darkening integral bo: defined by equation (2.30), and the terms T2 and

T3. The limb-darkening integral is plotted in Figure 2.1 for different modes. It is most sensitive

to wavelength in the far UV wavelengths. Its small magnitude for i > 2 simply means that

these modes, if they exist in the 8 Set stars, have small amplitudes and are more difficult to

distinguish above the noise levels of the observations.

The wavelength dependence of T2 and T3 comes from the terms ag, {3g and aT. The term f3T is

much smaller than aT and can be ignored. {3g is also usually much smaller than ag for f. $ 2, but

cannot be completely ignored in all wavelengths. All of these terms are largest towards the ultra-

violet (UV) wavelengths, and both {3g and f3T are more sensitive to mode in these wavelengths.

As a result, both the amplitudes and phases give better discrimination between modes in the

UV wavebands. This is shown in Figure 2.2. This figure shows the results from a linear, non-

adiabatic model with M = 1.80M0 for some far UV wavelengths and the uv'fyyRI JH K filters,

normalised to the v-filter. The amplitudes are almost independent of i except in the far UV

wavebands. The relative phases however are rather sensitive to i. From this diagram it can be

seen that the phases give good discrimination in the longer red wavelengths. The amplitudes in

these wavelengths are small, however, making observations difficult. Observations in the far UV

would be very useful for mode-identification, as both the amplitudes and wavelengths help to
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Figure 2.1: The values of bo. for different wavelengths (Á) for l = 0 (filled
circles), l = 1 (open circles), l = 2 (asterisks), l = 3 (filled triangles), l
= 4 (open triangles) and l = 5 (crossed triangles) for a slightly evolved
stellar model with mass 1.8 Mo, logTeff = 3.8764 and logg = 4.0347.

discriminate between modes. Unfortunately, observations in these wavelengths are not available

for the Ó Sct stars, and so observations of these stars are limited to ground-based photometry.

There is much data available for the Ó Set stars in the uvlly and UBV filters, which cover a

wavelength range of approximately 3000 - 6000 Á.

The mode-dependence of the amplitudes and phases comes from the terms Tb C, {3g and f3T. The

terms f3T and {3g are generally small and do not contribute very much to the mode-discrimination.

The important terms are Tl and C. The relative contribution of these terms to the mode

discrimination depends on the pulsation frequency. Figure 2.3 shows C plotted against pulsation

frequency II in d-1. For small frequencies, the first term in C, as defined by equation (2.32),
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Figure 2.2: The phases (in radians) (top panel) and amplitudes (bottom
panel) normalised to the v filter for different wavelengths (A) for e = 0
(filled circles), l = 1 (open circles) and e = 2 (asterisks) for the same
star as in Fig 2.1, for all the frequencies listed in Appendix A.

dominates. Then C is small for radial modes and large for non-radial modes. For very large

frequencies, the first term in C becomes insignificant, and C becomes independent of mode.

For the Ó Set stars, T3 is usually larger than the other two terms in spite of the fact that C

is close to a minimum for the frequencies in the region of the fundamental and low-overtone

p-modes (::::::7 d-I), and the factor RrEI ::; 0.4 for r2 = 5/3. This is largely because aT is

much larger than ag, /3g and f3T. (The factor p. in the expression for T2 in equation (2.41) is

always close to unity. Cugier et al (1994) have argued that it should always be taken as unity,

which is the standpoint adopted here). For the ó Set stars, where 1/J :::::: ~, the imaginary part

of T3 is larger than the other terms. This is shown in Figure 2.4, which is plotted for the same
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Figure 2.3: The value of C as a function of frequency v (in d -1) for i =
o (solid line), l = 1 (dotted line) and l = 2 (dashed line) for a star with
mass M ='1.80M0, logTeff= 3.8764 and logg = 4.0347.

star as in Figure 2.1. Hence, the larger the magnitude of C becomes, the less significant the

term Tl becomes, as T3 then dominates. For very large frequencies, Tl can be then be ignored.

Also, for these large frequencies C becomes independent of mode. As a result, the phases are

no longer sensitive to mode, and the mode-dependence of the amplitude comes only from the

limb darkening integral bo•.

For very small frequencies, Tl is only significant for the radial modes. In this region of the

frequency spectrum, the mode-discrimination is dominated by C and bv. for the non-radial

modes, and by Tl, C and bo. for the radial modes. The phases, which do not depend on bo. will

thus easily discriminate between radial and non-radial modes, but not easily between different

non-radial modes. The magnitude of the terms Tl, T2 and T3 is plotted against frequency in
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Figure 2.5 for a {)Set model with the same temperature and surface gravity as that of Figure

2.1. The frequency range represented in this figure extends beyond that expected in a {j Set

star. In pulsating white dwarfs, which have small frequencies of pulsation (~ 0.006 d-l), T3

is usually so much larger than the other terms that Tl and T2 can be neglected completely in

calculations of the amplitude. This was done by Brassard, Fontaine & Wesemael (1995). The

mode-dependence of the amplitude then comes from the first term in C as mentioned above,

and bo. only.

Hence mode-identification using amplitudes and phases works best for the intermediate frequen-

cies, which fortunately means the range of frequencies found in the {) Sct stars. The phase

differences between light curves in different colours do not always provide much information. In

the {3 Cep stars, 'IjJ ~ 7l', and the phase differences that arise between light curves of different

colours are small, and do not give much useful information for mode identification. The phase

differences for the {)Set stars are significant and give important information for mode identi-

fication. This is because 'IjJ is in the range 900 :S 'IjJ :S 1400 for these stars. This difference

allows different approaches to the methods of mode-identification, which are discussed in the

next chapter.
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Figure 2.5: The variation of Tl (solid lines), T2 (dotted lines), Re[T31 (short dashed
lines) and Im[T31 (long dashed lines) with frequency (in d-l) in the v filter for the
same mass, temperature and surface gravity as in Figure 2.1. The lines are plotted
for modes i = 0,1 and 2 in each case.
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Chapter 3

Methods of Mode Identification

In this chapter, some of the methods currently used to identify the spherical harmonic degree

l' from photometric observations are outlined. As will be discussed at the end of this chapter

and in the next chapter, if the spherical harmonic degree, i, frequency of pulsation, w, effective

temperature, Teff and surface gravity, logg, of a star are known, all the terms in equation

(2.43) can be determined except for AoPi(cosi), f (or R) and'IjJ. The factor AoPt(cosi) is

independent of wavelength and can be cancelled out through the use of amplitude ratios rather

than actual amplitudes to calculate the mode. R and 'IjJ can be left as free parameters, or

determined with the aid of stellar models, as will be discussed here.

There is a fundamental difference in the mode-identification technique for stars inside the

Cepheid instability strip and its extension, such as the 8 Set stars, and those outside the strip,

such as the f3 Cep stars. As already mentioned in the previous chapter, for the f3 Cep stars, all

wavelengths vary almost in phase. Hence the phase differences between light curves in different

colours do not provide much information. Stars within the Cepheid instability strip and its

extension, which includes the 8 Set stars, do have considerable phase variation with wavelength.

The phase differences between the light curves in different colours is caused by the hydrogen ion-

ization zone, which introduces a phase shift, 'IjJ, between maximum compression and maximum

temperature of approximately 900• The f3 Cep stars are too hot to have hydrogen ionization

zones and so it is probably safe to assume that 'IjJ = 1800• In the f3 Cep stars therefore, the most

useful information for mode-identification is contained in the amplitudes. For stars such as the

ó Set stars, the amplitudes and phases provide valuable information that can be used.
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3.1 Two-colour diagrams

One of the most popular means of mode-identification is that of 'two-colour diagrams'. These

are diagrams in which the amplitude ratio is plotted against the phase difference for any two

, filter passbands. Watson (1988) showed that different modes i occupy different areas on such a

plot, where the size and location of the area is determined by the variation in Rand 'l/J.

If the observations are described by

~mA = BA cos(wt + <PA)

where <P is the phase in wavelength .x, then, by comparing this with the predicted magnitude

variation (equation 2.43) :

(
B:..,)2 = (bl:..,) (r2 -l)r2'I(Qn, + tlT.\,)CRsintPI2 + (Tl + T2A, + (r2 - l)r2' I (Qn, + .8n,)CRcostPI2
BAl bl:..1 (r2 - l)r 2 I(QTAI + .Bnl )CRsin tPI2+ (Tl + T2AI + (r2 - l)r2'I(QTAI + tini )CRC08tPI2

For any given i, if'l/J and R are fixed, then one can plot the point (BBAI, <PAl - <PA2) on a diagram
A2

of amplitude vs phase. However, if'l/J and R are not fixed, then one can plot the loci of points

(~, <PAl - <PA2)' for a range of R between 0 and 1 and 'l/Jin the range relevant to the type of
A2

pulsating variable. This yields a figure such as shown (Figure 3.1) for the {3 Cep stars, where

'l/J= 180 ± 45°. A similar diagram is shown in Figure 3.2 for the 8 Set stars. In this figure, 'l/Jis

limited to the range of 90° to 1400, which is a range typical of a 8 Set star. The degree i of the

observed star is then determined from the area in which the observed point lies.

It can be seen in Fig 3.1 that there is a vertical separation between the areas for the {3 Cep

star. It is the relative amplitudes that are most useful for mode discrimination, as the relative

phases are not very sensitive to i. For the 8 Set stars, both amplitudes and phases are useful to

distinguish between the modes. The wavelength dependence of the phases is as large or larger

than the wavelength dependence of the amplitudes, as seen in the last section of the previous

chapter. Examples of the use of this method for the 8 Set stars can be found in Garrido et al.

(1990). The disadvantage of using these two-colour diagrams for mode-identification is that only

two colours or wavelengths can be used for anyone diagram. It is not always easy to decide
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Figure 3.1: A plot of (Au-v/Av) vs (<PU-V -
<Pv) (in degrees) for a {3 Cep star, taken from
Watson (1988). The theoretical areas for the
(R, 'IjJ) loci were calculated with 0.25 ~ R ~ 1,
and 1350 ~ 'IjJ ~ 2250 The modes l are written
beside the areas in which observed points of that
mode should lie.

which two colours give the best results, nor how to combine the results from many two-colour

diagrams. Also, in some cases the areas for different values of l may overlap significantly making

it difficult to determine l if an observed point should fall in the region of overlap.

Other methods are also used to identify the modes. The publications discussed below highlight

some of the advantages and disadvantages of the current methods.
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3.2 Examples of mode identification using amplitudes only.

3.2.1 The {3 Cep stars

Cugier et al. (1994) improved on the method of the two-colour diagrams described by Watson

(1988) by calculating values for f and 'IjJ using a linear non-adiabatic pulsation code. The advan-

tage of doing this is that the areas associated with each mode are smaller, so that discrimination

is improved. The authors showed that it is even possible to distinguish between the fundamental

and first radial overtones if the phases are used as well.
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Mode identification for the {3 Cep stars has also been discussed by Heynderickx et al. (1994).

The authors set 'IjJ = 'Ir and left R as a free parameter. They determined ratios of the oscil-

lation amplitudes at pairs of wavelengths for a given i using model atmospheres. A plot of

these normalised amplitudes as a function of wavelength was compared to the corresponding

observed ratios to determine the mode. The authors determined R by changing it to get the

best agreement between the observed and calculated amplitude ratios. Two of the diagrams

from Heynderickx et al. (1994) are shown in Figures 3.3 and 3.4. The value of i chosen was the

one that gave the closest agreement with all the colour ratios in each case. As can be seen from

fig 3.4, it is not always easy to deduce the mode from the plot. The advantage of this method

over that of the two-colour diagrams is that the information from many, rather than just two,

wavebands can be used.

Similar to Heynderickx et al. (1994), Balona, Dziembowski & Pamyatnykh (1997) also compared

the relative amplitudes in different wavebands to the calculated values to determine i, but,

following Cugier et al. (1994), they fixed f and 'IjJ by using stellar models. Furthermore, they

chose the value of i as the one which gave the smallest rms difference between the calculated
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Figure 3.3: Amplitude ratios as a function of wave-
length (A) for the fundamental frequency of the (3 Cep
star V348 Nor. The lines indicate calculated values,
and the x's the observed points. From Heynderickx
et al. (1994).
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Figure 3.4: Amplitude ratios as a function of wave-
length (A) for the second harmonic of the (3 Cep star
V348 Nor. Also from Heynderickx et al. (1994).
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Fontaine, Brassard. Bergeron & Wesemael (1996) studied the pulsating white dwarf G117-B15A.

They calculated amplitudes of pulsation for the star, and compared this to observed amplitudes.

They quantified the comparison by calculating X2 defined by

X2(i) = E( qat~; bj) 2 (3.1)

and observed normalised amplitudes. This improves on the method of Heynderickx as it allows

the comparison between observed and calculated amplitudes to be quantified, and allows more

reliable values of f and'lj; to be used.

3.2.2 White dwarfs

where the sum is over the wavebands j. Here atj is the calculated amplitude for degree i in

waveband j,and bj is the observed amplitude with corresponding uncertainty (jj. The factor q

is a scale factor which acts as a normalization constant.

The authors calculated X2(i) for i = 1 and 2 at each point on three 91 x 91 (Taff,logg) grids,

where each grid allowed a different treatment of convection. At each point they chose the value

of q which minimised X2. The place on each grid where X2(i) was lowest gave the point at

which the observed and predicted amplitudes were in best agreement. For all three grids, values

of X2(1) were lower than X2(2) and so the authors concluded that the star was most probably

pulsating in an i = 1 mode.

The advantage of this method over the ones discussed for the {3 Cep stars is that the comparison

between predicted and observed amplitudes is quantified, and a probability can be assigned to

the comparison. As the authors note, another advantage is that the method does not rely on

the arbitrary choice of a specific waveband for normalization. They do, however, conclude that

the results are sensitive to the treatment of convection.

3.3 Mode identification using amplitudes and phases.

The best approach to mode-identification is to use all the available information. For stars such

as the Ó Set stars this means that the amplitudes and phases for all the wavebands in which a

star is observed should be used. There is no obvious way of extending the two-colour diagrams

to do this, so a different approach is necessary.

34



35

For a star observed in N passbands, there are 2N-1 pieces of information: each passband provides

an amplitude and a phase, but one of the phases is fixed by the choice of the time epoch. Hence,

given e and the information from two passbands, an algebraic solution is possible using equation

2.43 since there are only three unknowns, viz R (or I), 'IjJ and Ao pr (cos i). Hence, given e,
values for R and 'IjJ can be determined. The mode could be identified as that value of e for which

the resulting values of R and 'IjJ are in the acceptable range for the type of variable star under

investigation, in this case the 8 Set stars. It is possible that more than one value of e will yield

acceptable results. In such a case, there is no way to decide between the values of e. If, however,
the star is observed in three or more pessbands, then a statistical solution becomes possible i.e.

one solves for the best values of R and 'IjJ. As for the two-passband case, values of e which do not

yield acceptable values for R and 'IjJ can be discarded. If more than one value of e remains, the

one that gives the smallest rms value between observed and calculated values of the amplitudes

and phases should be selected.

For the 8 Set stars, one of the purposes of identifying the mode is to determine the stellar

parameters. In other words, the effective temperature and surface gravity of a 8 Seuti star

are usually known with some uncertainty. Hence a procedure similar to that of Fontaine et

al. (1996) could also be followed, viz calculating on a grid of (Teff,logg) the values of the

X2 (e) for various value of e, and selecting the mode using this information in a way similar to

that used by the authors. Instead of leaving f and 'IjJ as free parameters, theoretical values

of f and 1/1 can be calculated using stellar models. The advantage of doing this is that the

number of free parameters is reduced. For these reasons, the approach of Fontaine et al. is

extended and adapted to include the information provided by the phases of each light curve,

but the values of f and 1/1 are calculated from stellar models. This method is sensitive to the

treatment of convection, which is therefore discussed briefly below before the new procedure for

mode-identification is outlined.

3.3.1 Stellar convection

In stars, the heat that is generated in the core by the nuclear reactions is transported out-

wards through the star to the surface. The energy can be transported outwards by radiation,

convection, and in a few cases, conduction. Conduction is limited to those stars which consist

of {~egenerate matter, which is outside the scope of this thesis. Radiative transport occurs as

photons are continually absorbed and re-emitted by the stellar material until they reach the
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surface. ~ the photons can be re-emitted in any direction, this is not a very efficient means

of energy transport. Convection is far more efficient means of energy transport than radiation,

but only occurs in certain parts of certain stars. In the sun for example, the granulation of the

surface reveals that there is a convective zone close to the surface. In other stars, such as some

of the M stars, convection currents may travel completely through the stars from the centre to

the surface.

Convective transport of energy occurs when macroscopic elements (called convective cells) move

upwards (and downwards) through their surroundings, setting up currents of gas that transport

energy outwards. Energy transport by convection is poorly understood. The standard approach

is the mixing length theory.

Suppose that a local density fluctuation causes a macroscopic element of gas to be buoyed

upwards. IT the element returns immediately to its original position, then convection cannot

occur. If, however, the density of the displaced element is less than that of its surroundings, then

it will continue to move upwards and allow convection currents to be set up. Since the element

will always take on the same pressure as the surrounding areas, and temperature decreases

outwards in a star, this means that convection will occur as long as the temperature within

the cell decreases at a slower rate than that of its surroundings. In other words, the rising

convective cell is warmer than its surroundings, and thus the atoms in the cell have a higher

kinetic energy that the atoms of the surroundings. After moving, on average, one mixing length

I, this convective cell will have delivered all of its excess kinetic energy to the surrounding

material, and blend in smoothly with its surroundings. There are also descending convective

cells to compensate for the rising ones, which descend until they have absorbed the deficiency

in kinetic energy that they had. In both cases, the results is a net outward flow of heat.

The mixing length 1 after which a moving convective cell blends in with its surroundings is

usually measured in terms of the isothermal pressure scale height H, which is the distance

over which the pressure (or density) varies by a factor of e. The ratio IIH, denoted by a is

called the mixing length parameter. It is not well determined, and is usually taken in the range

0.5 s a s 2.0.

More details on the transport of energy by convection are available in Kippenhahn & Wiegert

(1990) or Mihalas (1978). Novotny (1973) discussed mixing length theory in the context of

stellar models.
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The 8 Set stars at the upper end of the temperature scale are almost purely radiative in the

outer layers, but convection becomes important for the cooler stars. Values of J and 'IjJ can be

calculated reliably for the purely radiative models, but where convection becomes important,

the precise value of et can change the calculated value of J and 'IjJ determined from stellar models

quite significantly. The effect of the mixing length parameter et on the calculated values of J and

'IjJ for the models stars is shown in Figure 3.5. It can be seen from this figure that convection

becomes important for log TefT < 3.93. Since et is not well determined, three sets of stellar

models were calculated, with values of et covering the whole range of 0.5 ::::;et ::::;2.0. It was

hoped that this would allow the effect of the uncertainty in the treatment of convection on the

mode-identification procedure to be explored.
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Figure 3.5: Bottom panel: the difference in the non-adiabatic pa-
rameter J, for models with mixing length parameters et = 0.5 and
et = 1.0 as a function of the effective temperature. The top panel
shows the phase difference 'IjJ (in radians) as a function of effective
temperature. From Balons & Evers (1999).



(3.2)

3.3.2 A new mode identification algorithm

The linear non-adiabatic pulsation code NADROT written by W. Dziembowski was used to

calculate values for f and 'IjJ, for three different sets of evolutionary models corresponding to

three different choices of the mixing length, Ct = 0.5, 1.0 and 2.0. In terms of the two colour

diagrams, fixing the values of f and 7/J reduces the calculated areas to points. The uncertainty

in the mixing length extends the points to areas again, although these are much smaller than

the areas with the full range of variation in f and 'IjJ. The comparison between the observed

and calculated amplitudes and phases was quantified through the calculation ofaX2 expression,

which then also allowed a probability to be associated with each mode identification.

A X2 expression which includes the phases

ITX2 is defined by

U2X2 = ~)Mj - qmj)2
j

where Mj = alj cos wt describes the observed light curve, and mj = bl; cos wt is the calculated

variation with time with time for filter j ,then, assuming that the light curve is continuous in

time, integration over a period and minimization of X2 gives

We can extend this equation to include the phases by defining

Mj = Aj,obs cos(wt + </>j,obs) = alj cos wt + a2j sin wt

and

where bl = Bj,C4ICOS</>i,cal, ~ = -Bi,C4lsin</>i,C4I, ql = qcos"(, and Q2 = -qsin"(, and"( is an

unknown phase shift required to bring the calculated light curve into phase with the observed

curve. It is easy to show, by following the same method as above, that

< albl > + < a2~ >
<bI>+<b~>
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Q2 =
< a2bl > - < a1~ >
<b~>+<b~>
2 « albl > + < a2~ »2< al > + < a~ > <~>+<~>

« a2bl > - < al~ »2. (3.3)
<~>+<~>

This equation reduces to equation (3.2) if ~ = qz = a2 = O. Equation (3.3) is the equation that

was used to calculate X2(1) for the 8 Set stars in the next chapter.

AB already discussed, each waveband provides two items of information - an amplitude and a

phase. One of the observed phases is fixed by the choice of time epoch, and one of the observed

amplitudes is used to fix the constant AoPi(cosi) of equation (2.43). The number of degrees

of freedom, which is needed to calculate the probability, is then 2(N-2), provided that f and ë

are known. Hence, for two passbands, an algebraic solution is possible, but a minimum of three

passbands in needed for a statistical solution.

From the goodness of fit criterion, X2, the significance of the result can be calculated provided

that the number of degrees of freedom is known. The probability P of a mode identification can

be calculated using printed tables of the X2 function or various subroutines available for this

purpose.

A brief overview of the method used to identify the mode in 6 Set stars

For any particular star, the observed frequencies of pulsation and the associated amplitudes

and phases in each passband need to be identified from the photometric observations. These

observations can also be used to determine a range of possible values for each of the stellar

parameters Teff, log 9 and mass M.

In this study, the Warsaw-New Jersey evolutionary code was used to construct models with solar

composition for a range of masses typical of the 6 Set stars between the zero-age main sequence

(ZAMS) and the end of core-hydrogen burning (EeRB) for three different values of the mixing

length ct = 0.5, 1 and 2. Use of Dziembowski's linear non-adiabatic pulsation code (NADROT)

gave, for each model, modes lmn, with m = 0, and the associated pulsation frequencies, and

values of f and 'IjJ, as well as values describing the stability and nature of the modes. (For the

6 Set stars, non-radial modes have mixed p- and g-mode characteristics, except close to the

ZAMS.) A typical output file is given and explained in Appendix A.

Models with stellar parameters within the allowed ranges were then selected and for each fre-
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quency in these models close to the observed frequency, the associated values of i, f and t/J were

used to calculate amplitudes and phases through each filter in which the star was observed. The

observed and theoretical frequencies do not match exactly, but it was hoped that the values of

f and t/J used here would be in approximate agreement with the observed frequency, so that i

could be determined.

The calculated amplitudes and phases were then compared to the observed values through the

evaluation of the X2 expression derived above. The set of calculated amplitudes and phases

(and associated values of f, 'IjJ and l) that gave the lowest X2 value thus also yielded the most

probable mode.

At first, only model frequencies associated with excited p-modes were selected. If this yielded

no results, then excited g-modes were also selected. If still no results were obtained, then stable

modes were allowed as well. This was done in order to obtain a unique identification across the

spectrum of mixing lengths. In this context, a g-mode was considered to be any mode that was

not a p- or almost pure p-mode. This algorithm is discussed in more detail in the next chapter,

where it is applied to some Ó Set stars.

The model that gives the best fit to the observed data also gives stellar parameters which

could describe the observed star. To obtain accurate stellar parameters there should be the

best possible match between observed and theoretical frequencies, and so the stellar parameters

which result from the mode-identification procedure are not reliable since the theoretical and

observed frequencies do not match exactly. The models are used only to give appropriate values

of f and e for each model frequency and e value which is in approximate agreement with the

observed frequency. A suggestion of how to obtain more reliable stellar parameters is given in

Chapter 6.
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Chapter 4

Procedure

In this chapter the method outlined in Chapter 3 is applied to some 8 Set stars. The selection

of these 8 Set stars is discussed first, as weU as the determination of the period(s) of pulsation

P = 1/110 = 21r/w, Teff, logg and the mass M for each star. Thereafter, the models used to

determine f and 1/J are briefly discussed, with some notes on rotation. After that the calculation

of the terms Tl, T2, T3 and bo. in equation (2.43) are explained. At this point there is enough

information to predict the amplitudes and phases for each passband, and so the last section

deals with how all the information is assembled and used. to determine the mode.

4.1 The observations

4.1.1 Selecting appropriate 8 Set stars

The more periods present in a 8 Set star or the closer the frequencies are spaced, the longer

the period of observation needed to resolve the individual periods. Many of these stars are

multiperiodic and should be observed for two weeks or more to obtain accurate estimates of

the periods. Fortunately, many 8 Sct stars have already been observed and the data published.

Hence, due to constraints on time available to observe these stars, and the time available to

complete this study, most of the data used. here was taken from the literature. Only two stars,

CC Oct and EW Aqr, were actually observed. The observations for these two stars were taken

through the Strómgren uvby filters using the O.S-m telescope and the Modular Photometer at

the SAAO site near Sutherland, in August 1997. The conditions during the two weeks for which

these stars were observed were not very photometric, but some data were nevertheless obtained,



as can be seen in Appendix C.

In searching for data for about a dozen stars in the literature, only 6 Set stars that were not

clearly Pop II and had been observed in at least three colours were selected. Most of the data

found was in the Stronigren (uvby) system. Both high and low amplitude stars were chosen,

including three double mode high amplitude stars. The high amplitude stars are known to

pulsate radially, and were chosen to see whether the modes would be identified as such using

the algorithm outlined in the previous chapter. Any data series which was not of a sufficient

length, or gave different frequencies in the different wavebands when Fourier-analysed was also

rejected. In searching for the data, extensive use was mace of the NASA Astrophysies Data

Service (ADS) abstract service! , as well as the over 800 references of the '6 Set Table' published

by Rodriguez et al. (994). Where the data were not specifically published, they were obtained

directly from the authors, or from the lAU Commission 27 archives of unpublished data. A list

of the stars for which satisfactory data was found is given in Table 4.1.

4.1.2 Determining the period(s) of pulsation

Inmost cases, the articles on each of the selected 6 Set stars provided the frequencies of pulsation

found by the authors. In spite of this, a periodogram analysisê was performed on each star to

determine the periods of pulsation present. In some cases more periods were found than discussed

in the literature. In other cases, different authors quoted different results for the same star, and

the periodogram analysis was used. to decide which frequencies and data to use. It should be

noted here that many of the high-amplitude 6 Sct stars do not have sinusoidal variations, which

is the assumption of equation (2.43). In all cases the light curves in the different wavebands were

analysed into the fundamental Fourier component and its harmonies by least squares. Only the

amplitude and phase of the fundamental component was used. The standard error of the sine

and cosine amplitude is approximately independent of wavelength. The average value was used

as an estimate for u in the X2 expression equation (3.3). Tests showed that when sigma was

allowed to vary with wavelength, the results for the mode identification were the same as when

an average value was used, except that the resulting calculated probabilities of the identification

differed slightly (by approximately 1 percent).

Once the frequencies of pulsation had been determined, they were refitted to the data, and the

1http://adsabs. harvard.edu/ abstract.service. html
2See Appendix B.
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Table 4.1: Table with selected stars and the pulsation frequencies II (d-1), amplitudes A
(mag), phases <jJ (radians) and the uncertainty in the amplitudes <7 (mag) extracted from
the light curves using Fourier analysis.

Star Rëf II Au A" Ab All<Pu <P" <Pb <Pvtru trOl trb a

AEUMa 2 11.6253 0.2362 0.3002 0.2622 0.2151
-1.1140 -1.0001 -1.0053 -0.9898
0.0089 0.0115 0.0101 0.0085

15.0326 0.0370 0.0439 0.0369 0.0301
-0.9979 -0.9659 -0.9854 -1.0058
0.0089 0.0115 0.0101 0.0085

BP Peg 2 9.1263 0.2343 0.2899 0.2433 0.2022
-1.0632 -1.0291 -1.0111 -0.9913
0.0075 0.0047 0.0046 0.0045

11.8242 0.0557 0.0527 0.0450 0.0396
0.4617 0.5355 0.5364 0.7056
0.0072 0.0045 0.0044 0.0043

RV Ari 2 10.7360 0.2466 0.3188 0.2754 0.2293
0.7354 0.8184 0.8268 0.8407
0.0131 0.0172 0.0146 0.0127

13.8964 0.0988 0.1211 0.1059 0.0831
1.1172 1.1924 1.1968 1.1617
0.0127 0.0166 0.0140 0.0122

ADCMi 8.1318 0.1740 0.2221 0.1885 0.1517
0.8193 0.9152 0.9162 0.9294
0.0044 0.0042 0.0037 0.0033

BE Lyn 4 10.4309 0.1828 0.2446 0.2140 0.1744
-0.9519 -0.8539 -0.8519 -0.8315
0.0058 0.0077 0.0068 0.0057

EH Lib 11 11.3110 0.2517 0.3184 0.2756 0.2231
0.4001 0.4970 0.5043 0.5347
0.0170 0.0185 0.0158 0.0130

DY Her 10 6.7282 0.2396 0.3001 0.2514 0.2010
-1.2911 -1.2387 -1.2236 -1.2045
0.0108 0.0133 0.0113 0.0091

RS Gru 14 6.8000 0.2352 0.3176 0.2725 0.2217
-0.0863 -0.0063 0.0003 0.0207
0.0094 0.0126 0.0109 0.0090

V5670ph 15 6.7000 0.1948 0.2425 0.2010 0.1600
-0.3810 -0.3113 -0.3117 -0.2969
0.0085 0.0104 0.0082 0.0071

VI719 Cyg 19 3.7400 0.0807 0.1030 0.0829 0.0685
1.1717 1.2384 1.2368 1.2402
0.0093 0.0114 0.0090 0.0073

IJ Cas 3 9.9100 0.0210 0.0249 0.0209 0.0167
0.3785 0.6077 0.5888 0.5696
0.0007 0.0006 0.0004 0.0004



Table 4.1: Continued ...

Star Ref v Au Av Ab A1/
4>u 4>v 4>6 4>1/
O'u Uv O'b 0'1/

BF Phe 5 16.0100 0.0084 0.0106 0.0094 0.0072
-1.1022 -0.9608 -1.0001 -0.9626
0.0008 0.0001 0.0001 0.0006

6 16.0166 0.0059 0.0091 0.0019 0.0062
0.8355 0.8855 0.8443 0.8531
0.0006 0.0004 0.0004 0.0005

DL Eri 9 6.4018 0.0151 0.0202 0.0115 0.0153
-0.6203 -0.6033 -0.5611 -0.5111
0.0010 0.0011 0.0011 0.0009

10.8581 0.0110 0.0144 0.0126 0.0103
0.2140 0.5896 0.5113 0.5043
0.0010 0.0011 0.0011 0.0009

EW Aqr 12 10.2500 0.0291 0.0261 0.0223 0.0131
-1.2581 -0.9550 -1.1106 -1.0433
0.0089 0.0091 0.0014 0.0065

8 10.3400 0.0211 0.0269 0.0221 0.0206
0.1918 0.8839 0.9124 0.8828
0.0024 0.0029 0.0026 0.0031

10.0180 0.0103 0.0130 0.0093 0.0013
-0.1153 0.1698 0.1818 0.2011
0.0024 0.0028 0.0025 0.0030

4.1400 0.0089 0.0115 0.0096 0.0092
0.1548 0.0961 0.1254 0.2415
0.0024 0.0029 0.0026 0.0031

ON And 13 14.4292 0.0344 0.0356 0.0311 0.0213
1.4948 -1.4995 -1.5215 1.5696
0.0030 0.0030 0.0030 0.0030

01 Eri 9 13.2600 0.0141 0.0199 0.0134 0.0111
1.3998 1.4642 1.5315 1.4499
0.0010 0.0042 0.0010 0.0016

6.1400 0.0089 0.0131 0.0096 0.0088
0.0353 -0.2141 0.0113 0.1691
0.0010 0.0042 0.0010 0.0016

V853 Cen 16 18.9186 0.0098 0.0103 0.0093 0.0016
1.0064 1.1113 1.0501 1.0999
0.0001 0.0006 0.0006 0.0005

16.1520 0.0011 0.0018 0.0021 0.0011
0.1121 0.0253 -0.2258 -0.0992
0.0001 0.0006 0.0006 0.0005

18.9186 0.0040 0.0055 0.0044 0.0035
1.2666 1.4823 -1.5516 1.5286
0.0011 0.0012 0.0022 0.0018

16.1520 0.0013 0.0013 0.0011 0.0002
0.9110 1.4489 0.8501 0.5693
0.0011 0.0012 0.0022 0.0018

18.9m 0.0036 0.0050 0.0041 0.0035
-0.5199 -0.3955 -0.2263 -0.3208
0.0016 0.0011 0.0021 0.0011

16.5820 0.0014 0.0016 0.0019 0.0011
-1.1518 -0.6126 -1.1905 -1.3868
0.0016 0.0011 0.0021 0.0011
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Table 4.1: Continued ...

Star Re!' v Au A" Ab All
<Pu <P'IJ <Pb <P1I
(1u (1" (1b (1

CC Oct 7 8.0062 0.0262 0.0361 0.0258 0.0214
0.4741 0.5854 0.6746 0.7026
0.0031 O.OO~ 0.0011 0.0010

12.5763 0.0262 0.0361 0.0258 0.0214
0.4741 0.5854 0.6746 0.7026
0.0031 O.OO~ 0.0011 0.0010

8.1100 0.0051 0.0084 0.0067 0.0066
1.2695 1.4532 1.3786 1.4081
0.0031 O.OO~ 0.0011 0.0010

8 8.0000 0.0189 0.0275 0.0~2 0.0127
0.7753 0.6918 0.9168 0.8747
0.0029 0.0029 0.0022 0.0018

8.1120 0.0067 0.0106 0.0085 0.0049
1.5542 1.1723 1.3707 1.3975
0.0027 0.0027 0.0020 0.0017

12.6200 0.0048 0.0063 0.0042 0.0023
-1.3679 1.4994 -1.3640 -1.5689
0.0023 0.0023 0.0018 0.0015

AN Lyn 17 10.1756 0.0733 0.0946 0.0814 0.0681
0.0900 6.1790 6.1790 6.1750
0.0010 0.0005 0.0006 0.0007

18.1309 0.0047 0.0050 0.0044 0.0040
2.1550 1.6530 1.7170 1.6940
0.0010 0.0005 0.0006 0.0007

9.5598 0.0043 0.0044 0.0046 0.0043
0.7180 0.6230 0.6300 0.7040
0.0010 0.0005 0.0006 0.0007

V393 Car 18 7.0770 0.0859 0.1131 0.0949 0.0771
-1.2840 -1.~75 -1.1900 -1.1719
0.0034 O.~ 0.0038 0.0031

12.5780 0.0046 0.0058 0.0045 0.0038
-0.0645 0.4711 0.3626 0.2409
0.0034 O.~ 0.0038 0.0031

18 7.0770 0.0861 0.1132 0.0950 0.0772
-1.2823 -1.2059 -1.1885 -1.1704
0.0034 0.0044 0.0037 0.0031

13.5780 0.0064 0.0077 0.0065 0.0052
-0.1886 0.2519 0.1396 0.0644
0.0034 0.0045 0.0037 0.0031
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1 - Rodriguez et al. (198&); 2 - Rodriguez et al. (l992a); 3 - Rodriguez et
al. (1992b); 4 - Rodriguez et al. (1990); 5 - Rodriguez et al. (1988b); 6 -
Poretti et al. (1996); 7 - Kurtz (1980); 8 - Evers & Meintjes (unpublished); 9
- Jergensen & Nergaard-Nielsen (1975); 10 - Breger et al. (1978); 11 - Joner
(1986); 12 - Kilambi et al. (1978); 13 - Rodriguez et al. (1993); 14 - Rodriguez
et al. (1994); 15 - Powell et al. (1990); 16 - Vander Linden & Sterken (1986);
17 - Rodriguez et al. (1~97); 18 - Helt (1984); 19 - Joner & Johnson (1985);
20 - Heynderickx (1994)

Table 4.1: Continued ...

Star Ref II Av A8 Au ABI A82 AVI Ac
<Pv <PB <Pu <PBI <P82 <PVI <Pc
Uv 0'8 O'u UBI 0'82 O'VI O'c

HD 105513 20 6.8559 0.0124 0.0170 0.0151 0.0119 0.0153 0.0122 0.0101
1.4585 1.4255 1.3409 1.4052 1.3182 1.4097 1.3092
0.0012 0.0015 0.0022 0.0017 0.0017 0.0015 0.0014

6.6388 0.0122 0.0164 0.0130 0.0167 0.0165 0.0124 0.0111
-0.6961 -0.7652 -0.8734 -0.7319 -0.7610 -0.7763 -0.6978
0.0012 0.0015 0.0022 0.0016 0.0017 0.0015 0.0014

6.8902 0.0067 O.DlOS 0.0098 0.0113 0.0107 0.0073 0.0053
0.0697 0.1187 -0.0349 0.0531 0.0431 0.0651 -0.1232
0.0011 0.0015 0.0021 0.0016 0.0017 0.0015 0.0014

6.4586 0.0053 0.0071 0.0053 0.0070 0.0063 0.0050 0.0042
-0.4162 -0.5722 -0.7777 -0.6702 -0.5391 -0.8711 -0.5420
0.0011 0.0015 0.0021 0.0016 0.0017 0.0014 0.0014

amplitude and phase determined for each filter using least squares. These results are also listed

in Table 4.1.

AE Urn a, BP Peg and RV Ari are all high amplitude double mode stars, i.e. both frequencies

listed for each star are associated with radial pulsation. The other HADS are AD CMi, BE Lyn,

EH Lib, DY Her, RS Gru, V567 Oph and Vl719 Cyg. All the other stars are low or medium

amplitude pulsaters.

The frequency analysis of some of the stars needs to be discussed as the frequencies found differ

between authors and sets of data. There are two sets of data for BF Phe (HD 223480), taken

a few years apart by different authors. The single frequency found by Rodriguez et al. (1988b)

differs only slightly from that of Poretti et al. (1996). Both sets of data were used. independently

to determine the pulsation mode.

Gupta (1980) observed DL Eri (HR 1225) and found two frequencies of 6.415 d-1 and 8.418 d-1.

Poretti (1989) found frequencies of 6.41, 10.26 and 8.98 d-l. Using the data of Jergensen &

Nergaard-Nielsen (1975) two frequencies, 6.4018 and 10.8587 d-l, close to two of the frequencies

found by Poretti, were found in the periodogram analysis and used. for the mode identification.
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Kilambi, DuPuy & Koegier (1978) observed EW Aqr (HR 8102) and found only a single period

of 0.097 d. This star was also observed on the O.5-m telescope at the SAAO site near Sutherland

in August 1997 (see Appendix C) to obtain better data through the Strorugren filters. Three

frequencies of 10.340, 10.018 and 4.74 d-l were found. These frequencies are similar to those

of Hobart, Pen a & Peniche (1989): 10.34750, 9.19588 and 4.7195 d-l, except that the alias of

their 9.19588 d-l frequency, namely 10.018 d-l, was found in the Sutherland data, and used to

determine the mode i.

Although Jergensen & Nergaard-Nielsen (1975) quote only one period for 01 Eri (12.26 d-l),

a second frequency 6.74 d-l was found when searching for frequencies in their data. Poretti

(1989) found three frequencies, 13.38 d-l, 6.94 d-l and 6.03 d-l when he observed this star. As

this data set is much longer than that of Jergensen & Nargaard-Nielsen, the alias of 12.26, i.e.

13.26 d-l, and the second frequency of 6.74 d-l were fitted to their data and used to identify

the mode.

Vander Linden & Sterken (1986) observed V853 Cen (HR 126859) in 1982 and 1984. The

frequencies identified in the 1982 set were 18.9186 and 16.7520 d-l. In the 1984 set the two

frequencies of 18.2 and 16.5820 d-l were identified. The authors considered the 1982 set to be

more reliable, and so the frequencies identified in 1982 were also fitted to the 1984 set of data.

Hence three sets of data were available for mode identification.

Kurtz (1980) observed CC Oct (HD 188136) in the B and V filters as well as the Strorugren

filters. Using the more numerous B and V data, three frequencies of 8.0062,8.1100 and 12.5763

d-l were identified. As the data in the Stronigren filters were not of sufficient number to resolve

the frequencies well, the star was observed again in August 1997, and three frequencies close to

those of Kurtz were found: 8.000,8.1120 and 12.6200 d-I(See Appendix C).

In the frequency analysis of V393 ,Car, it was difficult to decide between the two aliases 12.578

and 13.578 d-l, hence both were fitted to the data and used for the mode identification.

4.2 Determining ranges in the stellar parameters

In order to determine the mode of pulsation, it was necessary to estimate ranges in the temper-

ature, mass and surface gravity for each star. This was done as described below.



4.2.2 Strëmgren photometry

4.2.1 Geneva photometry

Kiinzli, North, Kurucz & Nicolet (1997) provide a calibration (based on Kurucz (1979) models

and standard stars) for B to G stars observed in seven colour Geneva photometry. Their cal-

ibration, together with a value for the reddening'' E(B2-V1) = 0.044 from Heynderickx (1994)

was used to obtain values of Teff = 6961± 59K and logg = 3.95 ± 0.11 for the star HD 105513.

The colour indices for this star, U = 1.491, V = 0.539, Bl = 0.958, B2 = 1.412, V2 = 1.261 and

G = 1.635, were obtained from the General Catalogue of Photometric Data.4

The data for all the stars besides HD105513 was in the uvby system, for which there are a

few calibrations. Since so many of the selected stars were observed in through these filters, it

was decided to use three of the available calibrations in order to get a better estimate of the

uncertainty in the stellar parameters.

Crawford (1975, 1979) provides empirical calibrations for A and F stars. His calibrations allow

the reddening E(b-II)' the dereddened indices (denoted by subscript 0) and the absolute visual

magnitude, Mv, to be determined from the observed indices, defined by:

(b - y) b - y

ml = v - 2b+ y

Cl = U - 2v + b

{3 H{3(narrow) - Hf3(intermediate)

where the HIJ filters are narrow filters centred at approximately 4850 A. These indices and their

sources are listed for all the selected stars in Table 4.2.

Balons (1994) gives interpolation formulae for Taff, the bolometric correction'' BC, surface grav-

ity logg, and mass in terms of the dereddened Stroingren indices. His calibration is based on

synthetic uvby colours, and the zero points of the relations are fixed using stars for which the

physical parameters are well known.

31nterstellar grains absorb and scatter starlight. The blue light is more efficiently scattered than the red light,
and so the light is said to be 'reddened'.

4http://obswww.unige.ch/gcpd
&The bolometric magnitude of a star, mbol is the magnitude of the star calculated over all wavelengths.

The bolo~etric correction is the difference between the visual magnitude and the bolometric magnitude, i.e.
mbol = mv + BC.
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Table 4.2: The colour indices of 8 Set stars for which a time
series of multi colour photometry was available. The values
in brackets are derived and not observed.

Star b-y ml Cl (3 Reference

AD CMi 0.182 0.179 0.853 2.760 1,2
AEUMa 0.176 0.155 0.841 2.770 3
(3 Cas 0.216 0.177 0.785 2.721 4
BELyn 0.160 0.159 0.841 2.780 5
BF Phe 0.167 0.186 0.769 (2.776) 2
BP Peg 0.228 0.161 0.857 2.775 3
CC Oct 0.272 0.360 0.429 2.733 2
DL Eri 0.163 0.183 0.877 2.762 2
DYHer 0.217 0.181 0.821 2.783 2
EH Lib 0.179 0.156 0.859 2.787 2
EW Aqr 0.179 0.180 0.905 2.758 2
GN And 0.169 0.165 0.869 2.755 6
RS Gru 0.176 0.150 0.922 2.774 2
RV Ari 0.280 0.147 0.812 2.756 3
01 Eri 0.198 0.194 0.792 2.730 2
V5670ph 0.451 0.079 0.927 2.764 2
V853 Cen 0.130 0.187 1.007 2.837 7
ANLyn 0.202 0.191 0.796 2.762 2
V393 Car 0.181 0.181 0.844 2.761 2
Vl719 Cyg 0.249 0.174 0.833 2.710 2

1 - Rodriguez et al. (1988a); 2 - Rodriguez et al.
(1994); 3 - Rodriguez et al. (1992a); 4 - Rodriguez et
al. (1992b); 5 - Rodriguez et al. (1990); 6 - Rodriguez
et al. (1993); 7 - Vander Linden & Sterken (1986)

Moon & Dworetsky (1985) give calibrations for the effective temperature and surface gravity of

B, A and F stars using Strëmgren photometry in terms of grids. Their calibrations are also based

on synthetic colour indices, which are empirically corrected to be in agreement with observed

values. The calibration for the surface gravity was found to be incorrect for Am stars" by the

authors, and subsequently corrected in Dworetsky & Moon (1986). Two FORTRAN programs

were obtained through correspondence with M.M. Dworetsky. The one program, TEFFLOG.F,

implements the grids of Moon & Dworetsky (1985). The other program, UVBYBETA.Fassembles

various empirical calibrations between the stellar parameters and the Stroragren colour indices.

This program gives the dereddened indices, the reddening E(b-II)' Mv, the radius R and the

metallicity indicator óml'

6These stars have a higher metal content that usual.
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Finally, Ribes, Jordi, Torra & Giménez (1997) give calibrations of mass, radius and surface

gravity in terms of u,v,b,y and {3 for main sequence stars, based on the data obtained from

binary stars.

These calibrations were used as to determine the ranges in the stellar parameters as follows:

1. The colour indices listed in Table 4.2 were dereddened using the calibrations of Crawford

(1975, 1979). No published value was available for {3 for the star BF Phe, so it was

estimated using Moon & Dworetsky's program UVBYBETA.F which gives an estimate of (3

from Cl and (b-y). Mv was also calculated using Crawford's calibrations. The bolometric

correction BC, and effective temperature were calculated using the formulae of Balone

(1994). The luminosity of each star was calculated using

log L = -O.4(Mv + BC - Mbo10) where Mbol0 = 4.76 mag

and this was then used to determine the mass of each star, again using Balona's formulae.

Here, both the mass and luminosity are given in terms of the solar mass and luminosity.

Balona also gives formulae for logg but does not recommend their use. Hence the surface

gravity was calculated using the relation:

( Teff )logg = log M -log L + 4log -r. + logg0'
eff0

Using these calibrations, the uncertainties in logT, logg and M are 0.009 dex", 0.3 dex

and 0.076 M0 respectively.

2. The two FORI'RAN programs obtained from M.M. Dworetsky were used to determine

the dereddened colour indices, the metallicity indicator'' bmI, and values for effective

temperature and surface gravity. The logg values were corrected for the Am stars using

the formula given in Dworetsky & Moon (1986). The values of BC were calculated using the

results of UBVYBETA.F and Balona's formula, and the luminosity and mass were calculated

as above. The uncertainties in logT, logg and M are 0.015 dex, 0.10 dex and 0.076 M0

respecti vely.

3. The calibrations of Ribas et al. (1997) were applied to all the stars for which the calibra-

tions were valid i.e. those with (3 > 2.720. The dereddened colour indices obtained above

7The word 'dex' means 'difference in the logarithm'.
8The metallicity indicator om! = ml (standard) - ml (ooseMJed) for a given {3. The standard values are

tabulated in Crawford (1975, 1979).



51
U.O.V.S. BIBLIOTEEK

were used. The uncertainties in the mass and surface gravity are 0.10 M0 and 0.08 dex

respectively.

Where possible, Mv was calculated from the parallax IT and visual magnitude mv measured by

the HlPPARCOS Satellite, using

Mv = mv + 5Iog(lOrr).

where IT is measured in arcsec. In the above calculations of the stellar parameters, if the un-

certainty in this HlPPARCOS magnitude was found to be less than 0.4 mag, then it was used

instead of the Mv calculated using the other calibrations.

The results obtained from all these calibrations are summarised in Table 4.3. According to

the program documentation for UVBYBETA.F, the metallicity indicator óml given in the

table allows the stars to be classified as follows: óml < -0.10 - metallic line (Am) or peculiar

stars; 0.0015 < óml < 0.025 - normal Pop I stars; 0.025 < 6ml < 0.045 - older Pop I stars;

6ml > 0.045 - Pop II stars. ol Eri and CC Oct fall into the first category, and AE UMa, BE

Lyn, EH Lib and HS Gru all fall into the third category. However, Rodriguez, Rollend, & Lopez

de Coca (198&) argue that AE UMa is a normal Population I star (based on its period ratio)

and Joner (1986) argues that EH Lib is a normal Population I dwarf Cepheid based on his

photometric and spectroscopic investigation of the star. Rodriguez et al (1990) classify BE Lyn

as a main sequence or close post main sequence star, and Rodriguez et al (1995) also consider

RB Gru as either a post main sequence or main sequence star. McNamara (1997) examines eight

of the stars selected in the literature survey, and lists AE UMa, BE Lyn, EH Lib and RB Gru

as having [Fe/HJ~ -0.5 (Z ~ 0.(05) which means that these stars have a low metal content.

Clearly, there is much uncertainty as to the evolutionary state of these high-amplitude 6 Set

stars (HADS).

Powell, Joner, & McNamara (1990) suggest that V567 Oph is in the hydrogen shell burning

phase of evolution, and Breger, Campos & Roby (1978) suggest that DY Her is immediate post

main sequence based on its metallicity and space motion. Petersen & Christensen-Dalsgaard

(1996) propose that it is necessary for a star to be in the post-main-sequence stage of evolution

for it to appear as a HADS.

In this study, all stars are assumed to be less evolved than the end of core hydrogen burning,

and to have normal metallicity (Z = 0.02). This assumption is required because models outside



Table 4.3: The unreddened colour indices and stellar parameters for the selected
stars. Top line -Balona (1994); middle line - Moon & Dworetsky (1985); bottom
line - Ribes et al. (1997). The values with an asterisk were calculated from the
HIPPARCOS parallaxes. The metallicity indicator, óm, is shown under the name
of the star.

Star76m ~b II~O mo Co Mv BC logTeff log L7Lo M7Mo logg

ADCMi 0.16& 0.184 0.850 1.544 0.051 3.871 1.266 1.959 3.904
0.007 0.171 0.183 0.851 1.52 0.054 3.865 1.214 1.959 3.61

1.963 3.849
AEUMa 0.151 0.161 0.831 1.826 0.046 3.811 1.155 1.824 4.008
0.034 0.164 0.159. 0.839 1.18 0.051 3.810 1.171 1.892 3.90

1.114 4.098
{3 Cu 0.202 0.181 0.182 1.161· 0.051 3.841 1.414 2.089 3.688
0.000 0.212 0.118 0.184 0.055 3.842 1.415 2.089 3.48

BE Lyn 0.148 0.162 0.839 1.963 0.040 3.883 1.103 1.199 4.018
0.036 0.156 0.160 0.840 1.92 0.041 3.816 1.111 1.199 3.81

1.142 4.161
BF Phe 0.162 0.188 0.168 2.494· 0.036 3.881 0.892 1.106 4.282
0.009 0.166 0.186 0.169 0.049 3.814 0.881 1.661 4.12

1.690 4.194
BP Peg 0.155 0.183 0.842 1.860 0.043 3.880 1.143 1.820 4.031
0.011 0.159 0.184 0.844 1.81 0.049 3.813 1.160 1.824 3.85

1.815 3.985
CC Oet 0.220 0.316 0.419 1.621· 0.043 3.880 1.236 1.945 3.961
-0.189 0.230 0.314 0.421 0.055 3.862 1.231 1.923 4.81

1.831 3.186
DL Eri 0.162 0.183 0.811 1.048· 0.050 3.812 1.465 2.138 3.141
0.025 0.163 0.183 0.811 0.054 3.865 1.463 2.128 3.59

DY Her 0.154 0.200 0.808 2.286 0.031 3.886 0.915 1.138 4.203
-0.004 0.151 0.201 0.810 2.24 0.045 3.818 0.990 1.126 3.99

1.828 4.045
EH Lib 0.141 0.161 0.851 1.951 0.035 3.881 1.101 1.801 4.092
0.032 0.149 0.166 0.853 1.91 0.043 3.880 1.123 1.801 3.99

1.110 4.142
EWAqr 0.163 0.185 0.902 0.825· 0.052 3.868 1.553 2.203 3.656
0.005 0.161 0.184 0.903 0.055 .3.863 1.552 2.203 3.49

1.914 3.850
GN And 0.168 0.165 0.869 1.430" 0.053 3.861 1.311 1.991 3.850
0.023 0.169 0.165 0.869 0.055 3.862 1.310 1.986 3.62

1.950 3.859
RS Gru 0.146 0.159 0.916 1.119 0.045 3.818 1.414 2.104 3.815
0.037 0.153 0.158 0.918 1.13 0.050 3.872 1.432 2.113 3.10

1.963 3.902
RV Ari 0.175 0.179 0.191 2.005 0.051 3.870 1.082 1.766 4.039
0.008 0.180 0.180 0.193 1.98 0.055 3.863 1.090 1.758 3.84

1.801 4.014
ol Eri 0.194 0.195 0.191 1.113· 0.051 3.853 1.436 2.104 3.693
-0.017 0.198 0.194 0.192 0.057 3.848 1.436 2.104 3.49

2.018 3.696
V5610pb 0.160 0.166 0.869 1.440 0.049 3.873 1.308 1.991 3.871
0.018 0.165 0.113 0.813 1.39 0.052 3.835 1.327 1.995 3.26

1.932 3.900
V853 Cen 0.089 0.199 0.999 1.004" 0.006 3.906 1.500 2.195 3.860
0.005 0.093 0.199 1.000 0.008 3.905 1.500 2.193 3.84

2.113 3.841
AN Lyn 0.112 0.200 0.190 2.118 0.049 3.874 1.037 1.142 4.093
-0.009 0.117 0.199 0.191 2.09 0.049 3.866 1.048 1.134 3.85

1.863 3.950
V393 Car 0.166 0.185 0.841 1.642 0.050 3.812 1.227 1.932 3.940
0.006 0.171 0.184 0.842 1.62 0.050 3.865 1.236 1.932 3.71

1.937 3.811
V1n9 Cyg 0.205 0.181 0.824 1.141· 0.053 3.838 1.424 2.094 3.642
-0.009 0.221 0.183 0.828 0.053 3.835 1.424 2.094 3.20
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Table 4.4: The ranges in mass, effective temperature and
surface gravity used in searching for mode identification.
The projected rotational velocity from the literature (in
km S-l) is given in the last column.

Star Mass logTeff logg vsini

AEUMa 1.7 - 2.0 3.85 - 3.89 3.70 - 4.32
BP Peg 1.8 - 2.0 3.85 - 3.89 3.72 - 4.34 < 18
RV Ari 1.7-1.9 3.84 - 3.88 3.73 - 4.35 18
ADCMi 1.9 - 2.1 3.85 - 3.88 3.57 - 4.21 20
{3 Cas 2.0 - 2.2 3.82 - 3.90 3.38 - 3.80 70
BE Lyn 1.7 - 1.8 3.86 - 3.90 3.77 - 4.39
BF Phe 1.6 - 1.8 3.86 - 3.90 4.00 - 4.47 80
CC Oct 1.8 - 2.0 3.83 - 3.89 3.60 - 4.90 < 10
DL Eri 1.8 - 2.2 3.84 - 3.88 3.49 - 3.96 140
DYHer 1.7 - 1.9 3.84 - 3.90 3.86 - 4.51 20
EH Lib 1.7 - 1.9 3.86 - 3.90 3.78 - 4.40 16
EW Aqr 2.1 - 2.6 3.84 - 3.90 3.37 - 3.94 150
GN And 1.9 - 2.1 3.84 - 3.89 3.52 - 3.98 30
RS Gru 1.9 - 2.2 3.84 - 3.89 3.50 - 4.13 40
Ol Eri 2.0 - 2.2 3.83 - 3.88 3.39 - 3.90 105
V5670ph 1.8 - 2.1 3.82 - 3.89 3.16 - 4.19 < 18
V853 Cen 1.4 - 2.3 3.88 - 3.92 3.59 - 4.13
ANLyn 1.7 - 2.0 3.85 - 3.89 3.75 - 4.40
V393 Car 1.7 - 2.0 3.85 - 3.88 3.61 - 4.25
VI719 Cyg 1.8 - 2.2 3.82 - 3.88 3.10 - 3.95
lID 105513 1.4 - 2.5 3.83 - 3.85 3.84 - 4.06

this range were not calculated.

The results in Table 4.3 and their uncertainties were used to calculate the ranges in Table 4.4.

Where necessary, the ranges were extended to include some of the published results. The range

in mass for V583 Cen, for example, is very large because the published estimate of 1.4 M0

(Vander Linden & Sterken (1986)) is very different to the value listed in Table 4.3. Also given

in this table are the rotational velocities v sin i.

4.3 Some comments on the stellar models and rotation

The models, whose primary purpose was to provide values of f and '!/J, were constructed for solar

masses 1.4 - 2.5 in steps of 0.1 M0' for discrete stages between the Zero-Age Main Sequence

(ZAMS) and the end of core-hydrogen burning (ECHB). Dziembowski's non-adiabatic pulsation
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code NADROT was used to calculate for each model the pulsation frequencies for values of i

= 0, 1 and 2. The frequencies were constrained to be in the expected range for Ó Set stars

by constraining the dimensionless frequency, a to be in the range 1 to 3. The dimensionless

frequency a is defined by
(0.'

a----- y'47rGp'

Since the models are calculated at discrete values of mass and stages of evolution, an exact

match between an observed. frequency and calculated frequency is unlikely. If the frequencies

calculated using the code are listed in numerical order, then the maximum difference between

any two successive frequencies is approximately 0.6 d-l. Hence, when comparing the observed

and calculated frequencies, any calculated frequency within 0.6 d-l of the observed frequency

was accepted, so that at least one model would be selected.

The model stars were calculated assuming no rotation. Rotation would, however, affect the

calculated frequencies of the models.' In a rotating star, the frequencies for non-axisymmetric

(m f:. 0) modes will be shifted significantly. This is discussed in a little more detail in Chapter 6.

To take this into account, m was allowed to take the full range of values (-i, -i + 1.... i -1, i) for

each i, and the observed frequency was modified by mn where n is the frequency of rotation.

The angle of inclination i of each star is not known. If the axes are randomly oriented in

space, then the most likely angle of inclination is one where the star is viewed equator on. The

frequency of rotation was therefore calculated from the projected rotational velocity assuming

the star to be viewed. equator-on. Hence, any frequency v such that

v = LoU - mn

(where II() is the model frequency) that was in the acceptable frequency range was also permitted.

This has no effect on the mode-identification, since the method is essentially independent of m,

but was used to include modes that would otherwise not have been considered.

4.4 Calculating the terms Tl, T2, T3 and bo,

Tl depends only on i and so is easily calculated. T2 and T3 need a little more discussion. The

factor r2 = i. The factor p. is taken as unity as mentioned in Chapter 2. Defining

GM 9 2
aH == 32 = -2- = 74.41Q ,

rww r



where Q is the pulsation constant in days defined by

Q = P fE,V P0

then the factor C, defined by equation (2.32), and appearing in the expression for T2 can be

(4.1 )

rewritten as
1

C = lel + l)aH - - - 4.
aH

Equation (4.1) and the definition of density can be used to write

log Q = -log lIo + O.75log 9 - 0.25 log M - 3.328.

Hence, ou can be found given the surface gravity and stellar mass, and hence C can be found

for any mode i.

The only other terms that need to be calculated are the terms aT, ag, (Jr, {3g and bo,. These

terms were calculated using the latest version of the Kurucz (1979) model atmospheres. They

are the wavelength dependent terms of equation (2.43). Equation (2.43) defines the observed

magnitude variation in a single wavelength. This is not a realistic approach as the stars are

observed through filters which are not monochromatic. This is easily corrected by calculating

the terms aT, ag, /3r, (3g and bo, for various wavebands using the transmission functions of the

Geneva and Stroragren filters. The uvby functions given in Crawford & Barnes (1970) were used.

All the transmission functions were obtained in electronic form from the General Catalogue of

Photometric Data. 9. It should also be noted here that in using the Kurucz model atmospheres

to calculate these quantities, it is assumed that at any instant the atmosphere of the pulsating

star has the same structure as that of a static star of the same temperature and gravity.

Calculating aT and ag

The filter transmission functions 11(..\) are defined at discrete wavelengths over the width of the

filter i. The transmission curves were interpolated to be defined at regular intervals of 10 Á,

and then normalised so that

{A211(..\)d..\ = 1.JAI
It was necessary for the curves to be defined at regular intervals for Simpson integration to

be used in the calculations. Here Xj and ..\2 are the minimum and maximum wavelengths

transmitted through filter i.

9http://obswww.unige.ch/gcpd/filters

55

http://9http://obswww.unige.ch/gcpd/filters


The fluxes from the Kurucz (1979) model atmospheres for solar composition in the relevant

wavelength ranges define a flux curve for each filter. Here the flux is the flux normal to the

stellar surface. These flux curves were also interpolated to be defined at the same regular

intervals as the filter transmission curves, and then Simpson integration was used to calculate

the flux through the filter given by

These fluxes, log Fi, were calculated for each filter for each Kurucz model in the range 6000K ~

Teff ~ 8500K and 2.5 ~ logg ~ 4.0 cm 8-2 which adequately covers the range of temperature

and surface gravity for those 6 Set stars selected in the literature survey. Hence, a (Teff, log g)

grid was formed giving values of logFi for each filter at each grid point for which the Kurucz

models provided information.

The values of O:T and O:g were then calculated by fitting a surface to this grid. Given any value

of (Teff, logg) within the range of the grid, the value of the corresponding log F; could be found

by interpolating between the grid points. By fitting a parabola

through three points (Teff, logg), (Teff + <IT,logg) and (Teff - áI', logg), the derivative
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could be found. Then

The value of O:g>. was found by fitting a similar parabola log F; = bo + bl (T)2 + ~T through the

three points (Teff, logg), (TetT, logg + dg) and (Teff, logg - dg), giving

(
81og Fi)

O:g>. = 810gg g = 2bllogg +~.

Calculating f3T, {3g and bl>'

The Kurucz model atmospheres for solar composition give the intensities for wavelengths within

the range of each filter at 17 values of IL, where IL = cos (J and (J is the polar angle in the spherical



(4.2)

coordinate system where the z-axis is the line-of-sight to the observer. These intensities were

used to define an intensity curve Ii('>", Jl.) for each filter for each Jl., The intensity curves Ii('>", Jl.)

were also interpolated to be defined at regular intervals, and then Simpson integration was used

to calculate
J:2Ti('>")~('>",Jl.)d'>"

Ii(Jl.) = J~2 Ti('>")Ii('>", l)d'>"

so that Ii(Jl.) is normalised to be unity at Jl. = 1. This normalised intensity curve was then

interpolated in order to calculate Ii(O.l). Simpson integration was again used to calculate the

angle averaged flux

The limb darkening function

(4.3)

was used to approximate the limb darkening. Following Wade & Rucinski (1985), the quadratic

limb darkening coefficients a and b were calculated from the equations:

These equations follow from Ii(Jl.) = Ii(l)ht(Jl.), equation (4.2) and the requirement that Ii(O.l) =

Ii(l)ht(O.l).

Rewriting the limb darkening function as h(Jl.) = Xo + XIJl. + X2Jl.2, then

Xl
2(a + 2b)

=
1- a/3 - bl6

-2b
X2 = 1 - a/3 - bl6
Xo 2 - 2/3Xl - X2

where the last equation follows from the normalization of the limb darkening function.

The values of Xl and X2 could then be calculated for each of the Kurucz models for which data

is available, thus forming a grid of values of Xl and X2 at points (Taff,logg). By a fitting a

surface of xi and X2 to the grid, as before, through interpolation and the use of parabolas, the

derivatives of Xi and X2 with respect to log Teff, and logg could be calculated for any Teff and

log 9 within the range of the grid.
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o 1
1 2/3
2 1/4

o
1/36
1/20

o
1/30
1/16

Table 4.5: The coefficients c;
for the first few values of the
mode e.

Using the equation for the limb-darkening function above, bl>. can be rewritten as:

where the coefficients Cj are given in Watson (1988) and listed for e = 0, 1, and 2 in Table 4.5.

They are easily calculated from the above equation using the definition of Pt(J,L).

If e is known, then bo. and its derivatives with respect to log T and log 9 are easily calculated

from the values of Xl and X2 and their derivatives with respect to log Teff, and logg, and hence

(Jg and /Jr can be determined using the equations

Cl 8xl C2 aX2-- + ---_:.:..:::.__
loge 10 a log Teff logelO a log T eft"

Cl 8xl C2 aX2
-lo-ge-1-O-a-Iog-g + -log-e-1-O-a-log-g·

4.5 Identifying the mode

The amplitude and phases were all calculated using the concepts outlined above by a FORTRAN

program, which also allowed the mode to be identified. The program essentially did the following:

1. Calculated the parameters necessary to fit surfaces of log F, Xl and X2 to the grids of

(Teff, log g) using a subroutine obtained from a library of subroutines.

2. Requested the ranges in mass, effective temperature, surface gravity, .nd frequency for

the star being processed, and information about the stability and type of modes being

searched for. The rotational velocity was also requested.

3. Requested, for each filter, the observed amplitudes A and their uncertainties (J, and the

phases 4> and calculated al, a2 and (J2, where al = A cos 4>, and a2 = A sin 4>.
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(a) The surfaces of log F, Xl and X2 were fitted to the grids of (Teff,logg) using an-

other subroutine obtained from a library of subroutines. At the point (TI, log9I) the

derivatives of log F, Xl and X2 with respect to temperature and surface gravity were

calculated.

4. For each file with temperature TI and surface gravity log91 resulting from the non-

adiabatic pulsation code within the given ranges of mass, temperature and surface gravity

for the star, the following was done:

(b) For each frequency within the acceptable range the theoretical amplitude and phase

were calculated using the associated values of i, f and 'IjJ. Hence the amplitude and

phase could be predicted for each filter i. The models, as can be seen in Appendix A

actually provide the real and imaginary parts of r rather than f and 'IjJ. The values

of f and 'IjJ are easily obtained using

. I Im[f·-21r = f + 2 and 'IjJ = tan-
Re[f*1

(c) Finally, the theoretical and calculated amplitudes and phases were compared through

the evaluation of the X2 expression equation (3.3), and the corresponding probability

(calculated from the X2 value and the number of degrees of freedom) and the mode

i,n were recorded.

The results for each observed frequency for a star was therefore a list of modes i,n and the

associated probability of the identification.

The process was repeated three times - once for each set of models corresponding to the different

mixing length parameters ct = 0.5, 1, and 2, measured in pressure scale heights.
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Chapter 5

Mode Identification Results

The results of the mode-identification are listed in Table 5.1 . The second column gives the

reference to the data used. The frequencies listed beside each st ar are those identified in the

Fourier analysis described in Chapter 4. P is the highest probability of the mode identification

for mode i for the mixing length a. Those frequencies which could not be identified with a

p-mode are labelled 'g'. If, in addition, the mode is not excited, it is labelled 'g-'. The first

10 stars listed in the table are all high amplitude 8 Scuti stars. The others are all medium or

low-amplitude pulsetors.

The high amplitude double-mode stars, AE UMa, BP Peg and RV Ari, are useful as a check

on the method of mode identification, since both modes are known to be radial on the basis

of the period ratio". The table shows that the most likely identification for both periods is,

indeed, a radial mode. However, discrimination between i = 0 and i = 1 is sometimes poor.

AE UMa is known to have a much lower metallicity than the other two stars, but even so, the

mode identification is not affected. The fit for the first frequency in BP Peg is very poor. Upon

closer examination of the results, it was found that the predicted and observed amplitudes in

the u filter differed much more than in the other filters. (See figure 5.1.)

In the HADS stars AD CMi and BE Lyn radial modes were expected in both cases. Although

this is achieved for BE Lyn, the fit is very poor. AD CMi is not identified as a radial mode, and

the fit, once again, is very poor. The reason for the poor fits is once again traced to a discrepant

IFrom equation (6.2) it can be seen that, for any particular star, the period ratio Hj P; = Qi/Qj.The pulsation
constants Q have different values for different modes. For the fundamental radial mode and the first harmonic,
Q has approximate values 0.033 and 0.025 respectively, and hence a period ratio PI! Po ~ 0.76 means that the
pulsation is radial.
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Figure 5.1: Observed (solid circles) and calculated am-
plitudes and phases relative to the v band for the best-
fitting mode in BP Peg. The solid line is for models
with ct = 0.5, the dotted line for ct = 1.0, and the
dashed line for ct = 2.0.

u-amplitude. (See Figures 5.2 and 5.3.)

EH Lib is also a HADS and the mode appears to be radial, as expected. The evolutionary status

of this star is not clear and the models may not be appropriate.

DY Her, HS Gru and V567 Oph are also all HADS, but the single frequency in each case is

identified with an l = 1 g mode. As far as could be ascertained, the mode identification has not

previously been discussed for DY Her or V567 Oph, although the HADS are usually assumed

to have radial pulsation. All three of these stars have approximately the same frequency of

pulsation (:::::6.7 d-I). Between the ZAMS and the end of core hydrogen burning, the radial

mode has a frequency larger than 7.3 d-I for stars in the é Set instability strip, according to

the models used. The most likely explanation is that these are evolved radially-pulsating stars

outside the range of the models used in the identification. The models show that there are

some unstable g modes in this frequency range for main sequence stars, but these are unlikely

to attain the high amplitudes which are observed.

Joner & Johnson (1985) were able to determine only the main period for Vl7l9 Cyg, though
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Figure 5.2: Observed (solid circles) and calculated am-
plitudes and phases relative to the v band for the best-
fitting mode in AD CMi. The solid line is for models
with ek = 0.5, the dotted line for ek = 1.0, and the
dashed line for ek = 2.0.
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Figure 5.3: Observed (solid circles) and calculated am-
plitudes and phases relative to the v band for the best-
fitting mode in BE Lyn. The solid line is for models
with ek = 0.5, the dotted line for ek = 1.0, and the
dashed line for ek = 2.0.
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Figure 5.4: Observed (solid circles) and calculated am-
plitudes and phases relative to the v band for the best-
fitting mode in {3 Cas. The solid line is for models with
ct = 0.5, the dotted line for ct = 1.0, and the dashed
line for ct = 2.0.

more frequencies were suspected owing to the apparently variable amplitude. The star has a

peculiar light curve which was analysed in more detail by Rodriguez et al. (1997). The frequency

of pulsation is far too small for a 8 Set star. The star is probably evolved, but further data is

required to establish the nature of this object.

The low amplitude 6 Seuti stars can now be discussed. It should be noted throughout the

discussion that these stars generally have higher rotational velocities than the HADS. This

results in 8 shift in the frequencies which the non-rotating models have not taken into account.

The shift is small for m = 0, but, since the rotation period for these stars is about 2 days, the

frequency shift may reach values higher than 1 cycle.d-1 for i = [rn] = 2. This has been taken

into account in the mode identification procedure, as discussed in section 4.3.

Rodriguez et al. (1992a) discuss the possibility of i = 0 and i = 1 for {3 Cas, and settle on

the non-radial mode. The results show very poor agreement between observed and calculated

amplitudes for any choice of mode. This could be due to a discrepant u-filter. (See figure 5.4.)

At; far as could be ascertained, the mode identification for BF Phe has not been discussed. The
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Poretti (1989) identified all three frequencies that he found in the star ol Eri as non-radial. The

two frequencies identified in the data of Jergensen & Nargaard-Nielsen (1975) agree with Poretti

as in that they are also identified as non-radial.

results show that the mode is probably radial or i = 1.

Gupta (1980) identified the two frequencies he observed in DL Eri (6.415 d-l and 8.418 d-l)

with radial pulsation from the period ratio of 0.76. Poretti (1989), who also observed the

star, identified his frequencies of 6.41 and 10.26 d-l with non-radial pulsation, and the third

frequency 8.98 d-l with radial pulsation. The two frequencies found in the data of Jergensen

and Nergaard-Nielsen (1975), 6.4018 and 10.8587d-l, were identified as non-radial, probably

i = 1, in agreement with Poretti (1989).

Using the data of Kilambi, DuPuy and Koegier (1978), the single frequency found in their data

(10.25 d-l) is identified as a non-radial mode, probably i = 1. Hobart, Pena and Peniche (1989)

identified all three frequencies they found with non-radial modes based on the period ratios.

The results obtained using the data obtained in Sutherland in August 1997 (10.340, 10.018 and

4.74 d-l) agree with this, although the frequency at 10.34 d-l may be radial. No stable p-mode

Could be found with a frequency near ,4.74 d-l. If real, it is probably ag-mode.

Rodriguez et al. (1993) identify the pulsation mode for GN And (28 And) as i = 2. Here, on

the contrary, it has been identified as probably a radial or an i = 1 mode.

Vander Linden & Sterken (1986) observed V853 Cen (HR 126859) in 1982 and 1984. The 1982

frequencies are listed first in Table 4. Here the higher frequency appears to be radial, but the

fit is poor. The frequencies found in the 1982 data were fitted to the 1984 data. After this,

the actual frequencies found in the 1984 set were fitted. to the data. Vander Linden & Sterken

suggest that the mode at 18.9186 d-l be identified with high overtone radial, or non-radial

pulsation. Here the mode at 16.752 d-l is identified as either radial or i = 1 in all cases, the

discrimination being very poor.
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Kurtz (1980) observed CC Oct, determining the three frequencies listed first for this star. He

identified the frequency 8.0062 d-l with radial pulsation, in agreement with the results listed.

However, the fit is very poor. The frequency at 8.11 d-l is identified as a radial mode using

Kurtz's data or the data obtained in Sutherland in August 1997. This star has a high metallicity,

and, according to Wegner (1981) is quite evolved.



V393 Car (HD 66260) is a medium amplitude ó Scuti. Helt (1984) identifies the frequency

7.077 d-I with the fundamental radial frequency, but the results listed. in Table 5.1 show it

as non-radial. Once again, it should be noted. that in the models this frequency can only be

identified. with a stable radial mode or with an unstable non-radial mode. The second frequency

is identified as an f = 0 or 1 mode.

Rodriguez et al. (1997) suggest that the 10.1756 d-I frequency in AN Lyn is probably radial

on the basis of the phase shift. There is no clear discrimination between the radial and e = 1

modes for the other two frequencies.

HD 105513 (Heynderickx 1994) is the only star in the list which was observed in the Geneva

photometric system. The four frequencies are all less than expected. for the fundamental radial

mode in main sequence and giant ó Set stars. Unless the star is evolved, they are all non-radial

g modes.
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Table 5.1: The results of mode identification for three different
mixing lengths (ek). The confidence probability, P (percent),
as determined from X2, is given for each identification. The
identification was confined to excited p-modes in the models.
Those modes for which no p-mode could be found are label gj
if, in addition, such a mode is not excited then the label g- is
given.

o - 0.5 cc - 1.0 cc - 2.0
Star Ref Freq l P l P l P

AEUMa 2 11.6253 1 42.09 0 99.45 0 96.41
0 3.09 1 74.02 1 64.05

15.0326 0 99.92 0 99.87 0 98.61
1 99.57 1 99.76 96.96

BP Peg 2 9.1263 0 39.38
1 5.77

11.8242 0 6.51 0 37.25 0 33.13
3.43 21.51 22.86

RV Ari 2 10.7360 0 99.78 0 85.03 0 33.11
1 99.41 1 79.46 1 3.64

13.8964 1 99.11 1 94.80 0 80.58
0 98.25 0 94.59 1 75.56

ADCMi 8.1318 1 0.02 g

BELyn 4 10.4309 0 1.38

EH Lib II 11.3110 0 0.28 0 91.97 0 22.47
1 0.13 1 4.89

DY Her 10 6.7282 1 95.61 g 89.79 g 0.24 g
2 16.38 g

RS Gru 14 6.8000 1 99.31 g 1 96.17 g 1 98.47 g
2 16.06 g 2 0.03 g 2 25.90 g

V5670ph 15 6.7000 1 99.13 g 81.89 g 1 1.34 g
2 21.22 g 0.01 g

VI7l9 Cyg 19 3.7400 2 80.37 s- 1 99.13 s- 1 53.22 s-
1 73.00 g- 2 85.46 g- 2 48.30 s-

fJ CaB 3 9.9100 0.77

BF Phe 5 16.0100 1 60.23 1 98.08 0 92.93
0 23.61 0 5.72 1 92.11

6 16.0166 1 83.89 1 70.42 1 89.99
0 61.98 0 23.98 0 86.45

DL Eri 9 6.4018 1 92.05 g 1 93.85 g 1 62.99 g
2 39.88 g 2 11.61 g 2 2.72 g

10.8587 1 92.59 1 83.49 0 47.02
0 77.78 0 75.35 43.03

EW Aqr 12 10.2500 1 81.88 1 87.45 1 93.15
0 81.83 0 78.45 0 91.97

8 10.3400 0 83.37 1 95.10 0 99.01
1 81.81 0 73.38 1 98.20

10.0180 1 92.00 1 95.38 1 98.10
0 89.48 0 85.09 0 97.63

4.7400 1 99.64 g- 1 99.64 g- 1 95.59 g-
2 99.56 s- 2 99.50 g- 2 99.16 g-



Table 5.1: Continued.

Cl: = 0.5 Cl: = 1.0 Cl: = 2.0
Star Ref Preq l P ( P l P

GN And 13 14.4292 0 96.67 0 92.13 0 41.06
1 93.78 88.59 1 27.66

ol Eri 9 13.2600 1 76.77 1 67.63 1 20.93
0 56.94 0 38.29 0 7.53

6.7400 1 61.30 g 1 63 ..w g 1 73.71 g
2 49.33 g 2 50.89 g 2 42.29 g

V853 Cen 16 18.9186 0 50.65 0 29.56 0 39.86
1 33.86 1 6.72 1 27.60

16.7520 1 91.47 1 92.00 0 93.67
0 89.13 0 91.88 1 93.48

18.9186 0 99.95 1 99.94 0 99.95
1 99.93 0 99.93 1 99.94

16.7520 1 99.83 1 99.82 1 99.81
0 99.81 0 99.81 0 99.80

18.2000 0 99.92 0 99.93 0 99.90
1 99.89 1 99.92 1 99.89

16.5820 1 99.77 1 99.78 1 99.77
0 99.75 0 99.76 0 99.75

CC Oct 7 8.0062 0 26.07 0 10.20 0 2.69
12.5763 1 94.48 1 96.16 1 93.18

0 93.94 0 96.03 0 93.12
8.1100 0 99.10 0 99.02 0 99.62

8 8.0000 0 37.90 0 28.82 0 18.89
8.112O 0 88.26 0 88.37 0 86.98
12.6200 1 93.95 0 94.46 0 93.26

0 93.63 94.44 1 93.18

AN Lyn 17 10.1756 1 0.01 g 1 1 0.02 g
18.1309 1 79.56 0 66.27 0 31.95

0 68.91 1 58.86 1 24.17
9.5598 0 75.94 1 80.75 0 88.78

69.05 0 66.37 84.90

V393 Car 18 7.0770 1 94.30 g 9.71 g
2 3.99 g

12.5780 1 99.93 1 99.91 1 99.76
0, 99.87 0 99.87 0 99.75

18 7.0770 1 93.95 g 1 8.77 g
2 3.50 g

13.5780 1 99.93 1 99.65 0 98.44
0 99.83 0 99.54 1 97.16

HO 105513 20 6.8559 1 99.99 g 1 99.89 g 1 96.01 g
2 98.47 g 2 0.05 g 2 37.76 g

6.6388 1 99.98 g 1 99.99 g 1 99.96 g
2 61.04 g 2 46.05 g

6.8902 1 99.94 g 1 99.78 g 1 98.80 g
2 99.85 g 2 23.91 g 2 7l.98g

6.4586 1 99.99 g 1 99.99 g 1 99.99 g
2 99.55 g 2 56.62 g 2 98.64 g

1 - Rodriguez et al. (198&); 2 - Rodriguez et al. (1992&); 3 - Rodriguez et al.
(1992b); 4 - Rodriguez et al. (1990); 5 - Rodrigues et al. (l988b); 6 - Poretti et
al. (1996); 7 - Kurtz (1980); 8 - Evers &£ Meintjes (unpublished); 9 - Jergensen
&£ N0rgaard-Nielsen (1975); 10 - Breger et al. (1978); II - Joner (1986); 12 -
Kilambi et al. (1978); 13 - Rodriguez et al. (1993); 14 - Rodriguez et al. (19941:
15 - Powell et al. (1990); 16 - Vander Linden &£ Sterken (1986); 17 - Rodriguez
et al. (1997); 18 - Helt (1984); 19 - Joner &£ Johnson (1985); 20 - Heynderickx
(1994)

67



Wo = Wim + rnf2(1- Gin) (6.1)

Chapter 6

Asteroseismology

In this chapter an algorithm to determine the stellar parameters of luminosity, and temperature

will be discussed. In the algorithm used to identify the degree of pulsation i , the most likely

mode identified was associated with a particular model, and hence a set of stellar parameters

TefT, log 9 and log L. These stellar parameters are not reliable since the observed frequencies do

not match the model frequencies exactly and rotation has not been taken into account in the

calculation of the model frequencies.

In the presence of rotation, the degeneracy of the modes is lifted i.e. a frequency Vo of mode i of

a non-rotating star is split into 2i + 1 frequencies, corresponding to the values of m = -i, -(i-I),

... , i-I, i. To first order in the angular rotation velocity n, the frequencies can be written as

where "-\) = 27rvo is the angular frequency of the non-rotating star, and Gin is a constant

that depends on the structure of the star, and is usually small for p-rnodes. This equation is

discussed in Cox (1980) Chapter 19, and also in Unno et al. (1989). Hence, to first order, the

splitting is symmetrical about the frequency of the non-rotating star, which also coincides with

the frequency for m = O.

It should be noted here that the first order approximation is only valid for slow rotation. If

second order terms in n are included then the splitting is not symmetrical, and the frequency

with m = 0 no longer coincides with the frequency for zero rotation. Although these second

order effects do become important for rotational speeds as low as 50 km.s-1, which are present

in the low amplitude 8 Set stars, they have not been included in this study.
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(6.2)

The axisymmetric modes (m = 0) are least affected by rotation, and are thus the easiest to deal

with. They will be discussed first.

6.1 Axisymmetric modes

In order to determine the stellar parameters from the observed frequencies and mode identifica-

tions, an interpolation formula is needed. Eddington's period-density relation

implies a relationship between the observed frequency of pulsation and the stellar parameters.

Here P is the period of pulsation in days, p is the average density of the star and Q is a constant

dependent on the mode and the type of variable star. For a Ó Set star, Q ~ 0.03 for the

fundamental radial mode. Since the density p oe M / R3 and the luminosity L oe T4R2, the

frequency I-tJ for a given non-axisymmetric mode (i, 0, n) can be written as

log lIo = lloln + alln log Teff+ a2ln log L + a31n log M (6.3)

where the aUn's are constants dependent on the mode.

Evolutionary models show that a simple power law is a good approximation to the mass, given

the luminosity. Hence mass can be discarded as a variable. Then

log lIo = lloln + alln logTeff + a2ln log L. (6.4)

The coefficients are shown in Table 6.1. These were obtained by doing a multivariate least

squares fit (with frequency as the independent variable) on the data for pure or almost pure

p-modes in the models that had not evolved beyond ECHB. Equation (6.4) is not valid for

non-radial g-modes, or modes of mixed character where the g-mode component is significant.

The interpolation coefficients ai are sensitive to mixing length and probably also to composition,

although the latter is beyond the scope of this study.

Given a frequency of radial pulsation and its mode (i, nl, the star can be placed on a log L-IogT

line in the H-R diagram. If two or more radial frequencies are present in the star, then the

intersection of the lines provides a point in the HR diagram. The formulae are most useful for

the radial modes, since these are known to be axisymmetric.
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Table 6.1: The coefficients of the frequency - luminosity -
temperature relationship for axisymmetric p-modes in 6 Sct
models for two values of the mixing length parameter, 0:.

The rrns error in the fitted frequency is given by 0'; N is the
number of models used in the least squares solution.

0: (i, n) ao al a2 0' N

0.5 (0, 1) -10.2984 3.1336 -0.65208 0.00087 313
1.0 (0, 1) -10.3101 3.1367 -0.65228 0.00095 298
0.5 (0,2) -10.1789 3.1321 -0.65345 0.00064 313
1.0 (0, 2) -10.1930 3.1358 -0.65365 0.00071 298
0.5 (0,3) -9.6714 3.0202 -0.63758 0.00078 313
1.0 (0,3) -9.6829 3.0232 -0.63765 0.00094 298
0.5 (1, 1) -10.2864 3.1340 -0.65272 0.00058 32
1.0 (1, 1) -10.2959 3.1366 -0.65309 0.00055 32
0.5 (1, 2) -10.6291 3.2565 -0.67186 0.00076 92
1.0 (1, 2) -10.6408 3.2596 -0.67211 0.00071 92
0.5 (1, 3) -10.3789 3.2150 -0.66608 0.00063 135
1.0 (1, 3) -10.3898 3.2178 -0.66620 0.00061 136
0.5 (2, 1) -8.2123 2.6076 -0.57441 0.00026 42
1.0 (2, 1) -8.2123 2.6076 -0.57441 0.00026 42
0.5 (2,2) -8.9570 2.8228 -0.60642 0.00090 120
1.0 (2,2) -8.9582 2.8251 -0.60574 0.00098 121

6.2 Non-axisymmetric modes

For non-axisymmetric modes, the effect of rotation must also be considered. As already stated,

Gln is small. Also, the ratio of O/27r1l is small as the frequency of rotation is usually much

smaller than the frequency of pulsation. Using these facts, equations (6.4) and (6.1), and the

fact that In (l+x) :::::x if x « 1, then

(6.6)

log II = aotn + aUn logTeff + aUn logL + a3lnm (6.5)

where a3ln = -(loge)(l - Gln)O/II. This relation is once again only valid for p-modes, or

almost-pure p-modes. Since another unknown, (1 - Gln)O has been introduced, a minimum of

three frequencies is required for a unique determination of logTetf, and logL.

Suppose there is a star with a number of frequencies, N. If the modes (i, m, n) are known, then

the interpolation constants are known. The sum of squares L €~ where €i is given by
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6.3 Application to specific stars

can be minimised to obtain the most probable values of log Tetf, log Land (1 - Cln)O.

The pulsation modes, as well as the stellar parameters, might be identified using the observed

frequencies and the above equations. For example, in a star with four observed frequencies,

each frequency Vi could be allowed to take on an identification (e, m, n)i, and the sum of squares

minimised. A solution set would then be one for which the particular set of modes give stellar

parameters which are reasonable i.e. fall within the expected ranges for these stars. However,

in the range 0 $ e $ 2, -e $ m $ e and 1 s n s 3 there are over 530 000 possible combinations

of modes for four frequencies, and a unique solution for the stellar parameters is not obtained.

It is therefore useful to use the mode-identification as a constraint when using the equations

discussed above to obtain the stellar parameters.

The stars discussed in Chapters 4 and 5 are, unfortunately, not ideally suited for asteroseismology

as most of them have only one or two observed frequencies associated with p-rnodes. For those

stars which are likely to be pulsating in the fundamental and first overtone radial modes, log Telf

and log L were calculated using the equations for the axisymmetric modes for a = 1. Although

not always valid, the stars were assumed to have the same abundance, Z = 0.02, used in the

models, and to be less evolved than the end of core hydrogen burning. The results are shown in

Table 6.2 and in Figure 6.1. Those.stars with only one frequency of pulsation were assumed to

be pulsating in the fundamental radial mode, and the log L - log Teff locus plotted.

The results do not depend much on the adopted mixing length: a maximum difference of 0.002

dex in logTeff and 0.08 dex in log L was found for a = 0.5 relative to a = 1.0. In other words,

the effect of changing a is mostly a small change in luminosity; the temperature is more or less

unaffected.
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Table 6.2:. The effective temperatures and lumi-
nosities as determined from the pulsation frequen-
cies and mode identifications. For stars with only
one frequency, the values of CQ and Cl in log L == ..
CQ + Cl logTelf are given.

CQ or Cl or
Star 1/ (lmn) logTefJ logL

AEUMa 11.6253 (00 1) 3.926 1.441
15.0326 (002)

BP Peg 9.1263 (001) 3.779 0.892
11.8242 (002)

RV Ari 10.7360 (001) 3.854 1.147
13.8964 (002)

ADCMi 8.1318 (001) -17.202 4.8088
BELyn 10.4309 (001) -17.367 4.8088
EH Lib 11.3110 (001) -17.421 4.8088
jj Cas 9.9100 (001) -17.333 4.8088
BF Phe 16.0100 . (001) -17.653 4.8088
GN And 14.4292 (001) -17.584 4.8088

72



Figure 6.1: Location of the 6 Set stars on the H-R diagram as determined from the
pulsation parameters. For stars with only one mode, the locus is given within the
most probable temperature range.
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Chapter 7

Summary and Conclusions

7.1 The mode-identification

A new algorithm for mode-identification using multicolour photometry has been developed. This

new method, which allows both the phases and amplitudes to be used for mode identification,

differs from the currently used two-colour diagrams in that it allows the information from all

the filter passbands in which the star is observed to be used simultaneously. It also allows a

probability to be assigned to each mode identification, provided that the amplitudes and phases

from at least three filter passbands are available.

Although it would have been possible to leave f and 't/J as free parameters in the mode iden-

tification procedure, they have been calculated using linear non-adiabatic models that could

describe the 6 Set stars. This was done to reduce the number of free parameters in the mode

identification procedure. There was some uncertainty in the values of f and 't/J used, due to the

uncertainty in the treatment of convection for log TefT < 3.93, and also due to the fact that the

observed and calculated frequencies do not match exactly. In order to explore the uncertainty

in f and 't/J due to convection, the mode identification procedure was applied using three sets of

models corresponding to the mixing lengths, Ct = 0.5,1.0 and 2.

The method was applied to some 6 Set stars for which the required photometric observations

were available. The data for two of the stars, CC Oct and EW Aqr were obtained by observing

the two stars in August 1997. The 6 Set stars are particularly interesting, as, unlike the f3 Cep

stars, there are significant phase differences between light curves in different colours, which can
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be used in the mode-identification procedure. For stars where the phase differences between

light curves in different colours are small, other methods are available which use the amplitudes

only for mode-identification. Some of these methods were discussed in Chapter 3.

The expected radial mode was identified in all the HADS to which the method was applied,

except in five cases. In three of the cases where the identification was not correct, i.e. DY

Her, RS Gru and V567 Oph, it is probable that the stars are evolved beyond the ECHB, and

thus beyond the scope of the models used. This is indicated. by the fact that the frequency of

pulsation, which is similar in all three the stars, cannot be identified. with radial modes in the

models. In the other two cases, AD CMi and BE Lyn, the fit was extremely poor. The reason

for the poor fit was traced to a discrepant u-amplitude.

For the other stars, there was frequently little discrimination between the l = 0 and l = 1modes.

The l = 2 mode was more easily discriminated, but there was very little evidence for this mode

in the selected sample of stars. For the selection of stars in this study, the algorithm developed

was useful for some of the LADS, but worked best for the HADS.

A larger sample of stars may have been more indicative of the success of the method. However,

published observations of Pop I stars in three or more colours were not easy to find, espe-

cially for low-amplitude pulsaters. The sample would, therefore, need to be increased through

observations, but time constraints did not allow this.

Although the models were assumed to be non-rotating, frequencies that would have been present

in a rotating star were allowed in the mode-identification procedure. This did not affect the mode

identification, since the method is independent of m. The algorithm does not seem to be very

sensitive to the different metallicities found in the selected stars, although only stars that were

not clearly Pop II were selected. The results are, however, not independent of the mixing length.

The same modes were identified. for each star, regardless of the mixing length used, although

the significance of the modes varies with mixing length. There is no single value of Cl! that seems

to give the best results - it varies from star to star.

Discrimination between modes would be improved if observations of these stars are supplemented

with data in longer or shorter wavelengths. As discussed in Chapter 2, in the longer wavelengths,

the phases provide better discrimination between modes, while in the shorter wavelengths the

mplitudes also become more sensitive to mode. Observations in either case would help to

pin down the mode identification more securely, although they are difficult to obtain for the
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6 Set stars. Unfortunately, the algorithm does not allow the number of radial nodes n, or the

azimuthal number m to be determined.

7.2 Asteroseismology

The main aim of mode identification is to enable the stellar parameters to be detern ...ned from

the pulsation parameters. This is called asteroseismology. Although the mode-identification

algorithm discussed. above also selected the stellar parameters of the 'best fit' model, these

stellar parameters are not reliable because the models were calculated assuming zero rotation,

and also because the model frequenciesdo not exactly match the observed frequencies.

An algorithm to deduce the temperature and luminosity from the pulsation frequencies was

formulated. This consisted of relationships between frequency and the stellar parameters ob-

tained from linear non-adiabatic models. The resulting equations are mode dependent and also

depend on the choice of mixing length. The equations are only valid for p-modes or almost pure

p-modes, and are thus not really useful for many of the non-radial modes found in 6 Set stars

since these modes have a mixed p- and g-mode character. Slow rotation is also assumed, and

so the equations are not useful for stars with rotational velocities greater than 50 km.sr ", i.e.

most of the LADS. Second order effects must be included if the equations are to be applied to

these stars. Using these equations, a solution for the temperature and luminosity is in principle

possible if two axisymmetric frequencies or if three or more frequencies are available.

The method was applied to a small selection of 6 Set stars, assuming radial pulsation in axisym-

metric modes. Those with only one frequencywere assumed to be pulsating in the fundamental

mode, and those with two frequencies were assumed to be pulsating in the fundamental and

first harmonic modes. These stars were also assumed to be in a stage of evolution before ECHB,

which may not be valid for all of them. It was found that the resulting luminosity is sensitive

to the choiceof mixing length, while the temperature seems to be less sensitive.

If the algorithm is used without the mode-identification, and all modes are allowed for each

of the frequencies present in a star, then a unique solution for the stellar parameters is not

obtained. Mode identification is therefore useful for constraining the number of valid solutions

and essential if a unique solution is desired, especially as the number of frequencies increases.

The amount of information that can be determined from the pulsation parameters is propor-
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tional to the number of pulsation frequencies present. In the sun, where millions of modes have

been identified, the radial structure can be determined. In the 6 Set stars, where only a few

frequencies of pulsation are present, much less information can be obtained. The temperatures

and luminosities of the HADS stars which are pulsating radially in the fundamental and first

harmonic can be determined using the equations in the previous chapter (which are sensitive

to mixing length). The temperatures and masses can also be obtained from 'Petersen' dia-

grams. (See for example Petersen & Christensen-Dalsgaard (1996) or Andreasen (1983).) These

diagrams are, however, sensitive to metallicity. Obtaining the stellar parameters for the low

amplitude 6 Sct stars is more difficult, because of the effects of rotation. Rotation, which alters

the frequencies expected in a non-rotating star, is higher for these stars, and the resulting split-

ting of the frequencies is no longer a simple symmetrical pattern. Asteroseismology for these

lower amplitude stars seems to be less hopeful. Clearly there is still much work to be done on

asteroseismology in 6 Set stars.
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Appendix A

Example of Output of Dziembowski's
Pulsation Code NADROT

Table A.1: An example of an output file from W. Dziembowski's linear non-
adiabatic pulsation code NADROT.

Mass Log(Te) Log(L) Log(g) Vrot
1.80 3.8764 1.1155 4.0347 0.0

i n sig P[min] fa[c/d] Re(fn) ekg/ek fr fi eta
0 1 2.061 109.05 13.205 13.205 0.000 5.576 10.863 0.061
0 2 2.670 84.20 17.103 17.103 0.000 6.929 10.137 0.077
0 3 3.302 68.08 21.151 21.151 0.000 6.983 9.592 0.084
1 3 1.078 208.45 6.908 6.908 0.947 -0.427 9.334 -0.187
1 1 1.524 147.54 9.760 9.760 0.937 2.750 10.803 0.014
1 3 2.110 106.51 13.519 13.519 0.021 5.633 10.770 0.063
1 4 2.732 82.27 17.503 17.503 0.029 6.929 10.059 0.078
1 3 3.017 74.49 19.331 19.331 0.346 7.050 9.777 0.081
2 6 1.062 211.59 6.805 6.805 0.971 -0.963 7.845 -0.348
2 5 1.214 185.09 7.780 7.780 0.958 0.110 9.080 -0.174
2 4 1.402 160.34 8.981 8.981 0.939 1.486 10.028 -0.050
2 3 1.713 131.20 10.976 10.976 0.843 3.525 10.700 0.038
2 4 2.061 109.05 13.205 13.205 0.396 5.221 10.716 0.062
2 3 2.381 94.41 15.253 15.253 0.504 6.229 10.434 0.072
2 4 2.800 80.29 17.934 17.934 0.340 6.874 9.976 0.079
2 3 3.247 69.23 20.799 20.799 0.285 6.914 9.621 0.084

The first two lines in the above table give the star's mass in solar masses, effective temperature,

surface gravity and rotational velocity, which was set to zero for all the model stars. The first

column gives the spherical harmonic degree i; and takes integer values in the range 0 to 2. The
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second column gives the harmonic n. The fundamental radial mode is thus (i, n) = (0,1). The

third column 'sig' is the dimensionless frequency a defined by

Re[w]
a = -v'rT4=7rC#<===p======'>

where G is the Gravitational constant, and < p > is the average density of the star.

The fourth column gives the period P of pulsation in minutes. The fifth column, fa, gives the

adiabatic frequency, and the sixth column gives the real part of the non-adiabatic frequency.

The seventh column 'ekg/ek' indicates the type of mode, and has values varying between 0 and

1. A p-mode has a value close to zero, and a g-mode has a value close to 1. In this thesis, all

modes with a value higher than 0.2 have been denoted g-modes. As seen in this file, different

frequencies are in some cases assigned the same (i, n). This is possible because the modes are

of different types i.e. p-modes, g-rnodes or mixed p- and g-modes.

The eighth and ninth column give the real and imaginary parts of r as defined in Chapter 2.

The values of f and 1/1 are easily extracted as described in Section 4.5 of Chapter 4.

The last column gives the growth rate of the pulsations. Thus those modes with a negative

growth rate are damped, or stable modes, and those with a positive growth rate are the excited

modes.
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Appendix B

Periodogram Analysis

B.l Determining the period

Suppose that the true magnitude Y; of a star at any time t, can be described by a series of cosine

functions with different angular frequencies wand amplitudes A i.e.

Y; = Ao +L: Ak COS(Wkt, + <Pk)
k

for k = 1,2,3 ... (B.1)

The observed magnitude Yl' which has a certain error e, associated with it, can then be written

as

y, + ei = Ao +L: Ak COS(Wkt, + <Pk) for k = 1,2,3 ...
k

= Ao +L:(alk cos wkt, + a2k sinwkt,).
k

(B.2)

If both sides of the equation are multiplied by cos wit, then

y, COSwA + e, cos wit, = Ao COSwit, +L: (alk cos wkt, cos wA + a2k sin wkt, cos Wit,). (B.3)
k

If the star is observed N times, then there are N such equations (i.e. i = 1,2,3, ... N.) The

average of these N equations, obtained by adding them and dividing by N, gives :

< y, cos wit, > + < e, COSwit, > = Ao < COSwit, > +L:(alk < COSWkt,COSwit, >
k

where the angle brackets denote the averages.
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The observational error ei is random. Hence, if N is sufficiently large, < ei cos Wjti >= O. Also, all

terms on the right hand side of equation (B.4) are zero except the term alk < cos WA:ti cos Wjti >
when k = j. Then

1 !o21r 1< Yi cosWjti >~ -2 coswt d(wt) = -alj'
1T" 0 2 (B.5)

The larger the number of data points N, or the more even the phase coverage is, the closer this

approximation becomes. Similarly,

(B.6)

The amplitude then becomes

(B.7)

The constant .40 is simply given by .40 =< Yi >.

The aim of periodogram analysis is to determine the frequencies present in a set of data from an

observed star. A plot of the amplitude Aj as a function of Wj is called the periodogram. In order

to determine what frequencies are present in the data, a particular frequency Wj is chosen, and

the corresponding amplitude Aj is calculated. This is repeated for many frequencies over the

range in which the pulsation frequencies are expected to lie. How well any particular frequency

describes the data set is given by the variance < e~ >. The minimum value of the variance

coincides with the largest amplitude, which hence coincides with the most likely value W or

II = ~. This is easily seen by considering the simple case of a single oscillation i.e.

Then

Taking averages and using the expression for .40, then

A2
< e; >=< Y; > - < u. >2 +1 - 2AA: < Yi COS(WA:ti +4>A:) > .

Now < Yi Co;;(WA:ti + 4>1e) >= ~ so that

2 2 2 A~< ei >=< Yi > - < Yi > -T'

From the above equation, it can be seen that the magnitude of < e; > depends only on Ale,

since the terms in Yi are constant for any set of data, and that < e~ > is a minimum when AA:

is a maximum.
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Y(t) = ACal(wot - <IJ)

Once the malt likely frequency, say Wa has been found, a new data set can be formed by

\ subtracting this frequency from the data set. This is known as prewhitening the data. This new

data set can then be used to determine the next most likely frequency Wb, and so on.

It should be noted that this works best for a large number of data points, and assumes sinusoidal

variations, which is not always true of the high amplitude ó Set stars.

B.2 Some further notes

A periodogram has some further properties due to the nature of the observations of stars. For

simplicity, consider the light curve to be described by a single cosine function

If the star were observed for all time, then the periodogram would be a single spike at frequency

wo, and have zero amplitude elsewhere. Because stars are observed for a finite amount of time,

say t = 0 to t = T this single spike broadens out into a line with a width ów which is inversely

proportional to the length of observation T. If a star has two closely spaced frequencies, then

the resolution of these two peaks becomes easier as T increases.

Other features are present in the periodogram because a star's magnitude or luminosity is

sampled at discrete times. If a star, which is pulsating at a frequency 1.1 (measured in d-I)

is sampled every 5 minutes, i.e. at a frequency of 0.0035 d-I then there will be peaks in the

periodogram at frequencies of 1.1 ± nO.OO35 d-I where n is an integer. Furthermore, stars are

usually observed in blocks, with gaps between the blocks where no data are taken (e.g daytime).

These gaps result in the appearance of sidebands or aliases in the periodegram around the

pulsation frequency. For example, aliases at intervals of n d-I are present in the periodegram

if the star is observed at a single site due to the gap in the data because of daytime. These

aliases can have amplitudes in the periodogram which are comparable to that of the pulsation

frequencies, making discernment of the pulsation frequencies difficult. These aliases can only be

eliminated in multi-site campaigns, in which a star is sampled at different observatories situated

at different places on the globe, so that the gaps in the data due to daytime are eliminated.

Some examples of periodograms are given in the next appendix, for the two Ó stars CC Oct and

EW Aqr.
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Table C.1: The two variable stars
and the comparison stars used to ob-
tain the differerantial photometry.

Appendix C

Observations of CC Oct and EW Aqr

The 8 Scuti stars CC Oct (HDl88136) and EW Aqr were observed in August 1997, at the SAAO

site near Sutherland, on the 0.5-m telescope using the SAAO Modular Photometer. The stars

and their comparison stars are listed in Table C.l.

star Spectral type

CC Oct A3
HR 7698 A2
HD 188230 AO

EW Aqr FO
HR 8018 A7
HR 8212 F5

CC Oct was visible all night, but EW Aqr was only up for 6.5 hours. When both stars' were up,

the observing sequence was HR7698, CC Oct, HD 188230, HR 8018, EW Aqr, HR 8212. When

only CC Oct was visible, the observing sequence was HR7698, CC Oct, HD 188230, CC Oct.

Conditions were not very photometric during the two weeks of observations, but some useful

data were nevertheless obtained. A journal of the observations is given in Table C.2. Differ-

ential photometry was obtained for these stars through the uvbyI filters. The integration time

through the u-filter was 40 s, and 20 s through all the other filters. Sky observations were taken

every 10 minutes during the first hour while the sky was not completely dark, and thereafter
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Table C.2: A journal of the observations. The number
of data points obtained per filter is indicated by n.

Date HJD n (CC Oct) n (EW Aqr)
2450000.+

12/8-13/8 0674 23 10
13/8-14/8 0675 18 12
14/8-15/8 0676 3 4
15/8-16/8 0677 15 11
19/8-20/8 0681 17 11
20/8-21/8 0682 20 13
21/8-22/8 0683 14 13
22/8-23/8 0684 13 6
23/8-24/8 0685 7 6

TOTAL 130 86

approximately every 30 minutes.

After reduction of the data, the frequencies present in the data of the two variable stars were

determined using the principles of periodogram analysis described in Appendix B. The peri-

odograms are shown in Figures C.1 and C.2. In these figures, each successive panel is the result

of prewhitening the previous panel with that panel's most probable frequency. The results of

the periodogram analysis are listed in Table 4.1 of Chapter 4.
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cc O=t.

o

Figure C.l: Periodograms for CC Oct. The top panel shows the periodegram for (with the amplitude
in mag) with the frequency of 8.000 d-l being predominant. The next panel is has been prewhitened
with the frequency of 8.000 d-l, and shows the second frequency of 8.112 d-l. The third panel has been
prewhitened again to reveal the frequency of 12.62 d-l This frequency is not really visible above the
noise, but was accepted as it agrees with that of Kurtz (1980). The last panel has been prewhitened with
the frequency of 12.62 d-l. There is no clear frequency that can be extracted from this last periodegram.
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Figure C.2: The top panel shows the periodograrn (with the amplitude in mag) with the dominant
frequency of 10.340 d-1 for EW Aqr. The next panel is has been prewhitened with the frequency of
10.340d-1, and shows the second frequency of 10.018d-1• The third panel has been prewhitened again
to reveal the frequency of 4.74 d-1• The next panel has been pre-whitened again, and reveals a frequency
of approximately 11 d-1. No record of this frequency was found in any other published literature.
::'urtherrnorethe software packageused to perform the periodogram analysis indicated that this frequency
was probably not real, and so this frequency was ignored. The last panel has been prewhitened with the
frequency of approximately 11d -1, and shows only noise.
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Summary

This thesis discusses mode identification in periodic pulsating stars from multicolour photometry.

These stars pulsate in one or more modes, where each mode is described by a spherical harmonic

degree i, an azimuthal number m and the number of radial nodes n. The amplitudes and phases

of the light curve vary with wavelength and also depend on the spherical harmonic degree i, and

thus allow the mode to be determined.

In stars where the light curves in different colours are essentially in phase the mode can be

identified using graphical methods. In stars such as the Ó Sct stars where the phase differences

between the light curves in different wavebands are significant, there is extra information which

can be used for the mode identification. The currently used two-colour diagrams do not always

allow the mode to be identified unambiguously, and only use information from two wavebands.

There is a need to develop a better method of mode identification for these stars. A new

algorithm for mode identification is proposed which allows all the information from the light

curves in two or more wavebands to be used simultaneously. If information from three or more

wavebands is available, then a significance can also be assigned to each mode identification.

The number of free parameters in the mode identification procedure is reduced by using linear

non-adiabatic models to calculate the parameters f and 1/J. There is some uncertainty in these

values due to the uncertainty in the treatment of convection. This is explored by using three

sets of models corresponding to different mixing lengths, a for the mode identification.

The method is applied to some Ó Set stars with the required photometric observations. The

expected radial mode is identified in most of the high amplitude stars, provided that the evo-

lutionary status of the observed star is covered by the models. For the other stars, there is

frequently little discrimination between the radial and i = 1 modes. The results are sensitive

to the a, but there is no single value of a which gives the best results. It is recommended that
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the wavelength coverage of these stars be extended to longer or shorter wavelengths to improve

the discrimination between modes.

The main aim of mode identification is to enable the stellar parameters to be determined from

the pulsation parameters. i.e. asteroseismology. The mode-identification algorithm discussed

above does not yield reliable stellar parameters.

An algorithm to deduce the temperature and luminosity from the pulsation frequencies is for-

mulated. This consists of relationships between pulsation frequency and the stellar parameters

obtained from linear non-adiabatic models. The resulting equations depend on the mode and

a, and are only valid for p-modes. They are not useful for many of the non-radial modes found

in Ó Set stars, or for the low amplitude stars. Using these equations, a solution for the temper-

ature and luminosity is in principle possible if two axisymmetric frequencies or three or more

frequencies are available.

The method is applied to a small selection of ó Set stars, assuming radial pulsation and an

evolutionary status before ECHB. It is found that the resulting luminosity is sensitive to a,

while the temperature is less sensitive.

If the algorithm is used without the mode-identification, and all modes are allowed for each

of the frequencies present in a star, then a unique solution for the stellar parameters is not

obtained. Mode identification is essential for a unique solution. At this stage, asteroseismology

for the low amplitude stars seems to be less hopeful than for the high amplitude stars. There is

still much work to be done on asteroseismology in Ó Set stars.
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Opsomming

Hierdie verhandeling bespreek die identifikasie van die pulsasiemodusse van pulserende sterre

met behulp van fotometriese data van verskeie kleurbande. Hierdie sterre pulseer in een of meer

modusse, waar elke modus beskryf word deur 'n sferiese bolfunksie van graad f. en assimutale

getal m, en 'n getal n wat die aantal nodusse van die staande golf in die ster weergee. Die

verandering van die amplitude en fase van die ligkromme met golflengte en graad f. maak dit

moontlik om die pulsasiemodusse te bepaal.

In sterre waar die ligkrommes van die verkillende kleurbande amper in fase is, kan die pul-

sasiemodusse met behulp van grafiese metodes bepaal word. In sterre soos die Ó Set sterre

is daar egter 'n beduidende verskil tussen die fases van die ligkromme van die verskillende

kleurbande. Daar is dus meer inligting beskikbaar wat gebruik kan word om die modusse te

identifiseer. Die huidige metode van die twee-kleurdiagramme gebruik net twee kleurbande op

'n slag en maak dit nie altyd moontlik om die modus ondubbelsinning te bepaal nie. Dit is nodig

om 'n nuwe tegniek te ontwikkelom die pulsasiemodusse van hierdie sterre te identifiseer. Die

nuwe algoritme wat voorgestel word, gebruik al die inligting van die ligkromme in twee of meer

kleurbande gelyktydig vir die identifikasie. As die amplitude en fase van drie of meer ligkrommes

beskikbaar is, kan die betroubaarheid van die identifikasie ook bepaal word.

Die aantal vrye parameters is verminder deur f en t/J met behulp van liniêre nie-adiabatiese

struktuurmodelle te bepaal. Daar is 'n onsekerheid in hierdie waardes omdat daar 'n onsekerheid

in die mengskaal. a, van die modelle is. Dit is ondersoek deur drie verskillende stelle modelle te

gebruik met drie verskillende mengskale.

Die metode is toegepas op sekere Ó Set sterre waarvan data in drie of meer kleurbande beskikbaar

is. Die verwagte radiale pulsasies is geidentifiseer in die meeste van die hoër amplitude sterre.

Vir die ander sterre kon daar dikwels nie eenduidig onderskei word tussen radiale en die f. =
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1 modusse nie. Die resultate is sensitief vir die gekose mengskaal in die modelle, maar daar is

geen enkele waarde vir die mengskaal wat die beste resultate lewer nie. Dit word aanbeveel dat

hierdie sterre ook in hoër of laer golflengtes waargeneem word om makliker tussen die verskillende

modusse te onderskei.

Die hoof rede vir die identifiseering van die pulsasiemodusse is om verskeie parameters met

betrekking tot die struktuur van die ster met behulp van die pulsasie frekwensies te bepaal. Dit

heet ster-seismologie. Die metode om die modusse te identifiseer wat hierbo verduidelik word,

gee nie betroubare waardes vir die parameters nie.

Daar is gepoog om algoritmes af te lei om die ster temperatuur en helderheid met behulp van

die pulsasie frekwensies te bepaal. Dit berus op die verband tussen die pulsasie frekwensies

en sekere parameters wat met behulp van die liniêre nie-adiabatiese modelle bepaal word. Die

vergelykings wat afgelei is, is afhanklik van die modus en die mengskaal van die ster, en is

slegs geldig vir p-modusse. Die vergelykings is nie bruikbaar vir die meeste van die nie-radiale

modusse en vir die lae-amplitude 6 Set sterre nie. As 'n ster in twee modusse met m = 0 of in

drie modusse pulseer, is dit in beginsel moontlik om die températuur en heldereid van die ster

te bepaal.

Die metode is toegepas op 'n beperkte keuse van 'n aantal 6 Set sterre. Die was aangeneem

dat die sterre radiaal pulseer en op die hoofreeks lê. Daar is bepaal dat die helderheid van die

ster senstitlef afhang van die waarde van die mengskaal. terwyl die temperetuur minder sensitief

daarvan afhang.

As die algoritme gebruik word sonder om die pulsasiemodusse in ag te neem, met ander woorde

alle modusse word toegelaat vir elke frekwensie wat waargeneem is, dan is daar geen unieke

oplossing vir die ster temperatuur en helderheid nie. Die identifisering van die modusse is nodig

om 'n unieke oplossing te verkry. Op die stadium is ster-seismologie makliker vir die hoër

amplitude sterre as vir die laer amplitude sterre. Daar is nog baie werk wat in die veld van

ster-seismologie vir die 6 Set sterre gedoen moet word.


