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Summary 
 

This thesis is mostly on mixture failure rate modeling with some applications. The topic is very 

important in the modern statistical analysis of real world populations, as mixtures is the tool for 

modeling heterogeneous populations. Neglecting heterogeneity can result in serious errors in 

analyzing the corresponding statistical data. Many populations are heterogeneous in nature and 

the homogeneous modeling can be considered as some approximation.  It is well known that the 

failure (mortality) rate in heterogeneous populations tends (as time increases) to that of the 

strongest subpopulation. However, this basic result had to be considered in a much more 

generality dealing with the shape of the failure rate and the corresponding properties for other 

reliability indices as well. This is done in the dissertation, which is (we believe), its main 

theoretical contribution which can have practical implications as well. 

 

We focus on describing aging characteristics for heterogeneous populations. A meaningful case 

of a population which consists of two subpopulations, which we believe was not sufficiently 

studied in the literature, is considered. It is shown that the mixture failure rate can decrease or be 

a bathtub (BT) shaped: initially decreasing to some minimum point and eventually increasing as 

t  or show the reversed pattern (UBT). Otherwise, the IFR property is preserved. 

 

The mean residual life’s (MRL) ‘shape properties’ are analyzed and some relations with the 

failure rate are highlighted. We show that this function for some specific cases with, e.g., IFR or 

UBT shaped failure rates is decreasing for certain values of parameters, whereas it is UBT for 

other values.  

 

Some findings on the bending properties of the mixture failure rates are presented. It follows 

from conditioning on survival in the past interval of time that the mixture failure rate is 

majorized by the unconditional one. These results are extended to other main reliability indices.   

 

The mixture failure rate before and after a shock for ordered heterogeneous populations are 

compared.  It turns out that the failure rate after the shock is smaller than the one without a 
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shock, which means that shocks under some assumptions can improve the probabilities of 

survival for items in a heterogeneous population.  

 

We show that the population failure/mortality rate decreases with age and, even tend to reach a 

plateau for some specific cases of mortality (hazard) rate process induced by the non-

homogeneous Poisson process of shocks.  Our model can be used to model and analyze the 

damage accumulated by organisms experiencing external shocks. In this case, the cumulated 

damage is reflected by jumps in the failure rate.  

 

The focus in the literature has been mostly on the study of expectations for mixtures, however, 

the obtained results show that the variability characteristics in heterogeneous populations may 

change dynamically.  

 

Key Words:  

Increasing (decreasing) failure rate,  

Mixtures of distributions,  

Mixture failure rate, 

Stochastic ordering 

Mortality (failure) rate process, and 

Shocks. 
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CHAPTER 1: Introduction  
 

1.1. Motivational Aspects  
 

This thesis is mostly on mixture failure rate modeling with some applications. The topic is very 

important in the modern statistical analysis of real world populations, as mixtures is the tool for 

modeling heterogeneous populations. Neglecting heterogeneity can result in serious errors in 

analyzing the corresponding statistical data. Many populations are heterogeneous in nature and 

the homogeneous modeling can be considered as some approximation.  Quite a number of 

examples and applications of theoretical modeling in this thesis are from the fields of reliability 

and demography. It is well known that the failure (mortality) rate in heterogeneous populations 

tends (as time increases) to that of the strongest subpopulation. However, this basic result had to 

be considered in a much more generality dealing with the shape of the failure rate and the 

corresponding properties for other reliability indices as well. This is done in the dissertation, 

which is (we believe), its main theoretical contribution which can have practical implications as 

well.  

 

It should be noted that we do not provide specific engineering applications for the obtained 

results (only sometimes mention them), but rather emphasize ‘general, natural applicability’ of 

the obtained and discussed results. For instance, the apparent decrease in the observed failure 

rate was first acknowledged for the heterogeneous set of aircraft engines with each 

subpopulation described by the constant failure rate [66]. However, all obtained and discussed 

results can be directly applied to various engineering settings with homogeneous subpopulations. 

The same refers to the demographic context as well. Therefore, we believe, that our text is 

indeed of a prospective applied nature, which is reflected in the title. 

 

In the subsequent section, we discuss some general reliability notions relevant to our study and 

present a brief introductory literature survey, whereas the more detailed analysis of specific 

references will be conducted throughout the text at appropriate places while discussing relevant 

issues. It should be noted that the literature on mixture failure rate modeling is quite abundant, 

however, there are still a lot of topics and problems to be considered. We hope that our work fills 
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this gap, at least, to some extent. In the rest of this chapter, we pay also a considerable attention 

to describing various (aging) classes of distributions, as it will be important and useful while 

discussing the statistical modeling for mixtures of distributions.   

 

As usual, we have adopted in this thesis, the convention of using increasing (decreasing) for non-

decreasing (non-increasing). The terms failure (hazard) rate and mortality rate will be used in 

this dissertation.  

 

1.2. Some general reliability notions: Definitions and basic concepts 
 

We consider nonnegative random variables, usually called lifetimes (i.e., 0T ). Realizations of 

these random variables may generally be manifested by some ‘end event’.  The time to failure of 

the man-made devices, the wear accumulated by a degrading system up to some predetermined 

threshold or death of an organism are all relevant examples of lifetimes.  

 

Our main focus in this study will be mostly on four main reliability indices: the failure rate (FR), 

the mean residual lifetime (MRL), the reversed failure rate (RFR) and the mean waiting 

(inactivity) time (MIT). At appropriate places we will consider the corresponding mixture 

models for these indices. 

 

Denote the cumulative distribution function (Cdf) that describes a lifetime T  by, 

   F t P T t  and its probability density function (pdf) by  tf . Then the corresponding 

failure rate,  t , which will be one of the prime objects in heterogeneous settings as well (to be 

defined further), in this homogeneous setting is defined as  

 

   
 

 

f t
t

F t
  ,                                                             (1.1) 

where,      1F t F t S t    is the corresponding  survival function (otherwise also known as 

the reliability function), i.e.,     S t P T t  . From this, the famous exponential representation 

(also sometimes referred to as the product integral formula, [185]) can be obtained, i.e. 
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   utS  exp ,                                                             (1.2) 

 

where  
t

dvvu
0

  is the cumulative failure rate. Result (1.2) already provides the simplest 

characterization of  S t  via the failure rate.  

 

Reliability characteristics uniquely describe a lifetime, T , whereas, e.g., the shape of the failure 

rate provides powerful tools for describing the aging properties of the corresponding lifetime 

distributions.  Therefore, hereafter, we present and describe the main ageing classes of 

distributions.   

  

1.2.1. IFR (DFR) and IFRA (DFRA) Classes    
 

“The increasing failure rate (IFR) is an indication of deterioration or ageing of some kind, for a 

lifetime and this is an important property in various applications”, [66]. On the other hand, if the 

failure rate is decreasing (DFR), the object’s lifetime is improving. The increasing (decreasing) 

failure rate average, IFRA (DFRA) are the corresponding simplest generalizations of these 

classes.  

 

The lifetime distribution, Cdf,  F t is IFR (DFR) if, the conditional survival function, (i.e. 

conditioned on survival to t ) is decreasing (increasing) in 0t   for each 0x  . Alternatively 

 F t  is defined in reference [218] to be IFR (DFR) if  ln S t  is concave (convex). These are 

equivalent to the failure rate  t  being increasing (decreasing) in 0t  .   

 The Cdf  F t  is said to be IFRA (DFRA) if     1/ lnt S t  is increasing (decreasing) in 

0t  . The forgoing means that:      tStS    for 0,10  t  and/or     ln S t  is a 

star-shaped function: i.e.       ln ln ,S t S t      0,10  t .   

 

Thus, IFRA (DFRA) classes, already, relax some stringent requirements of the corresponding 

IFR (DFR) classes. See, e.g., also references [66], [77], [86], [179], [218], [226], [238] and [242] 
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just to mention a few, for some other relevant discussions on these classes and other related 

classes.  

 

1.2.2. IMRL (DMRL) classes based on mean residual life 
 

The mean residual life (also known in demography as life expectancy at age t ), also,  plays a 

pivotal role for studying the aging characteristics of  lifetime distributions.  Let xT  be the 

remaining lifetime of an item of age t , (  tTtTTx  | ).  Then, the lifetime distribution of  

xT  is, therefore, uniquely characterized by the conditional survival function,  

 

               exptTPtS xx ,                                              (1.3) 

 

where    |xS t S t x  and  



xt

t

dvv . The MRL function is, therefore, defined as the 

expectation of the random variable, xT  via (1.3), as follows [66]: 

   
 

 
 

 




0

exp dx
tS

dvvS

TEtm t
x  .                                 (1.4) 

 

See, e.g., reference [161], for the corresponding necessary and sufficient conditions for the 

relationship (1.4) to be the mean residual life function of a non-negative random variable.  

Intuitively, the IFR property that characterizes deterioration (ageing) imply a decreasing MRL of 

an item (object). “This is not true in general, as the MRL function may be monotone whereas the 

corresponding failure rate is not”, [129]. Hereafter, we consider the corresponding aging classes 

for the MRL and also some relevant generalizations.  

 

The lifetime distribution  F t  describes the increasing (decreasing) mean residual lifetime 

IMRL (DMRL) if its mean residual life function,  
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   
 

 





0

tS

dvvS

dttStm t
x ,  0t  is increasing (decreasing) in t . 

 

The DMRL class, already, defines some kind of deterioration or ageing of an item as time 

increases, whereas the IMRL defines the corresponding improvement as age.  Other classes that 

arise from comparing the original distribution with the distribution of the remaining lifetime 

include: the new better (worse) than used NBU (NWU) and the new better (worse) than used in 

expectation NBUE (NWUE).  

 

The lifetime distribution  F t  is said to be NBU (NWU), if      tStSx  , i.e. 

       xStSxtS   for 0, xt . Equivalently,        xStSxtS lnlnln   

having the same support, 0, xt . Utilizing relations (1.2) and (1.3), then it means,  tF  is 

NBU if, 

     



xt

t

t

dvvdvvu
0

  for , 0t x  . 

Whereas, it is NWU if the inequality above is reversed. This means that, “an item of any age has 

a stochastically smaller remaining lifetime than does a new item”, [66].   

 

The lifetime distribution  tF  is NBUE if, 

   tmdxtS x 


0

 for 0t   or       xStmdttS
x




. 

In fact, when  tF  is IFRA,    tSt ln/1  is increasing in 0t  . It follows, immediately, from 

the definition of NBU that,        tStxtSxt ln/1ln/1   for 0, xt , and 

       xSxxtSxt ln/1ln/1   for all t  and x  greater than (or equal) zero. This means 

that        xStSxtS    with the same support.  Hence, if  tF  is IFRA it is also NBU. 

As pointed out, in reference [86 p. 115],  tF  is DMRL implies NBUE, whereas IMRL implies 

NWUE.  
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The aging classes presented here are extensively studied in literature and a comprehensive 

treatment can be found, e.g., in reference, [86]. On the other hand, some further discussions of 

other properties of the NBU, NWU, NBUE, and the NWUE classes could be found in reference 

[234], some moment bounds (in particular, lower and upper bounds) for the IFR (DFR), IFRA 

(DFRA) classes as well as for the NBU (NWU) classes are also established in [201]. We also 

refer to references [63], [86], [157], [158], [179], [206], [213], [214], [218] and [230] to mention 

a few on other aspects of the classes considered here and other more general ageing classes. 

 

1.2.3. DRFR and IMIT Classes 
 

“The concept of the reversed failure rate (RFR) was introduced by Von Mises in 1936”, [66]. It 

was mainly regarded in the literature as dual to the hazard rate, see, e.g., references [198] and 

[233] for the detailed discussions. This notion is more, intuitive for random variables with 

support in 0 a b    . Assuming this finite interval of support, in reference [159], some cases 

were considered when the RFR is constant or increasing. However, it was later showed in 

reference [129], that RFR cannot be constant or an increasing function. In this light, we focus on 

describing classes with decreasing RFR (DRFR).  

 

“The reversed failure rate, denoted,  tr  is defined as the ratio of the density (pdf),  tf  and 

 tF ”, [233],  

 
 
 tF

tf
tr  .                                                               (1.5) 

 

Hence,  tF  is DRFR if, (1.5) is a decreasing function for 0t  , which means that the 

distribution function is log-concave.  

 

Another useful notion, which is of interest, is the mean inactivity time.  For a positive random 

variable, T , let  T  (where,    tTtTtT  | ), define the time elapsed since the last failure. 

This random variable is known in literature as the inactivity (waiting) time (or in some 

references the reversed residual life, see, e.g., [123]). We define the expectation of this random 

variable, the mean inactivity (waiting) time (MIT) as,  
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   
 

 tF

dvvF

TEt

t


 0

  .                                                    (1.6) 

The properties of (1.6) have been studied by [135], whereas some further characterizations via 

the mean inactivity time could be found in references [40], [90], and [123].  In particular, we 

refer to references [102], [105], and [127] to name a few on some further results on this class. As 

a result, various classes of lifetime distributions with increasing mean inactivity time (IMIT) are 

defined in the literature. See for instance, references [62] and [90]:  

 

The lifetime distribution  F t  is said to be IMIT if   t  is an increasing function for  0t  . 

Alternatively, as pointed out in reference, [62],  F t is said to be IMIT iff  
t

dvvF
0

 is log-

concave for 0t  , or equivalently,  

 

   
 txt

dvvFdvvF
00

/  is decreasing in 0t   for all 0x . 

 

 This result, already, implies that, if T is DRFR, then it is also IMIT.   

 

The corresponding aging properties of the MIT function could, already, be obtained from the 

corresponding properties of the RFR. The following relation exists between the RFR and the 

MIT, [127]:  

 
 

 t
t

tr


 '1
 .                                                          (1.7) 

In fact, using the above relations, some results were obtained that are useful for describing 

different maintenance policies in reliability in reference, [125]. We also recall and discuss some 

of these properties in section 2.6.2. Whereas these properties and other aspects of the MIT 

modeling have been studied in the literature, there are no results based on relative stochastic 

comparisons of the mean inactivity time that have been reported so far, at least, to the best of our 

knowledge.  We discuss the corresponding relative mean inactivity order in section 3.6.1.   
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1.2.4. Non-Monotonic Ageing Classes 
 

The shapes of the failure rate of mechanical and electronic items, often exhibits a non-monotonic 

aging behavior: e.g., bathtub-shaped failure rates (BT), initially decreasing to a certain minimum 

point then increasing as time increases or show the reversed pattern, i.e., the upside-down 

bathtub (UBT) shape. There are also other shapes. See, for example, references [73], [77], [86], 

[157] and [202] to name a few. We focus on the first two in this work. We also discuss further 

some simple models for the failure (mortality) rate with unimodal change point under some 

shock settings in section 5.4. 

 

1.2.4.1. Bathtub (BT) and upside-down (UBT) shape failure rate classes 
 

Formal definitions of the above non-monotonic ageing classes are contained in Glazer’s theorem 

(which is also proved in [66 p.32]). The authors of reference [138] extended these definitions to a 

situation, in which the failure rate exhibits several change points.  Accordingly with the forgoing 

authors, the following establishes some sufficient conditions for the monotonic or the BT (UBT) 

shapes of the failure rate using the function,  tg , which is defined as: 

 
 
 

'f t
g t

f t
   .                                                            (1.8) 

As pointed out in reference [1], “  t  and  tg  are asymptotically equivalent when, 

  0lim 


tf
t

, e.g.          tftftStft
ttt

/lim/limlim 


 ”. See e.g., also reference [86].  

Therefore, the behavior of the failure rate,  t  can easily be analyzed via the monotonicity 

properties of  tg .  

 

Let “the density  tf  be strictly positive and differentiable on,  ,0 , such that   0lim 


tf
t

”, 

then,  [1 p.18] and [77 pp134-135]: 

 

i) If  tg  is increasing, then the failure rate,  t  is also increasing.   

ii) If  tg  is decreasing, then the failure rate,  t  is also decreasing. 
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iii) If there exists a point, 1t  for which  tg  is decreasing in 1tt   and increasing in, 1tt  , 

then there exists  122 0 ttt   such that  t  is decreasing in 2tt   and increasing in 

2tt  . 

iv) If there exists a point, 1t  for which  tg  is increasing in 1tt   and decreasing, 1tt  , then 

there exists  122 0 ttt  such that  t  is increasing in 2tt   and decreasing in 2tt  . 

 

The first two conditions naturally define monotonic failure rates, e.g., the IFR (DFR) classes. 

The last two characterize the non-monotonic failure rates, e.g., the BT (UBT) classes. On the 

other hand, if 21 tt   then we can define an interval 21 ttt  , where  tg  is constant, which 

ultimately translates to a constant  t .  This description, which defines the traditional BT 

(UBT) that includes also the constant failure rate is used in reference [182].  For 21 tt  , the 

corresponding aging classes are defined  with a single change point.  We adopt this latter 

definition, in the rest of this dissertation.   See, e.g., also references [66], [72], [73], [110], [120], 

[138], [162] and [176] just to mention a few for some further discussions on the above ageing 

classes.   

 

1.2.4.2. Mean residual life (MRL) classes with bathtub (BT) or (UBT) shapes 
 

It is well-known that, for a monotonically increasing (decreasing) failure rate, e.g., IFR (DFR), 

the corresponding MRL function is decreasing (DMRL) (increasing (IMRL)), whereas the 

reverse has been shown not to be true in general by the authors of reference, [129].  We define, 

“the increasing, then decreasing mean residual life (IDMRL) and decreasing, then increasing 

mean residual life (DIMRL) classes” in the following, [66]: 

 

The lifetime distribution,  tF  is said to be IDMRL, if there is a, 00 t , for which the MRL is 

initially increasing on  0,0 t  and then decreasing on,  ,0t .  If MRL is initially decreasing on 

 0,0 t  and increasing on  ,0t , we have the corresponding, DIMRL class . Therefore,  tF  is 

IDMRL when,   UBTtm   whereas it is DIMRL if,   BTtm  .   



 

 
10 

 

The considered here ageing classes will be useful to further explore other lifetime distributions 

and/or mixtures of distributions exhibiting the bathtub or UBT shapes and for discussing our 

results in the subsequent chapters. See, e.g., also references [27], [111], [176], [181], [182], 

[213], [217], and [248] on some other relevant discussions.  

 

Remark 1.1 
 

1. We, also, generalize the properties of the failure rate to the discrete case in chapter 4. There 

are “some important differences between the failure rates in the discrete setting as compared 

to the failure rate in the continuous case”, [4]. We investigate the impacts of these differences 

in describing the corresponding aging characteristics.  For example, the shapes of the failure 

rate for some specific distributions in the class of discrete Weibull distributions will be 

analyzed. 

2. Other specific situations to be considered as well: 

a) The case when items (objects) for study have some random (unknown) ages (section 2.7).  

Determining the impacts of this random delay on reliability characteristics of the baseline 

lifetime distribution of an object is of interest in this case. A specific model of mixing, where 

the unknown initial age, is the mixing parameter will be studied.  

b) The corresponding aging characteristics will be also discussed under some shock settings in 

chapter 5. 

1.3. Mixtures  
 

Most of the thesis is devoted to modeling heterogeneity via considering the corresponding 

mixtures of distributions. Homogeneous populations present the simplest models for analyzing 

the shapes of the main reliability characteristics in this thesis. “It is well known that in this case, 

the failure rate,  t  characterizes a lifetime random variable (i.e. 0T ) for items (objects) 

operating in a fixed (or specified) environmental conditions”, [39]. However, many populations 

are heterogeneous in nature. This heterogeneity may “arise in situations in which data is pooled 

from two parent distributions to enlarge the sample size or when physical mixing identical items, 

albeit from different manufacturers”, see e.g., references, [66], [72] and [81]. The shapes of 
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reliability characteristics may change quite significantly under these settings. In fact, it is a 

common knowledge that mixtures of decreasing failure rate distributions (i.e., DFR) are always 

DFR. However, “the pattern of population aging could change considerably from IFR aging to 

DFR aging”, [66] even for “mixtures of distributions with strictly increasing failure rates”, [177].  

It was, also, shown that the population failure rate tends to bend down with time when compared 

with the corresponding unconditional characteristic. This observed deceleration, [195] already 

has the meaningful interpretation: “the weakest populations are dying out first as time increases” 

principle in heterogeneous populations. As a result, the failure (mortality) rate in heterogeneous 

populations tends (as time increases) to that of the strongest subpopulation. We are intrigued by 

this finding, which can be considered as counter-intuitive. This principle, can also be extended to 

explain the recently observed mortality rate plateau in human populations [157] for the oldest-

old populations in developed countries as a result of improved health care quality. However, this 

result had to be dealt with in more generality and with respect to other indices as well.  This topic 

has a wide applicability in a number of areas dealing with lifetime modeling and analysis. 

Therefore, this thesis is rolled over five forthcoming chapters covering different aspects of the 

problem.   

1.4. Brief overview   
 

Chapter 2 

 

Lifetimes for heterogeneous populations are often induced by changing environment conditions 

and/or other random effects.  We focus, on describing the corresponding aging characteristics for 

heterogeneous populations. Henceforth, we firstly consider the random failure rate. This notion, 

which is a generalization of (1.1), will be particularly important for the corresponding analysis of 

the mixture failure rate and also for formulating our results in the subsequent sections.  In section 

2.2., some aspects of general mixture models, which will be useful in the rest of this thesis are 

discussed. In particular, some simple frailty (mixture) models are studied in section 2.3., and 

some initial results are discussed. Mixtures of distributions often present the simplest 

corresponding modeling and analysis. To illustrate some applications of the models of these 

sections, we consider some specific cases of a mixed population, which consists of two 

subpopulations. The shapes of the corresponding mixture failure rates are discussed.  Another 
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specific case, which also explicitly illustrate some further applications of the models of this 

section to a case, where the mixing parameter is the initial (usual unknown) random age is 

analyzed in section 2.7. 

 

The mean residual life (MRL), also, plays a pivotal role for studying aging characteristics of 

lifetime distributions. We present, some useful general results on the properties of the MRL to be 

used in obtaining the corresponding shape properties for mixtures in section 2.5.1.  At the same 

time, in this section, the corresponding shapes properties are also analyzed for some specific 

cases and some relations with the failure rate are highlighted. We also revisited a specific case of 

the proportional MRL model and briefly discussed some results relating to this model. 

 

A literature survey on the reversed failure rate (RFR) and the mean waiting (inactivity) time is 

presented in sections 1.2.3.  We discuss the corresponding general properties and consider the 

shapes of ‘the reversed failure rate’ in section 2.6.1. To illustrate the applications of these 

models, we analyze two specific cases, e.g., when the failure rate is increasing or is of the UBT-

type shape.  The specific frailty mixture model for the reversed failure rate, e.g., the proportional 

reversed failure rate (PRFR) is also considered in this section. We briefly discuss some results 

relating to this model. The properties of the MIT could easily be analyzed via the properties of 

the RFR. This is done in the last section 2.6.   

 

Chapter 3  

 

In this chapter, we firstly deal with some essential aspects of stochastic orderings, particularly, in 

section 3.2.  Mixture failure rates are important in studying heterogeneous populations in 

different environments. We discuss some results on the corresponding aging properties of the 

mixture failure rates when compared with a specific form of our model (2.1). These results are 

extended to other main reliability indices: the mean residual life in section 3.4.2, the reversed 

failure rate in section 3.4.3 and the mean waiting (inactivity) time in section 3.4.4. We, also, 

analyze the failure (mortality) rate for heterogeneous populations in section 3.5, e.g. when the 

subpopulations are ordered (in some stochastic sense). 
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We, also discuss some results with respect to vitality modeling in section 3.6. In the final section 

3.7, we consider the notion of relative aging and discuss results on relative aging of the main 

reliability indices.  In particular, we propose ordering of lifetimes in terms of monotocity 

properties of the ratio of the mean waiting (inactivity) times. 

 

Chapter 4  

In this chapter, the properties of the failure rate are generalized to the discrete case. We highlight 

and briefly discuss some differences in the failure rate in discrete and continuous settings. The 

corresponding shapes of the failure rate are investigated for some discrete Weibull distributions. 

For the type II discrete Weibull distribution the classical failure rate increases (IFR), whereas the 

alternative failure rate is of the UBT type. This obvious difference should be taken into account 

in practical applications. It means that the alternative failure rate may be an appropriate choice in 

the modeling and analysis of various aging characteristics as compared to the usual (“classical”) 

failure rate. It is, also, interesting to explore further this behavior for other discrete lifetime 

distributions. 

 

The shapes of the corresponding failure rate of a mixture of two distributions are studied in 

section 4.2. We show that the mixture failure rate bends down when compared with the 

expectation of the conditional failures rates. Specifically, some selected discrete lifetime 

distributions are studied. We show, e.g., that, under the defined settings, the corresponding 

failure rate of the mixture of the discrete geometric distribution and the Type I discrete Weibull 

distribution is decreasing for some values of parameters. For the mixture of geometric 

distribution and the discrete modified Weibull distribution the corresponding mixture failure rate 

is UBT. This property is also reflected for some values of the parameters when the latter 

distribution is mixed with the discrete gamma distribution whereas it shows the reversed pattern 

(BT) for other values. This means that the proportion of surviving items (objects) in the mixed 

population is increasing, e.g., the population lifetime is improving somehow as the “weakest 

subpopulations are dying out first”.  

 

Finally, some results on the general properties of discrete mixture failure rates are briefly 

discussed and some simple models of heterogeneity are presented.    In the final section of this 
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chapter, we also define the MRL in the discrete setting and highlight some useful relations with 

the corresponding failure rate.  

 

Chapter 5  

We consider stochastically ordered heterogeneous populations.  The shapes of mixture failure 

rate for this population under some shock settings are analyzed for two specific cases.  When the 

frailty W  is a continuous random variable, we show that the failure rate for an object that 

experienced a shock, is less than the one which has not a shock. Therefore, shocks under some 

assumptions can improve the probabilities of survival for a heterogeneous population. These 

results are also extended to the case when frailty is a discrete random variable.  Shocks as an 

alternative kind of burn-in is theoretically justified in these cases.  

 

In section 5.3., a specific increasing mortality rate process induced by the non-homogeneous 

Poisson process of shocks is considered.  The shape of the observed (marginal) failure rate is 

analyzed in this case. In particular, we show for some specific cases: the overall failure/mortality 

rate decreases with age and in some instances reaches a plateau. This result is obtained, already, 

shows an improvement of our population with time.  Our model can, therefore, be used to model 

and analyze the damage accumulated by organisms experiencing external shocks. In this case, 

the cumulated damage is reflected by jumps on the failure rate.  

 

An overview of results on mortality rate processes with a single change point is presented and 

discussed in section 5.4.  Variability characteristics in heterogeneous populations are also 

discussed in section 5.5. We focus on the variance of the conditional random variable, 

 tTWtW  || , for a subpopulation of items that survived the operational interval,  t,0 .  Two 

specific cases are considered: the case, when the random variable (frailty), W  is discrete and 

when it is continuous. Another, useful measure, which we considered in this section, is the 

coefficient of variation of the random variable,  tW | .  

  

Chapter 6 

In this chapter, we summarize conclusions and recommendations of the previous chapters 
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CHAPTER 2: Main model settings and some initial results 
 

Heterogeneity in real-world populations (of items) is often induced by changing environment 

conditions and/or other random effects.  We focus, on describing the corresponding aging 

properties of items from heterogeneous populations. Henceforth, we firstly consider the random 

failure rate. This notion, which is a generalization of (1.1), will be particularly useful in the 

analysis of the mixture failure rate and also for formulating our results in the subsequent 

sections.   

2.1. Random failure rate 
 

Let W be a positive random variable, which represents the unobserved heterogeneity. The 

lifetime random variable T  of an item from a heterogeneous population may, therefore, be 

characterized via the random failure rate by the following specific but meaningful model: 

 Wtt |  ,                                                              (2.1) 

 

which is defined for each realization wW  . This means that, the failure rate is indexed by the 

random variable, W . We will consider specific cases for (2.1) later.  Thus, the expectation of 

this random failure rate is given by 

    tTWtEt  || .                                               (2.2) 

 

It is evident from (2.2) that the observed failure rate (1.1) is simply the expectation (with respect 

to W) of the random failure rate (2.1) conditioned on survival in  [0, )t . 

 

Our main focus is in the analysis of the model (2.1).  This model is important for our further 

analysis of the shapes of mixture failure rates under different settings.  It should be noted that 

“monotocity properties of the failure rate,  t  change when compared with monotonicity 

properties of the family of conditional failure rates,  wWt | ”, [66]. 

 

 

 



 

 
16 

 

2.2. Continuous mixtures 
 

Let “T  be a continuous lifetime random variable with the failure rate (2.1) defined for each 

realization, wW  ” see, e.g. reference, [66].  The corresponding survival function is given by: 

 

   uwtS  exp| ,                                                           (2.3) 

where 

 
t

dvwvu
0

| ,                                                             (2.4) 

is the cumulative failure rate ‘indexed by each realization’ of the random variable W .  As  

pointed out by the forgoing authors, “ this setting can be interpreted in terms of mixtures”.  The 

random variable W  in this case plays a role of a mixing parameter. Hence, the marginal 

distribution survival,  tS  function is obtained respectively by taking the corresponding 

expectation with respect to W ,   

     



















 

t

dvWvEtTtS
0

|expPr  .                                  (2.5) 

From (2.5), the observed failure rate is not equivalent to the random failure rate, i.e. 

   Wtt |  , where,  t  denotes the observed failure rate (1.1)  and  Wt |  is a random 

failure rate.  In fact, using Jensen’s inequality and Fubuni’s theorem when the condition 

  WE  is assumed to hold and   wtS |  is a strictly convex function, the following important 

result can be obtained,  

      



















 

t

dvWvEtTtS
0

|expPr  .                                 (2.6) 

Under this setting, the following relation exists  

 

        WEtWtEt b  | ,                                           (2.7) 

 



 

 
17 

 

for a specific multiplicative case,    twwt b | , where  tb  is the failure rate of a lifetime 

distribution in some ‘unperturbed’ (usually referred to as baseline) environment and W  is a 

positive random variable.  

 

It should be noted that the authors of reference [251] were the first to consider this model for a 

rather specific case of the gamma-frailty, although the term (frailty) was introduced into 

demographic literature by [240].  Other types of models considered in the literature are the 

additive and the accelerated life models whereas the mentioned above is usually referred to as 

the proportional hazards model.  We will consider these types of frailty (mixture) models for 

some specific cases in section 2.3., and will utilize the results in other subsequent subsections. 

Before we proceed, let us introduce some important for the presentation to follow notions.  

 

Suppose, as previously, a lifetime T  with cumulative distribution (Cdf),  tF  is indexed by 

some nonnegative random variable W  with support in,  ba , , 0;a a b     and having a 

density  wg , then 

   wWtTwtF  |Pr| ,                                                  (2.8) 

and let    tSwtS 1|  be the corresponding survival function.  Therefore, the mixture Cdf can 

be defined as: 

     
b

a

m dwwgwtStF | .                                                (2.9) 

 On the other hand, from (1.1), the general mixture (marginal) failure rate is given by,  

 

 
   

   

|

|

b

a
m b

a

f t w g w dw

t

S t w g w dw

 




,                                               (2.10) 

where,  wtf |  is the conditional pdf of T . In fact, it was also shown by the authors of 

references, [136] and [143] that the failure rate (2.10) could also be compactly represented by the 

following conditional form,  

     
b

a

m dwtwgwtt || .                                                  (2.11) 



 

 
18 

 

Specifically,  twg |  in (2.11) represents the pdf of the random variable W , which is 

conditioned on  tT   and given by: 

 

 
   

   

|
|

|
b

a

S t w g w
g w t

S t w g w dw





,                                              (2.12) 

The distribution functions of the unconditional random variables, W  and the conditional one, 

WWtTW  0|;| , are respectively given by 

     
w

dvvgwWwG
0

Pr ;    
   

   




b

a

w

dwwgwtS

dvvgvtS

tTwWtwG

|

|

|Pr| 0 ,    (2.13)     

The conditioning in (2.10) can change monotonicity properties of the mixture failure rate,  tm  

as compared with the monotonicity properties of the family of conditional failure rates, 

 wWt | .  For instance, two cases e.g., when the conditional failure rate is increasing as a 

power function for each w  and when it is an exponentially increasing function, are considered. 

In both cases W  is a Gamma distributed random variable. In particular, it turns out in the first 

case, that  tm   exhibit an upside-down bathtub shape (UBT).  As opposed to the well-known  

bathtub shaped (BT), which initially decreases and after some time increases, “this function 

initially increases to a maximum at some point in time and eventually monotonically decreases to 

zero as t ”,  [66].  For the latter case, the mixture failure rate,  tm  tends to a constant.  We 

consider further other distributions and/or mixtures of distributions exhibiting these properties 

later on in this work. See e.g. also a number of other relevant examples in reference [177], albeit 

concentrating on mixture failure rates that are of BT (bathtub) shape type. 

 

We further, consider other relevant specific cases, which exhibit these important properties later 

on in this work. In particular, as pointed out, by the authors of reference, [66] these results 

“provide possible explanations for the mortality rate plateau observed in [156]” for human 

populations at adult ages.   Relations in (2.13) will especially be useful for analysis of bending 

properties of mixture failure rates, as well as for other related main reliability indices in 

subsequent sections.  
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2.3. Additive and Proportional Hazards models 
 
Different functional forms of the conditional failure (hazard) rate can be used to analyze the 

bending of mortality (failure) rate at advanced ages.  In frailty (mixture) models, this 

phenomenon is modeled via the concept of population heterogeneity. As was already mentioned, 

the random effects may act multiplicatively or additively on the failure (hazard) rate function.   

We consider, these simplest models and analyze the shapes of the,  tm  for some specific cases. 

The results obtained at this initial stage are also important for our further analysis in the 

subsequent sections.  

2.3.1. The additive “frailty” model 
 

As pointed out in section 2.2., in particular for models (2.11) and (2.12), the conditional random 

variable, WWtW 0|;|  is characterized via the pdf,  twg | .  Thus, its expectation is: 

   
t

dwtwgwtWE
0

|| .                                                (2.14)   

   
The conditional expectation (2.14) will particularly be useful to investigate the behavior (shape) 

of the mixture failure rate (2.11).  “Let  wt |  be indexed by the parameter, W  in the following 

additive way”, [29]: 

    wtwt b   | ,                                                       (2.15) 

where,  tb  is the failure rate of some lifetime distribution in some ‘unperturbed’ (usually 

referred to as baseline) environment.  Then using (2.11) for the model (2.15), it can be shown 

that:  

   
   

   
   tWEt

dwwgwtS

dwwgwtSw

tt bb

a

bm |

|

|
0 






  .                (2.16)     

In fact, it can be easily proved that the derivative of the conditional expectation (2.14) reduces to 

the following specific form; 

    0||'  tWVartWE  ,                                                 (2.17) 
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whereas, the right hand side is the conditional variance of the random variable, W  (which is also 

conditioned on the event, tT  ).  Result (2.17) specifies that the derivative of the conditional 

expectation (2.14) is decreasing as a function of t .  Thus, the shape of the mixture failure 

rate could be explained by the shapes of the functions in (2.16).  Specifically, when  tb  is 

increasing the mixture failure rate could be of the BT type.   

 

2.3.2. The multiplicative “frailty” Model 
 

Consider now, another important mixing model: the case “  wt |  is indexed by the parameter, 

W , in the multiplicative way” [136]:   

    twwt b | ,                                                    (2.18) 
 

whereas,  tb , is again the baseline failure rate as in the additive case (2.15). Similar to (2.11) 

and (2.14), the corresponding mixture (marginal) failure rate is obtained as 

 

     tWEtt bm |  .                                                      (2.19) 

 

It turns out,  tm  in this case decreases, only when  tWVar |  is large, particularly when  tb  

is also increasing.  Differentiating in (2.19) leads to the following useful and important result:  

 

         tWEttWEtt bbm || '''    .                                     (2.20) 

 

It can be easily proved that  

 

      0||'  tWVarttWE b .                                              (2.21) 

 

This means, that “the conditional expectation of W  for the multiplicative model (2.18) is a 

decreasing function of   ,0t ”, [137].  Obviously, from (2.19), the mixture failure rate 

increases in the neighborhood of zero when,  tb  is increasing. This result is also obtained for 

the gamma mixture, where the mixture failure rate, reflects the UBT shape (see Fig. 3). Further, 

a similar result can be obtained for a mixture of Weibull and gamma distributions with 

increasing failure rates, [66]. This behavior of the mixture failure rate can already be explained 
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by the effects of the well-known principle: “the weakest populations are dying out first” in 

heterogeneous populations.  

 

Mixtures may arise naturally from heterogeneous populations. The simplest, however a very 

meaningful case, is a population, which consists of two subpopulations, is not sufficiently 

studied in the literature.  We firstly consider some simple but pertinent example of continuous 

mixtures of two distributions and discuss some properties describing the shape of the failure rate 

under these mixtures.  Another specific case, which also explicitly illustrates some further 

applications of the models of this section to a case, where the mixing parameter is the initial 

(usual unknown) random age is considered in section 2.7.  

  

2.4. Exponential distributions 
 

Consider a mixture pooled from items having constant failure rates, but produced, e.g., by two 

different manufacturers. The failure rates of these items may be different, due to different 

production irregularities at these manufacturing sites.  

 

Suppose the mixing proportion, p  of items from manufacturing site 1 and pq 1  of items 

from manufacturing site 2, with the corresponding failure rates, 2,1, ii  and, 21   . The 

time to failure of an item picked up at random from this population, is a random variable with the 

Cdf,  tF1 ,  or   tF2 .  The survival function in this case is the weighted sum of survival 

functions for the corresponding subpopulations, 

 

           tqtptSqtSptS 2121 expexp   ,                  (2.22) 

 

where, pq 1 . The corresponding probability density function (pdf) is  

 

       tqtptf   expexp 211 .                                                     (2.23) 

 

Consider, for example, the ratio of the mixing proportions to be 0.6: 0.4, then the mixture failure 

rate, in accordance with the definition of the failure rate (1.1), is obtained as 
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The corresponding plot of  tm   for different values of 2,1, ii  and 6.0p  is shown on 

Fig.1 below, 
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Fig.1: a mixture of exponentials with constant failure rates, 21  , 12  and 6.0p  

From Fig. 1,  tm  is decreasing approaching 1 in this case, albeit, constant failure rates are 

being mixed.  This apparent decrease in the observed failure rate was first acknowledged for the 

heterogeneous set of aircraft engines with each subpopulation described by the constant failure 

rate, by the authors of reference [243]. 

 

Intuitively, the early high failures observed (in Fig.1) may be due to items from the first 

manufacturing site, as 21   . As time increases, these items tend to die first, resulting in a 

mixture failure that is decreasing towards the failure rate of the strongest subpopulation, e.g., 

from manufacturing site 2 in this case.  

 

2.5. Truncated extreme value distribution (continuous mixture) 
 

Consider the truncated Gumbel distribution, (which is a form of a truncated extreme value 

distribution) for the operation of mixing as:  

 

     1exp1  RvwtF  ;     Rwvtwwt b   | , 0t  and, 0v ,                (2.25) 
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where,  ( ) expR t t ,  (and for brevity of notation here and in the rest of the work we omit the 

argument, i.e., R)  and  “  tb  is  some deterministic, increasing (at least for sufficiently large t ) 

continuous function (   0,0  ttb )”, [137].  Assume further that,  wg , is an exponential pdf 

with parameter,  . Then, 

        



0

2

0

exp1exp
a

Rv
dwwRvwRvwdwwgtf


  ,               (2.26) 

where,    1Rva . Therefore,  

   



00

exp|
a

dwwdwwtf


   .                                    (2.27) 

In accordance with (2.11), the mixture failure turns out to be: 

 

       1
11


  Rvvtm ,                                                       (2.28) 

 

which, can be written as, 

    1
1


 Ctm ,                                                            (2.29) 

 

where, bhC / , Rvb  , and vh  .  It follows, that,    /0 vm  .   When, 0h  and 

v , the mixture failure rate,  tm , is monotonically decreasing asymptotically converging 

(from above) to 1 (the blue curve on Fig. 2), whilst it is monotonically increasing, 

asymptotically converging (from below) to 1 when 0h  and v  (the green curve on Fig. 2) 

as, t .  On the other hand,  tm is equal to 1 when, 0h  and v  , (the red line on Fig. 

2). These results show that the mixture failure rate in this case can increase (decrease) or be 

constant for certain values of parameters.  
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Fig. 2: A mixture failure rate of  Gumbel and Exponential distributions for different values of ,v  and, 1 . 

 

This result, already, shows that the mixture failure (mortality) rates can also bend down (the 

upper curve) as time increases (i.e., t ) and even reach a plateau. On the other hand the 

lower curve provides “a possible explanation for the mortality rate plateau of human populations 

at great ages observed in [156]”, see e.g. also, reference [66].  

 

2.6. The gamma distribution  
 

Consider a Gamma distribution, with the survival function and failure rate given, respectively 

by: 
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where,    is random with distribution:    ww   exp  and  tZ  exp . The 

corresponding mixture survival function in this case is 
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as defined in (2.9), whereas the pdf. is determined by the following: 
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Accordingly with definition (2.11), the mixture failure rate is obtained as: 
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 From second equation (2.30),    t , when 1 ,  but when 0v ,   t .  As can be 

noted if, 10    then 0t ,   but if  1   then t  and    t  (see the blue dashed 

curve on Fig. 3).  As,   00   and  t  is an increasing function  asymptotically approaching 

  from below when 1  (see Fig. 3), then    
t

t .  But the mixture failure rate reflects an 
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upside-down bathtub shape (UBT): See e.g. the green, red and yellow curves on Fig. 3.  

Intuitively, the initially increasing failure rate may be due to a large proportion of weak items 

with large failure rates.   As time increases these “die out first”, leading to the “bending down” of 

the mixture failure rate observed in Fig. 3. 
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Fig. 3: A plot of mixture gamma failure rates for different values of   where 2k . 

 

This result was, “experimentally observed for a heterogeneous sample of miniature light bulbs”, 

[94] and for large cohort of medflies, in reference, [195].  It was also proved analytically for 

some specific cases [94]:  the mixture failure rate bents down either in a strong sense or a weak 

sense when compared with a specific form of our model (2.1): i.e.  “the unconditional 

expectation of the random failure (hazard) rate,  wt |  with similar to the subpopulation failure 

rates monotonic properties in the mixtures”, see e.g. reference, [58] : 

 

     



0

| dwwgwttp  .                                                (2.33) 

 

From (2.11) and (2.12),    00 pm    and if,  wt | ,   ,0w  is increasing, then  tp  

increases as well.  We use a somewhat similar analogy for studying the aging properties of other 

related main reliability characteristics in the subsequent sections.  However, due to the 

conditioning on (2.10), the mixture failure rate may have a different shape. It may decrease, 

preserve the IFR property,   be BT or UBT (as in Fig. 3), etc.    
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2.7. Modelling for items (objects) with unknown initial ages 
 

Consider a specific but very important and often encountered in practice model of mixing, where 

the initial age (usually not known), is the mixing parameter. The failure rate of a distribution 

describing this random age was considered initially in [128]. The impacts of this random delay 

(initial age) on reliability characteristics of the baseline lifetime distribution of an object is of 

interest.  “Let W  be a random time of delay with support in  ,0 ” , [66] with,  

 

   
 
 wS

uS
tTtS ww  Pr ,                                        (2.34) 

 

where, wT , is the remaining lifetime,  twu   and wW  .   Then, for this setting, the 

conditional distribution is 

   wWtFtFw  | ,                                                        (2.35) 

 

with the corresponding  failure rate    uwt  | .  Accordingly with (2.11), the mixture 

failure rate is obtained as, 

     



0

| dwtwgutm   ,                                                  (2.36) 

 

which can be rearranged as,   

 

          



0

| dwtwgtutt bbm  .                                     (2.37) 

 

We investigate, the behavior of  tm  when the shape of  tb  is assumed to be known.  

However, for this analysis, we assume “a concrete form of the baseline and the mixing 

distributions and necessarily the distribution function (Cdf), should belong to the IFR class of 

distributions”, see e.g. reference, [66] in this case.  Two specific cases are considered in what 

follows. 
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2.8. The shape of the mixture failure rate  
 

Consider, “  tF  to be a specific type of Weibull distribution with the linear increasing failure 

rate:   0,  vtvtb ” [128], then from (2.15) we have,  

 

      wvtuwt b   | .                                                   (2.38) 

 

Specifically, from (2.37), the following is obtained,  

 

       tWEvtvdwtwgwvtt bm ||
0

 


  .                                   (2.39) 

 

As the baseline failure rate given by tv  is an increasing function, this means that for,  tm  to 

decrease, the variance of  tWE |  should be large.  In fact, “  tm  seem to decrease in some 

interval,  c,0  and increases in  ,c  where, C  can be determined by the equation, 

   '| ccWVar  ” [81]. Thus in this case, assuming the conditional variance of the random 

variable tW |  is decreasing in   ,0t , the mixture failure rate is of BT shape type.  

 

The truncated value distribution was considered in section 2.5.  Suppose now, the Cdf,  tF  is 

given by   

    1exp1  RvtF ,                                              (2.40) 

 

where, exp{ }R t  and the corresponding (exponential) failure rate is   Rvt  , 0v . As 

opposed to the previous case, the mixture model reduces to the multiplicative model of the form: 

 

      Rtuwt b | .                                                (2.41) 

 

This model can easily be transformed into the following expression, 

 

             ttwtRtuwt bbbb   '1| ,                 (2.42) 

 

where,   1exp'  ww . Now,  
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whereas, the difference, 

   
  


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1
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Rv

v
tt bm ,                                                       (2.44) 

 

enables the analysis of shapes of mixtures failure rates when compared with the corresponding 

baseline failure rate.  

 

The corresponding plots of  tb   and,  tm  for different values of, ,v , and 1  are 

reflected in Fig. 4.  It is apparent from this figure that  tb  (see e.g. the blue curve on Fig. 4) is 

monotonically increasing as a function of, t  and the mixture failure rate is also increasing 

parallel to  tb  as t  (see e.g., for 1,2  v  the yellow curve and 1,3  v  the purple 

(magenta) curve; 1,5  v  red curve and 2,1  v   green curve).  In particular, when v  is 

greater than,  , the curves initially increase slowly, then at some point, t , increase sharply 

(though  still parallel above the baseline failure rate) and  deviating further away from  tb  as 

time increases.  When v  is sufficiently large (i.e. t ), the mixture failure rate exhibits  a 

bathtub (BT) shape (see e.g. the red curve on Fig. 4, where 1,5  v ). 

 

On the other hand, when v  is less than  , the mixture failure rate increases “parallel” from 

below approaching the  tb  as time increases (see e.g. the green curve on Fig. 3 where 

2,1  v ). It is worth to note that, a similar behavior may be observed for other larger values 

of   when v  is also fixed and reduces to the shape of  tb  when, 1,1  v . 
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Fig. 4: A plot of truncated extreme value and Exponential mixture failure rate for different values of ,v , and 1   

 

 These results imply that for certain values of parameters for this model, the mixture may either 

preserve the IFR property or have a bathtub shaped: initially decreasing to some minimum point 

and eventually increasing as t  (as in Fig. 3, see the red curve). The IFR preservation 

property was shown, although under very stringent conditions, by [153] to hold even for 

mixtures of strongly IFR distributions.  See, e.g., [94] for some necessary conditions under 

which continuous mixtures of increasing failure rates preserve the IFR property. Other related 

and relevant discussions on this topic could be found in references, [112], [113], [177] and [178] 

to name but a few. 

 

2.9. Mean residual life (MRL) Model 
 

In what follows, we present some useful general results on the properties of MRL to be used in 

obtaining the corresponding ‘shape properties’ for mixtures.  

2.9.1. The shape of the MRL  
 

Let  xT  as in section 1.2.2., be the remaining lifetime of an item of age t ,  described by the 

corresponding conditional survival function (1.3),    xtStSx | , which we reproduce here for 

convenience of reference,  i.e.,  

                expPr tTtS xx ,                                        (2.45) 
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where,  



xt

t

dvv . The MRL function is defined as the expectation of the random variable, 

xT  via (2.45) as follows: 

   
 

 
 dx

tS
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TEtm t
x 

 




0

exp  .                                      (2.46) 

For 0x  ,  equation (2.46) is equal to the expectation of the random variable, T , e.g.,  TE .    

Some useful properties of model (2.46) are studied in references [66] and [129].  These 

properties and other results in literature that are useful in the sequel are recalled and discussed in 

what follows.  Among the prominent results are the relations between the failure rates, survival 

function with MRL, which are respectively obtained by first rearranging (2.46):   
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


t

duuStStm .                                                     (2.47)   

Differentiating with respect to, t , on both sides of (2.47), we obtain the following important 

relation between the failure rate and  the MRL function, 
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See e.g. also references, [66], [86] and [129] to mention a few.  Integrating both sides of (2.48) 

gives a result that immediately leads to the representation of the survival function in terms of the 

MRL. For instance,  

       

         























 





xx

x x

Ctm
dt

d
CdttmtmtS

dttmtmtS
dt

d

00

1

0 0

1

lnexp1'exp

1'ln

,            (2.49) 

where,  
x

dttmC
0

/1 . The famous inversion formula, relating the survival function to the 

MRL is obtained as,  
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         












 


duumtmmtS

t

0

1
/1exp0 .                                    (2.50) 

 

Alternatively MRL can be represented via the survival function (1.2) and the density function in 

the following way, [229 p.2],  

 
 

 
t

tS

dvvfv

tm t 



.                                                   (2.51) 

These simple but meaningful results play a pivotal role in the analysis of the shapes of MRL 

functions.  From results (2.48) and (2.50), when the survival and failure rate functions increase 

(decrease) then MRL is also decreasing (increasing). As a specific case, consider the Lindley 

distribution with the pdf, 

   tZDtf  1| 2 ,    

 

where,  1/1  D and similar to section 2.6,  tZ  exp , 0, t . Therefore, the 

corresponding survival function,   

   tDZtS   1| . 

This distribution may be considered as a mixture of an exponential distribution with scale 

parameter  and a gamma distribution, where  is the scale parameter and   is the shape 

parameter (in particular, 2  in this case). The mixing proportions are, respectively, D  and, 

D .  Hence, in accordance with definition (1.1) we have,  

 

        ZttZDt 111
12 

 . 

Rearranging, we have,  

 
 

 t
t

t 


 1
11

2




 , 

whereas, according to definition (2.46) the corresponding mean residual life is obtained by 

evaluating the following,  

        





t

dxyytZtm  exp11
1 . 
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As the integration of the integral exists in this case and the integrand is continuous on the 

interval,  ,0 , this problem is turned into a limit problem,  
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As a result, the mean residual life function for Lindley distribution is:  
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
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The plots of the failure rate functions and the corresponding shapes of the MRL functions are, 

respectively, shown for different values  of 0  on Fig.5 and Fig.6 below.  
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Fig. 5: A plot of failure rate for Lindley distribution for values of, 0 .  
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Fig. 6: A plot of mean residual life for Lindley distribution for values of, 0 .  

From Fig. 5, the failure rate is increasing and after some interval of time asymptotically 

approaches the straight line. It is well-known that, “the Gompertz model does not account for 

mortality rates that increases and after some interval of time reaches a plateau”, [58].  The 

Lindley distribution may be a suitable choice for analysis in this case.   The shapes of the 

corresponding MRL are also decreasing and after some interval of time asymptotically 

approaches a straight line (see Fig. 6).  Thus, the Lindley distribution, as opposed to the 

Gompertz model can describe the mortality rate plateau, which was also observed in [156] for 

human populations at great ages. 

 

Relation (2.51) could be used as an alternative to (2.46), when the survival function cannot be 

obtained in an explicit form and/or requires some tedious numerical integration to obtain it.  For 

instance, consider the two-parameter standard gamma distribution with the pdf, 

 

 
 

 




1tZ
tf  for    0,t   

where,  tZ  exp  and   is the scale parameter with   being the shape parameter (all 

positive) and  

   


 
0

1 exp duuu , 
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is, as usual, the gamma function.  Although, it is well-known that for the general case,   

(particularly, for non-integer,  ) the Cdf, of this distribution is not found in the closed form, 

when,   a positive integer (the Erlangian distribution): 

 
 







1

0 !
1

 

k

k

k

tZ
tF , 

which,  leads to the survival function,  tS  given by the first equation (2.30) and the 

corresponding failure rate is given by the second equation (2.30).  In this example, the failure 

rate is an increasing function asymptotically approaching   from below when, 1 . A similar 

result is obtained [102 p. 61] using the following identity:  

 

    
1

1

0

1 exp
v

t v dv
t



 


  
   

 
 . 

This function is decreasing in, t ,  for 1 .  It implies that “the failure rate is also increasing, 

whereas, it is decreasing for 10   ”, see e.g., reference [66].  The Gamma distribution 

reduces to a constant when, 1  (i.e. to an exponential distribution, which exhibits a non-aging 

property).  The corresponding mean residual life, is obtained using relation (2.51) by [229 pp3-4] 

(see also [66 p. 22] and [86 p. 131]): 

 
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t
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

 

 

 

where,  tS  is the survival function for  tF , given by first equation (2.30).  Therefore, the 

MRL for gamma distribution is: 
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The plots of the corresponding MRL for different values of  1  and 1 are shown in Fig. 7, 

below.  
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Fig. 7: A plot of MRL for gamma distribution, for different values of, 1i  ,   4,3,2,i  and, 1 .  

Thus, for an increasing failure rate, the mean residual life decreases (see the red, blue and green 

curves on Fig. 7). When, 1 , the MRL is constant (horizontal purple line), whereas it is 

increasing for values of, 10   , see  [86].  The MRL is also decreasing for 1  and 

increasing when, 1 , for the popular two-parameter standard Weibull distribution and  

reduces to the constant when 1 .  The Gompertz model that is often used to model the 

increasing mortality rates of biological organisms is also relevant in this case. Its MRL is 

decreasing as time increase.   

 

 The characteristics of the MRL function are, also, often inferred from its failure rate using 

relation (2.48).  As a specific case, consider the simplest example of an exponentially distributed 

lifetime random variable T with the Cdf,  

     ttStF  exp11 . 

In this case, the failure rate is constant, (i.e.    t ) and as a result, the corresponding MRL is  

  /1tm .  Denote,    tmt /1 , then from (2.48) the following relation is obtained,  

        tttt   /' . 

The function  t   is, therefore, “asymptotically equivalent to   t  in the following sense”, 

[66]:  
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     0 tt     as, t , if and only if          0// ''  tmtmtt     as t . 

These results, also, hold for power functions of the form:   1  tBt   but does not hold for 

functions that are sharply increasing, e.g.     tt exp  or,    2exp tt  .  The following 

weaker asymptotic relation holds:       11 ott    as t  ensures that   0' tm  

for the sharply increasing functions, [66].  

 

Some further results on the limiting and asymptotic properties are studied in [115] and [245] to 

name a few. We also refer to [66], [71], [86], [129] and [238] for some other detailed discussions 

on further implications of these relations and results on this topic.  On the other hand, sufficient 

conditions for the monotocity of the failure rate in terms of the monotocity of the MRL function 

are contained in the theorem 2.5 of [66]. Other alternative representations of MRL in terms of the 

failure rate are also established in [118]. This also provide some further flexibility for studying 

the shapes of the MRL function. 

 

2.9.2. Relations between non-monotonic failures rates and non-monotonic MRL 
 

Non-monotonic aging properties of the failure rate and the mean residual life function are often 

useful for describing the aging properties of many electronic, mechanical or even biological 

objects.   

 

For a meaningful illustration, consider the inverse Weibull (IW) distribution with the Cdf, 

 

   exp ,F t t     

 

where, 0t  and 0  is the shape parameter and 0 is the scale parameter. The pdf of the 

IW distribution is established as, 

       
 

 tttf exp
1

,    

 

where, 0t and 0,  . Then, the failure rate in this case is, 
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Since the shape of the failure rate does not in this case, necessarily, depend on the scale 

parameter  , we may take 1  without loss of generality and the  corresponding plots of the 

failure rate functions for different values of 0  are shown in Fig. 8 below, 
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Fig. 8: plots of the failure rate for IW for different values of the shape parameter, 0i and scale parameter, 1 .  

The corresponding mean residual life can be obtained by using relation (2.51) and is given as 

follows:  
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The plots for different values of the shape parameter, 1 and the scale parameter, 1  shown 

in Fig. 9 below, 
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Fig. 9: plots of the mean residual life for IW for different values of the shape parameter, 1 and scale parameter, 

1 . 

As can be noted from Fig. 8, for the IW distribution, the failure rate is UBT shaped, whereas the 

corresponding MRL (see Fig. 9) is decreasing for certain values of parameters and UBT for other 

values. These results indicate that the inverse Weibull model can be considered in modeling and 

analysis in many situations. Other results for the case, where the failure rate with the BT shape 

leads to a decreasing  tm  and the UBT failure rate results in the increasing  tm , are considered 

in [177]. We also refer to [111] for some generalized Weibull distributions with the BT failure 

rate that exhibit MRL functions with UBT shapes. 

 

We are, on the other hand, interested in the effects of heterogeneity on the main reliability 

characteristics. In what follows, we will consider the corresponding mixture operations for the 

MRL functions and briefly discuss results relating to the proportional mean residual (MRL) 

model, which will be particularly useful for further discussions of the bending properties of the 

MRL functions under mixtures in section 3.4.2. 
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2.9.3. Mixture operations for MRL functions and the Proportional MRL Model 
 

Suppose (as in section 2.2.),  tF  to be indexed by a nonnegative random variable, W .  Then in 

accordance with (2.46) and (2.50), we have 

   
 

 tS

dvwvS

wtmwWtm t






|

|| ,                                       (2.52) 

with the corresponding mixture mean residual life model defined as 

 

        
 
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dvvS

dvdwwgwvSwtBtm

m

t

m


 



 


 0

0

1
|| .                          (2.53) 

where, 

     
b

a

dwwgwtSwtB || . 

Relation (2.53) can be written “in terms of the MRL function,   wtm | ”: 

 

             
 




00

1
|||| dwtwgwtmdvdwwgwvSwtBtm

t

m
                   (2.54) 

where,  twg |  is the probability density function of the random variable W , which is 

conditioned on the event, tTx  .  Usually, the proportional MRL model, as a specific case of 

(2.54), is considered for the corresponding modeling and analysis.  We briefly discuss some 

results relating to this model. Specifically, we consider, the specific case of the ‘proportional 

MRL’ model, to be given by,  

   tmwwtm 1|  ,                                                    (2.55) 

 

where,  tm  is the baseline MRL function and 0w .  From (2.55),  

 

             twttmwtmwtmwt bb  
 '1' |1|| ,                 (2.56) 

 

where,     1| '1'   tmwwtm ,  implying that   wwtm |' .  In this form model (2.56), 

already contains both models (2.15) and (2.18). Therefore, it follows from (2.16), (2.20) and 
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(2.11) (and from the fact that now,   ,1w ) that the mixture failure rate is given in this case  

by 

             



1

' || tWEtttmdwwgwtt bbm   .                   (2.57)   

 Then using (1.17) and (1.18), we can state: “  tWE |   is decreasing in    ,0t ”, [81].   We, 

also, refer to reference [129], in which some conditions for preservation of the monotocity 

properties of,  tmm are established.   

 

From the above results and utilizing relation (2.48), it may be concluded: if  tm  is increasing 

(decreasing) in  ,0  then  tmm  is decreasing (increasing) in the corresponding interval. 

Hence, our heterogeneous population is improving as “the weakest populations are dying out 

first”.  

2.10. Reversed Failure Rate (RFR) Model 
   

2.10.1. Some general properties of RFR Model 
 

Let  T  be a lifetime with the Cdf,  tF  and the pdf,    tFtf ' .  The corresponding reversed 

failure rate is then defined by the ratio (1.5), which we reproduce here for convenience of 

reference,  

 
 
 tF

tf
tr  ,                                                                (2.58) 

For a sufficiently small change in time t ,  the model (2.58) i.e.,    ttr    may be interpreted as 

the conditional probability of failure of an item (object), in  , ,t t t  where the failure is 

assumed to have occurred in the interval  t,0 . This additional aspect is important in the 

descriptions of lifetime distributions.  The reversed failure rate also uniquely defines,  tF  via 

the following analogue of the exponential representation (1.2),  

 

    exptF ,                                                        (2.59) 
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where,  



t

dvvr  and  

      exptrtf .                                                  2.60) 

As noted by [66] and [129], for proper lifetime distributions and 0t :  , whereas  

 



0

dvvr .                                                             (2.61) 

This fact implies that   


tr
t 0
lim  and the case,   00 F ,  may also be considered  as the 

corresponding limit.   

 

The above facts will be useful for analysis of the shapes of RFR.  The simplest way for 

investigating the relationship between the reversed failure rate and the failure rate is to consider, 

 
   

 tF

tSt
tr


 .                                                      (2.62) 

Using relation (2.62) and considering (2.59) it can be shown that (2.62) reduces to,  

 

 
 
  1exp 


u

t
tr


,                                                      (2.63) 

where as in (1.2),   
t

dvvu
0

 . From (2.63), if  t  is decreasing, then  tr  is decreasing.  

The simplest case of an exponential distribution with constant failure rate is considered, by the 

authors of reference, [66].  This function decreases exponentially as, t , whereas its 

behavior as 0t  is defined by the function 
1t .  The reversed failure rate is also decreasing for 

the Lindley distribution, which has an increasing failure rate (see Fig. 10).  For example, using 

relation (2.63), the RFR in this case is obtained as, 
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where, D  and Z  are as defined earlier.in section 2.5.1. The corresponding plots for different 

values of 0 are shown in Fig. 10, below. 
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Fig. 10: A plot of reversed failure rate for different values of the shape parameter, 0 . 

As another example, consider a lifetime with the distribution function “     tctF exp  with 

0t  and 0, c ”. As,    tFtf ' , then in accordance with (1.1) the corresponding failure 

rate is, 

 
 
 

 
 

 
 

 
,

1expexp1

exp 1























 





tc

tc
t

tc

tcc

tS

tf
t  

 

whereas, utilizing definition (2.58), we have,   

 

 
 
 

 1  tc
tF

tf
tr . 

The shapes of the failure rate and reversed failure functions for pairs of 0, c  are shown, 

respectively, in Fig. 11 and Fig. 12, below. 
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Fig. 11: A plot of failure rate for different pairs of values for 0, c . 
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Fig. 12: A plot of reversed failure rate for different pairs of values for 0, c . 

 

The failure rate is exponentially decreasing for values of 63.0, c  and is upside-down 

bathtub (UBT) for the corresponding values of 63.0, c . The corresponding reversed failure 

rate is decreasing for all pairs of values, 0, c . Another distribution, which has a decreasing 

reversed failure rate is the inverse Weibull distribution with the UBT failure rate, (see Fig. 8). For 

example, from  (2.58), the corresponding RFR for the IW distribution is obtained as,  

     1



 ttr . 
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The corresponding plots of RFR for different values of 0  and 1  are shown in Fig.13 

below. 
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Fig. 13: A plot of reversed failure rate for different pairs of values for 0  and 1 . 

2.10.2. Mixture operations for RFR functions and the Proportional RFR model 
 

It is well known that the effects of heterogeneity may change properties of the main reliability 

indices. Does this mean that the reversed failure rate (which is decreasing even for distributions 

with the increasing, BT and UBT failure rates) would be increasing in this case?  As in “frailty” 

models, we now investigate the impacts of the unobserved random variable  W  on the RFR.  Let 

assumptions made in sections 2.1., and 2.2. about the distribution of lifetime random variable T  

hold, then (as in frailty models), the corresponding distribution indexed by wW   is given by: 

 

    exp| wtF ,                                                (2.64) 

where, now  



t

dvwvr |  and  wvr |  is the conditional reversed failure rate. Therefore, 

taking the expectation on both sides in (2.64) with respect to W as in (2.3), we have the mixture 

Cdf, defined similar to (2.9) as,  

       | |
b

m

a

F t E F t W F t w g w dw     ,,                               (2.65) 
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 Therefore, the corresponding mixture reversed failure rate is,   

 
   

   
   






b

a

b

a

b

a
m dwwgwtr

dwwgwtF

dwwgwtf

tr |

|

|

,                           (2.66) 

where, , 0, tw  and  twg |   is the conditional probability density function of W , which is 

conditioned on the event, tT  , 

   
   

   


b

a

dwwgwtF

wtFwg
tTwgtwg

|

|
|| .                                    (2.67) 

 

As in (2.13), the conditional random variable WWtW 0|,| , is characterized via the 

corresponding distribution function,   

   
   

   

|

| Pr |

|

w

a

b

a

F t v g v dv

G w t W w T t

F t w g w dw

   




 ,                          (2.68) 

whereas, the corresponding distribution function of the unconditional random variable, W is its 

limit as, t . These general mixture models are useful for the corresponding analysis of the 

shape of the reversed failure rate under mixtures. Specifically, the proportional reversed failure 

(hazard) rate (PRFR) model is considered. The PRFR model of the form: 

    tFtF 0  ,                                                              (2.69) 

where  tF0  is the baseline distribution and 0  is proposed by the authors of reference, 

[160].  Some results relating to this model were later discussed by among others in [76], [127], 

[139], [147], and [159].  As pointed out in reference [127], a topic for further investigation is to 

consider the case when   in the model (2.69) is random.  For the mixture model (2.65), we 

consider as a specific case,   

   trwwtr b|  ,                                                 (2.70) 
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where, 0, tw  and  trb ,  is the reversed failure rate of the baseline lifetime bT  and W  is the 

mixing random variable.   This model (which is equivalent to (2.69)), already, defines “the 

reversed failure rate of the subpopulation for each realization wW   with the distribution 

function” given by (2.64).  The unconditional expectation of the random reversed failure rate, 

 wtr |  is given by,  

        



0

|| dwwgwtrWtrEtrp
.                                   (2.71) 

This function captures the monotonic pattern of a family of random variables,  wtr | , e.g., if   

 wtr |  is decreasing, then consequently,   tp  is decreasing as well”.   This model, will be 

particularly useful for discussing the shapes of the mixture reversed failure rate,  trm , in section 

3.4.3.  

2.11. Some General Properties of the Mean Inactivity Model 
 

Let the random variable,  tT , be the time elapsed since the last failure, with the corresponding 

survival function given by: 

   tTTttS  |Pr ,                                                               (2.72) 

and the pdf, 

 
 
 tF

xtf
tf


  .                                                                (2.73) 

The mean inactivity time is defined as the expectation of the random variable,  tT , defined by 

(1.6) and reproduced here for convenience, 

   
 

  tF

dvvF

TEt

t


 0

  .                                           (2.74) 

Some properties of the model (2.74) are considered in [127].  In fact, if (2.73) is differentiable, 

then a useful relation (1.7) between the reversed failure rate and the mean waiting (inactivity) 

time is obtained. Thus, with respect to relation (2.60), the following exponential representation 

can be shown to hold in this case, i.e., 
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 







 



t

dvVtF exp .                                                 (2.75) 

where,      vvV  /1 ' . The distribution of the random variable,  tT , is uniquely 

defined by the mean waiting (inactivity) time.  The corresponding characterization conditions 

established in [127] are useful for studying the aging behavior of lifetime’s distributions by 

means of the MIT.   

Recalled, hereafter,    

1.   00  , whereas   0t   for 0t  and   1' t . 

2. 


t

dvV  and 



0

dvV  

From these results and equation (2.75), it is clear that, we could not have lifetime distributions 

with decreasing mean waiting time in  ,a   for all 0a .  Furthermore, for   0' t , the first 

part of condition 2 does not necessarily hold. However, if we assume further that     1
 ttr  , 

then  t  is increasing (monotonically) in  ,0 . These results, are also important for our 

further analysis of the shape of the MIT under the operation of mixing in section 3.5.  

 

2.12. Concluding Remarks 
 

Heterogeneity in populations (of items) is often induced by changing environmental conditions 

and/or other random effects.  We focus, on describing the corresponding aging characteristics for 

heterogeneous populations.  

 

We have introduced and described the notion of the random failure rate for specific cases.  Some 

aspects of general mixture models, which are useful in the rest of this thesis are considered and 

briefly discussed.    

 



 

 
49 

 

We focused on some basic frailty (mixture) models and discussed some results that describe the 

shape of the mixture failure rate.  Specifically, a meaningful case of a population which consists 

of two subpopulations, which we believe was not sufficiently studied in the literature, is 

considered in detail.  The corresponding properties describing the shape of the failure rate under 

these mixtures are analyzed. It is shown that the mixture failure rate can decrease or be UBT-

shaped for some specific cases.  

 

 Another important in practice specific case of a random initial age as a mixing variable was also 

studied in detail.  It is shown that this type of mixing can also change the aging properties of an 

object, e.g., for certain values of parameters, the mixture failure rate may either preserve the IFR 

property or have a bathtub shape: initially decreasing to some minimum point and eventually 

increasing as t . 

 

The mean residual life, also plays a central role in characterization of the lifetime distributions. 

We present some useful general results on the properties of the MRL function and obtain the 

corresponding ‘shape properties’ for the relevant mixtures.  The MRL function shape properties 

are analyzed for some specific cases and some relations with the failure rate are also derived. 

 

 We show that for the inverse Weibull baseline distribution with the UBT shaped failure rate, the 

corresponding MRL is decreasing for certain values of parameters, whereas it is the UBT-shaped 

for other values. These results already show the flexibility of the inverse Weibull model in 

describing different aging phenomena. 

 

We further, consider some general properties of the reversed failure rate. The corresponding 

shapes of the RFR are analyzed. In particular, two specific cases when the failure rate is 

increasing and when it is UBT-shaped are studied. It turns out that the reversed failure rate is 

decreasing in both cases. From these results, it is concluded that, there are no lifetime 

distributions with increasing or constant reversed failure rates. 

 

 We also briefly consider a specific proportional reversed failure rate (PRFR) model, which will 

be important for further analysis of the bending properties of the mixture RFR model. 
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Some properties of the mean inactivity (waiting) time (MIT) are presented and discussed.  

Specifically, it is stated that, due to relations between the RFR and the MIT, there are also no 

lifetime distributions with decreasing mean waiting time.  

 

The obtained in this chapter results on bending down of the mixture failure rates with time are 

well justified for human populations (Gompertz law of mortality for baseline distributions in 

mixing models) from developed countries, where there is a gradual availability of validated 

mortality data on centerians and supercentarians.  It is also interesting to investigate this 

phenomenon utilizing data from less developed countries. 
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CHAPTER 3: Stochastic ordering for mixtures of random variables  
 

3.1. Brief Overview  
 

We firstly, discuss some essential aspects of stochastic orderings, in section 3.2.  A detailed 

general theory on various stochastic orders and other aspects on this topic, could be found in, 

reference [80].  However, ordering for mixtures is not sufficiently studied in the literature due to 

variety of settings and applications.  

 

We start with the most natural and at the same time, non-trivial, in this context ordering of the 

mixture failure rates. “Usually stochastic ordering of mixture failure rates for stochastically 

ordered mixing random variables arises when considering heterogeneous populations in different 

environments” [81]. We are motivated by the results on the aging properties of the failure 

(hazard) rate of general and some specific mixed models in references [83], [94] and [137]: see, 

e.g., also reference [54].  The definition of the bending down property of the mixture failure rate 

is established in references [83] and [94]. The mixture failure rate may either bend down in a 

weak or strong sense. For instance, if  

 

   tt pm                    for 0t ,                                    (3.1) 

 

where,  p t  is given by relation (2.33).  In this case, the mixture failure rate is said to bend 

down in a weak sense. On the other hand, if 

 

    tt mp                 for 0t ,                                     (3.2) 

 

the mixture failure rate bends down in a strong sense (meaning that this difference increases in 

time).  Along with this idea, we discuss results on the bending properties of the mixture failure 

rates when compared with a specific form of our model (2.1). These results are also extended to 

other main reliability indices mentioned earlier.   

 

We, also, analyze the failure (mortality) rate for heterogeneous populations in section 3.5, e.g. 

“when the subpopulations are ordered (in some stochastic sense)”, [41].  As pointed out by the 
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forgoing authors, this setting can be interpreted via the fixed frailty models with one or more 

frailty parameters.  Under this setting, we present some results with respect to vitality modeling 

in section 3.6.  In the final section 3.7, we consider relative aging of the mentioned main 

reliability indices.  Specifically, we propose ordering of lifetimes in terms of monotocity 

properties of the ratio of the mean waiting (inactivity) times. 

 

3.2. Some essential aspects of stochastic orderings 
 

Let X  and Y  be non-negative and absolutely continuous random variables with the distribution 

functions:  tFX  and  tFY , where  tX  and  tY  are the corresponding failure rates and 

 tf X  and  tfY  are the density functions. Assume further that the first moments exist and are 

finite.  Then X  is said to be smaller than Y  in expectation if    YEXE  :  e.g. from the 

definition of the expected value of a lifetime random variable, 

 

        
 


0 0

YEdyySdxxSXE .                                  (3.3) 

Some other basic stochastic orders widely used in the literature are: 

 

a) X  is said to be stochastically smaller than Y , in the sense of the usual stochastic order, 

denoted, YX st ,   if,   

   tStS YX      for  0t .                                              (3.4)  

Hence, the corresponding distribution functions are also ordered (i.e.    tFtF YX  ).  In this 

setting, then YX st  “if and only if,      YEXE   , for all increasing functions,  ”, [80].  

This, condition, implies that the corresponding random variables, will also be ordered in the 

sense of increasing convex (concave) order for every increasing, convex (concave) functions  .   

 

b) X  is said to be stochastically smaller than Y , in the sense of failure (hazard) rate ordering, 

denoted, YX hr ,   if,     tStS YX /  is decreasing in t .  
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Therefore, which follows from the corresponding exponential representations for survival 

functions, 

    tt YX     ,     for      ,0t .                                     (3.5) 

 

c) X  is said to be stochastically smaller than Y , in the sense of reversed failure (hazard) rate 

ordering, denoted, YX rhr ,  if,    tFtF YX /  is decreasing in t . 

The reversed failure rate order is denoted as  

 

   trtr YX  ,       for   t  ,                                                   (3.6) 

where, 

 
 
 tF

tf
tr

X

X
X     ;   

 
 tF

tf
tr

Y

Y
Y  . 

d) X  is said to be stochastically smaller than Y , in the mean residual life  order, denoted 

YX mrl ,   if , 

 

 

 

 




tt

duuS

yS

duuS

xS
      for all tyx , . 

 

The mean residual life order is denoted as,  

 

   tmtm YX              for      ,0t .                               (3.7) 

 

e) X  is said to be stochastically smaller than Y , in the mean waiting (inactivity) order, 

denoted, YX mit  ,  if,  

    
t t

YX tFtF
0 0

/ , is decreasing in t . 

Hence, mean inactivity order is denoted as,  

 

   tt YX   ,          for    t .                                              (3.8) 
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f) X  is said to be stochastically smaller than Y , in the likelihood ratio order, denoted  

YX lr  if,    tftf YX /   is decreasing in t  or  if , 

 

       xfyfyfxf  ,   for all  yx  . 

Hence, we write, 

   tt YlrX   .                                                                  (3.9) 

Remark 1.2 
 

 Obviously, from (2.46), the failure rate ordering (3.5) implies MRL ordering (3.7).  For the 

inverse relation to hold, a sufficient condition of increasing    tmtm XY /  in t , should be 

presumed. Some useful monotocity properties of this ratio of the MRL functions are studied 

in reference [82].  These, will be useful for our analysis of the relative aging behavior of 

lifetime distributions in section 3.6.  

 

  Note that relation (3.7) and other properties of (2.46) will also be utilized to analyze the 

bending properties of MRL in section 3.4.2.   

 It will be shown that the likelihood ratio order is the most natural order for ordering of 

mixing distributions.   

 

 

3.3. Stochastic ordering of mixing distributions 
 

Consider two continuous nonnegative random variables, 1W  and 2W  with the corresponding 

densities,  wg1  and  wg 2  with the same support in  ,0 . Then, “ 1W  is stochastically smaller 

than 2W  in the sense of likelihood ratio order:  

21 WW lr ,                                                                (3.10) 

if, 
 
 wg

wg

1

2
 is a decreasing function”. Similarly and parallel to this result, we consider, the case, 

where the frailty parameter, W  is modified to  tTWtW  || . This conditional random 

variable, already, account for the information on subpopulation of objects that survived the 
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operational interval,  t,0 .  In particular, assuming the family of failure rates  wt |  to be 

increasing in w , implies, 

   21 || wtwt        for 
21 ww  and   ,0, 21 ww .                      (3.11) 

 

As a result, we can argue that the family of random variables, tW |   for all 0t  is decreasing in 

the sense of the likelihood ratio order.   In this case, considering the conditional mixing 

distribution (2.10) in our mixing model (2.11), we can then compare the frailty distribution of 

surviving subpopulations (i.e. a subpopulation surviving to 1t  and the one surviving to 
2t ):  

 
 

     

     








0

21

0

12

1

2

||

||

|

|

dwwgwtStwS

dwwgwtStwS

twg

twg
  .                                 (3.12) 

If (3.12) is decreasing, then the conditional random variables, tW |   are ordered in the sense of 

likelihood ratio order (3.11).  As, 

 
 

 











 

2

1

|exp
|

|

1

2

t

t

dvwv
twS

twS
                                            (3.13) 

is decreasing in w ,  for all  21 tt  ,   due to ordering (3.11), we can conclude that (3.12) is 

decreasing and the family of conditional random variables, tW |  is decreasing for all 0t  in 

the sense of the likelihood ratio order (3.10). 

 

Specifically, we consider different mixing random variables: i.e., frailties 
1W  and 

2W  with 

densities,  wg1  and  wg 2 , with the corresponding distribution functions,  wG1
 and  wG2

.  

 Let 

 
   

   




0

1

1
2

dwwgwu

wgwu
wg   ,                                               (3.14) 

where,  wu  is a decreasing function of w .  As  
1W  is stochastically larger than 

2W  in the sense 

of (3.5), then     wGwG 21  . For instance, using (3.14) we have, 
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 
   

   

   

       












w

w

ww

dttgtudttgtu

dttgtu

dttgtu

dttgtu

wG

1

0

1

0

1

0

1

0

1

2
   .                     (3.15) 

As  wu  is a decreasing function, it can easily be shown that,    wGwG 21  , where 

   
w

dttgwG
0

11 .  For example, see e.g. reference [83],  

 
     

           
 wG

dttgtujwvdttgtuwiv

dttgtuwiv

wG

w

w

w

1

1

0

1

0

1

2

||

|












,                  (3.16) 

where, 0i and j . In this case,  wiv |  and  jwv | in relation (3.16) represents the 

respective means of  wu .  This result implies that    jwvwiv ||   and    wGwG 21  , 

  ,0w .  Obviously, when the two frailty random variables 
1W  and 

2W  are ordered in the 

sense of (3.10), then the corresponding random variables tW |1  and tW |2 ,   for our 

subpopulation that survived the operational interval  t,0  are also accordingly ordered.  For 

instance, 

 
   

   

     

     










0

1

0

1

0

2

0

2

2

|

|

|

|

|

dvvgvuvtS

dvvgvuvtS

dvvgvtS

dvvgvtS

tTwG

ww

 .                       (3.17) 

 

On the other hand, by definition  tTwG |1
 is given by, 

 
   

   






0

1

0

1

1

|

|

|

dvvgvtS

dvvgvtS

tTwG

w

 .                                                 (3.18) 

As the function,  wu  in (3.14) is decreasing, then from results (3.17) and (3.18), 

   tTwGtTwG  || 21
. This result, already shows that, 1 2W W , and 

1 2| |W t W t .  If in 

addition, ordering (3.5) holds, then “the corresponding (mixture) random variables are also 
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ordered in the sense of the failure (hazard) rate ordering”. From the fact that, 

   tTwGtTwG  || 21
, the following result can be shown to hold,  see e.g. reference, [83], 

 

      



0

21 /|| dwtwgwtgwtba  ,                                      (3.19) 

where, 

      



0

21

'
,0||| dwtwGtwGwtba w for 0t  is the difference between the two 

mixture failure rates (i.e.    ta m 1  and    tb m 2 ).  This result, already shows the bending 

down property as signified by the majorization of,  tm  by  tp  (i.e. from (3.19), 

    0|| 21  tTwGtTwG ).  In particular, it implies that, “when the mixing distributions 

are ordered in the sense of (3.10)” see e.g. reference, [81], the mixture failures are consequently 

ordered in the sense of (3.11). The respective random variables would also be consequently 

ordered in the sense of the usual stochastic order as the hazard rate order implies the usual 

stochastic order. 

 

3.4. Stochastic ordering of the main reliability indices  
 

 In what follows, we intend to generalize results on the “bending” properties of mixture failure 

rates to other related main reliability characteristics mentioned earlier.  Suppose that  w  is the 

family of random variables with W  having support in  ,0  and let again as before W  be the 

mixing random variable.  Denote, for convenience, the respective reliability characteristics in the 

mixture,  tm .  

 

Our idea is to compare,  tm  with the unconditional (on survival in [0, )t ) characteristic, 

    WtEtp | , where W is the mixing random variable. The function,  tp  is 

important and it captures the monotonicity properties of the underlying subpopulation lifetimes 

in the mixture.  The following relations (in addition to the considered stochastic orders) are, 

therefore, important for our analysis of the “bending” properties of the main reliability 

characteristics under mixtures in the subsequent section. 
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1. If    tt mp   and    tt mp   is decreasing, then  tm  is bending down in the 

weak sense.  

2. If    tt mp   and    tt mp   increases, then  tm  “bends down” in strong 

sense. 

3. If the ratio 
 

 t

t

m

p




  is increasing in t , then  tm , is again bending down in a strong 

sense.  

3.4.1. Overview of important results on stochastic ordering of mixture failure rates 
 

Relations in items 1 and 2 in the preceding section are utilized in establishing the bending down 

properties of the failure rate under mixtures in references [81], [83] and [94], whereas relations 4 

and 5, could already be found in reference, [86].   

 

When the relations in 2 above holds and, 

 

    0lim 


tt mp
t

, where,    00 mp  , 

 

it can easily be shown that, the mixture,  tm  is also bending up (down) in a weak sense. On 

the other hand, if 

  ,|lim 


wt
t

   baw , ,  

then, 

     tt mp . 

 

It was, also, shown in reference [81] that the mixture failure rate  tm  is majorized by  tp , 

in this case.  This result is due to the corresponding conditioning in (2.11), which renders “the 

mixture failure rate to always be smaller than the unconditional one for 0t ”, [94]. For 

instance as stated by these authors, if “the conditional and unconditional expectations in (2.11) 

and (2.33) respectively, are finite for   ,0t , then: the mixture failure rate  tm  weakly 
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bends down with time”, see e.g. also reference, [83], whereas,  wt |'  also increases in t  and 

   tt mp    is increasing, then for this case,  tm   strongly bends down with time.  

 

Intuitively, from these results, relation in item 3 above is increasing as a function of t  and the 

mixture failure rate also bends down in a strong sense. For instance,  

 

   

 t

tt

m

mp



 
 is increasing, 

 

 as  tm  is majorized by  tp . Specifically, consider the multiplicative model, (2.19), where 

 tb  is the baseline failure rate.  In this case, model (2.11) turns to be given by,  

 

   tWEtb | , 

whereas model (2.33) is defined by  

   0|WEtb , 

where,    WEWE 0| .  As the baseline failure rate  tb  is increasing and the conditional 

expectation  tWE |  is decreasing as function of   ,0t , we can conclude that, 

 

     tWEtt bm |  . 

 

is decreasing, only if the variance  tWVar |  is large.  Therefore, we can also conclude that, 

         tWEWEttt bmp |0|   , 

 

 is increasing.  From relations in items 2 and 3 above, the mixture failure rate bends down in a 

strong sense in this case.  

 

Interestingly, when  Wt |'  is increasing (decreasing) in W  whereas  wtS |  is decreasing 

(increasing) in  W   and  w  is IFR for all  wW   and, 0t , then the relation in item 3 

above  increases as well. The mixture failure rate bends down then in a strong sense.   
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3.4.2. Stochastic ordering of MRL mixtures 
 

In most cases,  wt |  is expected to increase with time as a result of tear and wear 

accumulated by an operating item (object).  In this sense, aging is taking place and intuitively, 

 wt |  (  wtm | ) would also be increasing (decreasing). The conditional variance of  W  

would intuitively also be increasing in this case.  However, it is proved in [94] that the mixture, 

 tm  bends down in a weak sense when the failure rates are ordered as in (3.11).  On the other 

hand, it bends down in a strong sense if   wt |'  increases in t  and    tt mp    is increasing 

as a function, t ; that is, 

    WtEtm |  . 

 

From the forgoing, the relation in item 3 increases as well, and the mixture failure rate is bending 

down in a strong sense.   

 

From, the relations between the failure rate and the MRL (see e.g. relations (2.52) and (2.56)); 

the MRL function under the operation of mixing bends up.  Due to ordering (3.5), (which is 

stronger relative to both the ordering (3.4) and the ordering (3.7)), a decreasing  wt |  in w  for 

all t , leads to the conclusion that both  wtS |  and  wtm |  are increasing in w  for all 0t . 

As a result,  

    WtmEtmm | . 

 

Whereas,  if  wtm |'
 is increasing (decreasing) in W and  wtm |  is decreasing (increasing) in 

W  for all   0t , then, from the relations in item 2,    tmtm mp   is a decreasing function of, 

t .  The mixture MRL “bends up” in a strong sense in this case.   

 

Additionally, considering the relation in item 3, it is easily concluded from the fact that 

   tmtm mp    is increasing, that the shape of the mixture MRL bends up in a strong sense in this 

case.  For example,  tmm  is majorized by  tm p ,  
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   

 tm

tmtm

m

mp 
is increasing. 

From these results, our heterogeneous population is improving, e.g. the proportions of strong 

subpopulations are increasing as “the weakest populations are dying out first”.   

 

3.4.3. Ordering the reversed failure rate mixtures 
 

There are no non-negative random variables for which their lifetime distributions are 

characterized by a constant or increasing reversed failure rate in a finite interval of support, i.e. 

  0,,  aa .  Does, this mean the corresponding shapes of the reversed failure rate do not 

change under the operation of mixing?    

 

From relation (3.6), which can be shown to be stronger relative to the usual stochastic order 

(3.4), it is intuitive that  wtF |  is increasing (decreasing) in w   whereas  wtr |  is decreasing 

(increasing) in w  for all 0t .  When,  w  is increasing (decreasing) in w , in the reversed 

stochastic order (3.6),  trm
  bends down in a weak sense.  It, follows from the above 

considerations that,  

    WtrEtrm | . 

 

On the other hand, the relations in item 1 above imply a weak bending down of the reversed 

failure rate.  

 

Parallel to the multiplicative model (2.19), we consider, the multiplicative reversed failure rate 

model (2.70), where,  trb
 is the baseline reversed failure rate in this case.  Then, model (2.71) 

reduces to, 

   0|WEtrb , where,    WEWE 0| . 

 

Then model (2.66) turns to  

   tWEtrb | . 
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As the baseline reversed failure rate,  trb
 and  tWE |  are decreasing for 0t , then we can 

conclude that  

    WtrEtrm | . 

  

Thus, the reversed failure rate bends down in a weak sense.  Interestingly, when the derivative, 

 wtr |'  is decreasing or alternatively  wtF |  is decreasing in t  for all  0w , then, 

   trtr mp   is increasing as a function of 0t  as well.  Therefore, from the relations in items 

2 and 3 above, the reversed failure rate strongly bends down as time increases.   

 

The results obtained above, show that the mixture reversed failure rate  trm
 bends down as 

time increases. However, the implications of locally increasing mixture reversed failure rate 

observed in reference [54] in lifetime modeling would need some further study. 

 

3.4.4. Ordering the mean waiting time for mixtures 
 

The results on the mixture reversed failure rate  trm
  show that it bends down as time increases.  

Does it mean that the corresponding mean inactivity time is also not decreasing for lifetime 

random variables?   

 

Relations between the RFR and the MIT, specifically relation (1.7) are useful in studying the 

aging behavior of the MIT.  If ,  w  is increasing (decreasing) in w  in the mean waiting 

(inactivity) stochastic order (3.8), then it is also decreasing (increasing) in w  in the usual 

stochastic order (3.4).  Therefore,  

    WtEtm |  . 

 

The mean waiting (inactivity) time is bending up in a weak sense in this case. Whereas, 

   tt mp    is increasing, when the derivative  wt |'  is increasing in z .  Therefore, the 

corresponding  wtr |  is decreasing in w , and by relation (1.7), the mean waiting (inactivity) 

time bends up in a strong sense in this case.  Furthermore, considering the relations in items 2 

and 3 above, then,  
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   

 t

tt

m

mp



 
 is increasing. 

 

 This result is due to the fact that, the numerator is increasing and therefore, the mean waiting 

(inactivity) time bends up in a strong sense also in this case.  

 

3.5.  A case of two frailties  
 

Consider the “Gompertz law of human mortality” defined by the following mortality rate, which 

is a function of two parameters  , and  , 

 

   tt  exp,|  .                                                     (3.20)  

 

When “ , is randomized and   is fixed, model (3.20) reduces to the ordinary multiplicative 

frailty model, with asymptotically flat hazard (failure) rate, particularly, when the distribution of 

frailty is, e.g., Gamma and t ”, [41].  This already reflects an ordering in terms of failure 

rates. These results may be extended to a more general case with more than one frailty 

parameter.  

 

Consider the bivariate “frailty” model:  21 ,| wwtF  with the failure rate:  

 
 
 

1 2

1 2

1 2

| ,
, ,

| ,

f t w w
t w w

S t w w
  , 

where, 
1w  and 

2w  are the non-negative random variables (frailties) having the joint pdf, 

 21 , wwg  with support  ,0 . Two specific cases of this model are considered for a system with 

two statistically independent components in series.  If, the frailties are considered independent, 

that is: 

     2121 , wgwgwwg   and        2121 ||1,| wtSwtSwwtF  , 

then the population failure rate:  

     1 2 1 2 1 2

0 0

| , , |t t w w g w w t dw dw 
 

   , 
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with the corresponding conditional pdf,  

 
   

    
 



0 0

212121

2121
21

,,|

,|,
|,

dwdwwwgwwtS

wwtSwwg
twwg . 

Specifically, consider the frailty 22 wW   to be fixed, then the failure rate can simply be defined 

via model (2.11):  

      1

0

21212 ,,|| dwwwgwwtwt 


  . 

In this case, the mortality rate is decreasing, if the failure rates,   2| wt  are ordered in 2w .  

Specifically, when  2| wt  for each 2w  is decreasing asymptotically as t ,  the mixture 

population failure rate in this case decreases.  Thus, considering random  12 WW  leads to the 

strictly decreasing population failure rate.   This behavior can be explained as result of the well-

known principle, the “weakest subpopulations are dying out first” as time increase.   

 

3.6. Vitality Modeling 

 
3.6.1. Brief Overview 
 

The decline in in vitality of an organism as some aggregate characteristic of health can be 

effectively modeled and analyzed via some simple vitality models.  In first passage and Markov 

(phase-type) models, the corresponding modeling and analysis usually considers the survival 

capacity (vitality) as an aggregated characteristic endowed into organisms at birth.  The 

stochastic loss of vitality (i.e. deterioration of “vital” parameters1) as age, is usually modeled via 

some stochastic process (i.e., “the Weiner process with negative drift which, already, describes 

the (non-monotone) decrease in vitality of organisms” [41]).  Usually in these cases, the 

probability of death (i.e. “the first time passage to the zero boundary”, see e.g., reference, [241]), 

is often modeled via the inverse Gaussian distribution in a number of application areas.  For 

instance, this model which apparently was first considered in [252] is used to explain mortality 

plateau at advanced ages in [144] and [109], relating natural and xenobiotic stressors to survival 

of organisms in [145] and extended to a model with vitality-dependent and vitality independent 

                                                             
1 As they are known in biological literature. 
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(extrinsic or accidental morality) components by [61].  See, e.g., also a wide range of Markov 

processes considered in [132] and phase-type distributions in [221]. The review on the 

development of the inverse Gaussian distribution and its statistical applications is also provided 

by [241] and later a more general review of some mortality models was given in reference [149].  

It is also interesting to determine which “other statistical distributions are characterized by the 

asymptotically flat hazard rate”, [41].  

 

3.6.2. Some results on Vitality Modeling 
 

Vitality loss (i.e. the decline in vitality with fixed initial value) when 00 z  can be described via 

the stochastic process, see e.g., reference, [45]: 

UzZt  0 ,                                                             (3.21) 

where tVU  . Under, this model, death is assumed to occur when  tZ  reaches zero for the 

corresponding lifetime,  VT  with the Cdf: 

   tzFtFV |1 0 , 

where, V  is a non-negative random variable with a corresponding distribution,  tF . In this 

simplest form of model (3.21), the linear process of degradation (i.e. “decline in physiological 

functions of organisms”) can be described for realizations of the random variable, V .  In 

particular, the corresponding subpopulations from the heterogeneous population may be ordered 

accordingly to their corresponding lifetimes.  In fact, it is shown by the authors of references [44] 

and [45], for a gamma-distributed, V , with the pdf:  

 
 xx 



 exp
1 1


,  0,  , 

 that the shape of the failure rate of the resulting inverse Gaussian distribution, is bathtub, 

whereas, for  model (3.21), the failure rate tends to zero as t .  Other, more specific models 

may also be considered for the corresponding analysis. The first and the most popular among 

these is perhaps, the Wiener process with drift given by: 

 

tt DzZ  0 ,                                                                                     (3.22) 
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Where, tt WtsD  , ( 0, tDt  ), is the Wiener process with s  as the drift parameter and tW  , 

0t ,  is the standard Wiener process with normally distributed values (for each fixed t ) with 

mean 0 and variance t2 . See reference, [45].  As pointed out by the forgoing authors, “the 

probability distribution of this first passage time: i.e. when tR  reaches the boundary 0v  for the 

first time can be well modeled via the inverse Gaussian distribution” with the pdf,  

 

   
 











 
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t

tsz
t

z
sztftf VV 2

2

02/30
0

2
exp

2
,,|


 .                         (3.23) 

 

See e.g. also references, [61], [132], [144], [145] and [241]. In particular, it is argued by [132] 

that although, there are three parameters in this case (i.e. 0z , s  and  ), the probability 

distribution of the first passage time depends only on, /0z  and /s .  Thus, if we let  

22 / s  and 
2

0 /zsk  ,  it is easy to see that (3.23) reduces to a simple two-parameter 

inverse Gaussian distribution with the pdf,  

     
 
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
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

 
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



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


2
exp

2
,,|

2
2/3

0  .                       (3.24) 

The properties of the model (3.24) were studied for the first time in literature in [45] within the 

context of randomization of parameters and the corresponding ordering of subpopulations. See, 

e.g. also, references [4] and [29] for some further results. Specifically, it is shown by the authors 

of reference [41] that the shape of the failure rate is increasing in a certain interval (i.e. for 

 1,0 tt   particularly when 
2

012 3/2 ztt  and decreasing asymptotically to a plateau for 

21 tt  .   However, as pointed out by these authors, “only the non-randomized version of this 

distribution leads to the asymptotically constant failure rate”, see e.g. also reference, [44].  As a 

result, the initial vitality has no impact on the shape of the failure rate at advanced ages.  The 

Gamma distribution, where   is randomized may also be considered as another relevant 

example that exhibits asymptotically constant failure rate. Other examples include the Birnbaum-

Saunders distribution and the gamma process with monotonic sample paths considered recently 

together with the inverse Gaussian distribution in references [44] and [45]. 
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These results, show that the shape of the failure (mortality) rate can exhibit a number of possible 

shapes when the parameters are randomized, e.g., meaning that the corresponding curves are 

increasing or decreasing asymptotically to a plateau or even tend to zero as  t . 

 

3.7. Relative aging of reliability characteristics  
 

The notion of relative aging in addition to considerations of the usual aging, is important. This 

concept, actually provides a way to determine which population ages faster between two or more 

populations in some probabilistic sense. One of the simplest ways to implement this concept 

would be to compare the “extend of aging” described by the increasing failure rates (IFR) 

distributions, [44].  We intend to look at this problem in our future work.  

 

In the subsequent section 3.7.1., we firstly present the definitions and some background on the 

relative aging concepts.  Our goal is to utilize the results and propose another type of relative 

aging based on the monotocity properties of ratio of the mean waiting (inactivity) times.  

 

3.7.1. Relative stochastic orders of reliability characteristics 
 

Let X  and Y  be two absolutely continuous lifetime random variables with the corresponding 

distribution functions   tFX  and  tFY , failure rates  tX  and  tY , mean residual lifetimes 

 tmX  and  tmY , reversed failure rates  trX  and  trY , and mean waiting (inactivity) times 

 tX  and  tY . Assume, further, that the first moments exist and are finite.  

 

The lifetime random variable X  is said to be aging faster than the lifetime random variable Y  

in the following senses: 

 

a) Relative failure (hazard) rate ordering ( YX
rlhr ) if the ratio    tt YX  /  is increasing 

on   ,0t .  

b) Relative mrl order ( YX
rlmr ) if the ratio    tmtm YX /  is increasing in   ,0t .  
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c) Relative reversed failure (hazard) rate order ( YX
rlth ) if the ratio    trtr YX /  is 

increasing on   ,0t .  

 

The following is the modification for the case of large t : 

 

i) X  is said to be ultimately IFR aging faster than Y if    tt YX  /  is increasing for 

sufficiently large t . 

ii) X  is said to be ultimately MRL aging faster than Y  if    tmtm YX /  is increasing for 

sufficiently large t . 

iii) X  is said to be ultimately aging faster in RFR than Y  if    trtr YX /  is increasing for 

sufficiently large t . 

 

The foregoing results are, particularly useful for our analysis of the proposed ordering of 

lifetimes in terms of monotocity properties of the ratio of the mean waiting (inactivity) times. 

Note that the definition of the mean waiting (inactivity) time,  t  is given by equation (2.74).   

 

We define the lifetime random variable X  as aging faster than the lifetime random variable Y  

in the relative mean inactivity order ( YX
rlmit ) if the ratio    tt YX  /  is increasing in 

  ,0t .  The following is intended to establish conditions under which YX rlmit .  Similar 

and parallel to Lemma 1 of reference [82], we can restate in this case that, YX rlmit   if and only 

if,  

    11   ntrmtr YX
,                                                (3.28) 

 

where,  tm x  and  tn y .  Hence, based on the subsequent proof thereof, we can 

similarly argue that    tt YX  /  increases if, 

 

        0
''

 tttt YXYX  .                                               (3.29) 

 

For instance, assuming that  tX  and  tY  are differentiable, it can easily be shown that, 

     0/
'
tt YX  .  Since,  



 

 
69 

 

     ttrt XXX  1
'

 and      ttrt YYY  1
'

, 

we have,  

      011   nmtrtr YX
.                                              (3.30) 

 

Considering the conditions established in [127 p.2] for  t  to increase, we can conclude that 

(3.29) and (3.30) hold and hence the ratio of the mean inactivity times (e.g.    tt YX  / )  is 

increasing.  

 

Alternatively, we can also see from (2.74) and relation (3.8) that when the mentioned conditions 

hold, then,  t  is increasing and consequently results (3.29) and (3.30) trivially hold. Hence, 

the ratio of the mean inactivity times (e.g.    tt YX  / ) is increasing.  

 

Moreover, it was also shown by [125] that “ YX rh  implies YX mit ”.  Does this result mean 

that the implication of this chain relation is preserved under this current relative reasoning?   

Assume,     tt YX  /  to be increasing for 0t , and using definition (2.74), then the 

foregoing result implies that 

 
 

   

   
1lim

0

0
0 




 t

YX

t

XY

t

Y

X

duuFtF

duuFtF

t

t




.                                        (3.31) 

Hence,    tt YX    in this case. This result, already, defines ordering (3.8), which further 

implies that if X  is increasing, the mean inactivity time is IMIT, then Y  is also IMIT.  

Consequently, these results also imply that ordering (3.6), i.e.    trtr YX    also holds in this 

case. Therefore, from definition c) above and using (3.28), we can conclude that, YX rlmit  is 

implied by YX rlrh .  
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3.8. Concluding Remarks 
 

Some general essential aspects of stochastic orderings, which are relevant to our study are 

presented and discussed in the beginning of this chapter.  

 

 We consider ordering of mixing distributions in the sense of the likelihood ratio. Specifically, 

some relevant and useful results for the case of two frailties are discussed. It turns out that the 

mixture failure rates are ordered, as functions of time in  ,0 , when the mixing distributions are 

ordered in the sense of the likelihood ratio.  

 

Some findings on the bending properties of the mixture failure rates are presented. It follows 

from conditioning on survival in the past interval of time that the mixture failure rate is 

majorized by the unconditional one. Hence, the mixture failure rate bends down in a weak sense 

or a strong sense as time increases.  

 

These results are extended to other main reliability indices.  Specifically, we show, that the MRL 

function under the operation of mixing bends up either in a strong sense or a weak sense as time 

increases.  The reversed failure rate is also bending down either in a weak sense or a strong 

sense, whereas the corresponding mean inactivity (waiting) time exhibits the reverse behavior.  

 

Some relevant results on failure (mortality) rate when the corresponding parameters are 

randomized are presented.  In this case, it turns out that randomization of parameters may lead to 

the strictly decreasing population failure rate.  Under this setting, we also formulate some 

relevant findings with respect to the vitality modeling.  

 

Finally, some useful results on relative aging of the mentioned main reliability indices are 

discussed.  Specifically, ordering of lifetimes in terms of monotonicity properties of the ratio of 

the mean waiting (inactivity) times is proposed and some conditions for a random variable X  to 

be aging faster than the lifetime random variable Y  in the relative mean inactivity order are 

established.   
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It is also proved that if X  is increasing in the sense of the mean inactivity time (IMIT) then Y  

is also IMIT when the corresponding random variables are ordered accordingly. It is concluded 

that the relative mean inactivity order is implied by relative reversed failure rate order. 
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CHAPTER 4:  Discrete lifetime modeling   
 

In this chapter, we generalize the properties of the failure rate to the discrete case. “There are 

some important differences between the failure rates in the discrete setting as compared to the 

failure rate in the continuous case”, [1]. We investigate the impacts of these differences in 

describing the corresponding aging characteristics.  Hereafter, we analyze the shapes of the 

failure rate for some specific distributions in the class of discrete Weibull distributions.  The 

shapes of the corresponding failure rate of a mixture of two distributions are studied in section 

4.2.  On the other hand, some results on the general properties of discrete mixture failure rates 

are briefly discussed in section 4.3.  The forthcoming characterizations of discrete lifetime 

distributions are studied in the  literature, see for instance references, [1], [3], [86], [131], [164] 

and [184] just to mention a few.  

 

4.1. The failure rate in discrete setting 
 

Let K  be a discrete random lifetime with a support in,  ...,2,1N .  Under this setting, the 

probability of failure occurring at time k  is given by,  

 

   ,Pr kKkf    ...,2,1k ,                                           (4.1) 

 

and the corresponding survival function is,   

 

     





1

Pr
kj

jfkKkS ,                                                (4.2) 

 

where, )(1)( kSkF  . The failure rate (called the classical failure rate in reference [35]) is 

given by, 

   
 
 

 
 

,
1Pr

Pr
1|Pr









kS

kf

kK

kK
kKkKk                       (4.3) 
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where,   0Pr  kK .  The failure rate (4.3) may be interpreted as the conditional probability 

that an item (object) fails at time k  (on condition that it is still operational at time 1k ), see e.g. 

reference [86].  The relation (4.3) can also be written in the following form,  

 

 
   

 1
1






kS

kSkS
k .                                                       (4.4) 

 

The necessary conditions for a sequence,   1, kk  to define the failure rate (4.4) for some 

random variable with the support in  ...,2,1N  are given in references [184] and [236].  

These conditions may be restated as follow, [86]: 

 

1. For all mK  , then   1k , where the distribution is defined over  m,...,2,1 . 

2. For 
Nk , then   10  k  and   



1j

j . 

 

The above reliability characteristics, which uniquely describe the distribution of the random 

variable,  K , are related to each other in the following way,  

 

     1 kSkSkf ,                                                           (4.5) 

 

and,  

 



k

j

jkS
1

))(1()(  .                                                              (4.6) 

On the other hand,    

 

     kkSkf      





1

1

))(1()()(
k

i

ikkf                        (4.7)            

 

Remark 1.3 
 

1. For distribution defined over the interval  m,...,2,1 , condition 1 above holds and the 

failure rate is bounded, i.e.,   1k  for all integer 0k . On the other hand, it is unbounded 
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in the continuous case.  Specifically, this fact implies that the failure rate would not be 

convex in this case.  

2. On the other hand, for a distribution defined over the interval Nk , the condition 2 above 

seems to be natural.  

 

It should be noted that, as a consequence of condition 1, some properties of the failure rate in the 

continuous case do not hold for the discrete one.  The failure rates for the series system of 

independent components are not additive, e.g. “the failure rate of a system is not equal to the 

sum of individual failure rates of its components”, [3].  Another implication of condition 1 is 

that, the failure rate has a meaning of probability in the discrete case, whereas it is not for the 

continuous case.  The probability of failure in the latter is only approximated when the failure 

rate is multiplied by a sufficiently small unit interval of time. Consequently, the exponential 

representation does not hold in general settings in the discrete case and the cumulative failure 

rate is not equivalent to its continuous counterpart, e.g. 

  

      kSjk
k

j

log
1

 


 .                                                 (4.8) 

This nonequivalence has been referred in literature as the main reason for the two definitions of 

IFRA (DFRA) and NBU (NWU) classes in the discrete case as opposed to the corresponding 

classes in the continuous case. See e.g., references [103 p. 6] and [120 p.11].  Intuitively, this 

would create some challenges in the choice of appropriate model to be used in the analysis of the 

corresponding aging classes.  

 

There are approaches, which address the observed underlying differences of the corresponding 

failure rates in the discrete and continuous cases. For instance, [164] proposed “the ratio of two 

consecutive probabilities,    kfkf /1  and studied the monotocity properties of a wide class of 

distributions with increasing failure rates”. This approach was also adopted for defining the 

corresponding IFR (DFR) aging classes in [86].  In particular:    

 

1. The distribution is log-concave if and only if 
 
 kf

kf 1
 for 1k  is decreasing. As 

      212  kfkfkf  for  0k  is log-concave, the failure rate is IFR in this case. 
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Whereas, it is log-convex if and only if 
 
 kf

kf 1
 for 1k  is increasing and  

      212  kfkfkf  for 0k . This, means that the corresponding failure rate is DFR. 

2. On the other hand, if 
 
 kf

kf 1
 for 1k  is constant, i.e.  

 
 
  

















1

21

kf

kf

kf

kf , then 

   0fCkf k  for some constant C .   For the specific case, the geometric distribution with 

    1
1




k
kf   for ...,2,1k , has constant failure rate. Whereas, for the uniform 

distribution with   ckf   for mk .,..,2,1,0  the failure rate is increasing (IFR). The 

failure rate is increasing (IFR) if also  
m

k

CCC

c
kf




...1 2
 for mj .,..,2,1,0 .  

See e.g. also references, [10], [12] and [34] for other alternative characterizations. 

 

 

The alternative failure rate,  

        
 

 
 kS

kS

kS

kS
kSkSka

1
log

1
log1loglog





     for     ...,2,1k ,    (4.9) 

 which is unbounded as in the continuous case, is proposed by the authors of reference [198]. 

“Despite not having a clear probabilistic meaning, this failure rate is a useful transformation of 

 k ”, [3].  It reconciles the observed differences in the aging properties in the discrete case. In 

particular, it is related to the failure rate (4.7) via the following,  

 

))(1ln()( kka    ,                                                           (4.10) 

where, ))(exp(1)( kk a  . These relations, in addition to the ones in (4.5-4.7), are useful 

for comparing the aging behavior of items (objects) for any increasing,  k . From (4.10), “  k  

and  ka  exhibit the same monotocity properties, e.g.,  ka  increases (decreases) if and only if 

 k  increases (decreases)”, [131]. We will discuss now the shapes of the corresponding failure 

rates for some specific distributions in the class of discrete Weibull distributions.  
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  Type I Discrete Weibull Distribution  
 

This distribution was the first discretized analogue of the 2-parameter continuous Weibull 

distribution (cf. reference [244]). It has the survival function 

 

 
kvkS   , 0,10  v .                                                  (4.11) 

 

Accordingly with (4.4), the corresponding failure rate is, 

 

 
   

 
 

 11
1

1 



 kkv

kS

kSkS
k .                                             (4.12) 

 

On the other hand, in accordance with (4.10), the alternative failure is given by 

 

 
 
 

 

  



 kkv

v

v

kS

kS
k

ka 





1loglog
1

log
1

.                          (4.13) 

 

The corresponding failure rate plots for different values of 1  and 1  with  5.0v  are, 

respectively, shown in Fig.14 and Fig.15. 
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Fig. 14: A plot of  k  and  ka  for various values  1  and 5.0v . 

As can be noted, from Fig. 14, the failure rates are both monotonically decreasing as functions of 

k  for the specific case 1 .  Whereas, from (4.12) and (4.13) it can also be noted that when 

1 , the type I discrete Weibull distribution reduces to the geometric distribution with non-
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aging property as the exponential distribution in the continuous case.  On the other hand, for 

1  the failure rate (4.4) is increasing as a function of  k , approaching one from below, 

whereas the alternative failure rate is continually increasing as time increases (see Fig. 15, 

below),   
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Fig. 15: A plot of  k  and  ka for different values 5.1  and 5.0v . 

 

Type II Discrete Weibull Distribution  
 

This distribution is introduced into literature by the authors of reference [228] based on the 

preservation of the power function form of the failure rate. It has failure rate given by, 

 

  1  khk   ,  nk ,....,2,1 ,                                           (4.14) 

 

where 10  h ,  0 and 

  












1

11/1



h
n . 

 

From relation (4.10), the alternative failure is given by, 

 

     11log   khka .                                                        (4.15) 

 

The corresponding failure rate plots for different values of  1  and 1  with 5.0h  are 

shown, respectively, in Fig.16 and Fig.17.  
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Fig. 16: A plot of  k  and  ka  for different values of 1  and 5.0h . 

 

Obviously from Fig.16,  k  and  ka , decreases as a functions of  k  for values of  1 .  On 

the other hand, when 1 ,  k  is monotonically increasing (IFR) and the corresponding  ka  

initially increases sharply to a certain maximum point then monotonically decreases, (UBT). See 

Fig. 17.  
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Fig.17: A plot of  k  and  ka for  5.1  and 5.0h . 
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Type III Discrete Weibull Distribution  
 

This distribution is an extension of the type I Weibull model introduced by the authors of 

reference [244] and was advanced further in reference [223].  Its failure rate is given by,  

 

    kk  exp1  ,                                                                  (4.16) 

 

where,    and  .  Using relation (4.10), we obtain the alternative failure rate, 

 

        kkka  exp11log  ,                                             (4.17) 

 

The corresponding plots of the failures rates (4.16) and (4.17) for different values of   and 

1  are shown subsequently in Fig. 18 and Fig.19. As can be noted from these figures, the 

failure rates are increasing for 0  (see Fig. 18) and decreasing for 0  (see Fig. 19).  

Whereas, from (4.16) and (4.17), it can, also, be seen that the failure rates become constant for 

0  and the Type III discrete Weibull distribution reduces to a geometric distribution with 

constant failure rate.  
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Fig. 18: A plot of  k  and  ka  for 1.0  and 1 . 
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Fig. 19: A plot of  k  and  ka  for 1  and 5  

 

The Discrete Inverse Weibull Distribution  

 
The survival function of this distribution is given by 

 


 kvkS 1 , 

and the failure rate, 

 
 
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
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k . 

The corresponding failure rate plot for different values of v  and    is shown on Fig. 20 below, 
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Fig. 20: A plot of  k  for different values of v  and  . 
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On the other hand, accordingly with (4.10), the corresponding alternative failure rate is given by, 

 
 
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




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v
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k

1

1
log

1

, 

with the plots for different values of v  and   given in Fig.21 below. As may be noted from these 

figures in both cases the failure rates are decreasing (DFR).  
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Fig. 21: A plot of  ka  for different values of v  and  . 

Discrete Modified Weibull Distribution  

 
This distribution is the discrete analogue of the modified Weibull distribution. The survival 

function is given by,  

 
kkvkS  . 

The corresponding failure rate is,  

 
  11

1

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k

k

k

v

v
k









 . 

The failure rates plots for different values of of  ,   and 5.0v , are shown on Fig. 22 below. 
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Fig. 22: A plot of  k  for different values of  ,   and 5.0v . 

Correspondingly with (4.10), the alternative failure rate is given by, 

       kk kk

a vvk  

 /log
11  . 

The failure rates plots for different values of of  ,   and 5.0v , are shown on Fig. 23 below. 
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Fig. 23: A plot of  ka  for different values of  ,   and 5.0v . 
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As can be noted from Fig. 22 and Fig. 23, various shapes of the failure rate are exhibited for 

different pairs of   and   for the discrete modified Weibull distribution.  For the values of  

1  and 1 , the failure rates are decreasing (DFR) and are increasing (IFR) for values of 

1 , when 1   (see the blue in Fig.23 and green curve in Fig. 22). When 1  for 1 the 

failure rate is constant and the modified discrete Weibull distribution reduces to the geometric 

distribution with constant failure rate (see dashed blue curve). On the other hand, the failure rate 

initially decreases to a certain minimum point and then increases (BT) for pairs of values: 1  

and 1  (see the magnata curve);   1  and 1  (see dashed red curve) and finally when 

1  and 1  (see dashed yellow curve).  

 

 In most of the specific cases considered here, the failure rate (4.4) and the alternative failure rate 

(4.9) exhibit the same monotocity properties. However, for the Type II Weibull distribution, 

different monotocity properties are exhibited for the same parameter values: the failure rate (4.4) 

is increasing (IFR) while the failure rate (4.9) is of the UBT type. This apparent difference 

should be taken into account in practical applications. It means that the alternative failure rate, 

 ka  may be an appropriate choice in the modeling and analysis of various aging characteristics 

as compared to  k .  

 

We, firstly present and briefly discuss some results on the behavior of the failure rate of the 

mixture of two distributions, and then further investigate this behavior for the mixture of some 

specific lifetime distributions in the subsequent section.   

 

4.2. Failure rate of a mixture of two discrete distributions 
 

Continuous mixtures are usually more flexible and suitable for modeling heterogeneity in 

practical settings. However, as noted earlier, there are several situations in which discrete 

lifetimes do arise in practical settings. Some special and relevant examples that involve ‘shock 

processes in a natural scale’ are also considered in reference, [3].  We analyze the failure rate for 
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the mixture of two lifetime distributions  kF1  and  kF2  with the corresponding pdfs,  kf1   

and  kf 2 , where  k1  and  k2  are the respective failure rates for the two subpopulations. 

Under this setting, the general mixture models are represented as follow; see e.g. references, 

[66], [82], and [86]:  

  

The mixture survival and density functions are given as 

 

     kSqkSpkSm 21  ,    ;       kfqkfpkfm 21  ,                            (4.18) 

 

respectively, where the masses p   and pq 1  define discrete mixture of distribution.  The 

corresponding mixture failure rate is, therefore, given by: 

 

 
   
   kSqkSp

kfqkfp
km

21

21




 .                                                    (4.19) 

 

The relation (4.19) may also be represented as: 

 

         kkqkkpkm 21   ,                                           (4.20) 

 

where,   2,1, jkj  are the corresponding failure rates and the time-dependent probabilities 

are, 

 
 

   kSqkSp

kSp
kp

21

1


  and   

 
   kSqkSp

kSq
kq

21

2


 .                       (4.21) 

 

4.2.1. Some important results 
 

The above relations are useful for studying the properties of the failure rate of the mixture of two 

distributions2. For instance, the authors of reference [107] utilized the relation (4.21) and showed 

that, “          kkkk 2121 ,max,min   ”, see e.g. references [66] and [71]. Specifically, 

as pointed out in the forgoing references, if the failure rates  k1  and  k2  are ordered such 

that    kk 21   , then the  mixture failure rate lies between these failure rates,  

                                                             
2 Albeit, may also be extended to a case of more than two distributions.  
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     kkk m 21   .                                                   (4.22) 

 

For example, consider a specific case 

    kkk 01.02.1exp2.11  , 

and  

    kkk 01.008.0exp14.12.12  , 

 

where,   60.001  pp  ( 40.01  pq ), then  according to (4.20), the mixture failure rate  is 

given by 

    kkkm 12.028.1exp144.02.1   

 

The corresponding failure rate plots for  k1 ,  k2  and  km  are reflected on Fig. 24 below.   
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Fig. 24: A plot of  k1 ,  k2  and  km   for different values of k  and   60.001  pp . 

From Fig. 24, the failure rate,  k1  is increasing (see the green curve) and the failure rate, 

 k2  is decreasing (see the blue curve).  On the other hand, the mixture failure rate,  km  (see 

the red curve) lies between the  k1  and  k2 . 

 

 For the specific case above, the mixture failure rate is increasing, whereas “on differentiating 

(4.20), the following is obtained”, [86 p.48] and [136 p.5]: 
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                  2

21

'

2

'

1

'
kkkqkpkkqkkpkm   .          (4.23) 

 

As,   2,10
'

 jkj , it follows from (4.23) that the mixture failure rate, in (4.20) is 

decreasing, [66].  Specifically, as pointed by the authors of the forgoing reference, for 

  2,1,0 jS j , the initial value of the mixture failure rate, (at 0k )  is defined by 

     000 21  qp  . This, already, means that for  1k  the conditional probabilities  kp  

and  kp1  are increasing (decreasing), which can be observed when dividing the numerator 

and denominator in first equation (4.18), respectively, by  kS1 . This effect, which can be 

explained as “the weakest items are dying out first” principle means that the proportion of the 

survived up to t  items in the mixed population is increasing. 

 

As a result, 

         kkqkkpkm 21   .                                      (4.24) 

 

This means that,   km  is always smaller than the expectation    kqkp 21   .    On the other 

hand, the “sufficient condition for the mixture failure rate to initially (at least, for small t ) 

decrease” is, [58]:   

           0001
2

21

'

2

'

1   ppkqk ,                          (4.25) 

 

where the derivatives are obtained at 0k .  In fact, “the mixture failure rate is initially 

decreasing not matter how fast the failure rates  k1  and  k2  are increasing in the 

neighborhood of 0 when    00 21    is very large”, [66]. 

 

Mixtures of discrete distributions, which are not necessarily derived from the corresponding 

continuous lifetime distributions, are known in literature. For instance, a discussion of mixtures 

of discrete distributions can, already be found in chapter 4 of reference [238].  However, less 

well-known are the mixtures of the recently discretized lifetime distributions. Therefore, 

hereafter, under the defined settings we analyze the corresponding shapes of the failure rates of 

the mixtures of some selected (i.e. specifically discretized) lifetime distributions. 
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4.2.2.  Mixture of two geometric distributions 
 

The geometric distribution with the pdf, 

 

    1
1




k
kf    for ...,2,1k , 10   , 

 

arise as the discretized version of the continuous exponential distribution (hence also known as 

the  discrete exponential distribution, when    exp ). Its distribution function is given by 

 

   k
kF  11 , 

where,    kFkS 1  is the corresponding survival function.   The failure rate, in accordance 

with (4.3) is 

 
 

 
 
 





 







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



1

1

1

1

1 k

k

kS

kf
k , 

which is, constant.  It is well-known in literature that continuous mixtures of exponential 

distributions are DFR, could it then be the case that the mixture of geometric distributions has a 

decreasing failure rate (DFR)?   

 

Suppose, two subpopulations with lifetimes described by geometric distributions with the 

distributions functions,  kF1  and  kF2 , survival functions  kS1  and  kS2  and mass 

functions  kf1  and  kf 2 , respectively. Therefore, the corresponding mixture Cdf and pdf are 

given, respectively, by relations in (4.18). On the other hand, in accordance with relation (4.20) 

and (4.21), the failure rate of the mixture of the two subpopulations is given be 

 
 

   

 
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
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
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
 . 

The corresponding plot of  tm  for different values of k  and 0, 21   is shown on Fig. 25 

below.  



 

 
88 

 

0 5 10 15 20 25
0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

0.545

time

m
ix

tu
re

 fa
ilu

re
 ra

te

 

Fig. 25: A plot of  km   for different values of k ,  4.06.0  qp  and 0, 21  . 

As can be noted from Fig. 25, similar to the failure rate of a mixture of two continuous 

exponential distributions, which is DFR, the failure rate of the mixture of two geometric 

distributions is also decreasing and even tends to zero as time increases. Thus the geometric 

distribution is an equivalent of the continuous exponential distribution in the discrete setting. 

 

4.2.3.  Mixture of the geometric distribution and discrete Weibull distributions 
   

Several discrete Weibull lifetime distributions arise as discretized versions of their continuous 

counterparts.  We have compared the failure rate (4.4) with the failure rate (4.9) for some of 

these lifetime distributions. In this section, we focus on analyzing the failure rate of the mixture 

of these distributions with the geometric distribution. We are particularly interested in the case, 

when the failure rate is increasing (IFR), BT or UBT, as these somehow indicate some kind of 

deterioration (aging) of an item (object) with time.  On the other hand, as pointed out in the 

previous section, the failure rate of the geometric distribution reflect the non-aging property.   

 

Mixture of geometric distribution with the Type I discrete Weibull distribution  

 

The survival function and failure rate for type I discrete Weibull distribution are given in (4.11) 

and (4.12), respectively, whereas the survival function and the failure rate for discrete geometric 
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distribution are given in section 4.2.2.  Therefore, under the defined settings and utilizing the 

relations (4.20) and (4.21), we have:  

 
 

    
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where, the type I discrete Weibull distribution is the baseline distribution.  The following plots 

show the mixture failure rate for the case 1  (Fig. 26) and 1  (Fig. 27). 
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Fig. 26: A plot of  km   for different values of k ,  4.06.0  qp , 5.0 v  and 1 . 
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Fig. 27: A plot of  km   for different values of k  and  4.06.0  qp , 5.0 v  1 . 
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We showed in section 4.1., that the failure rate of the type I discrete Weibull distribution is 

decreasing for values of 1  (Fig. 14), constant for 1 , whereas it is increasing for values of 

1  (Fig. 15), and the failure rate of the geometric distribution is constant. As can be noted, the 

failure of the mixture of these distributions preserve the DFR-property for values 1 , whereas 

the corresponding aging changes significantly for values of 1 , e.g. the failure rate is 

increasing (IFR), whereas the mixture failure rate is decreasing (DFR) and even tends to zero as 

time increases. On the other hand the mixture failure rate reduces to a constant for 1k  and 

1 , which is an evident property of a geometric distribution.  

 

The latter non-aging property is also preserved for the mixture of geometric distribution with 

both the type II discrete Weibull distribution and type III discrete Weibull distribution (e.g. when 

1 ), whereas it is increasing (decreasing) for the values of 1 .  

 

Mixture of geometric distribution and the discrete modified Weibull distribution 

 

The discrete analogue of the modified Weibull distribution, which was introduced by the authors 

of reference, [49] and was shown to exhibit various shapes of the failure rate for different pairs 

of   and   (see e.g. Fig. 22 and Fig. 23) is mixed with the geometric distribution. Hence, in 

accordance with (4.20) and (4.21), the failure rate of the mixture these distributions is given by  
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The corresponding mixture failure rate plot for 1  and 1  is shown on Fig. 28, whereas for  

1  and 1  is reflected on Fig. 29 below. 
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Fig. 28: A plot of  km   for different values of k , 1  and 1 ,  4.06.0  qp , 5.0 v . 

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

m
ix

tu
re

 fa
ilu

re
 ra

te

 

Fig. 29: A plot of  km   for different values of k , 1  and 1 ,  4.06.0  qp , 5.0 v . 

From Fig. 28, the mixture failure rate for different pairs of the values of parameters (especially 

when 1  and 1 ; 1  and 1 ; 1  and 1 ) is increasing (IFR) approaching one 

from below, whereas for different pairs of the values of parameters (especially when 1  and 

1 ; 1  and 1 ) it is decreasing (DFR) and even tends to zero as time increases. As may 

be noted when 1  and 1 , it reduces to a constant. These results show that the aging can 

change as a result of mixing. For instance, we have showed for the discrete modified distribution 

that when   1  and 1 ; 1  and 1 ; 1  and 1 , the failure rate is BT, whereas 
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for first two cases the aging changes from BT to IFR, and in the latter the aging changes from BT 

to DFR., respectively under the operation of mixing.  

 

In fact, it can easily be shown, using (4.20) and assuming,  4.06.0  qp that for the type II 

discrete Weibull distribution and the type III discrete Weibull distribution when mixed with the 

geometric distribution the failure rate is increasing for the values of 1 , whereas for the 

corresponding values 1  is decreasing and reduces to the geometric distribution, which 

exhibits the non-aging property when 1 .  It is perhaps, also interesting to note that, the 

considered here discrete Weibull distributions when mixed with the Lindley distribution, with 

the failure rate,  
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 , 

leads to increasing mixture failure rate.  

 

4.2.4. Mixture of the discrete gamma distribution and discrete Weibull distribution 
 

Recall: the two-parameter standard gamma distribution has the pdf, 
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1tZ
tf  for    0,t   

where,  tZ  exp  and   is the scale parameter with   being the shape parameter (all 

positive). The discrete analogue of this distribution is obtained via discretization of both   and 

t . For instance, the discrete gamma distribution will, (for consistency of notation) be defined by 

the parameters  and w  in this case, with the pdf given by,  

    wwkRkf k   11 , 10  w    and  N , 

 

where,   expw   and  
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where mnA , is the Euler number given by 
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Thus, for the specific case 2 ,  10,1 A  and 1 wR , which means the pdf  of the discrete 

gamma distribution reduces to,  

    12
1  kwwkf  , 10  w . 

The Cdf is given by 

    wkwkF k  111 , 

where as usual,    kFkS 1 . Therefore, in accordance with (4.3), the corresponding 

failure rate is 

 
 

 
 
  

 
  wwk

wk

wwkw

wwk

kS

kf
k

k

k


















1

1

1

1

1

2

1

12

 . 

As can be noted the failure rate similar to the continuous case is increasing in this case.  In 

accordance with (4.20) and (4.21), the failure rate of mixture of the discrete gamma distribution 

and the type I discrete Weibull distribution is  
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The corresponding plots for different values of k , where  4.06.0  qp , 5.0 wv  and 

1  are shown in Fig. 30, whereas for 1  is reflected in Fig. 31. 
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Fig. 30: A plot of  km   for different values of k ,  4.06.0  qp , 5.0 wv  and  1  . 
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Fig. 31: A plot of  km   for different values of k ,  4.06.0  qp , 5.0 wv  and 1 . 

It can be seen from Fig. 30, the mixture failure rate is increasing (IFR) for values of 1 , 

whereas from Fig. 31, it is observed to be UBT for values of 1 .  This means that the IFR 

property is preserved for values 1 , whereas it changes significantly from IFR to UBT for 

values of 1 .  

On the other hand, the failure rate of the mixture of discrete gamma distribution and the discrete 

modified Weibull distribution, in accordance with (4.20) and (4.21) is given by 
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The corresponding plot of for different values of k , where  4.06.0  qp , 5.0 wv , and 

different values of the pairs 1  and 1  is shown on Fig. 32, whereas for 1  and 1  is 

shown on Fig. 33. 
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Fig. 32: A plot of  km   for different values of k  and pairs 1  and 1 ,  4.06.0  qp , 

5.0 wv . 

0 5 10 15 20 25 30
0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

time

m
ixt

ur
e 

fa
ilu

re
 ra

te

 

Fig. 33: A plot of  km   for different values of k , 1  and 1 ,  4.06.0  qp , 5.0 wv .  

For the discrete modified Weibull distribution, the failure rate is of BT type shape for pairs of 

values: 1  and 1  (and 1  and 1 ;  1  and 1 ) and the failure rate of discrete 
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gamma distribution is increasing. On the other hand, the mixture failure rate is UBT for pairs of 

values, 1  and 1 , whereas it is of BT shape for pairs of values 1  and 1 . 

 

In fact, it is worth noting that for the mixture of the discrete gamma distribution and the type II 

discrete Weibull distribution the failure is increasing (IFR) when  1 , whereas for this mixture 

the failure rate is decreasing for values of 1 .  The IFR property is also preserved for mixtures 

of the considered here discrete Weibull distributions and the discrete Lindley distribution with 

increasing failure rate. 

 

4.3. Some general results on Discrete mixture failure rate modeling 
 

In what follows we present some important results on the properties of a discrete mixture failure 

rates and illustrate via some examples the corresponding applications. 

 

4.3.1. Some properties of discrete mixture failure rates 
 

Let the Cdf of the discrete random variable K   be indexed by the continuous non-negative 

random variable W  with support in  ),0[  .  Then,   

     wkFwWkKkK ||PrPr  , ...,2,1k ,                            (4.26)    

 

with the corresponding survival function    wkFwkS |1|  . The failure rate that 

corresponds to the subpopulation indexed by wW   is, therefore, given by:  

 

 
   

 wkF

wkFwkF
wk

|1

||1
|




 ,  ...,2,1k                            (4.27) 

 

The mixture (population) Cdf is defined by: 

 

     
b

a

m dwwgwkFkF | ,                                                           (4.28) 

where,    wg  is the pdf of W . The corresponding mixture survival function is given by: 
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     



0

| dwwgwkSkSm .                                                                   (4.29) 

Consequently, from (4.4) and using relation (4.7), the corresponding mixture failure rate is 

obtained as,  

 
   

 








0

0

|

dwwB

dwwBwk

km



 ,                                                 (4.30) 

where,  

      





1

1

|1
k

j

wgwjwB   and 





1

1

1][
k

j

 for 1k . 

In particular, the mixture failure rate (4.30) may be written as the conditional expectation,  

 

 

 
)]|([

)|(

)( )1|

0

0 WkE

dwwB

dwwBwk

k kTWm 



 








,                     (4.31) 

where, ][)1|( kTWE  denotes expectation with respect to the distribution of )1|(  kTW , which 

is given by (the pdf), 

 

 




0

)1|(

dwwB

wB
kwg .        

We have shown in the continuous setting that the mixture failure rate tends to be bent down 

when compared with a specific form of our model (2.1). We use a similar reasoning for 

comparing the shape of the population failure rate  km  and the shape of subpopulation’s failure 

rates  wk | . The corresponding unconditional expectation of the random failure (hazard) rate, 

 wk |   is,   

        



0

|| dwwgwkWkEkp  .                                    (4.32) 

 

This function captures the monotonicity properties to the subpopulation failure rates in the 

mixtures.  If  wk |  is differentiable with respect to w  and the failure rates are ordered such 
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that    21 || wkwk    when 21 ww   for all 1k , then )()( kk mP    for all 1k  (the 

failure rate is bend down).  If additionally    wk
w

wk
dw

|1| 






  for all 2k , then  

)()( kk mP    is strictly increasing in k .  In particular, for the ordered failures rates, the ratio  

)1|(

)|(

kwg

kwg
is decreasing in w . The implication of this is that,   WkKW

lr
 1|  and 

)1|(  kTW  is decreasing in k  in the sense of the likelihood ratio order.  Consequently,  

 

           tWkEWkEk mkKWp    || 1| . 

 

4.3.2. Additive and proportional hazards models in the discrete setting 
 

Let )(kb  be the baseline failure rate for the discrete lifetime K  (where )(kfb  and  kSb  are 

respectively the probability mass function and the survival function), e.g. 
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b
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




1

1
 .                                                  (4.33) 

 

Then, the corresponding equivalents of models (2.15) and (2.19) in the discrete setting (i.e. 

when K  is indexed by the continuous non-negative random variable W ) are given, respectively, 

by:  

 

The additive model:   

        kwkKkKwk bww   1exp11|Pr1| .                    (4.34) 

On the other hand, for the multiplicative model:  

      w

bww kkKkKwk   111|Pr1| ,                              (4.35) 

where w   is a realization of the random variable W .  The corresponding conditional survival 

probabilities, are respectively,   
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and, 
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,                         (4.37) 

where,     





1

1

1
k

j

b jwD  . It can easily be shown that these results also hold for the 

multiplicative and additive models defined via the alternative failure rate. For instance, let the 

baseline alternative failure rate be defined as, 

)](1ln[)(
)(

kk ba b
  .                                                           (4.38) 

From, the fact that   
 
  wkwk

baa   |  and using result (4.11), the additive model is given 

by, 

 
 
       kwwkwk ba b

  1exp1exp1| .                           (4.39) 

Using relation (4.12) and from the fact that,  
 
 kwwk

baa  |  the multiplicative model is 

obtained as: 

 
 
  

 
     w

b

w

aa kkwkwk
bb

  11exp1|exp1|          (4.40) 

Clearly, (4.39) and (4.40), which are, respectively similar to (4.34) and (4.35), are important in 

the corresponding analysis of the behavior of the failure rate in the discrete setting.  The 

multiplicative and additive models (in these forms), provide equivalent descriptions of the 

behavior of the failure rate when using the alternative failure rate.   

 

4.4.  MRL in discrete setting   
 

Let K  be a discrete random lifetime with support in,  ...,2,1N . Then in relation to (2.28), 

the mean remaining (residual) lifetime at time k   is given by,  

 

   kKkKEkm  |          for 0k ,                                             (4.41) 

 

where, the mean lifetime of an item, (e.g.  KE  with the support N ) is,  
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kSSSSKE .                                         (4.42) 

Using (4.6), the equation (4.42) could also be represented via the following relation,  
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jKE  ,                                                                 (4.43)  

 where,   00  . The mean residual lifetime (MRL) can also be defined in terms of the failure 

in the following way, [157],   
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 .         (4.44)                                   

On the other hand, using (4.42), MRL is given as: 
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km           for  ...,2,1,0j .                           (4.45) 

Thus, the discrete MRL would have similar properties as its continuous counterpart.  Therefore, 

the following relation may easily be employed for studying the properties of MRL via the 

corresponding failure rate:  

 
 
 11

1



km

km
k  .                                              (4.46) 

 

4.5. Concluding Remarks 
 

In this chapter, the properties of the failure rate are generalized to the discrete case. The failure 

rates that correspond to the continuous and discrete distributions have some important 

differences. These differences are highlighted and discussed, especially in case of the 

corresponding mixtures. 

 

The shapes of the failure rate are investigated in detail for some discrete Weibull-type 

distributions. For instance, for the type II discrete Weibull distribution, the classical failure rate 

increases (IFR), whereas the alternative failure rate is of the UBT type. This striking difference 

was not, however, discussed in the literature before.  Obviously this is important in practical 
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applications. It means that the alternative failure rate, may be an appropriate choice in the 

modeling and analysis of various aging characteristics as compared to the usual (“classical”) 

failure rate. It is, also, interesting to explore further this behavior for other discrete lifetime 

distributions. 

 

Some important results on the failure rate of a mixture of two discrete distributions are presented 

and briefly discussed. We show, for instance, that the discrete mixture failure rate also bends 

down when compared with the expectation of the conditional failures rates.  

 

Specifically, some selected discrete lifetime distributions are studied. We show that, under the 

defined settings, the corresponding failure rate of the mixture of the geometric distribution and 

the Type I discrete Weibull distribution is decreasing for values of 1  ( 1 ) and reduces to a 

geometric distribution with constant failure rate when, 1k  and 1 .  The latter non-aging 

property is also preserved for the mixture of geometric distribution with both the type II discrete 

Weibull distribution and the type III discrete Weibull distribution (e.g. when 1 ), whereas it is 

increasing (decreasing) for the values of 1  ( 1 ).  On the other hand, the failure rate of a 

mixture of geometric distribution and the modified discrete Weibull distribution is initially 

increasing then after some time it decreases (UBT), in particular for values of 25.1  and 

25.1 , otherwise the mixture failure rate is increasing (IFR).   

 

On the other hand, the IFR property is preserved when the discrete gamma distribution is mixed 

with the type I discrete Weibull distribution, as well as when mixed with the modified discrete 

Weibull distribution for 1  and pairs 1 ( 1 ), respectively.  It is UBT for 1  in the 

prior and in the latter is BT for 1  and 1 . Whereas, for Type II discrete Weibull 

distribution the IFR property is preserved for values of 1  and decreasing for 1 . 

 

These results already show that the corresponding aging changes significantly for the Type I 

discrete Weibull distribution (when 1 ), e.g. the failure rate is increasing (IFR), and the 

mixture failure rate is decreasing (DFR) and even tends to zero.  A similar result is obtained for 

the mixture of discrete gamma distribution and the Type II discrete Weibull distributions. On the 
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other hand, for the mixture of the geometric distribution and the discrete modified Weibull 

distribution the mixture failure rate is UBT. This property is also reflected for some values of the 

parameters when the latter distribution is mixed with the discrete gamma distribution whereas it 

shows the reversed pattern (BT) for other values.  This means that the proportion of surviving 

items (objects) in the mixed population is increasing, e.g., the population lifetime is improving 

somehow as the “weakest subpopulations are dying out first”.  

 

Finally, some results on the general properties of discrete mixture failure rates are discussed and 

some simple models of heterogeneity are presented.    In the final section of this chapter, we also 

define the MRL function in the discrete setting and highlight some useful relations with the 

corresponding failure rate.  
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CHAPTER 5:  Shocks and heterogeneity 
 

5.1. Brief Overview 
 

“We understand, a shock as some instantaneous, potentially harmful event”, [33]. We consider 

modeling the impacts of shocks via some extreme shock models. These models, are useful for 

studying the aging characteristics of lifetime distributions under variable environmental 

conditions.  In this case, “produced items may result in a mixed population with a certain 

proportion of items with normal lifetimes and defective items (with shorter lifetimes)”, see e.g. 

reference, [39].  Usually, burn-in (often performed in accelerated environments) is considered to 

weed out the defective items from a heterogeneous population. Alternatively, these may be 

eliminated via introducing high levels of some form of environmental stresses, e.g. shocks. 

Intuitively, the weaker items are ‘killed’ first by shocks than stronger ones.  In this context, “a 

shock performs a kind of a burn-in operation”, [193] in heterogeneous populations. 

 

Henceforth, we consider a stochastically ordered heterogeneous population. The shapes of 

mixture failure rate for this population under some shock settings are analyzed. In particular, we 

compare the mixture failure rate prior to and after a shock: when the frailty W  is either a discrete 

or continuous random variable.  

 

We also consider a specific increasing mortality rate process induced by the non-homogeneous 

Poisson process of shocks in section 5.3.  The shape of the observed (marginal) failure rate is 

analyzed. Specifically, the population mortality (failure) rate for some specific cases is compared 

with the corresponding “sample paths of the unconditional mortality rate process, which are 

monotonically increasing”, see reference, [4].  Further, we discuss some results relating to some 

simple failure (mortality) rate with a single change point in section 5.4.  See, e.g., also references 

[44], [81], [122] and [225] to name a few for some other relevant discussions and results on these 

topics. 
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5.2. Mixture models under some shock settings 
 

5.2.1. Continuous mixture models 
 

Consider the general mixing model (2.9) and (2.11) for a heterogeneous population. Under this 

setting:  wg  is the pdf of a random frailty parameter W prior to a shock.  Denote the 

corresponding mixture failure rate for a population without a shock:  tm  for 0t  and the 

corresponding failure rate after the occurrence of an instantaneous shock at by    0, ttsm .  

The frailty and its distribution after the shock are respectively denoted by sW and  wgs . 

Therefore, from (2.11) the mixture failure rate after a shock is given by,  

        0||
0

sssm  


tdwtwgwtt  ,                                   (5.1) 

where,  twgs |  is defined as in (2.12), whereas the corresponding density  wgs  as in (2.14) is 

given by: 

 
   

   




0

s

dwwgwu

wgwu
wg ,                                                         (5.2) 

where,  wu may be interpreted as the survival probability of an item with frailty w  after the 

shock. Intuitively, the more frail subpopulations with larger failure rates are killed first by the 

shocks. Henceforth, the function  wu  is assumed to be decreasing. Therefore, the function 

 
 wg

wg s   is also decreasing and we can conclude that,      tt msm   . In particular, this result 

holds, whenever, the population frailties prior to and after a shock are ordered in the sense of 

(3.10): i.e. slr WW  , where the corresponding failure rates are also ordered in the sense of 

(3.11). This may be explained as the effect of a shock eliminating out those subpopulations with 

higher failure rates, which may be due to production irregularities, among other things. 

 

Specifically, the difference between the failure rates for  0t , can be defined as 

      



0

|0 dwwgwgwD s ,                                            (5.3) 
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where,      00 smmD   . From, relation (3.10), the usual stochastic ordering for lifetimes 

prior to a shock, wT  and after the shock,  swT  also hold in this case. It means that the burn-in via 

shocks improves the population lifetime to a certain extend. However, the usual stochastic 

ordering (3.4), does not lead to the forgoing ordering of lifetimes if the frailties are not ordered in 

the sense of (3.10). Consequently, relation (3.11) also does not hold. This means that, “the 

likelihood ratio ordering is sufficient to ensure ordering of mixture failure rates”, [83]. 

 

5.2.2. Discrete mixture models with shocks  
 

Let,  tF1 ,  tf1  and  t1  denote, respectively:  the Cdf., and pdf., as well the corresponding 

failure rate for a lifetime of a strong subpopulation. Whereas,  tF2 ,  tf 2  and  t2  are, 

respectively, the corresponding characteristics for a lifetime of a weak subpopulation. 

 

Let,  the mixing proportion be: 

 









2

1

1 wwp

wwp
wg   ,                                               (5.4) 

 

where 1w  and 2w   describe the strong and the weak subpopulations, respectively, [66]. Assume 

further, that the subpopulations are ordered accordingly as:     0,21  ttt  .  Therefore, the 

survival functions are also ordered accordingly: i.e.     0,21  ttStS , where 

    2,1,1  itFtS ii .  Then,  21 ww  , in this case.  Under this setting  21 , wwW   can be 

considered a discrete random variable (“frailty”).  The corresponding mixture survival and 

density functions are respectively defined by (4.18).  From relation (4.20), the corresponding 

mixture failure rate is given by:  

 

         ttwgttwgtm 2211 ||   ,                                             (5.5) 

 

where now, the time dependent probabilities are given by: 

 
 

     tSptSp

tSp
twg
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1
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 
     tSptSp

tSp
twg

21

2
2

1
|


 .                (5.6) 

 



 

 
106 

 

This is a general setting before a shock. We denote, the corresponding frailties after the shock 

(say after, 0t ),      21 , sss wwW    with the corresponding pdf,  wgs
.  The corresponding 

mixture failure rate,   tsm  is given by a similar expression as (5.5) with    
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     

  
      


























2

21

2

1

21

1

111

11
1

11

1

ss

ss

s

ww
pvpv

pv
p

ww
pvpv

pv
p

wg .                         (5.7) 

 

 where, 1v  and  2v  are the corresponding probabilities of failure due to a shock,  [33], which 

affects the whole population (with the frailties,  1sww    and  2sww  ) .  As the failure rates 

and the corresponding survival functions are assumed to be ordered, then we can conclude that if 

21 vv  , then     tt msm    and,     tStS msm  . Furthermore, we note that, if the population 

frailties prior to and after a shock are ordered in the sense of (3.10): i.e. slr WW  , then the 

foregoing results are justified.  This means that, the failure rate before the shock is greater than 

the one after it as was in the continuous case.  

 

5.3. Failure rate processes governed by shocks 
 

Let,   0, ttN  be a stochastic point process (i.e. an external shock process), where  tN  

represents the number of total shocks experienced by the system at time, t .  We consider t  

(model (2.2)) as a specific increasing stochastic process i.e. the failure rate process, 0, tt   

and analyze the shape of the observed (marginal) failure rate. In particular, we model the 

stochastic aging for each realization of this process utilizing the baseline failure rate process, 

( 0, tt ), see reference, [4]: 

   tNtbt   ,                                                          (5.8) 

 

where,  tb  defines the baseline failure rate (which, of course can be assumed deterministic). 

Whereas,   is a jump on the failure rate from each shock experienced by an item.  Model (5.8) 
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is just a simple generalization of model (2.15) when there is no ordering of lifetimes in some 

probabilistic sense (see section 3.5). 

 

The corresponding conditional failure rate process in this case is, 

 

    tTtNttT bt  ||  .                                           (5.9) 

 

This process can, already, describe damage accumulation in systems exposed to external shocks. 

In this case,  tb  defines the failure rate in the baseline environment (i.e. with no external 

shocks). The impacts (damage accumulated) from the external shocks are reflected as jumps,  

in the failure rate.  “The stochastic term  tN  in (5.8), will be crucial in the subsequent 

analysis”, [4]. We assume   0tb  or to be the background constant (   bb t   ).  In this case, 

the shocks’ history, (     tuunuN  0, ) could already be specified by the corresponding 

joint distribution of     tNTTT tN ,..., 21  defining the sequential arrival of shocks in a NHPP 

(  tN ): 

        

























 

t

i

n

i
nttNTTT dvvtf
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,,,...,, exp
..,2,121

 .                                  (5.10) 

 

Therefore, the probability of no effect from a shock is given by    












 

t

dvv
0

exp  ,  whereas, the 

effects of arriving shocks are accounted by   ...,3,2,1, iti  

 

From (5.8), the survival function of an item given shocks history is given by 
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t
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,21 .                  (5.11) 

 

Using relations (5.10) and (5.11), we obtain the distribution of    ( , )T t N t
 by integrating out 

nTTT ,...,21, : 
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where 

    
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Considering the above relations, the survival function, in this case could then be written in the 

form: 

          
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0 expexpexpexp   .            (5.13)                               

 

Using (5.12) and (5.13), the conditional distribution of   tTntN  |  for each 0t  is derived 

as: 
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 ,                     (5.14)         

 

which is, therefore,  given by the Poisson distribution with mean      
t

dvvvt
0

exp  .  We 

study the corresponding shapes of the marginal (observed) failure rate. In relation to model 

(5.10) taking expectation on both sides, yields the population failure rate model, 

 

      tTtNEtt bp  | ,                                             (5.15) 

which, from (5.8) and (5.14), can be written in the following form, 
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         
t

bp dvvvttt
0

exp  .                                   (5.16) 

In what follows, we analyzed the shape of the population failure rate when compared with the 

shape of sample paths of the unconditional failure rate process (which, of course, are intuitively 

monotonically increasing) for some specific cases. For simplicity, we refer to this as examples, 

however, the corresponding findings can be considered as independent results. 

 

Example 5.1 
 

Suppose that,    ttb  1 .  In this case, the expectation of the number of events in the 

corresponding nonhomogeneous Poisson process, 
  0, ttN

  is given by 

   
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2
1

t
ttNE  , 

whereas, the conditional expectation, which defines the shape of the population failure rate in 

accordance with (5.15) is: 
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.                                   (5.17) 

Firstly, consider the integrand in the last equation (5.17),  

    
t

dvvt
0

exp1  ,                                                                           (5.18) 

and let, 

dtdutu  1  and     1expexp 1   wtzvdz  . 

 

Then, integrating (5.16) by parts we obtain: 
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 .             (5.19) 

 

From (5.16), it can be seen that (5.19) reduces to, 

 

        
    ttt

ttttt













expexp

expexpexpexp

11

22111

. 

 

Therefore,  

       tttp    exp11
. 

The corresponding shapes of   tNE  and  tp   are shown on Fig. 12 below, 
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Fig. 28: Plot of   tNE
 
and,  tp for 1   
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From Fig. 12 above (red curve); the sample paths of the process   0, ttN  with 

   









2
1

t
ttNE 

 

are increasing (as intuitively would have been expected). Assuming 

  0tb  in the model (5.15), the shape of the population failure rate (green curve) is decreasing 

as compared to the sample paths of the process,   0, ttN . This curve monotonically increases 

approaching the plateau as, t . Therefore, the failure rate can be described by the 

composition of the strongest surviving population, as the “weakest populations” are eliminated 

first by the external shocks. 

 

Example 5.2   
 

Now if we let,     ttb  exp1 , then the expectation of the number of events in the 

corresponding nonhomogeneous Poisson process,   0, ttN  is given by: 

 

     1exp  tttNE  , 

while the conditional expectation (5.15) is: 
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The plots of   tNE  and  tp  are shown on Fig. 13 below, 
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Fig. 29: Plot of   tNE and,  tp for 1   

 

Similar to example 5.1, the sample paths of the process   0, ttN are increasing in this case 

(see the red curve in Fig. 29).  Whereas, the corresponding population failure rate is decreasing 

when compared with the unconditional sample paths of the process,   0, ttN , under the 

assumption   0tb . In particular, the population failure rate tends to a plateau as time 

increases.  

 

Example 5.3  
 

Assume,   2ttb  
 
then it follows that      33/1 ttNE   in this case and the conditional 

expectation,  tp , which defines the population failure rate and in accordance with (5.15) is 

obtained as: 
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.                                                  (5.21) 

Consider first,  
t

dvvt
0

2 exp   and let: 
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dttdutu 22   and,     1exp
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Now consider,  
t
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0

exp   and let: 

dtdutu   and     1exp
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Now from (5.22) and (5.23) we have,  
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Considering now (5.21), we finally have, 
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The corresponding plots of unconditional sample paths and (5.25), are shown on Fig. 14 below. 
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Fig.30: Plot of   tNE  and,  tp for 1  and 2  

 

As can be noted from Fig. 14, the population failure rate is, again, decreasing as compared to the 

unconditional sample paths of the process,   0, ttN ) .  It also decelerate and reaches a 

“plateau” as time increases.  

In general, it is plausible that the population failure rate exhibits the same monotocity properties 

for,   k

b tt   , where ...4,3k , as t  and we conclude that shocks do perform some 

kind of burn-in in heterogeneous populations. This leads to the improvement of the surviving 

populations somehow. 

 

5.4. Models for the failure (mortality) rate with change point 
 

5.4.1. Some general aspects of the change point model 
 

Consider an item (object) starting to operate (born) at time ( 0t ) in some specific 

environment. Suppose that the object’s lifetime, under this baseline environment is described by, 

 tF1  with the failure rate,  t1 .  If the environment changes, say after some time at, e.g., 

wt  , the failure rate of the object can be described by employing the simplest failure rate 



 

 
115 

 

models with a change point [116] when w  is fixed. In this case, the corresponding failure rate, 

due to [130] is given by 

      0;| 2211  tItItwt  ,                                               (5.26) 

where )(1 t  is the failure rate before the change point and )(2 t  is the failure rate after this 

change point and     wtIIwtII  21 ;  represent the corresponding indicators, i.e., 










wt

wt
I

,0

,1
1

,                    









wt

wt
I

,1

,0
2

. 

Thus, the failure rate of the object, in this case, is defined by model (5.26), i.e.  wt |  with the 

Cdf,  wtF | .  The survival function,    wtFwtS |1|   is given by 

)(
)(

)(
)()()(),(

2

2
11 wtI

wS

tS
wSwtItSwtS  ,                                     (5.27)  

where, 







 

t

z

duuwStS )(exp)(/)( 222   is the conditional survival probability in  tw ,  for an 

object with the Cdf )(2 tF .  Alternatively, these models can be generalized to a case when the 

failure rate after the change point depends on w ;  particularly for model (5.26) we have:   

      0;|| 2211  tIwtItwt  ,                                        (5.28)  

Although, we may know (from the data) )(1 t  and )(2 t  (and/or the functional form of 

 wt |2 ), the random variable W  is usually unknown.  Therefore, the random change point, 

somehow, introduces some kind of heterogeneity in the population.  Henceforth, consider model 

(5.26)  and let W  be the random change point variable with a pdf,  wg  having the support 

in  ,0 , then [115] the corresponding hazard rate process (which already defines the random 

failure rate model (2.1)) in this case is defined as, 

      2211 || IwtItwt   ,                                                (5.29) 

 

where, now  wtII 1 ;  wtII 2 . Thus, the random change point model (5.29) can 

already be considered as a specific case of mixing and W  is the mixing parameter.  Therefore, 

some general results on mixture failure rates can also be applied in this case.  Under this setting, 

the corresponding mixture Cdf. is given by, 
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        



0

|| dwwgwtFWtFEtFm
.                                        (5.30) 

On the other hand, for the general, the mixture failure is defined by (2.11),  

 

     



0

|| dwtwgwttm  ,                                                   (5.31)                                            

 

where, the conditional pdf  twg |  is accordingly defined by (2.12), i.e.  

 

   
 

   




0

|

|
|

dwwgwtS

wtS
wgtwg  .                                           (5.32) 

Under this setting, model (5.32) can be written as:   

 

 
 

   

 
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1
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|

|  .                                       (5.33) 

 

Whereas, now the corresponding mixture failure rate is given by, 
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 .                 (5.34) 

 

Alternatively, considering model (5.28) we have,  
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 .            (5.35) 

 

Our interest is on the analysis of the shapes of the failure (mortality) rate.  We consider model 

(5.34) which, although rather cumbersome could already be utilized in some specific cases. For 

instance, reference [66] consider the specific case when 2211 )(;)(   tt  with a joint pdf 
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 wg  following an exponential distribution with parameter, s : i.e.     wwg ss   exp .  

Then from (5.34), it is clear that,  

)exp{1(1

)exp{1(
)( 21

tBC

tBC
tm







 ,                                          (5.36) 

 

where, sB   12  and   ssC   12/ .   If,  s  12 , then from (5.36), we 

have, 

  smt t   1lim .                                                      (5.37) 

In this case,   21   . Consequently for sufficiently small, s ,  the pdf,  wg  gives more 

weight to smaller values of t , where   1 tm  with a larger probability.  It can be shown [66] 

that   0,0
'

 ttm  by differentiating the right hand side of (5.36).  This result already 

indicates that “  tm  monotonically increases from the level 1  to the level, s 1 , as t ”, 

see, e.g., reference, [116].  If,  s  121 , then, 

 

  2lim   tmt .                                                                (5.38) 

 

This result is reasonable because the probability distribution in this case gives more weight to 

larger values of, t , where   2 tm
 with a larger probability.  As the limit (5.38) also holds for 

the case when, 12   , these results show that, the change point eventually bends down the 

failure (mortality) curve and reflect the effect of “the weakest populations are dying out first”.  

In particular, the impact of changing environment can be modeled via the relation (2.18).  In 

relation to this model, the change point model (5.28) could also be written in the following form:   

     twtwt 1||   ,                                                             (5.39) 

where,  
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If we let wwt  )|( , then it can be seen that the value 1w   then it can be seen that the value 

1w  corresponds with the baseline failure rate, i.e. model (5.39) reduces to, 

   twt 1|   .                                                             (5.40) 

Then obviously, if our item is aging, this result implies that the failure rate ( )(1 t ) in the 

baseline environment is increasing, i.e. for wt  .  As the baseline failure rate is increasing in 

this case, for wt  , then )(/)()|( 12 ttwt   is decreasing. This result already shows that 

the failure rate tends to be decreasing eventually. 

 

5.5. Variability characteristics in heterogeneous populations 
 

We investigate the behavior of the variance of the conditional random variable, 

 tTWtW  || .  The coefficient of variation is another useful measure, which we consider. 

Henceforth, the ordered subpopulations are not necessarily the same. 

 

5.1.1. Mixing distributions with different variances 
 

Mixing distributions offer convenient tools for the analysis of heterogeneous populations. For 

instance, consider two random variables 1W  and 2W  with realizations 1w  and 2w  respectively. 

Denote, the corresponding mixing distribution functions,  wG1  and  wG2 . When the 

expectations of these random variables are equal, the respective mixture failure rates are equal. 

In particular, for the multiplicative model (2.18): the initial failure rates are equal whenever the 

mixing distributions have equal means. However, there are many situations in practice when the 

means may be equal but the corresponding variances are not equal.  In particular, it is proved for 

the specific case of the multiplicative model, e.g. when the mixing parameter follows a gamma 

distribution: when 

   21 WVarWVar  , 

the corresponding mixture failures rates are ordered as:  
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   tt mm 21   ,                                                              (5.41) 

See, e.g., reference [66]. Our, ordered heterogeneous population is improving: “the weakest 

populations are dying out first”. In fact, it was further shown by the forgoing authors, that the 

ordering of the variances is the sufficient condition for ordering the corresponding mixture 

failure rates. 

 

The conditional variance of a subpopulation of items that survived the operational interval,  t,0 , 

i.e. for the random variable,  tTWtW  ||  is of interest. This, already, provides an 

additional information on the random variable, W  in relation to surviving subpopulation items.  

  

5.1.2. Variance of tW | : Discrete mixtures setting 
 

Consider the mixture setting of section 5.2.2.  It turns out, that the failure rate of surviving items, 

may also be described by the corresponding random failure rate, say  t* :see e.g. references, 

[29] and  [33], 

 
 
 





t

t
t

2

1*




 ,                                                          (5.42) 

where,  t1  and  t2  are the realizations of  t*  with probabilities  tp  and  tq , 

respectively. In fact, when relation (3.11) holds and the corresponding survival functions are also 

ordered as,     0,21  ttStS , where    tFtS ii 1 ,  2,1i  ( 21 ww  ), we can, then, 

conclude from relations (4.21) and relation (5.5): the proportion of strong items,  tp is 

increasing (  tq  is decreasing) as t   increases. Whereas, also, from the relation (4.25) and 

(5.42), it can be seen that  tm  is decreasing because,   2,1,0  jtj .  

 

We consider, a specific case of a more general model (2.2): that is,  t*  defined via the 

respective conditional probabilities,  tp  and  tq : i.e. model (5.42). The differences in the 
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corresponding failure rates, are of interest and can be represented by an equivalent random 

variable3: see e.g. reference, [66], 

 
     

 

 


tqyprobabilitwith

tpyprobabilitwithtt
tD

0

12 
 ,                   (5.43) 

From the fact that ordering (3.11) holds in this case, it is plausible that as “the weakest 

subpopulations are dying first”, and  tD is decreasing. 

 

When,  t*  is defined, analogously to,     tTwtwt  |||  , via (5.43), then,  for model 

(2.1), the mixture failure rate,  tm  
in (4.20) can, also, be considered as “the expectation of the 

random variable,  tD : 

    tEt Dm   ,                                                         (5.44) 

where, the corresponding conditioning is via,  tp  and  tq ”, see e.g.,  reference [29]. As 

21 ww 
 and ordering (3.11) also hold in this case, in accordance with relation (5.42),  tp  is 

increasing, whereas  tq  is decreasing. Therefore,  tm  is decreasing as well and the 

heterogeneous population is improving as the weakest subpopulations are eliminated first from 

this population. The corresponding variance of  tD  is given by: see e.g. reference, [33],  

           tqtptttVar D

2

12   ,                                           (5.45) 

As a specific case describing, e.g. the shape of the variance of the random variable,  tD , the 

foregoing authors, consider the simplest mixture of two exponential distributions, where the 

failure rates are,     1122   tt  and show that the corresponding mixture failure rate, 

 tm  and   tVar D  strictly decreases as time increases.  For this particular case, model (5.45) 

reduces to the simplest model, 

        tqtptVar D

2

12   .                                                (5.46) 

From (4.25),   

                                                             
3Where the subscript D signify the difference between the failure rates. 
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          tVartqtpt Dm  
2

12

'
.                             (5.47) 

In accordance with relations (5.43) and (5.47) it can be shown, [66], that    tqtp   is strictly 

deceasing in t  from,    00 qp , when the proportion of strong subpopulation is larger than 50% 

of the remaining population.  Consequently, the variance is decreasing as well.  Whereas, when 

this proportion is less than or equal 50% of the remaining population, (where (5.43) increasing, 

then    tqtp  firstly increases and then decreases) the corresponding   tVar *  initially strictly 

increases. Hence, if (5.46) increases (decreases), then    tVar *  would initially be strictly 

increasing to a certain maximum point before it eventually strictly decreases. 

 

5.1.3. Variance of the conditional random variable, tW |  :  Continuous mixtures 
 

Consider a subpopulation indexed via the unobservable frailty parameter, W  with pdf, 

    ,0, wwg .  The mixture failure rate is given by (2.11), with the conditional pdf (2.12). 

The distribution functions of the unconditional random variables, W  and the conditional one, 

tW | and WW 0|  are given by the respective relations in (2.13). For, the specific case of the 

multiplicative (frailty) model (2.19):    twwt b |  and, w   is the realization of the random 

variable,W , the corresponding random failure rate is, 

 

   tWt b * ,                                                           (5.48) 

where, tWW | .  Considering definition (2.11) and (5.44), we can see that (5.48) in a way 

reduces to (2.20): i.e. 

            tWEtdwtwgwttEt bbm ||
0

*   


.                         (5.49) 

As,    WEWE 0| , the conditional expectation,  tWE |  is decreasing as  tWE |'  is a 

decreasing function of t . This result further implies that the relation (5.49) is decreasing as well 

and 

            tWVartWVarttVar bb |
22*   .                             (5.50) 

 

Thus, from (2.18) and considering (5.49) as well (5.50), we have, 
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        tWVarttWEt bbm ||
2''

  .                                      (5.51) 

The mixture failure rate,  tm , is evidently decreasing as a function of time, and the 

corresponding variance,   tVar *  is decreasing as a function of time as well.   For a mixture of 

exponential distributions, the relation (5.51) reduces to:       tWVartt bm |
2'

  .  As 

another example, consider, the distribution of W  to be a gamma distribution: i.e.  
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where, the baseline survival function is      VtS  exp , 0t , and   
t

b duuV
0

 . In this 

case, it can easily be shown that:    

   VtzE  1/|  .                                                         (5.52) 

On the other hand, the corresponding variance is given by, 

 

   22* 1/ VtVar   .                                                 (5.53) 

 

The expectation (5.52) is decreasing and the corresponding variance (5.53), is decreasing as well. 

The distribution of “the changing in time composition of our heterogeneous population is 

improving with time”, [29]. 

 

 

5.1.4. Coefficient of Variation of the random variable, tW |  
 

The coefficient of variation (CV) being the ratio of the standard deviation and the mean, (i.e. 

 /2CV ) reflects the relative variability of the reliability measures from what otherwise 

may be their expected values. In the context of our setting, it is given by, 

 

       ttVartCV m /**  .                                           (5.54) 

Thus, in relation to the specific case of model (5.42), and from (4.20), the coefficient of variation 

is given by (cf. reference, [29]) 
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           
       ttqttp

tqtptt
tCV

21

12*









 .                                       (5.55) 

Hence, for the specific case of the mixture of two exponential distributions, we have, 

 

        
    21

12*






tqtp

tqtp
tCV




 .                                               (5.56) 

From the corresponding discussion just subsequent to relation (5.44) and (5.49), it is clear that 

derivative (i.e.  tp '
) is positive, which means the proportion of surviving subpopulations. 

Consequently, from this result the derivative of (5.56) is also positive, which further implies: 

      tqtp // 12  . In particular, it is shown by the forgoing authors that (5.56) may be IFR 

for this case, whereas it is of UBT type, in particular when       tqtp // 12   and 

      0/0/ 12 qp . However, it monotonically decreases when the inequality in the latter 

expression is reversed. It was also shown by the forgoing authors, for a specific case of 

continuous mixtures of exponentials with the conditional failure rate,  wt |  and the 

distribution,    wwg   exp : the covariance of the random failure rate,  t*  is constant, 

whereas the corresponding variance is decreasing. 

 

As another example, consider the distribution of W  follows an inverse Gaussian distribution:  

 

      wawbwpawg 2/1exp2/1
22/1

   ,  0,, w . 

It can easily be shown that, 

    2/12 2/1| VabatwE  , 

 

and the corresponding variance and the coefficient of variation are, respectively,  

 

     2/32* 2


 VabatVar  and,      4/122/1* 2 VabatCV  . 

 

The variance and the coefficient of variation are, respectively, decreasing in this case. The 

coefficient of variation of the random variable, tW |
 for the Gamma distribution considered in 

section 5.5.3 (e.g.    2/1*  tCV ), is also decreasing.   
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5.6. Concluding Remarks 

 

We consider stochastically ordered heterogeneous populations. The shapes of mixture failure rate 

for these population under some shock settings are analyzed for two specific cases. In particular, 

we compare the mixture failure rate before and after a shock.  When the frailty W  is a 

continuous random variable, we show that the failure rate after a shock is smaller than the one 

without a shock. 

 

Therefore, shocks under some assumptions can improve the probabilities of survival for a 

heterogeneous population. These results are, also, extended to the case, when frailty is a discrete 

random variable. Shocks as an alternative kind of burn-in is theoretically justified in these cases. 

Whereas, the conventional burn-in is premised on the failure rate being initially decreasing or 

bathtub, in the considered case, burn-in can be performed even for increasing failure rates.  

 

In section 5.3., a specific increasing mortality (hazard) rate process induced by the non-

homogeneous Poisson process of shocks is considered. The shape of the observed (marginal) 

failure rate is analyzed in this case. In particular, we show for some specific cases: the population 

failure/mortality rate decreases with age and, even tend to reach a plateau. This result is obtained, 

when compared with sample paths of the unconditional mortality rate process, which are 

monotonically increasing. 

 

Our model can be used to model and analyze the damage accumulated by organisms 

experiencing external shocks. In this case, the cumulated damage is reflected by jumps on the 

failure rate. An overview of results on mortality rate processes with a single change point are 

also presented and discussed in final section 5.4. 

 

There are situations where the mixing distributions have equal means but the variances are 

different. Henceforth, the ordered subpopulations are not necessarily the same. We show, for 

some specific cases, that the corresponding mixing can lead to the corresponding ordering of 

mixture failure rate in,  ,t . 



 

 
125 

 

For a subpopulation of items that survived the operational interval,  t,0 , the variance of the 

conditional random variable, tW |  is analyzed. Two specific cases are considered: the case, 

when the random variable frailty, W  is discrete and/or continuous. When, the failure rates are 

ordered,  tWE |  is decreasing and  tm  is also decreasing as functions of time.  We use, 

simple but meaningful examples to illustrate our results. Specifically, it is shown that the 

corresponding variance is not monotone, e.g. it may decrease or be UBT shaped.  

 

Another, useful measure, which was considered in section 5.5, is the coefficient of variation of 

the random variable, tW | .  Whereas the variance may be decreasing, we show for some specific 

cases, that the coefficient of variation, may be decreasing or exhibit other shapes: e.g., constant 

or UBT shape.   

 

The focus in literature has been mostly on the study of expectations, however, the obtained in 

this section results show that the variability characteristics in heterogeneous populations may 

also change dynamically. Therefore, along with the expectations, this should also be considered 

in practical applications. 
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Chapter 6: Final Concluding Remarks 
 

We firstly discussed some general reliability notions, which are relevant to our study and 

presented a brief introductory literature survey in chapter one, whereas the more detailed analysis 

of specific references are also conducted throughout the text at appropriate places while 

discussing relevant issues. In particular, we devoted a considerable attention to describing 

various (aging) classes of distributions, as these are important and useful for discussing the 

statistical modeling for mixtures of distributions.   

 

Heterogeneity in populations (of items) is often induced by changing environment conditions 

and/or other random effects.  We focused, on describing the corresponding aging characteristics 

for heterogeneous populations. The notion of a random failure rate, which is particularly 

important for the corresponding analysis of the mixture failure rates is considered and briefly 

discussed.   

 

We focused on some initial frailty (mixture) models and discussed some results that describe the 

shape of the mixture failure rate.  Specifically, a meaningful case of a population which consists 

of two subpopulations, which we believe was not sufficiently studied in the literature is 

considered. The corresponding, properties describing the shape of the failure rate under these 

mixtures are analyzed. It is shown that the mixture failure rate can decrease or be UBT for some 

specific cases.  Another specific case, which also explicitly illustrate some further applications of 

these models to a case, where the mixing parameter, is the initial (usual unknown) random age is 

considered.  It is shown, in this case, that this type of “mixing” can change the aging properties 

of an object, e.g., for certain values of parameters, the mixture failure rate may either preserve 

the IFR property or have a bathtub (BT) shaped: initially decreasing to some minimum point and 

eventually increasing as t . 

 

The mean residual life also plays a central role in characterizing lifetime distributions. We 

presented, some useful general results on the properties of MRL and obtained the corresponding 

‘shape properties’ for the corresponding mixtures.  The MRL ‘shape properties’ are analyzed for 

some specific cases and some relations with the failure rate are also highlighted. Especially, we 
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show that for the inverse Weibull baseline distribution with the UBT shaped failure rate results 

in the corresponding decreasing MRL for certain values of parameters, whereas it is UBT for 

other values. These results already show the flexibility of the inverse Weibull model in 

describing different aging phenomena. 

 

Some general and essential aspects of stochastic orderings, which are relevant to our study, are 

presented and discussed.  We consider ordering of mixing distributions in the sense of the 

likelihood ratio. Specifically, some relevant and useful results for the case of two frailties are 

discussed. It turns out that the mixture failure rates are ordered as functions of time in  ,0 , 

when the mixing distributions are ordered in the sense of the likelihood ratio.  

 

Some findings on the bending properties of the mixture failure rates are presented. It follows 

from conditioning on survival in the past interval of time that the mixture failure rate is 

majorized by the unconditional one. Hence, the mixture failure rate bends down in a weak sense 

or a strong sense as time increases.  

 

These results are extended to other main reliability indices.  Specifically, we show, that the MRL 

function under the operation of mixing bends up either in a strong sense or weak sense as time 

increases.  The reversed failure rate is also bending down either in a weak sense or a strong 

sense, whereas the corresponding mean inactivity (waiting) time exhibits the reverse behavior. 

These results are shown to hold for the multiplicative model. However, the meaning impacts of 

the observed increasing mixture reversed failure rates in some literature, for lifetime modeling 

requires some further independent study. 

 

Some relevant results on failure (mortality) rate when the corresponding parameters are 

randomized are presented.  In this case, it turns out that randomization of parameters may lead to 

the strictly decreasing population failure rate.  Under this setting, we also discuss some relevant 

results with respect to the vitality modeling.  
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 Some useful results on relative aging of the mentioned main reliability indices are discussed.  

Specifically, ordering of lifetimes in terms of monotonicity properties of the ratio of the mean 

waiting (inactivity) times is proposed and some conditions for a random variable X  to be aging 

faster than the lifetime random variable Y  in the relative mean inactivity order are established.   

 

It is also proved that if X  is increasing in the sense of the mean inactivity time (IMIT), then Y  

is also IMIT when the corresponding random variables are ordered accordingly.  

In addition to other existing measures, e.g., of the “rate of aging” considered in some literature, it 

is also interesting in future to consider other measures, which account for the impacts of 

heterogeneity on population’s lifetime distributions. 

 

We have generalized the properties of the failure rate to the discrete case. In particular, some 

major and important differences between the failure rates that correspond to the continuous and 

discrete distributions are highlighted and discussed. The shapes of the failure rate are 

investigated in detail for some discrete Weibull-type distributions. For instance, for the type II 

discrete Weibull distribution, the classical failure rate increases (IFR), whereas the alternative 

failure rate is of the UBT type. This striking difference, was not, however, discussed in the 

literature before.  Obviously this is important in practical applications. It means that the 

alternative failure rate, may be an appropriate choice in the modeling and analysis of various 

aging characteristics as compared to the usual (classical) failure rate. It is, also, interesting to 

explore further this behavior for other discrete lifetime distributions. 

 

We present and discuss some important results on the failure rate of a mixture of two 

distributions. We show, for instance that the mixture failure rate bends down when compared 

with the expectation of the conditional failures rates. Specifically, some selected discrete lifetime 

distributions (e.g. with increasing failure rate (IFR), BT or UBT shaped failure rates) are studied.   

For instance, we show that, the failure rate of a mixture of geometric distribution with  the type I 

discrete Weibull distribution, tends to decrease and even tends to zero for certain values of 

parameters, whereas it is increasing (decreasing) for the certain values of parameters, for  the 

type II discrete Weibull distribution and the type III discrete Weibull distribution, respectively. 
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Under the defined settings, the IFR property is also preserved for mixtures of the considered here 

discrete Weibull distributions and the Lindley distribution with increasing failure rate. 

Further, the failure rate of the mixture of the type I discrete Weibull distribution and discrete 

gamma distribution is of UBT shape type for certain values of the parameters. This property is 

also reflected for some values of the parameters when the latter distribution is mixed with the 

discrete gamma distribution, otherwise it shows the reversed pattern (BT) for other values. 

 

Finally, some results on the general properties of discrete mixture failure rates are discussed and 

some simple models of heterogeneity are presented.   In the final section of this chapter, we also 

define the MRL function in the discrete setting and highlight some useful relations with the 

corresponding failure rate.  

 

Stochastically ordered heterogeneous populations are considered. The shapes of mixture failure 

rate for these populations under some shock settings are analyzed for two specific cases. In 

particular, we compared the mixture failure rate before and after a shock.  When the frailty W  is 

a continuous random variable, we show that the failure rate after the shock is smaller than the 

one without a shock. 

 

Therefore, shocks under some assumptions can improve the probabilities of survival for a 

heterogeneous population. These results are also extended to the case when frailty is a discrete 

random variable.  

 

Shocks, as an alternative kind of burn-in, is theoretically justified in these cases. On the other 

hand, while the conventional burn-in is premised on the failure rate being initially decreasing or 

bathtub, in this case, burn-in can be performed even for increasing failure rates.  

 

We consider a specific increasing mortality (hazard) rate process induced by the non-

homogeneous Poisson process of shocks. The shape of the observed (marginal) failure rate is 

analyzed in this case. In particular, we show for some specific cases: the population 

failure/mortality rate decreases with age and, even tend to reach a plateau. This result is obtained, 
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when compared with sample paths of the unconditional mortality rate process, which are 

monotonically increasing. 

 

Our model can, be used to model and analyze the damage accumulated by organisms 

experiencing external shocks. In this case, the cumulated damage is reflected by jumps on the 

failure rate. An overview of results on mortality rate processes with a single change point are 

also presented and discussed. 

 

We show, for some specific cases, that the corresponding mixing, e.g. when for example, the 

ordered subpopulations are not necessarily the same (i.e. with equal means, but different 

variances) can lead to the corresponding ordering of mixture failure rate in,  ,t . 

 

For a subpopulation of items that survived the operational interval  t,0 , the variance of the 

conditional random variable, tW |  is analyzed. Two specific cases are considered: the case, 

when the random variable (frailty) W  is discrete and/or continuous. When, the failure rates are 

ordered,  tWE |  is decreasing and  tm  is also decreasing as functions of time.  We use, 

simple but meaningful examples to illustrate our results. Specifically, it is shown that the 

corresponding variance is not monotone, e.g. it may decrease or be UBT shaped.  

 

Another, useful measure, which we consider is the coefficient of variation of the random 

variable, tW | .  Whereas the variance may be decreasing, we show for some specific cases, that 

the coefficient of variation, may be decreasing or exhibit other shapes: e.g., constant or UBT 

shape.   

 

The focus in the literature has been mostly on the study of expectations, however, the obtained in 

this section results show that the variability characteristics in heterogeneous populations may 

change dynamically. Therefore, along with the expectations, this should also be considered in 

practical applications. 

 

The obtained results on bending down of the mixture failure rates with time are well justified for 

human populations (Gompertz law of mortality for baseline distributions in mixing models) from 
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developed countries where there is gradual availability of validated mortality data on centerians 

and supercentarians.  It is also interesting to investigate this phenomenon utilizing data from less 

developed countries. 

 

Moreover, the results obtained in this thesis, clearly show that the proportion of surviving items 

(objects) in the mixed populations is increasing, e.g., the population lifetime is improving 

somehow as the “weakest subpopulations are dying out first”.  Thus, mixture of distributions 

provides a useful tool for modeling and analysis of heterogeneous populations.  
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