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Abstract 

Human papillomavirus type 11 (HPV11) is a causative agent of recurrent respiratory papillomatosis 

(RRP), a common benign laryngeal neoplasm that presents mainly in children. The genome comprises 

three regions: the early region (E1, E2, E4, E5a/b, E6 and E7), the late region (L1 and L2), and the 

upper regulatory region (URR). A sequence-based classification system is primarily used to genotype 

HPV. The L1 is used for HPV type discrimination, and in combination with the URR, can be used to 

differentiate between various lineages. However, optimal sub-lineage classification requires whole 

genome sequencing (WGS). A recent study investigating the genomic diversity of globally circulating 

HPV11 isolates identified a novel lineage and two novel sub-lineages. It has been proposed that 

phylogenetic tree topologies using the sequences of concatenated E5a/b- L1-URR genes, a 208bp 

segment of the E2 gene, and the complete genome generates similar tree topologies. Also, there is 

currently no published data on the HPV11 intratypic variants circulating in the Free State region. Hence, 

this study investigated HPV11 intratypic variants circulating in patients with RRP at the Universitas 

Academic Hospital, and aimed to identify novel (sub)lineages through phylogenetic investigations.  

The study population included patients diagnosed with RRP caused by HPV11, and sequence data for 

geographically distinct HPV11 (sub)lineage representatives. The genetic variation of HPV11 isolated 

from patients with RRP was determined by sequencing the E5a/b, L1, URR and a segment of E2 genes. 

Four isolates of interest were selected for whole-genome sequencing and phylogenetically analysed to 

determine the presence of potentially novel isolates.  

Many nucleic heterogeneities and non-synonymous substitutions were identified in isolates 

characterised in this study. Phylogenetic analysis of the concatenated L1-URR and E5a/b-L1-URR 

resolved into lineages A and B; however, sub-lineage classification was unclear. Analysis of the 

complete genome determined the presence of a lineage B isolate and two isolates of interest. 

Comparative analysis of genetic variability determined that the concatenated E5a/b-L1-URR could not 

reliably classify isolates. A segment of the E2 gene could reliably distinguish between all lineages and 

sub-lineages, suggesting that this gene segment contains stable sub-lineage specific single nucleotide 

polymorphisms (SNPs) and may serve in sub-lineage identification. 

In conclusion this study provides the most comprehensive data on the genomic diversity of HPV11 in 

the Free State to date. Results obtained in the current study support WGS for HPV11 classification 

below lineage level as a standard, as it generates more information regarding genetic variants.  
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CHAPTER 1 - Literature review 

1.1. Background 

The first papillomavirus was identified in the 1930s (Shope & Hurst, 1933). Since then, recombinant 

deoxyribonucleic acid (DNA) technology and molecular cloning have led to the discovery of multiple 

human papillomaviruses (HPVs) (Boshart et al., 1984; Dürst et al., 1983; Gissmann et al., 1982). 

Papillomaviruses target various host tissues and are responsible for forming benign hyperproliferation 

and malignancies in human and animal hosts. The association with different conditions such as cancer, 

skin warts and laryngeal papillomas has been well-studied (Cornall et al., 2013; Gaylis & Hayden., 

1991; zur Hausen et al., 1975). 

HPVs which target mucosal sites are broadly divided into high-risk (HR)-HPV types, probable HR-

HPV types and low-risk (LR)-HPV types based on oncogenic potential (zur Hausen, 2002). HPV6 and 

HPV11 are LR-HPV types responsible for genital wart formation and development of papillomas in the 

respiratory tract, commonly referred to as recurrent respiratory papillomatosis (RRP) (Kardani & 

Bolhassani, 2018b). This disease is characterised by recurrent papillomas forming in the respiratory 

tract, most commonly the larynx and may cause significant morbidity and possible mortality due to 

airway obstruction, especially in younger children (Seedat, 2020; Seedat et al., 2013; Swain et al., 

2020).  

HPVs form part of the Papillomaviridae family and are non-enveloped, double-stranded (ds) 

deoxynucleic acid (DNA) viruses containing a small genome of around 8000 base pairs (bp) (Crawford, 

1965; Klug & Finch, 1965). The virus genome comprises three regions, which include the early region 

(E1-E7 genes) and the late region (L1 and L2 genes) that encode proteins, and the upstream regulatory 

region (URR), also recognised as the long control region (LCR) (Kardani & Bolhassani, 2018a). 

A classification and nomenclature system for the Alphapapillomaviruses was established in 2011 by 

Burk and colleagues. Papillomavirus classification largely relies on phylogenetic analysis, genome 

organisation properties, virulence factors and the host tissue the virus affects. A DNA sequence-based 

classification system is primarily used to differentiate and genotype HPV (Burk et al., 2011). The L1 

open reading frame (ORF) is generally used for HPV type discrimination, and in combination with the 

URR, can be used to differentiate between various lineages. However, optimal sub-lineage 

classification requires sequencing additional gene segments (Burk et al., 2011). A novel HPV type 

identifies as having over 10% variance to any other HPV type. Nucleotide differences in the complete 

genome of 1% to 10% and 0.5% to 1% identify variant lineages and sub-lineages, respectively (Burk et 

al., 2011). 
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DNA sequencing methods, such as Sanger sequencing and next generation sequencing (NGS), are often 

used in phylogenetic studies to investigate HPVs inheritable traits within different organisms and to 

detect genomic mutations. By analysing the data acquired by sequencing, phylogenetic trees, which 

reflect the evolutionary history of organisms, can be constructed, and the information gathered can then 

be used for taxonomic classification and analyses (Burk et al., 2011; Kocjan et al., 2015; Sridhar et al., 

2015). Using phylogenetic analysis, HPV11 was previously divided into subgroups A1 and A2; 

however, recently a study on the genomic diversity of globally circulating HPV11 isolates uncovered 

two lineages (A and B) and four sub-lineages (A1, A2, A3 and A4) (Jelen et al., 2016), warranting 

investigation of further isolates for clarification of lineages currently circulating (Burk et al., 2011). 

Previous studies conducted on young adults (age 16 – 24 years) in South Africa determined that over 

two-thirds of the population are often infected with multiple HPV types, with approximately 1-5% of 

the HPV positive participants infected with HPV11 (Giuliano et al., 2015; Mbulawa et al., 2017, 2018). 

A study conducted in the Free State province of South Africa determined that RRP has a predominantly 

juvenile-onset (children age 14 and under) (~85%), with approximately 40% of cases being due to 

HPV11 (Seedat & Schall, 2018). However, most of these studies only target selected population groups 

and an accurate HPV11 prevalence, especially in the respiratory tract, is unknown and presumed to be 

much higher. 

To date, there is no cure for RRP, and patients often require multiple surgical procedures to remove the 

papillomas to prevent airway obstruction (Seedat, 2020). Fortunately, preventative measures are 

available. There are three vaccines used for protection against HPV: Cervarix®, Gardasil® and 

Gardasil-9®. Two of these vaccines, Gardasil® and Gardasil-9®, protect against HPV11 infection 

when administered prophylactically (Barra et al., 2019; Chabeda et al., 2018; Dadar et al., 2018). To 

combat infection with HPV, the National Department of Health has incorporated HPV vaccination with 

Cervarix® into the school health programs, targeting half a million girls (Delany-Moretlwe et al., 2018). 

However, Cervarix® does not confer protection against HPV11 infection (Barra et al., 2019; Chabeda 

et al., 2018; Dadar et al., 2018). 

Research on the HPV11 lineages and sub-lineages circulating within the community is urgently required 

to further study lineage correlation with disease severity, to guide vaccine development, to monitor the 

impact of the vaccination campaign on the circulating HPV types, to collect baseline data for future 

studies, and to identify novel HPV types if present. 

1.2. Discovery of human papillomavirus 

In the early 1930s, Rous and Shope identified the first papillomavirus from wart-like lesions in 

cottontail rabbits (Sylvilagus sp.), and further investigations led to the discovery of papillomavirus 
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malignant- and transmission capabilities (Rous & Beard, 1935; Shope & Hurst, 1933). Following this 

discovery, research into papillomaviruses intensified. In 1949, the first virus particles in a human 

papilloma extract were identified using electron microscopy (Strauss et al., 1949), and 16 years later, 

in 1965, the human wart virus's genome was determined to be circular, dsDNA with a protein capsid 

comprised of 72 pentameric capsomers (Crawford, 1965; Klug & Finch, 1965).  

Until the 1970s, it was believed that there was only a single type of HPV that caused the formation of 

warts in various tissue sites. However, within the decade, recombinant DNA technology and molecular 

cloning techniques led to the discovery of a plurality of HPV types, such as HPV6, HPV11, HPV16 and 

HPV18, with different tropisms for mucosal or cutaneous squamous surfaces (Boshart et al., 1984; 

Dürst et al., 1983; Gissmann et al., 1982). In the wake of these studies, the involvement of HPV in 

malignant cell transformation was hypothesised and would later prove to be a major focus area in HPV 

research (Gissmann et al., 1977; Gissmann & zur Hausen, 1976; zur Hausen et al., 1975). 

In 1982, molecular cloning of papillomavirus genomic DNA extracted from a respiratory papilloma led 

to the discovery of HPV11 (Gissmann et al., 1982). Further investigations eventually revealed that 

HPV11 was also responsible for genital wart development (Gissmann et al., 1983). The first complete 

nucleotide sequences of ten HPV11 isolates were determined and characterised in 1986 in Slovenia, 

and approximately a decade later, the URR sequences of 40 HPV11 isolates were determined, providing 

further insight into the genetic code of HPV11 types and intratypic variants (Dartmann et al., 1986; 

Heinzel et al., 1995). Only again in 2009, was the complete sequence of HPV11 obtained from a cervical 

swab of a patient with an unspecified genital disease (Wu et al., 2009).  

The first extensive sequencing study to obtain complete genome sequences of HPV11 isolates was 

performed in 2011 in Slovenia (Maver et al., 2011). Phylogenetic analysis revealed sequences 

corresponding to the prototypic- and non-prototypic variant group based on specific nucleotide 

signatures and several novel HPV types and potentially significant mutations (Maver et al., 2011). The 

prototypic variant group and the non-prototypic variant group were renamed A1 and A2, respectively, 

when a new system for the classification and nomenclature was described for HPV variants (Burk et 

al., 2011). More recently, a study investigating the genomic diversity of globally circulating HPV11 

isolates revealed two lineages (A and B) and four sub-lineages (A1 - A4) (Jelen et al., 2016). It has been 

established that HPV has a slow evolutionary rate, and genomic variation is predominantly a 

consequence of genetic drift (Bernard, 1994; van Doorslaer, 2013). Therefore, discovering any new 

HPV lineages or sub-lineages requires additional investigation into the evolutionary rate and the genetic 

relationship of HPV11 variants to further characterise these variants. 
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1.3. Human papillomavirus genome and proteins 

HPVs are non-enveloped, dsDNA viruses with a small genome of around 8000bp (Kardani & 

Bolhassani, 2018a). Many proteins necessary for viral infection, cellular gene expression, and immune 

evasion are encoded by the HPV ORFs. The genome comprises three regions, including the early ORF, 

late ORF, and the URR (Figure 1). The early region is approximately 4000bp, and codes for non-

structural proteins, whereas the late region is approximately 3000bp, and codes for structural proteins 

(Kardani & Bolhassani, 2018a). The URR is approximately 1000bp and contains elements involved in 

regulating viral replication and gene expression (Harari et al., 2014; Kardani & Bolhassani, 2018a; 

Ribeiro et al., 2018). 

Throughout evolution, papillomaviruses have gained and lost protein coding genes; however, all 

papillomaviruses encode for a minimum of five proteins, including E1, E2, E4, L1 and L2, and contain 

a URR (Kardani & Bolhassani, 2018a). Therefore, a virus containing only the basic set of core genes 

(E1, E2, L1, L2 and URR) should theoretically be able to infect a cell and replicate. It is thus 

hypothesised that ancestral papillomaviruses comprise the essential genes and no additional adaptive 

proteins. All papillomaviruses contain at least one adaptive protein, such as E5, E6 or E7, which plays 

a role in immune evasion and cellular growth (Kardani & Bolhassani, 2018a, 2018b). Moreover, genes 

that encode adaptive proteins such as E5, E6 and E7, have been associated with malignant 

transformation, although not all papillomaviruses encode for all these adaptive proteins, and not all 

papillomaviruses have an association with malignant transformation (Egawa et al., 2015; van Doorslaer, 

2013). 

1.3.1. The early region 

The early region comprises several ORFs that encode non-structural proteins, which play a regulatory 

function immediately following infection. These ORFs can be divided into the regulatory genes (E1, 

E2 and E4), which play a crucial role in virion synthesis, and three oncoproteins (E5, E6 and E7). The 

ORFs in the early region are expressed within the deeper, less differentiated layers of the infected tissue, 

such as the basal layer (Harari et al., 2014; Kardani & Bolhassani, 2018a). 

The E1 and E2 genes, play pivotal roles during replication and amplification of the viral circular dsDNA 

genome and are essential for virus survival. E1 is separated into three functional regions: The N-

terminal regulatory region, which stimulates cyclin-dependent kinase 2 (CDK2) phosphorylation, the 

central origin-binding domain (OBD), which binds E1 and E2 protein forming a complex (E1-E2), and 

the C-terminal helicase domain (HD) which acts as adenosine triphosphate (ATP)-dependent helicase 

(Graham & Faizo, 2017; Kardani & Bolhassani, 2018a). Functions of this protein include optimising 

viral reproduction in vivo, recognising the origin of replication, and assembling into a double hexameric 
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complex that unwinds DNA duplexes upstream of the DNA replication fork. E2 contains a DNA-

binding domain and a protein-binding domain (Graham & Faizo, 2017; Kardani & Bolhassani, 2018a; 

Wallace & Galloway, 2014).  

 

 

Figure 1: Genome organisation of a low-risk human papillomavirus type 11 (HPV11).  

E1-E7 early genes, L1-L2 late genes, URR Upper regulatory region, AE early polyA signal, and P97 and P742 promotors are 

indicated. The figure is drawn based on the HPV11 prototype A1 with a 2bp insertion at genomic position 7717-7718 (GenBank 

accession number M14119.1) (Maver et al., 2011). 

 

The E2 protein is a multifunctional protein encoded by all papillomaviruses expressed during early and 

intermediate viral life cycle stages. The E2 has several primary functions essential for the viral life 

cycle, such as regulating expression levels for viral gene products in the early stages of the HPV life 

cycle, recruiting the E1 helicase protein to the viral origin of replication for replication initiation, and 

delivering the replicated viral genome to daughter cells during the division of the parent cell. 

Additionally, the E2 plays a role in transcription as a transcription factor and ensures low viral 

concentrations in the early stages of the HPV life cycle. Mutation or integration of the viral genome can 

result in the inactivation of the E2 protein, leading to over-expression of E6 and E7 genes (Graham & 

Faizo, 2017; Kardani & Bolhassani, 2018a; Wallace & Galloway, 2014).  

M14119.1 

Human 

papillomavirus 

type 11 (HPV11) 

complete 

genome  
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Replication is initiated when E2 recruits E1 to the viral origin (Figure 2). The recruitment step involves 

a crucial protein-protein interaction between the transactivation domain (TAD) of the E2 protein and 

the HD of E1. Then, additional E1 molecules are recruited, and the E2 protein promotes assembly into 

a replication-competent double hexameric helicase. ATP likewise promotes the oligomerisation of E1 

and is further required to power E1 helicase activity. Lastly, E1 interacts with host cell replication 

factors to promote bidirectional replication of the viral genome (Graham & Faizo, 2017; Kardani & 

Bolhassani, 2018a; Wallace & Galloway, 2014) (Figure 2). 

The HPV E4 ORF is located within the E2 ORF and is the first gene expressed in the later stage of 

infection. E4 does not possess an initiation codon and uses the E2 initiation codon. The E4 protein plays 

a role in virion release by restructuring the epithelial cell's cytokeratin and may play a part in genome 

amplification and the enhancement of virion synthesis. The E4 protein displays various effects on cell 

behaviour, such as suppressing the host cell's DNA synthesis to promote apoptosis in terminally 

differentiated cells by interacting with the host mitochondria (Graham & Faizo, 2017; Kardani & 

Bolhassani, 2018a). In addition to this, it has also been reported to have a potential role in HPV 

screening (Yajid et al., 2017). 

The E5 protein is a transmembrane hydrophobic protein expressed late in infection made up of 

approximately 83 amino acids. The protein has several functions, including immune evasion via major 

histocompatibility complex (MHC) repression and regulating apoptosis. Moreover, the E5 protein plays 

a role in cell cycle pathways via interaction with growth factor receptors (Graham & Faizo, 2017; 

Kardani & Bolhassani, 2018a). Similar to other HR proteins, the E5 influences cellular gene expression 

by regulating small non-coding ribonucleic acid (RNA) molecules, thereby exhibiting oncogenic 

activity (Georgescu et al., 2018).  

The E6 and E7 proteins exhibit oncogenic activity by associating with tumour protein 53 (p53) and 

retinoblastoma protein (pRB) (Altamura et al., 2018; Georgescu et al., 2018; Pal & Kundu, 2020). 

Expression of these ORFs in the lower epithelial layer triggers differentiating cells of the suprabasal 

layers (the thin layer above the basal layer) to re-enter the synthesis-phase (S-phase) in which DNA 

replicates. This phase is highly regulated and conserved, and dysregulation generally leads to cell 

apoptosis (Georgescu et al., 2018; Kardani & Bolhassani, 2018a). E6 proteins are responsible for 

degrading p53, which inhibits apoptosis, and therefore the infected cells continue viral DNA replication 

by recruiting E1/E2 complexes which play a significant role in replication. The pRB gene acts as a 

tumour suppressor by suppressing the replication of enzyme expression genes (Pal & Kundu, 2020). 

When E7 binds to pRB, the complex inactivates, stimulating replication and cell division. Association 

of the oncoproteins with these tumour suppressor genes leads to disruption of the physiological 

functions of these genes and subsequent possible malignant transformation (Pal & Kundu, 2020). 
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Figure 2: Schematic drawing of human papillomavirus type 11 (HPV11) replication initiation mechanisms.  

Early proteins E1 and E2 are involved. Locations of the functional domains in the proteins are indicated. OBD origin binding 

domain, TAD transactivation domain, DBD Deoxyribonucleic acid binding domain, and H hinge region. Replication is 

initiated by E1 (red), by E2 (blue), to the OBD. This involves an interaction between the E2 TAD and the E1 helicase domain. 

E2 recruits additional E1 molecules. Adenosine triphosphate (ATP) also stimulates helicase activity of E1, which interacts 

with host cell replication factors to promote bidirectional replication of the viral genome. E1 interacts with host cell replication 

factors to promote bidirectional replication of the viral genome. Adapted from D'Abramo & Archambault (2011) and Stenlund 

(2003). 

 

Recent studies have demonstrated the role of oxidative stress and chronic inflammation in carcinogenic 

development. The oncogenes E5, E6 and E7, are all involved in developing chronic inflammation, 

which induces oxidative stress, leading to cell damage and subsequent malignant transformation 

(Georgescu et al., 2018). The type of papillomavirus influences the oncogenicity of E5, E6 and E7. 

HPV types such as HPV11 have limited activity compared to the other HPV types and are classified as 

LR-HPV. LR-HPV types, unlike HR-HPV types, do not degrade pRB or p53 and are less likely to result 

in malignant transformation than their HR counterparts (Egawa & Doorbar, 2017; Klingelhutz & 

Roman, 2012; Pal & Kundu, 2020). 
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1.3.2. The late region 

The late region contains two ORFs, namely L1 and L2, which express structural- or capsid proteins 

required for transmission and survival of HPV in the upper, more differentiated layers of the infected 

tissues (Buck et al., 2013; Wang & Roden, 2013). The L1 major capsid protein can spontaneously self-

assemble into virus-like particles (VLPs), presenting an icosahedral exterior surface. The L1 gene is 

highly conserved, but contains a small number of lineage specific nucleotide polymorphisms that makes 

it useful for typing (Buck et al., 2013; Burk et al., 2011). The structure is highly immunogenic and has 

formed the basis of successful vaccines targeted against HR-HPV types (Buck et al., 2013).  

The L1 capsid surface contains knob-like structures constituting 360 copies of the protein organised 

into 72 pentameric capsomers with a copy of L2 protein in the centre. The L1 has two termini, namely 

the N- and C termini, arranged as 'invading arms' arranged to form the floor between the knob-like 

capsomeres (Buck et al., 2013; Conway & Meyers, 2009). The capsid undergoes various essential 

conformational changes during the virus life cycle. These conformational changes mediate vital 

functions for virus survival, including encapsidation of the papillomavirus genome, interaction with the 

host cell for infectious entry, and releasing the viral DNA into a new host cell (Buck et al., 2013). 

The capsid protein L2 has complex roles in the biology of all papillomaviruses, most notably in virus 

assembly and the infectious process. Unlike the major capsid protein L1, the minor capsid protein L2 

cannot self-assemble into VLPs, although it can be integrated into VLPs when co-assembled and 

expressed with the L1 protein (Conway & Meyers, 2009; Wang & Roden, 2013). Roles of the L2 protein 

include facilitation of efficient genome encapsidation, vesicular trafficking of the viral genome in the 

direction of the host cell nucleus and escaping the vesicular compartment to travel to the host cell 

nucleus for successful infection (Conway & Meyers, 2009; Wang & Roden, 2013). 

1.3.3. Upper regulatory region 

The URR is the most variable region within the HPV genome since it does not encode for proteins. 

Consequently, it is capable of accumulating and tolerating more nucleic mutations. The URR is located 

between the E6 ORF and L1 ORF and consists of approximately 850bp (Kardani & Bolhassani, 2018a; 

Ribeiro et al., 2018). The URR interacts with numerous cellular and viral factors and is involved with 

functions such as virus replication, gene expression, and transcription. The region divides into three 

segments which all include E2 binding sites. The URR includes the 5' segment, the central segment and 

the 3' segment. The 3' segment also bears the E1 binding site, which overlaps with the origin of 

replication (Graham & Faizo, 2017; Ribeiro et al., 2018). The URR includes genetic elements, for 

example, early promotors, the transcription enhancer, the origin of replication, the late polyadenylation 
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site, and the late regulatory element. Mutations in the URR may impact binding sites and functionality 

(Fang et al., 2020; Graham & Faizo, 2017; Ribeiro et al., 2018). 

1.4. Classification and taxonomy of human papillomavirus 

Initially, papillomaviruses and polyomaviruses were grouped into one family, namely the 

Papovaviridae. These viruses were subsequently separated into two families, Papillomaviridae and 

Polyomaviridae, due to the lack of nucleotide and amino acid similarities, different genome sizes and 

genome organisation (Bernard et al., 2010; Fauquet et al., 2005; van Regenmortel et al., 2002). 

Papillomaviruses consists of a family of viruses that classifies into different genera, species, and types. 

HPVs consist of three significant genera, including the Alphapapillomaviruses, Betapapillomaviruses 

and Gammapapillomaviruses, but smaller genera Mupapillomavirus and Nupapillomavirus, also exist 

(Bernard et al., 2010; de Villiers, 2013; Murahwa et al., 2019). 

Throughout the evolutionary process, nucleotide sequences across the HPV genome have transformed. 

Evolutionary changes in papillomaviruses' hosts created new ecological niches for papillomaviruses to 

adapt to, resulting in the formation of different clades. These viruses then co-evolved alongside their 

specific hosts resulting in further co-speciation (Bernard, 1994; van Doorslaer, 2013). HPV tropism is 

used to classify viruses into cutaneous viruses or mucosal viruses. Mucosal viruses are further divided 

into LR, probable HR, and HR viral types (Egawa & Doorbar, 2017; Egawa et al., 2015).  

A DNA sequence-based classification system is primarily used to classify HPVs. The International 

Committee on Taxonomy of Viruses (ICTV) established the designation and naming of virus taxa based 

on recommendations from the Papillomaviridae Study Group, which consists of 11 researchers 

(https://talk.ictvonline.org/taxonomy/). A classification and nomenclature system for the 

Alphapapillomaviruses was established in 2011 by Burk and colleagues (2011). This study was the first 

to describe the nomenclature system for HPV6 and HPV11 variants based on whole-genome analyses.  

The ORF nucleotide sequence coding for the capsid protein L1 is used to classify HPV types and 

represent whole-genome variation due to the high level of conservation of the L1 gene (Bernard et al., 

2010; Burk et al., 2011; de Villiers et al., 2004; de Villiers, 2013). Consensus primers that target the L1 

ORF are used to differentiate between various HPV types. These amplicons can be sequenced and 

aligned to existing HPV prototypes to identify HPV types, lineages and sub-lineages or any nucleic 

heterogeneity (Bernard et al., 2010; Burk et al., 2011; de Villiers et al., 2004; de Villiers, 2013). A 

novel HPV type has less than 90% similarity to any HPV type. Nucleotide differences in the complete 

genome of between 1.0% to 10.0% and 0.5% to 1.0% define variant lineages and sub-lineages, 

respectively (Burk et al., 2011). Data acquired by sequencing is used to construct phylogenetic trees 

and used for taxonomy (Burk et al., 2011). Approximately 220 HPV types have thus far been identified 
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as of 2021 according to the International HPV Reference Centre (Bernard et al., 2010; de Villiers et al., 

2004) (https://www.hpvcenter.se/human_reference_clones). 

The HPV11 genome was formally classified into two sub-lineages (A1 and A2) based on complete 

HPV11 genomes (Burk et al., 2011; Maver et al., 2011). A more recent study on the global genomic 

diversity of HPV11 identified a separate lineage (lineage B) and two additional sub-lineages (sub-

lineages A3 and A4) (Jelen et al., 2016). These results were also generated by sequencing the E5a ORF, 

E5b ORF, L1 ORFs and the URR, which reliably produced the same phylogenetic results as whole-

genome sequencing. Moreover, this study identified a 208bp region found between the 3' end of the E2 

ORF and the 5' of the non-coding region-2 (NCR2) that is the most suitable genomic region to sequence 

to distinguish all identified HPV11 lineages and sub-lineages when whole-genome sequencing is 

impractical (Jelen et al., 2016). A review of literature revealed that additional studies on HPV11 are 

required to investigate the heterogeneity observed in this study. 

1.5. Life cycle of human papillomavirus 

Papillomaviruses all follow similar life cycles but are species-specific regarding infection and 

replication within hosts (Doorbar et al., 2012; Kardani et al., 2018). They infect epithelial cells, which 

are part of the cutaneous and mucosal tissue that generally serves as a protection against the external 

environment (Madison, 2003; Stanley, 2020).  

Basal cells compose the bottom layer of the epithelial layer and are capable of mitotic division. During 

mitosis, a daughter cell moves up through the epithelial layer to replace non-living surface epithelial 

cells. This movement marks the end of the cell cycle and the beginning of terminal differentiation, 

resulting in the loss of the nucleus (Kardani et al., 2018; McBride, 2017). The cell cycle occurs in four 

phases. Cellular growth occurs in the growth-1-phase (G1-phase), host DNA replicates in the S-phase, 

the cells prepare for division in the growth-2-phase (G2-phase), and chromosomes are separated, and 

daughter cells form in the mitosis-phase (M-phase) (Kardani et al., 2018; McBride, 2017). HPVs do 

not possess replication machinery apart from the E1 replication enzyme. To overcome this, HPVs 

depend on the epithelial cellular replicative enzymes for propagation and enter basal cells to link virus 

and host replication life cycles (Doorbar et al., 2012; McBride, 2017).  

There are four main stages of replication during the HPV life cycle: virus entry, establishment, 

maintenance of the non-productive infectious state, and virus production (Kardani et al., 2018; 

McBride, 2017). HPV replication is depicted in Figure 3. The first phase of HPV replication is host cell 

entry. Infection with HPV is thought to require epithelium micro-abrasions to allow access of the virus 

into actively dividing basal cells; however, multiple entry-pathways have been reported for the immense 

diversity of HPV types (Graham & Faizo, 2017; Kardani et al., 2018; McBride, 2017). The L1 capsid 
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protein then binds to the host cell receptor such as heparin sulphate proteoglycans (HSPGs) which are 

the primary receptors. Receptor types and strategies may be dependent on the HPV type and the host 

cell. The virus enters the host cell using endocytosis and travels through vesicular trafficking to the 

nucleus, where the virus enters the nucleus through nuclear pores or following cell mitosis (Graham & 

Faizo, 2017; Kardani et al., 2018; McBride, 2017). 

Once the virus has successfully entered the host cell, the second- or non-productive infectious state is 

established. The initial amplification phase of the virus is thought to be transient and rapid, and relies 

on host cell machinery for replication (Graham & Faizo, 2017; Kardani et al., 2018; McBride, 2017). 

Early genes necessary for the initial genome amplification are expressed (E1, E2, E6 and E7). The URR, 

E1 and E2 are the primary genes required for successful replication. The E1 and E2 proteins are 

dependent on the host's replication machinery and DNA polymerase. In HR-HPVs, the E6 and E7 

proteins have a pivotal role in driving cell proliferation in the basal layers and subverting pathways that 

signal cell growth arrest, thus supporting viral genome replication. In LR-HPVs, these proteins do not 

have a clear role in replication (Graham & Faizo, 2017; Kardani et al., 2018; McBride, 2017). The viral 

genome doubles and segregates the viral DNA into daughter cells during basal cell division and 

replicates with the host DNA as episomes (S-phase). Low copy numbers (50−200 copies) of the viral 

episomes are maintained by maintenance replication to avoid host immune system detection (Graham 

& Faizo, 2017; Kardani et al., 2018; McBride, 2017) (Figure 3). 

In the third phase, the non-productive infectious state is maintained. Viral genome maintenance in 

proliferating basal cells follows a burst of viral DNA replication, also known as vegetative viral DNA 

amplification. The E4 and E5 proteins are expressed during this phase, although E4 is not essential for 

HPV11 replication (Graham & Faizo, 2017; Kardani et al., 2018; McBride, 2017). Similarly, the late 

proteins (L1 and L2) necessary for viral assembly are expressed (Buck et al., 2013; Wang & Roden, 

2013). After differentiation of basal cells into keratinocytes, the cells exit the cell cycle (Graham & 

Faizo, 2017; McBride, 2017). The purpose of the E6 and E7 proteins in HR- and LR-HPVs is to preserve 

a reservoir of infection and direct differentiating cells into the S-phase for viral amplification in the 

upper basal layers (Egawa & Doorbar, 2017) (Figure 3). 

In the last phase of viral replication, large numbers of progeny viral genomes are synthesised. Structural 

proteins expressed in the upper layers of epithelium and progeny virion particles are assembled and 

released upon cell death (Conway & Meyers, 2009; Graham & Faizo, 2017; Kardani et al., 2018; 
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McBride, 2017) (Figure 3). When HPV infects and replicates within the respiratory tract mucosa, 

papillomas may develop (Benedict & Derkay, 2021; Hoesli et al., 2020; Seedat et al., 2013).  

 

 

Figure 3: Human papillomavirus (HPV) replication in epithelial cells.  

HPV moves through the epidermis to promote infection. The proteins involved in the process include early proteins (E1, E2, 

E4, E5, E6 and E7) and late proteins (L1 and L2). Modified from Stanley, 2020. 

 

1.6. Transmission of human papillomavirus 

HPV is commonly transmitted during sexual contact with an infected partner, even when asymptomatic 

(Kardani et al., 2018). According to the Cancer Association of South Africa (CANSA), approximately 

80% of people are infected with HPV at least once before the age of 50 years (https://cansa.org.za/). 

Globally, HPV is characterised as a prevailing sexually transmitted infection (STI). HPV can also be 

transmitted via auto-or hetero-inoculation, for example, kissing, non-penetrative sex, genital scratching, 

or finger-genital contact (Sabeena et al., 2017). In addition, HPV is also known to persist in a person's 

mouth, and HPV transmission between family members can thus be expected (Sabeena et al., 2017). 

Although sexual transmission of HPV is predominant, HPV DNA has been identified in lesions in 

infants, young children, and women who are not yet sexually active, which suggests that the virus can 

be transmitted from an infected mother to child during or before childbirth (Kardani et al., 2018; 

Sabeena et al., 2017; Zahreddine et al., 2020; Zouridis et al., 2018). Infants born via caesarean section 

tend to have lower HPV transmission rates than those born naturally, although this delivery mode does 

not exclude the probability of infection (Tseng et al., 1998; Zouridis et al., 2018). Many well-conducted 

prospective studies have found that vertical transmission of HPV to newborn babies is relatively rare, 

with less than 5% of children being infected with HPV from their mother (Smith et al., 2010; Watts et 
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al., 1998; Zouridis et al., 2018). However, results vary significantly, with other studies reporting higher 

(>20%) rates of mother-to-infant transmission (Hahn et al., 2013; Rintala et al., 2005; Tseng et al., 

1992, 1998). A systematic review of the literature published in 2018, including 421 HPV-positive 

mothers and their progenies, showed a 4.94% rate of vertical transmission of HPV and the relative risk 

of vertical transmission of HPV between women undergoing caesareans and vaginal deliveries to be 

0.912 (Zouridis et al., 2018). 

Few studies have reported on the differences between intrauterine transmission and transmission during 

labour and delivery. These studies produced varying results, with some studies unable to confirm 

intrauterine transmission and other studies reporting high rates of intrauterine HPV transmission. 

Nonetheless, an HPV positive mother continues to be a risk factor of infant infection. The prevalence 

of HPV infection in children infected in this manner is an essential area of research due to the impact 

on vaccination and management strategies. 

1.7. Epidemiology of human papillomavirus type 11 in South Africa 

A study conducted in the Western Cape between November 2012 to July 2013 on young women (age 

16–24 years) determined that 71% of the population was infected with HPV, with half (50.1%) of the 

HPV positive population infected with multiple HPV types. It was reported that between 1% and 3.1% 

of the HPV-positive population was infected with HPV11 and HPV6, respectively. These are the HPV 

types responsible for RRP development. This study also found that the younger women in the study 

population were more likely to test HPV positive than the older women (83% among ages 16−17 years) 

(Giuliano et al., 2015). 

A study that recruited sexually active, human immunodeficiency virus (HIV)-negative young women 

(age 16–22 years) from Cape Town and Soweto between November 2013 and December 2014 reported 

a lower HPV prevalence among the study population (66%). In addition, this study revealed a lower 

percentage of infection with multiple HPV types (41.6%). However, a higher prevalence of HPV11 and 

HPV6 infections (~4% and ~6%, respectively) in the HPV-positive population was reported (Mbulawa 

et al., 2018). According to a previous surveillance study (2015-2016) for cervical HPV infections on 

unvaccinated women aged 18-20 years, it was determined that approximately two thirds (64.4%) of the 

South African female population was infected with HPV, with a clear association between HPV and 

HIV. In addition, most women were infected with more than one HPV type with a median of three HPV 

types. Genotyping revealed that 3.4% of the population who tested HPV positive were infected with 

HPV11, and 4.8% were infected with HPV6 (Mbulawa et al., 2017). 

A recent cross-sectional study showed that among women aged 38–55 years visiting a community 

health clinic in the OR Tambo district municipality of the Eastern Cape province of South Africa, HR-
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HPV prevalence was 28.5%. Of the 417 participants, 40.7% of women infected with an HR-HPV type 

were HIV-positive, and 14.4% of women reported having ulcers or warts in their lifetime. In addition, 

HIV-positive women with normal or abnormal cytology had a higher viral load than HIV-negative 

women (Taku et al., 2020). However, a limitation of most of these studies is that they targeted specific 

population groups or sampling areas and did not include children who predominantly suffer from RRP.  

1.8. Human papillomavirus pathogenicity 

HPVs are ubiquitous in the human population and often cause morbidity. LR-HPVs cause many 

seemingly benign lesions such as genital-, common-, and flat warts, as well as verrucas and other skin 

lesions. Generally, lesions caused by HPV are self-limiting and are frequently cleared by the cell-

mediated response (Sterling et al., 2001). However, HPV associated papillomas are often refractory to 

treatment and may persist. The development of cancer due to LR-HPV infection requires the host to be 

genetically susceptible or immunosuppressed to endure raised viral gene expression and recalcitrant 

lesions to progress to malignancy (Egawa et al., 2015; Georgescu et al., 2018; Pinidis et al., 2016; 

Reidy et al., 2004). Nevertheless, the association between LR-HPV and carcinoma remains ambiguous. 

RRP, which is associated with HPV11, can persist for years regardless of surgical intervention, and can 

in some instances lead to malignant lesions in the lower respiratory tract and lungs (Gerein et al., 2005; 

Reidy et al., 2004). In these circumstances, the viral genome is integrated into the hosts' cell 

chromosome, signifying deregulated viral gene expression pursued by acquiring additional genetic and 

epigenetic modifications as seen in HR-HPV types (Huebbers et al., 2013; Reidy et al., 2004). In some 

RRP-associated cancers, rearrangement of the HPV11 genome has been observed, but viral gene 

expression patterns in this regard are still poorly understood. Compared to the prevalence of HPV6 and 

HPV11 infection in individuals, the development of RRP is rare, which may suggest that this disease 

should be considered as a multigene disease as HPV type and tissue-specific immune deficiency hinders 

the clearance and management of HPV6 and HPV11 infection. Therefore, in individuals who develop 

this disease, long term follow-up is essential (Bonagura et al., 2010; Seedat, 2020; Seedat et al., 2013).  

HPV pathogenicity is determined by genotype, epithelial micro-environment, and the infection site and 

consequent pathogenesis is influenced mainly by viral protein function and regulation (Georgescu et 

al., 2018; Stanley, 2020). Knowledge of molecular pathogenesis at the gene regulation and protein 

function level is necessary to explain why LR-HPVs are less likely to cause progression to malignancy 

compared to HR-HPVs (Georgescu et al., 2018; Stanley, 2020). In tumour cells, the virus integrates 

into the host genome and interrupts the functions of the E2 protein, which is responsible for E6 and E7 

transcription, and subsequently results in the E6 and E7 oncoproteins being expressed at elevated levels. 

As a result, infected cells are immortalised and unable to differentiate (Georgescu et al., 2018; 

Longworth & Laimins, 2004; Stanley, 2020). In contrast to LR-HPV, HR-HPV E6 and E7 proteins 
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disturb epithelial differentiation and apoptosis by binding to host cell proteins with high affinity 

(Stanley, 2020). Epithelial differentiation and apoptosis disruption are stimulated through cellular 

proliferation, synthesis of viral DNA and interference in the cell cycle (Stanley, 2020). 

In HR-HPVs, the E6 proteins form a complex with p53 and a ubiquitin ligase, E6-associated protein 

(E6AP), instigating cell cycle arrest and loss of apoptotic functions by blocking progression at the G1/S-

phase checkpoint (Altamura et al., 2018; Pal & Kundu, 2020). The E7 protein inactivates the pRB 

protein which disrupts its interaction with the E2 factor (E2F) at the G1-phase which subsequently 

results in disruption at the cell cycle control checkpoints (Liu et al., 2008; Pal & Kundu, 2020). 

Additionally, the E7 protein interacts with the deacetylases, an enzyme, and the cyclin and cyclin-

dependant kinase regulatory proteins to alter the cell cycle (Wang & Roden, 2013). The interaction of 

E7 with enzymes triggers DNA synthesis and cell replication in generally inactive mature epithelial 

cells, subsequently stimulating differentiation‐dependent viral DNA amplification, leading to 

pathological cell growth (Bedell et al., 1991; Pal & Kundu, 2020). The virions then assemble and are 

released when the squamous cell layer is reached (Conway & Meyers, 2009). 

1.9. Host immune response to human papillomavirus 

People with RRP often develop a robust serological response to the HPV vaccine; however, a 

serological response against natural infection is often delayed and produces low levels of antibodies. 

The delayed serological response is attributable to low levels of exposure to viral proteins due to 

immune evasion and the absence of viremia. It is postulated that only 50-70% of people infected with 

HPV develop specific antibodies (Buchinsky et al., 2020; Zahreddine et al., 2020).  

Initially, patients diagnosed with RRP generate a measurable serum antibody response to HPV6 and 

HPV11 infection, indicating viral immune recognition. Therefore, immune dysfunction in patients 

diagnosed with RRP is indicative of HPV6 and HPV11 tolerance instead of a lack of viral recognition 

(Buchinsky et al., 2020; Ivancic et al., 2020). Furthermore, studies have demonstrated site‐specific 

immune tolerance of HPV6 and HPV11 in the mucosa, suggesting that RRP is a multigene disease that 

polarises the immune system to tolerate local and chronic HPV6 and HPV11 infection (Buchinsky et 

al., 2020; Ivancic et al., 2020). 

The adaptive immune system includes naïve T-lymphocytes that differentiate into cluster of 

differentiation (CD) 4+ and CD8+ cells (cell-mediated immunity) and B-lymphocytes, including 

plasma- and memory cells producing antibodies (humoral immunity). Phagocytes and antigen-specific 

cytotoxic T-lymphocytes, which form part of the cell-mediated immunity, are activated, and cytokines 

are released in response to the antigen. Due to cell-mediated immunity, the vast majority of papillomas 

regress within two years (Ivancic et al., 2020). B-lymphocytes, which display terminal differentiation 
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and plasma cells, named multiple myeloma oncogene-1 (MUM1+), produce antibodies that correlate 

with disease severity. HPV vaccination increases the level of antibodies and memory cells, thereby 

boosting immunity to HPV (Buchinsky et al., 2020; Ivancic et al., 2020). 

Conversely, the innate immune system is a non-specific system that includes cells such as dendritic-, 

mast-, and natural killer cells, as well as macrophages and granulocytes. The innate immune system is 

activated by the presence of antigens, such as the L1 and L2 capsid proteins (Ivancic et al., 2020). The 

system further includes infiltration of leukocytes and production of nitric oxide, cytokines, and 

chemokines at the site of infection. Antibodies developed against HPV are associated with containment 

of the virus and papilloma regression (El Achkar et al., 2020; Ivancic et al., 2020). 

Infection with HPV6 and HPV11 stimulates viral immune recognition and mounts a measurable serum 

antibody response (Ivancic et al., 2020; El Achkar et al., 2020). The CD3+ T-cells count represents the 

total number of T-lymphocytes. A higher number of CD3+ cells has been found in adults, who generally 

present with less severe RRP. A lower number of CD8+ cells was observed in juvenile patients, who 

generally present with more severe RRP. The immature juvenile immune system may affect the 

presentation of antigens and the secretion of pro-inflammatory cytokines, contributing to the severity 

of RRP. A higher number of CD8+ cells were detected in patients displaying low-grade dysplasia, 

whereas the CD4+ count remained unchanged in different degrees of dysplasia (El Achkar et al., 2020). 

Regulatory T-cells are responsible for immune self-tolerance by suppressing the activation of T-cells. 

A lower number of CD4+ regulatory T-cells, such as T-helper cells and natural killer cells, are observed 

in patients with frequent relapses (Ivancic et al., 2020; El Achkar et al., 2020). 

A study describing the vertical transmission and clearance of immunoglobulin-G (IgG) antibodies 

against HPV6, HPV11, HPV16 and HPV18 in children showed that antibodies from newborns and 

mothers were moderately correlated, and that 80–100% of anti-HPV antibodies were cleared within the 

first two years of life in seropositive newborns, suggesting vertical transfer of the antibodies 

(Zahreddine et al., 2020). Thus, serological studies on HPV antibodies are essential to study natural 

immunity and to monitor the impact of HPV vaccination programs.  

1.10. Recurrent respiratory papillomatosis 

RRP is a debilitating disease characterised by the recurrent formation of benign papillomas, more 

commonly referred to as warts, in the mucosa of the respiratory tract (Benedict & Derkay, 2021). The 

glottic and supraglottic regions of the larynx are most frequently affected. There are two forms of RRP, 

namely juvenile-onset RRP and adult-onset RRP (Novakovic et al., 2018; Seedat, 2020; Swain et al., 

2020). HPV6 and HPV11 mainly cause RRP. However, HPV types 16, 18, 31, 33, 39, 44, 45, 55, and 
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70 have also been identified in respiratory papillomas (Hoesli et al., 2020; Peñaloza-Plascencia et al., 

2000).  

Papillomas in the airway cause dysfunction in the larynx and trachea and may lead to morbidity and 

possible mortality due to airway obstruction. Although the papillomas are histologically benign, the 

disease may be life-threatening to some individuals if treatment is not sought (Benedict & Derkay, 

2021; Seedat, 2020; Swain et al., 2020). 

A study reviewing data from patients diagnosed with RRP between 2011 and 2015 in South Africa 

established that RRP in South Africa has a predominantly juvenile onset. This study reported the overall 

incidence of RRP to be 0.51 per 100000 population per year and the prevalence of RRP to be 1.39 per 

100000 population. In children, the incidence of RRP was 1.34 per 100000 children per year and 

prevalence 3.88 per 100000 children. This study also found that RRP in children caused by HPV11 

tended to be diagnosed at a younger age (median 3.2 years) than RRP caused by HPV6 (median 5.6 

years) (Seedat & Schall, 2018). 

1.10.1. Risk factors associated with the development of recurrent respiratory papillomatosis 

Numerous studies have compared the severity of RRP with the HPV genotype. It has been established 

that infection with HPV11 is possibly more severe, especially in the younger population, due to the 

rapid regrowth of the lesions (Intakorn & Sonsuwan, 2014; Omland et al., 2014; Seedat, 2020). HPV 

infection disease is transmitted during childbirth or sexual contact with an infected partner (Kardani et 

al., 2018; Sabeena et al., 2017; Zouridis et al., 2018). Condylomas during pregnancy are regarded as a 

significant risk factor for acquiring juvenile-onset RRP by vertical HPV transmission (Rodier et al., 

2013). 

Risk factors for the development of RRP include any immunodeficiency or co-infection, particularly 

with herpes viruses and HIV. Prolonged exposure to the virus and a high viral load may also be risk 

factors for HPV11 infection and RRP development. Furthermore, the number of children born by a 

mother and the age at which birth is given may increase the likelihood of HPV11 infection and the 

development of associated diseases (Rodríguez-Álvarez et al., 2018; Taku et al., 2020). Another factor 

that may govern a patient's susceptibility to RRP includes genetic predisposition (Hahn et al., 2013; 

Rintala et al., 2005; Smith et al., 2010; Zouridis et al., 2018). However, more research on the vertical 

transmission of genes that increase the likelihood of HPV infection is needed. The tissue adjacent to the 

site of infection may also act as a latent virus reservoir. A trigger such as recuperation after surgical 

intervention to remove papillomas may prompt reactivation and replication of the HPV in the 

surrounding tissue (So et al., 2019). 
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Previous studies reported that RRP, although a benign neoplasm, might progress to carcinoma. 

Consequently, patients diagnosed with RRP showing evidence of dysplastic epithelium may be at 

possible increased risk of developing laryngeal cancer (Benedict & Derkay, 2021; Cornall et al., 2013; 

Georgescu et al., 2018; Pinidis et al., 2016). However, a study on the association between LR-HPV 

types and the development of laryngeal neoplasia found no association between infection with HPV11 

and laryngeal squamous intraepithelial neoplasia (SIN)-2+ or carcinoma. This study also found that co-

infection with other HR-HPV types did not correlate with high-grade SIN and carcinoma. A significant 

preponderance of SIN2+ was instead identified in an HPV negative adult with adult-onset RRP (Omland 

et al., 2014).  

1.10.2. Diagnosis of recurrent respiratory papillomatosis 

The presenting symptoms of respiratory papillomas are progressive dysphonia, stridor, and respiratory 

distress. Laryngeal papillomas appear as off-white, exophytic, pedunculated, polypoidal masses. Single 

or multiple papillomas may be present (Ivancic et al., 2018; Seedat, 2020; Wilcox et al., 2014). 

Histopathological examination of a biopsy of the lesion gives a definitive diagnosis with RRP. 

Exophytic finger-like projections of keratinised squamous epithelium maintained by connective tissue 

and a vascular centre present in RRP. Vacuolated cells with noticeable cytoplasmic inclusions will be 

visible, indicating the presence of viruses (Ivancic et al., 2018; Seedat, 2020; Welschmeyer & Berke, 

2021; Wilcox et al., 2014). 

1.10.3. Treatment of recurrent respiratory papillomatosis 

Once a patient develops RRP, there is no definitive cure. Papillomas are removed using various 

techniques but tend to recur (Ivancic et al., 2018; Seedat, 2020; Swain et al., 2020). HPV DNA is 

present in uninvolved tissue and anatomical sites adjacent to the papillomas. Therefore, albeit with the 

removal of all papillomas, lesions tend to recur. The frequency of recurrence tends to decrease over 

time for most patients diagnosed with RRP, although this is not the case for all patients (Ivancic et al., 

2018; Seedat, 2020; Seedat et al., 2013). 

The mainstay of treatment for RRP is repeated microlaryngoscopic procedures aiming to clear the 

airway while preserving the mucosa and vocal folds (Ivancic et al., 2018; Seedat, 2020; Swain et al., 

2020). However, in developing countries, cold steel instruments are often the only mean of removing 

papillomas (Seedat, 2020; Swain et al., 2020). Complications due to repeated surgical interventions 

may result in long-standing abnormal vocal quality. Patients with airway obstruction may also require 

a tracheostomy (Ivancic et al., 2018; Seedat, 2020; Swain et al., 2020).  

A popular treatment option includes the microdebrider, which is quickly becoming the new gold 

standard for removing respiratory papillomas. The microdebrider causes minimal trauma to the 
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surrounding tissue and minimises the lower respiratory tract from being contaminated with papillomas 

and blood (Seedat, 2020; Swain et al., 2020). Controlled ablation is a relatively non-invasive low heat 

method used for the dissolution of soft tissue. This method is designed to cause minimal charring and 

burning of the tissue (Seedat, 2020; Swain et al., 2020). 

Therapeutic vaccines that trigger the cell-mediated immune response are ideal for treating established 

HPV infections (Chabeda et al., 2018). Numerous approaches are being explored to develop 

prophylactic and therapeutic vaccines, including peptide-based vaccines, epitope-based vaccines, 

recombinant vaccines, bacteria-based vaccines, yeast-based vaccines, VLP-based vaccines, DNA 

vaccines, plant-based vaccines, dendritic cells (DC)-based vaccines, and protein-based subunit 

vaccines. Several candidates have progressed to clinical trials (Chabeda et al., 2018; Dadar et al., 2018). 

The E1, E2, E6 and E7 proteins are near-ideal targets for vaccines. The E6 and E7 oncoproteins are 

expressed constitutively and at high levels and have a low mutation rate to maintain malignancy. The 

E1 and E2 proteins are essential proteins expressed in all HPVs. These proteins are expressed at very 

high levels at the early stages of infection and are a valuable target for therapeutic vaccines. Currently, 

no therapeutic HPV vaccines have been approved for use in people infected with HPV, but promising 

vaccine candidates have been identified in numerous studies (Chabeda et al., 2018; Dadar et al., 2018).  

Prophylactic vaccines have also been used as adjuvant therapy for RRP (Rosenberg et al., 2019). A 

systematic review and meta-analysis published in 2019 including patients previously diagnosed with 

RRP receiving the Gardasil® vaccine as a therapeutic option showed that the number of monthly 

surgical procedures for removal of laryngeal papillomas significantly reduced (0.35 to 0.06 per month) 

and that the intersurgical interval increased from seven months to over 34 months (Rosenberg et al., 

2019). 

Another adjuvant therapy for RRP treatment is intralesional cidofovir, an antiviral agent for treating 

cytomegalovirus retinitis in individuals diagnosed with acquired immunodeficiency syndrome (AIDS). 

The mechanisms of action of cidofovir involve decreasing the efficiency of DNA transcription of HPV. 

In RRP, cidofovir has been shown to increase relapse-free time and decrease the number of surgical 

procedures to remove papillomas (Fusconi et al., 2014; Gazia et al., 2020; Grasso et al., 2014; Graupp 

et al., 2013; Tjon Pian Gi et al., 2012; Welschmeyer & Berke, 2021). 

1.11. Prophylactic vaccines against human papillomavirus  

There are currently three vaccines for protection against HPV: Cervarix®, Gardasil®, and Gardasil-9®. 

The vaccines are developed using VLPs and mimic a natural HPV infection. These VLPs are not 

infectious and do not contain any HPV DNA (Barra et al., 2019). The vaccines utilise the fact that HPV 

L1 proteins form VLPs, which are antigenically like native virions when expressed in a range of cell 
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types. The targeted HPV types are blocked from entering the host cell by eliciting neutralising 

antibodies that bind to the VLPs. However, these vaccines cannot eliminate established HPV infections 

since the target antigens are not expressed in infected cells (Benedict & Derkay, 2021; Chabeda et al., 

2018). 

Cervarix is a bivalent vaccine that protects against HR-HPV types 16 and 18, responsible for causing 

high–grade cervical lesions. Gardasil is a quadrivalent vaccine that protects against two HR-HPV types, 

HPV16 and HPV18, and two LR-HPV types, HPV6 and HPV11, responsible for RRP development. 

Cervarix and Gardasil are aluminium-based first-generation vaccines proven to be highly immunogenic. 

Both vaccines exhibit cross-protection against HPV types 31, 33, 45, and 51 due to their phylogenetic 

relationship to HPV16 and HPV18. Gardasil-9 is a second-generation vaccine that protects against five 

HPV types in addition to the HPV types targeted by the quadrivalent Gardasil vaccine. These include 

HPV types 31, 33, 45, 52, and 58 (Barra et al., 2019; Chabeda et al., 2018; Dadar et al., 2018). The 

effectiveness of HPV vaccines in preventing infection by the targeted types has been documented in 

many countries (Brotherton, 2019).  

Cervarix® has been incorporated into the national vaccination program by the South African National 

Department of Health in 2014 and is administered to girls aged nine to ten at public schools in two 

doses approximately six months apart. Approximately 354 000 age-eligible girls in grade four have 

been vaccinated (Delany-Moretlwe et al., 2018). However, this vaccine does not confer immunity 

against other HPV types, such as HPV6 and HPV11. A study conducted by Mbulawa and colleagues in 

2018 reported a high prevalence of the HPV types targeted by the Gardasil-9 vaccine (38.5%) 

circulating amongst South-African women, encouraging the introduction of this vaccine into school 

health programs (Mbulawa et al., 2018). The introduction of this vaccine could be beneficial against 

the development of genital warts and RRP. 

Nokavic and colleagues published a five-year report on surveys of 28 paediatric otolaryngologists on 

cases of RRP diagnosed post-HPV vaccination implementation in Australia. They demonstrated a 

decrease in the incidence of RRP from 0.16 to 0.02 per 100 000 children and was the first study to report 

a decrease in the incidence of RRP following the implementation of an HPV vaccination program 

(Novakovic et al., 2018). 

Future studies on the effectiveness of the 2014 HPV vaccination campaign are essential to inform 

vaccination campaigns, monitor the vaccination campaign's impact on circulating HPV types, and 

collect baseline data for future impact studies. Prevalence surveys reporting on the 2014 HPV 

vaccination campaign in South Africa are underway and expected to be published in 2024. Additionally, 

progress in immunology- and biotechnology-derived therapeutics, recombinant DNA technology and 
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molecular biology could multiply opportunities to fabricate vaccines that can effectively prevent and 

treat infection with HPV, which may in return result in a diminution of HPV cases globally.  

1.12. Detection of human papillomavirus infections 

Accurate identification and typing of HPVs relies on molecular biology techniques as the virus cannot 

be grown in conventional cell culture. At present, nucleic acid hybridisation -, signal amplification- and 

nucleic acid amplification assays are primarily used to identify and type HPV (Abreu et al., 2012). 

1.12.1. Nucleic acid hybridisation assays 

Nucleic acid hybridisation assays include Southern blotting, dot blot hybridisation and in situ 

hybridisation. However, nucleic acid hybridisation assays are not routinely used as they are time-

consuming and have low sensitivity (Abreu et al., 2012). 

1.12.2. Signal amplification assays 

Two signal amplification assays commonly utilised for diagnostic purposes are the Hybrid Capture®2 

(hc2, Digene Corp., USA) and the Cervista® HPV HR assay (Abreu et al., 2012). The hc2 detects 13 

HR-HPV types (HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68). However, hc2 can 

cross-react with LR-HPV types, including HPV11 (Burd, 2016). The Cervista® HPV HR assay detects 

the same HR-HPV types as the hc2 plus HPV66 and has a lower cross-reactivity rate to other HPV 

types (Burd, 2016). Although signal amplification assays have increased sensitivity for genotyping and 

a low false-positive rate, they are not intended for single HPV genotyping (Abreu et al., 2012). 

1.12.3. Nucleic acid amplification assays 

There are numerous nucleic acid amplification-based methods to detect the presence of HPV in clinical 

samples reliably. Polymerase chain reaction (PCR) is a widely used, specific and sensitive way to detect 

the presence of HPV DNA and targets conserved regions such as the L1 capsid gene. In conventional 

PCR, consensus primers targeting the HPV L1 gene are often used for amplification. Primers, for 

example, MY09/MY11, GP5+/GP6+, PGMY and SPF10, are designed to detect various HPV types 

(Cornelissen et al., 1992; de Roda Husman et al., 1995). HPV genotypes can also be detected using 

primers targeting the E6 and E7 ORFs. The nucleotide sequences of the E6 and E7 ORFs contain many 

sequence variations (Bernard et al., 2006). Other ORFs such as the E5 ORF, in combination with the 

L1 ORF and URR, can also be used to distinguish between HPV types (Jelen et al., 2016). Following 

amplification, HPV can be genotyped using different techniques, for instance, genotype-specific 

primers, restriction-fragment length polymorphism (RFLP), sequencing, hybridisation, and linear probe 

assays (Abreu et al., 2012; Dixit et al., 2011). Real-time PCR is a specific and sensitive tool that has 
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been shown to reliably detect and genotype HPV. Real-time PCR targets a relatively small segment of 

the genome and can thus be used on archival clinical samples. This method delivers reproducible, rapid 

results and can be used on clinical samples (Abreu et al., 2012). 

The Linear Array® HPV Genotyping Test (Roche Molecular Diagnostics, CA, USA) is an assay based 

on PCR amplification of an L1 gene segment and co-amplification of the β-globin gene, combined with 

reverse line blot hybridisation, which can distinguish between 15 HR-HPVs, three probable HR-HPVs, 

ten LR-HPVs (including HPV11) and nine other HPV genotypes with undetermined risk (Abreu et al., 

2012). The Clinical arrays® HPV kit can be used to detect and genotype HPV and allows detection of 

20 HR-HPV types and 15 LR types, including HPV11, and can also detect co-infections (Abreu et al., 

2012). The Microplate colorimetric hybridisation assay (MCHA) is a PCR-based method that relies on 

amplifying a region within the L1 gene followed by colorimetric hybridisation to HPV type-specific 

probe micro-well plates to identify six different HR-HPV types (Abreu et al., 2012). The COBAS® 

4800 HPV test combines automatic sample preparation and real-time PCR to detect 14 HR-HPV types 

(Burd, 2016). The CLART® Human papillomavirus 2 (Genomica, Madrid, Spain) is an amplification-

based methodology that targets a conserved region, L1, within the HPV genomic region and a region 

within the formylmethanofuran-tetrahydromethanopterin formyltransferase (FTR) gene. This test 

detects 35 HPV types using specific probes in a low-density microarray (Abreu et al., 2012). 

1.12.4. Genotyping 

Many HPV tests use probes that test for 13−14 of the most common HPV types. It has been proposed 

that testing for other HPV types may have a minimal effect on the knowledge of known, circulating 

HPV types. Still, there is an increasing need to distinguish between different HPV genotypes due to 

current advancements in the HPV field, evidence that certain HPV types correlate with high-grade 

carcinogenicity, the effect of multiple HPV infections on clinical presentation and the effect of 

vaccination campaigns on the current circulating HPV genotypes (Abreu et al., 2012; Brink et al., 2007; 

Godínez et al., 2014; Pinidis et al., 2016). 

Traditionally, Sanger sequencing, also known as the chain termination method, was used for analysing 

DNA (Sanger et al., 1977). However, Sanger sequencing has limitations due to its restricted sensitivity, 

and it cannot perform a parallel investigation of multiple targets. Even though, Sanger sequencing 

remains the gold standard when analysing HPV DNA, developments in NGS technologies such as 

whole genome sequencing (WGS) and corresponding analytical tools have provided comprehensive 

novel genomic information on HPV and associated diseases on an unprecedented scale (Ambulos et al., 

2016; Parker & Chen, 2017; Tuna & Amos, 2017). NGS enables the analysis of millions of DNA 

fragments simultaneously and has successfully been used to provide detailed information on the 

aetiology of HPV-driven diseases and cancers (Ambulos et al., 2016; Parker & Chen, 2017; Tuna & 
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Amos, 2017). Additionally, the advancement of NGS technology allows for the development of a high-

throughput, affordable assay for HPV genotyping and has proven to be sensitive, specific, and capable 

of identifying multiple co-infected HPV genotypes from a single sample (Ambulos et al., 2016; Parker 

& Chen, 2017; Tuna & Amos, 2017). 

HPV genome sequencing can be used to detect and genotype HPV on an assortment of clinical 

specimens such as blood, saliva, tissue, and formalin-fixed paraffin-embedded samples using the L1 

ORF (Ambulos et al., 2016; Parker & Chen, 2017). Additional sequencing is required to differentiate 

between the different lineages and sub-lineages (Burk et al., 2011; Maver et al., 2011). It has been 

determined that sequencing the E5 region and a small 208bp segment which includes the 3' end of E2 

to the 5' end of NCR2, can be used to construct a phylogenetic tree representing the different lineages 

and sub-lineages of HPV11 (Jelen et al., 2016). 

1.13. Phylogenetic analysis of human papillomavirus isolates 

Phylogenetics is the study of phylogeny, which pertains to the evolutionary relationship among and 

within different organisms and species. Phylogenetics is linked to taxonomy, which is concerned with 

naming, describing, and classifying organisms (Balaban et al., 2019). Taxonomy relies on information 

gathered for phylogenetics during the classification of organisms. In phylogenetics, DNA sequencing 

methods such as Sanger sequencing or NGS investigate inheritable traits (Ambulos et al., 2016; Parker 

& Chen, 2017; Sanger et al., 1977). This results in a schematic postulate of the relationship between 

organisms, termed a phylogenetic tree, that reflects the evolutionary history of said organism (Balaban 

et al., 2019; Hirose et al., 2018). 

1.13.1. Sequence evolution 

Before the division of any cell, its genome must be duplicated to be inherited by the offspring. Despite 

proof-reading mechanisms, errors still occur in the replication process. In time, genomic mutations such 

as point-mutations accumulate as traces of evolutionary variances. Point-mutations include nucleotide 

substitutions, which are the exchange of one nucleotide by another, the insertion of one or more bases, 

and the deletion of one or more bases. To distinguish between specific point-mutations, the sequence 

of a common ancestor is necessary to decide whether an insertion or deletion has occurred. Therefore, 

when investigating the evolutionary relationship of HPV11, a prototype sequence is used as a reference 

to identify nucleic heterogeneity (Balaban et al., 2019; Hirose et al., 2018).  

Genomic mutations of DNA may also affect the amino acid sequence translated in protein-coding 

regions. Synonymous mutations occur if the nucleotide substitution does not alter the amino acid, and 

non-synonymous mutations occur when the nucleotide substitution changes the amino acid translated 

(Lebeuf-Taylor et al., 2019).  
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1.13.2. Multiple sequence alignment 

Sequence alignment is an important research field in bioinformatics as it guides crucial tasks such as 

phylogenetic analysis. A multiple sequence alignment is often used to analyse homologous sequences. 

An alignment is a data matrix where homologous characters of the sequence are aligned in columns to 

identify discrepancies (Chowdhury et al., 2017). 

1.13.3. Phylogenetic trees 

Molecular Evolutionary Genetics Analysis (MEGA) is an example of software that provides a powerful 

and flexible interface for conducting phylogenetic analyses (Hall, 2013). Phylogenetic trees are a 

practical way to present the evolutionary relationship between organisms as the genetic sequence of 

contemporary sequences evolved from a common ancestor (Balaban et al., 2019). A phylogenetic tree 

consists of a root, nodes, tips and branches. The shape in which the branches connect the tips, nodes 

and root is termed the tree's topology. The tips of the phylogenetic tree represent the descendant or 

current taxa, and the nodes represent a common ancestor. The root represents the DNA sequence of all 

the species' sole common ancestor in the data set. Phylogenetic trees can be rooted or unrooted. A rooted 

tree denotes a common ancestor, whereas an unrooted tree has no origin and does not hypothesise the 

ancestral line (Balaban et al., 2019). 

1.13.4. Types of phylogenetic methods  

Methods of tree reconstruction based on DNA sequences include maximum parsimony methods, 

evolutionary distances between sequences and approaches applying the maximum likelihood principle 

(Rusinko & McPartlon, 2017; Serdoz et al., 2017).  

Neighbor-Joining is a distance-based agglomerative clustering technique that takes a distance matrix 

detailing the distance between each pair of taxa as an input. Distance-based methods alter the sequence 

data into a pairwise similarity matrix to use during tree interpretation. The algorithm starts with a 

completely unresolved tree and iterates until the tree is resolved and branch lengths are established 

(Rusinko & McPartlon, 2017). The Neighbor-Joining method is suited for complex datasets comprising 

lineages with variable rates of evolution and permits correction for numerous substitutions. 

Additionally, the Neighbor-Joining method is suited for large input data sets and generates results in a 

small amount of time. However, due to the Neighbor-Joining tree being distance matrix based, the 

output information is often limited, and only one out of several possible trees are depicted depending 

on the model of evolution used (Kuhner & Felsenstein, 1994; Saitou & Nei, 1987). 

Parsimony reconstruction and maximum likelihood methods are both character-based methods that use 

all known evolutionary information, such as nucleotide substitutions, to identify the most likely 
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ancestral relationship (Serdoz et al., 2017). Character-based methods aim to create an algorithm for 

scoring the probability that a given tree would produce the observed sequences at its leaves. The 

algorithm then filters through the possible trees to identify a tree with the maximum probability of 

producing the correct results (Serdoz et al., 2017).  

The most popular character-based method when constructing a phylogenetic tree for HPV11 is the 

maximum likelihood method (Burk et al., 2011; Jelen et al., 2016). This algorithm provides 

probabilities that a particular evolutionary model has generated the observed data. This algorithm uses 

each position in a sequence alignment and considers all possible trees. The higher the probability of the 

sequence given, the more the tree is favoured until the maximum likelihood is determined. Since an 

evolutionary model can be chosen, this tree is suitable for a large variety of groups (Miguel Rocha & 

Ferreira, 2018; Serdoz et al., 2017). The supposed advantages of maximum likelihood methods include 

a lower variance rate compared to other methods, and it is rarely affected by errors during sampling. 

The method tends to be robust to several violations of evolutionary model assumptions, and even with 

short sequences, it outperforms alternate methods. However, the maximum likelihood method is 

computationally intensive, and the result is dependent on the model of evolution used (Miguel Rocha 

& Ferreira, 2018; Serdoz et al., 2017).  

1.14. Problem statement 

During a previous study conducted at the Division of Virology, UFS, a novel HPV11 lineage B isolate 

was identified, warranting investigation of further isolates for clarification of lineages currently in 

circulation (Makatsa, 2012). It is essential to characterise the current strains circulating amongst the 

community, compare the various lineages and sub-lineages with disease severity in future studies, and 

monitor the impact of the vaccination campaign on the circulating HPV types and guide vaccine 

development. Baseline data on circulating HPV genotypes may effectively monitor the impact of the 

vaccination program on the community. Also, determining the genotype of HPV responsible for RRP 

in patients may have prognostic implications. Hence, this study investigated HPV11 lineages circulating 

in patients with RRP and identify novel lineages. 

1.15. Aims and objectives 

The aim of this study is to genetically characterise HPV11 isolates from patients diagnosed with RRP 

treated at Universitas Academic Hospital, Free State, South Africa.  

To achieve these aims the following objectives were identified: 

• To determine the nucleotide sequence of the L1, URR, E5a/b and a segment of E2 genomic 

regions of HPV11 isolates from patients with RRP in the Free State, South Africa. 
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• To conduct phylogenetic analyses using sequence data from HPV11 isolates to determine the 

genetic relationship and to determine the presence of HPV11 variants and lineages. 

• To generate and analyse the whole genome sequences of novel HPV11 variants.  
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CHAPTER 2- Phylogenetic analysis of human papillomavirus type 11 

isolates  

2.1. Introduction 

HPV11 is a causative agent of RRP, a benign laryngeal neoplasm presenting mainly in children 

(Benedict & Derkay, 2021). To date, no published data on the HPV11 intratypic variants circulating in 

the Free State region is available. Therefore, phylogenetic analysis may aid in identifying circulating 

variants in patients with RRP.  

It is commonly accepted that natural selection influenced the evolution of organisms and their 

contemporary genes. An increasing number of DNA sequences are being analysed today, and the study 

of the ancestry of organisms and their phylogenetic trees is in high demand. A better understanding of 

phylogenetic trees and the evolutionary processes that they model is necessary to gain insight into how 

organisms have mutated. 

Phylogenetic analysis investigates evolutionary development in different species by analysing genome 

information such as DNA, deepening our knowledge of how different species' genomes develop 

(Charleston, 2013; Felsenstein, 1981; Hall, 2013). To date, over 220 HPV types have been identified 

and classified into different risk groups through phylogenetic analysis, according to The International 

HPV Reference Centre (Bernard et al., 2010; de Villiers et al., 2004) 

(https://www.hpvcenter.se/human_reference_clones). Although Sanger sequencing remains the gold 

standard for sequencing, especially when sequencing single genes, recent advances in NGS technology 

has led to NGS being applied as the preferential technology for several kinds of molecular studies and 

typing (Ambulos et al., 2016; Kocjan et al., 2015). 

Analysis of sequence heterogeneity across the complete genome of HPV is frequently used to identify 

HPV variants. The ORF nucleotide sequence coding for the L1 capsid protein is sufficient for 

classifying HPV types and is used to represent the whole genome variation due to its high level of 

conservation (Burk et al., 2011, 2013). However, there is a loss of clear resolution when the L1 sequence 

is used to identify intratypic HPV variants. To discriminate between different HPV11 lineages, the URR 

and a coding region such as the L1 ORF are necessary, but for clustering of sub-lineages, additional 

sequencing is required (Burk et al., 2011, 2013). Sequence data can be aligned to a prototype genome 

to identify nucleotide heterogeneity, and variant lineages and sub-lineages of HPV11 can be identified 

by the percentage of nucleotide differences in the complete genome. A nucleic acid change of 0.5%-

1.0% across the whole genome defines a variant sub-lineage, 1%-10% defines a variant lineage, and 

>10% defines a novel HPV type (Burk et al., 2011). In 2011, the circulating HPV11 variants were 
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classified as A1 and A2, and in 2016, whole-genome analysis of 78 HPV11 complete genomes revealed 

two additional sub-lineages (A3 and A4) and a novel lineage B (Burk et al., 2011; Jelen et al., 2016). 

Nucleotide variances in genomic DNA can lead to changes in translated gene products. Therefore, the 

amino acid sequence can also help study the evolutionary relationship between organisms (Charleston, 

2013; Felsenstein, 1981; Hall, 2013). 

Phylogenetic trees are constructed by use of sequence data and are helpful to depict the evolutionary 

relationships between organisms. Phylogenetic trees that reflect the evolutionary history of an organism 

is preferred (Charleston, 2013; Felsenstein, 1981; Hall, 2013). Finding an accurate phylogenetic tree 

for a set of related species with only DNA is complex. Statistical inference using statistical models and 

Markov models has helped scientists estimate how comparable a phylogenetic tree is to the actual 

phylogenetic tree for a specified set of DNA sequences (Charleston, 2013; Felsenstein, 1981; Hall, 

2013).  

Neighbor-Joining is a distance-based agglomerative clustering technique that takes a distance matrix 

detailing the distance between each pair of taxa as an input (Rusinko & McPartlon, 2017). The 

Neighbor-Joining method is suited for large, complex datasets comprising lineages with variable rates 

of evolution and permits correction for numerous substitutions and generates results in a small amount 

of time (Kuhner & Felsenstein, 1994; Saitou & Nei, 1987). 

However, maximum likelihood trees are preferred when constructing a tree for HPV11 isolates and use 

an explicit evolutionary model. This method provides probabilities that a particular evolutionary model 

will generate the observed data until the tree with the maximum likelihood is determined (Charleston, 

2013; Felsenstein, 1981; Hall, 2013). The method has been proven to outperform alternate methods 

(Charleston, 2013; Felsenstein, 1981; Hall, 2013). 

The current study explored phylogenetic relatedness and nucleotide variability among HPV11 isolates 

from patients diagnosed with RRP. The L1, URR, E5a/b and a segment of the E2 ORF were targeted 

for sequencing. The concatenated L1-URR is necessary to discriminate between HPV11 lineages (Burk 

et al., 2011), and according to a study published in 2016, the concatenated L1-URR-E5a/b can 

discriminate between different lineages and sub-lineages (Jelen et al., 2016). The 208bp region in the 

E2 ORF has also been suggested to represent whole-genome variation and could therefore be used to 

construct phylogenetic trees representative of the different lineages and sub-lineages (Jelen et al., 2016).  

Characterising the current circulating strains will aid in future disease severity studies, guide vaccine 

development and have prognostic implications. Hence, this study investigated HPV11 lineages and sub-

lineages circulating in patients with RRP.  
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2.2. Materials and methods 

2.2.1 Study samples  

During a previous study conducted at the Division of Virology at the University of the Free State, 

Bloemfontein, 94 laryngeal papilloma biopsies were collected from 2008 to 2018 and stored at -80℃ 

(ETOVS 194/2007 and ECUFS 6/2011) (Appendix 1). Informed consent for collection and storage of 

biopsies was obtained from each patient by Professor Seedat from the Department of 

Otorhinolaryngology, Faculty of the Health Sciences, University of the Free State. 

All samples were assigned a VBD number followed by the year of collection. DNA was extracted from 

each biopsy by use of the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions and stored at -20℃. Samples were screened for HPV DNA by PCR, 

targeting a region of the L1 ORF using the GoTaq ® Flexi DNA Polymerase mediated PCR 

amplification kit (Promega, Madison, USA) according to manufacturer’s instructions. Following PCR 

samples were cleaned with the Promega Wizard ® SV Gel PCR Clean-up System kit according to 

manufacturer’s instructions (Promega, Madison, USA). The positive reactors were genotyped by 

nucleotide sequence determination of the amplicon with the BigDye ® Terminator v 3.1 Cycle 

Sequencing kit (Thermo Fisher Scientific, Illinois, USA) and aligned with sequence data retrieved from 

GenBank using Basic Local Alignment Search Tool (BLAST) analysis. A novel HPV11 lineage B 

isolate identified in a previous study was also included in the current study (Makatsa, 2012). 

2.2.2 Study setting and population 

All tests were performed at the Division of Virology, Faculty of Health Sciences at the University of 

the Free State (UFS). The study population included patients diagnosed with RRP at the Universitas 

Academic Hospital, Bloemfontein, a referral hospital including patients mainly from the Free State 

province, but also from surrounding regions. Eighty-one isolates from 60 patients were available for 

this study. Additional sequence data for 28 geographically distinct representatives of each HPV11 

lineage, including lineages A and sub-lineages A1 to A4, and lineage B, were retrieved from GenBank 

(Appendix 2). The current study was approved by the Health Sciences Research Ethics Committee of 

the University of the Free State (UFS-HSD2019/1109/2708) (Appendix 3). 

2.2.3 Amplification of five human papillomavirus genomic regions 

PCR amplification of the complete L1 ORF, URR, E5a ORF and E5b ORF was performed with primers 

as described by Maver and colleagues (2011) summarised in Table 1. Primers flanking a segment of the 

E2 were designed according to whole genome HPV11 sequences retrieved from GenBank (Appendix 

4). Sequence data for the E2 ORF from 28 HPV11 isolates from different geographic distribution were 
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retrieved from GenBank and aligned using ClustalX v2.1 (Larkin et al., 2007). Primers were designed 

to amplify the 3’ of E2 to the 5’ of the NCR2 which is 208bp.  

The primers’ specificity was determined with BLAST analysis and are summarised in Appendix 5. The 

GC content and melting temperature (Tm) of the forward primer (HPV11-E2seg-F) and reverse primer 

(HPV11-E2seg-R) were determined with Thermo Fisher Scientific Tm calculator (Allawi & 

SantaLucia, 1997) and are summarised in Table 1. PCR amplification of the partial E2 ORF was 

performed with the designed primer pair which targets a region of approximately 331bp, flanking the 

target partial E2 ORF. Amplification of all samples was performed with the Applied Biosystems™ 

Proflex™ PCR system (Thermo Fisher Scientific, Illinois, USA). PCR amplification was performed 

using the Go Taq®G2 Hot Start Polymerase (Promega, Madison, USA) according to the manufacturer’s 

instructions.  

Briefly, all reaction mixtures were prepared in 200μl PCR reaction tubes. Each reaction comprised 4μl 

template HPV11 DNA, 10μl 5XGreen Go Taq® flexi buffer, 2mM MgCl2 solution, 0.2mM PCR 

nucleotide mix, 0.4μM forward primer, 0.4μM reverse primer, 1.25U Go Taq ® G2 Hot Start Polymerase 

and nuclease free water up to 50μl. A no template control was included in each PCR amplification run 

by replacing the template with nuclease free water during preparation of the reaction. PCR components 

are included in Table 2. 

PCR amplification conditions were as follows: initial denaturation at 95℃ for two minutes for one 

cycle, followed by 30 cycles of denaturation at 95℃ for 30 seconds, annealing at 47℃ for 30 seconds 

and elongation at 72℃ for two minutes. Lastly, final elongation at 72℃ for five minutes before cooling 

to 4℃ indefinitely.  
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Table 1: List of primers used for sequencing the L1, E5a/b, upper regulatory region (URR) and a segment of the E2 of 

human papillomavirus type 11 (HPV11). Primers HPV11-L1F, HPV11-L1R, HPV11-LCR-F, HPV11-LCR-R, HPV11-E5F 

and HPV11-E5R are modified from Maver et al., 2011. Primers HPV11-E2seg-F and HPV11-E2seg-R were designed 

according to whole genome HPV11 sequences retrieved from GenBank. 

 

 

2.2.4 Agarose gel electrophoresis 

The size of the PCR amplicons generated during PCR amplifications were determined by separating 

5μl aliquots of PCR products with gel electrophoresis. A 1% agarose gel was used to determine the 

amplicon size and integrity of the amplicon generated by the PCR. A table summarising the preparation 

of agarose gels is included in Appendix 7. For all amplicons, a 1% gel was prepared with 1g Seakem® 

HPV11‐L1F 
a

TGTTTTTATTACAG

GTTCTGACTTC
32.00% 56.0 ℃ nt 5682–5706

HPV11‐L1R 
a

AAAACATACATAC

ACATTCCACAAA
28.00% 55.4 ℃ nt 7451–7427

HPV11‐LCR‐F 
a

CTACAGCCCCCAA

ACGAA
55.56% 57.5 ℃ nt 7236–7253

HPV11‐LCR‐R 
a

CGTGGAGGCATCTT

TACTTTC
47.62% 58.5 ℃ nt 125–105

HPV11‐E5F 
a

AATACCACCCACC

ATTAGGC
50.00 % 56.4 ℃ nt 3772–3791

HPV11‐E5R 
b

GGCTGACGCACGTT

TAC
58.82 % 56.2 ℃ nt 4455–4439

HPV11-E2seg-F
 c

ACAGTGCAGCTAC

GCCTATA
50,00% 56.0 ℃ nt 3561 – 3580

HPV11-E2seg-R 
c

TTGTACAGGCACTA

CCTCCATAC
47.83% 60.1 ℃ nt 3891-3869

Primer sequence 

(5'→3')

c
Primers designed according to geographically distinct whole genome human papillomavirus type 11 sequences retrieved from GenBank (GenBank Acc. No.

M14119.1; JN644141.1; JQ773408.1; MN788368.1; LN833187.1). 

 d 
Positions of the nucleotides determined with respect to the prototype human papillomavirus type 11 genome (GenBank acc. no. M14119.1).

 e 
Melting temperature (Tm) and GC content determined by Thermo Fisher Scientific Tm calculator (Allawi & SantaLucia, 1997).

 f 
Size determined with respect to the prototype human papillomavirus type 11 genome (GenBank acc. no. M14119.1).

 g
 The E5a/b region contains one overlapping nucleotide (E5a – nt3871-4146; E5b – nt4146-4370) and therefore consist of 500bp.

 E2 segment 
c 208bp 331bp

 a
 Primers reported by Maver et al. , 2011.

 b 
Primers reported by Maver et al. , 2011 with modifications.

 URR 756bp 823bp

 E5a/b 500bp
 g 684bp

Gene size 
f

Amplicon size 
f

 L1 1,506bp 1,770bp

Region Primer name
GC 

content 
e Tm 

e
Primer binding 

site 
d
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LE agarose powder and 100ml of 1x Tris-Acetic acid- (ethylenediaminetetraacetic acid)- EDTA (TAE) 

buffer at pH 8.0 and the gel was electrophoresed at 90 volts (V) for 45 minutes. The preparation of TAE 

is included in Appendix 6. The agarose gel was stained with a GelRed nucleic acid gel stain (Thermo 

Fisher Scientific, Illinois, USA) (Appendix 8) and visualised with the BioRad Molecular Imager Gel 

Doc™ XR+ with Image Lab™ Software to determine the fragment sizes according to the known DNA 

size marker (BioRad, California, USA). The O’GeneRuler™ 100bp DNA ladder SM1173 and SM0333 

(Fermentas, Illinois, USA) containing DNA fragments from 100 to 10 000bp was used to estimate the 

size of the amplicons. Expected amplicon sizes varied, with the primers targeting the L1 ORF producing 

the largest amplicon (1770bp), followed by the primers targeting the URR (823bp), the E5a/b ORF 

(685bp) and the E2 segment (331bp).  

 

Table 2: Polymerase chain reaction (PCR) components for amplifying human papillomavirus type 11 (HPV11) L1 gene, 

E5a/b gene, and upper regulatory region (URR). 

 

2.2.5 Purification of PCR product 

Following electrophoresis, DNA amplicons were purified using the GeneJET PCR Purification Kit 

(Thermo Scientific, Illinois, USA) according to the manufacturer’s instructions. Briefly, equal amounts 

of binding buffer and PCR mixture were mixed thoroughly and transferred to the purification column 

before centrifuging for 60 seconds on the Eins-Sci E-C15-12.2 High Speed Micro Centrifuge (Eins Sci, 

South Africa) at 25200 relative centrifugal force (rcf) and discarding the flow-through. A 700µl aliquot 

of wash buffer was added to the purification column and centrifuged twice for 60 seconds (2520xrcf) 

and discarding the flow-through twice. The column was transferred to a 1,5ml microcentrifuge tube and 

PCR components Volume Final concentration

 5XGreen Go Taq® flexi buffer 10μl 1x

 MgCl2 solution, 25mM 4μl 2mM

 PCR nucleotide mix, 10mM each 1μl 0.2mM

 Forward primer: HPV11‐L1F (20pmol/μl) 1μl 0.4 μM

 Reverse primer: HPV11‐L1R (20pmol/μl) 1μl 0.4 μM

 GoTaq ®G2 Hot Start Polymerase (5U/μl) 0.25μl 1.25U

 Template DNA 4μl N/A

 Nuclease free water 28.75μl N/A

 Total 50µl N/A
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between 30µl to 50µl aliquots of elution buffer was added to the column. The tube was centrifuged at 

2520xrcf for 60 seconds and the column was discarded. The eluted DNA was stored at -20 ℃ until use.  

2.2.6 Determination of DNA concentration 

DNA concentration was determined with the NANODROP 2000 spectrophotometer (Thermo Fisher 

Scientific, Illinois, USA).  

2.2.7 Sequencing 

The nucleotide sequences of each amplicon were determined with Sanger sequencing to identify the 

nucleotide composition in order to identify the variant lineages and sub-lineages. Sequencing reactions 

were prepared with the BigDye Terminator v3.1 Sequencing Reaction kit according to the 

manufacturer’s instructions (Thermo Fisher Scientific, Illinois, USA). Briefly, the purified HPV 

isolates were diluted with nuclease-free water to 20 ng/µl. Sequencing primers were diluted with 

nuclease-free water to a concentration of 3.2pmol/µl.  

For the L1 ORF, four primers were used for sequencing as described by Maver and colleagues in 2011 

(Table 3). For the URR, primers used for the initial PCR as described in Table 1, with one additional 

primer (HPV11-LCR-FF, 5’- TTCGGTTGCCCTTACATACA -3’, nt7598 - 7617) were used as 

described by Maver and colleagues (2011). For E5a/b ORF and the E2 segment, primers used for the 

initial PCR as described in Table 1 were used. Each amplicon was sequenced using bidirectional 

sequencing. 

Table 3: List of primers used for sequencing the L1 gene of human papillomavirus type 11 (HPV11) from Maver et al., 2011. 

 

HPV-11‐L1U1 
a

CGTAAACGTATTCC

CTTATTTTTT
29.17% 54.24℃ nt 5743 - 5766

HPV-11‐L1U1R 
a

TGATCTGTTATTAC

CCCCTTTTAC
37.50% 56.16℃ nt 6613 - 6590

HPV-11‐L1U2 
a

TTTTATTTGCGAAA

GGAACA
30.00% 51.86℃ nt 6503- 6522

HPV-11‐L1U2R 
a

ACATATAAATAAC

ACAACACACTGAC
30.77% 56.30℃ nt 7311- 7286

 a
 Primers reported by Maver et al. , 2011.

 b 
Positions of the nucleotides determined with respect to the prototype human papillomavirus type 11 genome (GenBank acc. no. M14119.1).

 c 
Melting temperature (Tm) and GC content determined by Thermo Fisher Scientific Tm calculator (Allawi & SantaLucia, 1997).

 d 
Size determined with respect to the prototype human papillomavirus type 11 genome (GenBank acc. no. M14119.1).

Amplicon size 
d

L1 1,506bp

871bp

809bp

Primer sequence        

(5' → 3')
Region Primer name GC content 

c
Tm

 c
Primer binding site 

b
Gene size 

d



34 

A reaction mixture for every primer containing 2ul 5x sequencing buffer, 1ul BigDye v3.1 ready 

reaction, 1ul primer (3,2pmol/µl) was prepared. A total volume of 2µl diluted HPV DNA and 8µl of 

each reaction mixture was added to the well of the 96-well plate. The sequencing components for 

nucleotide determination of HPV11 isolates are included in Table 4. The plate was sealed with thermo-

adhesive film and briefly centrifuged. The plate was placed in the Applied Biosystems™ Proflex™ 

PCR system (Thermo Fisher Scientific, Illinois, USA) for DNA amplification. PCR amplification 

conditions were as followed: initial denaturation at 96℃ for one minute and one cycle, followed by 25 

cycles of denaturation at 96℃ for 10 seconds, annealing at 50℃ for five seconds and elongation at 

60℃ for four minutes before cooling to 4℃ until further use. 

Table 4: Sequencing reaction components for nucleotide determination of human papillomavirus type 11 (HPV11) isolates. 

 

Following DNA amplification, ethanol/EDTA precipitation was performed. Nuclease free water and 

125mM EDTA was combined in a 2:1 ratio, and a 15µl aliquot of the diluted EDTA solution was 

added to each well. Thereafter, a 60µl aliquot of cold 96-100% ethanol stored at -20℃ was added to 

each well. A silicone cover was placed on the 96-well plate before briefly vortexing the plate. The 

plate was placed in the -20℃ freezer for five minutes. Afterwards, the plate was centrifuged at 

2720xrcf for 80 minutes at 4℃. After centrifugation, the supernatant was aspirated entirely without 

disturbing the pellet. A volume of 200µl cold 70% ethanol stored at -20℃ was added to each well. The 

plate was sealed and centrifuged at 2720xrcf for 40 minutes at 4℃. The liquid was aspirated without 

disturbing the pellet. The plate was then placed in the Applied biosystems™ Proflex™ PCR system 

(Thermo Fisher Scientific, Illinois, USA) at 94℃ for 25-40 seconds to evaporate ethanol. Lastly, a 

10µl aliquot Hi-Di was added to each well, and the samples were denatured at 95℃ for five minutes 

in the Applied biosystems™ Proflex™ PCR system (Thermo Fisher Scientific, Illinois, USA).  

The Applied Biosystems™ 3500Xl Genetic Analyzer (Thermo Fisher Scientific, Illinois, USA) was 

used to sequence all samples. Briefly, a primer, enzyme and four fluorescently labelled 

dideoxynucleotides triphosphates (ddNTPs) are added to the reaction. The ddNTPs emit light at 

different wavelengths when excited by a laser. This emission can be captured by a camera and 

Components Volume

 5 x Sequencing Buffer 2µl

 Primer (3,2pmol/µl) 1µl

 BigDye v3.1 1µl

 Template DNA 2µl

 Nuclease free water 4 µl

 Total 10µl
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converted to a chromatogram. As the fluorescently labelled extension products pass the laser, each 

nucleotide is “called”. Raw sequence data were analysed as described below. 

2.2.8 Data analysis 

Analysis of nucleotide variation 

Sequence data for five regions, namely the L1- (1506bp), URR- (758bp), E5a- (276bp), E5b region 

(225bp) and a section from the 3’ of E2 to the 5’ of the NCR2 (208bp) was determined. The E5a/b 

region contains one overlapping nucleotide (E5a – nt3871-4146; E5b – nt4146-4370) and therefore 

consist of 500bp. Raw sequence data was manually verified with Unipro UGENE (Okonechnikov et 

al., 2012). Briefly, the ends of the reads were trimmed based on the quality value. Each region was 

sequenced bi-directionally, and the chromatograms of the filtered trimmed reads were aligned and 

inspected to correct for possible nucleotide-calling faults due to ambiguous peaks.  

Genomic variants and genomic positions in HPV11 L1-, E5a, E5b- and a segment of the E2 ORF and 

the URR were identified by comparing the sequence data with the prototype HPV11 genome (GenBank 

accession number M14119.1). For the URR, a corrected sequence with a 2bp insertion at genomic 

position 7717-7718 was used when determining genomic variants and genomic positions (Maver et al., 

2011). The nucleotide substitutions, nucleotide insertions, and nucleotide deletions were identified for 

the isolates sequenced in this study with respect to prototype strain (GenBank accession number 

M14119.1) by use of MEGA X software (Kumar et al., 2018).  

To estimate the percentage of variation within coding regions, the number of nucleotide variations 

compared to the A1 prototype sequence M14119.1 were converted into a percentage using the following 

equation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑀14119.1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑀14119.1
 × 100  

Degree of divergence 

The degree of divergence was calculated using pairwise analysis of percentage divergence of 

nucleotides with MEGA X software using concatenated E5a/b-L1-URR sequences of sequences 

obtained in the current study and sequences retrieved from GenBank. Codon positions included were 

1st, 2nd, 3rd, and non-coding. All positions with less than 95% site coverage were removed using the 

pairwise deletion option. 
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Analysis of amino acid variation 

The amino acid data order was determined for the L1- (501aa), E5a- (91aa), and E5b region (74aa) with 

use of a codon chart included in Appendix 9. Amino acid variants in HPV11 L1-, E5a, E5b ORFs were 

identified by comparing the amino acid data with the prototype HPV11 (GenBank accession number 

M14119.1). 

Phylogenetic analysis 

All sequences were aligned with ClustalX v2.1. For L1 ORF sequence data, the ClustalX alignment 

file was exported to IQTree webserver (Trifinopoulos et al., 2016) to determine the best model for a 

reliable estimate maximum likelihood phylogeny with an ultrafast bootstrap of 1000. This model was 

used to construct all maximum likelihood phylogenetic trees using MEGA X software. Additional 

sequence data for geographically distinct representatives of each HPV11 lineage, including lineages 

A, sub-lineages A1 to A4, and lineage B retrieved from GenBank were also included in downstream 

phylogenetic analysis.  

Concatenated L1-URR and E5a/b-L1-URR sequences were generated with Geneious Prime software 

(https://www.geneious.com). To explore the phylogenetic relationship of the HPV isolates, maximum 

likelihood phylogenetic trees with a bootstrap of 1000 were constructed with the concatenated L1-

URR sequences and the concatenated E5a/b-L1-URR sequences. Phylogenetic trees were constructed 

with MEGA X software.  

To explore whether the 208bp region in the E2 ORF sequenced in this study represents whole-genome 

variation, a Neighbor-Joining phylogenetic tree and a maximum likelihood phylogenetic tree with a 

bootstrap of 1000 were constructed with MEGA X software. 

2.2.9 Ethical considerations 

Ethical clearance was obtained from the Health Sciences Research Ethics Committee of the UFS. All 

isolates used in this study were collected by Professor Seedat (UFS-HSD2019/1109/2708) and informed 

consent was obtained to store the isolates and use them for related studies (ETOVS 194/2007 and 

ECUFS 6/2011). No additional isolates were collected in this study. Permission to perform the study 

was be obtained from the Head of the Division of Virology and the Head of the School of Pathology 

(National Health Laboratory Service). 
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2.3. Results 

2.3.1 Patient data 

During previous studies at the Division of Virology at the University of the Free State, Bloemfontein, 

laryngeal papilloma biopsies were collected from 2008 to 2018. DNA extracted from each biopsy was 

screened for HPV DNA and positive reactors were genotyped. Over this 10-year period, 94 HPV11 

isolates from 70 patients diagnosed with RRP were identified. Eighty-one isolates from 60 patients were 

available for this study. Patient data is included in Appendix 1. 

2.3.2 L1 ORF amplification and sequencing 

PCR amplification of the L1 ORF was performed on all available isolates with primers HPV11-L1 and 

HPV11L1-R (Table 1). Eighty-one samples were purified, and separated with gel electrophoresis and 

72 samples had a band at the predicted size of approximately 1770bp confirming the presence of HPV11 

L1 DNA. The DNA concentration of the 72 samples ranged from 14.5ng/µl to 202.1ng/µl. DNA 

concentrations of all isolates are included in Table 5.  

Nucleotide sequences of each amplicon within the predicted size range was determined with Sanger 

sequencing. Nucleotide substitutions, insertions and deletions are summarised in Table 6. By comparing 

sequence data of isolates sequenced in the current study and the A1 prototype sequence L1 sequence, 

86 nucleotide substitutions were observed in 11 genomic regions. This included a C6028T in 69 isolates 

(all except VBD34/08, VBD28/14 and VBD04/11), C6831T in one isolate (VBD34/08), A7126C in 

one isolate (VBD23/10), A7131C in one isolate (VBD34/08). Additionally, isolates VBD34/08 and 

VBD28/14 had A5929G, T6296A, T6298C, T6949A, G7045A C7197T, and T7237C nucleotide 

substitutions. The maximum number of nucleotide substitutions in a single isolate, VBD34/08, was nine 

which is 0,6% of the complete L1 ORF. Only one of the 72 (1.4%) isolates, VBD04/11, was identical 

to the prototype.  
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Table 5: Quantitative estimation of DNA concentration revealed by Nanodrop spectrophotometer of human papillomavirus 

type 11 (HPV11) genomic regions including late region L1, upper regulatory region (URR), early region E5a/b and a segment 

of early region E2. 

Isolates with insufficient DNA for quantitative estimation of DNA concentration are marked in dark grey.  

 

VBD L1 (ng/µl) URR (ng/µl) E5a/b (ng/µl) E2 segment (ng/µl)

 01/10 103,5 81,2 77,8 68,4

 02/12 101,9 136,3 103,2 67,3

 04/11 72,2

 04/12 34 114 194 62,6

 07/10 16,7 79,8 142,9 67

 08/09 14,5 99,2 85,8 52,9

 08/13 27,9 109,3 28,7 104

 09/12 50,1 87,1 95,8 54,1

 12/18 44,4 80,8 92,8 58,4

 13/10 41,5 163,9 84,6 44

 14/09 49,75 126,8 92,7 58

 14/11 87,9 133,9 100,8 74,4

 15/10 81,4 100,3 108,9 60,3

 16/09 122,7 85,3 111,4 57,8

 16/10 110,2 66,9 117,9 56,1

 17/09 93,5 48,5 79,6 65,5

 17/10 76,8 106,1 71,1 76,6

 21/10 149,2 125,7 55,2 64,4

 23/10 124,1 159,7 112,4 117,5

 26/10 77,4 118 72 60,7

 30/11 119,9 76,3 32,7 71,3

 33/10 95,5 134,8 137,4 53,1

 33/11 89,7 423,9 33,9 42,1

 34/08 60,9 254 68,9 45,7

 34/10 143,5 84,1 133,9 77,4

 34/11 111,7 115,6 178,9 65,6

 35/11 140,1 147,1 93 54,6

 37/08 73,4 126 55,9 49

 37/10 112,6 117,9 69,8 67,9

 37/11 63,7 119,2 83,7 48,2

 37/12 27,4 122,6 54,7 63,6

 39/12 29,9 106,1 74,9 62,1

 41/11 102,9 135,8 95,1 54,4

 41/12 59,7 111,5 73,2 61,1

 45/08 75,2

 47/12 29 103,5 62,4 61,9

 48/10 86,6 122,9 51,1 67,8

 48/12 29,3 116,5 40,1 47,9

 49/08 35 138,8 53,2 51,7

 49/12 33,8 125,4 229,3 63,3

 52/09 104,7 115,3 136,7 51,1

 52/11 81,6 127,3 121,3 52,2

 54/08 71,1

 55/08 120,7 99,7

 58/11 27,2 73,8 77 47,6

 59/08 202,1 90,2 143,1 70,1

 59/09 153 142,5 209,2 49,2

 61/11 43 136,3 88,9 56,1

 62/11 88 142,1 95,5 52,9

 63/09 88,1 141,3 102,1 60,4

 63/11 100,4 108,5 108,7 63,1

 69/09 112,7 138,2 108,2 48,5

 74/09 77,6 92,9 97,9 58,1

 79/09 66,4 88 87,6 50,9

14/15 21,6 122,1 77,3 46

16/15 83,6 75,3 67 58,7

17/14 35,2 116,8 56,7 58,6

22/14 93,7 141,2 46,4 58,4

23/17 43,8 141,5 91,4 52,4

28/14 73,5 117,5 91,4 36,6

29/13 50,1 93,5 94,4 69,1

29/14 40 135 92,7 83,9

33/16 29,9 110,6 135,8 52,3

41/14 62 179,6 85,3 66

41/15 23,6 123,9 116,7 54,2

44/15 23,6 146,2 75,2 56,3

48/16 29,8 126,8 33,7 60,5

49/15 21,2 198,6 47,8 53,7

55/13 40,4 100,05 80,5 64,1

68/15 16 120,52 113,2 57,5

68/16 22,5 119,8 68,4 55,6

69/15 21,7
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Table 6: Sequence comparison of nucleotide variances among 72 human papillomavirus type 11 (HPV11) isolates L1 region 

against the HPV11 prototype with GenBank accession number M14119.1.  
Residues that differed to those of HPV11 L1 prototype are indicated by a white colour difference and the substituted base. 
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0
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1

2
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7
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1
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1

9

7
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Base A C T T C T G A A C T

Isolate 

VBD 

Number

 12/18 T

23/17 T

68/16 T

48/16 T

33/16 T

68/15 T

49/15 T

41/15 T

44/15 T

16/15 T

14/15 T

41/14 T

28/14 G A C A A T C

17/14 T

22/14 T

29/14 T

55/13 T

29/13 T

 08/13 T

 48/12 T

 47/12 T

 39/12 T

 37/12 T

 09/12 T

 61/11 T

 62/11 T

 58/11 T

 52/11 T

 41/11 T

 37/11 T

 35/11 T

 49/12 T

 30/11 T

 34/11 T

 14/11 T

 04/11

 48/10 T

 33/10 T

 63/11 T

 02/12 T

 04/12 T

 26/10 T

 21/10 T

 23/10 T C

 01/10 T

 07/10 T

 17/10 T

 34/10 T

 79/09 T

 74/09 T

 15/10 T

 59/09 T

 63/09 T

69/15 T

 55/08 T

 34/08 G A C T A A C T C

 37/08 T

 08/09 T

 14/09 T

 41/12 T

 17/09 T

 49/08 T

 59/08 T

 69/09 T  

 16/10 T

 16/09 T

 52/09 T

 37/10 T

 33/11 T

 45/08 T

 13/10 T

 54/08 T

L1 Genomic region
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2.3.3 URR amplification and sequencing 

Following the amplification of the L1 ORF, four isolates had insufficient DNA and were excluded from 

DNA amplification and nucleotide determination during downstream analysis. These included 

VBD04/11, VBD69/15, VBD45/08 and VBD54/08. 

PCR amplification of the URR was performed on the available isolates with primers summarised in 

Table 1. The remaining 68 samples were purified, and 5μl aliquots of the purified HPV11 DNA were 

separated with gel electrophoresis. The gel was visualised and 68 samples had a band at the predicted 

size confirming the presence of HPV11 URR DNA. The DNA concentration of the 68 samples ranged 

from 48.5ng/µl – 423.9ng/µl. DNA concentrations of all isolates are included in Table 5. 

Nucleotide sequences of each amplicon within the predicted size range were determined with Sanger 

sequencing using the same primers as for the initial PCR (Table 1) plus an additional primer HPV11-

LCR-FF. By comparing sequence data of isolates sequenced in the current study and the A1 prototype 

sequence URR sequence, 237 nucleotide substitutions could be observed in 23 genomic regions. 

Nucleotide substitutions, insertions, and deletions in the URR are summarised in Table 7. All isolates 

had a T7547C nucleotide substitution. Isolates VBD28/14 and VBD34/08 had A7289G, A7302C, 

G7319T, G7329C, G7349C, T7359C, T7411G, G7519T, C7536T, A7570C, A7591G, A7626C, 

T7646A, T7775G, G7780T, C7880T, C7928T, G29T, and C50T nucleotide substitutions. Other 

nucleotide substitutions included C7333A in 10 isolates, A7413C in 55 isolates, C7479T in 66 isolates. 

The maximum number of nucleotide substitutions per isolate was 20 in VBD34/08 and VBD28/14. Five 

nucleotide substitutions were detected in isolates VBD33/16, VBD68/15, VBD41/15, VBD41/14, 

VBD35/11, VBD59/09, VBD63/09, VBD16/09, VBD52/09, VBD37/10. A total of 118 nucleotide 

insertions were present among 58 isolates. The majority of isolates had a C (50/68, 73.5%) or CC (7/68, 

10.3%) insertion following genomic position 7575 (All except VBD44/15, VBD29/14, VBD55/13, 

VBD47/12, VBD39/12, VBD37/11, VBD34/11, VBD23,10, VBD74/09, VBD15/10, and VBD34/08). 

Only isolates with a C or CC insertion following genomic position 7575 had no nucleotide substitution 

at genomic position 7413. 

The maximum number of nucleotide insertions in an isolate was 28 in VBD28/14 in five genomic 

regions, followed by 27 in VBD34/08 in four genomic regions. Insertions in VBD28/14 included a 

GCACGC insertion following genomic position 7527, a C insertion following genomic position 7575, 

a GGCGCCA insertion following genomic position 7715, a TGGGTTG insertion following genomic 

position 7744, and a TTATCTC insertion following genomic position 7746. Insertions in VBD34/08 

included a GCACGC insertion following genomic position 7527, a GGCGCCA insertion following 
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Table 7: Sequence comparison of nucleotide variances among 68 human papillomavirus type 11 (HPV11) isolates upper 

regulatory region (URR) against the HPV11 prototype with GenBank accession number M14119.1.  

For the URR, a corrected sequence with a 2bp insertion at nt 7717-7718 was used when determining genomic variants and 

genomic positions (Maver et al., 2011). Residues that differed to those of HPV11 URR prototype are indicated by colour 

differences. White depicts nucleotide substitutions, yellow depicts nucleotide insertions and green depicts nucleotide deletions. 

Samples excluded from analysis are indicated in dark grey. 

 

 

 

genomic position 7715, a TGGGTTG insertion following genomic position 7744, and a TTATCTC 

insertion following genomic position 7746. 
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Base A A G G C G T T A C T G T-G T C A A-C A A T T GCCC AAGTAT T T-G A-T G-T T G C C G C

Isolate 

VBD 

Number

 12/18 C T Del C C

23/17 C T Del C C

68/16 C T Del C C

48/16 C T Del C C

33/16 A C T Del C C

68/15 A C T Del C C

49/15 C T Del C C

41/15 A C T Del C C

44/15 T Del C

16/15 C T Del C C

14/15 C T Del C C

41/14 A C T Del C C

28/14 G C T C C C G T GCACGC C T C C G C A Del Del Del Del GGCGCCA TGGGTTG TTATCTC G T T T T T

17/14 C T Del C CC

22/14 C T Del C CC

29/14 T Del C

55/13 T Del C

29/13 C T Del C C

 08/13 C T Del C C

 48/12 C T Del C C

 47/12 T Del C

 39/12 T Del C

 37/12 C T Del C C

 09/12 C T Del C C

 61/11 C T Del C C

 62/11 C T Del C C

 58/11 C T Del C C

 52/11 C T Del C C

 41/11 C T Del C C

 37/11 T Del C

 35/11 A C T Del C C

 49/12 C T Del C C

 30/11 C T Del C C

 34/11 T Del C

 14/11 C T Del C C

 04/11

 48/10 C T Del C C

 33/10 C T Del C C

 63/11 C T Del C C

 02/12 C T Del C C

 04/12 C T Del C C

 26/10 C T Del C C

 21/10 C T Del C C

 23/10 T Del C

 01/10 C T Del C CC

 07/10 C T Del C CC

 17/10 T Del C CC

 34/10 C T Del C CC

 79/09 C T Del C C

 74/09 T Del C

 15/10 T Del C

 59/09 A C T Del C C

 63/09 A C T Del C C

69/15

 55/08 C T Del C C

 34/08 G C T C C C G T GCACGC C T C G C A Del Del Del Del GGCGCCA TGGGTTG TTATCTC G T T T T T

 37/08 C T Del C C

 08/09 C T Del C C

 14/09 C T Del C C

 41/12 C T Del C C

 17/09 C T Del C C

 49/08 C T Del C C

 59/08 C T Del C C

 69/09 C T Del C C

 16/10 C T Del C C

 16/09 A C T Del C C

 52/09 A C T Del C C

 37/10 A C T Del C C

 33/11 C T Del C CC

 45/08

 13/10 C T Del C C

 54/08

URR Genomic region
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There were 90 nucleotide deletions observed in the 68 isolates; 66 of the 68 (97%) isolates had a single 

nucleotide deletion at genomic position 7506 and isolates VBD28/14 and VBD34/08 each had 12 

nucleotide deletions at genomic positions 7682, 7684-7687, 7692-7697 and 7699. No isolates were 

identical to the prototype (GenBank accession number M14119.1). 

2.3.1 E5a/b ORF amplification and sequencing 

PCR amplification of the E5a/b ORF were performed on all available isolates with primers summarised 

in Table 1. One isolate, VBD55/08, had insufficient DNA for downstream analysis.  

Samples were purified, and 5μl aliquots of the purified HPV11 DNA were separated with gel 

electrophoresis and visualised. Sixty-seven isolates had a band at the predicted size confirming the 

presence of HPV11 E5a/b DNA. The DNA concentration of the isolates ranged from 28.7 ng/µl–229.3 

ng/µl. All isolates DNA concentration are included in Table 5. 

Nucleotide sequences of each amplicon within the predicted size range were determined with Sanger 

sequencing using the same primers as for the initial PCR (Table 1). By comparing sequence data of 

isolates sequenced in the current study and the A1 prototype sequence E5a/b sequence, 166 nucleotide 

substitutions could be observed in 15 genomic regions (Table 8). These included A3891C in one isolate 

(VBD23/10), A3952T and G3991C in all 67 isolates, A4142C in 11 isolates, G4325T in one isolate 

(VBD48/10), and A4344G in one isolate (VBD68/16). Additionally, isolates VBD34/08 and VBD28/14 

had C3902G, A3978G, A3993T, T4048C, C4166G, C4227T, A4274C, C4312A, and C4333T 

nucleotide substitutions. 

The maximum number of nucleotide substitutions was 11 in isolates VBD28/14 and VBD34/08, which 

is 2.2% of the complete E5a/b ORF, followed by four nucleotide substitutions in VBD23/10, which is 

0.8% of the complete E5a/b ORF. All isolates had nucleotide substitutions at genomic position 3952 

and 3991. No nucleotide insertions or nucleotide deletions were observed compared to GenBank 

accession number M14119.  
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Table 8: Sequence comparison of nucleotide variances among 67 human papillomavirus type 11 (HPV11) isolates E5a/b 

region against the HPV11 prototype with GenBank accession number M14119.1.  

Residues that differed to those of HPV11 E5a/b prototype are indicated by a white colour difference and the substituted base. 

Samples excluded from analysis are indicated in dark grey. 
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Base A C A A G A T A C C A C G C A

Isolate 

VBD 

Number

 12/18 T C

23/17 T C

68/16 T C G

48/16 T C

33/16 T C

68/15 T C

49/15 T C

41/15 T C

44/15 T C C

16/15 T C

14/15 T C

41/14 T C

28/14 G T G C T C G T C A T

17/14 T C

22/14 T C

29/14 T C C

55/13 T C C

29/13 T C

 08/13 T C

 48/12 T C

 47/12 T C C

 39/12 T C C

 37/12 T C

 09/12 T C

 61/11 T C

 62/11 T C

 58/11 T C

 52/11 T C

 41/11 T C C

 37/11 T C C

 35/11 T C

 49/12 T C

 30/11 T C

 34/11 T C C

 14/11 T C

 04/11

 48/10 T C T

 33/10 T C

 63/11 T C

 02/12 T C

 04/12 T C

 26/10 T C

 21/10 T C

 23/10 C T C C

 01/10 T C

 07/10 T C

 17/10 T C

 34/10 T C

 79/09 T C

 74/09 T C C

 15/10 T C C

 59/09 T C

 63/09 T C

69/15

 55/08

 34/08 G T G C T C G T C A T

 37/08 T C

 08/09 T C

 14/09 T C

 41/12 T C

 17/09 T C

 49/08 T C

 59/08 T C

 69/09 T C

 16/10 T C

 16/09 T C

 52/09 T C

 37/10 T C

 33/11 T C

 45/08

 13/10 T C

 54/08

E5a/b Genomic region
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2.3.2 E2 ORF amplification and sequencing 

PCR amplification of the E2 ORF segment was performed on all available isolates with designed 

primers (Table 1). The 67 available samples were purified, and a 5μl aliquot of the purified HPV11 

DNA was separated with gel electrophoresis. All the isolates had a band at the predicted size confirming 

the presence of target DNA. The DNA concentration ranged from 36.6 ng/µl – 117.5 ng/µl. DNA 

concentrations of all isolates are included in Table 5. 

Nucleotide sequences of each amplicon were determined with Sanger sequencing using the same 

primers as for the initial PCR (Table 1). Among the 67 isolates, 144 nucleotide substitutions were 

observed by comparing sequence data of isolates sequenced in the current study and the E2 segment of 

the A1 prototype. Nucleotide substitutions are summarised in Table 9. Nucleotide substitutions were 

observed in 11 genomic regions. These included A3633C in 65 isolates (all except VBD34/08 and 

VBD28/14), A3652G in all 67 isolates, T3672C in one isolate (VBD62/11), C3705A in one isolate 

(VBD61/11), A3738T in one isolate (VBD14/11), G3758C in one isolate (VBD29/14), A3779C is one 

isolate (VBD74/09), and A3827G in one isolate (VBD34/08). Isolates VBD34/08 and VBD28/14 had 

G3638C, C3788T, A3821G nucleotide substitutions. 

The maximum number of nucleotide substitutions in the 208bp gene segment of the E2 was five (5/208, 

2.4%) nucleotide substitutions in VBD34/08 and four (4/208, 1.9%) nucleotide substitutions in 

VBD28/14. No nucleotide insertions or nucleotide deletions were observed. No isolates were identical 

to the prototype (GenBank accession number M14119.1).  

2.3.3 Analysis of amino acid variations 

Analysis of L1 ORF sequences 

The L1 gene contains 501 amino acids. By comparing the amino acid of isolates sequenced in the 

current study and the A1 prototype, six nucleotide substitutions were identified as synonymous, and 

five as non-synonymous. Non-synonymous nucleotide substitutions resulted in four amino acid 

substitutions.  

Nucleotide substitutions changed the amino acid sequence of two isolates, namely VBD28/14 and 

VBD34/08. Both isolates contained T6296A and T6298C nucleotide substitutions causing a serine (S) 

to a threonine (T) amino acid substitution and a C7197T nucleotide substitution causing an alanine (A) 

to a valine amino acid substitution and only VBD34/08 contained a C6831T nucleotide substitution 

causing a S to a leucine (L) amino acid substitution and a A7131C nucleotide substitution causing a 

glutamic acid (E) to an A. 
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Table 9: Sequence comparison of nucleotide variances among 67 human papillomavirus type 11 (HPV11) isolates E2 segment 

against the HPV11 prototype with GenBank accession number M14119.1.  

Residues that differed to those of HPV11 E2 segment prototype are indicated by a white colour difference and the substituted 

base. 
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Base A G A T C A G A C A A

Isolate 

VBD 

Number

 12/18 C G

23/17 C G

68/16 C G

48/16 C G

33/16 C G

68/15 C G

49/15 C G

41/15 C G

44/15 C G

16/15 C G

14/15 C G

41/14 C G

28/14 C G T G

17/14 C G

22/14 C G

29/14 C G C

55/13 C G

29/13 C G

 08/13 C G

 48/12 C G

 47/12 C G

 39/12 C G

 37/12 C G

 09/12 C G

 61/11 C G A

 62/11 C G C

 58/11 C G

 52/11 C G

 41/11 C G

 37/11 C G

 35/11 C G

 49/12 C G

 30/11 C G

 34/11 C G

 14/11 C G T

 04/11

 48/10 C G

33/10 C G

 63/11 C G

 02/12 C G

 04/12 C G

 26/10 C G

 21/10 C G

 23/10 C G

 01/10 C G

 07/10 C G

 17/10 C G

 34/10 C G

 79/09 C G

 74/09 C G C

 15/10 C G

 59/09 C G

 63/09 C G

69/15

 55/08

 34/08 C G T G G

 37/08 C G

 08/09 C G

 14/09 C G

 41/12 C G

 17/09 C G

 49/08 C G

 59/08 C G

 69/09 C G

 16/10 C G

 16/09 C G

 52/09 C G

 37/10 C G

 33/11 C G

 45/08

 13/10 C G

 54/08

E2 Genomic region
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Analysis of E5a/b ORF sequences 

The E5a gene (nt 3871-4146) contains 91 amino acids and the E5b gene (nt 4146-4370) contains 73 

amino acids. Three nucleotide substitutions were identified as synonymous and 12 substitutions were 

identified as non-synonymous by comparing the amino acid of isolates sequenced in the current study 

and the A1 prototype. Eleven amino acid substitutions were observed. Non-synonymous substitutions 

included A3891C nucleotide substitution causing a glutamine (Q) to isoleucine (I) amino acid 

substitution in one isolate (VBD23/10), A4142C nucleotide substitution causing Q to proline (P) amino 

acid substitution in 11 isolates (VBD44/15, VBD29/14, VBD55/13, VBD47/12, VBD39/12, 

VBD41/11, VBD37/11, VBD34/11, VBD23/10, VBD74/09 and VBD15/10), and A4344G nucleotide 

substitution causing a N to aspartic acid (D) amino acid substitution in one isolate (VBD68/16). All 

isolates contained a A3952T and G3991C nucleotide substitutions causing an I to phenylalanine (F) and 

a valine to L amino acid substitution, respectively.  

Isolates VBD28/14 and VBD34/08 had the most non-synonymous substitutions including C3902G 

nucleotide substitution causing an A to glycine (G) amino acid substitution, A3952T nucleotide 

substitution causing an I to F amino acid substitution, G3991C and A3993T nucleotide substitution 

causing valine to L amino acid substitution, C4166G nucleotide substitution causing a histidine to Q 

amino acid substitution, C4227T nucleotide substitution causing a L to F amino acid substitution, 

A4274C nucleotide substitution causing a lysine (K) to asparagine (N) amino acid substitution, C4312A 

nucleotide substitution causing a T to N amino acid substitution, and C4333T nucleotide substitution 

causing a S to L amino acid substitution. 

2.3.4 Phylogenetic analysis 

Four phylogenetic trees were constructed to explore the phylogenetic relationship of the HPV11 isolates 

sequenced in this study. Neighbor-Joining phylogenetic trees and maximum likelihood trees were 

constructed with sequences obtained in this study and 28 sequences retrieved from GenBank of 

geographically distinct HPV isolates belonging to different (sub)lineages.  

Isolates with GenBank accession numbers M14119.1, LN833187.1, LN833185.1, LN833184.1, 

LN833183.1, LN833169.1, LN833165.1, LN833161.1, KU298879.1, JQ773412.1, JQ773411.1, 

JQ773409.1, JQ773408.1, JN644141.1, HE611263.1, HE574702.1, FR872717.1, FN907963.1, 

FN907962.1, FN870021.1, EU918768.1, MN788368.1, MK463921.1, MK463916.1, MK463914.1, 

MK313767.1, MK313765.1, and MK313763.1 were included. Lineage and sub-lineage representatives 

are summarised in Table 10. 
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Table 10: GenBank accession numbers of human papillomavirus type 11 (HPV11) isolates and the (sub)lineage 

representation.  

 

 

Maximum Likelihood method 

The evolutionary history was deduced using the maximum likelihood method. The Tamura-Nei model 

was determined as the best model for a reliable estimate maximum likelihood phylogeny with an 

ultrafast bootstrap of 1000. The trees with the highest log-likelihood for concatenated L1-URR (-

10510,15) and E5a/b-L1-URR (-11642,10) are depicted in Figure 4 and Figure 5, respectively.  

Analysis of concatenated L1-URR involved 96 nucleotide sequences, including 68 isolates sequenced 

in this study and 28 sequences of geographically distinct isolates retrieved from GenBank. Results 

revealed that analysis of concatenated L1-URR resolved into two lineages, namely the lineage A and 

lineage B. The majority of isolates (49/68, 72.0%) clustered together with a 94% certainty in the 

bootstrap test.  

Analysis of concatenated E5a/b-L1-URR involved 95 nucleotide sequences. Sixty-seven sequences 

obtained in this study, and 28 sequences retrieved from GenBank from geographically distinct isolates. 

HPV11 concatenated E5a/b-L1-URR resolved into two lineages, namely lineage A and lineage B. The 

majority of the isolates sequenced in this study (48/67, 71.6%) clustered with the A2 prototype 

LN833161.1 and revealed a 97% certainty in the bootstrap test. Seven isolates from this study, clustered 

with one isolate (retrieved from GenBank) previously identified as an A2 sub-lineage isolate with an 

82% certainty in the bootstrap test (Jelen et al., 2016).  

Three isolates previously identified as A1 sub-lineage isolates (EU918768.1, FN870021.1 and 

FN907963.1), did not closely cluster together. No isolates sequenced in this study clustered with the A3 

and A4 prototype strains.  

GenBank Accession number

M14119.1  Sub-lineage A1

LN833161.1  Sub-lineage A2

LN833169.1  Sub-lineage A3

LN833187.1  Sub-lineage A4

LN833183.1                                  Lineage B

Lineage and sub-lineage representatives

Lineage A
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Lineage A 

Lineage B 

Figure 4: Phylogenetic tree of human papillomavirus 

type 11 (HPV11) based on alignment of 96 nucleotide 

sequences of HPV11 concatenated L1-URR. This 

analysis involves 68 isolates sequenced in this study 

and 28 sequences of geographically distinct isolates 

retrieved from GenBank.  

 
M14119.1 (blue) was used as a representative of sub-

lineage A1, LN833161.1 (green) as a representative of 

sub-lineage A2, LN833169.1 (yellow) as a 

representative of sub-lineage A3, LN833187.1 (red) as 

a representative of sub-lineage A4. Lastly, LN833183.1 

was used as a representative of lineage B. The 

maximum likelihood tree was constructed using MEGA 

X using the Maximum Likelihood method and Tamura-

Nei model.  
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Ten isolates from this study (VBD15/10, VBD29/14, VBD34/11, VBD37/11, VBD39/12, VBD44/15, 

VBD47/12, VBD55/13, VBD23/10 and VBD74/09) clustered with two (MK463921.1 and 

MK463916.1) sequences retrieved from GenBank with 99% and 100% certainty in the bootstrap test in 

HPV11 concatenated L1-URR and E5a/b-L1-URR data sets, respectively. The sub-lineage 

classification of these GenBank sequences are unknown.  

Seven isolates from the current study (VBD01/10, VBD07/10, VBD17/10, VBD17/14, VBD22/14, 

VBD33/11, and VBD34/10) clustered with isolates FN907963.1 and FN907962.1 with a 98% and 99% 

certainty in the bootstrap test in HPV11 concatenated L1-URR and E5a/b-L1-URR data sets, 

respectively. However, FN907963.1 has been previously identified as sub-lineage A1 and FN907962.1 

as sub-lineage A2. One confirmed A1 sub-lineage isolate (EU918768.1) retrieved from GenBank shared 

a node with confirmed A2 sub-lineage isolates with a 95% certainty in the bootstrap test. In both 

concatenated L1-URR and E5a/b-L1-URR sequences, three lineage B isolates, one from GenBank 

(LN833183.1) and two from the current study (VBD34/08 and VBD28/14), clustered together in the 

bootstrap test with 100% certainty with one isolate being identical to the previously identified lineage 

B isolate.  

Pairwise analysis of percentage divergence of nucleotides  

Analyses were performed with the use of the Maximum Composite Likelihood model and included 95 

nucleotide sequences and used the concatenated E5a/b-L1-URR data set. This includes 67 sequences 

obtained in this study, and 28 sequences retrieved from GenBank. All numbers were limited to three 

decimals. The pairwise analysis of percentage divergence of nucleotides using the human 

papillomavirus type 11 concatenated E5a/b-L1-URR data set is included in Appendix 10. 

Divergence from the A1 prototype M14119.1 ranged from minimum 0,087 (EU918768.1 and 

FN870021.1) to a maximum of 0,154 (VBD34/08, FN907962.1 and LN833183.1) with an average 

divergence of 0,119. Divergence from the A2 prototype LN833161.1 ranged from 0,001 (VBD02/12, 

VBD04/12, VBD08/09, VBD08/13, VBD09/12, VBD12/18, VBD13/10, VBD14/09, VBD14/11, 

VBD14/15, VBD16/10, VBD16/15, VBD17/09, VBD21/10, VBD23/17, VBD26/10, VBD29/13, 

VBD30/11, VBD33/10, VBD37/08, VBD37/12, VBD41/11, VBD41/12, VBD48/12, VBD48/16, 

VBD49/08, VBD49/12, VBD49/15, VBD52/11, VBD58/11, VBD59/08, VBD61/11, VBD62/11, 

VBD63/11, VBD69/09, HE611263.1, JN644141.1, JQ773409.1, MK313763.1, MN788368.1, 

VBD79/09) to 0,166 (VBD34-08 and LN833183.1) with an average divergence of 0,037. Divergence 

from the A3 prototype LN833169.1 ranged from 0,000 (LN833165.1) to 0,158 (LN833183.1) with an 

average divergence of 0,058. Divergence from the A4 prototype LN833187.1 ranged from 0,005 

(LN833165.1 and LN833169.1) to 0,159 (VBD34/08 and LN833183.1) with an average divergence of 

0,060. Divergence from the lineage B prototype LN833183.1 ranged from 0,000 (VBD34/08) to 0,166  
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Sub-lineage A4 

Sub-lineage A3 

Sub-lineage A1 

 

 

 

Figure 5: Phylogenetic tree of human papillomavirus 

type 11 (HPV11) based on alignment of 95 nucleotide 

sequences of HPV11 concatenated E5a/b-L1-URR. This 

analysis involves 67 isolates sequenced in this study and 

28 sequences of geographically distinct isolates 

retrieved from GenBank.  

Sub-lineage A2 

Lineage B 

M14119.1 (blue) was used as a representative of sub-

lineage A1, LN833161.1 (green) as a representative of 

sub-lineage A2, LN833169.1 (yellow) as a 

representative of sub-lineage A3, LN833187.1 (red) as a 

representative of sub-lineage A4. Lastly, LN833183.1 

(orange) was used as a representative of lineage B. The 

maximum likelihood tree was constructed using MEGA 

X using the Maximum Likelihood method and Tamura-

Nei model. 
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(VBD16/09, VBD33/16, VBD35/11, VBD37/10, VBD41/14, VBD41/15, VBD48/10, VBD52/09, 

VBD59/09, VBD63/09, VBD68/15, VBD68/16, FN870021.1, FR872717.1, JQ773408.1, JQ773409.1, 

JQ773411.1, JQ773412.1, KU298879.1, LN833161.1, LN833165.1, LN833169.1, LN833183.1, 

LN833184.1, LN833185.1, M14119.1, MK313763.1, MK313765.1, MK313767.1, MK463914.1) with 

an average divergence of 0,161. VBD28/14 had a divergence of 0,120 from LN833183.1 and VBD34/08 

(Appendix 10). 

Analysis of E2 segment as representative of whole genome variation 

The evolutionary history was inferred with the Neighbor-Joining method and the Maximum Composite 

Likelihood method and involved 95 nucleotide sequences. There were a total of 208 nucleotide 

positions in the final dataset. The phylogenetic trees are shown in Figure 6 and Figure 7. 

HPV11 E2 segment sequences clearly resolved into two lineages, namely the lineage A and lineage B. 

Sixty-five of the 67 isolates (97.0%) sequenced clustered together with the A2 prototype LN833161.1 

and revealed a 52% and 56% certainty in the bootstrap test the Neighbor-Joining and maximum 

likelihood  phylogenetic trees, respectively. Lineage B isolates clustered together with a 95% certainty 

in the bootstrap test in both the Neighbor-Joining and maximum likelihood phylogenetic trees. 

Four isolates clustered with the A1 prototype M14119.1 with 54% and 59% confidence according to 

the Neighbor-Joining and maximum likelihood methods, respectively. Analysis of estimates of 

evolutionary divergence between sequences revealed the minimum divergence from the A1 prototype 

M14119.1 was 0,000 (EU918768.1, FN870021.1, and FN907963.1), the maximum was 0,024 

(VBD34/08 and LN833183.1) (Appendix 11). 

Divergence from A2 prototype LN833161.1 ranged from 0,000 (VBD01/10, VBD02/12, VBD04/12, 

VBD07/10, VBD08/09, VBD08/13, VBD09/12, VBD12/18, VBD13/10, VBD14/09, VBD14/15, 

VBD15/10, VBD16/09, VBD16/10, VBD16/15, VBD17/09, VBD17/10, VBD17/14, VBD21/10, 

VBD22/14, VBD23/10, VBD23/17, VBD26/10, VBD29/13, VBD30/11, VBD33/10, VBD33/11, 

VBD33/16, VBD34/10, VBD34/11, VBD35/11, VBD37/08, VBD37/10, VBD37/11, VBD37/12, 

VBD39/12, VBD41/11, VBD41/12, VBD41/14, VBD41/15, VBD44/15, VBD47/12, VBD48/10, 

VBD48/12, VBD48/16, VBD49/08, VBD49/12, VBD49/15, VBD52/09, VBD52/11, VBD55/13, 

VBD58/11, VBD59/08, 59/09, VBD63/09, VBD63/11, VBD68/15, VBD68/16, VBD69/09, 

VBD69/15, VBD79/09, HE574702.1, HE611263.1, JN644141.1, JQ773409.1, KU298879.1, 

LN833184.1, LN833185.1, MK313763.1, MK313765.1, MK313767.1, MN788368.1) to 0,020 

(VBD34/08 and LN833183.1) (Appendix 11). 

No isolates sequenced in the current study clustered with the A3 or A4 prototype sequences. Divergence 

from the A3 prototype LN833169.1 ranged from 0,000 (LN833165.1) to 0,024 (VBD34/08 and 
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LN833183.1) (Appendix 11). The A4 prototype LN833187.1 contains a wobble nucleotide in the 208bp 

region of the E2 ORF. One nucleotide was substituted with the degenerative nucleotide ‘K’, which can 

be interpreted as either a G or a T. Therefore, the trees were constructed using both a G and a T and 

allocated LN833187.1(1) and LN833187.1 (2), respectively (Appendix 4).  

Divergence from LN833187.1_(1) ranged from 0,005 (VBD01/10, VBD02/12, VBD04/12, VBD07/10, 

VBD08/09, VBD08/13, VBD09/12, VBD12/18, VBD13/10, VBD14/09, VBD14/15, VBD15/10, 

VBD16/09, VBD16/10, VBD16/15, VBD17/09, VBD17/10, VBD17/14, VBD21/10, VBD22/14, 

VBD23/10, VBD23/17, VBD26/10, VBD29/13, VBD30/11, VBD33/10, VBD33/11, VBD33/16, 

VBD34/10, VBD34/11, VBD35/11, VBD37/08, VBD37/10, VBD37/11, VBD37/12, VBD39/12, 

VBD41/11, VBD41/12, VBD41/14, VBD41/15, VBD44/15, VBD47/12, VBD48/10, VBD48/12, 

VBD48/16, VBD49/08, VBD49/12, VBD49/15, VBD52/09, VBD52/11, VBD55/13, VBD/11, 

VBD59/08, VBD59/09, VBD63/09, VBD63/11, VBD68/15, VBD68/16, VBD69/09, VBD69/15, 

VBD79/09, EU918768.1, FN870021.1, FN907963.1, HE574702.1, HE611263.1, JN644141.1, 

JQ773409.1 KU298879.1, LN833161.1, LN833165.1, LN833169.1, LN833184.1, LN833185.1, 

LN833187.1_(2), M14119.1, MK313763.1, MK313765.1, MK313767.1, MN788368.1) to 0,020 

(VBD34/08 and LN833183.1) (Appendix 11).  

Divergence from LN833187.1_(2) ranged from 0,005 (LN833187.1_(1)) to 0,024 (VBD34/08 and 

LN833183.1) with an average divergence of 0,011. Divergence from LN833183.1 ranged from 0,000 

(VBD34/08) to 0,034 (FR872717.1, JQ773408.1, JQ773411.1, JQ773412.1, and MK463914.1) 

(Appendix 11). 

Three lineage B isolates (VBD34/08, VBD28/14 and, LN833183.1) clustered together in the bootstrap 

test with 95% certainty according to the bootstrap test in both the Neighbor-Joining and maximum 

likelihood phylogenetic trees. Divergence from ranged from 0,000 (VBD34/08) to 0,034 (FR872717.1, 

JQ773408.1, JQ773411.1, JQ773412.1 (Appendix 11). 
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Lineage B 

Lineage A 

Figure 6: Phylogenetic tree of human papillomavirus type 11 (HPV11) based on 95 nucleotide sequence alignments of 

HPV11 E2 segment. This analysis involves 67 isolates sequenced in this study and 28 sequences of geographically distinct 

isolates retrieved from GenBank.  

 
M14119.1 (blue) was used as a representative of sub-lineage A1, LN833161.1 (green) as a representative of sub-lineage 

A2, LN833169.1 (yellow) as a representative of sub-lineage A3, LN833187.1 (red) as a representative of sub-lineage A4. 

Lastly, LN833183.1 (orange) was used as a representative of lineage B. A single, double peak was denoted as a wobble 

nucleotide in the LN833187.1 genome sequence submitted to GenBank, and therefore for readability, the trees were 

constructed using both a G and a T and allocated LN833187.1(1) and LN833187.1 (2), respectively. The maximum 

likelihood tree was constructed using MEGA X using the Maximum Likelihood method and Tamura-Nei model. 
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Lineage A 

Lineage B 

Figure 7: Phylogenetic tree of human papillomavirus type 11 (HPV11) based on 95 nucleotide sequence alignments of 

HPV11 E2 segment. This analysis involves 67 isolates sequenced in this study and 28 sequences of geographically distinct 

isolates retrieved from GenBank.  

 M14119.1 (blue) was used as a representative of sub-lineage A1, LN833161.1 (green) as a representative of sub-lineage 

A2, LN833169 (yellow) as a representative of sub-lineage A3, LN833187.1 (red) as a representative of sub-lineage A4. 

Lastly, LN833183.1 (orange) was used as a representative of lineage B. A double peak was denoted as a wobble nucleotide 

in the LN833187.1 genome sequence submitted to GenBank, hence, the tree was constructed using both a G and a T and 

allocated LN833187.1(1) and LN833187.1 (2), respectively. The Neighbor-Joining tree was constructed using MEGA X. 
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2.4. Discussion 

During the course of this study, genome sequencing was used to identify unique HPV11 variants 

circulating in patients diagnosed with RRP treated at the Universitas Academic Hospital. HPV11 has a 

prevalence of 1% to 4% in cervical samples in various South African regions (Giuliano et al., 2015; 

Mbulawa et al., 2018). Several studies have reported HPV prevalence from different parts of South 

Africa (Giuliano et al., 2015; Mbulawa et al., 2018). However, very few studies have focused on the 

prevalence of HPV11 genetic variants in South Africa. Therefore, in the current study, we aimed to 

investigated HPV11 variants circulating in the study population by means of genomic sequencing of 

the L1, E5a/b and URR genes, which have been postulated to produce phylogenetic trees able to 

distinguish between lineages and sub-lineages (Jelen et al., 2016). In addition, the hypothesis that a 

208bp segment of the E2 genome generates tree topology which represents whole-genome variation 

was also challenged (Jelen et al., 2016). HPV11 variant investigation is essential, as it is unknown if 

genome variations may result in divergent infectivity rates, affects vaccine effectiveness, and disease 

prognosis. 

A previous study aiming to identify HPV6 variants in patients diagnosed with RRP in South Africa 

identified three novel HPV6 variants (Combrinck et al., 2012). Subsequent studies focusing on the 

molecular characterisation of HPV6 suggested that HPV6 sub-lineage B1 is associated with an 

increased risk of developing genital warts (Flores-Díaz et al., 2017). HPV11 variants circulating in 

South Africa are currently largely unknown and the common occurrence of HPV6 variants in patients 

diagnosed with RRP in South Africa, suggest that similar patterns may be observed with HPV11. 

Therefore, further investigative studies with regards to HPV 11 are warranted.  

Between 2008 and 2018, 94 HPV11 isolates were identified in patients diagnosed with RRP at the 

Universitas Academic Hospital in the Free State province of South Africa. Previously, a novel lineage 

B isolate was identified, necessitating further investigation (Makatsa, 2012). However, this isolate was 

not available for characterisation in the current study. In this study, the concatenated L1-URR and 

E5a/b-L1-URR genes were characterised genetically to discriminate between different (sub)lineages. 

Despite the proof-reading abilities of host cell polymerases, many SNPs were identified in isolates 

characterised in this study which likely reflect a difference in the HPV11 genome.  

Within the L1 ORF, which is generally considered a conserved region of the HPV genome, sequence 

variation was low, likely due to the slow genomic evolutionary rate, which is estimated to be 10−8 

nucleotide substitutions per site per year (Chen et al., 2009, 2011). The highest percentage of divergence 

from the A1 prototype M14119.1 was 0.6%, implying a variant sub-lineage as this region is often used 

to represent whole-genome variation (Burk et al., 2011). Ninety-five per cent (69/72) of sequences 

incorporating a C6028T substitution and only one isolate was identical to the A1 prototype M14119.1. 
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However, the L1 gene is generally only used to identify the type of HPV, and additional sequencing is 

required to identify variant lineages and sub-lineages reliably (Burk et al., 2011).  

Although nucleic acid changes may imply a variant lineage or sub-lineage, nucleic acid variances do 

not necessarily impact the function of the expressed protein. DNA alterations in an ORF may lead to 

alterations in the gene product if non-synonymous substitutions are present (Lebeuf-Taylor et al., 2019). 

Analysis of genome variances in the L1 ORF identified four non-synonymous substitutions in two 

isolates, namely VBD28/14 and VBD34/08. The L1 major capsid protein is highly immunogenic and 

has formed the basis of successful vaccines (Chabeda et al., 2018; Dadar et al., 2018). The L1 also 

mediates vital functions for virus survival, such as encapsulation of the papillomavirus genome, 

interaction with the host cell for infectious entry, and releasing the viral DNA into a new host cell (Barra 

et al., 2019; Benedict & Derkay, 2021). Consequently, amino acid changes may impact virus survival 

and the effectiveness of HPV11 targeted vaccines. 

Typically, evaluation of vaccine antibody responses is studied using serological assays. Sites of 

variation for the L1 region of HPV11 isolates analysed in this study were confined to a limited number 

of internal residues implying that the influence of these variances on recognition by L1-specific 

antibodies is likely to be insignificant, as indicated in a study on HPV16 (Pastrana et al., 2004). The 

consequences of these polymorphisms in the novel lineage B and sub-lineage A3 and A4 and antibody 

recognition following natural infection or vaccination by the present-day vaccines requires additional 

investigation. 

For HPV11 sub-lineage classification, sequencing of additional gene segments is required. Genomic 

sequencing of the E5a/b revealed a 2.2% divergence from the A1 prototype M14119.1 in VBD28/14 

and VBD34/08, and a 0.8% divergence from the prototype in VBD23/10. Most of the nucleotide 

substitutions were non-synonymous and resulted in amino acid alterations, which may interfere with 

the function of this protein (Lebeuf-Taylor et al., 2019). Proteins expressed by the E5a/b are each made 

up of 83 amino acids and are involved in many processes, including immune evasion, and regulating 

apoptosis. The E5a/b proteins also play a role in cell cycle pathways and influence cellular gene 

expression (Chagas et al., 2011; Zhang et al., 2018). 

Few studies have reported on gene mutations of E5 in HPV11, but studies on various HPV types have 

reported that non-synonymous mutations might lead to changes in polarity, hydropathic potential, and 

the amino acid side chain, which may alter protein folding (Halavaty et al., 2014; Hemmat & Baghi, 

2018; Venuti et al., 2011; Zhang et al., 2018). Point-mutations in E5 may inhibit cell transformation, 

hinder activation of the cyclin A pathway, and disrupt the acidification of endosomes. The E5 protein 

of HPV has also been proven to increases the expression level of hepatocyte growth factor receptors, 

which promotes transformed cell invasiveness and regulates the proliferation of infected cells (Halavaty 
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et al., 2014; Hemmat & Baghi, 2018; Venuti et al., 2011; Zhang et al., 2018). Conversely, studies have 

also demonstrated that the E5 ORF can tolerate many mutations and maintain the hydrophobic nature 

of E5, and that the conserved residues are sufficient to confer transforming activity (Mattoon et al., 

2001; Venuti et al., 2011). As E5 is necessary for many pathways, minor sequence variations between 

E5 proteins from different HPV11 lineages and sub-lineages may significantly impact the function of 

this protein. Thus, functional analysis of E5 in HPV11 may further decipher the effects of E5 mutations 

on the HPV virus life cycle. 

The URR is the most variable region within the HPV genome capable of accumulating and tolerating 

more nucleotide mutations as it does not encode proteins. The URR interacts with many cellular and 

viral factors and is involved with functions such as virus replication, gene expression, and transcription 

(Fang et al., 2020; Ribeiro et al., 2018). In the current study, the URR of 68 isolates was successfully 

sequenced, and genome analysis revealed 237 nucleotide substitutions, 118 nucleotide insertions and 

90 nucleotide deletions. Isolates VBD34/08 and VBD28/14 had the most nucleotide differences 

compared to the A1 prototype M14119.1, with both containing 20 nucleotide substitutions and 12 

nucleotide deletions. In addition, isolate VBD28/14 had the maximum number of nucleotide insertions 

of all isolates, 28, followed by 27 in VBD34/08. 

A correlation between the transcriptional activity of HPV11 variants and RRP disease severity have 

previously been reported (Gáll et al., 2013). HPV11 presents E2 binding sites distributed along the URR 

regions and various promotors. These promotors are regulated differently, which indicates that 

independent regulation of early proteins is essential for the viral life cycle (DiLorenzo & Steinberg, 

1995; Dollard et al., 1992; Stoler et al., 1989). Duplication in the early viral promoter sequence of 

HPV11 has been associated with a higher degree of disease severity and the genome alterations T7904A 

and thymine at position 7546, as in the A1 prototype sequence M14119.1, may have enhancer effects 

(Gáll et al., 2013). Due to the frequency of mutations in isolates from the current study, the functionality 

of binding sites in the URR may be impacted, affecting many cellular and viral factors. Although the 

URR is highly variable, the E2 transcription binding sites are reported to be highly conserved, and 

mutations are rarely found in these regions (Fang et al., 2020; Ribeiro et al., 2018). 

Analysis of the E2 genome segment sequenced in this study revealed that most isolates (60/67) had only 

two point-mutations, and only a few (7/67) isolates had other mutations. The maximum number of 

point-mutations was five in VBD34/08 (2,4%), followed by four in VBD28/14 (1,9%). The E2 protein 

regulates essential factors during the viral life cycle, such as replication, transcription, and viral genome 

partitioning. Therefore, the binding of the E2 protein to corresponding binding sites is necessary for 

viral survival (Graham & Faizo, 2017; Kardani & Bolhassani, 2018a; Wallace & Galloway, 2014). 
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Phylogenetic trees are a practical way to present the evolutionary relationship between organisms as the 

genetic sequence of contemporary sequences evolved from a common ancestor. Specific HPV11 

genomic regions have previously been used to identify genetic variants as they provide sufficient 

genetic variation to differentiate between HPV11 variants. In 2011, Maver and colleagues identified 

two clades based on the topology of the maximum likelihood phylogenetic tree, namely the prototypic 

and non-prototypic clades (Maver et al., 2011). Subsequently, Burk and colleagues defined a new HPV 

sub-lineage as a 0.5% to 1.0% variation from the complete genome (Burk et al., 2011). This study 

revealed two clades and that the maximum pairwise difference between variants is approximately 0.4%. 

They designated the two clades as sub-lineage A1 (previously termed prototypic variant group) and 

sub-lineage A2 (previously termed non-prototypic variant group) (Burk et al., 2011). Further 

comparative phylogenetic sequence analysis of isolates collected from Australia, Slovenia, China, 

Hungary, and Thailand revealed that the A2 sub-lineage predominates (Danielewski et al., 2013; Jelen 

et al., 2016). Results were further supported by a generally high degree of sequence conservation 

observed between diverse geographical regions throughout the world, suggesting that geographically 

specific variants were uncommon for HPV11 (Danielewski et al., 2013; Jelen et al., 2016; Maver et al., 

2011). However, the discovery of new (sub)lineages in geographically restricted areas contradicts 

previous assumptions that intratypic variants of HPV11 are not geographically restricted (Jelen et al., 

2016). 

An extensive study on the genomic diversity of HPV11 from six continents revealed an additional 

lineage B and two additional sub-lineages A3 and A4, for the first time (Jelen et al., 2016). Lineage B 

had a 1.3% maximal pairwise distance, sub-lineage A4 had a complete nucleotide pairwise difference 

of above 0.5%, and the two sub-lineage A3 isolates had a total nucleotide pairwise difference in the 

range of 0.5% (Jelen et al., 2016). Results were visualised with a heatmap, and the specific complete 

nucleotide pairwise difference was not mentioned. A single, double peak was denoted as a wobble 

nucleotide in the LN833187 genome sequence submitted to GenBank, and therefore, the exact sequence 

is unknown (Appendix 4). As in the current study, phylogenetic analysis of E5a/b ORF, the L1 ORF 

and the URR using the maximum likelihood method identified sub-lineage A2 as the predominant sub-

lineage globally (Jelen et al., 2016). For increased accuracy of phylogenetic analysis in the current 

study, 28 geographically distinct HPV11 representatives were included. Nonetheless, the tree topology 

generated in the present study did not correlate completely with that of the study published by Jelen and 

colleagues (Jelen et al., 2016).  

Phylogenetic analysis of the concatenated L1-URR and E5a/b-L1-URR sequences identified in this 

study and sequences retrieved from GenBank correctly resolved into two lineages: Lineage A and 

lineage B. However, sub-lineage classification was frequently unclear. For example, isolates previously 

identified as sub-lineage A1 (FN907963.1) and A2 (FN907962.1), did not cluster closely with the 
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corresponding prototypes and instead, clustered together. Seven isolates from the current study 

clustered with isolates FN907963.1 and FN907962.1 with great certainty in the bootstrap test, therefore, 

phylogenetic analysis of the concatenated L1-URR and E5a/b-L1-URR is unable to reliably classify 

these isolates.  

Neighbor-Joining and maximum likelihood trees were constructed using E2 segment data to determine 

whether E2 tree topology would be identical to phylogenetic trees constructed using concatenated 

E5a/b-L1-URR or L1-URR sequence data, and to determine whether the Neighbor-Joining tree and 

maximum likelihood tree based on E2 segment sequence data would generate similar results. Maximum 

likelihood tree construction is computationally intensive, therefore, using the Neighbor-Joining method 

would be advantageous to generate results fast when using large data sets and for bootstrap analysis. In 

this study, the E2 segment tree topology was not identical to the phylogenetic trees using either the 

concatenated E5a/b-L1-URR or L1-URR. For instance, slight but essential variations were observed in 

the maximum likelihood tree constructed using the E2 segment. EU918768.1, FN870021.1 and 

FN907963.1 clustered correctly with M14119.1 when using the E2 segment, but not the concatenated 

E5a/b-L1-URR or L1-URR segments. However, in the study published by Jelen and colleagues (2016), 

analysis of the complete and partial genomes revealed EU918768.1, FN870021.1 and FN907963.1 

clustered appropriately with the A1 prototype M14119.1. 

In this study, we used phylogenetic software to calculate evolutionary distances between sequences and 

identify correspondence regions by computing the proportion of nucleotide differences between each 

pair of sequences. Analysis revealed isolates highly analogous to reference strains LN833169, 

LN833187.1, LN833165.1 and LN833183.1 appropriately clustered, and the results collated with those 

observed in the phylogenetic tree topology. Further analysis revealed that lineage B isolates VBD34/08 

and LN833183.1 had the greatest divergence from the A1 prototype M14119.1, which is anticipated. 

Analysis of concatenated E5a/b-L1-URR revealed FN907962.1 as highly dissimilar, which is 

anomalous because FN907962.1 belongs to sub-lineage A2. LN833183.1 and VBD34/08 were the most 

different to LN833169.1 and LN833187.1, irrespective of the wobble nucleotide in the E2 segment. 

Analysis of estimates of evolutionary divergence between sequences revealed sub-lineage A2 isolates 

FR872717.1, JQ773408.1, JQ773411.1, JQ773412.1, and MK463914.1 were the most dissimilar to 

lineage B using concatenated E5a/b-L1-URR sequences and the E2 segment. However, the E2 segment 

also identified several other isolates belonging to various sub-lineages to be equally dissimilar.  

Discrepancies observed in this study may be due to the large number of additional isolates included in 

this study or differences in software used to analyse the sequence data. Jelen and colleagues (2016) used 

RAxML and Bayesian trees to produce phylogenetic trees with complete genome data, and RAxML 

HPC2 (version 8.1.11) and MEGA (version 5) software to identify the most informative areas for whole-
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genome-based phylogenetic clustering (Jelen et al., 2016). In the current study, MEGA X was used to 

analyse the most informative regions determined by Jelen and colleagues (2016).  

Results obtained in the current study supports the notion of whole-genome sequencing for HPV11 

classification below lineage level as a standard. Whole-genome sequencing generates more information 

regarding genetic variants and eliminates discrepancies seen in the current study. Concatenated L1-

URR, E5a/b-L1-URR sequences and the E2 segment had equivalent discriminatory power for lineage 

identification. However, concatenated E5a/b-L1-URR provides unclear results regarding sub-lineage 

classification. E2 Neighbor-Joining and maximum likelihood tree generated in this study generated a 

similar tree topology. Due to the inconsistencies and discrepancies observed in the phylogenetic tree 

topology using concatenated E5a/b-L1-URR, the sub-lineage classification of several isolates remained 

undetermined and therefore it is unclear whether tree topology using the E2 segment can reliably 

distinguish between sub-lineages. Investigations with a greater sample size are necessary to validate 

these findings. 

It is essential to characterise the current strains circulating amongst the community to compare the 

various lineages and sub-lineages with disease severity in future studies, monitor the impact of the 

vaccination campaign on the circulating HPV types, and guide vaccine development. In addition, 

baseline data on circulating HPV genotypes may effectively monitor the impact of the vaccination 

program on the community. Also, determining the genotype of HPV responsible for RRP in patients 

may have prognostic implications. 
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CHAPTER 3- Characterisation of novel human papillomavirus type 11 

isolates  

3.1. Introduction 

The identification and characterisation of potentially novel HPV lineages and sub-lineages has great 

public health significance (Sridhar et al., 2015). Little is known about the correlation between HPV 

lineages and sub-lineages and disease persistence, severity, prognosis, and malignant capability. The 

relevance of HPV variant classification has increased as HPV type and intratypic variants may possibly 

influence the course of disease (Gáll et al., 2013). 

In the last two decades, NGS has been the most frequently used technique for identifying novel HPV 

types and variants. NGS refers to high-throughput sequencing and is capable of massive parallel 

sequencing of various DNA molecules (Ambulos et al., 2016; Kocjan et al., 2015). This relatively new 

technology is quickly becoming an indispensable tool in laboratories for both the detection and 

characterisation of clinically important pathogens such as HPV. NGS surpasses more conventional 

detection methods such as Sanger sequencing by faster turnaround time and the improved depth of 

knowledge regarding serotyping (Ambulos et al., 2016; Kocjan et al., 2015; Parker & Chen, 2017). 

High-throughput sequencing is a powerful method that has been used to identify novel lineages and 

sub-lineages of HPV11 using a WGS approach. Complete genome sequencing using NGS and 

subsequent determination of percentage homology with known viral nucleotide sequences may aid in 

identifying novel lineages and sub-lineages (Sridhar et al., 2015).  

The classification of HPV into genera, species and types based on the L1 ORF is well established. A 

L1 sequence with >10% dissimilarity to any other deposited sequence is defined as a novel HPV type. 

A nucleotide variance of 0.5%-1.0% across the whole genome defines a variant sub-lineage, and a 

nucleotide variance of 1%-10% defines a variant lineage (Burk et al., 2011; Maver et al., 2011). 

However, the existence of a novel HPV variant is only confirmed when its complete genome is 

sequenced and deposited with the International HPV Reference Centre 

(https://www.hpvcenter.se/human_reference_clones), and the complete genome meets the 

classification requirements set by Burk and colleagues (2011).  

Recently, one new lineage and two new sub-lineages of HPV11 were described, warranting further 

investigation into the genetics and distribution of these lineages (Jelen et al., 2016). Previous reports 

suggested that concatenated E5a/b-L1-URR sequences, as well as a 208bp gene segment in the E2 

reportedly represent whole-genome variation and may be used to construct phylogenetic trees 

representative of the different lineages and sub-lineages (Jelen et al., 2016). Numerous isolates with 
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unique SNPs, amino acid changes and indels within the E5a/b, L1 and URR, as well as potential lineage 

B isolates were identified using phylogenetic investigations. However sub-lineages could not be 

conclusively defined, suggesting that a novel lineage and sub-lineage requires a complete genome 

according to the classification and nomenclature system proposed previously (Bernard et al., 2010; 

Burk et al., 2013; Chen et al., 2011; de Villiers et al., 2004; Siqueira et al., 2016). Therefore, in the 

current chapter, whole genome sequences of selected isolates were determined using NGS and the 

genetic relationships analysed. In addition, the hypothesis that the partial genome sequences, as 

obtained in Chapter 2, generates tree topology which represents whole-genome variation is challenged 

(Jelen et al., 2016). Data on novel lineages and sub-lineages of HPV may contribute to future 

evolutionary- and vaccine studies, aid in vaccine development, and give insight into the pathogenicity 

of HPV11. 

3.2. Materials and methods 

3.2.1. Study samples 

Sample selection 

Four isolates with unique SNPs, amino acid changes or indels within the E5a/b, L1 and URR were 

selected for whole-genome sequencing based on results from the phylogenetic analysis described in 

Chapter 2. Isolates which did not cluster closely with sub-lineage prototype sequences, as well as a 

possible lineage B isolate were selected for whole genome sequencing. Isolates included VBD28/14, 

VBD15/10, VBD74/09 and VBD01/10. Two isolates, VBD74/09 and VBD15/10, were isolated from 

one patient collected approximately five months apart to determine whether HPV11 experienced any 

nucleotide mutations between sample collection dates. Information on the selected isolates, including 

the date of birth, date of diagnosis, date of sample collection and sex, is summarised in Table 13. 

Informed consent for collection and storage of biopsies was obtained from each patient by Professor 

Seedat from the Department of Otorhinolaryngology, Faculty of the Health Sciences, UFS.  

HPV11 genome sequences retrieved from GenBank  

Complete genome sequence data for 28 geographically distinct representatives of each HPV11, sub-

lineages A1, A2, A3 and A4, and lineage B, were retrieved from GenBank (Appendix 2). This included 

the following isolates with GenBank accession numbers: M14119.1, LN833187.1, LN833185.1, 

LN833184.1, LN833183.1, LN833169.1, LN833165.1, LN833161.1, KU298879.1, JQ773412.1, 

JQ773411.1, JQ773409.1,JQ773408.1, JN644141.1, HE611263.1, HE574702.1, FR872717.1, 

FN907963.1, FN907962.1, FN870021.1, EU918768.1, MN788368.1, MK463921.1, MK463916.1, 

MK463914.1, MK313767.1, MK313765.1, and MK313763.1. Isolate M14119.1 was used as the sub-

lineage A1 representative, LN833161.1 was used as the sub-lineage A2 representative, LN833169 was 
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used as the sub-lineage A3 representative, LN833187 was used as the sub-lineage A4 representative, 

and LN833183 was used as the lineage B representative. Sequence length ranged from 7932bp to 

7949bp and is summarised in Appendix 2. 

Ethical clearance was obtained from the Health Sciences Research Ethics Committee of the UFS (UFS-

HSD2019/1109/2708) (Appendix 3). 

3.2.2. Full‐genome amplification and sequencing 

The complete genome was determined by amplifying two overlapping DNA fragments representing the 

complete HPV11 genome. Primers used for amplification are summarised in Table 11 (Jelen et al., 

2016). Visual representation of overlapping fragments is depicted in Figure 8. For both overlapping 

PCR fragments, a Phusion ® High-Fidelity PCR kit (Thermo Scientific, Illinois, USA) was utilised 

according to the manufacturer's instructions. Contents of the reaction mixture are summarised in Table 

12. The cycling conditions were carried out as follows: 98°C for two minutes, followed by 40 cycles of 

98°C for 10 seconds, 53.5°C for 30 seconds, and 72°C for three minutes. The final extension step was 

carried out at 72°C for eight minutes before cooling to 4°C.  

 

Table 11: List of primers used for sequencing full-length human papillomavirus type 11 (HPV11) genome in two overlapping 

fragments. 

Primer sequence

5’ → 3’

HPV-11-S2F
a TTACAACAAGC

ACCAAAGAAG    
38.10% 60.1℃ nt 3529 to 3549

HPV-11-S2R
a

TTCTATTTCACA

CAACGGCT
40.00% 60.7℃ nt 427 to 446

HPV-11-

S1MS-F
a

GGATATGAGTTT

TTGGGAGGT
42.86% 60.7℃ nt 7084 to 7104

HPV-11-

S1MS-R
a

ATGCCACGTTGA

AGATGCTA
45.00% 62.9℃ nt 3660 to 3679

c
Melting temperature (Tm) and GC content determined by Thermo Fisher Scientific Tm calculator (Allawi &

SantaLucia, 1997).

d 
Size determined with respect to the prototype human papillomavirus type 11 genome (GenBank acc. no. M14119).

3′ end of the E2 

ORF, the E5a/b 

ORF, the L2 ORF, 

the L1 ORF, the 

URR, and the 5′ 

end of the E6 ORF

4851bp

3′ end of the L1 

ORF, the URR, the 

E6 ORF, the E7 

ORF, the E1 ORF, 

and a segment of 

the E2 ORF

4,521bp

a
 Primers reported by Jelen et al. , 2016.

b
Positions of the nucleotides determined with respect to the prototype human papillomavirus type 11 genome

(GenBank acc. no. M14119).

Region Primer name
GC 

content 
c Tm

 c
Primer binding 

site 
b

Amplicon 

size 
d
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Table 12: Polymerase chain reaction (PCR) components for amplifying human papillomavirus type 11 full-length genome in 

two overlapping fragments (E1 to L1 genes; L1 to E1 genes).  

 

 

 

Component Volume Final concentration

Phusion DNA polymerase 0,5µl 1,0 units

5 x Phusion HF Buffer 10µl 1X

10µM Forward primer 2,5µl 0,5µM

10µM Reverse primer 2,5µl 0,5µM

10mM dNTPs 1µl 200µM

Template DNA 5µl N/A

Nuclease free water 27,5µl N/A

Total 50µl N/A

Figure 8: Genome organisation of a low-risk human papillomavirus type 11 (HPV11). 

 

 

 

M14119.1 

7933bp 

E1-E7 early genes, L1-L2 late genes, URR Upper regulatory region, AE early polyA signal, and P97 and P742 promotors are 

indicated. The figure is drawn based on HPV11 A1 prototype (GenBank accession number M14119.1). The yellow arrow line 

indicates genome fragment amplified by primer pair HPV-11-S2F and HPV-11-S2R, and the black arrow line indicates genome 

fragment amplified by the HPV-11-S1MS-F and HPV-11-S1MS-R primer pair. 
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3.2.3. Agarose gel electrophoresis 

PCR amplicons were separated and visualised by electrophoresis using a 1% agarose gel. Briefly, a 1% 

gel was prepared using 1g Seakem® LE agarose powder, and 100ml of 1x TAE buffer at pH 8.0 and 

the gel was electrophoresed at 90V for 45 minutes. Tables summarising the preparation of TAE and 1% 

agarose gels is included in Appendix 6 and 7. The DNA was stained using a GelRed nucleic acid gel 

stain (Thermo Fisher Scientific, USA) (Appendix 8) and visualised using the BioRad Molecular Imager 

Gel Doc™ XR+ with Image Lab™ Software (BioRad, California, USA) to determine the fragment sizes 

according to the known DNA size marker. The O’GeneRuler™ 100bp DNA ladder SM0333 

(Fermentas, Illinois, USA) containing DNA fragments from 100bp to 10 000bp was used to estimate 

the size of the amplicons.  

3.2.4. Purification of PCR product 

The Wizard® SV Gel and PCR Clean-up System (Promega, Madison, USA) was used to purify target 

DNA from a 1% agarose gel according to manufacturer’s instructions. Membrane Binding Solution was 

added at a ratio of 10μl of solution per 10mg of agarose gel and the gel heated at 60°C until completely 

dissolved. The contents were transferred to the SV Minicolumn and washed twice by adding 700μl and 

500μl of Membrane Wash Solution. The DNA was eluted in 50μl of nuclease-free water and stored at 

4°C until further use. 

3.2.5. Determination of DNA concentration 

DNA concentration was measured using the Qubit fluorometer and the Qubit dsDNA BR assay kit, 

according to the manufacturer’s instructions (Thermo Fisher Scientific, Illinois, USA). A working 

solution was made by diluting dsDNA BR reagent and BR buffer (1:200) in microcentrifuge tubes. 

Then, 190μl working solution and 10μl of each standard were loaded in microcentrifuge tubes. In 

separate microcentrifuge tubes, 198μl working solution and 2μl sample were loaded, vortexed and 

incubated for two minutes at room temperature. The Qubit was calibrated, and DNA concentrations of 

all samples were measured.  

3.2.6. MiSeq library preparation and sequencing  

The Nextera XT DNA Library Preparation kit (Illumina, California, USA) was used to convert the 

purified DNA product to a short, fragmented DNA library, followed by size selection using AMpure 

XP beads (Beckman Coulter, California, USA). The multiplexed libraries were analysed on an Illumina 

MiSeq (Illumina, California, USA) with the MiSeq reagent kit v3 (300 cycles) (Illumina, California, 

USA) at the UFS Next Generation Sequencing Unit. 
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3.2.7. Next-generation sequencing data analysis  

FASTQ sequences were imported into Geneious 2021 software (https://www.geneious.com) as paired 

ends with an insert size of 500. Reads were trimmed with an error probability limit of 0.05 and filtered. 

Reads were assembled and aligned to the A1 prototype M14119.1 using a medium sensitivity, and a 

consensus sequence was generated using the highest quality threshold. Using Geneious 2021 software 

(https://www.geneious.com), the consensus sequence was inspected to identify ambiguities and 

degenerative bases and exported as text documents. An assembly report was generated and the length 

of the genome, CG content and pairwise identity was determined using Geneious 2021 software.  

Analysis of nucleotide and amino acid variation 

Genomic variants and genomic positions were identified by comparing the sequence data with the 

prototype HPV11 genome (GenBank accession number M14119.1). A corrected sequence with a 2bp 

insertion at genomic position 7717-7718 was used when determining genomic variants and genomic 

positions (Maver et al., 2011). For the isolates sequenced in this study, nucleotide substitutions, 

nucleotide insertions, and nucleotide deletions were identified with respect to the A1 prototype strain 

(GenBank accession number M14119.1) using MEGA X software (Kumar et al., 2018).  

The predicted amino acid sequences for each coding region were determined with the use of a codon 

chart included in Appendix 9. Non-synonymous substitutions resulting in amino acid alterations were 

identified by comparing amino acid data with the HPV11 A1 prototype (GenBank accession number 

M14119.1). 

Percentage variation in coding regions 

To estimate the percentage of variation within the coding regions, the number of nucleotide- and amino 

acid variations compared to the A1 prototype sequence M14119.1 were converted into a percentage 

using the following equations: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑀14119.1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑀14119.1
 × 100  

and 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑀1411.1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑐 𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑀14119.1
 × 100 

Degree of divergence 

The degree of divergence was calculated using pairwise analysis of percentage divergence of 

nucleotides with MEGA X software using the Maximum Composite Likelihood model. Codon positions 
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included were 1st, 2nd, 3rd, and non-coding. All positions with less than 95% site coverage were removed 

using the partial deletion option. The degree of divergence was calculated for isolates sequenced in the 

current chapter, as well as the 28 complete genomes retrieved from GenBank and divergence from 

lineage A and B prototypes were described. The degree of divergence between isolates sequenced in 

the current chapter was also calculated. 

Maximum likelihood method 

The evolutionary history was inferred using the maximum likelihood method and the Tamura-Nei 

model with a bootstrap value of 1000 software using sequence data determined in the current chapter, 

and 28 complete sequences retrieved from GenBank. Analysis was performed using MEGA X software. 

Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model, then selecting the 

topology with the higher log-likelihood value. The 1st, 2nd, 3rd, and non-coding codon positions were 

included in the analysis.  

Isolates with known (sub)lineage classification based on phylogenetic analysis were aligned with the 

corresponding reference strain using MEGA X software to identify nucleotide- and amino-acid 

variabilities (Kumar et al., 2018).  

3.3. Results 

3.3.1. Selection of isolates for whole genome sequencing  

Four isolates were selected for complete genome determination. Two isolates (VBD15/10 and 

VBD74/09) from one patient collected approximately five months apart were selected because the 

concatenated E5a/b-L1-URR nucleotide sequence profiles were highly similar and therefore considered 

representative of two isolates retrieved from GenBank for which compete genome data was available 

and eight isolates from the current study of RRP patients. VBD01/10 was selected because the 

concatenated E5a/b-L1-URR nucleotide sequence profiles were highly similar to an isolate retrieved 

from GenBank for which compete genome data was available and representative of six isolates from 

the current study. These isolates did not cluster closely with any prototype sequence. VBD34/08 and 

VBD28/14 were identified as potential lineage B isolates based on the tree topology however, there was 

insufficient DNA available to obtain further sequence data for VBD34/08. Thus, overall, the complete 

genome of four HPV11 isolates, VBD01/10, VBD15/10, VBD28/14 and VBD74/09, from three patients 

were sequenced in this study.  

Information regarding patient sex, date of birth, date of diagnosis and sample collection is included in 

Table 13. The DNA sequencing reads were mapped to the A1 prototype M14119.1 and a consensus 
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sequence was generated for each isolate. The number of assembled reads is summarised in Table 14. 

The minimum and maximum lengths of the consensus sequences, the CG content and the pairwise 

identity are summarised in Table 15. 

Additional genome sequence data for 28 geographically distinct representatives of each HPV11 lineage, 

including lineage A, sub-lineages A1 to A4, and lineage B, were retrieved from GenBank and used for 

downstream analysis (Appendix 2). 

 

Table 13: Patient information. 

 

 

Table 14: Next-generation sequencing assembly report for four complete human papillomavirus type 11 (HPV11) mapped to 

the A1 prototype M14119.1 using Geneious Prime software (https://www.geneious.com). 

   

   

 

Table 15: The lengths of the complete human papillomavirus type 11 (HPV11) consensus sequence, the CG content and the 

pairwise identity of four HPV11 isolates mapped to the A1 prototype M14119.1 using Geneious Prime software 

(https://www.geneious.com).  

The corrected M14119.1 with a two base-pair (bp) insertion at genomic position 7717-7718 was used (Maver et al., 2011). 

.  

  

Isolate Sex Date of birth Date of diagnosis Date of sample collection

VBD01/10 Male 2007/01/04 2010/01/06 2009/11/03

VBD28/14 Male 2009/03/29 2014/06/26 2010/01/06

VBD74/09 Male 2009/11/03

VBD15/10 Male 2014/06/26

2009/10/13 2009/10/23

Isolate Total reads Assembled reads Not assembled reads

VBD01/10  1,033,592 1,022,153 11,439 reads

VBD15/10  1,652,362 1,636,151 16,211 reads

VBD28/14 1,333,518  1,306,323 27,195 reads

VBD74/09 1,903,068  1,879,877 23,191 reads

Assembly report

Isolate Sequence length CG content Pairwise identity

VBD01/10 7934bp 41.1% 99.3%

VBD15/10 7932bp 41.1% 99.4%

VBD28/14 7949bp 41.1% 99.3%

VBD74/09 7932bp 41.1% 99.4%
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3.3.2. Nucleotide and amino acid variances across the human papillomavirus type 11 

genome  

The nucleotide sequence variabilities for the four complete HPV11 genomes are summarised in Table 

16. Briefly, VBD01/10 contained 25 nucleotide substitutions, a nucleotide deletion and two nucleotide 

insertions compared to the A1 prototype M14119.1, VBD15/10 and VBD74/09 contained 26 nucleotide 

substitutions and one nucleotide deletion compared to the A1 prototype M14119.1, and VBD28/14 

contained 94 nucleotide substitutions, 12 nucleotide deletions and 28 nucleotide insertions compared to 

the A1 prototype M14119.1. In total, 45 indels were identified among four isolates in the URR.  

Nucleotide insertions include an ACGCGC insertion following genomic position 7529 in VBD28/14, a 

C and CC insertion following genomic position 7584 in VBD28/14 and VBD01/10, respectively, a 

CGCCAGG insertion following genomic position 7723 in VBD28/14, and a GGTTGTGTTATCTC 

insertion following genomic position 7746 in VBD28/14. Nucleotide deletions include a T deletion at 

genomic position 7509 in VBD01/10, VBD15/10 and VBD74/09, and a GTATCTTGCCAA deletion 

from genomic position 7694 to 7705 in VBD28/14. All isolates contained nucleotide substitutions 

T137C, C1783G, G1784C, A2580G, C2884T, T2888C, G3436A, A3645G, A3832G, A3952T, 

G3991C, C4647T, C4887A, and T7547C. VBD15/10 and VBD74/09 had identical nucleotide 

substitutions, insertions, and deletions.  

The amino acid sequence variabilities for the four complete HPV11 genomes are summarised in Table 

17. By aligning the four isolates sequenced in the current study and the A1 prototype sequence 

(GenBank accession number M14119.1), 69 non-synonymous substitutions resulting in changed amino 

acids were identified. Briefly, VBD01/10 had ten non-synonymous substitutions, VBD15/10 and 

VBD74/09 had 12 non-synonymous substitutions, and VBD28/14 had 35 non-synonymous 

substitutions. All isolates contained an arginine (R) to A substitution in the E1 ORF, a K to R non-

synonymous substitution in the E2 ORF, a G to E non-synonymous substitution in the E4 ORF, and a 

valine to F and T to L in the E5a ORF. VBD15/10 and VBD74/09 had identical amino acid sequences.  

As previously mentioned, a nucleotide variance of 0.5%-1.0% across the whole genome defines a 

variant sub-lineage and the nucleotide sequence of the L1 ORF is often used to represent the whole 

genome variation due to the high degree of conservation in this region (Burk et al., 2011, 2013). 

Subsequently, to estimate the degree of variation in coding regions, the percentage difference between 

isolates in the current study and the A1 prototype sequence M14119.1 was determined. In brief, the 

nucleotide sequences of coding regions varied from 0.46% in the L1 ORF to 2.22% in the E5b ORF. 

The amino acid sequences variability ranged from 0.39% in the L1 ORF to 6.75% in the E5b ORF.  
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Table 16: Sequence comparison of nucleotide variances among four human papillomavirus type 11 (HPV11) isolates against 

the HPV11 prototype with GenBank accession number M14119.1.  

Residues that differed from those of the HPV11 prototype are indicated by a white (nucleotide substitutions), green (nucleotide 

deletions) and yellow (nucleotide insertions) colour change and the substituted-, deleted- or inserted nucleotides. The 

corrected M14119.1 with the 2bp insertion at genomic position 7717-7718 was used (Maver et al., 2011). 

 

  

VBD01/10 VBD15/10 VBD24/18 VBD74/09
137 T C C C C
180 C T
295 C T
380 C T T T
466 G A
563 G T
566 C T
662 G T T T

1107 A C
1130 A C C
1352 T C
1381 G A
1426 C T
1488 A C
1623 T C C
1783 C G G G G
1784 G C C C C
2100 T A
2169 T C
2172 A T
2256 C A
2262 A G
2328 T G
2358 C T
2385 A G
2412 A C
2523 G A
2580 A G G G G
2854 C T
2884 C T T T T
2888 T C C C
3166 A C
3391 A G
3436 G A A A A
3462 A C C
3487 C T T T
3492 C T
3511 C A
3516 T G
3537 A C
3566 G A
3570 C A
3626 A C C C
3631 G C
3645 A G G G G
3772 A C C
3781 C T
3814 A G
3830 T G
3832 A G G G G
3902 C G
3952 A T T T T
3978 A G
3991 G C C C C
3993 A T
4048 T C
4142 A C C
4166 C G
4227 C T
4274 A C
4312 C A
4333 C T
4380 T G G
4452 A G
4584 A G
4647 C T T T T
4740 G A
4752 T C
4815 T G
4821 G A
4887 C A A A A
4989 C A
5059 G A
5157 T G
5235 A G
5290 C A
5389 G A
5416 C A
5470 T C
5518 C T
5523 C T
5706 C T
5929 A G
6028 C T T T
6296 T A
6298 T C
6949 T A
7045 G A
7197 C T
7237 T C
7289 A G
7302 A C
7319 G T
7329 G C
7349 G C
7359 T C
7411 T G
7413 A C
7479 C T T T
7509 T DEL DEL DEL
7519 G T

7529-7530 ACGCGC
7547 T C C C C
7563 C T
7570 A C

7584-7585 CC C
7591 A G
7626 A C
7646 T A

7694-7705 GTATCTTGCCA DEL
7724-7725 CGCCAGG
7746-7747 GGTTGTGTTATC

7775 T G
7780 G T
7880 C T
7928 C T
27 G T
48 C T

Isolate

URR 

7277..7933,

1..101

L1 

5771..7276

E6 102..554

E7 530..826

E1 

832..2781

E2 

2723..3826   

^E4 

3255..3581 

L2 

4417..5784

E5b 

4146..4370

E5a 

3871..4146 

Gene Genomic region Base
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Table 17: Comparison of amino acid variances among four human papillomavirus type 11 (HPV11) isolates against the 

HPV11 prototype with GenBank accession number M14119.1.  

The total number of amino acids in each gene and the amino acid number where a non-synonymous is observed is indicated. 

Residues that differed from those of the HPV11 prototype are indicated by a white colour difference and the substituted amino 

acid.  

 

Gene
Amino 

acid no.

Amino 

acid*
VBD01/10 VBD15/10 VBD28/14 VBD74/09

65 A V

122 G E

12 V L

45 A S S S

100 N T T

174 A A

184 D N

318 R A A A A

527 Q H

247 N T T

257 S F

263 N K

265 I S

272 K T

282 A T

283 A D

308 K R R R R

350 K N N

46 Q R

61 G E E E E

70 T P P

78 T L L L

80 D S

86 T K

88 S A

95 S R

106 L I

11 I G

28 V F F F F

41 T L L L L

91 Q P P

7 H Q

28 L F

43 K N

56 T N

63 S L

191 D E

215 A T

292 L I

325 V I

334 L M

351 F L

368 L F

176 S T

476 A V

*A – alanine, D – aspartic acid, E – glutamic acid, F – phenylalanine, G – glycine, H – histidine, 

I – isoleucine, K – lysine, L – leucine, M – methionine, N – asparagine, P – proline, Q – 

glutamine, R – arginine, S – serine, T – threonine, V – valine

E6 

1..150

Isolate

E5A 

1..91

E5B 

1..74

L2 

1..455

L1 

1..501

E7   

1..98

E1 

1..649

E2 

1..367

E4  

1..108



72 

3.3.3. Pairwise nucleotide difference between complete human papillomavirus type 

11 genomes 

Pairwise nucleotide difference between complete genomes obtained in this study and sequence data 

retrieved from GenBank is summarised in Appendix 12. There were a total of 7920 positions in the 

final dataset. Pairwise nucleotide difference between the four complete genomes obtained in this study 

and 28 complete genome sequences obtained from GenBank varied from 0.000 to 0,01275 (Appendix 

12). Divergence from the sub-lineage A1 prototype M14119.1 ranged from 0,00038 (FN907963.1) to 

0,01224 (LN833183.1) with an average divergence of 0,00378. Divergence from the sub-lineage A2 

prototype LN833161.1 ranged 0,00025 (HE611263.1 and JQ773409.1) to 0,01224 (LN833183.1) with 

an average divergence of 0,00241. Divergence from the sub-lineage A3 prototype LN833169.1 ranged 

from 0,00139 (LN833165.1) to 0,01275 (LN833183.1) with an average divergence of 0,00578. 

Divergence from the sub-lineage A4 prototype LN833187.1 ranged from 0,00507 (LN833165.1) to 

0,01275 (LN833183.1) with an average divergence of 0,00624. Divergence from the lineage B 

prototype LN833183.1 ranged from 0,00051 (VBD28/14) to 0,01275 (LN833169.1, LN833187.1) with 

an average divergence of 0,01186 (Appendix 12). 

Pairwise nucleotide difference between the four complete genomes obtained in this study is summarised 

in Table 18. There were a total of 7920 positions in the final dataset. VBD15/10 and VBD74/09 had an 

evolutionary divergence of zero. 

 

Table 18: Estimates of evolutionary divergence between four human papillomavirus type 11 (HPV11) sequences using MEGA 

X software.  

The corrected M14119.1 with the 2bp insertion at genomic position 7717-7718 was used (Maver et al., 2011). 

 

 

 

  

VBD01/10 VBD15/10 VBD28/14 VBD74/09

VBD01/10

VBD15/10 0,00139

VBD28/14 0,01184 0,01197

VBD74/09 0,00139 0 0,011973
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3.3.4. Maximum Likelihood method 

The evolutionary history was inferred by using the maximum likelihood method and Tamura-Nei 

model. The tree with the highest log likelihood (-12751.59) is depicted. The analysis involved 32 

nucleotide sequences and 7972 positions were included in the final dataset. Phylogenetic analysis of the 

HPV11 complete genome resolved into two lineages, namely lineage A and lineage B.  

Two isolates, VBD28/14 and LN833183, (2/32) were identified as lineage B and clustered together with 

a 100% certainty in the bootstrap test (Figure 9). The majority of isolates (23/28, 82%), including 

VBD01/10, VBD15/10, and VBD74/09, clustered with the A2 reference LN833161.1. VBD15/10 and 

VBD74/09 clustered separately from the other sub-lineage A2 isolates (Figure 9). 

3.3.5. Genome heterogeneities with respect to the corresponding prototype 

Inferred by phylogenetic analysis, VBD28/14 was identified as a lineage B isolate. There were three 

nucleotide differences identified between VBD28/14 and the lineage B prototype LN833183.1. 

Nucleotide heterogeneities are summarised in Table 19. Based on the alignment of VBD28/14 with the 

lineage B prototype LN833183.1, one non-synonymous substitution could be identified. A C6831T 

nucleotide substitution resulted in an A to E amino acid substitution (Table 19). 

 

Table 19: Genomic variations between human papillomavirus type 11 (HPV11) lineage B isolates VBD28/14 sequenced in 

this study and lineage B prototype LN833183.1 retrieved from GenBank.  

The corrected M14119.1 with the 2bp insertion at genomic position 7717-7718 was used (Maver et al., 2011). 

 

 

VBD01/10, VBD15/10 and VBD74/09 were identified as sub-lineage A2 isolates through phylogenetic 

analysis. Based on the alignment of VBD01/10, VBD15/10 and VBD74/09 with the A2 prototype 

LN833161.1, a total of 14 variable nucleotide positions and nine variable amino acid positions were 

identified. Nucleotide heterogeneities are summarised in Table 20. 

 

  

Isolate 48 3820 6831

VBD28/14 T A C

LN833183.1 C G T

 Genomic position
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Table 20: Genomic variations between human papillomavirus type 11 (HPV11) sub-lineage A2 isolates sequenced in this study 

and sub-lineage A2 prototype LN833161.1 retrieved from GenBank.  

The corrected M14119.1 with the 2bp insertion at genomic position 7717-7718 was used (Maver et al., 2011). 

 

One non-synonymous substitution was identified in the E1 ORF of two isolates. An A1130C nucleotide 

substitution resulted in a N to T in VBD15/10 and VBD74/09 at amino acid 100. Two non-synonymous 

substitutions were identified in the E2 ORF in both VBD15/10 and VBD74/09. An A3462C nucleotide 

substitution resulted in a N to T amino acid substitution at amino acid 247, and an A3772C nucleotide 

substitution resulted in a K to N amino acid substitution at amino acid 350. One non-synonymous 

substitution was identified in the E2 ORF in VBD01/10. A C3492T nucleotide substitution resulted in 

a S to F amino acid substitution at amino acid 257. VBD15/10 and VBD74/09 both contained two non-

synonymous substitutions in the E4 ORF. A G3391A nucleotide substitution resulted in a R to Q amino 

acid substitution at amino acid 46 and an A3462C nucleotide substitution resulted in a T to P amino 

acid substitution at amino acid 70. One non-synonymous substitution was identified in the E4 ORF in 

VBD01/10. A C3492T nucleotide substitution resulted in a P to S amino acid substitution at amino acid 

80. One non-synonymous substitution was observed in VBD15/10 and VBD74/09 in the E5a ORF. An 

A4142C nucleotide substitution resulted in a Q to P amino acid substitution at amino acid 91. One non-

synonymous substitution was identified in three isolates in the L1 ORF. A C7272A nucleotide 

substitution resulted in a T to K amino acid substitution at amino acid 501 in VBD01/10, VBD15/10 

and VBD74/09 (Table 20). 

 

Isolate 1107 1130 1623 2358 3391 3462 3492 3772 4142 4380 7252 7272 7413 7585-7586

LN833161.1 C A T T G A C A A T G C C C insertion

VBD01/10 T A A CC insertion

VBD15/10 A C C C A C C C G A A A No insertion

VBD74/09 A C C C A C C C G A A A No insertion

Genomic position
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Figure 9: Phylogenetic tree of human papillomavirus type 11 (HPV11) based 32 nucleotide sequence alignments of HPV11 

including four isolates sequenced in this study and 28 sequences of geographically distinct isolates retrieved from GenBank.  

M14119.1 (blue) was used as a representative of sub-lineage A1, LN833161.1 (green) as a representative of sub-lineage A2, 

LN833169.1 (yellow) as a representative of sub-lineage A3, LN833187.1 (red) as a representative of sub-lineage A4 and 

LN833183.1 (orange) was used as a representative of lineage B. The maximum likelihood tree was constructed using MEGA 

X using the maximum likelihood method and Tamura-Nei model. The corrected M14119.1 with the 2bp insertion at genomic 

position 7717-7718 was used (Maver et al., 2011). 

Lineage A Lineage B 
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3.4. Discussion 

HPV classification below types is increasingly relevant since within-type variants (lineages and sub-

lineages) are associated with differential prognosis and outcomes concerning virus persistence, 

development of lesions and progression to malignancy (Flores-Díaz et al., 2017). The advent of 

metagenomics using high-throughput Illumina sequencing has enabled the discovery of numerous novel 

viruses in various bio-niches at a reasonable cost and unprecedented speed. Additionally, genome 

characterisation assists in studying viral diversity and the association of virus and disease (Ambulos et 

al., 2016; Kocjan et al., 2015; Parker & Chen, 2017; Tuna & Amos, 2017).  

The HPV nomenclature is well established. However, while classification into species and types is 

based on unique genes, variant lineage and sub-lineage classification are based on the complete genome 

of the virus. HPV variants are considered novel only after the complete genome has been cloned and 

deposited with the International HPV Reference Centre (Bernard et al., 2010; Burk et al., 2011; 

Bzhalava et al., 2015; de Villiers et al., 2004; Kocjan et al., 2015) 

(https://www.hpvcenter.se/human_reference_clones). Phylogenetic analysis of concatenated E5a/b-L1-

URR sequences suggested a supposed novel HPV11 lineage or sub-lineage and isolates of interest using 

a previously published PCR protocol (Jelen et al., 2016; Maver et al., 2011). However, due to the 

discrepancies observed in the phylogenetic tree topology using concatenated E5a/b-L1-URR, the sub-

lineage classification of several isolates remained undetermined in Chapter 2. It was also unclear 

whether the E2 segment can reliably distinguish between sub-lineages. Therefore, the complete HPV11 

viral genome of selected isolates was amplified using long-range PCR and sequenced using high-

throughput sequencing.  

Isolates characterised in this study were initially isolated from respiratory tract papilloma samples 

obtained from patients with a clinical diagnosis of RRP. We assembled four HPV11 complete genomes 

from three different patients. VBD28/14 had the most nucleotide substitutions and indels, followed by 

VBD01/10. VBD15/10 and VBD74/09, isolated from one patient, were identical and indicated no signs 

of evolution within the host. Comparison of the ORFs of each of the four isolates identified non-

synonymous substitutions that changed the amino acid, which may alter protein function and 

expression, which underlie disease phenotype (Lebeuf-Taylor et al., 2019). Also, interference in gene 

expression may lead to cancer progression and failure of treatment options. Therefore, future studies 

regarding viral gene expression are vital.  

Phylogenetic analysis confirmed that VBD28/14 clusters with another lineage B isolate which was 

recently identified (Jelen et al., 2016), and analysis of the genome organisation of VBD28/14 revealed 

many similarities and some differences, including three nucleotide substitutions and one non-

synonymous substitution in the L1 capsid protein. VBD15/10 and VBD74/09 was identified as sub-
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lineage A2 but clustered separately from all other sub-lineage A2 isolates. VBD15/10 and VBD74/09 

had seven non-synonymous heterogeneities in the E1-, E2-, E4-, E5a- and L1 ORF compared to the A2 

prototype used. VBD01/10 was the most similar to the A2 prototype and only had three nucleotide 

substitutions, one nucleotide insertion and three non-synonymous substitutions in the E2, E4 and L1 

ORFs. 

Conformational changes in the E1 and E2 proteins may affect replication of the HPV11 circular dsDNA 

genome. Furthermore, E2 possesses an initiation codon for E4, and protein changes in either may affect 

virion release and apoptosis in terminally differentiated cells (Graham & Faizo, 2017; Kardani & 

Bolhassani, 2018a; Wallace & Galloway, 2014). Point-mutations in E5 may inhibit cell transformation, 

hinder activation of various pathways, disrupt the acidification of endosomes, promote transformed cell 

invasiveness, and misregulate the proliferation of infected cells. As E5 is necessary for many pathways, 

sequence variations may significantly impact the function of this protein (Halavaty et al., 2014; Hemmat 

& Baghi, 2018; Venuti et al., 2011; Zhang et al., 2018). Functional analysis of early proteins in HPV11 

variants may further decipher the effects of mutations on the HPV virus life cycle.  

Within the L1 ORF, sequence variation was low, likely due to the slow genomic evolutionary rate (Chen 

et al., 2009, 2011). However, genomic- and amino acid variances within the L1 were identified in all 

samples. In order to determine whether non-synonymous nucleotide substitutions have an effect on the 

biological function of vaccines, functional analysis is required. Amino acid- and protein alterations that 

occur within the conserved epitopes of L1, have the ability to influence vaccine efficacy. However, to 

date, there have been no reports suggesting that the biological function of HPV type specific vaccines 

is influenced by antigenic differences between intratypic variants (Barra et al., 2019; Benedict & 

Derkay, 2021; Buck et al., 2013; Chabeda et al., 2018; Dadar et al., 2018). The consequences of 

polymorphisms in the novel lineage B, isolates of interest VBD15/10 and VBD74/09, and sub-lineage 

A3 and A4 on antibody recognition following natural infection or vaccination by the present-day 

vaccines and effects on the viral life cycle requires additional investigation.  

In conclusion, during this study the complete genome of four isolates of HPV11 were successfully 

identified and characterised from three patients. Additionally, this is also the second report of a lineage 

B isolate identified. Both lineage B isolates identified thus far have been isolated in South Africa, 

suggesting that this lineage B may be geographically restricted or have a low infectivity rate. Further 

research on sub-lineage A2 isolates, VBD15/10 and VBD74/09, is necessary to characterise these 

isolates fully. Research with different sample types and larger sample sizes are needed to clarify the 

prevalence and disease association and the impact of those newly characterised variants on HPV 

persistence and RRP development. 
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Chapter 4 - Concluding remarks 

Papillomaviruses have a well-documented history with human hosts, and most humans are infected at 

some point in their lives. Papillomaviruses have a slow evolutionary rate of approximately 10−8 

nucleotide substitutions per site per year and experience little recombination during their evolution; 

hence nucleotide polymorphisms mainly transpire due to arbitrary mutation time (Bernard, 1994; Chen 

et al., 2009, 2011; van Doorslaer, 2013). HPV was discovered in 1949 (Strauss et al., 1949), and 

evidence suggesting the involvement of HPV11 in RRP was first reported in 1982 (Gissmann et al., 

1982). To date, over 220 HPV types are recognised globally 

(https://www.hpvcenter.se/human_reference_clones).  

Despite phylogenetic relatedness, knowledge regarding intratypic variants of HPV11 and association 

with the clinical outcomes of infection are limited. Genetic traits resulting in various lineages and sub-

lineages of the virus are all encoded within the relatively small eight kilobyte circular dsDNA genome. 

HPV11 is ordinarily associated with a more severe disease outcome in patients with RRP and earlier 

age at diagnosis compared to HPV6, suggesting increased virulence and pathogenesis (El Achkar et al., 

2020; Intakorn & Sonsuwan, 2014; Omland et al., 2014; Seedat, 2020).  

According to previous South African surveillance studies, between 64% and 71% of the population are 

infected with HPV, and between 1% and 4% are infected with HPV11. However, majority of these 

studies targeted specific populations, older age groups, restricted sampling areas, and used only cervical 

samples (Giuliano et al., 2015; Mbulawa et al., 2017, 2018; Taku et al., 2020). Furthermore, no large-

scale South African studies or Free State based studies report on HPV11 intratypic variant distribution 

in patients with RRP, and no current information regarding variants circulating in the Free State exists. 

Therefore, this study aimed to genetically characterise HPV11 isolates from patients diagnosed with 

RRP treated at Universitas Academic Hospital. 

In a previous unpublished study performed in our laboratory, a novel HPV11 lineage B isolate was 

identified (Makatsa, 2012). Although not included in this study, this motivated investigation of further 

isolates for clarification of currently circulating lineages and sub-lineages. Therefore, HPV11 genetic 

variants were characterised based on the nucleotide sequence of the L1, URR, E5a/b and a segment of 

E2 genomic regions isolates from patients with RRP in the Free State. According to previous studies, 

these gene segments encompass sufficient SNPs to discriminate between viral lineages and sub-

lineages, as the concatenated L1-URR-E5a sequence reportedly contains adequate information for 

differentiation between A1 and A2 sub-lineages. The E5a/b ORF also has a faster evolutionary rate 

compared to other genes and contains several (sub)lineage specific SNPs. Furthermore, it has been 

reported that the E2 gene segment can reliably distinguish all known HPV11 variants (Bravo & Alonso, 

2004; Burk et al., 2011; Godínez et al., 2014; Jelen et al., 2016; Maver et al., 2011). A previous study 
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published by Jelen and colleagues in 2014 suggested that concatenated E5a/b-L1-URR sequences can 

be used as a surrogate for the phylogenetic clustering of HPV6 variants, a LR-HPV type (Jelen et al., 

2014). However, results obtained in the current study uncovered various classification errors using 

concatenated E5a/b-L1-URR sequence data and does not support the use of these gene segments for 

HPV11 variant classification.  

In Chapter 2, the nucleotide- and amino acid composition of the L1-, E5a/b-, and a segment of the E2 

ORF, as well as the nucleotide sequence of the URR were determined using Sanger sequencing. 

Although nucleotide changes may imply a variant lineage or sub-lineage, these variances do not 

necessarily impact the expressed protein function. However, DNA alterations in an ORF may lead to 

gene product alterations if non-synonymous substitutions are present (Lebeuf-Taylor et al., 2019). Few 

non-synonymous substitutions were reported in the L1 ORF of sequenced isolates, unlike the E5a/b 

ORF, where nearly all nucleotide substitutions were non-synonymous. The URR is a variable region 

within the HPV genome capable of accumulating and tolerating many nucleotide mutations as it does 

not encode proteins. Nevertheless, variations in the URR may still impact virus survival as this region 

contains crucial binding sites and promoters (Fang et al., 2020; Ribeiro et al., 2018). Amino acid 

changes may affect many factors such as the effectiveness of HPV11 targeted vaccines, protein folding, 

cell transformation, the viral life cycle, and disease severity. However, to fully understand the impact 

if these changes functional analysis of HPV11 genes is required to decipher the effects of mutations on 

the virus. Consequences of these polymorphisms in the novel lineage B and sub-lineage A3 and A4 

warrants further investigation.  

Analysis of the results obtained in the current study included constructing a maximum likelihood tree 

to confirm the differentiation of the HPV variants based on tree topology and to determine the presence 

of potentially novel intratypic variants. HPV11 concatenated L1-URR and E5a/b-L1-URR resolved into 

two lineages, namely lineage A and lineage B and the majority of the isolates sequenced (48/67) 

clustered together with the globally predominant A2 prototype isolates as anticipated. Two lineage B 

isolates were identified in the current study, VBD34/08 and VBD28/14, with VBD34/08 appearing 

identical to the previously identified lineage B isolate (GenBank accession number LN833183.1) (Jelen 

et al., 2016). The concatenated L1-URR, E5a/b-L1-URR sequences, and the E2 segment provided 

equivalent discriminatory power to distinguish between HPV-lineages; however, tree topology based 

on E5a/b-L1-URR sequences were incoherent for sub-lineage classification.  

Previous studies of intratypic evolution of HPV11 variants rarely dealt with whole-genome sequences. 

Instead, partial regions of the viral genome such as L1, URR, and an ORF gene were used (de Matos et 

al., 2013; Danielewski et al., 2013), leading to classification errors, as HPV genome variants are very 

closely related and only require a 0.5% to 1% variance in the complete genome (Burk et al., 2011). 

Therefore, the complete genome of selected novel HPV11 variants and variants of interest were 
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determined in Chapter 3 using NGS technology. Analysis of the whole genome ensures accurate 

differentiation into sub-lineages and detection of any heterogeneity of HPV11 (Burk et al., 2011). 

Based on complete sequence data, the majority of nucleotide substitutions and indels were identified in 

VBD28/14. Non-synonymous substitutions were identified in ORFs of each of the four isolates which 

may alter protein function (Lebeuf-Taylor et al., 2019), which underlie disease phenotype. Likewise, 

altered protein function may lead to cancer progression and failure of treatment options (Barra et al., 

2019; Brotherton, 2019; Cornall et al., 2013; Gerein et al., 2005; Huebbers et al., 2013). Therefore, 

future studies regarding viral gene expression are vital. Phylogenetic analysis of complete HPV11 

genomes identified VBD28/14 as a lineage B variant, and VBD01/10, VBD15/10 and VBD74/09 as 

sub-lineage A2 variants with great certainty. However, VBD15/10 and VBD74/09 contained numerous 

genomic- and amino acid variances compared to the A2 prototype. The slow evolutionary rate of 

papillomaviruses was reinforced as VBD15/10 and VBD74/09 isolated five months from each other 

from a single patient were identical (Bernard, 1994; Chen et al., 2009, 2011; van Doorslaer, 2013). 

Many inconsistencies were observed between the maximum likelihood trees constructed using the 

concatenated E5a/b-L1-URR sequences and WGS. Phylogenetic analysis using the concatenated E5a/b-

L1-URR sequences revealed that VBD01/10 did not cluster closely with the A2 prototype sequence as 

was the case using WGS. Also, analysis using the concatenated E5a/b-L1-URR sequences revealed 

VBD01/10, FN90762.1, and FN907963.1 clustered together with great certainty, However, 

FN907963.1 is a confirmed sub-lineage A1 isolate according to WGS. Furthermore, phylogenetic 

analysis revealed VBD15/10, VBD74/09, MK463916.1 and MK463921.1 clustered closely using the 

concatenated sequences, but this was not the case using complete HPV11 genomes. Discrepancies in 

the location of clustering of sub-lineage A2 isolates JQ773408.1, JQ773411.1, JQJQ773412.1, 

MK463914.1, and FR872717.1 was also revealed. Unlike using concatenated sequences, these 

sequences did not cluster closely with the A2 prototype using the complete HPV11 genome. An 

important discrepancy observed between using specific genes versus the complete genome was that A1 

isolates did not cluster with the corresponding prototype using the concatenated sequences. Therefore, 

using concatenated E5a/b-L1-URR sequences cannot reliably distinguish between HPV sub-lineages as 

previously suggested (Jelen et al., 2016).  

The 208bp region located at the 3′ end of the E2 ORF and the 5′ end of NCR2 provided more accurate 

results for HPV11 whole-genome tree reconstruction compared to the concatenated E5a/b-L1-URR 

sequences. All isolates were classified into appropriate sub-lineages as determined by WGS of the 

complete HPV11 sequence. This is the second report of a lineage B isolate identified in South Africa 

(Jelen et al., 2016). Two isolates of interest were identified in the current study. These isolates had 

numerous amino acid heterogeneities and the consequences of these polymorphisms requires additional 

investigation. The 208bp E2 segment could reliably classify all isolates in this study, suggesting that 
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this gene segment contains stable sub-lineage specific SNP’s and may serve in sub-lineage 

identification when complete genome sequences cannot be obtained. 

Although this study successfully completed the aim and objectives set out, limitations in the study were 

identified. The Sanger sequencing approach was used to sequence selected genes of the isolates; 

however, Sanger sequencing has a significantly lower sensitivity for genomic variant detection 

compared to NGS which may hinder detection of genomic variants present at low copy numbers (Parker 

& Chen, 2017; Sanger et al., 1977). Moreover, research with larger sample sizes will contribute towards 

clarification of the prevalence, disease association and impact of newly characterised variants on HPV 

persistence and RRP development. Functional analysis of genes would add valuable information 

regarding protein interactions and functioning.  

This study provides the most comprehensive data on the genomic diversity of HPV11 from patients 

with RRP in the Free State to date. As within type variants may have an association with disease 

outcome, it is essential to characterise the current strains circulating amongst the community. Baseline 

data on circulating HPV variants may significantly contribute to future evolutionary, epidemiological, 

vaccination, and molecular assay development studies, as well as to studies on the pathogenesis of 

HPV11 and other Alphapapillomaviruses. 
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I 

Appendices 

Appendix 1: Human papillomavirus type 11 positive patient sample information 

Date of Birth Sex Diagnosis VBD number 

2014/06/19 F 2018/03/14 114/18 

2014/01/07 F 2018/02/27  12/18* 

2014/07/03 F 2018/02/15 113/18 

2013/03/31 M 2017/07/26 23/17* 

1970/03/03 M 2017/06/21 47/17 

1985/08/22 M 2017/06/13 21/17 

1985/05/16 M 2016/12/05 68/16* 

2012/03/13 M 2016/10/28 48/16* 

2009/07/23 M 2016/08/17 33/16* 

2002/11/12 M 2016/01/24 17/16 

2012/01/08 F 2015/11/18 68/15* 

1992/03/28 F 2015/10/23 70/15 

2007/06/04 F 2015/09/16 49/15* 

2009/03/04 M 2015/09/16 50/15 

1990/05/18 M 2015/09/08 41/15* 

2013/04/23 F 2015/09/01 44/15* 

2011/09/01 M 2015/08/19 43/15 

2013/10/28 M 2015/05/06 16/15* 

1949/01/05 M 2015/04/15  08/15 

2013/07/24 F 2015/04/03 14/15* 

2011/05/29 M 2014/08/02 41/14* 

2010/01/28 M 2014/07/25 38/14 

1971/03/08 F 2014/07/23 36/14 

2009/03/29 M 2014/06/26 28/14* 

2011/03/17 M 2014/05/27 17/14* 

2000/07/05 M 2014/05/26 22/14* 

2007/11/12 M 2014/03/18 29/14* 

2006/01/01 F 2013/12/09 55/13* 

2011/09/07 F 2013/10/19 37/13 

2011/04/24 M 2013/08/02 29/13* 

Continued...  



II 

Date of Birth Sex Diagnosis VBD number 

2010/06/11 F 2013/01/25  08/13* 

2010/08/07 M 2012/10/07  48/12* 

2008/01/27 M 2012/09/26  47/12* 

2011/07/08 M 2012/07/31  39/12* 

2003/10/21 F 2012/06/12  37/12* 
   

14/14 

2008/12/25 M 2012/01/03  09/12* 

1992/03/25 F 2011/11/30  61/11* 
   

 62/11* 

1999/08/08 M 2011/11/02  58/11* 

2011/01/30 M 2011/09/19  52/11* 

1968/12/21 M 2011/08/15  41/11* 

2009/11/11 M 2011/07/25  37/11* 

2010/04/15 F 2011/07/04  35/11* 

2008/02/20 M 2011/06/14  49/12* 

2008/05/16 M 2011/05/23  30/11* 

2008/06/06 M 2011/03/07  34/11* 

2010/08/11 F 2011/02/26  14/11* 
   

18/14 

2008/08/30 F 2010/12/29  04/11* 

2000/10/29 F 2010/12/10 20/16 

2008/10/26 M 2010/10/13  48/10* 

2009/05/06 M 2010/08/18  33/10* 
   

 63/11* 
   

 01/12 
   

 02/12* 
   

 03/12 
   

 04/12* 

1999/03/30 F 2010/07/26  26/10* 

2008/04/23 F 2010/06/30  21/10* 

2003/02/11 M 2010/06/11  23/10* 

2007/01/04 M 2010/01/06  01/10* 
   

 07/10* 

Continued... 



III 

 

  

Date of Birth Sex Diagnosis VBD number 
   

 17/10* 
   

 34/10* 

1975/06/26 M 2009/11/23  79/09* 

2007/06/27 M 2009/10/23  74/09* 
   

 15/10* 

1967/12/22 M 2009/06/09  59/09* 
   

 63/09* 

      69/15* 

2000/07/28 M 2008/08/05  55/08* 

2000/10/14 M 2008/01/14  34/08* 

1981/04/23 F 2006/12/13  01/08 

2004/07/01 F 2005/11/28  04/08 

       37/08* 

       08/09* 

       14/09* 

2003/03/22 F 2005/10/27  41/12* 

2001/11/12 F 2003/10/01  17/09* 

1997/09/29 M 2001/10/09  49/08* 

       59/08* 

       69/09* 

       16/10* 

1997/02/23 M 2000/06/19  16/09* 

       52/09* 

       37/10* 

1964/06/08 F 1997/06/30  33/11* 

1993/09/13 M 1997/04/29  05/08 

       45/08* 

       13/10* 

1977/05/01 F 1990/07/15 69/16 

1979/08/04 F 1988/08/05  54/08* 

1979/11/18 F 1984/11/18  77/09 

*Human papillomavirus type 11 samples included in this study 



IV 

Appendix 2: Human papillomavirus type 11 isolates retrieved from GenBank and 

accession numbers 

 

Isolate name on GenBank GenBank 

Accession number 

Length of 

complete 

genome 

M14119.1 Human papillomavirus type 11 (HPV-11) complete 

genome 

M14119.1  7934bp 

LN833187.1 Human papillomavirus type 11 complete genome, 

isolate 27 

LN833187.1  7934bp 

LN833185.1 Human papillomavirus type 11 complete genome, 

isolate 25 

LN833185.1  7934bp 

LN833184.1 Human papillomavirus type 11 complete genome, 

isolate 24 

LN833184.1  7934bp 

LN833183.1 Human papillomavirus type 11 complete genome, 

isolate 23 

LN833183.1  7948bp 

LN833169.1 Human papillomavirus type 11 complete genome, 

isolate 9 

LN833169.1  7934bp 

LN833165.1 Human papillomavirus type 11 complete genome, 

isolate 5 

LN833165.1  7934bp 

LN833161.1 Human papillomavirus type 11 complete genome, 

isolate 1 

LN833161.1  7934bp 

KU298879.1 Human papillomavirus type 11 isolate 83A.11, 

complete genome 

KU298879.1  7932bp 

JQ773412.1 Human papillomavirus type 11 strain CU20, complete 

genome 

JQ773412.1  7934bp 

JQ773411.1 Human papillomavirus type 11 strain CU19, complete 

genome 

JQ773411.1  7934bp 

JQ773409.1 Human papillomavirus type 11 strain CU17, complete 

genome 

JQ773409.1  7934bp 

JQ773408.1 Human papillomavirus type 11 strain CU16, complete 

genome 

JQ773408.1  7934bp 

JN644141.1 Human papillomavirus type 11 isolate GUMC-AJ, 

complete genome 

JN644141.1  7934bp 

HE611263.1 Human papillomavirus type 11 complete genome, 

isolate LP220 

HE611263.1  7934bp 

HE574702.1 Human papillomavirus type 11 complete genome, 

isolate JO-RRP_2 

HE574702.1  7934bp 



V 

FR872717.1 Human papillomavirus type 11 complete genome FR872717.1  7934bp 

Continued…  

Isolate name on GenBank GenBank 

Accession number 

Length of 

complete 

genome 

FN907963.1 Human papillomavirus type 11 complete genome, 

isolate CS20 

FN907963.1  7943bp 

FN907962.1 Human papillomavirus type 11 complete genome, 

isolate CAC86 

FN907962.1  7934bp 

FN870021.1 Human papillomavirus type 11 complete genome, 

isolate A86 

FN870021.1  7934bp 

EU918768.1 Human papillomavirus type 11 isolate LZod45-11, 

complete genome 

EU918768.1  7934bp 

MN788368.1 Human papillomavirus type 11 isolate JO-RRP10, 

complete genome 

MN788368.1  7934bp 

MK463921.1 Human papillomavirus type 11 isolate HPV11-gw-

1110, complete genome 

MK463921.1  7932bp 

MK463916.1 Human papillomavirus type 11 isolate HPV11-gw-

1105, complete genome 

MK463916.1  7932bp 

MK463914.1 Human papillomavirus type 11 isolate HPV11-gw-

1103, complete genome 

MK463914.1  7934bp 

MK313767.1 Human papillomavirus type 11 isolate 

CAC1/HPV11, complete genome 

MK313767.1  7934bp 

MK313765.1 Human papillomavirus type 11 isolate JO-

RRP8/HPV11, complete genome 

MK313765.1  7934bp 

MK313763.1 Human papillomavirus type 11 isolate JO-

RRP2/HPV11, complete genome 

MK313763.1  7934bp 
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Appendix 4: Design of E2 segment primers 

 

Forward primer 5’-ACAGTGCAGCTACGCCTATA-3’ (Blue)  

Reverse primer 5’-TTGTACAGGCACTACCTCCATAC-3’ (Green) 

>M14119.1 Human papillomavirus type 11 (HPV-11) complete genome 

ACAGTGCAGCTACGCCTATAGTGCAACTGCAAGGTGATTCCAATTGTTTAAAATGTTTTAGATATAGACTGA

ATGACAAATATAAACATTTGTTTGAATTAGCATCTTCAACGTGGCATTGGGCCTCACCTGAGGCACCACATAA

AAATGCAATTGTAACATTAACATATAGCAGTGAGGAACAACGTCAGCAATTTTTAAACAGTGTAAAAATACCA

CCCACCATTAGGCATAAGGTGGGGTTTATGTCATTACATTTATTGTAACCATTACACCTGTATATATGTATATG

TGTACATAACATACGTGTATGGAGGTAGTGCCTGTACAA 

 

>JN644141.1 Human papillomavirus type 11 isolate GUMC-AJ, complete genome 

ACAGTGCAGCTACGCCTATAGTGCAACTGCAAGGTGATTCCAATTGTTTAAAATGTTTTAGATATCGACTGA

ATGACAAATATAGACATTTGTTTGAATTAGCATCTTCAACGTGGCATTGGGCCTCACCTGAGGCACCACATAA

AAATGCAATTGTAACATTAACATATAGCAGTGAGGAACAACGTCAGCAATTTTTAAACAGTGTAAAAATACCA

CCCACCATTAGGCATAAGGTGGGGTTTATGTCATTACATTTATTGTAACCATTGCACCTGTATATATGTATATG

TGTACATAACATACGTGTATGGAGGTAGTGCCTGTACAA 

 

>JQ773408.1 Human papillomavirus type 11 strain CU16, complete genome 

ACAGTGCAGCTACGCCTATAGTGCAACTGCAAGGTGATTCCAATTGTTTAAAATGTTTTAGATATCGACTGA

ATGACAAATATAAACATTTGTTTGAATTAGCATCTTCAACGTGGCATTGGGCCTCACCTGAGGCACCACATAA

AAATGCAATTGTAACATTAACCTATAGCAGTGAGGAACAACGTCAGCAATTTTTAAACAGTGTAAAAATACCA

CCCACCATTAGGCATAAGGTGGGGTTTATGTCATTACATTTATTGTAACCATTGCACCTGTATATATGTATATG

TGTACATAACATACGTGTATGGAGGTAGTGCCTGTACAA 

 

>MN788368.1 Human papillomavirus type 11 isolate JO-RRP10, complete genome 

ACAGTGCAGCTACGCCTATAGTGCAACTGCAAGGTGATTCCAATTGTTTAAAATGTTTTAGATATCGACTGA

ATGACAAATATAGACATTTGTTTGAATTAGCATCTTCAACGTGGCATTGGGCCTCACCTGAGGCACCACATAA

AAATGCAATTGTAACATTAACATATAGCAGTGAGGAACAACGTCAGCAATTTTTAAACAGTGTAAAAATACCA

CCCACCTTAGGCATAAGGTGGGGTTTATGTCATTACATTTATTGTAACCATTGCACCTGTATATATGTATATGT

GTACATAACATACGTGTATGGAGGTAGTGCCTGTACAA 

 

>LN833187.1 Human papillomavirus type 11 complete genome, isolate 27 

ACAGTGCAGCTACGCCTATAGTGCAACTGCAAGGTGATTCCAATTGTTTAAAATGTTTTAGATATAGACTGA

ATGACAAATATAGACATTTGTTTGAATTAGCATCTTCAACGTGGCATTGGGCCTCACCTGAGGCACCACATAA

AAATGCAATTGTAACATTAACATATAGCAGTGAKGAACAACGTCAGCAATTTTTAAACAGTGTAAAAATACC

ACCCACCATTAGGCATAAGGTGGGGTTTATGTCATTACATTTATTGTAACCATTGTACCTGTATATATGTATAT

GTGTACATAACATACGTGTATGGAGGTAGTGCCTGTACAA 



VIII 

Appendix 5: Specificity of E2 segment primers 

 

 

  



IX 

Appendix 6: 1x TAE preparation 

 

TAE Buffer 50x Stock Recipe 

▪ 242 g tris base in double-distilled H2O 

▪ 57.1 ml glacial acetic acid 

▪ 100 ml 0.5 M EDTA solution (pH 8.0) 

To make the 1x TAE working buffer, add 49 parts of dH2O to 1 part of 50x TAE buffer 

 

Appendix 7: Agarose gel preparation 

 

1% Agarose gel 

40ml 1%TAE 0.4g agarose powder 

50ml 1%TAE 0.5g agarose powder 

100ml 1%TAE 1.0g agarose powder 

200ml 1%TAE 2.0g agarose powder 

 

Appendix 8: GelRed stain preparation 

 

To make 50ml GelRed stain: 

▪ 10ul 10 000x GelRed® Nucleic Acid Gel Stain (Biotum) + 45ml dH20 + 5ml 0.1M NaCl 

▪ Only use 2 – 3 times before preparing a new GelRed stain  

▪ Store GelRed stain in the dark 
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Appendix 9: Amino acid codon chart 

 SECOND BASE IN CODON   

 T C A G  

T
H

IR
D

 B
A

S
E

 IN
 C

O
D

O
N

 
F

IR
S

T
 B

A
S

E
 I

N
 C

O
D

O
N

 

T TTT Phenylalanine F TCT Serine S TAT Tyrosine Y TG

T 

Cysteine C T 

TTC TCC TAC TG

C 

C 

TTA Leucine L TCA TAA STOP TG

A 

STOP A 

TTG TCG TAG TG

G 

Tryptophan W G 

C CTT Leucine L CCT Proline P CAT Histidine H CG

T 

Arginine R T 

CTC CCC CAC CG

C 

C 

CT

A 

CC

A 

CA

A 

Glutamine Q CG

A 

A 

CT

G 

CC

G 

CA

G 

CG

G 

G 

A ATT Isoleucine I ACT Threonine T AAT Asparagine N AG

T 

Serine S T 

AT

C 

AC

C 

AA

C 

AG

C 

C 

AT

A 

AC

A 

AA

A 

Lysine K AG

A 

Arginine R A 

AT

G 

Methionine M AC

G 

AA

G 

AG

G 

G 

G GTT Valine V GCT Alanine A GAT Aspartic 

acid 

D GG

T 

Glycine G T 

GT

C 

GC

C 

GA

C 

GG

C 

C 

GT

A 

GC

A 

GA

A 

Glutamic 

acid 

E GG

A 

A 

GT

G 

GC

G 

GA

G 

GG

G 

G 

 

  



XI 

Appendix 10: Pairwise analysis of percentage divergence of nucleotides using the 

human papillomavirus type 11 concatenated E5a/b-L1-URR data set 
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Appendix 11: Pairwise analysis of percentage divergence of nucleotides using the 

208bp human papillomavirus type 11 E2 segment data set 
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Appendix 12: Pairwise analysis of percentage divergence of nucleotides using the 

human papillomavirus type 11 complete genomes 
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