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Introduction: Unmanaged Diabetes Mellitus (DM) usually results to tissue wastage
because of mitochondrial dysfunction. Adverse effects of some drugs used in the
management of DM necessitates the search for alternative therapy from plant origin
with less or no side effects.Ocimumgratissimum (L.) (OG) has been folklorically used in
the management of DM. However, the mechanism used by this plant is not fully
understood. This studywasdesigned to investigate theeffects of chloroform fractionof
OG leaf (CFOG) in the reversal of tissue wastage in DM via inhibition of mitochondrial-
mediated cell death in streptozotocin (STZ)-induced diabetic male Wistar rats.

Methods: Air-dried OG leaves were extracted with methanol and partitioned
successively between n-hexane, chloroform, ethylacetate andmethanol to obtain
their fractions while CFOG was further used because of its activity. Diabetes was
induced in fifteen male Wistar rats, previously fed with high fat diet (28 days), via a
single intraperitoneal administration of STZ (35 mg/kg). Diabetes was confirmed
after 72 h. Another five fed rats were used as the normal control, treated with corn
oil (group 1). The diabetic animals were grouped (n = 5) and treated for 28 days as
follows: group 2 (diabetic control: DC) received corn oil (10 mL/kg), groups 3 and
4 were administered 400mg/kg CFOG and 5mg/kg glibenclamide, respectively.
Body weight and Fasting Blood Glucose (FBG) were determined while
Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and beta cell
(HOMA-β), and pancreatic tissue regenerating potential by CFOG were assessed.
Activity-guided purification and characterization of the most active principle in
CFOG was done using chromatographic and NMR techniques. The animals were
sacrificed after 28 days, blood samples were collected and serum was obtained.
Liver mitochondria were isolated and mitochondrial permeability transition (mPT)
was investigated by spectrophotometry.

Results: CFOG reversed diabetic-induced mPT pore opening, inhibited ATPase
activity and lipid peroxidation. CFOG reduced HOMA-IR but enhanced HOMA-β
and caused regeneration of pancreatic cells relative to DC. Lupanol was a major
metabolite of CFOG.
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Discussion: Normoglycemic effect of CFOG, coupled with reversal of mPT,
reduced HOMA-IR and improved HOMA-β showed the probable antidiabetic
mechanism and tissue regenerating potentials of OG.
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glucose homeostasis, mitochondrial dysfunction

1 Introduction

Diabetes mellitus (DM) is a metabolic derangement typified by
perturbation of intermediary metabolism. Preliminary symptoms
are polyuria, polydipsia, polyphagia and weight loss (Ekaiko et al.,
2016). Glycosuria and ketonuria are other symptoms commonly
found in children, although it could also be observed in adults. The
DM has been a worrisome global health concern attributable to its
attendant complications, high degree of morbidity and death
(Beaglehole and Yach, 2003; Yach et al., 2004; American Diabetes
Association, 2012). Long term effect of untreated DM is associated
with complications which can either be microvascular or
macrovascular. The former is linked to damage of the small
blood vessels resulting to retinopathy, neuropathy, nephropathy,
amelia-phocomelia, coma and even death. The latter is associated
with disorders of large vasculatures such as atherosclerosis and
cardiomyopathy (Ubaid et al., 2019). About 463 million people was
reported to be living with the disease in 2019. Its prevalence in
Nigeria has increased to over 6 million adults (IDF, 2019; Ugwu
et al., 2020).

There are two types of DM namely, type 1 (T1DM) and 2
(T2DM). The T1DM is a disease characterised by autoimmune-
dependent beta cell wreckage and lack of insulin. It is otherwise
referred to as insulin dependent DM. On the other hand, T2DM is
related to insulin resistance ensuing from insensitivity of the
receptor to insulin in the skeletal muscle and other peripheral
tissues alongside partial β-cell obliteration. It is also known as
insulin non-dependent DM. Hyperglycemia, which causes several
organ impairment, is a general clinical feature of DM (Feldman,
et al., 2019). The T2DM accounts for about 90% of disease incidence
reported (Nguyen et al., 2020).

At present, hypoglycemia drugs are employed in monitoring
T2DM and these agents sometimes elicit adverse effects such as
faintness, pain, dejection, sustained hypoglycemia, headache
(sulphonylureas), diarrhea, vomiting, palpitation, skin rash
(biguanides), oedema and cardiac arrest (thiazolidinediones)
(Ganesan et al., 2020). As a result of the adverse effects
associated with the use of the orthodox medicine, search for
alternative with little or no side effect is necessary.

Ocimum gratissimum (OG) is a candidate plant which its role in
the management of diabetes mellitus is being explored. Ocimum
gratissimum belongs to Lamiaceae family, and it is widely scattered
all through Africa (including Nigeria), India and some parts of south
eastern Asia (Ayissi and Nyadedzor, 2003). In Nigeria, Yoruba,
Hausa and Igbo tribes refer to it as “Efinrin Nla”, “Dai doya” and
“Nchuawu” (mosquito repellant), respectively. India and Brazil call
it Vana Tulsi and alfavaca, correspondingly (Effraim et al., 2000).

The plant develops to roughly 1–3 m in altitude. The dark-
brown stems bear leaves which are slim and egg-shaped maturing

between 5 and 13 cm in height and width of 3–9 cm. These leaves
usually green in colour, possess strong aromatic fragrance similar to
sweet scent of camphor. The plant grows well in lake shores, costal
bush lands and in sub-montane regions (Kamboj, 2000; Alvarenga
et al., 2008).

The medicinal values of the plant reside in its phytometabolites,
which elicit definite physiological actions that enable it to be potent
in treating malaria, dysentery, pile and lowering of blood glucose
forklorically (Danziel, 1996). It has been established that
phytometabolites have disease-preventing or -ameliorating
capabilities and they are efficient in tackling or precluding
diseases due to their antioxidant potential (Farombi, 2000).

Phytochemical investigations showed that methanol extract of
OG has abundant tannins, steroids, terpenoids, flavonoids, resin,
terpenoid, saponin and cardiac glycosides; and as well possesses an
excellent antioxidant propensity (Afolabi et al., 2007; Okoye and
Madumelu, 2013). Its leaves possess volatile essential oil which
comprises majorly about 31%–66% thymol, and eugenol. It also
has xanthones, terpene and lactone (Ezekwesili et al., 2004;
Mohammed et al., 2007).

Experimental evidence using rats showed that its leaves extract
could prevent diarrhea. It was also discovered that the methanol
extract showed hepatoprotective ability in male albino rats
(Salemcity et al., 2014). The OG leaf extract was also shown to
have the capability to abrogate alloxan-stimulated DM in rats
(Ekaiko et al., 2016). This botanical drug possesses some qualities
with high beneficial health relevance. These range from prevention
of convulsions and seizures, reduction of high blood glucose,
relaxation of intestinal muscles and anti-nociceptive use,
antidotes for cough, antibronchitis and anticonjunctivitis.

Research has shown that unmanaged DM can activate the
mitochondrial permeability transition (mPT) pore, leading to the
release of pro-apoptotic factors such as cytochrome c into the
cytosol (Daniel et al., 2018). When this pore opening is activated
by some disease states and other pathological conditions, it enables
the free passage of macromolecules into the mitochondria. This is
preceded by factors such as calcium overload, reactive oxygen
species (ROS), cytotoxic compounds, oncoproteins, DNA
damage, and certain chemotherapeutic agents (such as
anthracycline-doxorubicin, sunitinib, and alkylating agent-
cisplatin) (Gorini et al., 2018). The mPT is accompanied by
processes such as mitochondrial swelling, membrane rupture, and
the release of apoptotic proteins (Wang and Youle, 2009; Olanlokun
et al., 2017; Oyebode et al., 2017).

While most normoglycemic effects of O. gratissimum has been
monitored using the leaf extract only, there is paucity of information
on the purification of active principle in the most potent fraction and
the probable mechanism of such metabolite to prevent tissue
wastage via the modulation of the mitochondrial permeability
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transition pore opening. Therefore, this study aims to investigate the
mechanism by which O. gratissimum leaf prevents hyperglycemia-
induced cell death and tissue wastage in a diabetic rat model induced
by streptozotocin and a high-fat diet.

2 Materials and methods

2.1 Experimental animals and treatment

Male Wistar rats each weighing between 80 and 100 g were
acquired from the Veterinary Medicine Animal Holding,
Department of Veterinary, University of Ibadan, Nigeria. They
were conditioned for 2 weeks in Department of Biochemistry
Animal Care Unit in the same institution. Water and rat chow
were given ad libitum to the animals in a conducive environmental
situations of temperature and 12-hour bright/gloom phase.

2.2 Induction of type 2 diabetes mellitus

Srinivasan et al. (2005) showed that T2DM could be induced in
rat model by placing them on high fat diet (HFD) for 2 weeks and
thereafter administered STZ. The HFD composition was presented
in Table 1. Fifty rats in this study were exposed to HFD for 28 days
after which a single dose STZ (35 mg/kg) dissolved in cold citrate
(0.1M) buffer adjusted to pH 4.5, was administered intraperitoneally
to induce diabetes mellitus (Detaille et al., 2005). After 3 days the
rats underwent an overnight fast and their blood glucose was
determined using glucometer (On-Call PlusR). Animals having
blood glucose status >250 mg/dL were confirmed diabetic and
ascertained suitable for further experiment. Thirty-one rats were
discovered to have blood glucose level of 250 mg/dL and above. The
success rate was 60%. However, ten out of the thirty-one diabetic rats
died before the commencement of the treatment, with only twenty-
one diabetic rats left for the experiment.

2.3 Grouping of animals

The normal control (fed normally with rat chow) and diabetic
rats were grouped (n = 7) and treated orally once daily as follows:

Group1: Normal Control (NC) (Received corn oil)
Group 2: Diabetic control (Administered corn oil)
Group 3: Diabetic + CFOG (400 mg/kg using corn oil as vehicle)
Group 4: Diabetic + Glibenclamide (5 mg/kg using corn oil as
vehicle)
Key: CFOG: Chloroform fraction of O. gratissimum leaf extract

2.4 Ethical approval

Approval for this research was obtained from Animal Care and
Use Research Ethics Committee with reference number UI-
ACUREC/19/0065.

2.5 Preparation of Ocimum gratissimum (L.)
extract and fractions

2.5.1 Chemicals
All chemicals used were analytical grade and purchased from

Sigma.

2.5.2 Source of plant material
Ocimum gratissimum (L.) was procured from “Oja-Bodija”

market, Ibadan, Oyo State, Nigeria and validated in the
Department of Pharmacognosy, University of Ibadan, Nigeria
(Voucher specimen number: DPUI No 1504).

2.5.3 Preparation of plant materials
The leaves of O. gratissimum (L) were air-dried at room

temperature between 28–30°C for four (4) weeks and pulverized
to a smooth mill with a clean grinder. The powdered leaves were
kept at room temperature in a clean jar.

2.5.4 Extraction and partitioning of the plant
extract

Cold extraction was performed using absolute methanol in a
ratio of 1:10 (w/v). The jar containing the powdered leaves and
methanol was allowed to stand for 72 h. The extract was then filtered
through sterile Whatman No. 1 filter paper. The green-coloured
extract was concentrated using a rotary evaporator under reduced
pressure. The resulting crude concentrate was further concentrated
in a water bath at 37°C to obtain a solvent-free methanol extract. The
final crude extract obtained, weighed 450 g from an initial dried
plant sample weighing 750 g. The percentage yield of the extract was
60%. The column of the Vacuum Liquid Chromatography (VLC)
was packed with silica gel for Thin Layer Chromatography (TLC)
under pressure with n-hexane. 10 g sample of the methanol extract
of O. gratissimum (L) was adsorbed with 10 g of the TLC gel and
allowed to dry. The adsorbed sample was loaded on the VLC column
and washed with n-hexane until exhaustion. Further to this, the
column was washed with chloroform, then ethylacetate and finally
with methanol successively. The fractions were concentrated using
rotary evaporator and were further rendered solvent-free in a water
bath. The solvent-free fractions were kept in the fridge until used.

Percentage Yield � Weight of crude extract
Weight of pulverised sample

X 100

TABLE 1 Composition of High fat diet.

Ingredients Diet (g/kg)

Powdered Normal Pellet Diet 365

Lard 310

Casein 250

Cholesterol 10

Vitamin-mineral mix 60

DL-methionine 3

Yeast powder 1

NaCl 1

(Srinivasan et al., 2005).
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2.6 Sample collection

The rats were sacrificed by cervical dislocation, the blood sample
was collected into anticoagulant-free tube and centrifuged at
3,500 rpm for 5 minutes to obtain the serum. The abdominal
cavity was opened up and the pancreas was excised into 10%
formalin for histological studies.

2.7 Isolation of mitochondria from the rat
liver

Reduced ionic strength mitochondria were separated using
method designed by Younes and Schneider (1984), and Johnson
and Lardy (1967). The rats were sacrificed by cervical dislocation
and the abdominal cavity was opened up and liver samples were
removed into ice-cold beaker. The blood stain was rinsed from the
liver with isolation buffer that contains 0.21M mannitol, 0.079M
sucrose, 0.005M HEPES-KOH and 0.001M EGTA (pH 7.4, Sigma).
The samples were weighed and chopped into small pieces using a
pair of scissors. This was then homogenized using Teflon and
homogenizer (DELFLEXR) in a 10% suspension in isolation
buffer. The entire process was carried out at 4°C to ensure
viability of the mitochondrial membrane. The homogenate was
subjected to five differential centrifugation steps in a cold
centrifuge MSE. The first two-5 minutes each was used to
separate the nuclear debris as the pellet at 2,300 rpm. The
supernatant was then discarded, and the pellet containing the
mitochondria was resuspended in a wash buffer (0.21M
mannitol, 0.079M sucrose, 0.005M HEPES-KOH, pH 7.4, and
0.5% BSA, Sigma). The re-suspended mitochondria were
centrifuged twice for 10 min at 12,000 rpm to wash away any
artifacts. The pellet was re-suspended in suspension buffer
(0.21M mannitol, 0.079M sucrose, 0.005M HEPES-KOH, pH 7.4,
Sigma) and kept on ice for immediate use.

2.8 Determination of mitochondrial protein

Mitochondrial protein concentration was determined
according to the method of Lowry et al (1951) using Bovine
Serum Albumin as standard. Mitochondria (10 µL) were
suspended in 990 µL of distil water in test tubes in triplicate.
Then, 3 mL mixture of 100:1:1 of 2 g Na2CO3, 0.1M NaOH and
1% CuSO4.5H2O respectively, was added to the protein
suspension, thoroughly mixed and left standing for 10 min.
Thereafter, 300 µL of 2N Folin-Ciocalteau diluted in four-fold
was added into the mixture, followed by energetic shaking and
incubation for 30 min. At the expiration of the time, absorbance
was determined spectrophotometrically at 750 nm.

2.9 The procedure and method for mPT
determination

The mitochondria were first investigated to determine their
suitability for this experiment. Isolated mitochondria protein
(0.4 mg/mL) from normal control group were pre-incubated

with 8 µM rotenone for 3.5 min. Subsequently, 5 mM succinate
was added to energize the reaction and change in absorbance was
read using UV-752 spectrophotometer at 540 nm for 12 min at
30 s interval. Similarly, assessment of the inductive effect of
calcium was carried out as follows: mitochondria of the same
protein concentration (0.4 mg/mL) were pre-incubated with
8 µM rotenone for 3 min, followed by the addition of
exogenous 3 µM calcium. Thirty seconds later, 5 µM succinate
was added and the absorbance was measured. The reversal of the
calcium-induced opening was assessed by pre-incubating the
same mitochondria protein with 8 µM rotenone and 4 mM
spermine. Exogenous calcium was then added immediately
after 3 min pre-incubation; succinate was added after 30 s and
absorbance was read. Corresponding mitochondria protein from
the treatment groups were investigated for permeability
transition under similar condition without addition of
exogenous calcium.

2.10 Assessment of mitochondrial ATPase
activity

Isotonic solution (0.25M sucrose) was used to isolate
mitochondria of viable integrity from rat liver in this experiment.
The isolation followed the same process with that of mPT (Section
2.6) except for the buffer employed.

Mitochondrial ATPase activity was determined as described by
Lardy and Wellman (1953) with minor modification. Each test tube
(in triplicate) contained 25 mM sucrose, 65 mM Tris-HCl (pH 7.4)
and 0.5 mM KCl in 1 mL final reaction volume. The ATP (1 mM)
was added to the set of tubes labelled ATP only, uncoupler, zero
time, test groups and control with the exception of the tube labelled
mitochondria only. These were incubated at 27 °C in a shaking water
bath. Mitochondria (0.4 mg/mL protein) from the test groups were
dispensed into labelled tubes other than mitochondria only,
uncoupler and zero time tubes which contained mitochondria
isolated from the normal control group. While uncoupler
(25 μM, 2, 4-dinitrophenol) was added to the uncoupler tubes
instantly after mitochondria were added, 1 mL of 10% sodium
dodecylsulphate (SDS) was immediately added to the zero-time
test tubes. The suspensions were incubated for 30 min and the
reaction was terminated by adding 1 mL SDS except in the zero
time test tube which had been stopped before. One ml suspension
was withdrawn from each test tube and diluted with 4 mL distilled
water. Thereafter, 1 mL of 1.25% ammonium molybdate (prepared
in 6.5% H2SO4) and 1 mL of 9% ascorbic acid newly prepared were
added successively and the absorbance was read at λ660 nm in a UV-
752 spectrophotometer. Ammonium molybdate (1 mM) was also
treated as the sample and used as the standard from which the
absorbance of the unknown could be extrapolated. Inorganic
phosphate released was quantified using a phosphate standard
curve.

2.11 Determination of DNA fragmentation

Liver samples (0.25 g) from each rat were weighed and
homogenized with 5 mL TET (5 mM Tris-hydroxymethyl-
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aminomethane, 20 mM EDTA and 2 mL of Triton X-100, adjusted
to pH 8.0, Sigma) buffer and spinned using ultracentrifuge at
27,000 rpm for one-third hour. Supernatant was removed and the
pellet was reconstituted to concentration of 1:1 (v/v) using TE
(5 mM Tris-HCl and 20 mM EDTA pH 8.0) buffer. Exactly
0.5 mL of the supernatant and reconstituted pellet were
withdrawn and 1.5 mL of 9 mM diphenyl amine solution
(prepared in amber bottle because of photosensitivity) was added
to each mixture. The mixture in each test tube was allowed to
incubate at physiologic temperature for 16 h to 1 day for colour
development to be observed and absorbance taken at 620 nm via
UV-752 spectrophotometer.

Percentage DNA fragmentation � A
A + B

X 100

Where A is the absorbance of supernatant; B is the absorbance of the
pellet.

2.12 Estimation of lipid peroxidation

A modified TBARS (thiobarbituric acid reactive substances)
method was used for determining the level of peroxidation in
mitochondrial membrane lipids (Ruberto et al., 2000). For this
assay, exactly 2 mL of a 10% mitochondrial suspension was
dispensed into a test tube and diluted with distilled water to a
final volume of 4 mL. The mixture was allowed to stand at room
temperature for 30 min. Subsequently, 6 mL of 20% acetic acid and
6,000 µL of 0.75% TBA in 1.1% SDS were added to the tube. The
resulting solution was then subjected to steam heating for 60 min.
After cooling, 5 mL of butanol was added to the solution, leading to
the formation of organic and aqueous layers. The malondialdehyde
(MDA), a product of lipid peroxidation, was selectively extracted
into the butanol phase. The mixture was centrifuged at 3,000 rpm,
resulting in a clear demarcation between the butanol and aqueous
phases.

The butanol phase, containing the extracted MDA, was
measured spectrophotometrically at a wavelength of 532 nm to
quantify the level of peroxidation in the mitochondrial membrane.

2.13 Antioxidant assays

2.13.1 Determination of catalase activity
It was examined as described by Claiborne (1985) protocol. This

procedure is dependent on the reducing absorbance seen at
wavelength 240 nm upon the action of the enzyme on H2O2. The
extinction coefficient of 0.0436/mM/cm was used (Noble and
Gibson, 1970). The dilution was carried out on the samples in 1:
50. The reaction mixtures 2 mL H2O2 solution (19 mM) and 2.5 mL
phosphate buffer (0.05 M pH 7.4). One and a half ml of the assay
mixture was added into 3 mL of dichromate acetic acid reagent at
60 s periodically and then read using UV 752 spectrophotometer.

Catalase activity � ΔA240/min× reaction volume × dilution factor
0.0436 × sample volume × mg protein/ml

The unit is µmole H2O2/min/mg protein.

2.13.2 Assessment of reduced glutathione (GSH)
level

Concentration of GSH was investigated via the protocol of Beutler
et al. (1963). Precipitating solution (4% sulphosalicylic acid prepared with
solution containing 4 g of sodium chloride in final volume of 100mL)
and sample were in a mixture of 0.2 mL each, thoroughly mixed and
centrifuged at 4,000 rpm. Subsequently, 0.25mL of the supernatant and
0.75 mL of Ellman’s reagent (1 mM) were added. The absorbance
readings were taken at 412 nm via spectrophotometer (UV- 752).

2.13.3 Assessment of glutathione S- transferase
activity

GST activity was estimated in accordance to Habig et al. (1974)
method. The reduction in absorbance was read using UV-752
spectrophotometer at wavelength 340 nm, 30 s interval for 4 min.
GST activity was calculated as unit per mg protein based on a molar
extinction coefficient of 9.6 × 103 L/mol/cm. One unit of GST was
defined as the amount of enzyme that catalyzes the conjugation of
1 nmol of GSH-CDNB per minute.

2.14 Isolation and purification of active
metabolites using preparative thin layer
chromatography

To further purify the chloroform fraction of O. gratissimum leaf
extract, a graded solvent system was employed using vacuum liquid
chromatography, resulting in the isolation of the methanol/chloroform
subfraction (1:1; v/v). Preparative thin layer chromatography plates
were utilized for the analysis. Various solvent systems were employed to
facilitate the elution of the samples on the plate.

To identify specific phytochemicals, chromogenic agents were
applied to the separated metabolites on the plate, which was
subsequently visualized under UV light (both at 254 nm and
366 nm). The samples dissolved in suitable solvents, were carefully
spotted on the plate using capillary tubes. After drying, the plate was
gently positioned in a chromatographic jar containing the appropriate
solvent system. The jar was sealed, allowing the samples tomigrate with
the mobile phase. The experiment was concluded when the solvent
front reached a point about 1 cm before reaching the top of the plate.
The plate was then removed, air-dried, and examined under the UV
light. Later, the spots on the plate were separately scraped, dissolved in
the appropriate solvent and spun in the centrifuge to sediment the gel.
Dissolved isolated metabolites were aspirated from the centrifuge tubes
and concentrated to dryness. The samples were subjected to analysis
using a nuclear magnetic resonance system (Bruker AvanceIII

400 MH3).

2.15 Assessment of serum insulin
concentration

Calibrators and samples (25 µL each) were added into the right
micro-wells along with 100 μL enzyme conjugate 1X deposited in each
well and shaken in a shaker at normal environmental temperature for
2 h to allow for incubation to occur. It was washed repeatedly six rounds
with washing buffer 1X solution and the left-over reaction content was
disposed off by inversion of the microplate. Afterwards, wash solution
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(WS) (350 µL) was introduced and later removed using absorbent
material. The removal ofWS was performed in five successive intervals.
Incubation at room temperature was allowed to proceed for 15 min
after addition of substrate, TMB (200 µL) to the wells. The reaction was
thereafter halted with “stop solution” (50 µL) and thoroughly mixed
using shaker for just 5 s. Spectrometry method via microplate reader
was then employed to take the optical density reading at λ450 nm not
later than duration of half-an hour.

2.16 Homeostasis model assessment of
insulin resistance and beta cell function

These were calculated using the relationship between serum
insulin and blood glucose level (Matthews et al., 1985).

HOMA − IR � Insulin µU/ml( )xGlucose mg/dl( )

405

HOMA − β � 360 x Insulin µU/ml( )

Glucose mg/dl( ) − 63

2.17 Hemoxylin and eosin procedure for
pancreatic architecture

Wax was removed using xylene for about 15 min and passed
through absolute, 95% and 70% alcohol successively. This would be
followed by rinsing the section in water and staining with Harris
hematoxylin for 300s. Before differentiating quickly in 1% acid
alcohol, it was dipped in water again. After this, it was put under
running tap for 10 min and counterstained with 1% Eosin stain for
180s, then rinsed with water. It was dried in rising grades of alcohol
and cleared in xylene subsequent to mounting in DPX (Avwioro,
2010).

2.18 Statistical analysis

Statistical analysis was carried out using Graph pad prism (version
8.0) for one-way ANOVA and Turkey’s multiple comparison test was
used to compare the mean among the groups. Level of significance was
set at p< 0.05. All the results were expressed asmean± standard deviation
(SD). Representative profiles of absorbance of mitochondria were used
for the mitochondrial permeability transition pore opening assays.
Each assay was repeated three times (in each case) and representative
of similar kinetic assay for the mPT in each group was used.

3 Results

3.1 Effect of the chloroform fraction of O.
gratissimum (L) leaf extract on body weight,
glycemic index and mito-protective
biomarkers in STZ-triggered diabetic rats

3.1.1 Effect of chloroform fraction of OG on body
weight on STZ-induced diabetic rats

Body weight is one of the indices for tissue wastage which is
common in individuals with unmanaged diabetes mellitus. Figure 1
illustrates the body mass of non-diabetic and CFOG-treated diabetic
rats for a period of 28 days. It was noticed that no significant
difference among the glibenclamide-, CFOG-treated animals and
control. In contrast, sharp decline was observed in the diabetic
untreated group when compared to control.

3.1.2 Evaluation of insulin and glucose levels in
CFOG-treated diabetic rats

Table 2 depicts the effect of CFOG on concentrations of glucose
and insulin in STZ-stimulated diabetic rats. There was significant
difference in the insulin level in untreated diabetic group relative to

FIGURE 1
The assessment of body weight of normal and STZ-induced diabetic rats Key: CFOG: Chloroform fraction of 0. gratissim um.
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control. Whereas, no significant statistical change was observed in
the remaining test groups compared to control. Moreover, a
significant increase was observed in glucose concentration in the
untreated, glibenclamide-treated and 400 mg/kg CFOG groups
relative to control. However, in comparison with the diabetic
control, there was obvious reduction in blood glucose level in
CFOG-treated and glibenclamide groups.

3.2 Investigation of chloroform fraction ofO.
gratissimum (L) effect on homeostasismodel
assessments of insulin resistance and
pancreatic beta cell function

Homeostasis model assessment is typically used in type 2 diabetes
mellitus as index to measure the sensitivity of the insulin to its receptor
and as well as viability and availability of beta cells that are responsible for
synthesizing insulin. Figure 2 illustrates the influence of CF of O.
gratissimum (L) leaf on insulin resistance status in STZ-induced
diabetic rats. There was significant elevation of this parameter in the
diabetic control relative to normal control. Conversely, no significant
difference exists between the remaining treated groups compared to
normal control.

A highly significant reduction of β-cell function was observed in the
untreated group in comparison with normal control. However, there

was drastic increase in beta cell status in the CFOG and glibenclamide
treated groups compared to the untreated diabetic control (Figure 3).

3.3 Effect of chloroform fraction of OG on
mPT in STZ-induced diabetic rats

The status of mPT pore of the normal rats is crucial to knowing
whether the pore opening in diabetic untreated rats was actually due
to the administered diabetogenic agent (STZ) or not. Therefore, it is
necessary to investigate the mitochondria intactness of normal
control rats (non-diabetic). Figure 4 presents the evaluation of
calcium induction and spermine inhibition of mPT in normal
control rats. The results showed that large amplitude swelling
was observed when intact mitochondria were challenged with
exogenous calcium (6.3 folds), the triggering agent. However,
spermine (standard inhibitor) subsequently reversed calcium-
induced opening by 82%.

Furthermore, a significant pore induction (8.5 folds) was
discovered in STZ-induced diabetic rats (Figure 5). However,
CFOG and glibenclamide were able to preclude the pore opening
observed in STZ-induced diabetic rats by 90% and 72% successively.

3.4 Assessment of the impact of CFOG on
mLPO in STZ-stimulated diabetic rats

One of the diabetogenic mechanisms of STZ is generation of free
radicals which could lead to lipid peroxidation measured as

TABLE 2 Effect of chloroform fraction of Ocimum gratissimum (L.) leaf extract on insulin and blood glucose concentrations in STZ- and HFD-induced diabetic rats.

Groups Insulin concentration (μU/ml) Blood glucose level (mg/dL)

Normal Control 1.41 ± 0.01# 106.74 ± 5#

Diabetic Control 1.74 ± 0.01* 492.3 ± 10*

Diabetic +400 mg/kg CFOG 1.42 ± 0.03# 169.92 ± 7*#

Diabetic +5 mg/kg Glibenclamide 1.42 ± 0.03# 181.08 ± 11*#

Key: * test groups compared to Normal control; # other groups relative to Diabetic control.

CFOG: chloroform fraction of ocimum gratissimum leaf extract.

FIGURE 2
Effect of chloroform fraction of Ocimum gratissimum leaf on
Homeostatic Model Assessment of Insulin Resistance in normal and
diabetic rats.

FIGURE 3
Effect of chloroform fraction on Pancreatic Beta Cell Function of
STZ-induced diabetic rats.
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malondialdehyde (MDA) in this study. The impact of CFOG on
lipid peroxidation in STZ-induced diabetic rats was displayed in
Figure 6. It was observed that only the diabetic control showed
highly significant difference inMDA level relative to normal control.
In contrast, MDA produced in other groups were similar to normal
control group.

3.5 Investigation of the CFOG leaf effect on
mATPase activity in diabetic rats

Table 3 represents the effect of CFOG on mitochondrial ATPase
function in STZ-triggered diabetic rats. Diabetic control was
observed to display highly significant difference in the enzyme

activity compared to normal rats. However, 400 mg/kg CFOG
and 5 mg/kg glibenclamide drastically reduced the enzyme
activity relative to diabetic control.

3.6 Examination of the influence of CFOG on
DNA fragmentation in diabetic rats model

Figure 7 is an illustration of modulation of chromosomal DNA
segmentation by CFOG in STZ-induced diabetic rats. Significantly
high DNA fragmentation was observed in the diabetic control
relative to normal control. Conversely, there was no significant
difference in test groups, 400 mg/kg CFOG and 5 mg/kg
glibenclamide in comparison with normal control.

FIGURE 4
Effect Ca2+ and spermine on Mitochondrial Membrane Permeability Transition pore for normal control rats.

FIGURE 5
Assessment of effect of chloroform fraction of OG leaf on type 2 diabetic rat liver.
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3.7 Histological examination of pancreatic
architecture of STZ-Induced diabetic rats
treated with chloroform fraction of OG

Figure 8A shows that the pancreatic architecture was normal
with exocrine acini (blue arrow) abundant and standard. The inter-
and intra-lobular ducts were intact. Figure 8B depicts normal
pancreas structure. Interlobular duct shows necrosis (black
slender arrow) and haemorrhagic abrasion (red arrow).
Figure 8C illustrates that exocrine acini filled with zymogen but
the intralobular duct (black arrow) looked swelling and hyperemia
(red) were noticed. In Figure 8D, undistorted exocrine acini (blue
arrow), but intralobular distension and congestion (yellow arrow)
were observed.

Figure 9A illustrates that abundant number of islets was
normally distributed within the parenchyma cells. Figure 9B
shows that some islets of Langerhans appear atrophic (white

arrow). The results in Figures 9C,D indicate normal islets of
Langerhans (white arrow) consisting of round to oval collections
of endocrine cells. Conversely, treatment with CFOG shows that it
possesses phytometabolites that can repair damage islet cells.

3.8 Antioxidants status of STZ-induced
diabetic rats treated with chloroform
fraction of OG

GSH level, glutathione-S-transferase and catalase activities were
displayed in Figure 10. The results showed that similar trends of
significant decline were observed in the antioxidant status of diabetic
control relative to normal control. Whereas, in the group treated
with 400 mg/kg CFOG, there was no significant difference observed
in the antioxidant enzymes activities and GSH level in comparison
with the normal control.

FIGURE 6
Effect of chloroform fraction of OG leaf on lipid peroxidation in
type 2 diabetic rats.

TABLE 3 Assessment of the Effect of Chloroform Fraction of OG on mATPase Activity in STZ-induced Diabetic Rats.

Groups micromole Pi/min/mg protein

Normal Control 0.018 ± 0.0##

Diabetic Control 3.4 ± 0.0**

Diabetic + 400 mg/kg CFOG 0.42 ± 0.0*, #

Diabetic + 5 mg/kg Glibenclamide 0.62 ± 0.0*, #

UCP 5.8 ± 0.0***#

UCP: uncoupler.

*Means comparison of the test group with normal control.

#Means comparison other groups with diabetic control group.

mATPase: mitochondrial ATPase.

CFOG: chloroform fraction of ocimum gratissimum leaf extract.

FIGURE 7
Effect of chloroform fraction of OG leaf on percentage DNA
fragmentation in type 2 diabetic rats.
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3.9 Purified bioactive compound from
chloroform fraction of OG

Figure 11 shows the structural elucidation of the bioactive
principle which could be responsible for anti-diabetic agent.
Lupanol was characterized from O. gratissimum leaf extract.

4 Discussion

Mitochondria are very vital organelles to the existence and
survival of the cells as they are useful for energy production and
other biochemical processes. Because of these salient roles, they are
highly gated to prevent ‘intruders’ that could hamper their efficient

FIGURE 8
Pancreatic histology of STZ-induced diabetic rats treated with chloroform fraction of Ocimum gratissimum (X400).

FIGURE 9
Photomicrograph of Islet cell of type 2 diabetic rats treated with chloroform fraction of Ocimum gratissimum leaf (X400).

Frontiers in Pharmacology frontiersin.org10

Salemcity et al. 10.3389/fphar.2023.1231826

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1231826


functioning. Any condition that could lead to compromising the
integrity of the two tight mitochondrial barriers would eventually
collapse the organelles and the whole cell. The mitochondria
breakdown could result from membrane potential dissipation and
oxidative stress among others.

From the results above (Figure 4), the observed constancy of
absorbances in the mitochondria suspension without triggering
agent (calcium) and large amplitude pore opening in the suspension
challenged with calcium in separate experiments depict that the
membrane integrity has not been compromised. Subsequent reversal
of the calcium-induced opening by spermine (a potent pore inhibitor),
in another experiment over a period of 12 min at 30 s interval, in the
presence of rotenone and succinate, further substantiates that the
mitochondria were intact, not uncoupled and suitable for further
use. This experiment is very important because the integrity of the
mitochondrial membrane is crucial for ATP synthesis. In other words,
mitochondria with lost membrane integrity cannot synthesize energy.

Diabetes mellitus is a derangement in carbohydrates, lipid and
proteins metabolism. This pathophysiological condition is associated
with inflammation, loss of integrity of beta cell mitochondria, elevated
blood insulin and glucose, increased and overexpressed apoptosis. In the
results obtained from the impact of CFOG on STZ-induced diabetic
rats, normoweighted condition (Figure 1) was discovered in rats treated
with the CFOG and this might have stemmed from its ability to
attenuate tissue wastage related to DM due to the presence of
phytochemicals that aid proper maintenance of macromolecules
metabolism in the biological system. Glucose and insulin levels were
also normalized by the administration of CFOG to diabetic rats
(Table 2). This indicates that its bioactive metabolites could have
played abrogating roles in normalizing the insulin and blood sugar
status in the rats. Diets containing necessary antioxidants have been
shown to demonstrate good anti-diabetic efficacy (Bacanli et al., 2016).
Genistein, an isoflavone, significantly reduced glucose intolerance in
diabetic rats (Lee, 2006). Tanninwas reported to exhibit an anti-nutrient
activity by inhibiting α-glucosidase, thus impeding or slowing down the

absorption rate of glucose across the intestinal epithelial cell. Nutritive
soy isoflavones drastically enhanced insulin biosynthesis thereby
ameliorating excessive blood sugar and as well mitigated diabetic
complication such as cataracts. Anti-hyperglycemic effect of low dose
quercetin and quinic acid has been well documented (Arya, et al., 2014).
Beta vulgaris was reported to lower blood glucose (Bolkent, et al., 2009).
Similarly, complete abrogation of insulin resistance and considerable
improvement in beta cell biomass were shown in Figures 3, 4
respectively. This depicts that CFOG could inhibit desensitization of
insulin and probably its receptor too. Myriads of phytoactive molecules
known to exhibit antioxidant potentials play crucial role in enhancing
alertness and response of insulin in a condition of elevated glycemia
(Bacanlia et al., 2019). Procyanidin from blueberry was also shown to
reduce insulin resistance by mimicking this protein and also increase
sensitivity through correction of the perturbed circulation of lipids and
carbohydrate in the system (Yamashita et al., 2012).

Permeabilization of mitochondrial inner barrier to molecules of
greater than 1.5 kDa, which leads to cell demise, is prominent in

FIGURE 10
Assessment of the effect of CFOGonGSH level, GST andCAT activities in type 2 diabetic rats. *Means comparison of the test groupwith normal control.

FIGURE 11
Characterisation of lupanol from Ocimum gratissimum (L.) leaf
extract.
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diseases associated with tissue wastage. STZ had 8.5folds pore induction
and there was subsequent reversal of this, by 400 mg/kg CFOG (90%) as
shown in Figure 5. This may suggest the ability of the fraction to
maintain the viability of the rat liver mitochondria and as well block the
triggering of pore formation associated with apoptosis. It is also coupled
with obliteration of lipid peroxides (Figure 6) and prevention of the
activation of ATPase activity (Table 3). Absence of mDNA
fragmentation (Figure 7) in the diabetic rats treated with CFOG is
an evidence that cell death did not occur. Similarly, histological
examination of pancreas showed intact exocrine acini, normal and
abundant (Fan et al., 2017; Baburina et al., 2019) islets in the diabetic
rats administered CFOG as opposed to severely damaged pancreatic
architecture in the diabetic control rat (Figures 8, 9). The presence of the
phytometabolites in this solvent fraction could be liable for the
anti-apoptotic properties observed in this experiment. Research
substantiated that polyphenols boost mitochondria biogenesis
and prevent mitochondrial insult (Park, et al., 2012). They also
promote viability and survival of cells in conditions such as
aging, neurodegenerative diseases and diabetes mellitus (Lionaki
et al., 2015).

Moreover, our antioxidant results showed increase in the enzymes
activities such as GST (phase II detoxifying enzyme), and CAT in the
CFOG treated group as against the diabetic control rats (Figure 10). The
similar elevation was also observed in non-enzymic endogenous
antioxidant, GSH in the group administered 400 mg/kg CFOG
(Figure 10). This may be owing to the availability of phytochemicals
in the extract. Many researches have implicated oxidative stress in the
pathogenesis of diabetes mellitus stemming from excess blood glucose
and lipids (Dembinska-Kiee et al., 2008). It has been reported that in
DM and its attendant complications such atherosclerosis and
cardiovascular disorder, there is an obvious reduction in the plasma
levels of vitamins C and E, zeaxathin, beta-carotene and lycopene,
showing that overwhelming free radicals and oxidative stress are
culprits in precipitating these diseases (Cheng et al., 2014; Girones-
Vilaplana et al., 2014).

Vegetables and fruits which are usually rich in these phytonutrients
are mostly recommended by the medical practitioners for the
management of DM in order to ward off pro-oxidants generated in
the course of the disease and to block its complications (Braun and
Venter, 2008). Polyphenols are severally reported to profoundly prevent
the onset of chronic ailments which are associated with oxidative
imbalance in the cell. Due to the presence of phenolics, mulberry fruit
was discovered to possess neuro-preserving and antidiabetic potency
(Wang et al., 2013).

In this study, lupanol (Figure 11), a penta triterpene, was discovered
to be present in O. gratissimum leaf using NMR technique. Terpenes
have been implicated to possess anti-diabetic effect (Jovanovic et al.,
2021). Research showed that 23, 28-dihydroxyl lupan-20 (29) ene 3β
caffeat obtained from Sorbus decora which is structurally close to
lupanol, was discovered to improve glucose uptake in C2Cl2 skeletal
muscle cell line.Momordica charantia contains two terpenes such as 3β,
25-dihydroxyl-7β, 25- trimethoxy cucurbita-5, 23- (E)-diene and 3β,
25-dihydroxyl-7β, 25- trimethoxy cucurbita-5, 23- (E)-dien-19-al.
These bioactive agents exhibit their functions as insulin sensitizers
which could help reduce insensitivity of insulin to its receptor
(Panigrahy et al., 2020).

Furthermore, corosolic acid isolated from Lagerstroemia
speciosa acts as α-glucosidase inhibitor, while lupeol obtained

from mango leaf significantly scavenge ROS and thus reduced
oxidative stress in albino mice (Panigrahy et al., 2020).

5 Conclusion

It could be inferred from the above data that chloroform fraction
ofO. gratissimum (L) leaf extract prevents programmed cell death as
evident in its ability to inhibit pore-opening, ATPase activity and
lipid peroxidation in STZ-induced diabetic rats which could lead to
tissue wastage experienced in diabetes mellitus. It could also be
suggested that chloroform fraction probably contains bioactive
principles which was able to scavenge free radicals generated in
STZ-induced diabetic rats as observed in the antioxidant status of
the extract-treated rats. The leaf fraction was also able to lower blood
glucose, homeostasis model assessment of insulin resistance and
enhance homeostasis model assessment of pancreatic beta cell. This
shows the plant fraction has inherent metabolites which could act as
insulin sensitizer and secretagogues. The presence of lupanol may be
one of the bioactive compounds responsible for anti-diabetic activity
of O. gratissimum leaf.
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