
Toolkit-based framework for scalable
High Performance Standalone Molecular

Dynamics simulations

Richard Opio Ocaya

(Promoter: Professor J.J. Terblans)
Department of Physics, Faculty of Natural & Agricultural Sciences

University of the Free State

A thesis submitted in fulfilment of the requirements for the degree of

Philosophiae Doctor

Student number: 2014216382 April 2019

In memory of my mother ...

Declaration

I hereby declare that, except where specific reference is made to the work of others, the

contents of this thesis are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other University. This thesis

is the result of my own work and includes nothing which is the outcome of work done in

collaboration, except where specifically indicated in the text.

Richard Opio Ocaya

Signature

Date

Acknowledgements

I wish to acknowledge with gratitude my Promoter, Professor J.J. Terblans, for his

contributions and guidance.

I am also grateful to my colleagues in the Department of Physics for their camaraderie

over the years that has created an atmosphere in the Physics Department at the Qwaqwa

Campus of the University of the Free State that is conducive for sustained teaching and

research, in spite of the many, enduring challenges.

I thank my children for enduring this journey with me with fortitude.

Blessed be the Name of the Lord.

Abstract

Computational modelling and simulation in materials science uses mathematical abstractions

of particle-particle forces to postulate, develop and understand materials that are organized

as particle systems. Real particle systems occupy macroscopic scales and can be costly to

simulate in terms of hardware and software tools and simulation time. Even the most basic

simulation can generate large amounts of intermediate data that requires innovative further

processing to decipher its underlying physics or to answer fundamental questions about its

material properties. These questions are increasingly being asked due the present furious

academic and industrial interest in nanosized crystalline lattices. Of particular pertinence are

questions of whether or not the properties of the nanostructures are identical to those of their

macrostructures. In the light of this the primary focus of this contribution is the development

of a tool to simulate face-centered cubic (fcc) particle systems on a “standalone” hardware

platform, and to apply it to a specified particle system. The studied particle systems are to

range from nanostructures to macrostructures.

This thesis is thematically divided into two main parts. In the first part, comprising the

first five chapters, we conduct a detailed survey of the current in computation, followed by a

definition of the kinds of systems to which the study is applicable, and then we provide a

detailed but not overwhelming description of the tool development, with numerous actual

codes and examples. This part culminates in a working tool, abbreviated VSV. In the second

part, comprising the subsequent chapters, we apply the VSV and associated tools to solve

vi

actual physics problems in nanostructures thereby offering new approaches and results to

answer the current questions.

In developing VSV, we discuss the pairwise-particle potential and its integration into an

embedded atom model (EAM) approach that is a cost-effective way to simulate fcc metallic

lattice systems as a select case that has practical and industrial relevance. To do this, We

chose the Sutton-Chen EAM as being suitable. This was followed by the application of VSV

on a single computer as the “standalone” setting, and then on a small, four-computer cluster

consisting of multi-core, multi-processors to test its scaling and parallelization. The test

system consisted of 30,261 copper atoms in an arbitrary fcc lattice. The various simulations

were then evaluated for performance enhancements in terms of execution speed and ease of

application. The large amounts of intermediate data made it necessary to develop smaller

extensions to the VSV tool to enable output visualization. These extensions were written in

Visual Basic and Matlab. We then apply VSV to simulate the systems at low energies and

suggest novel answers to various questions within the framework mentioned above.

A first major, unwittingly observed result in the application of VSV is that it showed

that bond lengths between any two particles appear to develop a temporal oscillation when

perturbed by a nearby displaced atom. These oscillations are seen to propagate throughout

the lattice and eventually form a standing wave pattern, through which temperature can be

modelled. By applying perturbations in which the bond length oscillation amplitudes are

constrained to small values by deliberately applied perturbations, we found that the use

of an elastic, Hooke’s Law model results in a faithful reproduction of the known elastic

constants for the copper material on which it was tested. Thus, we suggest and develop a

unique impulse and oscillation method that is useful to calculate the elastic properties of

fcc nanostructures. A second result is the extension of this impulse-oscillation method to

postulate a way to initiate wave-like energy transfer through the lattice. These waves are

shown to be phonons and by constraining the energy to the first Brillouin zone we show that

vii

the temperature behavior of the lattice can be estimated. A third result is that VSV enables

the computation of the diffusion in a nanosized lattice. Furthermore, we apply standard

diffusion models to a low temperature regime and calculate the diffusion constants of the

lattice using standard models. An important result is the indication that diffusion in such a

collection of atoms in not driven by Brownian motion, but by the interplay of pair-wise 12-6

forces. We also show that the lattice atoms can spontaneously coalesce into a shape that is

guided by the global minimum of potential energy. Finally, VSV also shows how growth

into bigger fcc structures can be simulated through atom captures.

The foregoing results are compared with the literature values and the good agreements

indicate that it as a reasonable new and cost effective way to investigate many of the properties

of fcc lattices. Aspects of the research have been published in a book chapter, journals and

presented at international conferences.

Finally, we present the concluding remarks about research and suggest further directions

in terms of further development of VSV and its applications to new and novel structures.

Table of contents

Abstract v

List of figures xiv

List of tables xvii

List of C-program codes xviii

Nomenclature xix

1 General Introduction 1

1.1 Overview . 1

1.1.1 Computational modelling . 1

1.1.2 Main approaches in computational modelling 2

1.1.3 Parallelization . 3

1.1.4 Decomposition and task allocation 4

1.1.5 Statement of the problem . 5

1.1.6 Objectives of the research . 6

1.1.7 Outline of the thesis . 7

References 11

Table of contents ix

2 Designing a MD simulation testbed 16

2.1 Introduction . 16

2.1.1 Classification of parallelization paradigms 17

2.1.2 Coding versus proprietary software 17

2.2 General tools . 18

2.2.1 Parallelizable tools . 19

2.2.2 Threads and message passing . 20

2.2.3 Open multiprocessing programming 22

2.2.4 MPI programming . 25

2.2.5 GPU computing . 25

2.2.6 Cloud virtualization . 26

2.2.7 Specifications of the standalone testbed 27

2.3 Chapter summary . 28

References 29

3 Development of the simulation software 32

3.1 Introduction . 32

3.1.1 The canonical ensemble . 32

3.2 Defining a particle system . 33

3.2.1 Force in atomic particle systems 34

3.3 Embedded Atom Modeling . 34

3.3.1 The Finnis-Sinclair approach . 35

3.3.2 The Sutton-Chen form of the Finnis-Sinclair potential 36

3.3.3 MD simulation using adatoms . 37

3.4 Velocity Störmer-Verlet integration . 38

3.4.1 Determination of phase space . 38

Table of contents x

3.5 Dimensionless equations . 39

3.5.1 Time . 40

3.5.2 Velocity and acceleration . 40

3.5.3 Force and pressure . 41

3.5.4 Kinetic and potential energy . 41

3.5.5 Temperature . 41

3.5.6 Instantaneous and internal pressure 41

3.6 Setting simulation time scale . 42

3.7 Evaluation of diffusion . 43

3.8 Specifying the particle array . 44

3.8.1 Software functionalities . 48

3.8.2 Main code snippets . 54

References 55

4 Performance of the VSV software 56

4.1 Introduction . 56

4.2 Timing functions . 57

4.3 Results of energetics and thermostat comparisons 59

4.4 Timing performance . 60

4.5 Investigation of real clusters . 61

References 62

5 Specifying system ergodicity in VSV 64

5.1 Introduction . 64

5.2 Thermostat definitions . 65

5.2.1 Energy equipartition methods . 65

Table of contents xi

5.2.2 Langevin EPT methods . 67

5.2.3 Velocity-scaled EPT thermostats 67

5.2.4 Monte Carlo methods . 70

5.2.5 Timescale and macroscopics . 71

5.3 Comparative simulation of EPT and MC thermostats 72

References 75

6 Low temperature diffusion and coalescence using VSV 80

6.1 Introduction . 80

6.2 The simulation model . 82

6.3 Calculations . 83

6.3.1 Determination of cluster-adatom interaction distance 83

6.3.2 Single adatom diffusion . 83

6.3.3 Multiple adatom diffusion . 86

6.3.4 Projected adatoms . 89

6.3.4.1 Projected single adatoms 89

6.3.4.2 Projected multi-adatoms 92

6.3.5 Simulating lattice assimilation growth 94

6.3.6 Surface diffusion . 96

6.4 Conclusions . 100

References 101

7 Detection of lattice phonons and their propagation in VSV 108

7.1 Introduction . 108

7.1.1 Impulse-oscillation approach . 110

7.2 The simulation model . 113

Table of contents xii

7.2.1 Simulation conditions and delimitation 113

7.2.2 Results and discussions . 116

7.2.3 Bond-length oscillations . 116

7.2.4 Wave propagation and the elastic constants 121

7.2.4.1 Estimating C11 and C44 124

7.2.4.2 Expected temperature rise 126

7.3 Conclusions . 126

References 128

8 Post-MD simulation visualization in VSV 131

8.1 Introduction . 131

8.2 Motivation and significance . 132

8.3 Description of additional applets . 133

8.3.1 Helper routines . 133

8.3.1.1 Highlighting adatoms for VMD 134

8.3.1.2 Tracking atoms on vibrating planes 136

8.3.1.3 Spectral response through bond length 137

8.4 Illustrative example . 140

8.4.1 Elastic constants . 141

8.4.2 Thermography . 142

8.5 Impact . 144

8.6 Conclusions . 147

References 149

9 Conclusions 152

Table of contents xiii

10 Publications 156

10.1 Refereed journal articles . 156

10.2 Conference presentations . 157

10.3 Chapters in books . 157

10.4 Software . 157

10.4.1 Permanent VSV Elsevier code repository 157

10.4.2 Surface detect applets . 158

10.5 Manuscripts under preparation . 158

Appendix A A guide to using VSV for MD simulations 159

A.1 Running the VSV code . 159

A.1.1 Windows 7.0 and later . 159

A.1.2 The binary executable . 160

A.1.3 On Windows debug . 160

A.1.4 Linux e.g. Ubuntu . 163

A.2 The GNU General Public License . 163

A.3 VSV code listings . 163

A.3.1 The library file . 163

A.3.2 The main program . 176

A.4 Helper applications . 179

A.4.1 Conversion to VMD format by Excel macro 179

A.4.2 Spectral response calculation . 183

Appendix References 186

List of figures

2.1 Depiction of the testbed standalone and cluster hardware 28

3.1 The canonical ensemble. 33

3.2 Example of an atomic arrangement of copper atoms used in the text. 45

3.3 VSV program flowchart . 49

3.4 The Perturb & Evaluate approach used in VSV simulations 51

3.5 Bird’s eye views of simulation fcc lattice 52

3.6 Surface vacancy scheme illustrated using (001) plane 52

3.7 Diagrams showing an atom embedding on (001) plane 53

3.8 Pictorial representation of the VSV program. 54

4.1 Speedup measurement approach . 58

5.1 Illustration of two possible atom migrations using fcc lattice 74

6.1 Determination of rcut(min) . 84

6.2 Final position of captured adatom (red) from 20Å. The arrow shows the

projection direction. 85

List of figures xv

6.3 Alternate views showing localized environment of the captured adatom (red)

that was initially at 4Å above the surface. The reference square in (a) shows

the reference positions of the (100) face atoms, (b) is the side view, (c) is the

measurement view. The numbers show the same main lattice atoms in the

different views. 85

6.4 Diffusive capture of ten adatoms . 86

6.5 Diffusion of 10 adatoms . 87

6.6 Coalescing of 10 adatoms . 88

6.7 Projected directions . 89

6.8 Projection of 10 adatoms . 90

6.9 Cohesive energy . 90

6.10 Lattice oscillations . 91

6.11 Resolved components of radial motion of adatom 92

6.12 Capture of projected adatoms . 93

6.13 Distance between adatom and its nearest neighbor over time showing oscilla-

tions at the cluster surface. 94

6.14 Determination of crystal growth . 95

6.15 Near-neighbor distance between the three captured copper atoms. The fourth

plot, labeled “REF”, is a reference plot based on the bond length between

two randomly selected adjacent Cu atoms that were initially in the main cluster. 96

6.16 Calculated diffusivity in Cu (N=10) . 98

6.17 Region C, showing exponential decay . 99

7.1 Mass spring representation of fcc structure 111

7.2 Mass spring representation of fcc structure in the x axis 112

7.3 Passage of impact-generated wave . 115

7.4 Example of bond-length versus time . 117

List of figures xvi

7.5 Simulated bond length amplitude-time and phase-frequency response at the

point of impact . 118

7.6 Simulated bond length amplitude-time and phase-frequency response along

the 100 direction in the bulk . 119

7.7 Simulated bond length amplitude-time and phase-frequency response along

the 110 direction in the bulk . 120

8.1 Simulated structure of 2281 Cu atoms . 134

8.2 GUI of the MS Excel macro . 136

8.3 Passage of impact-generated wave . 137

8.4 Bond lengths used as illustration . 138

8.5 Bond length amplitude-time simulation 139

8.6 FFT of bond lengths . 140

8.7 Dispersion . 141

8.8 Surface temperature . 142

8.9 Thermographic plane . 143

8.10 Thermograms after 605.55 fs . 145

8.11 Thermograms after 18854.63 fs . 146

A.1 Running VSV in the compiler debugger mode 160

A.2 Example output of the program in Windows during energy calculations. . . 162

A.3 Screen shots of VSV data and Excel converter macro 180

List of tables

3.1 Dimensioning constants. 39

3.2 Sample data for fcc copper . 46

3.3 Program output for Table 3.2 input data. 47

4.1 SC simulation parameters for fcc copper. 59

4.2 Comparison of deterministic and Monte Carlo thermostats 60

4.3 Speed-up comparisons between deterministic and Monte Carlo thermostats 60

6.1 SC and simulation parameters. 82

7.1 The SC simulation parameters used in the simulation test beds for Cu. . . . 113

7.2 Summary of elastic strain components for a cubic crystal. 122

8.1 The file formats used as primary input, intermediate and post-processed

outputs in the VSV MD simulation flow. 135

8.2 Summary of simulation results at 0.01K. The comparative literature value

are from Kittel [10], Sutton & Chen [14], Behari & Tripathi [23]. 142

A.1 Force calculations on a 3-atom Cu array 161

A.2 Potential energy calculation on a 3-atom Cu array 161

List of C-program codes

2.1 An example of p-thread code spawning 5 threads. 21

2.2 An example of OpenMP parallelization. 22

2.3 Illustration of ordinary and critical OpenMP processes. 23

2.4 Syntax for output reduction of parallel processes. 24

2.5 An example of MPI parallelization. 24

3.1 Definition of the particle structure used in all simulations. 44

3.2 Sample data file for a given VSV simulation. 47

3.3 Typical definition of the constants for a given VSV simulation. 48

4.1 Actual Windows C code for block timing of parallelized loops. 57

A.1 Function prototypes used in the header file. 163

A.2 Particle management for linked-cell method. 165

A.3 Force calculation in linked-cell method. 165

A.4 Position and velocity updater in linked-cell method. 166

A.5 Move particles to their new cells in the linked-cell method. 166

A.6 Time-based integration function using direct method. 167

A.7 Time-based integration using modified velocity algorithm. 168

A.8 Disk file output of final results. 168

A.9 Functions for the naive and improved force algorithms. 169

List of C-program codes xix

A.10 Functions for the naive and improved force algorithms. 170

A.11 Calculation of the Sk intermediate term of the SC potential. 171

A.12 Force Fi j calculation in Sutton-Chen method. 171

A.13 Lennard-Jones 12-6 force F̄i j calculation. 172

A.14 Updater functions in the Lennard-Jones 12-6 force F̄i j calculation. 173

A.15 Total ensemble kinetic energy calculation. 174

A.16 Verification of particle contents before simulation. 174

A.17 Total ensemble potential energy calculation. 175

A.18 Listing of a typical main program showing output of Utot. 176

A.19 Code converts VSV output to VMD output for visualization. 181

A.20 Code calculates the spectral response through FFT of bond length variation

with time. 184

Chapter 1

General Introduction

1.1 Overview

In the last few decades, computational modelling has become a powerful tool to develop

materials by postulation, inference and tuning. In this semi-closed loop approach, material

properties that may not be empirically ascertained due to complexity or cost could be evalu-

ated readily [1–6]. A molecular simulation begins with a choice of the best available force

field description of the molecular configuration, and culminates in the iterative calculation of

the phase space under specified boundary conditions. These boundary conditions expressly

convey influences that are external to the particle configuration, such as applied forces,

thermostats [7], pressure, and so on.

1.1.1 Computational modelling

The basic computational modelling approach takes the aggregated, macroscopic properties

arising as the consequence of their isolated, pair-wise and interactive atomistic dynamics

and considering the cumulative effects of these interactions as aggregations by some method

that incrementally integrates their equations of motion. Ideally, the force field is expressed

1.1 Overview 2

in terms of normalized perturbations (expressed as dimensionless quantities), under the

assumption that the internal force field is much stronger compared to the external perturbation.

The required phase can then be computed deterministically by MD, or stochastically through

Monte Carlo approaches [7, 8]. Ultimately, the results of such computation must be compared

with experiment to gauge its accuracy and suitability. Reference is made to a semi-closed

loop approach in the context of adjusting either the model or the calculated parameters

against known empirical standards, when they exist.

1.1.2 Main approaches in computational modelling

There are two broad, general approaches used in simulation [9–18]. The first relies on direct

application of the principles of Newtonian mechanics to evaluate overall system trajectory.

The second relies on ab initio methods, which involve solving quantum mechanical equations

from first principles to arrive at overall system behavior. Standard molecular dynamics (SMD)

is largely based on the first approach. However, it is important to state that ab initio methods

may not necessarily exclude aspects of molecular dynamics in their algorithms. For instance,

it is possible to use MD in Density Functional Theory (DFT). However, in such applications

the calculations become slow. Within the first approach it is customary to derive or define a

mathematical force field model which is then simulated using Newtonian mechanics. This

mathematical model needs to be as realistic a description of the atomic configuration as

possible. The degree of model realism ultimately dictates the degree of success of the

simulation. The success of a simulation can be quantified in terms of result accuracy and

how efficiently the computational hardware is used. An important and contemporary goal of

computation is parallelization.

1.1 Overview 3

1.1.3 Parallelization

Parallelization means the extent to which a single problem could be solved through a scheme

of cooperative computation such that results are obtained faster for a given hardware and

accuracy specification. To understand this need, one realizes that atomic and molecular

systems of macroscopic significance necessarily have extremely large numbers of particles.

A macroscopic examination of such a system that is done by evaluating all possible pairwise

particle interactions in the system generates vast amounts of data and consumes vast amounts

of system time and resources in the process. Some mathematical simplifications, such as

specification of a cut-off distance, force field reductions and so on may be done, but such

interventions only help to a limited extent. Using a faster processor does not necessarily

alleviate the problem immediately, owing to plateauing processor speeds. The issue of

computational speed and accuracy is centre stage and continues to highlight the shortcomings

of the typical computer for these purposes. In addition, conformity to Moore’s law, which

predicts a doubling of computational power and speed approximately every two years is no

longer assured [19, 20]. In earlier days, conformity to Moore’s law relied on improvements

in device fabrication techniques which rapidly reduced component interconnect distances

on silicon wafer. This distance is expected to reach 5 nm around 2020. However, device

computational ability depends on other factors as well, such as precluding quantum mechani-

cal effects arising from the physics of the nanoscale. The high charge mobilities in spaces

with high semiconductor component densities have introduced the problem of how efficiently

device heat dissipation can be removed [21, 22]. All these factors have contributed to the

plateauing processor speeds over the last five years. Clocking frequencies currently stand at

approximately 3 GHz.

1.1 Overview 4

1.1.4 Decomposition and task allocation

Parallelization begins with a decomposition. This means that the problem is divided into

smaller ‘chunks’ which are then assigned to a specific processor or core by a task manager.

The three most widely used decomposition methods are spatially based, namely particle,

force and domain decomposition [23–26]. For practically meaningful simulations these

decompositions are still limited by memory allocation, processor coordination and communi-

cation between partners. Domain decomposition can present problems for inhomogeneous

systems and the cell-task method [27] is suggested as a possible solution to some of the

problems. A hybrid decomposition arises when different decomposition methods are used

for the same problem. A combination of domain decomposition and thread-based hybrid par-

allelization based on large vectorization single-instruction multiple data (SIMD) processors

and hosting several thousand cores for tens of millions of atoms has recently been reported

[21]. A hybrid algorithm ideally achieves parallelization through a task-based approach on

smaller sub-domains. Each sub-domain is handled by a team or ‘pool’ of threads running on

multiple cores. However, hybrid methods can have issues associated with synchronization in

data access in neighbouring cells [28]. A given task manager spawned task may not access

the same particle simultaneously. Work in parallelizing MD programs is actively ongoing,

for instance [29–33] and others. No one program suits all applications, however. This is

because most programs employ rigid parallelization for specific tasks and lack flexibility

for newer classes of problems [21]. In spite of this proliferation, smaller code generally

accommodates new developments in computing more readily, particularly with respect to

scientific computing [21, 34]. Other performance enhancements are concurrent with devel-

opments in processor hardware design. Such advancements in general tend to be relegated

to dedicated corporations with vast developmental resources. For instance, Peng et al [23]

conducted behavioural, instruction-level simulations of supercomputing chip design. This

led to an actual, highly portable Godson-T multicore chip of similar attributes [23–25, 35].

1.1 Overview 5

Their work addressed the foregoing issues of power efficiency, performance, programming

ease, parallelism and platform portability. Such parallelism is said to be polymorphic owing

to the fact that it is a collective of techniques to achieve the final computational power. For

instance, polymorphism can be due to improved chip-local and off-chip communications,

fine-grained thread division techniques, better thread synchronization and hardware-based

locality awareness. The increased transfer bandwidths, core count and improved cache

memory for off-chip transfers realizes considerable performance with the chip on a single

motherboard. A supercomputer is easily realized through efficient interconnections of several

such motherboards.

1.1.5 Statement of the problem

To achieve dramatic improvements in computational power there had to be a radical shift in

the thinking. Today, increases in computational power are due to innovative interconnects of

multi-core, multi-processor arrays rather than due to unilateral improvements in processor

interconnect distance. Also, more efficient and evolvable algorithms for these hardware

arrangements are now driving high performance computation [7, 36, 37]. Demands for

realistic computer graphics for gaming is considerable and far outweighs other applications

in the public domain. Thus, better force field models and ever more demanding computational

algorithms can be hosted on improved platforms and supported by simultaneous developments

in Internet and Computer Technology (ICT). The rise of high-performance, super-computing

clusters [6] as low-cost supercomputers is often considered to be a secondary revolution

in computation. The cost of such super-computers is now falling rapidly alongside the

required electrical power requirements [38]. Standalone computation refers to the use of

the single computer typified by a single desktop computer. Such a computer, or ‘node’,

remains an integral component of any cluster. Standalone does not mean a single-processor

or single-core node, but only that the computing node does not feature as part of a distributed

1.1 Overview 6

system. A physically isolated, single machine having anywhere from single core to multiple

single core processors to multiple processors with multi-cores qualifies this definition. It

is important that any talk of overall system efficiency and accuracy must start at the level

of the node through careful design. However, a survey of the literature suggests that this is

rarely done since most systems have a computational power reliant on brute-force power

scaling through added nodes. This introduces a weakness in computation especially during

upward hardware-size scaling. Within the parallelization context there needs to be a task

manager that efficiently distributes tasks to various nodes and then collects the chunks that

represent pieces of the results. The task manager program necessarily handles a vast inter-

node and inter-process communications and can easily introduce additional weaknesses in

the distributed computational scheme.

1.1.6 Objectives of the research

The primary aim of this research is to create a repeatable and reproducible molecular

dynamics simulations framework. Generally, there is a high starting inertia in computation

and MD is not exempt. Many reasons are ventured forth for this. What is certain is that

unlike experimental research, the current, advanced state of dedicated computing is such that

breaking into computation can require a monumental effort. Therefore, this research is aimed

ultimately at offsetting these requirements. The standalone node in the foregoing discussion

is conceived as a necessary starting point, and developed with performance efficiency and

easy scalability in mind to realize a high performance infrastructure. The specific objectives

of this research are

• To present a detailed review of the current state of the art in MD simulation techniques,

by highlighting the role of the single computer and ways to scale it up towards bigger

clusters of such computers.

1.1 Overview 7

• To develop and write own code using the C/C++ programming language that concisely

implements the mathematical models and algorithms for simulation. The overall

program is to be compiled as reusable functions put together in a freely distributable

library. The code is to be assisted wherever necessary by applets written in Visual

Basic and Matlab.

• The developed software is to focus on a given class of selected fcc metal problems.

The calculable problems involve mechanical and energetic parameters. The calculated

parameters were decided based on the ready availability of published literature data to

aid comparison with the simulation outputs.

• The developed program is to implement parallelization and scalability such that it can

be run with minimal modification on multi-core, multi-processor standalone computers

across different operating systems.

• To deploy freely the developed program as a free educational and research tool and to

apply it to solve actual, current problems relating to metallic systems in a novel and

innovative way.

• To apply the developed tools to solve actual physics problems in metallic condensed

matter systems for the purpose of improving their understanding, thereby expanding

the known body of knowledge.

• To detail the steps to emulate for other metallic systems other than fcc

1.1.7 Outline of the thesis

Chapter 2 provides the rationale for the work contained in this thesis. It begins by reviewing

the current approaches in MD simulations. The main aim of the chapter is to emphasize

the considerations that must be made to achieve enhanced computational performance in

1.1 Overview 8

the general absence of high performance computing resources, as is the case for single,

standalone computers in simulation. The chapter is a starting starting point for the interested

reader embarking on standalone MD without assuming advanced prior knowledge about

the subject. The chapter then gradually guides the reader towards practical, reproducible

experiments within a framework, which is developed soon thereafter in this thesis. The

framework is required to be extendable to larger computing clusters by a design feature that

makes the software scalable with a minimum of reconfiguration onto additionally connected

computers. Finally, the chapter outlines the minimum requirements for such a framework to

achieve its indicated aims.

Chapter 3 begins by describing the kinds of particle ensembles that can be investigated

using the main outputs of this work. The pairwise-particle potential approach is discussed,

as well as how a system of particles is modified through the energy required to embed a

subsequent particle into an existing system, resulting in the embedded atom model (EAM)

approach. We settle on the Sutton-Chen implementation of the Finnis-Sinclair potentials as

being sufficiently descriptive for a class of fcc metallic lattice systems that have a practical

relevance. We derive the mathematical models for fcc, with a focus on copper atoms. Finally,

we develop the software based on these equations. The subsequent chapters evaluate the

performance of the software and then apply it to solve actual dynamical particle problems in

physics. The main output of this chapter is the SoftwareX journal article,

Chapter 4 evaluates the developed software in the standalone setting, and then on a small,

four-computer cluster consisting of multi-core, multi-processors. The system size tested

consists of 30,261 copper atoms in an arbitrarily defined crystalline lattice. The overall

system behaviors are calculated and compared for performance enhancements. In the first

case, the energetics of the cluster are determined. In the second case the temperature evolution

of the system is followed. In the first step deterministic methods are used. In the second step,

a Monte-Carlo approach is used.

1.1 Overview 9

Chapter 5 investigates the performance enhancements of the implemented parallelization

of the VSV software on the standalone platform as applied to simulate fcc Cu lattices. The

outputs of VSV are compared with the known parameters from the literature. A method

to evaluate the performances meaningfully is first developed, and then measurements of

execution times of the code blocks were conducted using system timer functions.

The following Chapters 6 and 7 apply the VSV tool and its extensions in Visual Basic

and Matlab to enable visualization. Thus, VSV is demonstrated to solve two new, actual

and current problems in condensed matter physics. Through the outputs of these subsequent

chapters, reasonable explanations of empirically observed phenomena are provided for the

first time.

Chapter 6 presents a standard MD simulation using VSV to investigate phonon propagation

on the surfaces and within the bulk of a nanostructured fcc copper lattice. At the present time,

the systems reported in the literature and investigated empirically have had large particle

numbers, and at temperatures approaching melting point. The dimensions of the investigated

systems make them macrostructures. A number of questions are increasingly being asked,

such as whether the physics of the nanoscale mirrors that of the macroscale. Also, the effect

of the passage of wave-like disturbances on a lattice at much lower than melting temperatures

i.e. at lower energies. Such questions are pertinent in the light of the growing interest

nanostructures. Such configurations of atoms represent nanoscale metallic connects for

nanoscale devices. Through the wave-like propagation of energy in response to an applied

temperature differential using energy equipartition that is detectable in VSV, this chapter

investigates the relative motions of lattice atoms and suggests an explanation for the effective

diffusion using a mechanism other than Brownian motion. In doing so, we provide first

evidence of spontaneous structure coalescence. Using VSV simulation results we calculate

the diffusion parameters and compare them with parameters from standard diffusion. Finally,

this chapter simulates the assimilation and growth of fcc Cu lattices.

1.1 Overview 10

Chapter 7 uses the ability of the developed software to detect dynamical oscillations in

the bond lengths as described in the previous chapter. The chapter focuses considerably on

detection and following of bond-length oscillations as a mechanism for the dynamical study

of the lattice.

Chapter 8 extends the observed bond-length oscillations into an impulse-oscillation response

approach that is eventually used to calculate the elastic constants of the nanostructures. The

results are compared with the literature values and the agreements indicate that the approach

is reasonable to investigate the phonon dispersion properties of the lattice.

Chapter 9 presents the concluding remarks pertaining to the research. It also delimits

the research but indicates scope and directions of current research questions that could be

investigated using the developed tools.

Chapter 10 lists some of the outputs of the research that have been published in journals

and presented at conferences thus far. It also details the manuscripts that have been prepared

for publication and are in process.

References

[1] Horsch M, Vrabec J, Bernreuther M, Grottel S, Reina G, Wix A, Schaber K, Hasse

H. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon

dioxide predicted by brute force molecular dynamics. The Journal of Chemical Physics,

128(164510), 2008.

[2] Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M. Development of

new interatomic potentials appropriate for crystalline and liquid iron. Philosophical

Magazine, 83(35):3977–3994, 2003. doi: 10.1080/14786430310001613264.

[3] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine, 63

(1):139–156, 1990.

[4] Das A, Ghosh MM. MD simulation-based study on the melting and thermal expansion

behaviours of nanoparticles under heat load. Computational Materials Science, 101:

88–95, 2015. doi: 10.1016/j.commatsci.2015.01.008.

[5] van der Walt C, Terblans JJ, Swart HC. Molecular dynamics study of the temperature

dependence and surface orientation dependence of the calculated vacancy formation

energies of Al, Ni, Cu, Pd, Ag, and Pt. Computational Materials Science, 83:70–77,

2014. doi: 10.1016/j.commatsci.2013.10.039.

References 12

[6] Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E. Gromacs:

High performance molecular simulations through multi-level parallelism from laptops

to supercomputers. SoftwareX, 101:88–95, 2015. doi: 10.1016/j.softx.2015.06.001.

[7] Ocaya R, Terblans JJ. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy. J. Phys.: Conf. Ser, 905(012031), 2017. doi:

10.1088/1742-6596/905/1/012031.

[8] Buchholz M, Bungartz H-J, Vrabec J. Software design for a highly parallel molecular

dynamics simulation framework in Chemical Engineering. Journal of Computational

Science, 2(2):124–129, 2011. doi: 10.1016/j.jocs.2011.01.009.

[9] Smirnov BM. Energetics of clusters with a face centered-cubic structure. Zh. Eksp.

Teor. Fiz., 107:2080–91, 1995.

[10] Terblans JJ. Calculating the bulk vacancy formation energy (Ev) for a Schottky defect

in a perfect Cu(111), Cu(100) and a Cu(110) single crystal. Surf. Interface Anal., 33:

767–70, 2002. doi: 10.1002/sia.1451.

[11] Mattsson TR, Mattsson AE. Calculating the vacancy formation energy in metals: Pt,

Pd, and Mo. Physical Review B, 66(214110), 2002.

[12] Sebastian IS, Aldazabal J, Capdevila C, Garcia-Mateo C. Diffusion simulation of CrFe

bcc systems at atomic level using a random walk algorithm. Phys. Stat. Sol. (a), 205(6):

1337–1342, 2008. doi: 10.1002/pssa.200778124.

[13] Jian-Min Z, Fei M, Ke-Wei X. Calculation of the surface energy of fcc metals with

modified embedded-atom method. Applied Surface Science, 13(7):34–42, 2004. doi:

10.1016/j.apsusc.2003.09.050.

References 13

[14] Griebel M, Knapek S, Zumbusch G et al (Eds.). Numerical simulation in molecular

dynamics. in, Texts in Computational Science and Engineering 5, Springer, Berlin, 5

(ISBN 978-3-540-68094-9), 2007.

[15] Car R, Parrinello M. Unified approach for molecular dynamics and density functional

theory. Phys. Rev. Lett., 55(22):2471–2474., 1985.

[16] Car R, Parrinello M. The unified approach for molecular dynamics and density func-

tional theory, in simple molecular systems at very high density. in NATO ASI Series,

Series B, Physics, P.P. Loubeyre and N. Boccara (Eds.), 186:455–476, 1989.

[17] Remler DK, Madden PA. Molecular dynamics without effective potentials via the

Car-Parrinello approach. Mol. Phys., 70(6):921–66, 1990.

[18] Tuckerman ME. Ab initio molecular dynamics: basic concepts, current trends and

novel applications. J. Phys.: Condens. Matter., 2002. URL stacks.iop.org/JPhysCM/

14/R1297.

[19] Moore GE. Cramming more components onto integrated circuits. Electronics Magazine,

1965.

[20] Moore GE. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1), 1998.

[21] Mangiardi CM, Meyer R. A hybrid algorithm for parallel molecular dynamics simula-

tions. arXiv:1611.00075, 2016. URL [cond-mat.mtrl-sci].

[22] Mangiardi CM, Meyer R. Molecular-dynamics simulations using spatial decomposition

and task-based parallelism. in: J. Belair et al. (Ed.), Mathematical and Computational

Approaches in Advancing Modern Science and Engineering. Springer International,

Switzerland, pages 133–140, 2016.

stacks.iop.org/JPhysCM/14/R1297
stacks.iop.org/JPhysCM/14/R1297
[cond-mat.mtrl-sci]

References 14

[23] Peng L, Tan G, Kalia RK, Nakano A, Vashishta P, Fan D, Sun N. Preliminary investiga-

tion of accelerating molecular dynamics simulation on Godson-T many-core processor.

Euro-Par 2010 Parallel Processing Workshops, 6586:349–356, 2010.

[24] Peng L, Tan G, Kalia RK, Nakano A, Vashishta P, Fan D, Sun N. Preliminary investiga-

tion of accelerating molecular dynamics simulation on Godson-T many-core processor.

Parallel Processing Workshops, Euro-Par 2010: HeteroPar 2010, HPPC 2010, HiBB

2010, CoreGrid 2010, UCHPC 2010, HPCF 2010, PROPER 2010, CCPI 2010, VHPC

2010, Ischia, Italy, 86021, 2010.

[25] Peng L, Tan G, Kalia RK, Nakano A, Vashishta P, Fan D, Sun N. Preliminary investiga-

tion of accelerating molecular dynamics simulation on Godson-T many-core processor.

Lecture Notes in Computer Science, Euro-Par 2010, 6586, 2010.

[26] Bernreuther M, Bungartz H.-J. Molecular simulation of fluid flow on a cluster of

workstations. in: F. Hülsemann, M. Kowarschik, U. Rüde (Eds.), Proceedings of the

18th Symposium Simulationstechnique (ASIM2005), in Frontiers in Simulation, SCS

European Publishing House, pages 117–123, 2005.

[27] Meyer R. Efficient parallelization of short-range molecular dynamics simulations on

many-core systems. Phys. Rev. E., 8(5):053309, 2013.

[28] Hager G, Wellein G. Introduction to High Performance Computing for Scientists and

Engineers. Chapman and Hall, 2011.

[29] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput.

Phys., 117(1):1–19, 1995.

[30] Todorov IT, Smith W, Trachenko K, Dove MT. DL POLY 3: new dimensions in

molecular dynamics simulations via massive parallelism. J. Mater. Chem., 16(20):

1911–1918, 2006.

References 15

[31] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD,

Kalé L, Schulten K. Scalable molecular dynamics with NAMD. . J. Comput. Chem.,

26(16):1781–1802, 2005.

[32] Ackland GJ, D’Mellow K, Daraszewicz SL, Hepburn DJ, Uhrin M, Stratford K. The

MOLDY short-range molecular dynamics package. Comput. Phys. Commun., 182(12):

2587–2604, 2011.

[33] Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing

parallel molecular dynamics implementation. Comput. Phys. Commun., 91(1):43–56,

1995.

[34] Needham PJ, Bhuiyan A, Walker RC. Extension of the AMBER molecular dynamics

software to Intel’s Many Integrated Core (mic) architecture. Comput. Phys. Commun.,

201:95–105, 2016.

[35] Wang J, Gao X, Li G, Liu Q, Hu W, Chen Y. Godson-3: A scalable multicore RISC

processor with x86 emulation. IEEE Micro., 2(29), 2009. doi: 10.1109/MM.2009.30.

[36] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[37] R O Ocaya and J J Terblans. Coding considerations for standalone molecular dynamics

simulations of atomistic structures. Journal of Physics: Conference Series, 905(1):

012018, 2017. doi: 10.1088/1742-6596/905/1/012018. URL http://stacks.iop.org/

1742-6596/905/i=1/a=012018.

[38] Dongarra J. Survey of present and future supercomputer architectures and their inter-

connects. Paper presented in International Supercomputer Conference, Heidelberg,

Germany, 2004.

http://stacks.iop.org/1742-6596/905/i=1/a=012018
http://stacks.iop.org/1742-6596/905/i=1/a=012018

Chapter 2

Designing a MD simulation testbed

2.1 Introduction

For a MD simulation, the architecture of the simulation platform can limit the most that can

be achieved in terms of the performance parameters discussed in Chapter 1. A discussion

of the common computer architectures on which such simulations are expected to run is

therefore necessary, particularly with respect to the processor-memory arrangement.

All low-level operations follow the general sequence: fetch an instruction or data or both,

then execute, then store the result back into memory. The sequence is repeated until the end or

a branch occurs. A von Neumann type machine arises when the fetches occur along the same

path - first the instructions, then the data. In the Harvard type the fetches occur along different

paths prior to execution. The latter type of machine therefore has a pre-fetch ability and can

execute instructions concurrently with fetches. This instruction/data pipelining substantially

enhances performance and is implemented on most processors today. Pipelining has a number

of technical challenges that arise mainly during conditional branching. However, these are

not in the present scope.

This chapter has three main goals. First, it reviews the state of the art of MD simulations

on various hardware and software platforms. Second, it outlines the achievable targets for

2.1 Introduction 17

our own contributions in MD on standalone machines. Thirdly and overall, it describes a

testable, parallelized testbed program that addresses the performance issues raised in Chapter

1 and enables the actual simulations in the research.

2.1.1 Classification of parallelization paradigms

The typical MD problem falls into two broad categories:

1. ‘embarrassingly’ parallel - which implies that it is readily separated into identifiable,

unique tasks that may then be executed separately. In other words, the execution of

one process does not rely on the execution of another.

2. ‘serial’ - which implies that it cannot be split into independent sub-problems and the

results of one computation drive the next. Such a problem requires either inter-process

communication, or completion of one process first.

However, a clear demarcation into either category may not always possible for the prob-

lem. The solution could then include element of each category. However, most parallelization

occurs at the level of the iterations (loop summations) where the force fields are applied. The

other parts of the typical program are the user and output interfaces. These parts of the code

are concerned with loading particle structures into memory, and can implement iterations

that allow the particles in the configuration to relax to an equilibrium decided by the (new)

boundary condition (called ‘set up’ time), such as applied temperature. These parts of the

code can take inordinately large multiples of simulation time-step, but typically occur only

once per simulation and are therefore not considered in performance benchmarking [1].

2.1.2 Coding versus proprietary software

The goal of writing simulation software is to assure functionality, accuracy and reproducibility

of empirical results, while being inherently parallelizable. For all the material science

2.2 General tools 18

problems that could be solved by MD techniques, a code may already exist in some form

or other. However, the heuristic or ‘black box’ nature of such software obscures its inner

workings. For other software the code may not be general enough for all problems thereby

making it inflexible towards new problems. Also, advancements in computer architecture and

computational methods are often taken advantage of by highly modular, more transparent

codes. Placing ‘open’ code into the public domain under various licenses, such as GNU and

others can lead to a collaborative effort that improves the code by virtue of the peer-review

process. Therefore, one needs to carefully consider the nature of the problem to be solved.

For instance, it could be asked what the expected solution longevity is, the availability

of similar software, the complexity of the problem particularly in the absence of similar

software, the technical resources available in terms of development time, support, and so on.

To illustrate the dilemma, for density functional theory (DFT) calculations [2] many free

software exist but with varied strengths and weaknesses with none being suited to all tasks.

It has been suggested that for an academic undertaking writing own software can produce a

software that is small, transparent, fast, modular and potentially extensible to new problems

while being highly parallelizable.

2.2 General tools

Considering possible parallelization, a successful standalone solution is one that is highly

scalable in size for the same or improved accuracy. Scalability is defined as the ability to

increment the system in terms of size and computational power by physically adding similar

systems to an existing system while adjusting only a small set of reconfiguration parameters.

A ‘hybrid’ system is possible and often desirable by making use of subsystems comprising of

heterogeneous hardware and operating software. Such interconnections define a ‘farm’, with

interconnection compliance ensured through communication protocol standards. In the ideal

2.2 General tools 19

case the specific hardware requirements are less important. Lower overall system cost and

ease of reconfiguration are usually benefits of systems that have homogeneous components.

2.2.1 Parallelizable tools

For parallelization, the fundamental questions are:

1. How can the full computational power of a standalone computer having P processors

and C cores be exploited?

2. Is this set {P, C} available by default by virtue of the unit(s) being on?

3. How does one benchmark the performance of this set?

At present, these questions remain largely unanswered. Several studies have attempted to

correlate the performance of the system as a function of the size in terms of the set {P, C}.

For instance, Peng et al [3] measure the speedup on p cores for a problem of fixed size as

S(p)=T1/Tp, which is the ratio of the execution time on one core compared to the execution

time on the p cores. The strong-scaling parallel efficiency Ep is then E(p)=S(p)/p. They

also monitor the performance metrics within cores for their quad-core simulations using

Intel’s VTune Performance Analyzer. Others, like Pal et al. [4] discuss the bottlenecks in

parallelized MD computations and a hybrid algorithm using MPI with OpenMP threads for

problems associated with the embedded atom model and Morse potentials. They contrast

their study with similar studies using LAMMPS and find that their method produces enhanced

performance. In attempting to provide clarity on these questions to a degree of practicality,

we begin by outlining some possible tools for the task.

Many parallelizable tools are inherent or implicit in the programming environment and

allow migration to parallel computation with relative ease. There are also tools that allow

benchmarking of system performance relative to a standard. For instance, LINPACK [5, 6]

compares the time taken to co-factorization of a real, dense matrix against a standard. Other

2.2 General tools 20

computational tasks that have been used as tests are solvers of ordinary differential equations

(ODEs), Fast Fourier transform (FFT), sparse matrix algorithms and others. Therefore, to

be meaningful, the true computational power of a system is a holistic aggregate of several

benchmarks. In this research all the codes are written in the C-programming language. Other

third-party packages such as MATLAB are gradually moving towards parallel computing

by adopting a different processor-memory model [7], especially for larger programs. Most

programs achieve parallelism in one of three ways. These are:

• multithreaded parallelism (MP), where several simultaneous instruction streams are

generated and executed on the above set {P, C},

• distributed computing (DC), where several instances of the same program run indepen-

dently on separate computers with separate memories, and

• Explicit Parallelism (EP), where the problem is solved using parallelized loops, dis-

tributed arrays that are decomposed for the set {P, C}.

2.2.2 Threads and message passing

The C-language is a standardized, highly portable development language. This accounts

for its popularity as the preferred parallelization language. However, newer contenders

modeled on its strengths are becoming commonplace. Many of these, such as CUDA, target

specific processors such as GPUs. The success of C is due to a number of factors. First, it

allows easier definition and manipulation of complex data structures that closely resemble

collections of structured ensemble particles. The basic data structure typically consists of a

particle type object with directly accessible attributes such as mass, position and velocity.

Entire collections of such particles, which represent particle configurations within a domain,

can be manipulated just as readily as its individual particles through dedicated functions.

Second, the use of pointers within the language introduces flexibility and modularity. In

2.2 General tools 21

this way individual particles or entire collections of particles can be exchanged between

different sections of the code with ease. An instance where this flexibility is called for is

during particle migration, where a particle is added or deleted from a collection. Third, the

language is fast and has a number of excellent heap memory management functions, which

coupled with the concept of ‘threads’, allows implementation of multi-threaded parallelism.

Here, a single problem ‘spawns’ multiple, dynamically managed concurrent but independent

sub-programs, i.e. threads. Since threads can access shared memory, careful synchronization

and management of threads is needed to limit unwanted thread interaction. This averts

‘collisions’ and ‘racing’ conditions that mar the output of the simulation.

Threads are well-established in the C-programming language and are implemented in

several standards. The POSIX or p-thread standard is defined in the “pthread.h” library.

The code in Listing 2.1 spawns 5 threads using this approach. Parallelization can also

be implemented through distributable multiprocessing application programming interfaces

(MAPIs), such as Open Multiprocessing API (OpenMP) and Message Passing Interfaces

(MPIs). Some common, freely available MPIs that are a cross between p-threads and OpenMP

are OpenMPI (not to be confused with OpenMP), MPI, MPICH2, LAM-MPI.

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e < s t d l i b . h>

3 # i n c l u d e < p t h r e a d . h>

4 # d e f i n e NTHREADS 5

5 vo id *myFun (vo id *x) {

6 i n t t i d ;

7 t i d = * ((i n t *) x) ;

8 p r i n t f (" Execu ted t h r e a d : %d ! \ n " , t i d) ;

9 r e t u r n NULL;

10 }

11 i n t main (i n t a rgc , c h a r * a rgv []) {

12 p t h r e a d _ t t h r e a d s [NTHREADS] ;

2.2 General tools 22

13 i n t t h r e a d _ a r g s [NTHREADS] ;

14 i n t rc , i ;

15 f o r (i =0 ; i <NTHREADS; ++ i)

16 {

17 t h r e a d _ a r g s [i] = i ;

18 p r i n t f (" spawning t h r e a d %d \ n " , i) ;

19 r c = p t h r e a d _ c r e a t e (& t h r e a d s [i] , NULL, myFun , (vo id *)&t h r e a d _ a r g s

[i]) ;

20 }

21 / * w a i t f o r t h r e a d s t o f i n i s h * /

22 f o r (i =0 ; i <NTHREADS; ++ i) {

23 r c = p t h r e a d _ j o i n (t h r e a d s [i] , NULL) ;

24 }

25 r e t u r n 1 ;

26 }

Listing 2.1 An example of p-thread code spawning 5 threads.

2.2.3 Open multiprocessing programming

A significant amount of time in complex, repetitive calculations is spent executing loop

statements. These iterations are readily parallelized using OpenMP by including the #pragma

compiler directive followed by the code to be parallelized, as shown in Listing 2.2.

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e <omp . h>

3 i n t main (i n t a rgc , c h a r ** a rgv) {

4 i n t i , t h r e a d _ i d , n l o o p s ;

5

6 # pragma omp p a r a l l e l p r i v a t e (t h r e a d _ i d , n l o o p s) {

7 n l o o p s = 0 ;

8 # pragma omp f o r

9 f o r (i =0 ; i <1000; ++ i) ++ n l o o p s ;

2.2 General tools 23

10 t h r e a d _ i d = omp_get_thread_num () ;

11 p r i n t f (" Thread %d , loop i t e r a t i o n %d . \ n " , t h r e a d _ i d , n l o o p s) ;

12 }

13 r e t u r n 0 ;

14 }

Listing 2.2 An example of OpenMP parallelization.

The same directive can be used to specify the aspects of critical code i.e. code that is

common to all the threads, as shown in Listing 2.3.

1 # i n c l u d e < s t u d i o . h>

2 # i n c l u d e <omp . h>

3 i n t main (i n t a rgc , c h a r * a rgv []) {

4 i n t i , t h r e a d _ i d ;

5 i n t g l o b _ n l o o p s , p r i v _ n l o o p s ;

6 i n t g l o b _ n l o o p s = 0 ;

7

8 # pragma omp p a r a l l e l p r i v a t e (p r i v _ n l o o p s , t h r e a d _ i d) ; {

9 p r i v _ n l o o p s = 0 ;

10 t h r e a d _ i d = omp_get_thread_num () ;

11 # pragma omp f o r

12 f o r (i =0 ; i <100000; ++ i) ++ p r i v _ n l o o p s ;

13 # pragma omp c r i t i c a l {

14 p r i n t f (" Thread %d i s ad d in g i t s i t e r a t i o n s (%d) t o sum (%d) " ,

t h r e a d _ i d , p r i v _ n l o o p s , g l o b _ n l o o p s) ;

15 }

16 p r i n t f (" t o t a l n l o o p s i s now %d . \ n " , g l o b _ n l o o p s) ;

17 r e t u r n (0) ;

18 }

Listing 2.3 Illustration of ordinary and critical OpenMP processes.

2.2 General tools 24

The critical keyword manages shared aspects between parallelized sections. This is

implicitly serial but has the main advantage that it eliminates collision problems e.g. when

code sections attempt simultaneous access of a shared variable. The process of combining

the outputs of several smaller parallel sections is known as reduction, and is achieved in

OpenMP using the reduction keyword. The syntax is shown in Listing 2.4. There are other

keywords that are associated with the #pragma omp directive, but these can be found in the

OpenMP documentation [8].

1 # pragma omp p a r a l l e l p r i v a t e (p r i v _ n l o o p s , t h r e a d _ i d) r e d u c t i o n (+ :

g l o b _ n l o o p s)

Listing 2.4 Syntax for output reduction of parallel processes.

Listing 2.5 shows the main aspects of parallelized programs used in the present work in

the calculation of cluster energetics. It is well-suited to run on a Linux cluster.

1 / / mpicc go_mpi . c −o go_mpi

2 / / mpirun −n 4 go_mpi

3 # i n c l u d e < s t d i o . h>

4 # i n c l u d e <mpi . h>

5 i n t main (i n t a rgc , c h a r * a rgv []) {

6 i n t myrank , n p r o c s ;

7

8 M P I _ In i t (& argc , &argv) ;

9 MPI_Comm_size (MPI_COMM_WORLD, &n p r o c s) ;

10 MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

11 p r i n t f (" Th i s i s node %d of %d \ n " , myrank , n p r o c s) ;

12 M P I _ F i n a l i z e () ;

13 r e t u r n 0 ;

14 }

Listing 2.5 An example of MPI parallelization.

2.2 General tools 25

2.2.4 MPI programming

The Message Passing Interface (MPI) standard has several implementations that support

cross-platform multiprocessing. With MPI, the program assigns a collection of computational

resources such as memory, and easily synchronizes all processes on identically handled nodes.

The interface does not distinguish between the elements of {P, C}, but simply enumerates

each additional element as a computational resource to achieve scaling. Some supercomputers

today rely on such an arrangement, which is attractive because it operates well across clusters.

2.2.5 GPU computing

Graphical Processing Units or GPUs, because of their fast Reduced Instruction Set Computing

(RISC) architectures and lower power consumption, are increasingly being used to implement

compute nodes [9–11]. GPUs are specialized at high-speed handling of certain operations that

involve massive amounts of data. Many GPUs have multiple cores and are well suited to the

calculations that are commonplace in physics and engineering. Today, collections of GPUs

on “blade motherboards” can be clustered readily to implement low-cost supercomputers.

This is the preferred route for universities. For any scaled system the overall electrical power

supply and ventilation needs must be considered carefully.

Brown et al. [12, 13] discuss some issues of porting a large MD program intended

purely for CPUs to parallel hybrid machines based on GPUs. By using an accelerated,

CPU/GPU balanced load programming model within an existing LAMMPS MD program,

they demonstrate hybrid decomposition on CPU/GPU combinations, under short-range force

simplifications. Balancing program load between CPUs and GPUs may be necessary because

unlike CPUs, many GPUs cannot yet achieve peak floating-point performance in terms

of wall-clock time. This disadvantage arises from the GPU’s high optimization of certain

specific operations in its instruction set in comparison to other instructions. Also, having

some operations run on CPUs can minimize the amount of coding required for functions

2.2 General tools 26

executed on GPUs in a hybrid system [12–16]. For instance, Brown et al. [12] show that

double precision performance can be poorer than single or mixed precision performance

in such clusters, indicating that further optimization is required. Others have argued that

increased modularity is advantageous for a scientific software that can be evolved [17].

2.2.6 Cloud virtualization

Clouds arose from the need to provide safe data storage for large corporations. The capa-

bilities of clouds have grown to include number crunching and computation on ‘big data’,

such as are found in financial markets, weather forecasting, fraud detection, Internet trade,

drug research, and other scientific computing. Consequently, they are now referred to as

computing clouds. Alongside traditional storage, the compute feature may be supplied free

of charge but functionally limited, for educational purposes. At a cost, the full potential

of the cloud could be available to a client. The cloud approach has the main advantage of

minimal user investment of hardware and technical know-how. However, security and data

privacy remain a primary concern for organizations over intellectual property of the research.

An important feature of the cloud is ‘virtualization’, which is the ability to define

remote, virtual instances of interconnected, high-performance compute environments from

the a graphical interface on the user’s machine. At present, several organizations permit

virtualization, such as Yellow Circle [18], Microsoft Cloud (Azure) [19], Google Cloud [20].

Many have provisions for free virtualization for educational purposes. Cloud virtualization

is still in its infancy and faces a number of limitations, such as inherent compute delays

introduced by virtual machine monitors. Some solutions have been suggested, for instance

by Ren et al [21], who propose a light-weight supervisory infrastructure called nOSV. It is

likely that in the next few years cloud computing will be a de facto starting point for most

scientific computing.

2.2 General tools 27

2.2.7 Specifications of the standalone testbed

The initial standalone machine in this research is a Dell Optiplex 3010 computer. The

hardware specifications are:

• 3rd generation i5-3470 3.2 GHz processor with 6 MB of L3 cache, no hyperhtreading

• 4 cores

• 8 GB of 1.6 GHz DDR3 SDRAM

• AMD Radeon HD 7470 with 1 GB DDR3 SDRAM integrated GPU

• 16-bit PCI Express bus CPU-GPU interconnect

• built-in K-technology not activated. If active, permits single core overclocking with

other three off [22]. Therefore, in this work it offers no benefits.

• 500 GB hard drive storage to hold initial particle data and boundary conditions and

final storage of simulation output. In the interest of speed, during a simulation no

intermediate hard drive access is done. All intermediate storage is done in SDRAM.

The software specifications are:

• Windows 10 and Ubuntu Linux 14.0 dual-boot

• Microsoft Visual C++ 2008 Express C-language compiler within Windows

• gcc C-language compiler within Ubuntu Linux

• Intel VTune Performance analyzer (Windows)

Figure 2.1 shows the layout of the scalable cluster. In the figure, there are four compute

nodes comprised of standalone machines. Once the cluster is set up, each computer is

enumerated as part of the compute set {P, C}.

2.3 Chapter summary 28

Fig. 2.1 Layout of the scalable compute cluster with heterogeneous standalone machines.

2.3 Chapter summary

This chapter has outlined the platform considerations for a computational research in molec-

ular dynamics. It begins by surveying the current state of the art, such as what it takes to

achieve parallelism and efficiency, and weighs the pros and cons of writing own code as

opposed to using third-party programs for MD. The ultimate goal of the chapter is to outline

a real, scalable computing arrangement that exploits the compute abilities of single machines

or heterogeneous clusters of single machines. In short, Chapter 2 describes the platform

for computational ‘experiments’ of the rest of this thesis with respect to computational

performance as discussed above. Chapter 3 presents the mathematical basis for the class of

problems investigated computationally in this research.

References

[1] Mangiardi CM, Meyer R. A hybrid algorithm for parallel molecular dynamics simula-

tions. arXiv:1611.00075, 2016. URL [cond-mat.mtrl-sci].

[2] Jain A, Shin Y, Persson KA. Computational predictions of energy materials using

density functional theory. Nature Reviews Materials, 1(15004), 2016. doi: 10.1038/

natrevmats.2015.4.

[3] Peng L, Tan G, Kalia RK, Nakano A, Vashishta P, Fan D, Sun N. Preliminary investiga-

tion of accelerating molecular dynamics simulation on Godson-T many-core processor.

Euro-Par 2010 Parallel Processing Workshops, 6586:349–356, 2010.

[4] Pal A, Agarwala A, Raha S, Bhattacharya B. Performance metrics in a hybrid

MPI–OpenMP based molecular dynamics simulation with short-range interactions.

J. Parallel Distrib. Comput., 74:2203–2214, 2014.

[5] Petitet A, Whaley RC, Dongarra J, Cleary A. HPL - a portable implementation of the

high-performance Linpack benchmark for distributed-memory computers. Document

on Internet, 2016. URL http://www.netlib.org/benchmark/hpl/.

[6] Top500. The Linpack Benchmark. Document on Internet, 2016. URL https://www.

top500.org/project/linpack/.

[7] Cleve M. Parallel MATLAB: Multiple processors and multiple cores. The MathWorks

News & Notes, 2007.

[cond-mat.mtrl-sci]
http://www.netlib.org/benchmark/hpl/
https://www.top500.org/project/linpack/
https://www.top500.org/project/linpack/

References 30

[8] OpenMP Review Board. OpenMP Application Programming Interface. OpenMP, 2015.

URL http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

[9] Govender N, Wilke DN, Kok S, Els R. Development of a convex polyhedral discrete el-

ement simulation framework for NVidia Kepler based GPUs. Journal of Computational

and Applied Mathematics, 270:386–400, 2014. doi: 10.1016/j.cam.2013.12.032.

[10] Govender N, Wilke DN, Kok S, Els R. Collision detection of convex polyhedra on the

Nvidia GPU architecture for the discrete element method. Applied Mathematics and

Computation, 267:810–829, 2015. doi: 10.1016/j.amc.2014.10.013.

[11] Govender N, Rajamani RK, Kok S, Wilke DN. Discrete element simulation of mill

charge in 3D using the Blaze-DEM GPU framework. Minerals Engineering, 79:

152–168, 2015. doi: 10.1016/j.mineng.2015.05.010.

[12] Brown WM, Wang P, Plimpton SJ, Tharrington AN. Implementing molecular dynam-

ics on hybrid high performance computers - short range forces. Computer Physics

Communications, 182(4):898–911, 2011. doi: 10.1016/j.cpc.2010.12.021.

[13] Brown WM, Kohlmeyer A, Plimpton SJ, Tharrington AN. Implementing molecular

dynamics on hybrid high performance computers - particle-particle particle-mesh.

Computer Physics Communications, 183(3):449–459, 2012. doi: 10.1016/j.cpc.2011.

10.012.

[14] Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating

molecular modeling applications with graphics processors. J. Comput. Chem, 28:

2618–2640, 2007.

[15] Schmid N, Bötschi M, Van Gunsteren WF. A GPU solvent-solvent interaction calcula-

tion accelerator for biomolecular simulations using the gromos software. J. Comput.

Chem., 31:1636–1643, 2010.

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

References 31

[16] Hampton S, Alam SR, Crozier PS, Agarwal PK. Optimal utilization of heterogeneous

resources for biomolecular simulations. in: Proceedings of the ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis, SC

2010, 5644896, 2010.

[17] Buchholz M, Bungartz H-J, Vrabec J. Software design for a highly parallel molecular

dynamics simulation framework in Chemical Engineering. Journal of Computational

Science, 2(2):124–129, 2011. doi: 10.1016/j.jocs.2011.01.009.

[18] Yellow Circle. Yellow Circle Virtualization Cloud. Document on Internet, 2016. URL

https://mylab.yellowcircle.net.

[19] Microsoft Corporation. Microsoft Azure Virtualization Cloud. Document on Internet,

2016. URL https://azure.microsoft.com/en-us/.

[20] Google. Google Cloud. Document on Internet, 2016. URL https://cloud.google.com/.

[21] Ren J, Qi Y, Dai Y, Xuan Y, Shi Y. nosv: A lightweight nested-virtualization VMM for

hosting high performance computing on cloud. The Journal of Systems and Software,

124:137–152, 2017. doi: 10.1016/j.jss.2016.11.001.

[22] Intel Corporation. Hyperthreading and k-technology. Document on the Internet, 2016.

URL http://ark.intel.com/products/65703.

https://mylab.yellowcircle.net
https://azure.microsoft.com/en-us/
https://cloud.google.com/
http://ark.intel.com/products/65703

Chapter 3

Development of the simulation software

3.1 Introduction

This chapter describes the development of the Velocity Störmer-Verlet software, henceforth

abbreviated VSV, targeting the testbed hardware described in Chapter 2. It was written to

carry out fast molecular dynamics (MD) calculations on the mechanical evolutions of large

ensembles of well-defined particles with masses, positions and velocities in a known potential

energy field. In mechanics, particle ensembles may be defined uniquely using parameters

that convey size, energy, and so on. Such parameters may be volume, pressure, force, area,

particle number, temperature, etc.

3.1.1 The canonical ensemble

Specifically, statistical mechanics defines the canonical ensemble as a statistical arrangement

that represents possible states of a mechanical system that is in thermal equilibrium with a

heat bath at some fixed temperature, Tb. The equilibrium is not necessarily static, but can be

dynamic, implying steady energy exchange between the heat bath and the system. Figure

3.1 illustrates the canonical ensemble, defined as a system having N particles, volume V and

3.2 Defining a particle system 33

temperature T , and is abbreviated NVT. The bath, although drawn bounded, is taken as an

infinite energy source.

Fig. 3.1 The canonical ensemble.

3.2 Defining a particle system

In dynamical simulations of mechanical systems, the main, essential ingredient is a model for

the physical system. Choosing a model amounts to defining a potential energy function that

best describes the system. Therefore, it is not enough to merely define an ensemble, which in

reality only specifies the boundary conditions under which the model operates. The model

specifies the physical laws that govern the evolution of states between boundary conditions.

The contemporary approach in MD, as with the developed VSV code, the potential energy

function V is defined in terms of the position vector set {r̄i} for all N particles, i.e. i={1, 2,

..., N}. Thus

V =V (r̄1, r̄2, · · · , r̄N). (3.1)

The potential must be invariant to translation and rotation.

3.3 Embedded Atom Modeling 34

3.2.1 Force in atomic particle systems

Force (F̄) is derived as the gradient of potential energy with respect to the particle displace-

ments, i.e.

F̄ =−∇V (r̄1, r̄2, · · · , r̄N). (3.2)

This form of force specification implies energy conservation i.e. the existence of the Hamil-

tonian, E:

E = K + T, (3.3)

where total kinetic and potential energies are respectively K and T. The simplest choice of V

relies on pairwise interactions between any two system particles i and j and their relative

positions, i.e.

V (r̄1, r̄2, · · · , r̄N) =
N

∑
i

N−1

∑
j>1

φ(|r̄i − r̄ j|). (3.4)

While intuitive and relatively easy to implement, there are two fundamental problems with

this two-body modeling approach, namely:

1. It is computationally demanding as system size increases.

2. It does not properly describe important particle systems such as metals, semiconductors,

and new materials.

3.3 Embedded Atom Modeling

Two-body potentials that are still either in use or have historical significance are the Lennard-

Jones (LJ), Stillinger-Weber, Buckingham, Long-range Coulomb, Tersoff, Brenner, Sutton-

Chen, Morse potentials, and many more. These potentials mostly describe particle interac-

tions through the interplay of attractive and repulsive particle-particle forces. For instance,

when the particles get to within a specified distance of each other repulsion dominates;

3.3 Embedded Atom Modeling 35

beyond a certain separation, attraction dominates. No one potential models all systems

equally well and the best one for a particular system is arguable. The LJ potential, commonly

referred to as the 12-6 potential is, for instance, known to correctly model atomic systems

having closed-shell atom interactions (e.g. rare gases such as argon). However, it fails for

closed-shell systems where the localized bonds are strong (e.g. for covalent bonds), or even

where there is a strong electron delocalization “sea” (e.g. metals). Therefore in metals, the

LJ potential describes surface relaxation poorly.

3.3.1 The Finnis-Sinclair approach

To address the limitations of the two-body approach, the embedded atom model (EAM)

method was developed. The Finnis-Sinclair (FS) potential [1] is an EAM method potential

that is a composite of a two-body potential to model repulsion, but with the advancement

of a density of state function ρi to model attraction. The particles are presumed to be in the

fcc crystalline arrangement. This additional term represents the energy needed to embed an

atom i (hence the term “embedded”) into the array in terms of the receiving host electron

density. The total system potential energy, Utot (or T in the Hamiltonian) is then

Utot =
1
2

ε

N

∑
i

ui, (3.5)

where for n>m,

ui =
1
2

ε

N

∑
j ̸=i

[
V (ri j)− cρ

1/2
i

]
, V (ri j) =

(a
ri j

)n
, ρi =

N

∑
j ̸=i

(a
ri j

)m
. (3.6)

The constant ε is a dimensionless energy scaling parameter, a is the lattice constant and c is

a fitting parameter.

3.3 Embedded Atom Modeling 36

3.3.2 The Sutton-Chen form of the Finnis-Sinclair potential

The VSV code implements the Sutton-Chen (SC) form [2] of the Finnis and Sinclair (FS)

potential [1]. FS described the force F̄i on a system particle i in terms of the net effect of

pairwise repulsive-cohesive forces with all the other particles in the system and the local

charge density ρi around the particle. The latter conveys the attractive effects of a perturbing

or ‘embedded’ atom. The total FS potential energy has the form:

U =
N

∑
i

ui, (3.7)

where

ui =
1
2

ε

N

∑
j ̸=i

[
V (ri j)− cρ

1/2
i

]
, ρi =

N

∑
j ̸=i

(a
ri j

)m
for n>m, (3.8)

where a is the lattice constant, ε and c are energy scaling and fitting parameters respectively.

The pairwise interaction potential between particles i and j that are separated a distance r̄i j is

given by

V (ri j) =
(a

ri j

)n
. (3.9)

Sutton-Chen (SC) [2] introduced an embedding energy E(ρ̄i) term into the FS potential to

rather describe the energetic contribution of the local charge density, hence

U =
1
2

N

∑
i j

V (ri j)+
N

∑
i

E(ρ̄i). (3.10)

Equation (3.10) can be written

U = ε

N

∑
i=1

(
N

∑
j=i+1

(
σ

ri j

)n
− c
√

Si

)
, (3.11)

where

Si =
N

∑
j=1, j ̸=i

(
σ

ri j

)m
. (3.12)

3.3 Embedded Atom Modeling 37

The force, F =−∇V (r), on particle i is then

F i = ε

N

∑
j=1, j ̸=i

[
n
(

σ

ri j

)n
− cm

2

(
1√
Si
+

1√
S j

)(
σ

ri j

)m
]

r̄i j

r2
i j
. (3.13)

where r̄i j is the vector between particles i and j, i.e.

r̄i j = x̄ j − x̄i. (3.14)

VSV code employs standard MD to evolve the position and momentum of each particle at

each time step [3].

3.3.3 MD simulation using adatoms

The EAM approach, because it fundamentally involves particle embedding, presents the

unique opportunity to add or subtract atoms arbitrarily to existing arrangement of atoms and

therefore to investigate additive/subtractive perturbations on the global system. The added

or subtracted atom or atoms are called ‘adatoms’. In this way, the effects of missing atoms,

substitution by different atoms, arbitrary configurations may be examined in simulations,

something that is impossible to do experimentally. In essence, this is equivalent to the

postulation of defects in the crystalline array. The study of such defects can lead to enhanced

understanding of many macro properties of the material i.e. its thermal properties by phonon

coupling, melting point, mechanical strength, and so on. These results may then be interpreted

in the context of established theories.

Section 3.4 shows how the VSV program can be used to calculate the global minimum in

transition metal clusters using the foregoing Sutton-Chen potential in the EAM method.

3.4 Velocity Störmer-Verlet integration 38

3.4 Velocity Störmer-Verlet integration

A version of this time evolution technique [4] is implemented in the program. It is commonly

used to discretize the Newtonian equations of motion [4], and has O(δ t2) discretization error.

In the discretized notation p̄n
i := p̄i(tn) which describes the vector p̄ sampled at the discrete

n-th time interval, where p̄={x̄, v̄, F̄}, it follows that the approximation of p̄n+1
i , i.e. on the

next or (n+1)-th time interval or (t +δ t) gives the new positions

xn+1
i = xn +δ tvn+1

i +
Fn

i
2mi

δ t2. (3.15)

Similarly, the next velocities are

vn+1
i = vn

i +

(
Fn

i +Fn+1
i

2mi

)
δ t. (3.16)

3.4.1 Determination of phase space

The overall goal of MD simulation is to aggregate the properties of microscopic particle

collections into singular parameters that can be used to explain the macroscopic properties of

the material. The phase space is an important and completely macroscopic description of a

physical system using all its possible states; conversely, each possible state is represented by

a unique point in the description. In classical dynamical systems, the canonical phase space

representation considers the momentum and position evolution. Therefore, the preceding

chapters fall into this category and the VSV program is equally suited to such systems as well.

In order to reach such an aggregate, the simulation ideally starts by expressing parameters as

dimensionless quantities.

3.5 Dimensionless equations 39

3.5 Dimensionless equations

Dimensionless equations in simulations are used for three main reasons. To:

1. prevent very small or very large numbers associated with input or output quantities

from producing unwieldy calculations in a simulation. This offsets the storage needs

for such numbers.

2. provide a means of quickly determining the relevant quantities and coefficients for

system evolution.

3. have a simulation that is invariant of the measurement system but only descriptive of

the physical system.

Reducing a variable to a dimensionless equivalent requires scaling it down using a known

value reference variable of equal dimension. In other words,

new variable (dimensionless) =
old variable (dimensioned)

constant reference (same dimensions)
.

The new, dimensionless variable (n′) may be written symbolically as n′=n/ñ, where n is the

old variable and ñ is the reference. Choosing the characteristic quantities according to Table

3.1 allows all other reference quantities such as time, force, pressure, temperature to be

written as reduced variables.

Table 3.1 Dimensioning constants.

Variable Quantity Reference
length σ σ̃

mass m m̃
energy ε ε̃

3.5 Dimensionless equations 40

3.5.1 Time

Here, we use the example of time to illustrate the reduction to dimensionless variable. Since

ε ≡ m× v2, and v ≡ σ/t i.e. energy is equivalent to the product of mass and square of

velocity, while velocity is equivalent to displacement divided by time, it follows that

ε ≡ m×
(

σ

t

)2
. (3.17)

Rearranging Equation (3.17) leads to

t ≡
√

σ2m
ε

. (3.18)

Then, since σ = σ̃σ ′, m = m̃m′ and ε = ε̃ε ′, direct substitution into Equation (3.18) leads to

the dimensionless time scale:

t ′ =
t
α̃
, where α̃ =

√
σ̃2m̃

ε̃
, (3.19)

where the time scaling is denoted α̃ rather than t̃. Similar arguments can be followed for the

remaining variables. The next sections list the reduced variables that are useful for the phase

space calculation in the VSV toolkit.

3.5.2 Velocity and acceleration

Since v ≡ σ/t ≡(σ̃σ ′)/(α̃t ′), it follows that

∂ x̄
∂ t

=
σ̃

α̃

∂ x̄′

∂ t ′
, (3.20)

and acceleration,
∂ 2x̄
∂ t2 =

σ̃

α̃2
∂ 2x̄′

∂ t ′2
(3.21)

3.5 Dimensionless equations 41

3.5.3 Force and pressure

By a similar approach, it can be shown that the scaling factor of the force is F̃≡ε̃/σ̃ so that

the dimensionless force and pressure can be written as:

F ′ =
ε ′

σ ′ , (3.22)

and

P′ =
ε ′

σ ′3 . (3.23)

3.5.4 Kinetic and potential energy

K = ε̃E ′
kin =

1
2

m′
ε̃ ∑

i

(
∂ 2x̄′i
∂ t ′2

)2

, (3.24)

and

Epot = ε̃E ′
pot . (3.25)

3.5.5 Temperature

T =
ε̃

kB
. (3.26)

Therefore, for all the simulation variables a scaling factor can easily be found based Table

3.1.

3.5.6 Instantaneous and internal pressure

As suggested above, the instantaneous pressure, Pint of a system of particles such as the

canonical ensemble has a kinetic energy term (the ergodic component) and a force term. In

other words,

Pint =
1

3V

(N

∑
i

mi ˙̄r2
i +

N

∑
i

F̄i · r̄i

)
, (3.27)

3.6 Setting simulation time scale 42

where V is the system volume. An averaging of Pint over time gives the internal pressure

of the system. A phase transition is usually indicated by a number of system parameters

changing dramatically, for instance the system pressure and the rate of diffusion.

3.6 Setting simulation time scale

For a given system, the time span covered by a simulation cannot be chosen arbitrarily.

Clearly, if any time-based integration is to be achieved correctly, then the time interval

δ t must be defined appropriately. The energetics of a system directly affects transport

parameters such as particle velocity, average particle-particle interaction time, and so on.

Therefore, any time definition must necessarily start by a consideration of the energetics.

Section 3.5 summarizes the important concept of dimensionless variables that allow a realistic

simulation of the system to be conducted. Also, the results of any such simulation are then

interpreted within the context of the dimensionless variables. For a system, such as the

canonical ensemble, the following example shows how the time scale can be determined.

Example 1 Consider an fcc array of copper atoms (m=63.5g/mol) with lattice parameter

≈3.6 nm at room temperature. Suggest a simulation time scale that would be suitable to

evaluate the diffusion of copper atoms from the cluster when the time increases.

Solution: Using these parameters as reference values implies that m̃=1.054×10−25 kg (mass

of each copper atom). Similarly, σ̃=3.61×10−10m. The system is thermodynamic i.e.

energetics are thermally dependent. Using the equipartition theorem while assuming only

three degrees of freedom without any rotation gives:

ε̃ =
3
2

kBT ≈ 3
2
×1.38×10−23J/K×300K ≈ 6.21×10−21J.

3.7 Evaluation of diffusion 43

Application of Equation (3.19) then gives the time scale-factor:

α̃ =

√
σ̃2m̃

ε̃
=

√
(3.61×10−10)2 ×1.054×10−25

6.21×10−21 ≈ 1.49×10−12s.

This scale-factor becomes the basis of examining the time evolution of the array of copper

atoms. This could be interpreted in many different ways, for instance as the expected time

period for a “complete oscillation’ of the atom about its rest position. Times shorter than this

may then completely describe the time instants within a single oscillation. For instance, one

could require integrations over N = 1000 time steps, hence δ t = α̃/N ≈ 0.00149 picoseconds.

Similarly, multiples of this can be used to gauge the effect of several oscillations of a given

atom. For instance, one could require evaluating the system over the next 1.49 nanoseconds,

which represents 1000 times the scale-factor. In which case, this could imply 106 of the

earlier time intervals and be used to study the long term effects of coupled atomic oscillations

in the matrix such as during phonon coupling in thermal conduction. However, it is apparent

that the choice of δ t directly impacts simulation time and accuracy. Too short and the

computation takes time; too large and the accuracy suffers, requiring a careful trade-off

between simulation time and accuracy.

3.7 Evaluation of diffusion

Diffusion is parameter of particle motion that is defined as the mean standard deviation of

particle positions. Diffusion is important because significant changes in its value indicates a

transition between gas to liquid to solid phases. Also, abrupt changes in system pressure are

associated with a phase change (cf. Section 3.5.6). With a knowledge of the time basis and

particle positions at time t0 and at a later time t allows an estimate of diffusion according to

var(t) =
1
N

N

∑
i=1

∥∥∥r̄i(t)− r̄i(t0)
∥∥∥2

(3.28)

3.8 Specifying the particle array 44

This equation shows that the calculated diffusion is zero at time t=t0 and initially increases

rapidly. To gauge the diffusion correctly, the calculation has to be restarted at regularly

intervals.

3.8 Specifying the particle array

A particle is an instance of a well-defined structure that is loaded from a disk file as an space

delimited ASCII text file and maintained in a RAM location. The structure definition includes

the initial particle boundary conditions of position and velocity, alongside the particle mass.

Listing 3.1 shows both the particle data structure definition and a specific particle instance

called p. Each particle takes 72 bytes. Therefore, a macroscopic system comprising 105

particles requires 7 MB of RAM. This is only a small fraction of the RAM on a typical

system i.e. 8 GB (8192 Mb). Therefore, this structure definition technically allows the

software to handle millions of particles. However, as the foregoing discussion shows, the

need to boost computational speed becomes paramount.

1 t y p e d e f s t r u c t {

2 do ub l e m;

3 do ub l e x [DIM] ;

4 do ub l e v [DIM] ;

5 do ub l e F [DIM] ;

6 do ub l e F_old [DIM] ;

7 } P a r t i c l e ; / / 72 b y t e s

8 / / P a r t i c l e L i s t s t r u c t u r e

9 t y p e d e f s t r u c t P a r t i c l e L i s t {

10 P a r t i c l e p ;

11 s t r u c t P a r t i c l e L i s t * n e x t ;

12 } P a r t i c l e L i s t ;

13

14 P a r t i c l e *p ;

3.8 Specifying the particle array 45

15 do ub l e r _ i j ;

16 f o r (d =0; d <3; d ++) r _ i j += s q r (p [j] . x [d]−p [i] . x [d]) ;

17 r _ i j = pow (r , 0 . 5) ; / / c a l c u l a t e 3D d i s t a n c e

Listing 3.1 Definition of the particle structure used in all simulations.

Example 2 below is based on a simple arrangement of three copper atoms in a known,

room-temperature stable matrix as shown in Figure 3.2. Listing 3.1 also shows how the 3D

inter-particle distance ri j i.e. Equation (3.14), is calculated for all MD processes. Stating

the condition: ri j>rcut , where rcut is a cut-off radius within this snippet ignores interactions

beyond rcut and can improve the speed of calculations.

Example 2 Doye & Wales have investigated global minima in transition metal SC clusters

described by various (m-n) pairs i.e. (12-6), (9-6) and (10-8) for clusters up to N = 80 atoms.

Their published results [5] provide sufficient data to the present VSV code to illustrate its

calculation of energy minima. For instance, specifying the data points in Table 3.2 for N = 3

for copper with normalized energy and lattice parameters ε = 1, σ = 1, m = 6, n = 9, mo =

63 and c = 39.432.

Fig. 3.2 Example of an atomic arrangement of copper atoms used in the text.

Example 2 also illustrates how VSV implements the dimensionless-quantity approach

that was described in Section 3.5. That is, to conduct simulations on the energy scale of

3.8 Specifying the particle array 46

Example 1 i.e. ∼ 6.21× 10−21J or 0.03876 eV, one could specify the energy scaling ε =

0.03876 in the sim_constants.h file (see Listing 3.3) that is part of the VSV program.

Example 2 specifically uses ε = 1 to comply with the simulation conditions of Doye &

Wales, particularly the temperature. By the same token for Cu, σ = 1 implies that all lengths

are divided by the lattice parameter before being passed into the VSV program. Thus, the

coordinates in Table 3.2 or Listing 3.2 must be multiplied by 3.61Å to recover the actual

atom positions in the equilibrium fcc lattice in Å. It is evident that adjusting the simulations

for different temperatures is possible by using a different energy scaling. In the subsequent

chapters, where VSV is applied to solve actual physical problems, the energy scaling ε =

0.012382 (eV) is used (see Table 4.1 and Table 6.1).

Table 3.2 Sample data for fcc copper obtained from [5].

Atom m x y z vx vy vz
1 63 -0.5264206369 0.1019469049 0.0252070114 0 0 0
2 63 -0.8377547075 -0.1828574677 -0.4214018482 0 0 0
3 63 -0.2345929501 -0.0832085752 -0.4827850722 0 0 0

In the method of Doye and Wales, structural identifications of metallic atomic clusters

based on experimental data are improved using a Monte-Carlo technique [5]. They deform an

arbitrarily constructed hypersurface of the atomic clusters for up to 80 atoms. By searching

for a global potential energy minimum they are able to suggest the most stable structure

of the collection of atoms. A difficulty of their method, hence the need for the globalized

search, is that the global minima of adjacent surfaces are not necessarily related and therefore

a newer local surface is needed for the atoms on the two surfaces. Therefore, the difficulty

with the method is a complexity of ≈O(N2). In contrast, the present method is deterministic,

has a complexity of ≈O(N logN) and relies on the complete solution of the potential energy

of the atomic cluster as is. Also, VSV allows the investigation of defects by arbitrary vacancy

creation, atom embedding and other methods of investigation. Thus, VSV code makes no

assumptions about the stability or structure of the cluster, and consequently can be applied to

3.8 Specifying the particle array 47

a much larger number of atoms and many different boundary conditions, such as vacancies,

cracks, temperature, and so on. In the case of three atoms of copper that form a known, stable

structure shown in Figure 3.2, the VSV software calculates the potential energies, lists the

inter-particle separations and other parameters.

Table 3.3 shows the output of the global minima calculation for the stable 3-atom copper

cluster. The results shown pertain to the total potential energy (U) of the stable 3-atom

cluster calculated using Equation (3.11) under an energy scaling ε = 1. While Table 3.3 only

compares 3-atom clusters with those in Doye and Wales [5], we verify their outputs for all

their 80 atoms with no noticeable increase in calculation time.

Table 3.3 Program output for Table 3.2 input data.

N 12-6 9-6 10-8
3 -1704.6905 -480.8560 -633.7771

The VSV code calculates the energies in the system and evaluates the forces using the

foregoing formulations. The basic input to the VSV code is a particle specified as a space-

delimited line of text in an ASCII text file (data.txt) in the space-delimited 3-dimensional

format specifying mass, initial positions (x,y,z) and initial velocities (vx, vy, vz), i.e.

mass x_pos y_pos z_pos v_x v_y v_z

The code enumerates the file contents to determine the number of particles, N, and builds a

RAM array of particles to speed up computations. The above particle data would then appear

in data.txt as:

1 63 −0.5264206369 0.1019469049 0.0252070114 0 0 0

2 63 −0.8377547075 −0.1828574677 −0.4214018482 0 0 0

3 63 −0.2345929501 −0.0832085752 −0.4827850722 0 0 0

Listing 3.2 Sample data file for a given VSV simulation.

Listing 3.2 specifies that all three particles are at rest. However, a dimensionless initial

velocity can be introduced to study the effect of an atom moving in a specific direction within

3.8 Specifying the particle array 48

the lattice. More importantly, the velocity boundary conditions also specify the temperature

through modification of the velocity algorithm. The determination of temperature is discussed

in greater detail in Chapter 4. This could be done to study thermodynamic properties such as

phonon stimulation and coupling, which in effect specifies heat conduction, lattice expansion,

and other effects. Chapter 4 also presents the use of VSV code to determine the energetics of

an ensemble in more detail.

The simulation constants are defined in a separate ASCII file sim_constants.h in terms

of scaled energy ε , lattice parameter and the exponents m and n of the LJ pairwise potential.

The contents of this file are

1 / / d e f i n e t h e s i m u l a t i o n c o n s t a n t s

2 # d e f i n e eps 1 . 0 / / an en e rg y s c a l i n g p a r a m e t e r

3 # d e f i n e l a t _ c o n s t 3 . 6 1 / / l a t t i c e c o n s t a n t o f copper , i n angs t rom

4 # d e f i n e cn 39 .432 / / d e n s i t y o f s t a t e c o n s t a n t

5 # d e f i n e n i n t 9 / / p o t e n t i a l f u n c t i o n s t e e p n e s s

6 # d e f i n e min t 6 / / p o t e n t i a l f u n c t i o n r a n g e

7 / / d e f i n e macros f o r i n d e x mapping of c e l l s i n 3 d i m e n s i o n s

8 # d e f i n e i n d e x (i c , nc) ((i c) [0] + (nc) [0] * ((i c) [1] + (nc) [1] * (i c) [2]))

Listing 3.3 Typical definition of the constants for a given VSV simulation.

3.8.1 Software functionalities

The VSV program implements both partitioned domain or linked cell method (LCM) and

unpartitioned domain simulations. In LCM the ensemble volume is subdivided into 27

partitions, which are then assigned to the available processor/core set. This set is interrogated

from the operating system or cluster manager and stored as S={P, C}. For the unpartitioned

domain simulation, which is useful for simulations with fewer particles, the total system

volume is used. Hence the user of the VSV can choose the approach to use in a given

simulation. Figure 3.3 shows the flowchart of the simulation program.

3.8 Specifying the particle array 49

Fig. 3.3 A flowchart representing the VSV simulation program.

Figure 3.8 shows the main functionalities of the software in pictorial form. Further

information about the most current build of the program code and user manuals is available

for download under the GNU General Public License v3.0 [6]. The code has evolved to

include the calculation of ergodics such as vacancy energy, cohesion energy, deterministic

thermostats and Monte-Carlo thermostats.

3.8 Specifying the particle array 50

Figure 3.4 shows the perturb-evaluate approach that is used within the developed VSV

code. It involves determining the energy change associated with a given perturbation of

a system of atoms. The atoms are first allowed to relax into a configuration of minimum

potential energy, U0. The perturbation is then applied and the system is again allowed to

relax to a new steady state of minimum potential energy, UF . The difference in potential

energy, ∆U = |UF −U0| is then the energy associated with the perturbation. A perturbation

can be any adjustment of a particle parameter such as mass, position and velocity. Examples

of specific perturbations that can be applied are:

• mass:- a more or less massive atom substitute that also forms fcc structure allows the

evaluation of impurities in the matrix i.e. doping of a copper matrix with gamma-phase

iron (γ-Fe).

• position:- removal of an atom from the matrix to a point outside the matrix can simulate

a Schottky defect, a Frenkel-pair, vacuum formation, cohesive energies and so on. The

term “outside” is relatively defined, for instance, it can be tens of atomic radii from

the nearest or “surface”. Similarly, a point at infinity (r → ∞) could then be several

hundreds of atomic radii away.

• velocity:- by scaling particle velocities, the effect of temperature on the matrix can be

evaluated. Chapter 4 provides an indepth discussion of how this is achieved in VSV.

Note: Since a simulation is only as good as how it is applied and how the results evaluated,

many other parameters can be calculated by invoking the various defined functions in the

VSV toolkit. For instance, the dependence of the total potential energy of the system on

the particle path can be evaluated by moving a particle along a specific Miller direction in

consecutive potential energy calculations.

Figure 3.5 shows the different directions of fcc copper lattice containing 1583 atoms.

These views also represent atom arrangements that were used directly to investigate the

3.8 Specifying the particle array 51

Fig. 3.4 The perturb-evaluate approach used in simulation within the VSV program.

perturbations of mass, position and velocity (temperature) of the lattice. The normal of the

viewing plane intersects the page and aligns with the coordinate axis as shown.

Figure 3.6 shows the definition of a surface vacancy by the removal of an atom from a

position on the surface of an ensemble of 1583 atoms on the (001) plane. The removed atom

can be placed at a point at “infinity”, i.e. r̄ → (0,0.5,100)Å.

3.8 Specifying the particle array 52

(a) <100> (b) <110> (c) <111>

Fig. 3.5 Bird’s eye, un-projected views from specific equivalent Miller index directions.

(a) before removal

(b) after removal

Fig. 3.6 Views of (001) plane showing vacancy creation by surface atom removal at (0, 0.5,
3.5) Å

.

3.8 Specifying the particle array 53

(a) embedding

(b) close-up view

Fig. 3.7 Views of (001) plane showing the embedding of a copper atom from (0, 0, 100) Å to
(0, 0, 4.0) Å.

Figure 3.7 shows the process of embedding an fcc atom onto the (001) surface from a

point at infinity (r̄ → (0,0.5,100) Å). The move arrow shows the embedding direction. This

move direction defines the embedding path, which has been shown to affect the calculated ∆U .

The number of atoms in the matrix is 1583, hence the total after embedding is N=(1583+1).

The software reported in [3] calculates the average cohesive energy, Ecoh, as the difference

between the total potential energy of the perfect, undisturbed fcc lattice and when all N atoms

are “blown apart” to infinite interatomic separation i.e.

Ecoh =
Uapart,tot −Uper f ect

N
. (3.29)

3.8 Specifying the particle array 54

3.8.2 Main code snippets

All included functions (func) are declared in the form

return_type func(arrangement *particle, types other_variables)

where arrangement can be either particle, particle list or cell array, the latter two being

dedicated to the LCM method. The other_variables can be summation indices, and so

on. This approach allows single to entire particle collections to be passed back and forth as

memory blocks.

Fig. 3.8 Pictorial representation of the VSV program.

The next chapter presents the application of the VSV program to calculate two aspects of

a cluster of 30,261 atoms. First, the energetics of the cluster are calculated. Within the VSV

program, a given simulation is considered to be complete when Fi, which is the force acting

on the i-th particle, has been determined to a specific degree of accuracy. Second, the setting

and control of temperature of the ensemble is presented.

References

[1] Finnis MW, Sinclair JE. Long-range Finnis-Sinclair potentials. Philosophical Magazine,

50:45, 1984.

[2] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine, 63

(1):139–156, 1990.

[3] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[4] Verlet L. Computer “experiments” on classical fluids. I. thermodynamical properties of

Lennard-Jones molecules. Phys. Rev., 159:98–103, 1984.

[5] Doye JPK, Wales DJ. Global minima for transition metal clusters described by the

Sutton-Chen potentials. New J. Chem., pages 733–744, 1998.

[6] Ocaya R, Terblans JJ. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy. J. Phys.: Conf. Ser, 905(012031), 2017. doi:

10.1088/1742-6596/905/1/012031.

Chapter 4

Performance of the VSV software

4.1 Introduction

The performance of VSV code in simulations of fcc atomic structures of metallic atoms can

be evaluated within two broad contexts, namely:

1. temporal - where the effects of parallelized versus unparallelized code on the same

standalone platform are compared to establish any speedups,

2. spatial accuracy - where the results of actual computation of a number of known

parameters for a specific type of atom, such as copper in this case, are calculated

against known, empirical values in the literature.

To evaluate the performances meaningfully, a method to collect the results was devel-

oped. The reader will note that the primary focus of the present chapter is to establish any

computational performance enhancements in the calculation of typical fcc crystals as early as

possible during the development of VSV. Thus, the emphasis is on speedups rather than on

the mathematical descriptions and significance of the calculated parameters themselves. This

is reserved for the subsequent chapters. For speedup comparison, measurements of execution

4.2 Timing functions 57

time of code blocks were done using system timer functions. The following sections briefly

discuss the general approach.

4.2 Timing functions

The function clock() returns the total time the operating system spent running a block of

code with clear entry and exit points. However, it is not very useful for parallel threads

since it sums up the running times of all threads. For instance, if four identical (parallel)

threads are spawned and each takes 1 ms, then clock() might return 4 ms instead of 1 ms,

implying incorrectly that serialization rather than parallelization is at play. Also, since thread

management is automated and independent of the user, embedding clock() at the start of

a thread is not possible. Other functions, such as omp_get_wtime() or getrusage() may

then be used instead. Since the timing in the present work is only in the overall speedup, all

the timings were done using clock(), using the flowchart shown in Figure 4.1.

1 / / De f in e t h e e n t r y p o i n t f o r t h e c o n s o l e a p p l i c a t i o n .

2 / /

3 # i n c l u d e " s t d a f x . h "

4 # i n c l u d e <math . h>

5 # i n c l u d e < t ime . h>

6 # i n c l u d e < s t d i o . h>

7 # pragma omp p a r a l l e l num_th reads (1 0) f o r

8 i n t _ tmain (i n t a rgc , _TCHAR* argv []) {

9 do ub l e i ;

10 do ub l e sum =0;

11 c l o c k _ t VSVs ta r t = c l o c k () ;

12 / / t h i s f o r loop i s p a r a l l e l i z e d

13 f o r (i =0 ; i <1000; i ++) {sum+= s q r t (i) ;

14 p r i n t f (" \ n Sum = %f " , sum) ; }

15 c l o c k _ t VSVend = c l o c k () ;

4.2 Timing functions 58

Fig. 4.1 The simple timing approach used for speedup evaluation.

16 p r i n t f (" \ n e l a p s e d t ime = %f \ n " , (VSVend−VSVsta r t) / CLOCKS_PER_SEC) ;

17 p r i n t f (" \ n c l o c k s p e r second = %d \ n " , CLOCKS_PER_SEC) ;

18 s c a n f ("%f " ,& i) ;

19 r e t u r n 0 ;

20 }

Listing 4.1 Actual Windows C code for block timing of parallelized loops.

The force-fields were derived from the embedded atom model adaptation by Sutton-Chen

of the Finnis-Sinclair potential. To illustrate the speed up, we calculated the equilibrium

lattice parameter (a), the vacancy formation energy of copper, where an atom is removed for

just below the surface of the bulk structure and taken to a point several hundred atomic radii

away from the surface (to simulate a point at ‘infinity’), with a cut-off distance of ten lattice

parameters. Similarly, we calculate the extraction energy [1, 2]. The bulk array consists of

30,261 (+1) atoms, and computation time is measured using system time functions that are

4.3 Results of energetics and thermostat comparisons 59

outside the particle set up, the equilibration steps and the final data output steps. The same

timer functions are used for the non-parallelized iterations as well as the parallelized code.

The configured hardware is the Dell Optiplex 3010 mentioned above.

4.3 Results of energetics and thermostat comparisons

The isotherm implementations using both the deterministic model and the Monte-Carlo

method were taken to be at 400K relative to a bath temperature of 300K. The two thermostats

were used to calculate under constant volume (isochoric) the following:

• cohesive energy, Ech,

• vacancy formation, Ev,

• Schottky formation energy, Esch (cf. Figure 5.1a),

• infinity-to-surface atom capture energy, Ein f ,

• extraction energy, Eext , and

• equilibrium lattice constant, aeq.

Table 4.1 lists the input parameters for the simulation of copper. All adatom effects were

simulated under the assumption that they occurred relative to planes equivalent to the (100)

plane.

Table 4.1 SC simulation parameters for fcc copper.

ε (eV) a (Å) c n m N
0.012382 3.61 39.432 9 6 30,261 (+1 adatom)

Table 4.2 shows the results of the two thermostats. The point at infinity is taken approxi-

mately 100 lattice parameters away from the bulk of the array, since the atoms are assumed

4.4 Timing performance 60

to be in a closed box of fixed volume. The results shown in Table 4.2 were compared with

Table 4.2 Comparison of energies calculated using deterministic (A) versus MC (B) ther-
mostats on Cu(100) at 400K.

Method aeq (Å) Ev Eext Ecoh Esch Ein f
(eV)

A 3.63±0.01 1.31±0.02 4.39±0.01 1.28±0.01 4.41±0.01 2.96±0.01
B 3.74±0.02 1.66±0.30 5.84±0.62 2.17±0.60 5.98±0.60 3.50±0.50

literature values, where abundant empirical data exists in the literature at 400K for the deter-

ministic approach in Method A [3–6], than for the MC approach, Method B. The MC method

requires aggregation over several steps per move to give a result obeying the canonical

distribution, and the actual reported results in Table 4.2 are time-based averages of several

computations per move, with a move acceptance probability of around 30%. The move

perturbations are selected randomly through the Markov-chain approach, with a probability

dependent on ∆xN , which represent all possible generated combinations due to perturbing

inter-particle separation, x. The difficulty with the MC approach is therefore appreciable for

larger ensembles owing to the total size of possible configurations. This accounts for the

lower MC method accuracies depicted in the Table 4.2.

4.4 Timing performance

Table 4.3 Determined speed-up in energy calculations based on deterministic (A) versus MC
(B) thermostats on Cu(100) at 400K.

Method aeq Ev Eext Speed up
(Å) (eV) (eV)

EPT 0.362±0.01 1.31 4.39 1.8
Monte Carlo (5%) 0.371±0.02 1.66 5.84 2.2

4.5 Investigation of real clusters 61

Table 4.3 summarizes the time-factors of the two methods observed on 30,261 atoms.

Without parallelization, the run times in a calculation of Ev on an Ubuntu Linux terminal were

6.70 hours and 5.21 hours for the deterministic and Monte Carlo simulations respectively.

The maximum parallelized speedups are shown in Table 1. The results show a speed up of 1.8

on the wall-clock time for 5% accuracy on the lattice parameter with a reduced cut-off radius

of 10 radii. The Monte-Carlo method exhibited higher speed up, with the lower acceptance

rate, much higher than observed for the deterministic, MD based simulation.

The program is actively evolving but a published version of the software can be obtained

from a permanent repository [7, 8].

4.5 Investigation of real clusters

The chapters that follow describe actual applications of the VSV software to investigate

actual atomic clusters to gain insight into their behaviors and to advance the knowledge of

such clusters. Specifically, Chapter 5 clarifies the temperature specification for such systems,

Chapter 6 studies low temperature particle motions and argues the case for diffusion. Chapter

7 shows that in bond-length oscillations are detectable in within the SC model in the VSV

implementation.

References

[1] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[2] R O Ocaya and J J Terblans. Coding considerations for standalone molecular dynamics

simulations of atomistic structures. Journal of Physics: Conference Series, 905(1):

012018, 2017. doi: 10.1088/1742-6596/905/1/012018. URL http://stacks.iop.org/

1742-6596/905/i=1/a=012018.

[3] Terblans JJ. Calculating the bulk vacancy formation energy (Ev) for a Schottky defect

in a perfect Cu(111), Cu(100) and a Cu(110) single crystal. Surf. Interface Anal., 33:

767–70, 2002. doi: 10.1002/sia.1451.

[4] Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Phys.

Rep., 299(2-3):79–188, 1998. doi: 10.1016/S0370-1573(97)00082-3.

[5] Fluss MJ, Smedskjaer LC, Siegel RW, Legnini DG, Chason MK. in Hasiguti RR, Fuji-

wara K (Ed.) Proceeding of the Fifth International Conference on Positron Annihilation,

April 8–11, 1979, volume 97. Japan Institute of Metals, Lake Yamanaka, Japan, 1979.

[6] Tritshäuser W, McGervey JD. Monovacancy formation energy in copper, silver, and gold

by positron annihilation. Appl. Phys., 6(2):177–180, 1975. doi: 10.1007/BF00883748.

http://stacks.iop.org/1742-6596/905/i=1/a=012018
http://stacks.iop.org/1742-6596/905/i=1/a=012018

References 63

[7] Ocaya RO, Terblans JJ. Velocity-Verlet-Störmer software, VSV. Software in a repository,

2016. URL https://github.com/ElsevierSoftwareX/SOFTX-D-15-00054.

[8] Ocaya R, Terblans JJ. Addressing the challenges of standalone multi-core simulations in

molecular dynamics. in P. Ramasami (ed.), Computational Sciences, De Gruyter, pages

1–21, 2017. doi: 10.1515/9783110467215-001.

https://github.com/ElsevierSoftwareX/SOFTX-D-15-00054

Chapter 5

Specifying system ergodicity in VSV

5.1 Introduction

Temperature is a vital thermodynamical function for physical systems. In the present case,

we investigate systems that are said to be ergodic. These are systems that, when their

time-averaged dynamical properties are compared with their spatially-averaged phase space

trajectories, exhibit the same behaviour. Theoretical and computational developments in

many fields, such as condensed matter physics, chemistry, material science, molecular bi-

ology, nanotechnology and many others, implicitly and crucially rely on the temperature

specification. It is therefore expected that temperature-based simulations of materials will

grow in prominence regardless of the computing paradigm used. The knowledge of tempera-

ture facilitates the understanding of the system’s ergodicity, leading to clarification of system

state and stability. System state can be specified using the concept of phase space in different

ensembles. In the canonical ensemble, mentioned in Chapter 3, this is done through N, V

and T . The system pressure (P) is implicitly determinable.

This chapter presents a secondary application of the developed program to specify

temperature through isotherms and discusses the apparent variability of temperature modeling

within its various, current formalisms in MD simulations. This variability may be expected

5.2 Thermostat definitions 65

to affect the overall energetics, dynamics and structural evolution in terms of differences

in calculated outputs. This fundamental question is not openly discussed in the heuristic

commercial simulation programs of the earlier chapters because the occasion never arises

to do so. This is an additional, clear advantage of the present approach. The chapter

compares two temperature specifications reported in the literature. Using the first approach,

a thermostat is defined deterministically at 400K relative to a heat bath at 300K using a

modification of the standard Newtonian method. Then, using the second approach, a Monte-

Carlo method is employed, assuming stochastic displacements of particle positions. For

a meaningful comparison of the two approaches, the thermostatic vacancy formation and

cohesion energies, equilibrium lattice constant for fcc copper are calculated.

5.2 Thermostat definitions

A thermostat may be thought of as a system at constant temperature. In our particular

context, it represents the canonical ensemble (N,V ,T) at given temperature T . This is not

to say that T will remain the same throughout the existence of the system, but that for each

calculated stable phase of the system the temperature remains at the specified value. In

general, thermostats are defined in two ways.

1. deterministically, using the energy equipartition theorem (EPT), and

2. stochastically, for instance using a Monte-Carlo (MC) approach.

5.2.1 Energy equipartition methods

A time instant δ t of simulation deterministically defines the evolution of length and energy

parameters. This means that given a particular input, the application of the iterative algorithm

5.2 Thermostat definitions 66

will produce the same result at time δ t. System energetics are conveyed by the Hamiltonian,

H (x̄, p̄) = U (x̄)+K (p̄),

where U and K are total kinetic and potential energy respectively, x̄ is displacement and p̄ is

momentum. Instantaneous temperature T (t) is defined in terms of the instantaneous internal

kinetic energy ε . Then, macroscopic system temperature equals averaged instantaneous

temperature, i.e. T =⟨T (t)⟩ [1]. In the thermostatic approach variance in the Hamiltonian, as

might arise from computational error accumulation, is tolerable because the thermostat is

referenced to a heat bath that tightly constrains temperature variations about the equilibrium

value. At equilibrium, the standard deviation σ(H) is related to isochoric heat capacity, cV ,

by

σ
2(H) = ⟨H 2⟩−⟨H ⟩2 = kBT 2cV , (5.1)

where kB is Boltzmann constant. Internal particle motion within a system of particles is

generally a complex combination of translations and rotations about a center of mass which

contribute three and six degrees of freedom respectively. Computational simplifications can

be achieved by subtracting the degrees of freedom when stochastic forces (such as Brownian

motion) and friction are absent from the system. This is done because degrees of freedom

that are not mechanically coupled do not exchange energy [2, 3]. If the center of mass is at

rest and the particle motions are irrotational, then

T =
2

3NkB
ε =

2
3NkB

N

∑
i=1

mi

2
v̄2

i . (5.2)

5.2 Thermostat definitions 67

Using the discrete notation p̄i(t) := p̄n
i , then in the absence of friction and stochastic forces

the velocity Störmer-Verlet method [4–6] discretizes particle position and velocity as

xn+1
i = xn

i +δ tvn
i +

Fn
i

2mi
δ t2, and vn+1

i = vn
i +

(
Fn

i +Fn+1
i

2mi

)
δ t. (5.3)

Since instantaneous temperature T (t) is directly related to atomic velocities, thermostats

require a mechanism to control the rate of change of particle velocities. This can be achieved

either by introducing friction or by direct velocity scaling, as described below.

5.2.2 Langevin EPT methods

In the first method or Langevin approach [7–9], Newton’s second law is modified by intro-

ducing a stochastic force R̄i(t) and a friction coefficient γi(t)>0 into the acceleration of the

i-th particle:

˙̄vi(t) =
F̄i(t)
mi

− γi(t)v̄i(t)+
R̄i(t)
mi

(5.4)

In the absence of stochasticity, the friction term loses its traditional meaning and only

indicates heat flow direction relative to the infinite heat bath. In which case, γi(t)>0 implies

decelerating particles and consequently loss of heat to the bath. Conversely, γi(t)<0 implies

heat gain from the bath and accelerating particles. This can also be interpreted as isochoric

system pressure fluctuations, since pressure is in effect the force acting per unit area of a

given surface.

5.2.3 Velocity-scaled EPT thermostats

The second method, which is also known as velocity scaling, starts at Equation (5.2) to define

a scaling factor β in terms of temperatures, kinetic energies and consequently velocities

5.2 Thermostat definitions 68

[10–13] i.e.

β
2 :=

T ′

T
=

ε ′

ε
=
(v̄′i

v̄i

)2
⇒ v̄′ := β v̄. (5.5)

After every δ t step, the velocity is therefore reassigned a value v̄′ instead of v̄ for the new

temperature to be T ′. Velocity scaling using constant β affects temperature distribution

strongly, and a damping factor Γ ∈(0,1) can be introduced [11] s.t. β = (1+Γ(T ′/T −1))2.

If β is adjusted at the end of every time step δ t, then dT/dt ∼ (T −T ′), i.e. the temperature

rate of change depends on the temperature difference. The method does not remove local

correlations in particle motions. Setting γn
i (t)=ξ nmi, the non-stochastic net force is

mi
v̄n+1

i − v̄n
i

δ t
= F̄n

i −ξ
nmiv̄n

i , for δ t → 0 (5.6)

with new velocities

v̄n+1
i =

F̄n
i δ t
mi

+β v̄n
i , (5.7)

where the term β=(1− ξ nδ t) describes the friction-time behavior. Using F̄n
i and F̄n+1

i in

Equations (5.3) and (5.6) gives new position and velocity:

xn+1
i = xn

i +βvn
i δ t +

Fn
i

2mi
δ t2, vn+1

i =
1
ϕ

[
βvn

i +

(
Fn

i +Fn+1
i

2mi

)
δ t

]
, (5.8)

where ϕ=(1+ δ t
2 ξ n+1). Therefore, friction amounts to scaling the velocity at the current

time step first by β , then overall by 1/ϕ . To obtain an expression for a thermostat, which

is really a constant temperature state, one notes first that the kinetic energy is constant i.e.

dε/dt=0. Then, for the i-th particle

mi ˙̄vi = F̄ −ξ miv̄i,
dε

dt
=

N

∑
i=1

miv̄i · ˙̄vi =
N

∑
i=1

v̄i · (F̄ −ξ miv̄i). (5.9)

5.2 Thermostat definitions 69

Writing F̄ =−∇̄Vx̄i leads to

dε

dt
=−

(
dV
dt

+ξ

N

∑
i=1

miv̄2
i

)
, (5.10)

hence the constant temperature condition:

ξ =− dV/dt

∑
N
i=1 miv̄2

i
=

dV/dt
2ε

. (5.11)

Some thermostats introduce an extra degree of freedom in the form of heat bath temperature.

This conveys the extent of system–bath coupling [12, 13]. Since ξ n arises from friction, the

rate of system kinetic energy loss is related to the friction-time behaviour:

dξ

dt
=

(
∑

N
i miv̄2

i −3NkBT bath
)

M
, for M ∈ R+, (5.12)

where M >> 1 implies less frictional coupling. To determine v̄n+1
i in Equation (5.8), the

term ξ n+1 must be known. Many nonlinear methods [14–16] arise from discretizations of

Equation (5.12), e.g. midpoint time averaging:

ξ
n+1 = ξ

n +
δ t
2M

(dξ

dt

∣∣∣n + dξ

dt

∣∣∣n+1)
(5.13)

gives one possible thermostat when dξ/dt from Equation (5.12) is used. Simpler, more

approximate discretizations are possible. In general, a Hamiltonian system may have stable

integrators but the equations of motion may not be derivable. If the Hamiltonian is time-

independent [17, 18] and can be written as

H (x̄, p̄) =
N

∑
i=1

p̄2
i

2miγ2 +V (x̄1, . . . , x̄N)+
p̄2

γ

2M
+3NkBT bath lnγ, (5.14)

5.2 Thermostat definitions 70

then the equations of motion and phase space can be derived. The phase space may be

defined in terms of intensive macroscopic variables, which are aggregates of microscopic

contributions. Explicit reference to bath temperature generally avoids systematic energy

drifts, implying ergodicity [19–21]. In such a system, particles cannot leave the ensemble.

Therefore, assuming equal Maxwell-Boltzmann particle distribution probabilities and ergod-

icity a priori may result in an NVT (see Section 3.1.1) ensemble of microstates and momenta

[17] . The probability distribution of microstates over radial and momentum space takes the

form

ρ(x̄, p̄) =
e−H (x̄,p̄)/kBT∫∫

e−H (x̄,p̄)/kBT dx̄d p̄
. (5.15)

Putting p̄i = mi ˙̄xi allows simplification in Cartesian coordinates. The particle velocities can

be shown to also follow a Maxwell-Boltzmann distribution. There are other MD thermostats

that are specified under various limiting conditions [17, 22, 23]. Caution is needed when

comparing thermostats grouped holistically within the MD approach. This is because

a particular MD thermostat implementation may facilitate determination of a particular

parameter, but is not generally advantageous to all situations. For instance, Hoover-Evans

[20, 24] and Haile-Gupta [23] thermostats are inherently time-reversible, whereas Andersen

[10] and Berendsen [11] thermostats are not.

5.2.4 Monte Carlo methods

A simpler thermostat can be defined non-deterministically by sampling relative particle

positions using Monte-Carlo (MC) techniques [17, 25]. This involves testing the effort of

a random displacement of a particle within the domain (i.e. box dimensions) against the

change in potential energy ∆U (x̄) without involving kinetic energy. The move is “acceptable”

if a probability p can be found such that

p = min{e−β∆U (x̄),1}, where β = 1/kBT. (5.16)

5.2 Thermostat definitions 71

The microstate probability distribution ρ(x̄) is then

ρ(x̄) =
e−βU (x̄)∫
e−βU (x̄)dx̄

. (5.17)

This form, where particle positions are sampled exponentially without geometrical constraints,

encapsulates a thermostat in the canonical ensemble that obeys Maxwell-Boltzmann (MB)

thermodynamics. The microstate probability can be presented as the acceptable accuracy for

the test, e.g. 20% of final position.

5.2.5 Timescale and macroscopics

Timescale can be thought of as times larger than the relaxation time in inter-atomic particle

collisions but smaller than the shortest experimental observation time for the system. Being

a system simulation as well, the timescale is also taken as a dimensionless quantity. The

deterministic approach, unlike the MC approach, is explicit in the timescale. This naturally

leads to the fundamental question of whether time-correlation functions can be found in

the MC approach to describe macroscopic time-based phenomena. Instantaneous particle

positions depend on the time behavior and temperature spread over particles. It is therefore

important to deal with temperature-time behavior in the MC method, at the very least

qualitatively, in the absence of analytical expressions [10].

The average temperature per particle is taken as T̄ for a system that is in contact with a

bath at temperature T bath. Many time-based system parameters of interest, such as diffusion

coefficients, are calculated as statistical averages in the Einstein formulation [26], or by

time-correlation integrals in the Green-Kubo formulation [27, 28]. At constant volume V ,

the change in average energy is dĒ=cvdT̄ . By Newton’s law of cooling:

1
cv

dĒ
dt

=
dT̄
dt

= α(T bath − T̄), where α =
cv

κV 1/3 . (5.18)

5.3 Comparative simulation of EPT and MC thermostats 72

The constant κ encapsulates temperature inhomogeneities and system shape and is estimated

from the heat flow continuity and flux equations:

J̄(x̄, t) = −κ∇̄T (x̄, t)

∂T (x̄, t)
∂ t

= −V
cv

∇̄ · J̄(x̄, t). (5.19)

Solving Equation (5.18) gives

T̄ (t) = T0 +[T̄ (0)−T bath]e−αt , (5.20)

on a timescale such that stochasticity in T̄ (t) averages out. From purely theoretical consider-

ations the choice of either a specific MD, or even the MC thermostat, is subjective. However,

one expects correct dynamics with a thermostat that accommodates temperature fluctuations

on the timescale.

5.3 Comparative simulation of EPT and MC thermostats

The present work has investigated the effect of the foregoing thermostat definitions, de-

terministic and Monte Carlo, on the equilibrium lattice constant and formation energies

on an isochoric, monoatomic array of n=1583 (plus one, if with a surface adatom) copper

atoms in the fcc structure, and a heat bath at 300K where necessary. The chosen system for

the test simulation is deliberately simpler for speedier computation and comparison of the

thermostats. The deterministic approach employs the Sutton-Chen (SC) embedded atom

model (EAM) form of the Finnis-Sinclair potential [29–32]. The authors have previously

reported their implementation of SC code [3], which was modified for the present work to

accommodate velocity scaling-based thermostats using Störmer-Verlet integration [6], as

well as the MC thermostat with a 30% acceptance probability. EAM methods are not purely

5.3 Comparative simulation of EPT and MC thermostats 73

deterministic but their lower computational effort for more particles and better handling

of larger timescales is attractive [33]. In [31, 33, 34], the EAM Hamiltonian is given by

Equation (3.10). As mentioned earlier, it takes into account the embedding energy of atom i

as a function of the host electron density. For fcc metals the translation and rotation invariant

total potential energy [4, 29, 35, 36] is given by Equation (3.11). The fitting constants are c,

m and n, where m < n. The force on the i-th particle is given by Equation (3.13).

The Hamiltonian (H) is here accepted to within O(δ t2) discretization error, but is ideally

constant [37]. Other temperature dependent effects like diffusion can be investigated through

the effect of the thermostat definition on existing literature models. For instance, diffusion

[38] is probabilistically modeled by

D = D0 ∏PmPv = D0e−Em/kBT e−Ev/kBT , (5.21)

where Pm and Pv are inter-lattice point migration and vacancy availability probabilities

respectively, expressed in terms of migration energy Em and vacancy formation energy Ev.

These energies can be evaluated for each thermostat T , by considering the various vacancy

formation and migratory mechanisms for the perfect crystal lattice under adatom perturbation

[39]. We consider only for the {100} equivalent planes of the lattice-point to surface Schottky

defect creation shown in Fig.5.1a and from-infinity to surface migration, shown in Fig.5.1b.

5.3 Comparative simulation of EPT and MC thermostats 74

(a) Schottky defect formation by surface
migration.

(b) From-infinity to surface migration.

Fig. 5.1 Two migrations associated with the {100} equivalent planes of the fcc lattice.

References

[1] D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press,

New York, 1987.

[2] Graben HW, Ray JR. Global minima for transition metal clusters described by the

sutton-chen potentials. Phys. Rev. A, 43:4100–4103, 1991.

[3] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[4] Griebel M, Knapek S, Zumbusch G et al (Eds.). Numerical simulation in molecular

dynamics. in, Texts in Computational Science and Engineering 5, Springer, Berlin, 5

(ISBN 978-3-540-68094-9), 2007.

[5] Hockney R. The potential calculation and some applications. Methods Comp. Phys., 9:

135–211, 1970.

[6] Verlet L. Computer “experiments” on classical fluids. I. thermodynamical properties of

Lennard-Jones molecules. Phys. Rev., 159:98–103, 1984.

[7] Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component

model for distortive phase transitions. Phys. Rev. B, 17:1302–1322, 1978.

References 76

[8] Wang W, Skeel RD. Analysis of a few numerical integration methods for the Langevin

equation. Mol. Phys., 101:2149–2156, 2003.

[9] Berkowitz M, Morgan JD, McCammon JA. Generalized Langevin dynamics simulations

with arbitrary time-dependent memory kernels. J. Chem. Phys., 78:3256–3261, 1983.

doi: 10.1063/1.445244.

[10] Andersen H. Molecular dynamics simulations at constant pressure and/or temperature.

J. Chem. Phys., 4(72):2384–2393, 1980. doi: 10.1063/1.439486.

[11] Berendsen H, Postma J, van Gunsteren W, Di Nola A, Haak J. Molecular dynamics

with coupling to an external bath. J. Chem. Phys., 72:3684–3690, 1984. doi: 10.1063/1.

448118.

[12] Hoover W. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A,

31:1695–1697, 1985. doi: 10.1103/PhysRevA.31.1695.

[13] Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol.

Phys., 52(101):255–268, 1984. doi: 10.1080/00268978400101201.

[14] Frenkel D, Smit B. Understanding molecular simulations: from algorithms to applica-

tions. Academic Press, New York, 1996.

[15] Gear C. Numerical initial value problems in ordinary differential equations. Prentice-

Hall, New Jersey, 1996.

[16] Bond S, Leimkuhler B, Laird B. The Nosé–Poincaré method for constant temperature

molecular dynamics. J. Comput. Phys., 151(1):114–134, 1999.

[17] Hünenberger PH. Thermostat algorithms for molecular dynamics simulations. Adv.

Polym. Sci., 173:105–149, 2005. doi: 10.1007/b99427.

References 77

[18] Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford University Press,

New York, 1987.

[19] Rugh HH. Dynamical approach to temperature. Phys. Rev. Lett., 78:772–774, 1997.

[20] Evans DJ, Sarman S. Equivalence of thermostatted nonlinear responses. Phys. Rev. E.,

48(65):65–70, 1993.

[21] Butler BD, Ayton G, Jepps OG, Evans DJ. Configurational temperature: Verification of

Monte Carlo simulations. J. Chem. Phys., 109:6519–6522, 1998. doi: JCPSA6.

[22] Woodcock LV. Isothermal molecular dynamics calculations for liquid salts. Chem.

Phys. Lett., 10(3):257–261, 1971. doi: 10.1016/0009-2614(71)80281-6.

[23] Haile JM, Gupta S. Extensions of the molecular dynamics simulation method. ii.

isothermal systems. J. Chem. Phys., 79(6):3067–3076, 1983.

[24] Hoover WG, Ladd AJC, Moran B. High-strain-rate plastic flow studied via nonequi-

librium molecular dynamics. Phys. Rev. Lett., 48:1818–1820, 1982. doi: 10.1103/

PhysRevLett.48.1818.

[25] van Gunsteren WF, Nanzer AP, Torda AE. Molecular simulation methods for generating

ensembles or trajectories consistent with experimental data, in: Binder K, Ciccotti G

(eds). Monte Carlo and molecular dynamics of condensed matter systems, Proceedings

of the Euroconference, SIF, Bologna, Italy, 49:777–788, 1995.

[26] Bose Z. Planck’s law and light quantum hypothesis. Zeitschrift für Physik, 26(1):

178–181, 1924. doi: 10.1007/BF01327326.

[27] Green MS. Markoff random processes and the statistical mechanics of time-dependent

phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22:398–413, 1954.

References 78

[28] Kubo R. Statistical-mechanical theory of irreversible processes. i. general theory and

simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12:

570–586, 1957.

[29] Finnis MW, Sinclair JE. Long-range Finnis-Sinclair potentials. Philosophical Magazine,

50:45, 1984.

[30] Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and

applications. Mater. Sci. Rep., 9(7-8):251–310, 1993. doi: 10.1016/0920-2307(93)

90001-U.

[31] Daw MS, Baskes MI. Embedded-atom method: Derivation and application to impurities,

surfaces, and other defects in metals. Phys. Rev. B, 29:6443–6453, 1984. doi: 10.1103/

PhysRevB.29.6443.

[32] Todd BD, Lynden-Bell RM. Surface and bulk properties of metals modelled with Sutton-

Chen potentials. Surface Science, 281:191–206, 1993. doi: 10.1016/0039-6028(93)

90868-K.

[33] Chamati H, Papanicolaou NI, Mishin Y, Papaconstantopoulos DA. Embedded-atom

potential for Fe and its application to self-diffusion on Fe(1 0 0). Surface Science, 600:

1793–1803, 2006. doi: 10.1016/j.susc.2006.02.010.

[34] Mishin Y. in: Yip S (Ed.), Handbook of Materials Modeling, volume 459. Springer,

The Netherlands, 2005.

[35] Doye JPK, Wales DJ. Global minima for transition metal clusters described by the

Sutton-Chen potentials. New J. Chem., pages 733–744, 1998.

[36] Swope W, Andersen H, Berens P, Wilson K. A computer simulation method for the

calculation of equilibrium constants for the formation of physical clusters of molecules:

Application to small water clusters. J. Chem. Phys., 76(1):637–649, 1982.

References 79

[37] Landau L, Lifschitz E. Mechanics, Course of Theoretical Physics, volume 1. Pergamon

Press, Oxford, 1976.

[38] Terblans JJ, Erasmus WJ, Viljoen EC. Orientation dependence of the surface segregation

kinetics in single crystals surface and interface analysis. Surface Interface Anal., 28:

70–72, 1999.

[39] van der Walt C, Terblans JJ, Swart HC. Molecular dynamics study of the temperature

dependence and surface orientation dependence of the calculated vacancy formation

energies of Al, Ni, Cu, Pd, Ag, and Pt. Comput. Mater. Sci., 83:70–77, 2014. doi:

10.1016/j.commatsci.2013.10.039.

Chapter 6

Low temperature diffusion and

coalescence using VSV

6.1 Introduction

The last few decades have seen simulation grow to become an essential tool for the study of

contemporary materials and for the postulation of new materials [1–4]. The study of atomic

clusters of small dimensions is gaining prominence because of their scientific and industrial

importance [5, 6]. Molecular dynamics (MD) can be used to investigate many macroscopic

behaviors such as crystalline cluster formation, defect formation and propagation, surface

energies, molecular adsorption to surfaces, diffusion and other thermal effects [7, 8]. It is

a useful method when the complexity or cost makes empirical study of the system difficult

[4, 9]. Standard MD remains popular due to the continuing advances in computing and

the ease of modelling the underlying force-fields [10–12]. The surface of a crystal is of

considerable importance in materials because it interfaces mechanically and chemically with

environments external to the crystal. The discontinuity of ordering at the surface makes it an

active defect [13, 14]. Many composite material systems have precipitates in non-equilibrium

compositions that lead to two important questions about the long term thermodynamic

6.1 Introduction 81

stability of the non-equilibrium structure. It then becomes necessary to evaluate the diffusion

of the various components in terms of atomic jump activation energies Ea and the Gibbs free

energy ∆Eg [15]. In general, for such systems three valuations can be done relative to the

composition i.e. whether

1. Ea is low enough while ∆Eg decreases monotonically,

2. Ea is low enough while ∆Eg does not decrease monotonically, and

3. ∆Eg is too high for atomic jumps.

The last case implies that diffusion is effectively not possible and that the non-equilibrium

state is stable. The relative behaviour of Ea and ∆Eg therefore plays an important role in

diffusion, particularly for multi-component alloys.

In this study, the impact-oscillation responses of nano-sized Cu clusters were investigated

using the developed VSV software [16, 17]. Specifically, the interactions between a 357-atom

cluster and a separate sub-cluster of atoms having various initial positions and velocities were

simulated at temperatures near 0K. The system is thus homogeneous and the considerations

of the Gibbs free energy, ∆Eg fall away. The initial simulations establish the cut-off distance

by evaluating the minimum distance at which the cluster exerts an attractive force on an

adatom, causing it to drift towards the cluster. This experiment is important because it

establishes how a randomized cluster could spontaneously assimilate into a fcc crystal

structure, thereby simulating spontaneous crystal growth. Structure degradation by localized

forces that propagate into the lattice are used to simulate melting in response to adatoms

projected into the main cluster. The parameters of the resulting cluster are compared with the

known macro values for Cu. We also calculate the diffusion and other energetic parameters

for the small cluster. The approximate dimensions of the cluster are 7x7x7 atoms, spanning

a volume of approximately 64 nm3. In the case where the adatom was projected into the

lattice, the adatom was projected in the [100] direction. Presented below are the results of the

6.2 The simulation model 82

statistical analyses on the outputs of several repeated simulations. While the simulations are

done with the main cluster near 0K, the average temperature of the main cluster is observed

to rise when higher adatom projection velocities are used. There is a need to equilibrate

the temperature of the lattice by randomizing particle velocities for a lattice that is assumed

to be initially at 0K. We employ a relatively long integration time, δ t, of 91.75 fs in order

to calculate averaged static and low-frequency thermodynamic parameters of the cluster.

Shorter integration times would permit the study of the higher frequency behaviour, such

as phonon propagation and resonance. This study could lead to a better understanding of

the mechanisms of metallic thin-film layer formation and the role of defects on surface

thermodynamics.

6.2 The simulation model

The Finnis and Sinclair (FS) [18] potential was described in Chapter 3. Sutton-Chen (SC)

[1] introduced an embedding energy E(ρ̄i) term into the FS potential to rather describe the

energetic contribution of the local charge density. In the simulations, VSV code employs

standard MD to evolve the position and momentum of each particle by making use of Verlet-

Stormer Velocity integration at each time step [19]. The potential and simulation parameters

are shown in Table 6.1.

Table 6.1 SC and simulation parameters.

Parameter
ε 0.012382 eV
m, n, c 6, 9, 39.432
Integration time, δ t 0.09175 ps (91.75 fs)
tstart , tend 0, 91.75 ps
T 0 K

6.3 Calculations 83

6.3 Calculations

The simulations are in two broad groups, i.e.

i. self-diffusion of single adatoms or multiple adatoms into the main cluster. This is done

to investigate the force field that extends beyond the physical boundaries of the cluster

by its effects on external adatoms

ii. projection of adatoms into the main cluster to simulate adatom(s) that are at higher

temperatures than the main lattice.

We assume ambient vacuum conditions around the interacting atoms, with each position and

velocity recalculated in δ t intervals.

6.3.1 Determination of cluster-adatom interaction distance

A cut-off radius, rcut , is often used to speed up many body simulations with some trade-off

in output accuracy. The first simulation below establishes the farthest distance at which

the adatom begins to drift measurably towards the main cluster over the simulation time as

an indication of rcut(min). We have used this distance to estimate the diffusive migration

activation energy i.e. the minimum energy required to effect the motion of the adatom. This

energy exists because of a force field that extends some distance from the main cluster.

6.3.2 Single adatom diffusion

Figure 6.1 shows the simulated behavior of the adatom at 0K at two initial distances relative

to the main cluster’s (100) surface. In Figure 6.1a, the adatom from 4Å drifts accelerates

towards the (100) and then settles at approximately 1.8Å of the surface, or 2.55Å of its

nearest surface neighbors. Figure 6.2 shows the final position of the captured adatom. The

arrow shows the initial direction of projection of the adatom. The final position of the adatom

6.3 Calculations 84

(a) relative position

(b) actual velocity

Fig. 6.1 The graphs show the simulated time behaviors of an adatom that is initially at rest at
two separate positions, 4Å and 20Å. In (a), the distance measured relative to the capturing
(100) face and in (b), the adatom velocity.

is determined by the net effect of all the atoms and their velocities. Figure 6.3 shows the

relative position on the cluster surface. Its position is stable up to the end of the simulation.

This suggests that at that site it has minimum potential energy and is effectively captured. The

adatom initially at 20Å does not discernibly change its position relative to the main cluster

6.3 Calculations 85

Fig. 6.2 Final position of captured adatom (red) from 20Å. The arrow shows the projection
direction.

over the simulation time. Figure 6.1b shows the behavior of the adatom velocity in time,

which supports the acceleration of from 4Å for a time of 22 ps. Close to the main cluster,

both position and velocity of the adatom oscillate as it settles into its new captured position.

The negative portions of the velocities show a reversal of the direction of the adatom at those

time instants. The simulation was repeated for slightly displaced initial positions of the

adatoms i.e. near both 4 and 20 Å. Similar results were obtained where the captured position

Fig. 6.3 Alternate views showing localized environment of the captured adatom (red) that was
initially at 4Å above the surface. The reference square in (a) shows the reference positions of
the (100) face atoms, (b) is the side view, (c) is the measurement view. The numbers show
the same main lattice atoms in the different views.

is as depicted in Figure 6.3. This simulation suggests that for small clusters the application

of rcut(min) should be avoided, or at least considered only beyond the effective force field

6.3 Calculations 86

distance, such as 20Å in this case. For all subsequent calculations, a cutoff distance was not

specified in the light of the small cluster size.

6.3.3 Multiple adatom diffusion

In the second set of simulations 10 Cu atoms at 0K, also shown in red in Figure 6.4a, are

arbitrarily positioned at rest within 4Å of the (100) face of the main cluster. The new adatom

positions are stable on the surface of the main cluster within 36.7 ps of the start of the

simulation, as shown in Figure 6.4b. Figure 6.5 shows the absolute distance behaviour of

(a) before diffusion (b) after diffusion

Fig. 6.4 Space-filled representation of the diffusive capture of ten adatoms on a (100) face.

each of the 10 adatoms as a function of time. This distance is calculated relative to the origin

for adatom j={1,2,.., 10} according to

|r̄ j|= (x2
j + y2

j + z2
j)

1/2. (6.1)

Figure 6.5 shows that the adatoms diffuse follow a number of step-plateau changes over

the simulation time. For instance, for all adatoms, in the simulation shown, the initial

positions change rapidly at 9.2 ps, 55 ps and 90 ps. Figure 6.4b shows the resulting cluster

corresponding to Figure 6.5. The lattice exhibits coalescence of Cu atoms onto the surface

of the main cluster, with an average simulated separation of 2.55Å between any atom and

its neighbor in the resulting structure. This distance is also the near neighbor distance

6.3 Calculations 87

Fig. 6.5 Simulated distances of adatoms from an origin at the center of the cluster.

in purely crystalline fcc Cu. Structure formation by coalescence of metallic particles has

also been observed in many simulation studies of small dimensioned clusters in other

simulation approaches, such as multi-resolution MD (MRMD) and Kinetic Monte Carlo

(KMC) methods [20, 21]. Using MRMD, Saitoh et al [22] found agreement with ordinary

MD results with respect to the resultant shapes and trajectories and found a lower increase in

net cluster kinetic energy after coalescence. MRMD accommodates rigid body dynamics in

an otherwise ordinary MD simulation using the idea that atomic or molecular particle motion

are effectively surface decided phenomena [4, 23]. KMC has been used to simulate surface

diffusion and thin film growth and is thought to be useful because it allows experimentally

congruent time scales to be simulated. However, it is limited in its predictive power because

it needs a priori specification of atomic stimuli and energy constraints. The work of studied

Doye and Wales [24] can be considered a demonstration of cluster coalescence using the

minimum potential energy surfaces. The results in Figure 6.5 suggest that the coalescence is

6.3 Calculations 88

a step-wise process as Figure 6.6 depicts using approximate boundaries of the first and tenth

adatom radial distances shown in 6.5. Takahashi et al [25, 26] also report this apparent step-

wise coalescence in clusters of silver atoms during their simulation search for consistency

between atomistic and continuum models. They use the Rosato, Guillope and Legrand

(RGL) many body potential for Ag, which has few fitting parameters than standard EAM

models [27, 28]. Gafner et al [29] have also studied structure formation in Au, Cu and Ni

nanoclusters ranging in size from 16 to 50 Å using a tight-binding (TB-SMA) potential. They

reported that structure formation is influenced by the particle size. Rapid coalescence is

thought to be due to boundary formation followed by rapid stabilization, over three critical

stages:

i. incubation, where the interaction forces between two clusters a communicated on the

whole

ii. rigid motion approach, the attractive forces overcome random thermal motions in the

cluster, and

iii. boundary formation itself, which requires enough thermal energy to displace atoms.

Similar, qualitative results that differ only over the timescales have also been reported for

gold and nickel [30, 31].

Fig. 6.6 Depiction of stepwise coalescence of diffusing adatoms.

6.3 Calculations 89

(a) (b) (c)

Fig. 6.7 Diagrams showing the direction of projection of the adatom, towards the shaded
plane within the main cluster, which is outlined by the box.

6.3.4 Projected adatoms

The effects of projecting adatoms into the main cluster at different velocities were also

simulated using an energy equi-partition theorem (EEPT) thermostat. The main lattice was

initialized to 0K as before. With multiple projected adatoms, each projection velocity was

randomized using a Guassian function such that the total kinetic energy was fixed for each

simulation. The velocities follow the Maxwell-Boltzmann distribution (MBD) [32] provided

that an exponential randomization factor f be found such that

f = (kBT/m)1/2,

where kB is Boltzmann constant [33–35]. For simulations done at 0K, e f =1. In EEPT,

temperature and expectation velocity v j are equivalent, as given by Eq. (7.3). Using this

model, we have calculated the effects of projecting single/multiple adatoms into the main

cluster, depicted in Figure 6.7, under conditions of purely translational, irrotational atom

motion, i.e. with N f =N.

6.3.4.1 Projected single adatoms

Figure 6.8 shows the position-time behavior of the adatom. The calculations show that an

adatom speed above approximately 108 m/s, causes the adatom to be deflected beyond the

6.3 Calculations 90

cluster. The equivalent temperature using Equation (7.3) is approximately 88.7K. Hence the

Fig. 6.8 Calculated absolute distance-time behavior of single adatom of various velocities.

capture of Cu atoms occurs at speeds lower than 108 m/s i.e. initial energies below 3.08 eV.

This result corresponds to the per-atom cohesive energy, Ecoh, of copper. Cohesive energy

is the amount of energy required to add an atom from a point at infinity to a crystal at 0K

[11, 36]. Figure 6.9 shows the calculated potential variation relative to the (100) surface

Fig. 6.9 Potential distribution calculated for the (100) surface in an extensive Cu crystal.

of an extensive Cu crystal. The localities of the potential well in Figure 6.9 indicate the

most likely capture sites for the adatom. Such a site has been established in a foregoing

6.3 Calculations 91

section and is depicted in Figure 6.3. Figure 6.10a shows strong oscillations in the position

of the adatom at 52 m/s. We suggest this as an alternative method to calculate the vacancy

(a) v = 52 m/s

(b) v=52.0, 90.8, 108.2 m/s

Fig. 6.10 Adatom-near neighbor bond length oscillations during adatom capture on surface.

formation energy of the crystal through a deterministic dynamic approach. Adatoms having

energies below a threshold value are captured into a stable position and cannot penetrate deep

into the crystal bulk. Adatoms having higher energies by virtue of their speeds (i.e. thermal

energies) may either penetrate deeper into the crystal or are deflected beyond the confines

of the crystal. The amplitudes of the oscillations are lower and decay faster in comparison

with those at 52 m/s, as shown in Figure 6.10b. The approximate period of oscillation is 6 ps,

but vibrations depict higher frequency component of 0.92 ps period. This can be explained

as faster vibrations along the projection direction, [100] for the adatom impacts the crystal

6.3 Calculations 92

more or less on a (100) face. Figure 6.11 shows the component resolution of adatom to near

neighbor bond length oscillations for an adatom projection speed of 52 m/s. The oscillations

begin well before the adatom is assimilated onto the surface of the cluster. This is expected

from the interplay of the attractive and repulsive forces from the main cluster.

Fig. 6.11 Resolved displacement (x, y, z) components of radial displacement for 52 m/s
adatom.

This shows that the energy transfer is expected along the x direction in contrast to the y

and z directions. These oscillations indicate the presence of lattice elasticity. This implies

that the lattice promotes mechanical waves or phonons [37, 38].

6.3.4.2 Projected multi-adatoms

In the third case, 16 Cu atoms at 88.7K are positioned within 4Å of the (100) face of the

main cluster which is at 0K. Figure 6.12 shows the configuration, (a) before, and (b) after

simulation. Only 3 adatoms are in stable surface positions on the main cluster while 13

adatoms were scattered beyond. The simulations show that the captured adatoms populate the

surface and none have penetrated the bulk. The average distance between all three adatoms

with their five nearest neighbors is 2.48Å, in contrast to the case of the single adatom above

6.3 Calculations 93

(a) before (b) after

Fig. 6.12 Depiction of initial and simulated atom positions after projection towards a (100)
face.

and the expected 0K Cu near-neighbor distance of 2.55Å. The new lattice has 360 atoms in

total, suggesting a by-mass crystal growth of 0.83%. This simulation suggests a method to

calculate the scattering effect of a lattice of atoms having different energies. This could be

used to simulate sputtering processes on the surfaces of fcc lattices. Figure 6.12 also depicts

a more pronounced coalescence of the main cluster. Using Equation (7.3) with N f =360, the

calculated overall cluster temperature was 0.22 K.

When capture occurs the final average speed of the adatom approaches zero, with the

adatom attaining its potential energy minimum. Kinetic energy is transferred to the expand

or contract lattice bonds readjustments, hence increasing the elastic potential energy of

the cluster. This causes sustained oscillations and a generalized temperature rise. Lattice

vibrations propagate both as bulk and surface phonons. Since the calculations assume an

isolated harmonic oscillator with in this case 360 purely translational degrees of freedom,

these oscillations are expected indefinitely since there are no energy loss mechanisms in the

simulation.

6.3 Calculations 94

6.3.5 Simulating lattice assimilation growth

Repeating the above procedure of atom capture using more adatoms effectively simulates

lattice growth. This demonstrates a further advantage of the VSV toolkit over existing third

party software.

Fig. 6.13 Distance between adatom and its nearest neighbor over time showing oscillations
at the cluster surface.

The plots in Figure 6.14 show the growth of a lattice at 20 ps intervals. The additional

adatoms are initially at rest and placed close to the main cluster and the force field redistributes

the atoms gradually until they are in the final positions shown. Only three atoms are

successfully assimilated in this configuration.

The final relative positions of all atoms change for the same reason of reassertion of

minimum potential energy. For this reason, the final main lattice appears in all cases to be

considerably deformed in comparison with its starting shape shown in Figure 6.14a. The

deformation of the lattice appears to suggests that the presence of isomorphic forces per unit

length whose effects on the simulation become more manifest as simulation time progresses.

An analogy is the formation of curvature in a droplet of water due to surface tension. For

a much wider and larger main cluster, this less deformation may be expected to be less

6.3 Calculations 95

(a) 0 ps (b) 6 ps (c) 12 ps

(d) 19 ps (e) 26 ps (f) 32 ps

Fig. 6.14 Simulation of crystal growth by assimilation of adatoms.

pronounced farther away from the adatom capture sites. The initial shape of the main cluster

is not expected to be preserved due to the equalization of the potential energies. The average

separation between the adatoms with any of their neighbors, which can be other adatoms

or main lattice atoms was calculated at 2.55Å. This coincides with the distance between

corner and face-centered atoms in the Cu fcc unit cell. Figure 6.15 shows the near-neighbour

distances of the captured atoms. The global minima approach of Doye and Wales [24] for 3

to 80 atoms at given m-n factors shows that though inherently crystalline, the most stable

arrangement may not immediately be recognizable visually as being an fcc structure despite

being one. Thus far, our preliminary calculations using VSV [16] have reproduced their

results. The present results are a reasonable extension of their results to 357 and subsequently

2281 atoms.

6.3 Calculations 96

6.3.6 Surface diffusion

Self-diffusion of fcc metals, notably Cu, Ni, α-Fe has been studied extensively using different

empirical methods [39–41]. Most such studies are done at increased temperatures that are

motivated by two factors. Firstly, the effects of atom diffusion that may lead to system

failures need quantification in conditions where high temperatures are expected. Secondly,

in measurements, the observability of diffusion vastly improves with temperature. Many of

these studies rely on tracer atoms doped into the lattice of interest whereupon the diffusion

parameters are deduced indirectly through tracer diffusion [42–44]. Although computational

studies of diffusion have been done, they have tended to mirror empirical studies in their

boundary conditions but for systems with particle numbers on the macroscale. Studies of

diffusion temperatures and metallic nanoclusters are relatively few. Hence there are few

references pointing towards low temperature diffusion. If one uses the reasoning that the

pairwise forces and embedding potentials do not cease even at 0K, then particles should

possess a potential to reorganize, with energies that are comparable to the Fermi level of the

Fig. 6.15 Near-neighbor distance between the three captured copper atoms. The fourth plot,
labeled “REF”, is a reference plot based on the bond length between two randomly selected
adjacent Cu atoms that were initially in the main cluster.

6.3 Calculations 97

atom. In short, the potential to diffuse should continue to exist at 0K. In the absence of such

studies, the questions that naturally arise are then whether the underlying mechanisms of

particle movement and the parameters such as diffusivity and activation energy as calculated

using the classical approaches lead to values that are correct and comparable to those of the

bulk material, or whether a completely new model is needed.

Diffusion is the main mass transfer mechanism in solids that occurs down a concentration

gradient and depends on temperature. It involves step-wise atom migration and can be

calculated using Eq. (3.28). In the general treatment, diffusion is understood to occur either

through self-diffusion within the bulk or through surface diffusion. Self-diffusion is highly

temperature dependent because the concentration of the vacancies themselves depend on

temperature. Diffusion flux, J, is the number of diffusing particles that cross a unit area that

is perpendicular to the direction of particle motion in unit time, i.e.

J = D
∂c
∂x

, (6.2)

where D is a temperature dependent diffusion coefficient that can be written in the Arrhenius

form i.e.

D = D0e−Q/RT , (6.3)

where Q is the molar diffusion activation energy and R is ideal gas constant [12, 42].

Figure 6.16 plots the instantaneous value of σ2 in Equation (3.28) for the atom configura-

tion in Figure 6.4b. The figure shows two regimes involved in σ2 that are consistent with the

simulated behavior in Figures 6.5 and 6.6. In the first region, labeled A, the adatoms start

from rest and accelerate towards the main cluster and begin to integrate into it within first 36

ps. The calculated diffusivity is seen to rise rapidly at first, peaks and then declines rapidly

in this time. As the cluster atoms reorder, the instantaneous local temperatures calculated

according to Eq. (7.3) will change. Diffusivity is known to increase with temperature. The

6.3 Calculations 98

Fig. 6.16 Calculated diffusivity in Cu using 10 self-diffusing adatoms.

rapidly changing value of D in region A suggests that the temperature also rapidly increases

momentarily due to the approaching adatoms. Subsequent simulations show a temperature

behaviour that appears to match the trend in diffusivity in Figure 6.16. We have taken the

maximum of D as D0 in Eq. (6.3). The averaged diffusivity plot of D versus time exhibits

three distinct regions, A, B and C although the overall trend appears to be an exponential

decay. Region C is replotted in Figure 6.17 and clearly shows the exponential trend.

In region B, the integration of the captured adatoms into the main cluster begins and

evolves towards coalescence as the new cluster attempts to reassert a new potential energy

minimum. The atom motions in B are vibratory about their relative lattice positions due at

the natural frequencies of the lattice due to the net forces due to all the neigbouring atoms.

The underlying mechanism of coalescence is diffusion by Brownian motion. In the coalesced

cluster, it may be expected that the concentration of atoms equalizes to limit further diffusion.

The increased disorder in coalescence is equivalent to melting at much lower temperatures

[45], leading to the generally accepted conclusion that the melting points of nanoparticles

6.3 Calculations 99

Fig. 6.17 Graph showing an approximate exponential decay of calculated diffusivity over
time.

are much lower than for the bulk. The extent of the temperature difference depends on the

particle size. This behavior has been reported from experiments on Au nanoparticles [46],

and theoretically for surface phenomena using an atomistic model [47].

We take the approach of calculated the diffusion flux J by first defining a cross-sectional

area by using an arbitrary plane located in the cluster, such as [110] and counting the number

of atoms that cross the plane in 10 ps. This was repeated for three planes. This calculation

did not involve a new simulation but post-processing of simulation output.

To estimate D0 and Q using the classical approach, we have assumed that the instanta-

neous temperature also decays exponentially and asymptotically with time towards a steady

overall cluster temperature of 0.22 K as calculated using EEPT. Calculations on the data of

Figures 6.16 and 6.17, give 5.5×10−32 m2/s and 291 kJ/mol for D0 and Q respectively for

self diffusivity and activation energy. The available references are listed at high temperatures.

The Smithells Metals Reference Book [48] gives Cu self-diffusion parameters at 500 oC as

6.4 Conclusions 100

211 kJ/mol (2.19 eV/atom) for activation energy, and 7.8×10−5 and 4.2×10−5 m2/s for D0

and D. Our calculated Q determined corresponds to 3.01 eV/atom.

6.4 Conclusions

We have carried out standard MD simulations on a a small cluster of up to 373 copper

atoms using the Sutton-Chen embedded atom potential in a vacuum environment. The study

highlights some crystal formation dynamics and surface growth mechanisms through the

capture of additive atoms. The size of the fcc cluster is kept small to better assess the effects

of the interactions. The interactions studied in this present article relate to self-diffusion

and low energy projection of atoms towards the surface of a larger cluster. The main cluster

was confined to 0 K. The simulations provide evidence of a spontaneous diffusive formation

of surface structure and spontaneous coalescence at near 0K temperatures, suggesting that

diffusion at low temperatures is driven by pairwise force interactions rather than by Brownian

motion. The calculations also show the adatom maintains a equilibrium distance with its

new near neighbors that oscillates with a low amplitude around the 2.6 Å. In addition, the

calculations also suggest that coalescence of the main cluster occurs under certain conditions

as the potential energy minimum is reasserted. In the case of the initial arrangements at rest,

the final temperature is observed to rise to a steady temperature of approximately 0.22 K,

which is beyond the margin of error. The diffusion activation energy is calculated at 3.01

eV/atom against the 2.19 eV/atom literature value. The diffusivity is typically ascertained

empirically at high temperature and there are no literature values for cryogenic temperatures.

However, using the standard diffusion approach it was estimated at 5.5×10−32 m2/s at 0.22

K.

References

[1] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine, 63

(1):139–156, 1990.

[2] Car R, Parrinello M. Unified approach for molecular dynamics and density functional

theory. Phys. Rev. Lett., 55(22):2471–2474., 1985.

[3] Car R, Parrinello M. The unified approach for molecular dynamics and density func-

tional theory, in simple molecular systems at very high density. in NATO ASI Series,

Series B, Physics, P.P. Loubeyre and N. Boccara (Eds.), 186:455–476, 1989.

[4] Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E. Gromacs:

High performance molecular simulations through multi-level parallelism from laptops

to supercomputers. SoftwareX, 101:88–95, 2015. doi: 10.1016/j.softx.2015.06.001.

[5] Remler DK, Madden PA. Molecular dynamics without effective potentials via the

Car-Parrinello approach. Mol. Phys., 70(6):921–66, 1990.

[6] Tuckerman ME. Ab initio molecular dynamics: basic concepts, current trends and

novel applications. J. Phys.: Condens. Matter., 2002. URL stacks.iop.org/JPhysCM/

14/R1297.

[7] Sebastian IS, Aldazabal J, Capdevila C, Garcia-Mateo C. Diffusion simulation of CrFe

bcc systems at atomic level using a random walk algorithm. Phys. Stat. Sol. (a), 205(6):

1337–1342, 2008. doi: 10.1002/pssa.200778124.

stacks.iop.org/JPhysCM/14/R1297
stacks.iop.org/JPhysCM/14/R1297

References 102

[8] Jian Min Z, Fei M, Ke-Wei X. Calculation of the surface energy of fcc metals with

modified embedded-atom method. Applied Surface Science, 13(7):34–42, 2004. doi:

10.1016/j.apsusc.2003.09.050.

[9] Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M. Development of

new interatomic potentials appropriate for crystalline and liquid iron. Philosophical

Magazine, 83(35):3977–3994, 2003. doi: 10.1080/14786430310001613264.

[10] Das A, Ghosh MM. MD simulation-based study on the melting and thermal expansion

behaviours of nanoparticles under heat load. Computational Materials Science, 101:

88–95, 2015. doi: 10.1016/j.commatsci.2015.01.008.

[11] van der Walt C, Terblans JJ, Swart HC. Molecular dynamics study of the temperature

dependence and surface orientation dependence of the calculated vacancy formation

energies of Al, Ni, Cu, Pd, Ag, and Pt. Computational Materials Science, 83:70–77,

2014. doi: 10.1016/j.commatsci.2013.10.039.

[12] Terblans JJ. Calculating the bulk vacancy formation energy (ev) for a Schottky defect

in a perfect cu(111), cu(100) and a cu(110) single crystal. Surf. Interface Anal., 33:

767–70, 2002. doi: 10.1002/sia.1451.

[13] Vlieg E. The role of surface and interface structure in crystal growth. Progress

in Crystal Growth and Characterization of Materials, 62(2):203–211, 2016. doi:

10.1016/j.pcrysgrow.2016.04.010.

[14] Griebel M, Knapek S, Zumbusch G et al (Eds.). Numerical simulation in molecular

dynamics. in, Texts in Computational Science and Engineering 5, Springer, Berlin, 5

(ISBN 978-3-540-68094-9), 2007.

References 103

[15] Angelina Orthacker, Georg Haberfehlner, Johannes Tändl, Maria Cecilia Poletti, Bern-

hard Sonderegger, and Gerald Kothleitner. Diffusion defining atomic scale spinodal

decomposition within nano-precipitates. Nature materials, 17, 2018.

[16] Ocaya R, Terblans JJ. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy. Paper presented at CCP2016 - 28th IUPAP

Conference on Computational Physics; Johannesburg, South Africa; 2016 July 10-14,

2016.

[17] Ocaya R, Terblans JJ. Addressing the challenges of standalone multi-core simulations

in molecular dynamics. in P. Ramasami (ed.), Computational Sciences, De Gruyter,

2017.

[18] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine

Letters, 61(3):139–146, 1990. doi: 10.1080/09500839008206493.

[19] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[20] B. D. Butler, Gary Ayton, Owen G. Jepps, and Denis J. Evans. Configurational

temperature: Verification of monte carlo simulations. The Journal of Chemical Physics,

109(16):6519–6522, 1998. doi: 10.1063/1.477301.

[21] Talat S. Rahman, Abdelkader Kara, Altaf Karim, and Oleg Trushin. Cluster diffusion

and coalescence on metal surfaces: applications of a self-learning kinetic monte-carlo

method. MRS Proceedings, 859:JJ8.4, 2004. doi: 10.1557/PROC-859-JJ8.4.

[22] K.-I. Saitoh, M. Komaya, and T. Inaba. Multi-resolution molecular dynamics method

for coalescence process of metallic atom clusters. Nippon Kikai Gakkai Ronbunshu, A

References 104

Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 68(2):210–216,

2002.

[23] A.M. Mazzone. Coalescence of metallic clusters: A study by molecular dynam-

ics. Philosophical Magazine B: Physics of Condensed Matter; Statistical Me-

chanics, Electronic, Optical and Magnetic Properties, 80(1):95–111, 2000. doi:

10.1080/13642810008218342.

[24] Doye JPK, Wales DJ. Global minima for transition metal clusters described by the

Sutton-Chen potentials. New J. Chem., pages 733–744, 1998.

[25] Carter W.C. Takahashi A.R., Thompson C.V., . URL http://hdl.handle.net/1721.1/3968.

Atomistic Simulations of Metallic Cluster Coalescence.

[26] Carter W.C. Takahashi A.R., Thompson C.V., . URL http://hdl.handle.net/1721.1/

3668. Metallic Cluster Coalescence: Molecular Dynamics Simulations of Boundary

Formation.

[27] V. Rosato, M. Guillopé, and B. Legrand. Thermodynamical and structural properties of

f.c.c. transition metals using a simple tight-binding model. Philosophical Magazine

A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 59(2):

321–336, 1989. doi: 10.1080/01418618908205062.

[28] M. Guillopé and B. Legrand. (110) surface stability in noble metals. Surface Science,

215(3):577–595, 1989. doi: 10.1016/0039-6028(89)90277-X.

[29] Y.Y. Gafner, S.L. Gafner, Z.V. Golonenko, L.V. Redel, and V.I. Khrustalev. Formation

of structure in Au, Cu and Ni nanoclusters: MD simulations. In IOP Conference

Series: Materials Science and Engineering, volume 110, pages 1–5, 2016. doi: 10.

1088/1757-899X/110/1/012015.

http://hdl.handle.net/1721.1/3968
http://hdl.handle.net/1721.1/3668
http://hdl.handle.net/1721.1/3668

References 105

[30] L.J. Lewis, P. Jensen, and J. Barrat. Melting, freezing, and coalescence of gold

nanoclusters. Physical Review B - Condensed Matter and Materials Physics, 56(4):

2248–2257, 1997. doi: 10.1103/PhysRevB.56.2248.

[31] H. Zhu and R.S. Averback. Sintering processes of two nanoparticles: A study by

molecular dynamics simulations. Philosophical Magazine Letters, 73(1):27–33, 1996.

doi: 10.1080/095008396181073.

[32] Ocaya R, Terblans JJ. Coding considerations for standalone molecular dynamics simu-

lations of atomistic structures. Paper presented at CCP2016 - 28th IUPAP Conference

on Computational Physics; Johannesburg, South Africa; 2016 July 10-14, 2016.

[33] Knuth D. The art of computer programming, seminumerical algorithms. Addison-

Wesley, 1997.

[34] Box G and Muller M. A note on the operation of random normal deviates. Ann. Math

Stat., 29:610–611, 1958.

[35] Marsaglia G. The role of surface and interface structure in crystal growth. Proc. Nat.

Acad. Sci., 61:25–28, 1968.

[36] C. Kittel. Introduction to Solid State Physics. Wiley, 2004. ISBN 9780471415268.

URL https://books.google.co.za/books?id=kym4QgAACAAJ.

[37] Ditlevsen Peter D, Nømskov Jens K. Vibrational properties of aluminum, nickel and

copper surfaces. Surface Science, 254:261–274, 1991. doi: 10.1.1.718.7356.

[38] Nelson JS, Daw MS, Sowa EC. Cu(111) and Ag(111) surface-phonon spectrum: The

importance of avoided crossings. Phys. Rev. B, 40:1465, 1989.

https://books.google.co.za/books?id=kym4QgAACAAJ

References 106

[39] D.B. Butrymowicz, J.R. Manning, and Read M.E. Diffusion in copper and copper

alloys. Part I. volume and surface self-diffusion in copper. Journal of Physical and

Chemical Reference Data, 2(3):643–656, 1973. doi: 10.1063/1.3253129.

[40] N.L. Peterson. Self-diffusion in pure metals. Journal of Nuclear Materials, 69-70:3 –

37, 1978. ISSN 0022-3115. doi: 10.1016/0022-3115(78)90234-9.

[41] A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C. T. Tomizuka. Self-diffusion in copper.

Phys. Rev., 96:1224–1225, Dec 1954. doi: 10.1103/PhysRev.96.1224.

[42] Chelsey Z. Hargather, Shun-Li Shang, Zi-Kui Liu, and Y. Du. A first-principles study

of self-diffusion coefficients of FCC Ni. Computational Materials Science, 86:17 – 23,

2014. ISSN 0927-0256. doi: 10.1016/j.commatsci.2014.01.003.

[43] Marek Zajusz, Juliusz Dąbrowa, and Marek Danielewski. Determination of the intrinsic

diffusivities from the diffusion couple experiment in multicomponent systems. Scripta

Materialia, 138:48 – 51, 2017. ISSN 1359-6462. doi: 10.1016/j.scriptamat.2017.05.

031.

[44] Chamati H, Papanicolaou NI, Mishin Y, Papaconstantopoulos DA. Embedded-atom

potential for Fe and its application to self-diffusion on Fe(100). Surface Science, 600:

1793–1803, 2006. doi: 10.1016/j.susc.2006.02.010.

[45] M. José-Yacamán, C. Gutierrez-Wing, M. Miki, D.-Q. Yang, K. N. Piyakis, and

E. Sacher. Surface diffusion and coalescence of mobile metal nanoparticles. The

Journal of Physical Chemistry B, 109(19):9703–9711, 2005. doi: 10.1021/jp0509459.

[46] Ph. Buffat and J-P. Borel. Size effect on the melting temperature of gold particles. Phys.

Rev. A, 13:2287–2298, 1976. doi: 10.1103/PhysRevA.13.2287.

References 107

[47] C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, and Y.B. Zhang. Correlation between

the melting point of a nanosolid and the cohesive energy of a surface atom. Journal of

Physical Chemistry B, 106(41):10701–10705, 2002. doi: 10.1021/jp025868l.

[48] E.A. Brandes and G.B. Brook, editors. Smithells Metals Reference Book. Elsevier, 7th

ed. edition, 1992. ISBN 9780080517308. doi: 10.1016/C2009-0-25363-3.

Chapter 7

Detection of lattice phonons and their

propagation in VSV

7.1 Introduction

In this chapter we suggest and apply VSV to simulate the phonon propagation in a novel

way. We show that this approach could lead to the clarification of the dynamics and thermal

conductivity nanosized homogeneous atom clusters. We devise a novel method to simulate

arbitrary phonons and follow their propagation on the surfaces and the bulk under the

formalism of the Sutton-Chen embedded atom model. We show that the coupled oscillations

result in both surface and bulk longitudinal, transverse and shear waves in the lattice. We

calculate the transient behavior of various bond lengths with time and apply fast Fourier

transformations to highlight the frequency behavior of the wave. Finally, we show that the

frequency spectral, elastic constants and thermal effects are correctly reproduced as compared

with experimental data.

Dispersion of surface and bulk phonons in different crystals has been studied exten-

sively using both empirical and computational approaches with varied degrees of success.

The theory of phonon propagation in crystals due to elasticity is therefore well developed.

7.1 Introduction 109

Computational methods have ranged from force methods of varied complexities to ab initio

methods [1]. These studies have shown that the surface and bulk dispersion properties can

differ substantially [2, 3]. In a recent review by Rassoulinejad-Mousavi et al [4], force field

suitability assessments on current interatomic potentials were done for different Cu, Ni and

Al at room temperature using extensive databases. These assessments were focused on the

calculation of elastic moduli and suggested that users of existing models pay attention to the

accuracy of the elastic constants.

Three main methods are generally used, namely the slab technique (ST), Green function

(GF) methods, and MD methods. In ST, surface vibrations are evaluated through a direct

calculation of the dispersion modes and frequencies [5, 6]. ST has been used widely in the

microscopic domain. Here, the macromaterial is defined as a slab of constrained surfaces

consisting of a finite number of atoms whose eigenvector displacements are calculated. In

the GF method, the effect of massive forces which are beyond the limits of a modulus

of elasticity are calculated. In the MD method, macroscopic behaviors are calculated as

aggregates of atomic contributions. Certain phenomena, such as low-amplitude driven phase

transitions, surface melting and disordering can be studied through MD simulation are

relatively easier to calculate using MD [7, 8]. However, a major limitation of MD has been

its inherent dependence on computational power [9], making ST and GF methods usually the

first consideration in a given dispersion problem. An advantage of MD is that the vibrational

modes can be evaluated directly from the temperature distribution. However, the risk of

simultaneous sampling of different points in the reciprocal lattice is an issue in MD. This

problem can be lessened by using different sized surfaces to account for the wavevector

dependence of the dispersion relations. Another inherent weakness of MD is that it has thus

far not readily yielded atomic displacements from calculated spectral densities [1].

This chapter has two aims. First, we apply a previously developed toolkit based on the

Sutton-Chen (SC) potential [10] to uniquely specify phonons in the system. Second, we

7.1 Introduction 110

deterministically evaluate the phononic response of the system through its atoms in the bulk

and surfaces of fcc Cu(100) in an attempt to address the inherent, above-stated weakness of

MD. Specifically, we simulate the atomic displacements as a function of time directly without

the need to use velocity-velocity correlated spectral densities. This approach provides further

insight into the dispersion of phonons in the lattice. The results are then compared with the

literature.

7.1.1 Impulse-oscillation approach

Vibrations in real crystals are constrained by the boundaries and by the type and distribution

of particles within the lattice [11]. These constraints give rise to densities of vibrational

energy states for which a continuous spectral density distribution function, g(ω), can be

found. The extent of oscillation coupling depends on wave energy (E) and momentum (p̄),

which are functions of wave frequency (ω) and wavelength (λ) respectively.

In this work, we suggest an elastic strain based phonon model that can be simulated

directly using MD, with strains constrained to be within the limits of Hooke’s Law [11].

The calculation of wave dispersion through the bulk and surfaces is then possible, accepting

that elasticity in a crystal is direction dependent. This model relies on coupled masses in an

elastic medium. This approach has the advantage that it can model various scenarios with

relative ease. The simplest case involves homogeneous masses, such as Cu atoms in a pure

crystal. A more advanced system involves heterogeneous masses, such a doping atom in

an otherwise homogeneous lattice. Also, the effect of a vacancies can readily be evaluated

by direct removal of an atom to a specific point relative to the lattice to emulate Frenkel

or Schottky vacancies. In this article, only the first case is considered, although the VSV

software is capable of both scenarios.

Figure 7.1 shows the mass-spring oscillators models used in the simulations, with the

initial impact applied on the face atom on the (100) plane. Here, ‘impact’ is in the mechanical,

7.1 Introduction 111

Fig. 7.1 Homogeneous mass-spring analogy of fcc structure using direction dependent spring
constants.

hard-ball atom sense. The impulse represents a soft impact of the highlighted atom onto the

structure. Four necessary assumptions are made here. First, the impacting atom is identical to

the structure atoms (in this case Cu). Second, after the impact the impacting atom decouples

and travels away from the structure. Third, the impacting kinetic energy causes deformation

of the structure within the Hooke’s law limit. Lastly, collision is elastic, i.e. the kinetic energy

is conserved. In Figure 7.1, only the unrepeated springs are shown for the sake of clarity. In

reality, the interplay of attractive-repulsive forces depending on interatomic distance in the

SC potential implies that no actual physical atom contacts occur. Our simulations show that

the impacting adatom does not get closer than 2.0 Å. This approach allows the evaluation

of wave propagation through the lattice and forms the basis of this present work. Applying

different initial conditions at the impacting atom opens up the study of a wide variety of

structures through their elastic behaviors.

Figure 7.2 depicts the mass-spring model along the x-direction. The elastic wave behavior

(eik̄·r̄) at atom position (r̄) and wave vector (k̄) is complex due to instantaneous superim-

positions of contributions from all directions. However, a deterministic simulation based

7.1 Introduction 112

Fig. 7.2 Mass-spring analogy of fcc structure along the x axis.

on such a model can lead to a better model of phonon coupling in the bulk crystal and

consequently improve understanding of effects of phonons in the lattice such as thermal

properties [12, 13]. The clusters considered are homogeneous i.e. monoatomic, without any

presumption of transverse or longitudinal waves, us, w.r.t the impulsing direction. For such a

lattice comprised of atoms of mass m, if the atomic force constant of the lattice is µ and k is

the wavevector, then the dispersion relation, ω(k), can be written

ω
2 = (4µ/m)sin2(ka/2), (7.1)

in terms of a spacing a. This spacing is equal to d, the interplanar distance for longitudinal

waves, and the lattice parameter for transverse waves. The first Brillouin zone sufficiently

describes the wave propagation in the lattice and is bounded by k=±π/a [11]. In our initial

simulations, the effective forces were observed to influence atoms that are spread out over

a distance several tens of lattice parameters. This supports observations that are made in

real experiments and severely limits the utility of the cut off distance (rcut) concept typically

applied in simulations to reduce computational complexity. For this reason, our calculations

do not implement rcut, and the nanosize of the clusters further precludes it. By considering

the collective contributions of these long range forces over the first Brillouin zone, for the p

nearest planes the interplanar force constant, µp can readily be shown to be

µp =−ma
2π

∫ +π/a

−π/a
ω

2
k cos(pka) dk. (7.2)

7.2 The simulation model 113

7.2 The simulation model

Koleske et al [1] have investigated surface phonon dispersion on fcc surfaces using the

Lennard-Jones (LJ) (m-n) potential for simplicity. LJ potentials are known for their inade-

quacy to describe metallic systems [14]. This article uses the SC potential that is considered

more representative of metallic systems. The total SC potential energy is given by Equations

(3.10) and (3.11).

Table 7.1 shows the potential and simulation parameters.

Table 7.1 The SC simulation parameters used in the simulation test beds for Cu.

Parameter
ε 0.012382 eV
m, n, c 6, 9, 39.432
δ t 91.75 fs
tstart , tend 0, 250 ps
T 0 K (bulk)

7.2.1 Simulation conditions and delimitation

The use of velocity based temperature modeling within energy equipartition theory (EPT)

implies that the atomic vibrational amplitudes, measured as displacements from their equi-

librium lattice positions, are smaller at low temperatures. The deformations can therefore

be kept to within the low-strain region where lattice thermal conductivity can be explained

using harmonic oscillators within Debye theory [14, 15]. Simulating at 0K while assuming

only external phonon sources is advantageous because thermally generated statistical noise

is precluded from the results. In EPT, expectation particle speed v j and temperature T are

related by

v j =

(
kBT
m

)1/2

=

(
2Ekin

N f m

)1/2

, (7.3)

7.2 The simulation model 114

where Ekin is the total kinetic energy of all the atoms, and N f are the available degrees of

freedom. VSV assumes only irrotational, translation motion, hence N f =N. Simulations

should ultimately provide insights into structures at temperatures much higher than 0K, thus

making it necessary to equilibrate the initial simulation temperature to the ‘most probable’

mean isotherm for the entire lattice. For simulations at initial temperature Tiso ̸= 0, the VSV

code redistributes atomic velocities based on Maxwell-Boltzmann (MB) theory such that

with all velocities reconsidered, the overall structure is at temperature Tiso with acceptable

tolerance. This is done by introducing the randomized exponential factor f [16–19]:

f = (kBT/m)1/2,

where kB is Boltzmann constant. For 0K simulations e f =1. At higher temperatures, an-

harmonic effects become important, particularly within the bulk. The simulations here

are kept below the melting point i.e. within the high temperature limits of Debye theory

[11, 14]. However, the onset of crystal melting is detectable by increased disorder in the

atomic spacings, such as a rapidly changing variance in the calculated lattice parameter in

consecutive time steps. The total potential energy and the kinetic energies of all atoms in the

configuration were monitored to guarantee that the collisions are elastic. The main simulation

theme is then to vary three parameters singly or in combination i.e.

i) impacting adatom energy (i.e. velocity or EPT temperature)

ii) impacted surface orientation

iii) impacting power i.e. energy flux (impacts) per unit time

Therefore, the simulation highlights a number of real lattice behaviours, such as the thermal

properties of given surface orientations, ablation and others. For instance, it is possible

to estimate the scattered atom flux in a specified direction or onto plane in response to an

ablating energy modeled using kinetic energy of the adatom stream. Knowledge of scattering

7.2 The simulation model 115

Fig. 7.3 Time-lapse views in [100] equivalent directions showing passage of impact-generated
wave through the lattice generated from actual simulation. The adatom is highlighted in blue.

flux and direction can allow studies of layering by ablated atoms onto a secondary surface

oriented on a specific plane.

Figure 7.3 shows the rendered, time-lapse images using data from an actual simulation.

The view shown is in [100] equivalent directions. The arrows show the points where

amplitude variations are readily discerned. The phase of amplitude oscillation by particle

displacement at the points shown indicate that a real wave actually passes through the lattice

in response to the impact.

The suggested method of impact generated phonons has a number of possible limitations.

The first can arise when the low-strain requirement is violated under high impacting energy

flux. Therefore, it is important to avoid large vibrational amplitudes in the initial conditions

which would propagate through the lattice from the impact site. In accordance with EPT,

the impacting atoms are implicitly at higher temperatures than the main lattice by virtue

their larger initial velocities. Impact therefore involves energy transfer into the main lattice.

Hence the temperature limits should be known a priori before assigning the velocities, or the

velocities carefully scaled to maintain an isotherm. These considerations potentially increase

7.2 The simulation model 116

the complexity of the simulation. This has been avoided here by using energies that are

equivalent to temperatures that are much lower than the Debye temperature, TD=ωDh̄/kB,

where ωD is the Debye frequency for the atom.

In a monoatomic lattice a density of state function, g(ω) describes all the degrees of

freedom up to ωD, and the frequencies are in the acoustic region (∼ 1013/s). However, real

lattices can have impurity atoms, which perturb the oscillations and can introduce additional

modes at optical frequencies, giving rise to an energy bandgaps which depend on the direction

of the most impurity atoms i.e. a sensitivity to momentum (direction), k̄. Lastly, all bounding

surfaces have clear termination orders which present discontinuities. They are treated here

as though there is no termination of atoms i.e. an infinitely large lattice where the energy

dissipation is gradual with no reflections into the bulk from the surfaces.

7.2.2 Results and discussions

Simulation of Equation (3.10) in VSV generates a large number of (t, r̄, v̄) trajectory points for

the collection of atoms, making visualization of the output necessary. The output data were

converted to the “.xyz” molecule format using an Excel macro, described in Appendix A.4.1.

Thus, instantaneous time frame and animations can be followed using Visual Molecular

Dynamics (VMD) program [20].

7.2.3 Bond-length oscillations

Figure 7.4 shows the relative position of two copper atoms, typical in the bond length versus

time simulation. Here, they are near neighbors on the face diagonal with their centers

separated by 2.5526 Å in Cu at equilibrium and 0K. The adatom imparts energy to the main

lattice, which oscillates in response.

Figure 7.5 shows the output of the bond length simulation. Figure 7.5a shows the bond

length versus time behavior of the impacting atom and the atom around which the impact

7.2 The simulation model 117

Fig. 7.4 Views along [100], [110] and [111] for the time and phase simulations below. The
Cu adatom is highlighted in blue.

occurs. Figure 7.5b shows the discrete fast fourier transform (FFT) calculated from the

amplitude response using MATLAB. Fig.7.7 plots the results of the same calculations deeper

into the lattice, and using a face atom and its near neighbor i.e. corner atom. The smoothed

FFT curves were obtained using FFT filtering with 25% cutoff.

Figure 7.6 shows the output of the bond length simulation in time and frequency within

the bulk and along the [100] direction. Figure 7.6a shows that the bond length follows

a complex, oscillatory pattern. This is expected from coupling of adjacent mass-spring

oscillations, as suggested by Figure 7.1. This could explain the presence of the smaller peaks

in the FFT plot.

The bond length calculated here is analogous to the spring labeled as µ3 in Figure 7.1.

Comparison of the smoothed FFT peaks in Figure 7.5b and Figure 7.7b indicates a difference

in peaking frequency. Figure 7.7b shows that the peak at the point of impact is ≈ 5.37 THz

7.2 The simulation model 118

(a) Amplitude-time response

(b) Phase-frequency response.

Fig. 7.5 Simulated time and phase/frequency spectrum of bond length at the point of impact.

7.2 The simulation model 119

(a) Amplitude-time response

(b) Phase-frequency response.

Fig. 7.6 Simulated amplitude and phase variations in bond length along [100] deeper in the
lattice, i.e. within the bulk

7.2 The simulation model 120

(a) Amplitude-time response

(b) Phase-frequency response.

Fig. 7.7 Simulated time and phase variations in bond length deeper in the lattice along [110].

7.2 The simulation model 121

(×1012 Hz), against ≈ 5.40 THz deeper into the lattice, with an average of ≈ 5.38 THz. The

smoothed curves also appear to suggest at least three different but closely related frequencies

of oscillation over the plotted range. In the spring-mass model, this suggests at least three

direction sensitive spring constants which are similar in magnitude, but account for different

angular frequencies of oscillation.

The angular frequency shown in the FFT plots correspond to ω ≈ 3.4×1013/s, or phonon

energy h̄ω ≈ 22.3 meV. This phonon energy corresponds to the experimental measurements

reported in [21]. If this energy is converted purely to heat then the expected temperature rise

around the two atoms is ∆T = h̄ω/kB ≈ 259.1K. This temperature rise does not represent

the overall temperature rise in the lattice, nor the steady state in the neighborhood of the

two atoms. From monoatomic lattices of force constant µ having with mass distributions m

separated by lattice constant a, the maximum vibrational frequency ωm is

ωm = 2
√

µ

m
, (7.4)

and occurs at k = (π/a) in Equation (7.1). An estimate with ωm ≈ 3.4×1013/s and m = 63.5

amu gives µ ≈ 30.8 N/m. The literature value [11, 22] is 35.32 N/m at 296K.

7.2.4 Wave propagation and the elastic constants

In the Hooke’s law approximation, the moduli of elasticity Cαβ for a cubic crystal are directly

related to the various strain components (ei j). Symmetry in the cubic structure requires three,

4-fold rotation axes. The cube is invariant under these rotations. This vastly reduces the

number of elastic moduli to three. The elastic energy density can thus be written [11]

U =
1
2

C11(e2
xx + e2

yy + e2
zz)+

1
2

C12(eyyezz + ezzexx + exxeyy)+
1
2

C44(e2
yz + e2

zx + e2
xy), (7.5)

7.2 The simulation model 122

such that all independent stress components Xa, Yb and Zc applied along the axes a, b and

c ∈ {x, y, z} are completely defined. In summary, these elastic strain components can be

calculated from only four moduli, as shown in Table 7.2.

Table 7.2 Summary of elastic strain components for a cubic crystal.

component exx eyy ezz eyz ezx exy

Xx C11 C12 C12 0 0 0
Yy C12 C11 C12 0 0 0
Zz C12 C12 C11 0 0 0
Yz 0 0 0 C44 0 0
Zx 0 0 0 0 C44 0
Xy 0 0 0 0 0 C44

In a uniformly expanding cube the dilations along x, y and z are equal. The energy density

is then

U =
1
6
(C11 +2C12)δ

2 =
1
2

Bδ
2 (7.6)

where δ/3=exx=eyy=ezz, and B is the bulk modulus or energy per unit volume,

B =
1
3
(C11 +2C12). (7.7)

For a cubic crystal, the equation of motion for displacement in the x direction and medium

density ρ is

ρ
∂ 2u
∂ t2 =

∂Xx

∂x
+

∂Xy

∂y
+

∂Xz

∂ z
. (7.8)

Table 7.2 allows Equation (7.8) to be written

ρ
∂ 2u
∂ t2 =C11

∂exx

∂x
+C12

(
∂eyy

∂x
+

∂ezz

∂x

)
+C44

(
∂exy

∂y
+

∂ezx

∂ z

)
, (7.9)

or

ρ
∂ 2u
∂ t2 =C11

∂ 2u
∂x2 +C44

(
∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+(C12 +C44)

(
∂ 2v

∂x∂y
+

∂ 2w
∂x∂ z

)
, (7.10)

7.2 The simulation model 123

where u, v and w are the components of the deformation. Equation (7.10) superimposes

three independent displacements. The equation shows that the waves are constrained to three

modes of vibration, namely

1. along x, i.e. the [100] direction with waves of the form

u(x, t) = u0 ei(kx−ωt), (7.11)

where u0 is the amplitude and k = 2π/λ is the wave vector. This solution can describe

both transverse, longitudinal and shear waves.

2. simultaneously along x and y only, such as the [110] direction

w(x, t) = w0 ei(kxx+kyy−ωt), (7.12)

where w0 is amplitude.

3. simultaneously in non-zero x, y and z directions, such as the [111] direction,

v(x, t) = v0 ei(kxx+kyy+kzz−ωt), (7.13)

where v0 is amplitude.

In the [100] direction, substitution of Equation (7.11) into Equation (7.10) gives for a

longitudinal wave

ω
2
ρ =C11k2, (7.14)

and

ω
2
ρ =C44k2, (7.15)

for a transverse or shear wave. The wave vector is along the x edge of the cube and particle

displacement is along the y direction. For waves propagating along face diagonal, C11, C12

7.2 The simulation model 124

and C44 can be found using Equation (7.12) in the special case of the [110] direction that the

transverse wave arises when

ω
2
ρ =

1
2
(C11 +C12 +2C44)k2. (7.16)

The shear wave arises when

ω
2
ρ =

1
2
(C11 −C12)k2. (7.17)

7.2.4.1 Estimating C11 and C44

The condition that ω(k)=ωm when k=π/a in Equation (7.14) gives

C11 =
(

ωma
π

)2
ρ =

(2ωm

π

)2 M
a
, (7.18)

with a=b
√

2.

A calculation based on the data of Figure 7.5b, which represents the [100] direction, gives

C11 = 139.2 ± 1.4 GPa using fm = 5.44 THz. Experimental measurements give C11 in the

range 176.2 to 168.4 GPa at 0K and 300K respectively [11, 22]. The average bond length

from the data of Figure 7.7a was found to be b = 2.5487Å for diagonal measurements, i.e.

[110] and [111] directions. Only bulk densities, which are densities calculated using length

parameters such as a or b deeper in the lattice were used, i.e.

ρ =
4M
a3 =

M
√

2
b3 = 9058.3 kg/m3, (7.19)

with M = 63.5 a.m.u. The error margins in the bond length (a) and material density (ρ) can

be estimated by applying variational calculus to Equation (7.18) and Equation (7.19). It can

7.2 The simulation model 125

readily be shown that for maximum calculated uncertainties:

∆a
a

=
(

∆C11

C11
+2

∆ωm

ωm

)
, (7.20)

and
∆ρ

ρ
=

1
3

∆a
a
. (7.21)

The estimate of ∆ωm can be made by discretizing a phase-frequency response curve. In the

specific case of Figure 7.6b, for example, the angular frequencies range from 5.35 THz to

5.45 THz, with a peak at 5.40 THz. Thus, these three frequencies give a standard deviation

of ∆ωm=0.0314 THz. Applying Equation (7.20) on the stated C11=139.2±1.4 GPa and

ωm=5.40±0.0314 THz gives ∆a=± 0.0553 Å. By a similar token, applying Equation (7.21)

leads to ∆ρ=± 65.5 kg/m3. The estimated percent uncertainties in the bond lengths and

density are respectively 2% and 0.7%.

Behari and Tripathi [22] reported calculated frequency spectra for Cu, Ni and Al at 0K.

The results of the calculated spectra in this paper are similar. They report a broad peak in the

g(ω) versus f between 4 and 5 THz, and a single narrow peak around 7 THz for all three

metals. The chosen simulation time step of 91.75 fs gives a sampling frequency of 11 THz,

which limits the maximum observable frequency to 5.6 THz in accordance with the Nyquist

sampling theorem. Therefore, for any peaks between 7 to 10 THz, the sampling frequency

needed is at least 20 THz, which requires a maximum simulation step of 50 fs. The range of

maximum spectral frequencies were not known a priori. The parameters in Table 7.1 were

based on other reduced (dimensionless) length, mass and energy parameters and gave the

91.75 fs step as practicable. Subsequent simulations for the spectral response will use 50 fs.

7.3 Conclusions 126

7.2.4.2 Expected temperature rise

The ‘impact’ with the lattice causes vibrations that propagate as both bulk and surface

phonons, which propagate differently in the three symmetry directions [23, 24]. The output

data point (t, r̄, v̄) allows instantaneous temperature at any atom location to be calculated ac-

cording to Equation (7.3). Therefore, a three dimensional map of the temperature distribution

in the lattice can be generated at each time step for any arbitrary plane. This map visualizes

the temperature variation in response to the impacting adatoms. However, temperature cannot

simply be calculated using one atom, but an entire, three dimensional neighborhood of the

atom.

7.3 Conclusions

This article successfully employs an evolving code to carry out deterministic simulations

based on the Sutton-Chen embedded atom potential. Therefore, it provides a novel solution

to the inherent weakness of MD by relating for the first time atomic displacements to spectral

densities and vibrational modes in a simulation. Specifically, we investigate the surface and

bulk interactions in small clusters of up to 373 fcc atoms. The study highlights some crystal

formation dynamics and growth mechanisms through the capture of additive atoms. The size

of the fcc cluster is kept small for speed up accessing the effects of the interactions. The

calculations pertain to copper atoms and are visualized in a detailed, time-based way at the

level of all the atoms present. The interactions are based on the Sutton-Chen potentials with

the energies controlled to keep all attractions/repulsions within the low-strain regions of the

cluster. We also show that superimposed harmonic oscillations are the result of the interplay

of the interatomic forces in the lattice. The main cluster was kept initially to 0K temperature,

without any Maxwell-Boltzmann spread of temperature in order to isolate random thermal

effects and maintain focus on wave behavior alone. The results of bond length, material

7.3 Conclusions 127

density, elasticity constants, and spectral densities are in excellent agreement with the

literature. The atom configurations resulted in a cluster of overall nanosized dimensions. The

simulations results suggest that the foregoing, mechanical properties of the nanocluster are

identical to bigger macroscopic clusters.

These simulation results are encouraging and suggest considerable scope for future

research. For instance, comparison of the dispersion relations in specific wave directions k

by simulation alone is instructive. The present paper provides the requisite starting point for

such an investigation. Also, the effect of different impacting energies on the lattice, which

represents external heating of the lattice can immediately be simulated for the temperature

dependencies of the foregoing parameters. This latter question is interesting and important

from the engineering perspective of heating and cooling. Since temperature is modelled

using velocity within EPT, such a research can completely map the thermal properties of

specific lattice orientations and lead to a better understanding time-transient heating and

cooling of nanodevices.

References

[1] Koleske DD, Sibener SJ. Phonons on fcc (100), (110), and (111) surfaces using

Lennard-Jones potentials. Surface Science, 268:407–417, 1992.

[2] Black JE. in Schommers W, von Blankenhagen P (Eds.) Structure and Dynamics of

Surfaces. Springer, Berlin, 1986.

[3] Kress W, de Wette FW. Surface phonons. Springer Series in Surface Science, 21, 1991.

[4] Rassoulinejad Mousavi SM, Mao Y, Zhang Y. Physical contributions to the heat

capacity of nickel. Journal of Applied Physics, 119(244304):861–871, 2016. doi:

10.1063/1.4953676.

[5] Allen RE, Alldredge GP, de Wette FW. Studies of vibrational surface modes. I. General

formulation. Phys. Rev. B, 4(6):1648, 1971.

[6] Allen RE, Alldredge GP, de Wette FW. Studies of vibrational surface modes. II.

Monatomic fcc crystals. Phys. Rev. B, 4(6):1661, 1971.

[7] Chen ET, Barnett RN, Landman U. Crystal-melt and melt-vapor interfaces of nickel.

Phys. Rev. B, 40(2):924–932, 1989. doi: 10.1103/PhysRevB.40.924.

[8] Chen ET, Barnett RN, Landman U. Surface melting of Ni(110). Phys. Rev. B, 41(1):

439–450, 1990. doi: 10.1103/PhysRevB.41.439.

References 129

[9] Ocaya R, Terblans JJ. Addressing the challenges of standalone multi-core simulations

in molecular dynamics. in P. Ramasami (ed.), Computational Sciences, De Gruyter,

pages 1–21, 2017. doi: 10.1515/9783110467215-001.

[10] Ocaya R, Terblans JJ. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy. J. Phys.: Conf. Ser, 905(012031), 2017. doi:

10.1088/1742-6596/905/1/012031.

[11] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, New Jersey, 2005.

[12] Mohapatra M, Tolpadi S. Effects of lattice dispersion and elastic anisotropy on the

thermal properties of fcc metals. Pramana, 35(2):159–165, 1990.

[13] Meschter PJ, Wright JW, Brooks CR, Kollie TG. Physical contributions to the heat

capacity of nickel. Journal of Physics and Chemistry of Solids, 42(9):861–871, 1981.

[14] Schommers W. in Schommers W, von Blankenhagen P (Eds.) Structure and Dynamics

of Surfaces. Springer, Berlin, 1986.

[15] Pathak LP, Rai RC, Hemkar MP. Lattice vibrations and debye temperatures of transition

metals. Journal of the Physical Society of Japan, 44(6):1834–1838, 1978.

[16] Knuth D. The art of computer programming, seminumerical algorithms. Addison-

Wesley, 1997.

[17] Box G, Muller M. A note on the operation of random normal deviates. Ann. Math Stat.,

29:610–611, 1958.

[18] Marsaglia G. The role of surface and interface structure in crystal growth. Proc. Nat.

Acad. Sci., 61:25–28, 1968.

[19] R O Ocaya and J J Terblans. Coding considerations for standalone molecular dynamics

simulations of atomistic structures. Journal of Physics: Conference Series, 905(1):

References 130

012018, 2017. doi: 10.1088/1742-6596/905/1/012018. URL http://stacks.iop.org/

1742-6596/905/i=1/a=012018.

[20] Theoretical and Computational Biophysics Group. Visual Molecular Dynamics, 2017.

URL http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html. Accessed:

2017-11-02.

[21] Ditlevsen Peter D, Nømskov Jens K. Vibrational properties of aluminum, nickel and

copper surfaces. Surface Science, 254:261–274, 1991. doi: 10.1.1.718.7356.

[22] Behari J, Tripathi BB. Frequency spectra and heat capacities of copper, nickel and

aluminium. Aust. J. Phys., 23:311–318, 1969. URL http://adsabs.harvard.edu/full/

1970AuJPh..23..311B.

[23] Chopra KK, Bouarab S. Off-symmetry phonon frequencies of copper. Physica status

solidi (b), 125(2):449–504, 1984.

[24] Jani AR, Gohel VB. On the phonon frequencies of copper in off symmetry directions.

Solid State Communications, 41(5):407–411, 1982.

http://stacks.iop.org/1742-6596/905/i=1/a=012018
http://stacks.iop.org/1742-6596/905/i=1/a=012018
http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html
http://adsabs.harvard.edu/full/1970AuJPh..23..311B
http://adsabs.harvard.edu/full/1970AuJPh..23..311B

Chapter 8

Post-MD simulation visualization in VSV

8.1 Introduction

In recent years, nanosized metallic clusters have become important to both experimental

and computational research. Currently, considerable challenges remain. Empirical research

continues to face size restrictions associated with synthesis and physical probing techniques,

while simulation faces problems associated with computation, such as efficacy of the mathe-

matical model for simulation, hardware speed and accuracy difficulties and so on [1–4]. The

correct visualization of simulated output is as important as the accuracy of the simulation

itself. This can be challenging in the case of simulations that are done on own developed

software. This hurdle is also experienced in empirical situations where vast intermediate

data are generated from a number of sources, that must be combined into a visual form, for

instance in image processing [5, 6]. In a previous article [7], we describe VSV for standard

molecular dynamics, based on the Sutton-Chen embedded atom model to simulate metallic

fcc structures. VSV output data is massive but contains a wealth of different information

that requires post-processing to interpret meaningfully. Although computer simulations have

evolved, the problems of visualization still remain in some form or other [8, 9].

8.2 Motivation and significance 132

8.2 Motivation and significance

We have presented a collective method to processes the output of the Sutton-Chen (SC)

potential based VSV simulations into various intermediate outputs for interpretation. VSV

simulates homogeneous fcc atomic clusters using a low strain phonon model. The continuous

spectral density vibrational are put into the context of Debye theory [10], where thermal

conductivity is the net effect of harmonic oscillators with N degrees of freedom [11, 12].

The method comprises a Visual Basic macro within Microsoft Excel, and MATLAB codes.

The macro extracts vibrating surfaces using user-specified parameters. The MATLAB

codes calculate the Fast-Fourier Transform (FFT) of bond length versus time variations and

also plots instantaneous time thermograms for the extracted surfaces. Thus, 2D-surface or

3D-subvolume thermal maps are easily rendered to visually describe passage of the wave,

frequencies present are readily quantified, and instantaneous slices of the structure taken.

The complete codes are maintained in a public GitHub repository [13] for evaluation by

the interested reader. The included data is from an actual VSV simulation of 2281 Cu

atoms that is initially perturbed by applying a low amplitude compressive disturbance to

one atom on the [100] face. Real lattices are expected to oscillate as a direct consequence

of the interplay between interatomic attractions and repulsions at displacements relative

to the potential energy minimum. This atomic scale behavior accounts for elasticity at all

scales of the material. The novelty of the present and ongoing work is its suggestion of

a deterministic, approximation free ab initio approach to investigate atomic clusters by a

perturbation-oscillation model that has been found to account for bulk and surface phonons

that adds a useful tool to the growing MD arsenal for standalone simulation and visualization.

The impulse-oscillation approach used in this work was shown in Figure 7.2. The

resultant elastic wave has wave vector k̄, and amplitude-phase given by eik̄·r̄ at atom position

r̄. The wave dispersion in a homogeneous lattice of mass distribution m, lattice constant a

and atomic force constant µ was described by Equation (7.1) [10]. At the first Brillouin zone

8.3 Description of additional applets 133

boundary k=±π/a, hence the vibrational frequency is at maximum. VSV does not employ

cut-off distance approximations and is suited to nanosized cluster simulations, accepting that

interactions between atoms separated up to 20 lattice parameters cannot be ignored.

8.3 Description of additional applets

The total SC potential energy for fcc structures is covered in detail elsewhere [14–16]. For an

ensemble of N degrees of freedom, temperature T can be expressed in terms of expectation

energy as given by Equation (7.3). Our temperature modeling approach in VSV simulations

contrasts the various isotherms that are used to describe temperature by requiring an a

priori knowledge of an initiating temperature [16]. Instead, we take temperature as being

due to purely phonon vibrations that can be set by imparting an initial impulse energy or

total internal energy. This solves a current limitation of MD since it allows the lattice to

relax dynamically to a thermal equilibrium in response to the elastic waves. Even at higher

temperatures where lattice anharmonicity occurs because of violations of the low-strain

criterion, the impulse-oscillation approach has been used successfully to describe effects

such as melting. Our monoatomic cluster simulations with Cu have been done below the Cu

Debye temperature of 347 K. The observed frequencies are acoustic i.e. ∼ 1013/s, and lie

in the infrared region. The presence of another atom (m2) may give the lattice a diatomic

character and introduce an optical branch [10].

8.3.1 Helper routines

The following sections describe the various routines and applets that assist the intepretation

of data generated by the main simulation in the VSV program.

8.3 Description of additional applets 134

8.3.1.1 Highlighting adatoms for VMD

Figure 8.1 shows the results of a post-processing on VSV output which highlights the adatom

for visibility in VMD [17]. All atoms, including the highlighted, are Cu atoms. The impulse

energy is delivered to the highlighted atom through a small initial displacement, as shown in

Figure 7.2. Table 8.1 shows the file structures of the various files that form the simulation

Fig. 8.1 Post-processing scheme used to highlight adatoms within VMD. The structure shown
is a VMD frame showing an instantaneous structure of 2281 Cu atoms in the VSV simulation
output.

chain, from input of the structure text file into VSV, to the generation of the VMD xyz input,

and the extraction of the vibrating plane of atoms. The VSV input is a text file that lists

all the atoms with their initial 3D component coordinates and velocities. The adatoms are

placed last in the file. For instance, if only one adatom is used then the last item in the file

describes that particular adatom. If 16 adatoms are used then the last 16 text file entries

specify those adatoms. The post-processing step 2 has provision to automatically detect the

adatoms based on the user input, and automatically highlight them for VMD, which receives

the xyz file output from the step. Table 8.1 also shows the structure of the file. To highlight

the adatoms within VMD we use a trick that exploits the fact that VMD uses a different color

for each <element>. Thus, when the xyz file [18] is created in the case of Cu atoms, every

8.3 Description of additional applets 135

Table 8.1 The file formats used as primary input, intermediate and post-processed outputs in
the VSV MD simulation flow.

VSV input Post-process 1 output Post-process 2 output

(C-code) (VB code) (MATLAB code)

(raw structure) (.xyz file [18], for VMD) (extracted surface)

m <x> <y> <z> <vx> <vy> <vz> <number of atoms> <x> <z> <E>

... comment line ...

mA <x> <y> <z> <vx> <vy> <vz> <element> <x> <y> <z>

...

atom detected as an adatom has its <element> property set to <Ni> i.e. nickel, which VMD

displays in blue. VMD does not change the VSV simulation output, only how it is rendered.

Table 8.1 lists file types shown in the simulation stages. The VSV input file for an

N-atom lattice contains N lines, and has negligible disk storage size (i.e. < 1 KB). The xyz

file, on the other hand, is vastly larger since it holds the system trajectories (time-step, 3D

position, 3D velocities) over several integration periods per particle. For the 2281 atom Cu

simulation in the demonstration, it amounts to over 24 MB. The extracted surfaces, with the

format also shown in Table 8.1, represent slices of the structure at a user-specified time step,

also has neglible storage size since it involves only one plane which contains considerably

fewer atoms. Also, depending on the plane, certain components in the 3D positions could be

suppressed, as is the case when one examines (100) equivalent planes.

Figure 8.2 is the graphical user interface of the Excel macro contained in the repository

file SurfaceDetect-demo.xlsm. The file is preloaded with actual VSV simulation output

for the structure in Figure 8.1. The integrations are done in 0.5 steps from 0 to 109.5 units, a

total of 219 steps. This corresponds to (109.5×2281/0.5) = 499,539 lines in the Microsoft

Excel spreadsheet, or data file size of 24 MB. We have imposed this limitation to keep within

the 25 MB file upload size limit of Github. Our work was based on 459 steps (47 MB).

Excel supports a maximum of 1,048,576 lines per workbook. Therefore, proceeding in 0.5

simulation steps for 2281 atoms permits a maximum simulation time of (1,048,576/2281)

= 459 whole samples. That is, for the ≡ 45.875 fs sample rate used [7, 16, 19], then the

8.3 Description of additional applets 136

Fig. 8.2 Graphical user interface of the Excel macro used for file generation and surface
detection.

maximum simulation time is 21.056 ps. The repository also contains the VMD compatible

file out.xyz which is output in response to “Generate trajectory file”. This file is similarly

limited to 221 samples, or VMD frames, for 24.7 MB disk size and 10.138 ps total simulation

time.

8.3.1.2 Tracking atoms on vibrating planes

Figure 8.3 depicts the effect of the passage of a transverse lattice wave on the position of

atoms. For instance, atom 4 normally resides on an arbitrary, undisturbed plane. The passing

transverse wave energy displaces it to a new position, e.g. atom 5. The wave amplitude

|r̄5 − r̄4| is assumed small to comply with the low-strain condition. To examine a given

plane, it is necessary to detect all displaced atoms on the plane and to selectively extract

their instantaneous trajectories. Three atoms {1,2,3} were identified on the desired plane and

8.3 Description of additional applets 137

Fig. 8.3 Depiction of a superimposed, transverse impact-generated wave propagating on a
planar slice of the lattice.

used to generate three vectors {ū,v̄,w̄}, such that w̄=ū×v̄. Hence to identify a given displaced

atom over the entire nanostructure as originating from the undisturbed plane e.g. atom 5, the

orientation of its vector s̄ relative to w̄ is tested. Since w̄ is perpendicular to the undisturbed

plane, atom 5 is confirmed as being from the undisturbed plane provided that

w̄ · s̄
|w̄||s̄|

≤ cosφ , (8.1)

where φ is a specifiable minimum angle. In Figure 8.3, atom 5 lies on the undisturbed plane

when φ=90o. In the present simulations φ ≈ 85.0o was found to detect all displaced atoms

of the original plane. The arguments also apply to longitudinal and shear waves.

8.3.1.3 Spectral response through bond length

We detect oscillations within the structure by selecting arbitrary adjacent atoms in the

direction of interest. For instance, two atoms may be selected along the [100] direction

and the variations of their separation over the simulation time extracted and used to plot a

graph. Such a graph shows the net oscillation, which is a superimposition of all harmonic

oscillations in the lattice due to the elastic coupling from neighboring atoms. In the low

strain limit the oscillations preserve the fundamental spectral character of the lattice that

8.3 Description of additional applets 138

can be processed further using the Fourier transform. Figure 8.4 shows how bond lengths

are calculated in VMD. In the figure, the “Save” option produces a separate vector text file

Fig. 8.4 Highlighted bond lengths in VMD showing one view of the simulated 2281 atom Cu
structure after the first simulation step. The bond lengths are in Å.

with the format (timestep, var1) for each data variable over the entire simulation duration

for the selected bonds. To generate a single matrix file with structure (timestep, var2, var2),

which is easier to plot in other environments such as Origin, the button labeled “Graph” is

used, which then generates a graphical plot within VMD. By selecting “File”, “Export to

ASCII matrix” the user can then save the variables to a text file. In the case of the evaluation

data, each 0.5 time step advances the simulation by 45.875 fs. Hence the text file can be

further processed within Excel to convert the time step to real time. Such a file, for the

bond lengths in Figure 8.4, is included as multiplot.txt in the repository and plotted in

Origin in Figure 8.5. Figure 8.5 shows complex harmonic oscillations in bond lengths as a

result of superimposition of multiple harmonic oscillations. Fast Fourier transform (FFT)

8.3 Description of additional applets 139

(a) [110] direction

(b) [100] direction

Fig. 8.5 Simulated atom-atom bond length versus time variations in two directions.

was then used to determine vibrational mode frequencies in the bond length oscillations for

the specified direction. The FFT MATLAB code, given as FFT.m in the repository, takes

fft_in.txt as input and generates fftout.txt as output. The input and output formats are

(realtime, bondlength) and (hertz frequency, intensity) respectively. The intensity indicates

the relative vibrational mode amplitude in arbitrary units. Figure 8.6 shows the output of

FFT.m on the bond lengths in Figure 8.5. The FFT input-output data for Figure 8.6b are

included in the repository. The FFTs show the frequencies present and their relative strengths

are direction dependent. This is expected since lattice elasticity is known to vary with

8.4 Illustrative example 140

(a) along face diagonal

(b) along lattice parameter

Fig. 8.6 FFT plots of simulated bond length variations for two directions.

direction. The various elasticity dependent constants of the macro-material are calculated

from this data, as shown below.

8.4 Illustrative example

Figure 8.7 shows the chosen simulated region in energy-momentum space, labeled A and B.

Point C is the boundary of the first Brillouin zone i.e π/a=0.87, where strong wave reflections

are expected. The straight, solid line represents the continuum lattice. The peaks in Figure

8.4 Illustrative example 141

Fig. 8.7 Illustration of the chosen simulation region which lies between A and B.

8.6 match h̄ω energies of 20.9 – 22.6 meV, which are within the region A–B literature range

[20]. Validation of the method is based on comparisons of the simulated parameters of the

lattice with the known literature values. In particular, we calculate the elastic and mechanical

constants, and the surface temperature behavior. The latter is expressed as 2D thermograms

based on the outputs of the macro on VSV data.

8.4.1 Elastic constants

The cubic crystal [α β γ] directions propagate normalized waves of the form:

uαβγ = ei(kxα+kyβ+kzγ−ωt), (8.2)

where |(kx,ky,kz)|=2π/λ . For low strains, the bulk modulus is related to the direction

dependent moduli of elasticity Cαβ by [10]

B =
1
3
(C11 +2C12). (8.3)

8.4 Illustrative example 142

Table 8.2 Summary of simulation results at 0.01K. The comparative literature value are from
Kittel [10], Sutton & Chen [14], Behari & Tripathi [23].

Source Speed E c11 c12 c44 ρ µ

m/s meV GPa kg/m3 N/m
Simulated 4,443 20.9 – 22.6 178.8 128.8 82.1 9058.3 27.7 – 31.5
Literature 4,600 18 – 35 176.2 124.9 81.8 9018.0 38.2

Fig. 8.8 Plot of average surface temperature in time from the moment of impact.

Therefore, for transverse waves [21, 22], ω2ρ=C44k2 and ω2ρ=(C11 +C12 +2C44)k2/2 for

[100] and [110] respectively. Table 8.2 lists the main results obtained from the simulation.

8.4.2 Thermography

3D thermograms for user-specified plane and time step were calculated using Equation

(7.3) on atom positions and velocity detected using the macro method described above.

The extracted surfaces were passed onto the MATLAB code, mesh.m and plotted. Figure

8.9 is an alternate view of Figure 8.1 showing the plane of the simulated structure for

which thermograms were calculated. The impulsed atom is on the opposite face of the

structure. Figure 8.8 shows the surface temperature Tav. Figures 8.10–8.11 show the resulting

thermograms. The temperature calculation considers the 3D neighborhood of the atom.

8.4 Illustrative example 143

(a) surface atom neighborhood

(b) 3D

Fig. 8.9 Surface of structure for which thermographs were calculated and plotted. Figure (b)
illustrates a 3D map of the surface showing the surface temperature distribution at termination
of simulation.

8.5 Impact 144

The wave couples vibrational energy to other atoms due to the cascading effect of

attractions and repulsions through the lattice. The time lag of a wave between the two faces

was used to calculate phase velocity between any two points in the lattice. This gives the

wave velocity, which is the speed of sound in copper. Figure 8.6 shows two peaks which

correspond to wavelengths of 8.789 Å and 8.152 Å respectively.

8.5 Impact

The output of VSV v1.0 is typically a trajectory in the temporary and spatial domain for

all particles in the ensemble, as described above. The spatial position of a given particle

is available at the integration time step. This leads to a voluminous output which, without

visualization, becomes extremely difficult to interpret for the dynamics of the simulated

system, and to follow the evolution of the system in phase space. This update therefore

provides a visual deciphering of the vast amount of data at the various stages of the simulation

thus making deductions about the system easy. The approach taken in writing the update

is, as with VSV v1.0, to employ the tools that are readily available to most readers. The

code uses transparent VBA scripts in Microsoft Excel to access trajectory data that are

loaded into the Excel spreadsheet. The innards of the code are open and heavily commented

to enable dissection. An example of an output that is immediately valuable is the .xyz

format that can be loaded directly into VMD as simulation frames at the time steps and

leisurely visualized. The immediate impacts of this contribution are many fold. First, by

facilitating such visualizations, it permits the modelling and following of the behavior of

arbitrary coupled phonons from initial impulses in the low-strain elastic model of the fcc

lattice. Secondly, by allowing the user to highlight specific atoms in the lattice to which initial

impulses are imparted, following the lattice for its responses and propagation of the ensuing

bulk and surface waves becomes easier. Thirdly, tracking the wave-based processes that give

rise to the macroscopic energetic and thermal properties is easily done for surfaces, lattice

8.5 Impact 145

(a) atom neighborhood

(b) contour

Fig. 8.10 Thermograms of selected lattice surface after 605.55 fs.

8.5 Impact 146

(a) atom neighborhood

(b) contour

Fig. 8.11 Thermograms of selected lattice surface after 18854.63 fs.

8.6 Conclusions 147

directions and volumes. Thus, it is possible to derive and visually follow the evolution of the

phase space of the system at given instants of time up until the end of the simulation without

the necessity of specifying isotherms. In fact, from purely first principles calculations, such

visualization has been able to show that steady-state temperature is attained in one given

simulated system from purely force-field calculations starting at absolute zero temperature.

In other words, without an a priori specification of temperature, a perturbed system was

able to attain a new steady state temperature above 0 K. Finally, following bond length

variations using the software provides a method to correlate system aggregates such as

phonon dispersion and the vibrational spectral density. This provides an alternative method

to established methods such as the Green-Kubo functionals, and the effective medium theory.

8.6 Conclusions

A post-MD simulation processing software has been presented. The article includes an

accessible evaluation repository with all sources, that advances the study of nanosized

metallic fcc clusters using the Sutton-Chen potential. The collection of source code shows

post-processing, how oscillations are detected, how useful surfaces and other parameters are

easily extracted and plotted. We suggest a reasonable avenue to determine the vibrational

mode frequencies, and how 3D thermograms can be plotted. may be states, calculate elastic

parameters and show that the results compare well with the literature. This method arose from

the need to process vast amounts of MD output data based on a previously published research

for standalone simulations. The method is fully open source. It opens up an important,

contemporary area for immediate application by other workers with limited computational

resources. The codes were run on a single genuine Intel(R) 3.20 GHz desktop computer

having quad core i5-3470 CPU and with 4.0 GB RAM on Windows 7 (64-bit). The simulation

of 2281 atoms averaged 12 days on the system. The method was written to complement VSV

8.6 Conclusions 148

[7]. The MATLAB codes were developed on version R12. The submission includes a short

animation video Cu - 2281 atoms.mpg generated from this approach.

References

[1] Car R, Parrinello M. Unified approach for molecular dynamics and density functional

theory. Phys. Rev. Lett., 55(22):2471–2474., 1985.

[2] Car R, Parrinello M. The unified approach for molecular dynamics and density func-

tional theory, in simple molecular systems at very high density. in NATO ASI Series,

Series B, Physics, P.P. Loubeyre and N. Boccara (Eds.), 186:455–476, 1989.

[3] Remler DK, Madden PA. Molecular dynamics without effective potentials via the

Car-Parrinello approach. Mol. Phys., 70(6):921–66, 1990.

[4] Tuckerman ME. Ab initio molecular dynamics: basic concepts, current trends and

novel applications. J. Phys.: Condens. Matter., 2002. URL stacks.iop.org/JPhysCM/

14/R1297.

[5] Bintao G, Xiaorui W, Yujiao C, Zhaohui L, Jianlei Z. High-accuracy infrared simulation

model based on establishing the linear relationship between the outputs of different

infrared imaging systems. Infrared Physics & Technology, 69:155–163, 2015. doi:

10.1016/j.infrared.2015.01.010.

[6] Ma J, Ma Y, Li C. Infrared and visible image fusion methods and applications: A

survey. Information Fusion, 45:153–178, 2019. doi: 10.1016/j.inffus.2018.02.004.

stacks.iop.org/JPhysCM/14/R1297
stacks.iop.org/JPhysCM/14/R1297

References 150

[7] Ocaya R, Terblans JJ. C-language package for standalone embedded atom method

molecular dynamics simulations of fcc structures. SoftwareX, 5:107–111, 2016. doi:

10.1016/j.softx.2016.05.005.

[8] Nakano A, Bachlechner ME, Campbell TJ, Kalia RK, Omeltchenko A, Tsuruta K,

Vashishta P, Ogata S, Ebbsjo I, Madhukar A. Atomistic simulation of nanostructured

materials. IEEE computational science & engineering, 5(4):68–78, 1998. doi: 10.1109/

99.735897.

[9] Sharma A, Kalia RK, Nakano A, Vashishta P. Scalable and portable visualization of

large atomistic datasets. Computer Physics Communications, 163(4):53–64, 2004. doi:

10.1109/99.735897.

[10] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, New Jersey, 2005.

[11] Pathak LP, Rai RC, Hemkar MP. Lattice vibrations and debye temperatures of transition

metals. Journal of the Physical Society of Japan, 44(6):1834–1838, 1978.

[12] Schommers W. in Schommers W, von Blankenhagen P (Eds.) Structure and Dynamics

of Surfaces. Springer, Berlin, 1986.

[13] SurfaceDetect.xlsm, FFT.m and mesh.m. Github code repository of demonstration

sources. URL https://github.com/ocayaro/SurfaceDetect. Updated: 2018-02-10.

[14] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine, 63

(1):139–156, 1990.

[15] Finnis MW, Sinclair JE. Long-range Finnis-Sinclair potentials. Philosophical Magazine,

50:45, 1984.

https://github.com/ocayaro/SurfaceDetect

References 151

[16] Ocaya R, Terblans JJ. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy. J. Phys.: Conf. Ser, 905(012031), 2017. doi:

10.1088/1742-6596/905/1/012031.

[17] Theoretical and Computational Biophysics Group. Visual Molecular Dynamics. URL

http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html. Accessed: 2017-

11-02.

[18] OpenBabel. XYZ (format). URL http://openbabel.sourceforge.net/wiki/XYZ. Assessed:

2018-02-14.

[19] Ocaya R, Terblans JJ. Coding considerations for standalone molecular dynamics

simulations of atomistic structures. J. Phys.: Conf. Ser, 905(012018), 2017. doi:

10.1088/1742-6596/905/1/012018.

[20] Ditlevsen Peter D, Nømskov Jens K. Vibrational properties of aluminum, nickel and

copper surfaces. Surface Science, 254:261–274, 1991. doi: 10.1.1.718.7356.

[21] Chopra KK, Bouarab S. Off–symmetry phonon frequencies of copper. Physica status

solidi (b), 125(2):449–504, 1984.

[22] Jani AR, Gohel VB. On the phonon frequencies of copper in off symmetry directions.

Solid State Communications, 41(5):407–411, 1982.

[23] Behari J, Tripathi BB. Frequency spectra and heat capacities of copper, nickel and

aluminium. Aust. J. Phys., 23:311–318, 1969. URL http://adsabs.harvard.edu/full/

1970AuJPh..23..311B.

http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html
http://openbabel.sourceforge.net/wiki/XYZ
http://adsabs.harvard.edu/full/1970AuJPh..23..311B
http://adsabs.harvard.edu/full/1970AuJPh..23..311B

Chapter 9

Conclusions

The preceding chapters detail how we set out initially to devise a standard molecular dynamics

platform for a standalone machine to simulate crystalline fcc lattices configurations of up

to several thousand atoms. The developed system is intended to include a feature that

permits upward scaling of computational power though hardware with a minimal of software

reconfiguration. The software is intended for ready use by researchers interested in the atom

structures without assuming programming expertise. The motivation is to contribute towards

overcoming the high start up inertia that is typical in MD research. In attempting to achieve

these overarching goals, specific objectives were identified and followed closely.

The work began by presenting a review of recent, current and growing trends in the field

computation. We then proceeded to weigh the pros and cons of writing own code versus

existing packages and decided on the former approach. The C/C++ language was chosen, and

the work to develop a compact library of reusable MD functions. This approach was taken for

enhanced performance and also to make it easier to evolve the code to higher versions. The

functions themselves implement the Sutton and Chen implementation of the Finnis-Sinclair

potential. The modularity of the open library functions makes it easier to modify the code to

other crystal systems, such as body-centered cubic (BCC). In the scope of the present work,

153

BCC and other metallic systems cannot be immediately simulated by the present code, but

modifications can readily be done through the library.

The study focus on fcc structures is not particularly limiting since there is an abundance

of fcc structures and associated questions that need to be answered. We have stated and

computed some answers to such questions using the developed software, called VSV. Such

questions involve static and dynamic mechanical or energetic properties. Through these

properties the related parameters, such as the equilibrium lattice parameters, temperature,

phase space, heat propagation and othe properties have been successfully simulated and

deduced. The choice of the parameters simulated and evaluated in the present work was

guided by the ready availability of published literature data that provided a meaningful basis

of comparison between simulation experiment and empirical experiment.

Several considerable challenges were experienced during the work to address as we set

out to attain the stated objectives. A necessary, if mandatory aspect of computation that

was quickly apparent at the onset of the study was the need to establish parallelization and

scalability as an integral aspect of VSV to enhance processing power and reduce execution

times. Some evidence of the typical execution time for a simulation was given for the case

of 30,261 (+1) atoms, where execution times were successfully reduced from days to a

few hours on a single machine. A further design specification was deployability of VSV

and its libraries onto a wide range of operating systems. Thus, the operation of VSV was

assured on Windows and Linux. The Windows operating system is important since it is

the most likely system available to the intended users of VSV. The Linux operating system

is considered important from the standpoint of C-coding since it is the native environment

for the language and there are routines there that facilitate high performance computing.

Apart from the above challenges, issues surrounding the implementation of some of the basic

physics were addressed. Early on into the study, the question also arose about how best to

simulate temperature in a simulation, which turned out to be a non-trivial question. We have

154

pointed out in detail the variability in the temperature specifications using two commonly

followed thermostats. It become evident that the choice of a simulation thermostat is guided

by factors other than merely ease of implementation, and that a clarification was needed.

Therefore, we investigated the deterministic, energy-defined thermostat and a stochastic,

Monte Carlo (MC) method-based thermostat. In short, ignoring variations and drifts in the

system Hamiltonian due to computational error accumulation, the deterministic thermostat

was shown to be reversible in time, and canonical in both the Hamiltonian and the potential

energy. Consequently, we chose it as being the more descriptive for the class of problems

that have been studied in this work. The behavior of the system Hamiltonian can be limited

to within acceptable error tolerance bounds of the equilibrium. Also, using the deterministic

approach, it is far easier to add external degrees of freedom to simulate environmental system

effects such as the surrounding bath temperature, friction and so on. This leads to a more

reliable simulation of the dynamical trajectories. However, the method was shown to lack

the ability to constrain the total kinetic energy. The MC method is taken to have the main

advantage of ease of specifying both the thermostat and the external degrees of freedom.

An interesting observation in the application of VSV was the unwitting detection of a

temporal bond length oscillation initiated by perturbation arising from a displaced adatom.

VSV follows the propagation of the oscillations. By using a standard mass-spring analogy,

we successfully deduced the phonon associated properties of the resultant wave. Thus, a

result of this research is of a novel impulse and oscillation method that that is useful to

calculate the properties for fcc lattices. In addition, this work extends the impulse-oscillation

method to postulate a way to initiate wave-like energy transfer through the first Brillouin zone

lattice, as constrained by the wave energy. We have also been able to calculate the diffusion

properties of the lattice, with emphasis on nanosized lattices. Through standard diffusion

models, we suggest a method to calculate diffusion constants in a lattice at low temperature.

These calculation suggest that diffusion in such a collection of atoms is due to other factors

155

other than Brownian motion. The phenomenon of spontaneous atom coalescence, lattice

growth and structure formation by atom assimilation were also detected by VSV. These

foregoing results were compared with the literature values and the agreements were found

to be good. This provides evidence that VSV has achieved its design objectives, and that it

has a considerable potential to investigate fcc lattices. The next chapter details some of the

published outputs from this research, such as a book chapter, journals and presentations at

international conferences, and unpublished manuscripts.

Finally, there is considerable scope for future research in this approach, as summarized

in the list below:

• The further development of the VSV code that is contained in the reusable MD function

library. The ongoing guidelines continue to be code availability and transparency to

other researchers, modularity and evolvability.

• The application of the VSV code to include more fcc systems and their properties

through the dynamic adatom concept in this thesis, on different, arbitrary configurations

of atoms.

• The improvement of the thermostats and the frequency range of the detected oscil-

lations. The literature suggests that empirical bond-length variations can be as high

as 100 GHz. This work has indicated lower frequencies, thus it has focused on low-

frequency dynamics and phonons. Investigating higher temperatures implies higher

energy phonons.

• The expansion of the concept into a homegrown high performance computing center

(HPC) that can be repeated easily will be developed further. This opens up interesting

cross-discipline collaboration.

Chapter 10

Publications

The following list details some peer-reviewed articles, presentations and software outputs of

this study. We also include the manuscripts that are at an advanced state of preparation for

peer-review submission.

10.1 Refereed journal articles

1. Ocaya, R.O., Terblans, J.J. C-language package for standalone embedded atom

method molecular dynamics simulations of fcc structures, SoftwareX (5) 2016, pp.

107-111 doi: 10.1016/j.softx.2016.05.005

2. Ocaya, R.O., Terblans, J.J. Addressing the challenges of standalone multi-core sim-

ulations in molecular dynamics, Physical Sciences Reviews 2(7) 2016, pp. 13 doi:

10.1515/psr-2016-5100

3. Ocaya, R.O., Terblans, J.J. Coding considerations for standalone molecular dynamics

simulations of atomistic structures, Journal of Physics: Conference Series 905(1) 2017,

pp. 012018 doi: 10.1088/1742-6596/905/1/012018

10.2 Conference presentations 157

4. Ocaya, R.O., Terblans, J.J. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy, Journal of Physics: Conference Series 905(1)

2017, pp. 012031 doi: 10.1088/1742-6596/905/1/012031

10.2 Conference presentations

5. Ocaya, R.O., Terblans, J.J. Coding considerations for standalone molecular dynamics

simulations of atomistic structures, in. Proceedings of the 28th IUPAP Conference on

Computational Physics in 2016, Johannesburg, South Africa

6. Ocaya, R.O.,Terblans, J.J. Temperature specification in atomistic molecular dynamics

and its impact on simulation efficacy, in. Proceedings of the 28th IUPAP Conference

on Computational Physics in 2016, Johannesburg, South Africa

10.3 Chapters in books

7. R.O. Ocaya, J.J. Terblans (2017). Addressing the challenges of standalone multi-core

simulations in molecular dynamics, in. Ponnadurai Ramasami (Editor), Computational

Sciences, ISBN: 978-3110465365, September 2017 doi:10.1515/psr-2016-5100

10.4 Software

10.4.1 Permanent VSV Elsevier code repository

8. R.O. Ocaya, VSV code Version 1 - Permanent repository, https://github.com/ElsevierSoftwareX/

SOFTX-D-15-00054

doi: 10.1515/psr-2016-5100
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00054
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00054

10.5 Manuscripts under preparation 158

9. R.O. Ocaya, VSV code - Development version, https://github.com/ocayaro?tab=

repositories

10.4.2 Surface detect applets

10. R.O. Ocaya, Surface detection and VSV helper applets, https://github.com/ocayaro/

SurfaceDetect

10.5 Manuscripts under preparation

11. Ocaya, R.O., Terblans, J.J. Onset of lattice waves and phonons using the Sutton-Chen

embedded atom model on nanostructures, Wave Motion (ready for submission)

12. Ocaya, R.O., Terblans, J.J. VSV 2.0 and VBA integration: a post-simulation visualiza-

tion approach in low-frequency molecular dynamics, Mathematics and Computers in

Simulation (ready for submission)

13. Ocaya, R.O., Terblans, J.J. Standard molecular dynamics study of spontaneous dif-

fusion and coalescence in nanocluster Cu (100) surfaces near 0K, Computational

Condensed Matter (in preparation)

14. Ocaya, R.O., Terblans, J.J. Deterministic study of structure formation in (100) sur-

faces of nanosized Cu clusters, Advances in Materials Science and Engineering (in

preparation)

https://github.com/ocayaro?tab=repositories
https://github.com/ocayaro?tab=repositories
https://github.com/ocayaro/SurfaceDetect
https://github.com/ocayaro/SurfaceDetect

Appendix A

A guide to using VSV for MD simulations

A.1 Running the VSV code

The program is written in standard C-language and should therefore be platform independent.

In other words, it can be compiled and run in many different environments with little or no

modification. This appendix describes how VSV may be run on Microsoft Windows and

Ubuntu Linux. It has been tested on the Win32 API-based Windows 7 and Windows 10

operating systems, and several Ubuntu versions.

A.1.1 Windows 7.0 and later

There are two ways to run the compiled MPI code on a Windows computer, namely through

1. the executable file in the debug folder release,

2. the Integrated Development Environment (IDE) in debug mode.

These ways are discussed separately below.

A.1 Running the VSV code 160

A.1.2 The binary executable

The only requirement for this method is to have the executable, the header file, simulation

constants and the data file in one folder, say, fcc, to be accessed by the executable. Execute

the system run command cmd as administrator to open the DOS box. Navigate to the folder

and type the name of the executable to start the program, e.g.

cd \fcc

velocity-stormer-verlet_02.exe

For all purposes this brings the user to the same point of execution described for MS Windows,

see Note A below.

A.1.3 On Windows debug

Fig. A.1 The IDE in MS Visual C++ compiler.

The program was developed using Microsoft Visual C++ Express edition 2008. The

integrated development environment which has a debug mode to troubleshoot the code. This

A.1 Running the VSV code 161

environment allows the program and its parameters to be modified and tested instantly before

deployment.

Note A: After clicking the green button the program execution is at the same stage as

the DOS method above. The resulting execution is shown in Figure A.2. In this simple

execution, the force and its components on each of the three particles have been calculated

are in µN. The program correctly enumerates the particles as being 3 in total. Examining the

components of the force, which for particle i has the form:

Fi = (Fix, Fiy, Fiz), (A.1)

gives the results in Table A.1. Interestingly, the net forces are not zero on each particle but

equal. This suggests that there is a tendency of each particle to fly apart in the directions

determined by the largest force components, although the interplay of the components

considered together is such that the arrangement remains in place. This is an illustration of

mechanical stability of the array.

Table A.1 Summary of force calculations on the simple 3-atom array in Cu from [1]. All
forces are in µN.

Atom Fix Fiy Fiz Net force (F)
1 0.0000 0.0000 0.0001 0.0001
2 0.0001 0.0000 0.0000 0.0001
3 -0.0001 0.0000 0.0000 0.0001

Table A.2 Summary of potential energies in the system of 3-atom array in Cu from [1].

Energy eV
per atom -160.2853
repulsive 80.1
cohesive 240.0
total -480.856

The calculated potential energies in electron volts (eV) of the individual atoms and of the

total system are also shown in Figure A.2. The extent to which these energies are distributed

A.1 Running the VSV code 162

Fig. A.2 Example output of the program in Windows during energy calculations.

between repulsion and cohesion are also shown. Table summarizes these energies. The results

show that each atom has the same potential energy (-160.3 eV) in the cluster, which is another

indication of mechanical stability. The total potential energy of the system is -480.9 eV,

which is in exact agreement with the results of Doye et al [1, 2]. The additional information

obtained by the VSV code is that the predominant energy in the cluster is cohesive than

repulsive, suggesting that the atoms in fact try to condense onto each other rather than fly

apart. Interestingly, although copper forms an fcc structure whose conventional unit cell

contains 4 atoms and has a coordination number of 8, using only three atoms shows that such

a system can exist without any problems.

A.2 The GNU General Public License 163

A.1.4 Linux e.g. Ubuntu

The program should run on most gcc systems without any problems. The executable can be

created as follows (assuming all the above files are included in the same directory):

gcc velocity-stormer-verlet_02.c -o VSV_prog -fopenmp -lm ./VSV_prog

The first command compiles the code velocity-stormer-verlet_02.c using the

OpenMP library into an executable called VSV_prog.o for the sake of brevity. The second

command (alternatively ./VSV_prog.o) executes the program. The results are identical.

The use of a Python script allows a batch of different such programs to be compiled and

executed for more complex MD simulations.

A.2 The GNU General Public License

This code is intended to be used exclusively for research purposes to investigate the inter-

actions of atoms in solid state materials. It is distributed under the terms of GNU General

Public License version 3.0. The LICENSE accompanying the code may be viewed at:

https://github.com/ocayaro/Velocity-Stormer-Verlet/blob/master/LICENSE

A.3 VSV code listings

A.3.1 The library file

The codes that implement the MD functions are grouped together into a single library file

called velocity-stormer-verlet_02.h, that is registered into a C-application file using

the #include"" statement. The library file has functions for force calculation, integration,

energy calculations and memory management for a large body of particles.

1 / / Author : R .O. Ocaya

https://github.com/ocayaro/Velocity-Stormer-Verlet/blob/master/LICENSE

A.3 VSV code listings 164

2 / / (c) 2015 , 2016 , 2017 U n i v e r s i t y o f t h e F ree S t a t e (UFS) .

3 / / F i r s t c r e a t e d : 04 A p r i l 2015

4 / / L a s t m o d i f i e d : Wednesday 18 J a n u a r y 2017 .

5 / / Note t h a t p r i n t f () i s used i n program deve lopment and

6 / / f i n a l program o u t p u t on ly .

7 / /−−−

8 / / d e f i n e a new t y p e c a l l e d " C e l l " .

9 t y p e d e f P a r t i c l e L i s t * C e l l ;

10 / / f u n c t i o n p r o t o t y p e s

11 vo id t i m e I n t e g r a t i o n _ b a s i s (d ou b l e t , d ou b l e d e l t a _ t , dou b l e t_end ,

P a r t i c l e *p , i n t N) ;

12 vo id o u t p u t R e s u l t s _ b a s i s (P a r t i c l e *p , d oub l e N, d oub l e t) ;

13 vo id c o m p u t e F _ b a s i s (P a r t i c l e *p , i n t N) ;

14 vo id compu teF2_bas i s (P a r t i c l e *p , i n t N) ;

15 vo id f o r c e (P a r t i c l e * i , P a r t i c l e * j) ;

16 / / ba sed on t h e m o d i f i e d a l g o r i t h m

17 vo id f o r c e 2 (P a r t i c l e * i , P a r t i c l e * j) ;

18 vo id computeX_bas i s (P a r t i c l e *p , i n t N, d ou b l e d e l t a _ t) ;

19 vo id computeV_bas i s (P a r t i c l e *p , i n t N, d ou b l e d e l t a _ t) ;

20 vo id updateX (P a r t i c l e *p , d oub l e d e l t a _ t) ;

21 vo id updateV (P a r t i c l e *p , d oub l e d e l t a _ t) ;

22 vo id c o m p o u t S t a t i s t i c _ b a s i s (P a r t i c l e *p , i n t N, d oub l e t) ;

23 vo id p a r t i c l e F i l e C o n t e n t (P a r t i c l e *p , i n t p cou n t) ;

24 vo id o p e n O u t p u t F i l e (vo id) ;

25 do ub l e Uto t (P a r t i c l e *p , i n t N) ;

26 do ub l e Uto t2 (P a r t i c l e *p , i n t N) ;

27 vo id i n s e r t L i s t (P a r t i c l e L i s t ** r o o t _ l i s t , P a r t i c l e L i s t * i) ;

28 vo id d e l e t e L i s t (P a r t i c l e L i s t **q) ;

29 vo id computeF_LC (C e l l * g r i d , i n t *nc , f l o a t r _ c u t) ;

30 vo id computeX_LC (C e l l * g r i d , i n t *nc , f l o a t * l , f l o a t d e l t a _ t) ;

31 vo id computeV_LC (C e l l * g r i d , i n t *nc , f l o a t * l , f l o a t d e l t a _ t) ;

32 vo id m o v e P a r t i c l e s _ L C (C e l l * g r i d , i n t *nc , f l o a t * l) ;

A.3 VSV code listings 165

33 do ub l e invRootS (P a r t i c l e *p , i n t k , i n t N) ;

34 vo id F_i (P a r t i c l e *p , i n t i , i n t N) ;

Listing A.1 Function prototypes used in the header file.

1 vo id i n s e r t L i s t (P a r t i c l e L i s t ** r o o t _ l i s t , P a r t i c l e L i s t * i) {

2 i−>n e x t = * r o o t _ l i s t ;

3 * r o o t _ l i s t = i ;

4 }

5 vo id d e l e t e L i s t (P a r t i c l e L i s t **q) {

6 / / (* q)−>n e x t p o i n t s t o e l e m e n t t o be removed

7 *q = (* q)−>n e x t ;

8 }

Listing A.2 Particle management for linked-cell method.

1 vo id computeF_LC (C e l l * g r i d , i n t *nc , f l o a t r _ c u t) {

2 i n t i c [DIM] , kc [DIM] ;

3 i n t d ;

4 do ub l e r ;

5 P a r t i c l e L i s t * i , * j ;

6 f o r (i c [0] = 0 ; i c [0] < nc [0] ; i c [0] + +)

7 f o r (i c [1] = 0 ; i c [1] < nc [1] ; i c [1] + +)

8 f o r (i c [2] = 0 ; i c [2] < nc [2] ; i c [2] + +)

9 f o r (i = g r i d [i n d e x (i c , nc)] ; NULL!= i ; i = i−>n e x t) {

10 f o r (d =0; d<DIM; d ++)

11 i−>p . F [d] = 0 ;

12 f o r (kc [0] = i c [0] −1; kc [0] <= i c [0] + 1 ; kc [0] + +)

13 f o r (kc [1] = i c [1] −1; kc [1] <= i c [1] + 1 ; kc [1] + +)

14 f o r (kc [2] = i c [2] −1; kc [2] <= i c [2] + 1 ; kc [2] + +) {

15 / / t r e a t kc [d] <0 and kc [d] >= nc [d] a c c o r d i n g t o boundary c o n d i t i o n s ;

16 / / i f (d i s t a n c e o f i−>p t o c e l l kc <= r _ c u t)

17 i f (1)

18 f o r (j = g r i d [i n d e x (kc , nc)] ; NULL!= j ; j = j−>n e x t)

A.3 VSV code listings 166

19 i f (i != j) {

20 r = 0 ;

21 f o r (d =0; d<DIM; d ++)

22 r += s q r (j−>p . x [d] − i−>p . x [d]) ;

23 i f (r <= s q r (r _ c u t))

24 f o r c e 2 (& i−>p , &j−>p) ; } } }

25 }

Listing A.3 Force calculation in linked-cell method.

1 vo id computeX_LC (C e l l * g r i d , i n t *nc , f l o a t * l , f l o a t d e l t a _ t) {

2 i n t i c [DIM] ;

3 P a r t i c l e L i s t * i ;

4 f o r (i c [0] = 0 ; i c [0] < nc [0] ; i c [0] + +)

5 f o r (i c [1] = 0 ; i c [1] < nc [1] ; i c [1] + +)

6 f o r (i c [2] = 0 ; i c [2] < nc [2] ; i c [2] + +)

7 f o r (i = g r i d [i n d e x (i c , nc)] ; NULL!= i ; i = i−>n e x t)

8 updateX (& i−>p , d e l t a _ t) ;

9 m o v e P a r t i c l e s _ L C (g r i d , nc , l) ; }

10 vo id computeV_LC (C e l l * g r i d , i n t *nc , f l o a t * l , f l o a t d e l t a _ t) {

11 i n t i c [DIM] ;

12 P a r t i c l e L i s t * i ;

13 f o r (i c [0] = 0 ; i c [0] < nc [0] ; i c [0] + +)

14 f o r (i c [1] = 0 ; i c [1] < nc [1] ; i c [1] + +)

15 f o r (i c [2] = 0 ; i c [2] < nc [2] ; i c [2] + +)

16 f o r (i = g r i d [i n d e x (i c , nc)] ; NULL!= i ; i = i−>n e x t)

17 updateV (& i−>p , d e l t a _ t) ;

18 }

Listing A.4 Position and velocity updater in linked-cell method.

1 vo id m o v e P a r t i c l e s _ L C (C e l l * g r i d , i n t *nc , f l o a t * l) {

2 i n t i c [DIM] , kc [DIM] ;

3 i n t d ;

A.3 VSV code listings 167

4 P a r t i c l e L i s t * i , *q ;

5 f o r (i c [0] = 0 ; i c [0] < nc [0] ; i c [0] + +)

6 f o r (i c [1] = 0 ; i c [1] < nc [1] ; i c [1] + +)

7 f o r (i c [2] = 0 ; i c [2] < nc [2] ; i c [2] + +) {

8 / / p o i n t e r t o p r e d e c e s s o r

9 P a r t i c l e L i s t **q = &g r i d [i n d e x (i c , nc)] ;

10 P a r t i c l e L i s t * i = *q ;

11 w h i l e (NULL != i) {

12 / / t r e a t boundary c o n d i t i o n s f o r i−>x ;

13 f o r (d =0; d<DIM; d ++)

14 kc [d] = (i n t) f l o o r (i−>p . x [d] * nc [d] / l [d]) ;

15 i f ((i c [0] ! = kc [0]) | | (i c [1] ! = kc [1]) | | (i c [2] ! = kc [2])) {

16 d e l e t e L i s t (q) ;

17 i n s e r t L i s t (& g r i d [i n d e x (kc , nc)] , i) ;

18 } e l s e q = &i−>n e x t ;

19 i = *q ; }

20 }}

Listing A.5 Move particles to their new cells in the linked-cell method.

1 vo id t i m e I n t e g r a t i o n _ b a s i s (d ou b l e t , d ou b l e d e l t a _ t , dou b l e t_end ,

P a r t i c l e *p , i n t N) {

2 / / f i n d t h e i n i t i a l f o r c e

3 c o m p u t e F _ b a s i s (p , N) ;

4 / / open d i s k f i l e f o r o u t p u t

5 o p e n O u t p u t F i l e () ;

6 w h i l e (t < t _ e n d) {

7 t += d e l t a _ t ;

8 computeX_bas i s (p , N, d e l t a _ t) ;

9 c o m p u t e F _ b a s i s (p , N) ;

10 computeV_bas i s (p , N, d e l t a _ t) ;

11 c o m p o u t S t a t i s t i c _ b a s i s (p , N, t) ;

12 / / p r i n t v a l u e s a t each t ime s t e p

A.3 VSV code listings 168

13 o u t p u t R e s u l t s _ b a s i s (p , N, t) ; }

14 f c l o s e (o u t p u t F i l e) ;

15 }

Listing A.6 Time-based integration function using direct method.

1 vo id t i m e I n t e g r a t i o n 2 _ b a s i s (d ou b l e t , d ou b l e d e l t a _ t , dou b l e t_end ,

P a r t i c l e *p , i n t N) {

2 / / f i n d t h e i n i t i a l f o r c e

3 compu teF2_bas i s (p , N) ;

4 / / open d i s k f i l e f o r o u t p u t

5 o p e n O u t p u t F i l e () ;

6 w h i l e (t < t _ e n d) {

7 t += d e l t a _ t ;

8 computeX_bas i s (p , N, d e l t a _ t) ;

9 / / u s e s t h e m o d i f i e d a l g o r i t h m

10 compu teF2_bas i s (p , N) ;

11 computeV_bas i s (p , N, d e l t a _ t) ;

12 c o m p o u t S t a t i s t i c _ b a s i s (p , N, t) ;

13 / / p r i n t v a l u e s a t each t ime s t e p

14 o u t p u t R e s u l t s _ b a s i s (p , N, t) ;

15 }

16 f c l o s e (o u t p u t F i l e) ;

17 }

Listing A.7 Time-based integration using modified velocity algorithm.

1 vo id o p e n O u t p u t F i l e (vo id) {

2 i f ((o u t p u t F i l e = fopen (" o u t d a t a . t x t " , "w")) == NULL) {

3 p r i n t f (" E r r o r : c a n n o t open f i l e f o r w r i t i n g . . . \ n ") ;

4 e x i t (0) ; } }

5 vo id o u t p u t R e s u l t s _ b a s i s (P a r t i c l e *p , d oub l e N, d oub l e t) {

6 / / i n t i ;

A.3 VSV code listings 169

7 f p r i n t f (o u t p u t F i l e , " %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e \ n

" , t , p [3] . m, p [3] . x [0] , p [3] . x [1] , p [3] . x [2] , p [3] . v [0] , p [3] . v [1] ,

p [3] . v [2]) ;

8 }

Listing A.8 Disk file output of final results.

1 / / t h e n a i v e f o r c e c o m p u t a t i o n a l g o r i t h m , f o r c e () ;

2 vo id c o m p u t e F _ b a s i s (P a r t i c l e *p , i n t N) {

3 i n t i , d , j ;

4 f o r (i =0 ; i <N; i ++)

5 f o r (d =0; d<DIM; d ++)

6 p [i] . F [d] = 0 ;

7 f o r (i =0 ; i <N; i ++)

8 f o r (j =0 ; j <N; j ++)

9 i f (i != j) f o r c e (&p [i] ,& p [j]) ;

10 }

11 / / t h e m o d i f i e d f o r c e a l g o r i t h m , f o r c e 2 ()

12 vo id compu teF2_bas i s (P a r t i c l e *p , i n t N) {

13 i n t i , d , j ;

14 f o r (i =0 ; i <N; i ++)

15 f o r (d =0; d<DIM; d ++)

16 p [i] . F [d] = 0 ;

17 f o r (i =0 ; i <N; i ++)

18 f o r (j = i +1 ; j <N; j ++) / / n o t e t h a t j = i +1 ;

19 i f (i != j) f o r c e 2 (&p [i] ,& p [j]) ;

20 }

Listing A.9 Functions for the naive and improved force algorithms.

In Listing A.10, the functions force() and force2() calculate force. The first one uses

“naive” approach, where particle interactions F̄i j and F̄ji are repeated, which is wasteful of

computation time. The second one uses the improved approach, where F̄ji is accounted for

A.3 VSV code listings 170

also during the calculation of F̄i j, i.e. in the first iteration. Although Listing A.10 relates to

the two-body force in Newtonian gravitation, it is included here to illustrate the generality of

the method to cover a wide range of different forces. For instance, modifying just this part

for forces that are derived from other potentials, such as the m-n Lennard-Jones potential,

allows easy modification of the code to cover different fields.

1 vo id f o r c e (P a r t i c l e * i , P a r t i c l e * j) {

2 i n t d ;

3 do ub l e f , r = 0 ;

4 f o r (d =0; d<DIM; d ++)

5 r += s q r (j−>x [d]− i−>x [d]) ;

6 f = (i−>m * j−>m) / (s q r t (r) * r) ;

7 f o r (d =0; d<DIM; d ++)

8 i−>F [d] += f * (j−>x [d]− i−>x [d]) ;

9 }

10 vo id f o r c e 2 (P a r t i c l e * i , P a r t i c l e * j) {

11 i n t d ;

12 do ub l e f , r = 0 ;

13 f o r (d =0; d<DIM; d ++)

14 r += s q r (j−>x [d]− i−>x [d]) ;

15 / / d e n o m i n a t o r i s r i j ^3

16 f = (i−>m * j−>m) / (s q r t (r) * r) ;

17 f o r (d =0; d<DIM; d ++) {

18 / / t h i s i s F i j

19 i−>F [d] += f * (j−>x [d]− i−>x [d]) ;

20 / / t h i s i s F j i = −F i j

21 j−>F [d] −= f * (j−>x [d]− i−>x [d]) ;

22 }}

Listing A.10 Functions for the naive and improved force algorithms.

Listing A.11 returns the intermediate sum 1/
√

Sk used in force calculation in the Sutton-

Chen implementation of the Finnis-Sinclair EAM as given by Equation (3.13).

A.3 VSV code listings 171

1 do ub l e invRootS (P a r t i c l e *p , i n t k , i n t N) {

2 i n t j , d ;

3 do ub l e r , v a l = 0 ;

4 f o r (j =0 ; j <N; j ++) {

5 i f (j != k) {

6 r =0 ;

7 f o r (d =0; d<DIM; d ++)

8 / / r ^2 = dx ^2 + dy ^2 + dz ^2

9 r += s q r (p [j] . x [d]−p [k] . x [d]) ;

10 / / r = s q r t (r ^2)

11 r = pow (r , 0 . 5) ;

12 / / sum (N−1) t e r m s e x c l u d i n g j =k ;

13 v a l += pow (l a t _ c o n s t / r , min t) ;

14 }

15 }

16 v a l = 1 / pow (va l , 0 . 5) ;

17 / / r e t u r n r e c i p r o c a l o f s q u a r e r o o t

18 r e t u r n (v a l) ;

19 }

Listing A.11 Calculation of the Sk intermediate term of the SC potential.

Listing A.12 defines a function that receives the complete particle array, computes and

returns the force on the i-th particle using the Sutton-Chen potential.

1 vo id F_i (P a r t i c l e *p , i n t i , i n t N) {

2 i n t j , d ;

3 do ub l e r , r2 , rn , f ;

4 do ub l e i t e r m , j t e r m ;

5 f o r (j =0 ; j <N; j ++) {

6 i f (j != i) {

7 r =0 ;

8 / / d e t e r m i n e r i j f o r each i and j p a i r

A.3 VSV code listings 172

9 f o r (d =0; d<DIM; d ++)

10 / / r ^2 = dx ^2 + dy ^2 + dz ^2

11 r += s q r (p [j] . x [d]−p [i] . x [d]) ;

12 / / r 2 = r ^2

13 r2 = r ;

14 / / r i j = s q r t (r ^2)

15 r = pow (r , 0 . 5) ;

16 / / r n = (s igma / r i j) i n G r i e b e l

17 rn = l a t _ c o n s t / r ;

18 i t e r m = invRootS (p , i ,N) ;

19 j t e r m = invRootS (p , j ,N) ;

20 f = −eps * (n i n t *pow (rn , n i n t) −0.5* cn * min t * (i t e r m + j t e r m) *pow (rn ,

min t)) / r2 ;

21 / / p r i n t f (" \ n f_%d = %.4 f \ n " , j , f) ; / / debugg ing on ly

22 / / f o r each i , u p d a t e sum up f o r c e s F i j f o r each d imens ion

23 / / and s t o r e t h e f o r c e components

24 f o r (d =0; d<DIM; d ++)

25 p [i] . F [d] += f * (p [j] . x [d] − p [i] . x [d]) ;

26 }}

27 }

Listing A.12 Force Fi j calculation in Sutton-Chen method.

Listing A.13 computes the Lennard-Jones 12-6 pairwise particle force.

1 vo id f o r c e _ L J (P a r t i c l e * i , P a r t i c l e * j) {

2 do ub l e r , s , f = 0 ;

3 i n t d ;

4 f o r (d =0; d<DIM; d ++)

5 r += s q r (j−>x [d] − i−>x [d]) ;

6 / / h e r e r = s q r (r i j)

7 s = s q r (l a t _ c o n s t) / r ;

8 s = s q r (s) * s ;

9 / / h e r e s=pow (sigma / r i j , 6)

A.3 VSV code listings 173

10 f = 24 * eps * s / r * (1 − 2 * s) ;

11 f o r (d =0; d<DIM; d ++)

12 i−>F [d] += f * (j−>x [d] − i−>x [d]) ;

13 / / s t o r e f o r c e components

14 }

Listing A.13 Lennard-Jones 12-6 force F̄i j calculation.

Listing A.14 shows the functions that update the instantaneous positions and velocities of

the particles relative to the entire particle ensemble.

1 vo id computeX_bas i s (P a r t i c l e *p , i n t N, d ou b l e d e l t a _ t) {

2 i n t i ;

3 f o r (i =0 ; i <N; i ++)

4 updateX (&p [i] , d e l t a _ t) ;

5 }

6 vo id computeV_bas i s (P a r t i c l e *p , i n t N, d ou b l e d e l t a _ t) {

7 i n t i ;

8 f o r (i =0 ; i <N; i ++)

9 updateV (&p [i] , d e l t a _ t) ;

10 }

11 vo id updateX (P a r t i c l e *p , d oub l e d e l t a _ t) {

12 i n t d ;

13 do ub l e a = d e l t a _ t * . 5 / p−>m;

14 f o r (d =0; d<DIM; d ++) {

15 p−>x [d] += d e l t a _ t * (p−>v [d] + a * p−>F [d]) ;

16 p−>F_old [d] = p−>F [d] ; }

17 }

18 vo id updateV (P a r t i c l e *p , d oub l e d e l t a _ t) {

19 i n t d ;

20 do ub l e a = d e l t a _ t * . 5 / p−>m;

21 f o r (d =0; d<DIM; d ++)

22 p−>v [d] += a * (p−>F [d] + p−>F_old [d]) ;

A.3 VSV code listings 174

23 }

Listing A.14 Updater functions in the Lennard-Jones 12-6 force F̄i j calculation.

Listing A.15 computes the total kinetic energy E of the particle ensemble.

1 / / p r i n t k i n e t i c e ne rg y e a t t ime t

2 vo id c o m p o u t S t a t i s t i c _ b a s i s (P a r t i c l e *p , i n t N, d oub l e t) {

3 do ub l e v , e = 0 ;

4 i n t i , d ;

5

6 f o r (i =0 ; i <N; i ++) {

7 v = 0 ;

8 f o r (d =0; d<DIM; d ++)

9 v += s q r (p [i] . v [d]) ;

10 e += . 5 * p [i] .m * v ; }

11 }

Listing A.15 Total ensemble kinetic energy calculation.

Listing A.16 displays the contents of the particle data output file created by the user. This

function is useful to verify that the particle list is present and correct before the simulation.

1 vo id p a r t i c l e F i l e C o n t e n t (P a r t i c l e *p , i n t p cou n t) {

2 i n t i ;

3 p r i n t f (" \ n P a r t i c l e d a t a from f i l e : \ n ") ;

4 p r i n t f (" \ n%10s %10s %10s %10s %10s %10s %10s \ n " , s t r 1 , s t r 2 , s t r 3 ,

s t r 4 , s t r 5 , s t r 6 , s t r 7) ;

5 f o r (i =0 ; i < p cou n t ; i ++)

6 p r i n t f (" %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e %1.3 e \ n " , p [i] . m, \

7 p [i] . x [0] , p [i] . x [1] , p [i] . x [2] , p [i] . v [0] , p [i] . v [1] , p [i] . v [2]) ;

8 }

Listing A.16 Verification of particle contents before simulation.

Listing A.17 computes the total potential energy, Utot , in the entire particle ensemble.

A.3 VSV code listings 175

1 do ub l e Uto t (P a r t i c l e *p , i n t N) {

2 do ub l e r h o _ i =0 , V_i =0 , a_sum =0 , b_sum =0 , U_sum =0;

3 do ub l e r =0;

4 i n t i , j , d ;

5 f o r (i =0 ; i <N; i ++) {

6 / / o u t e r summation of rho f o r a l l N

7 a_sum = 0 ;

8 / / r e s e t inner_sum f o r each i v a l u e

9 f o r (j =0 ; j <N; j ++) {

10 i f (j != i) {

11 r =0 ;

12 f o r (d =0; d<DIM; d ++)

13 / / f i n d r i j

14 r += s q r (p [j] . x [d]−p [i] . x [d]) ;

15 r = pow (r , 0 . 5) ;

16 / / p r i n t f (" \ n r%d_%d=%.4 f " , i , j , r) ;

17 / / i n t e r a t o m i c d i s t a n c e s , f o r debugg ing on ly

18 / / n o t e : p r i n t f () consumes t h e most s i m u l a t i o n t ime i f i n c l u d e d

19 / / sum f o r (N−1) t e r m s i e e x c l u d e j = i ;

20 a_sum += pow (l a t _ c o n s t / r , n i n t) ; }

21 }

22 a_sum = 0 . 5 * a_sum ;

23 / / r e s e t i n n e r sum f o r each i v a l u e

24 b_sum = 0 ;

25 f o r (j =0 ; j <N; j ++) {

26 i f (j != i) {

27 r =0 ;

28 f o r (d =0; d<DIM; d ++)

29 r += s q r (p [j] . x [d]−p [i] . x [d]) ;

30 / / r ^2 = dx ^2 + dy ^2 + dz ^2

31 r = pow (r , 0 . 5) ;

32 / / r = s q r t (r ^2)

A.3 VSV code listings 176

33 / / p r i n t f (" \ n r%d_%d=%.4 f " , i , j , r) ;

34 / / i n t e r a t o m i c d i s t a n c e s , f o r debugg ing on ly

35 b_sum += pow (l a t _ c o n s t / r , min t) ;

36 / / sum f o r (N−1) t e r m s i e e x c l u d e j = i ;

37 }

38 }

39 b_sum = cn * s q r t (b_sum) ;

40 / / f i n d s q r t o f i n n e r sum

41 p r i n t f (" \ nE%d = %.4 f " , i , a_sum−b_sum) ;

42 / / f o r debugg ing on ly

43 U_sum += (a_sum − b_sum) ;

44 / / u p d a t e U_sum

45 }

46 / / f o r debugg ing on ly

47 p r i n t f (" \ n R e p u l s i v e en e rg y = %.2 e (eV) , Cohes ive e ne rg y = %.2 e (eV) . " ,

a_sum , b_sum) ;

48 r e t u r n (eps *U_sum) ;

49 }

Listing A.17 Total ensemble potential energy calculation.

A.3.2 The main program

Listing A.18 is the main application for any MD simulation using the functions within the

library header file. It calculates particle parameters i.e. position, velocity, kinetic energy,

potential energy and forces in the arbitrary particle ensemble system. The time-evolution of

the particle parameters are calculated using the Velocity-Stormer-Verlet integration.

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e < s t d l i b . h>

3 # i n c l u d e <math . h>

4 # i n c l u d e < ma l lo c . h>

A.3 VSV code listings 177

5 # i n c l u d e " v e l o c i t y −s t o r m e r−v e r l e t _ 0 2 . h "

6 i n t main () {

7 i n t N = 0 , pco un t =0 ;

8 / / i n d e x f o r c o u n t i n g p a r t i c l e s and d i m e n s i o n s

9 i n t j , d ;

10 f l o a t d e l t a _ t , t _ e n d ;

11 / / i n i t i a l v a l u e s from f i l e

12 f l o a t mass_0 =0 , x_0 =0 , y_0 =0 , z_0 =0 , v_x0 =0 , v_y0 =0 , v_z0 =0;

13 do ub l e t o t a l _ p o t _ e n e r g y =0 , P a r t i c l e F o r c e = 0 , n e t F o r c e = 0 ;

14 P a r t i c l e *p ;

15 FILE * p a r t i c l e F i l e ;

16 / / f i n d # p a r t i c l e s i n sys tem and

17 / / a l l o c a t e memory d y n a m i c a l l y

18 i f ((p a r t i c l e F i l e = fopen (" d a t a . t x t " , " r ")) == NULL) {

19 p r i n t f (" E r r o r : c a n n o t open f i l e f o r r e a d i n g . . . \ n ") ;

20 e x i t (0) ;

21 }

22 e l s e {

23 w h i l e (f s c a n f (p a r t i c l e F i l e , "%f %f %f %f %f %f %f " , &mass_0 , &x_0 , &

y_0 , &z_0 , &v_x0 , &v_y0 , &v_z0) != EOF)

24 pc ou n t ++;

25 N = p co un t ;

26 }

27 / / r e s e t f i l e r e a d p t r t o s t a r t o f f i l e

28 r ewind (p a r t i c l e F i l e) ;

29 pc ou n t = 0 ;

30 (P a r t i c l e *) p = (P a r t i c l e *) ma l l oc (N* s i z e o f (* p)) ;

31 / / User g r e e t i n g

32 p r i n t f (" Th i s program u s e s t h e Su t ton−Chen Embedded Atom Method \ n ") ;

33 p r i n t f (" t o c a l c u l a t e p o t e n t i a l e n e r g i e s i n a p a r t i c l e sys tem . \ n \ n ") ;

34 / / Memory usage s t a t i s t i c s

A.3 VSV code listings 178

35 p r i n t f (" Found %d p a r t i c l e s and used %d b y t e s o f t o t a l memory . \ n " , N, N

* s i z e o f (* p)) ;

36 / / p o p u l a t e memory a r r a y wi th p a r t i c l e d a t a

37 w h i l e (f s c a n f (p a r t i c l e F i l e , "%f %f %f %f %f %f %f " , &mass_0 , &x_0 , &y_0

, &z_0 , &v_x0 , &v_y0 , &v_z0) != EOF) {

38 p [p co un t] .m = mass_0 ;

39 p [p co un t] . x [0] = l a t _ c o n s t *x_0 ;

40 p [p co un t] . x [1] = l a t _ c o n s t *y_0 ;

41 p [p co un t] . x [2] = l a t _ c o n s t * z_0 ;

42 p [p co un t] . v [0] = v_x0 ;

43 p [p co un t] . v [1] = v_y0 ;

44 p [p co un t] . v [2] = v_z0 ;

45 / / r e s e t a l l f o r c e s

46 p [p co un t] . F_old [0] = 0 ;

47 p [p co un t] . F_old [1] = 0 ;

48 p [p co un t] . F_old [2] = 0 ;

49 p [p co un t] . F [0] = 0 ;

50 p [p co un t] . F [1] = 0 ;

51 p [p co un t] . F [2] = 0 ;

52 pc ou n t ++;

53 }

54 p a r t i c l e F i l e C o n t e n t (p , pc oun t) ;

55 / / u se t i m e I n t e g r a t i o n _ b a s i s () o r t i m e I n t e g r a t i o n 2 _ b a s i s ()

56 / / e . g . t i m e I n t e g r a t i o n 2 _ b a s i s (0 , d e l t a _ t , t_end , p , N) ;

57 / / C a l c u l a t e Uto t

58 t o t a l _ p o t _ e n e r g y = Uto t (p , pco un t) ;

59 p r i n t f (" \ n \ n T o t a l p o t e n t i a l en e rg y = %.4 f (eV) \ n \ n " , t o t a l _ p o t _ e n e r g y)

;

60 f o r (j =0 ; j <N; j ++) {

61 F_i (p , j , pc ou n t) ;

62 / / n e t f o r c e on p a r t i c l e j

63 n e t F o r c e = 0 ;

A.4 Helper applications 179

64 f o r (d =0; d<DIM; d ++)

65 / / v e c t o r sum of f o r c e components

66 n e t F o r c e += pow (p [j] . F [d] , 2) ;

67 / / i n micro Newtons

68 n e t F o r c e = pow (n e t F o r c e , 0 . 5) ;

69 p r i n t f (" \ nForce (uN) on p a r t i c l e %d = (%.4 e , %.4e , %.4 e) , Net f o r c e

= %.4 e " , j +1 , p [j] . F [0] , p [j] . F [1] , p [j] . F [2] , n e t F o r c e) ;

70 }

71 p r i n t f (" \ nDone ! \ n \ n P r e s s a key t o e x i t ") ;

72 g e t c h () ;

73 / / f r e e up a l l a l l o c a t e d memory

74 f r e e (p) ;

75 f c l o s e (p a r t i c l e F i l e) ;

76 r e t u r n (0) ;

77 }

Listing A.18 Listing of a typical main program showing output of Utot.

A.4 Helper applications

A.4.1 Conversion to VMD format by Excel macro

The VSV main program generates vast amounts of trajectory output points of the format (t,

r̄, v̄) for the complete ensemble at each time-step t. Thus, for all the available degrees of

freedom e.g. N lattice particles sampled over M simulation time steps, there are (7×N ×M)

individual double precision numbers in the output. Even for a small array of particles

comprising only 373 atoms, with a total 2000 total steps then there are at least 5 million

individual such numbers in the output trajectory, corresponding to at least 96 megabytes of

data. This necessitates output visualization if meaningful deductions are to be made from the

simulation.

A.4 Helper applications 180

In order to visualize the output, the data was loaded into Microsoft Excel and processed

by a purposely written Visual Basic macro into a standard trajectory ".xyz" file. This file

was then loaded into the Visual Molecular Dynamics (VMD) program developed by the

Molecular Dynamics Group at University of Illinois at Urbana–Champaign and made freely

available [3]. VMD has several important features beside visualization. For instance, specific

atoms and bonds can be selected and their behavior over the simulation time can be saved

as secondary numerical output. This is the method that was used to generate the data in

Chapter 6, which allowed the impact generated oscillations to be quantified. This led to a

new approach, reported in this research for the first time to highlight bond oscillations within

the context of impact generated phonons. Chapter 8 shows, for the first time, how spectral

responses to phonons can be related to particle displacements, thereby solving a persistent

problem in MD thus far. Figure A.3(a) shows only a few lines at the beginning and end of

an actual output of VSV that are operated on by the macro in Figure A.3(b) to generate the

secondary output file for visualization in VMD.

Fig. A.3 Screen shots showing (a) a few entries in the raw output of VSV, and (b) interface
design for interaction between macro and VSV output data in generation of secondary output
for visualization in VMD. This particular simulation has 2811 simulation time instants. The
VB form objects labeled in red refer to the handles in Listing A.19.

A.4 Helper applications 181

An additional, useful feature of VMD is its ability to visualize one frame of output at a

time, representing each simulation time step. It also creates good quality AVI format video

files for the complete simulation. Listing A.19 shows the Visual Basic code within Microsoft

Excel that processes the VSV output into usable data for VMD.

1 ’ t h i s program c r e a t e s a s i n g l e f i l e w i th m u l t i p l e . xyz t y p e d a t a

2 ’ t o e n a b l e ea sy v i s u a l i z a t i o n i n VMD. Each . xyz t y p e d a t a becomes

3 ’ a f rame when l o a d e d i n t o VMD. ha v in g one f i l e a l l o w s a

4 ’ s i n g l e f i l e l o a d i n t o VMD which d r a m a t i c a l l y s a v e s t ime i n

5 ’ c r e a t i n g f r am e s .

6 ’

7 ’ (c) Ocaya , R .O.

8 ’ 17 June 2017

9 ’

10 P r i v a t e Sub b t n S t a r t _ C l i c k ()

11 Dim i , j , k , TotalAtoms , Adatoms As I n t e g e r

12 Dim t , x , y , z , v1 , v2 , v3 As Double

13 Dim TimeStep , RowIndex As Long

14 Dim oldname , f i l e n a m e As S t r i n g

15 Dim atomtype As S t r i n g

16

17 Tota lAtoms = Val (t x t T o t a l A t o m s . Text)

18

19 ’ u s e r s p e c i f i e s number o f adatoms

20 Adatoms = Val (tx tAda toms . Text)

21

22 ’ f i n d s i m u l a t i o n t ime s t e p from w o r k s h e e t d a t a

23

24 TimeStep = S he e t1 . C e l l s (1 + TotalAtoms , 1) − Sh ee t1 . C e l l s (1 , 1)

25 ’ r e p o r t t h e c a l c u l a t e d v a l u e

26 l b l T i m e S t e p . C a p t i o n = S t r (TimeStep)

27

A.4 Helper applications 182

28 ’ c o u n t non−b l a n k rows of t h e w o r k s h e e t d a t a . The l a s t row i n d e x

29 ’ w i l l g i v e us t h e maximum s i m u l a t i o n t ime , hence t h e number o f

30 ’ rows i n t h e d a t a . Th i s i s t h e n used t o group d a t a i n t h e XYZ f i l e

31 i = 1

32 While Sh ee t1 . C e l l s (i , 1) <> " "

33 i = i + 1

34 Wend

35 RowIndex = i − 2

36

37 ’ r e p o r t t h e s i m u l a t i o n t ime found i n t h e w o r k s h e e t

38 lblMaxSimTime . C a p t i o n = S t r (Sh ee t1 . C e l l s (RowIndex , 1))

39

40 atomtypeCu = "Cu" ’ we a r e i n t e r e s t e d i n co p pe r

41 a tomtypeNi = " Ni " ’ use t h i s a s a t r i c k t o h i g h l i g h t Cu as Ni

42 f i l e n a m e = " o u t . xyz "

43

44 Open f i l e n a m e For Outpu t As #1

45 j = 0

46 k = 1

47 For i = 0 To RowIndex ’ d e f a u l t RowIndex = 37299

48 I f (i Mod Tota lAtoms = 0) Then

49 ’ c o u n t t h e number o f

50 ’ p a r t i c l e s i n t h e f i l e

51 ’ C lose #1

52 j = j + 10

53 k = 1

54 ’ t h i s i s t h e number o f atoms i n xyz f i l e

55 P r i n t #1 , Tota lAtoms

56 P r i n t #1 , " C r e a t e d by Ocaya "

57 End I f

58 t = S he e t 1 . C e l l s (i + 1 , 1)

59 x = S he e t 1 . C e l l s (i + 1 , 2)

A.4 Helper applications 183

60 y = S he e t 1 . C e l l s (i + 1 , 3)

61 z = S he e t 1 . C e l l s (i + 1 , 4)

62 v1 = Sh ee t1 . C e l l s (i + 1 , 5)

63 v2 = Sh ee t1 . C e l l s (i + 1 , 6)

64 v3 = Sh ee t1 . C e l l s (i + 1 , 7)

65 ’ Wr i t e #1 , j , x , y , z , v1 , v2 , v3

66 ’ Wr i t e #1 , S t r (a tomtype) + " " + S t r (x) + " " + S t r (y) + " " + S t r (z)

67 ’ d e f a u l t = 357 i . e . (t o t a l atoms−adatoms) =357

68 I f k <= (Tota lAtoms − Adatoms) Then

69 ’ s u p p r e s s commas by u s i n g P r i n t r a t h e r t h a n Wr i t e

70 P r i n t #1 , atomtypeCu , x , y , z

71 E l s e

72 P r i n t #1 , a tomtypeNi , x , y , z

73 End I f

74 k = k + 1

75 Next i

76 Close #1

77 E x i t Sub

78 End Sub

79

80 P r i v a t e Sub U s e r F o r m _ I n i t i a l i z e ()

81 t x tAda toms . Text = 16

82 t x t T o t a l A t o m s . Text = 373

83 End Sub

Listing A.19 Code converts VSV output to VMD output for visualization.

A.4.2 Spectral response calculation

Listing A.20 calculates the Fast Fourier Transform (FFT) of bond length oscillations to give

an arbitrary count versus frequency of all detected phases. It was vital in linking the spectral

response of phonons in the lattice to lattice atom displacements for the first time.

A.4 Helper applications 184

1 %% myFFT .m

2 %%

3 %% This m. f i l e l o a d s a t r a j e c t o r y f i l e from t h e bond−l e n g t h

4 %% v e r s u s t ime s i m u l a t i o n , c a l c u l a t e s t h e f a s t f o u r i e r t r a n s f o r m

5 %% of t h e a m p l i t u d e i . e t h e phase / f r e q u e n c y b e h a v i o r , and t h e n

6 %% w r i t e s t h e o u t p u t i n t o t h e f i l e ’ f f t o u t . t x t ’ . The d a t a i n t h i s

7 %% f i l e can t h e n be p l o t t e d i n a n o t h e r env i ronment , such as O r i g i n

8 %%

9 %% Requi remen t : t h e t r a j e c t o r y d a t a i s saved i n r e a l −t ime / bond

10 %% l e n g t h a m p l i t u d e i n t h e f i l e

11 %% ’ f f t _ i n . t x t ’

12 %%

13 %% (c) Ocaya − November 2017

14 %%

15 % Assuming d a t a i s i n two columns , t ime and a m p l i t u d e

16 l o a d − a s c i i f f t _ i n . t x t x y ;

17 n= l e n g t h (f f t _ i n) ;

18 t = f f t _ i n (1 : n , 1) ;

19 y= f f t _ i n (1 : n , 2) ;

20

21 %% This i s t h e a p p r o x i m a t e a v e r a g e l o c a t i o n . I am do ing t h i s t o

22 %% i n c r e a s e t h e h e i g h t o f t h e FFT p l o t s (i . e . s i g n a l −n o i s e r a t i o)

23 %% any o t h e r would n o t change t h e f r e q u e n c y , b u t on ly d e c r e a s e

24 %% t h e h e i g h t . Th i s i s t o make t h e p l o t s e a s i e r t o s e e .

25

26 % Show t h e raw a m p l i t u d e vs t ime d a t a

27 % But f i r s t c a l c u l a t e t h e a v e r a g e v a l u e o r DC l e v e l

28 av=sum (y) / l e n g t h (y) ;

29 yy=y−av ;

30 %% yy i s o r d i n a r i l y t h e " dc l e v e l " o f t h e s i g n a l i . e . a v e r a g e v a l u e

31 p l o t (t , y)

32 d t = t (2)− t (1) ;

A.4 Helper applications 185

33 N= l e n g t h (t) ;

34 f s = 1 / d t ; % s a mp l i n g f r e q u e n c y

35 df = f s / (N−1) ;

36 f=− f s / 2 : d f : f s / 2 ;

37 % compute t h e FFT t r a n s f o r m of t h e s i g n a l a m p l i t u d e s

38 y t r a n = abs (f f t (yy)) ;

39 p l o t (f , y t r a n) % p l o t t h e p h a s e s v e r s u s f r e q u e n c y

40 % p u t i n s i n g l e column f o r m a t t o save i n t o ASCII f i l e

41 f = t r a n s p o s e (f) ;

42 % c r e a t e an a r r a y o f s i m i l a r d i m e n s i o n s t o c r e a t e

43 %% o u t p u t t e x t f i l e o f (f , f f t)

44 f f t _ o u t = f f t _ i n ;

45 % p o p u l a t e i t w i th f r e q u e n c y d a t a i n column 1

46 f f t _ o u t (1 : 1 : n , 1) = f ;

47 % and o u t p u t FFT d a t a i n column 2

48 f f t _ o u t (1 : 1 : n , 2) = y t r a n ;

49 s ave − a s c i i −do ub l e − t a b s f f t o u t . t x t f f t _ o u t ;

Listing A.20 Code calculates the spectral response through FFT of bond length variation

with time.

References

[1] Doye JPK, Wales DJ. Global minima for transition metal clusters described by the

Sutton-Chen potentials. New J. Chem., pages 733–744, 1998.

[2] Wales DJ, Doye JPK. Global optimization by basin-hopping and the lowest energy

structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A., 101

(28):5111–5116, 1998.

[3] Theoretical and Computational Biophysics Group. Visual Molecular Dynamics, 2017.

URL http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html. Accessed:

2017-11-02.

http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html

	Abstract
	Table of contents
	List of figures
	List of tables
	List of C-program codes
	Nomenclature
	1 General Introduction
	1.1 Overview
	1.1.1 Computational modelling
	1.1.2 Main approaches in computational modelling
	1.1.3 Parallelization
	1.1.4 Decomposition and task allocation
	1.1.5 Statement of the problem
	1.1.6 Objectives of the research
	1.1.7 Outline of the thesis

	References
	2 Designing a MD simulation testbed
	2.1 Introduction
	2.1.1 Classification of parallelization paradigms
	2.1.2 Coding versus proprietary software

	2.2 General tools
	2.2.1 Parallelizable tools
	2.2.2 Threads and message passing
	2.2.3 Open multiprocessing programming
	2.2.4 MPI programming
	2.2.5 GPU computing
	2.2.6 Cloud virtualization
	2.2.7 Specifications of the standalone testbed

	2.3 Chapter summary

	References
	3 Development of the simulation software
	3.1 Introduction
	3.1.1 The canonical ensemble

	3.2 Defining a particle system
	3.2.1 Force in atomic particle systems

	3.3 Embedded Atom Modeling
	3.3.1 The Finnis-Sinclair approach
	3.3.2 The Sutton-Chen form of the Finnis-Sinclair potential
	3.3.3 MD simulation using adatoms

	3.4 Velocity Störmer-Verlet integration
	3.4.1 Determination of phase space

	3.5 Dimensionless equations
	3.5.1 Time
	3.5.2 Velocity and acceleration
	3.5.3 Force and pressure
	3.5.4 Kinetic and potential energy
	3.5.5 Temperature
	3.5.6 Instantaneous and internal pressure

	3.6 Setting simulation time scale
	3.7 Evaluation of diffusion
	3.8 Specifying the particle array
	3.8.1 Software functionalities
	3.8.2 Main code snippets

	References
	4 Performance of the VSV software
	4.1 Introduction
	4.2 Timing functions
	4.3 Results of energetics and thermostat comparisons
	4.4 Timing performance
	4.5 Investigation of real clusters

	References
	5 Specifying system ergodicity in VSV
	5.1 Introduction
	5.2 Thermostat definitions
	5.2.1 Energy equipartition methods
	5.2.2 Langevin EPT methods
	5.2.3 Velocity-scaled EPT thermostats
	5.2.4 Monte Carlo methods
	5.2.5 Timescale and macroscopics

	5.3 Comparative simulation of EPT and MC thermostats

	References
	6 Low temperature diffusion and coalescence using VSV
	6.1 Introduction
	6.2 The simulation model
	6.3 Calculations
	6.3.1 Determination of cluster-adatom interaction distance
	6.3.2 Single adatom diffusion
	6.3.3 Multiple adatom diffusion
	6.3.4 Projected adatoms
	6.3.4.1 Projected single adatoms
	6.3.4.2 Projected multi-adatoms

	6.3.5 Simulating lattice assimilation growth
	6.3.6 Surface diffusion

	6.4 Conclusions

	References
	7 Detection of lattice phonons and their propagation in VSV
	7.1 Introduction
	7.1.1 Impulse-oscillation approach

	7.2 The simulation model
	7.2.1 Simulation conditions and delimitation
	7.2.2 Results and discussions
	7.2.3 Bond-length oscillations
	7.2.4 Wave propagation and the elastic constants
	7.2.4.1 Estimating C11 and C44
	7.2.4.2 Expected temperature rise

	7.3 Conclusions

	References
	8 Post-MD simulation visualization in VSV
	8.1 Introduction
	8.2 Motivation and significance
	8.3 Description of additional applets
	8.3.1 Helper routines
	8.3.1.1 Highlighting adatoms for VMD
	8.3.1.2 Tracking atoms on vibrating planes
	8.3.1.3 Spectral response through bond length

	8.4 Illustrative example
	8.4.1 Elastic constants
	8.4.2 Thermography

	8.5 Impact
	8.6 Conclusions

	References
	9 Conclusions
	10 Publications
	10.1 Refereed journal articles
	10.2 Conference presentations
	10.3 Chapters in books
	10.4 Software
	10.4.1 Permanent VSV Elsevier code repository
	10.4.2 Surface detect applets

	10.5 Manuscripts under preparation

	Appendix A A guide to using VSV for MD simulations
	A.1 Running the VSV code
	A.1.1 Windows 7.0 and later
	A.1.2 The binary executable
	A.1.3 On Windows debug
	A.1.4 Linux e.g. Ubuntu

	A.2 The GNU General Public License
	A.3 VSV code listings
	A.3.1 The library file
	A.3.2 The main program

	A.4 Helper applications
	A.4.1 Conversion to VMD format by Excel macro
	A.4.2 Spectral response calculation

	Appendix References

