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SUMMARY 
 
The thesis intent is to provide a set of statistical 
methodologies in the field of Extreme Value Theory 
(EVT) with a particular application to energy losses, 
in Gigawatt-hours (GWh) experienced by electrical 
generating units (GU’s). 
Due to the complexity of the energy market, the thesis 
focuses on the volume loss only and does not expand 
into the price, cost or mixes thereof (although the 
strong relationship between volume and price is 
acknowledged by some initial work on the energy 
price [SMP] is provided in Appendix B) 
Hence, occurrences of excessive unexpected energy 
losses incurred by these GU’s formulate the problem. 
Exploratory Data Analysis (EDA) structures the data 
and attempts at giving an indication on the 
categorisation of the excessive losses. The size of the 
GU failure is also investigated from an aggregated 
perspective to relate to the Generation System. Here 
the effect of concomitant variables (such as the Load 
Factor imposed by the market) is emphasised. Cluster 
Analysis (2-Way Joining) provided an initial 
categorising technique. EDA highlights the shortfall 
of a scientific approach to determine the answer to the 
question at when is a large loss sufficiently large that 
it affects the System. The usage of EVT shows that 
the GWh Losses tend to behave as a variable in the 
Fréchet domain of attraction. The Block Maxima 
(BM) and Peak-Over-Threshold (POT), the latter as 
semi and full parametric, methods are investigated. 
The POT methodologies are both applicable. Of 
particular interest is the Q-Q plots results on the semi-
parametric POT method, which yielded results that fit 
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the data satisfactorily (pp 55-56). The Generalised 
Pareto Distribution (GPD) models well the tail of the 
GWh Losses above a threshold under the POT full 
parametric method. Different methodologies were 
explored in determining the parameters of the GPD. 
The method of 3-LM (linear combinations of 
Probability Weighted Moments) is used to arrive at 
initial estimates of the GPD parameters. A GPD is 
finally parameterised for the GWh Losses above 766 
GWh.  The Bayesian philosophy is also utilised in this 
thesis as it provides a predictive distribution of (high 
quantiles) the large GWh Losses. Results are found in 
this part of the thesis in so far that it utilises the ratio 
of the Mean Excess Function (the expectation of a 
loss above a certain threshold) over its probability of 
exceeding the threshold as an indicator to establish 
the minimum of this ratio. The technique was 
developed for the GPD by using the Fisher 
Information Matrix (FIM) and the Delta-Method. 
Prediction of high quantiles were done by using 
Markov Chain Monte Carlo (MCMC) and eliciting 
the GPD Maximal Data Information (MDI) prior. The 
last EVT methodology investigated in the thesis is the 
one that uses the Dirichlet process and the method of 
Negative Differential Entropy (NDE). The thesis also 
opened new areas of pertinent research. 
 
Keywords: 

Extreme Value Theory, Energy Markets, Gigawatt-
hours Losses, Cluster Analysis (2-Way Joining), Q-Q 
Plots, Generalised Pareto Distribution, GPD Fisher 
Information Matrix, GPD Jeffreys’ Prior. 
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SAMEVATTING 
 
Die doel van die skripsie is om ’n stel statistiese 
metodologië in die veld van Ekstreme Waarde Teorie 
te voorsien met ’n besonderse aanwending van verlore 
energie in Gigawatt-ure en wat ondervind is deur 
elektries-ontwikkelde eenhede. 
 
As gevolg van die kompleksiteit van die energiemark, 
fokus die skripsie alleenlik op die volume verlies en 
nie op die pryskostes of die verhouding daarvan nie, 
alhoewel die sterk verhouding tussen volume en prys 
erken word aan die beginstadium van werk op die 
energieprys wat in Aanhangsel B voorsien word. 
 
Hierna word verspreiding van buitensporige 
onverwagte verlore energie deur hierdie ontwikkelde 
eenhede blootgestel wat die probleem formuleer. 
 
Verkennende data ontleding struktureer die data en 
pogings om ’n aanduiding te gee op die kategorisering 
van die oormatige verliese.  Die grootte van die 
mislukte ontwikkelde eenheid is ook ondersoek vanuit 
’n gesamentlike perspektief om die Opwekkingstelsel 
in verband te bring.  Hier word die effek van 
gepaardgaande veranderlikes (soos wat die Gelaaide 
Faktor deur die mark voorgeskryf word) beklemtoon.  
Bondelontleding (2-Way Joining) het ’n 
aanvanklike kategorieserings tegniek voorsien.  
Verkennende data-ontleding lig die gebrek aan ’n 
wetenskaplike benadering uit om die antwoord op die 
vraag te bepaal wanneer ’n groot verlies grootgenoeg 
is om die Stelsel te beïnvloed. 
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Die gebuik van Ekstreemwaarde-teorie toon dat die 
GW-ure verliese geneig is om as ’n veranderlike in te 
tree in die Fréchet gebied. 
 
Die Blok-Maksima en “Peak-Over Threshold” (POT) 
metodes, laasgenoemde as half en vol parametriese 
metodes, is ondersoek.  Die POT metodologië is beide 
bruikbaar.  Uit besonderse belangstelling lewer die Q-
Q voorstellings van die half parametriese POT 
metode, goeie resultate.  Die Veralgemeende Pareto-
verdeling (GPD) modeleer die stert van GWh-verliese 
bokant a drempelwaarde onder POT goed.  
Verskillende metodologië was ondersoek deur die 
bepaling van parameters van die GPD.  Die metode 
van 3-LM (lineêr kombinasies van die 
Waarskynlikheid-Geweegde-Momente-metode ) is 
gebruik as `n eerste skatting van die GPD parameters.  
’n GPD is finaal geparameteriseerd vir die GW-ure 
verliese bo 766 GW-ure.  Die Bayes-filisofie is ook 
gebruik in hierdie skripsie en voorsien ’n 
voorspellingsfunksie van (hoë kwantiele) van groot 
GW-ure verliese.  Nuwe werk is in hierdie gedeelte 
van die skripsie gedoen in soverre dit die gebruik van 
die verhouding van die gemiddelde-oorskrydings-
funksie relatief tot `n oorskrydingswaarskynlikheid as 
’n aanwysing om die minimum van hierdie 
verhouding te vestig.  Die tegniek was ontwikkel vir 
die GPD deur die Fisher-informasiematriks en die 
Delta-metode te gebruik.  Voorspelling van hoë 
kwantiele is deur die gebruik van MCMC gedoen en 
die MDI prior vir die GPD is gebruik.  Die laaste 
Ekstreemwaarde metodologie wat in die skripsie 
ondersoek is, is die een wat die Dirichlet proses en die 
metode van Negatiewe-Afgeleide-Entropie gebruik.  
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Die skripsie open ook nuwe areas vir gepaste 
navorsing. 
 
Sleutelwoorde:  
Ekstreemwaarde-teorie, Energiemarkte, Gigawature-
verliese, Bondelanaliese (2-Way Joining), Q-Q 
voorstellings, Veralgemeende Paretoverdeling, GPD 
Fisher-informasiematriks, GPD Jeffreys’ prior. 
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LIST OF ABBREVIATIONS 
 
EdF: Electricité de France, the largest electricity 
utility in France.  
 
Eskom or EHL: Eskom Holdings (Ltd), the largest 
electricity utility in the African continent. It supplies 
approximately 95% of the electric energy needs in 
South Africa. 
 
Extreme Value Theory (EVT): Theory that predicts 
the occurrence of rare events, outside the range of 
available data. 
 
GenCo: Generating Company. Generally comprises 
of at least one power Station, and at most having no 
more than 33% of the total national Installed 
Capacity. 
 
Generating Unit (GU): here a generating unit is 
defined as the industrial unit spanning from the fuel 
provision to the electricity generator. A set of GU’s 
make up a Power Plant or Power Station. 
 
Installed Capacity (IC): Nominal Capacity of a GU 
or total number of Megawatt installed in a Power 
Plant or System of Power Plants. 
 
MW: Megawatts, one million Watts, the Watt being 
the unit of power. 
MWh: Megawatt-hours, one million Watt-hours, the 
Watt-hour being the unit of energy [Gigawatt-hours 
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(GWh) = one billion Watt-hours; Terawatt-hours 
(TWh) = one trillion Watt-hours] 
 
V@R: The Value at Risk is a single estimate of the 
amount by which an institution’s position in a risk 
category could decline due to general market 
movements during a given holding period. Developed 
by JP Morgan and referenced in RiskMetrics 
(registered trademark of JP Morgan). Other indicators 
in the Energy Markets are: 
 

E@R: Earnings at Risk 
 

CF@R: Cash Flow at Risk 
 

P@R: Profit at Risk, and coined in this thesis, 
 
Vol@R: Volume at Risk, pronounced “volar” 
 

 
ROI: Return on investment. 
 
Union of the Electricity Industry/Eurelectric 
(UEI/Eurelectric):  International body based in 
Europe and HQ in Brussels (Belgium). After the 
creation of the European Union, it was formed by the 
amalgamation of UNIPEDE and EURELECTRIC. 

 
 
 



 x

 
UEI/Eurelectric Nomenclature 
 

EAF: Energy Availability Factor, the generating unit 
availability after discounting the UCF with other 
losses. EAF% = UCF% - OCLF% 
EUF: Energy Utilisation Factor represents the loading 
(in MW) imposed on a GU relative to that GU 
availability (EAF). 
LF: Load Factor is the loading (in MW) imposed on a 
GU relative to its Installed Capacity during a 
specified period. LF% = EAF% x EUF% 
OCLF: Other Capability Loss Factor, this is other 
energy losses incurred by a generating unit, outside 
the management control (e.g. flooding of the coal 
mines), expressed as the energy lost divided by the 
total potential energy (IC x t, where t is time in hours 
for the period). 
PCLF: Planned Capability Loss Factor, energy losses 
of a GU due to maintenance, expressed as the energy 
lost divided by the total potential energy (IC x t, 
where t is time in hours for the period).  
UCF: Unit Capability Factor, the capability of the 
generating unit after discounting planned (PCLF) and 
unplanned losses (UCLF). UCF% = 100% - UCLF% - 
PCLF%  
UCLF: Unplanned Capability Loss Factor, this is the 
forced outage rate incurred by a generating unit. This 
is the forced outages incurred by a GU, expressed as 
the energy lost divided by the total potential energy 
(IC x t, where t is time in hours for the period). 
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EAGLE VIEW of the APPROACH 
taken on this Thesis 

 Observations 
o The occurrence of excessive 

“unexpected” energy losses incurred 
by GU formulates the problem. 

o The Energy Market platform and its 
participants forms a complex 
environment 

o Relationships and linkage exist 
between prices, fuel, volume 
underlyings 

 
 Problem setting 

o Limitations: field too wide, hence 
focus on energy volume losses, not 
on other underlyings. 

o What is the meaning of “excessive”? 
o Can these losses be categorised? 
o Can a scientific method be used to 

determine at what level is an energy 
loss “excessive”? 

o What are the latest statistical 
techniques that may be used to 
determine the probabilities of these 
“excessive” losses?  

  
 Hypothesis* 

o Null Hypothesis: Utilisation of 
Extreme Value Theory (EVT) 
methods resolves the questions above 

o Alternate Hypothesis 1: EVT 
partially answers the questions above 

o Alternate Hypothesis 2: EVT does 
not answer the questions above  
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 Theory 

o Assumptions that the EVT techniques 
are sound and robust unless otherwise 
stated (by means of research) 

o This is an applied thesis; it utilises the 
academic theories already developed. 

o Research various EVT techniques 
(includes literature surveys) 

o Assure that replication of the 
experiment (within the sampled 
population) is possible when using 
these techniques. 

 
 Experimentation 

o Data collection, formatting and 
filtering (MWh Losses per GU p.a.) 

o Exploratory Data Analysis (EDA) to 
understand data behaviour 

o Testing of Hypothesis on various 
EVT techniques 

o Prognosis 
 
 
* These Hypotheses are not to be confused 
with the Hypothesis Testing techniques in 
Inference; they are just part of the eagle-
view process taken in the planning of the 
thesis. 
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PREFACE 
 
There are wide arrays of new issues facing today’s 
energy analysts since the recent changes in the energy 
industry. To be able to understand these issues, it is 
necessary to understand well the Energy Market and 
its dynamics, in terms of its platform and the 
involvement of its participants.  
 
The energy industry platform’s restructuring and 
growing competition (internationally as well as in the 
Southern African market) elements are putting 
pressure on thorough analyses and prediction of 
market share, of market price, of fuel delivery and 
volume, of the competing generating companies’ 
(GenCo’s) costs. This type of market liberalization 
spawned different market domains that are inter-
related: electricity, weather, coal, water, environment 
and ancillary services. The future challenge of this 
“new world” is their transformation from public 
service assets into commodities that can be traded in a 
similar manner as those in the capital and money 
markets. The impetus has sadly been slowed down by 
the unfortunate Enron (mankind’s greed for money) 
saga in December 2001 and has undergone its own 
changing phases from speculative positions to 
hedging ones and to physical asset-based trading 
approaches. Volume and/or price exposures are some 
of the afflicting risks for these GenCo’s. Limiting 
these exposures and trading to optimise profitability 
of the generators has become one of the GenCo’s 
major goals. 
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To qualify the platform further, distinction is made in 
this thesis between a generating company (GenCo), a 
transmission company (TransCo) and a distribution 
company (DistCo). Whereby for some, e.g. in 
Eskom’s case, as a Holdings company, it would see 
the three as integrated (Divisions). The platforms 
referred to above are rather more from a generic 
perspective than one particular to Eskom. In this 
thesis, the platform is from a GenCo viewpoint, in 
terms of its production of electricity and sale to 
various DistCo’s or through a brokerage type 
company (e.g. Key Sales and Customers Division in 
Eskom), via a TransCo and possibly hedged over the 
counter or through a Power Exchange. When 
specifically addressing the Eskom case, the 
Generation perspective would be modelled as an 
integrated Company whereby the competing mode 
would be internal in terms of volume and cost-of-sale. 
 
Participants in the energy markets can be 
characterised as operating between two 
diagrammatically opposite approaches: the trading-
centric approach and the asset-centric approach. 
 
The participant at the trading-centric extreme would 
tend to operate as in the money and capital markets. 
That is, to maximise their Mark-to-Market gains 
within the constraint of their trading limits. The 
GenCo’s have inherent physical positions such as 
production and, hence, these positions turn into 
equivalent trading transactions and become part of the 
trading portfolio. In this case, the ability to deliver 
good sustainable results becomes generally the 
primary profit driver. 
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The asset-centric participant would tend to operate its 
assets with the objective to deliver a sustainable ROI. 
They support in sweating the physical operation as 
much as possible and back the GenCo’s with effective 
hedging positions of volume risks (and at times 
regulated-price, by means of “claw-backs” contracts). 
Long term forward contracts, physical bi-laterals and 
the like, usually highlight their positions. These are at 
times boosted by option type derivatives which then 
induce them to operate in a similar fashion as the 
trading-centric participants. The asset availability of 
the core physical operation becomes its primary profit 
driver. 
GenCo’s participants, in this thesis, are essentially 
asset-centric. 
 
Although recently the energy markets are taking far 
more prudent positions in shifting from being trading-
centric towards being asset-centric (thanks to Enron’s 
top management), this might be an extremist move 
from one side of the scale to the other. Indeed it could 
turn out a very hazardous affair. In Eskom’s case the 
price is regulated therefore as a subset of an asset-
centric participant, the primary drivers would then be 
the supply of primary-energy (fuel: coal, water, 
nuclear, kerosene, wind) and the volume produced to 
meet the demand. 
 
The preceding paragraphs are given to illustrate that 
the business of producing electricity is quite complex 
in the interrelationship of offers, bids, price, fuel and 
volume available as well as the customers’ demand 
for electricity. 
After reflecting on different interesting aspects of 
extremes in the platforms given above, and before 
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hitting back on the subject of this thesis, I trust that 
the scene has been set to embark on the energy 
markets oceans, an analogy given to illustrate the 
vastness and depth of these platforms. 
Hence, within this analogy, the liberty is taken with 
another illustration, namely, one of a large Armada 
standing as a fleet of generating units (GU’s) 
subjected to the extreme storms (events), exposed to 
extreme drops in wind – no wind (energy volume 
losses – zero prices) and struggling to make it into 
harbor with the cargo (i.e. being business viable). 
Therefore, it is the very nature of these extremes that 
originated the title of the thesis: 

“On the Use of Extreme Value Theory 
 in Energy Markets”. 

Extreme Value Theory, or EVT, a field in itself in the 
Statistical Sciences, required initial research, and 
hence from an historical statistical perspective, it is 
important to take a step back before leaping “the 
fleet” forward. 
 
In 1902, Prof. K Pearson, wrote a “Note on Francis 
Galton’s Difference Problem” in Biometrika Vol. 1. 
on the problem of the range of samples. This seems to 
have engaged the interest of a young scientist working 
for the British Cotton Industry Research Association, 
a Mr. L.H.C. [35] Tippett, BSc London. But it wasn’t 
to end there, it was merely the beginning as the 
“Roaring Twenties” seem to have produced more that 
just the “Charleston”, namely: L. v. Bortkiewicz, 
“Variationabreite und mittlerer Fehler” Oct 1921; E. 
L. Dodd “The Greatest and Least Variate under 
General Laws of Error” Oct 1923, J. S-Nyman “Sur 
les valeurs théoriques de la plus grande des erreurs” 
1924, J.O. Iawif “The Further Theory of Francis 
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Galton’s Individual Difference Problem”, 1925.  In 
1925, Tippett published an article titled “On the 
Extreme Individuals and the Range of Samples Taken 
from a Normal Population”. There he mentions that 
the complete solution to the problem of the extreme 
values had not yet been resolved by Bortkiewicz, 
Dodd, Nyman and Iawif. In that paper, he publishes 
his attempts in closing the deficiencies. 
It is my belief that the seed of Extreme Value Theory 
(EVT) originated with Tippett’s publication in 1925, 
although later work with RA Fisher [15]  published in 
1928 is the most quoted reference (Fisher-Tippet 
Theorem); eventhough WE Fuller in 1914, on “Flood 
Flows” [16] and AA Griffith [18], in 1920 with “The 
phenomena of rupture and flow in solids” started to 
approach the EVT subject from an empirical position 
(see Chapter 3’s Introduction). 
Tippet remains, from the author’s perspective, the 
“seed” originator of EVT in 1925. 
  
Leaping the “fleet” forward: this thesis addresses 
EVT on the energy platforms with particular reference 
to the electricity market. Although the application of 
EVT is also applicable to energy prices, and some 
aspects are covered due to some interrelationship, this 
thesis primarily concentrates on the volume exposure 
within the generation of electricity platform as asset-
centric participants. Due to the thesis being more of 
an applied nature rather than theoretical, [2] and [3] 
Beirlant is the favorite choice as a basis referential 
point. 
Since EVT applies to extremes in the minimum and 
maximum domains, this thesis concentrates on the 
maximum aspect of EVT (unless otherwise stated). 
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As mentioned above, since the thesis is essentially 
structured from an applied perspective, most theories 
from respected sources are accepted within their 
assumptions. Hence the thesis reflects the application 
of these theories within the philosophy of extracting 
raw data, analyzing and modelling it to churn it from 
sterile data into information and packing it to distil the 
information into knowledge for decision making 
purposes, thereby adding value to the process. 
 
 
The work in this thesis is structured in five Chapters 
and three Appendices containing the following 
elements. 
 
In Chapter 1, an introduction of the electricity 
generation environment is given. It portrays a 
statement of the problem in terms of the type of 
events occurring in the generation of electricity by, 
illustrating the complexity of the energy market in 
which these types of events occur. In it, the Extreme 
Value Theory methodology as a possible solution to 
model the behaviour is discussed. 
 
Chapter 2 begins with the process of exploratory 
data analysis, the intricacy of the data is illustrated 
and a starting point is given by using a multivariate 
method (Cluster Analysis) to get an indication 
various category losses. Large values of losses are 
then “binned” in these categories to explore further 
the data behaviour. The number of events in terms 
of GUs failing is discussed since this form the assets 
of the Company and expectations of number of GUs 
failing in the various bins are given. 
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Also in this Chapter, the Size of Volume failure, in 
the (GWh Losses), is investigated and portrayed as 
an EVT problem from a GU and a System 
(aggregation of GUs) perspective.  
It highlights the importance of a concomitant 
variable (the Load Factor imposed by the Market) as 
it exercises its influence on the volume losses from 
System perspective. 
In summary, the Chapter reflects the channeling 
(i.e. introduces, after exploring the behaviour of the 
data) into the modelling proposed for various stages 
of the proposed solution (in Chapter 3), and the 
research needed for validation of the hypothesis, 
that is the utilisation of Extreme Value Theory 
(EVT) methods to resolve the questions posed (see 
the Eagle View, page vii). 
 
Chapter 3 is fully devoted to the application of EVT 
to the GWh Losses. It contains the application of 
EVT as described in Appendices A and C; it explores 
the application of the Block Maxima and the usage 
of the Gumbel Distribution. It then moves onto the 
Peak Over Threshold methodologies with particular 
reference to the Generalised Pareto Distribution as a 
model for the GWh Losses and explores if all the 
questions can be answered by this method. 
 
Chapter 4 is dedicated to the Bayesian philosophy of 
tackling the questions and sees how this method 
approached the unanswered questions. It gives a 
different perspective of fitting the GPD in terms of 
the GWh Losses. It also provides “new” 
methodologies in the Energy sphere to predict the 
large values of the losses (High Quantiles). One of 
these methods, the Dirichlet Entropy one, gives an 
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innovative scientific way of determining the level at 
which the GWh Losses form part of the high 
extremes.   
 
The Conclusion is given in Chapter 5, wherein the 
value of EVT’s research into the GWh energy losses 
and its results are summarised. 
 
Appendix A contains some essential statistical 
aspects of EVT that are used in the main body of the 
thesis. 
Appendix B provides some statistical background on 
prices returns in the Energy Markets and may be 
used for further research in this area 
Appendix C holds all kinds of statistical work 
encountered in the research incurred for this thesis; 
it also considers some important work on EVT. This 
Appendix takes into account some additional 
relevant remarks and observations.  
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CHAPTER 1 

Introduction 
 

1.1 The Energy Market Environment 
 
Energy markets are increasingly being liberalised 
throughout the world.  The introduction of competition, 
especially in the generating sector of the electricity supply 
industry has caused plant management to seek performance 
indicators that not only reflect technical excellence and 
commercial performance, but also the risk management 
aspect of the plant. A generating unit (here a unit is defined 
as the industrial unit spanning from the fuel provision to 
the electricity generator) could significantly improve its 
viability by managing its availability so as to be producing 
electricity when needed and at the right value.  In other 
words, a unit’s availability is worth more during certain 
hours than in others. Hence, of primary importance, is the 
technical availability of the energy generating plant. The 
failure of a generating unit (GU) in a GenCo affects this 
technical availability directly. The time frame by which 
this GU is out of production, can be classified in terms of 
its risk profile. In other words, it could be: as expected 
(tolerable), better than expected, exceptionally better than 
expected, or from the other side, worse than expected, 
much worse than expected, considered as a Main/Major 
Event, Semi-Catastrophic or Catastrophic. 
Utilities consisting of large (>400 MW) generating units 
(numbering from 12 –as a GenCo to 100 –as EdF, say) are 
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subject to events that range from major (availability loss of 
a unit for approx. 1 to 3 months, say) to catastrophic (> 9 
months, say). The impact of these events in missing 
opportunities or being not competitive in this market 
highlights the importance of the work that needs to be 
done. 
Exposure to any of these events will cause a substantial 
knock on revenue to the utilities. Hence it is also of vital 
importance for utilities to hedge this position vis-à-vis 
these events (e.g. revenue or volume hedges, associated 
with E@R, CF@R and Vol@R). 
In the Eskom Generation context, the smallest GU is a gas-
turbine type with an Installed Capacity (IC) of 57 MW, the 
largest fossil fuel GU at 669 MW and the largest nuclear 
GU at 900MW, with a total Generation IC being 36 208 
MW. In 2005, there were a total of 84 GU’s commercially 
available for generating, 64 of which are considered as the 
“Coal Fired” fleet. 
Hence, although the probability is very small, the 
maximum possible energy loss for any particular hour, 
summated over the GU’s, is 36 208 MWh, the maximum 
possible energy loss for a day is 868 992 MWh (or 868.992 
GWh) or for a year (leap) approximately 318 TWh. What 
this means is that for a particular window of time, the 
distribution is bounded in its true sense. However, because 
these boundaries are highly improbable relatively to the 
extreme events exposed to, for all practical purposes, the 
probability density functions  utilised are considered 
unbounded in this thesis. Nevertheless, these GU’s raise 
questions about these extreme events, from a worse than 
expected situation to a catastrophic one.  
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More of this part is expanded in paragraph 1.2; however to 
illustrate the inter-relationship and for the sake of 
completeness, the aspect of revenue exposure explanation 
is also given below 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.1: Schematic Diagram of EVT with respect to 
GU’s failures 

 
To exemplify how EVT maps onto the exposures of 
production (volume) and revenue, a diagram is produced 
and shown in Fig 1.1. 
The top right hand side illustrates the risk of energy losses 
with its type of processes. The position of EVT is also 
indicated therein (in Yellow). It also shows possible 
avenues to mitigate this type of volume risk. 
.  
The bottom left hand side of Fig 1.1 shows the exposure to 
the financial losses due to extreme prices. In a price-
response market, the customer would reject the purchase of 
energy, while in a captive market the GenCo’s may reflect 
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revenue losses (due to unavailability of the GU’s and 
missing the opportunity when the prices are high). The 
GenCo’s may also lose their licence from a National 
Regulating body (such as FERC in the USA or NERSA in 
RSA) if found irresponsible in “spiking” the prices. The 
GenCo’s might be also responsible for inducing high credit 
risks, as their customers might go bankrupt (due to 
electricity bills that are exorbitantly high) and hence 
reducing the GenCo to a loss in revenue. These can be 
mitigated (as shown) by means of derivatives, such as 
Options. However, the recurring random price shocks 
would induce the premiums to be very high if using the 
Black & Scholes (B&S) model to price the Option. This 
does not mean that the structure of the B&S model is 
necessarily wrong for the energy markets, but that the 
methodology to compute the volatility for returns in the 
energy markets needs to be fundamentally reviewed (see 
Appendix B – REMARKS, at the end of the 3rd paragraph). 
 Steven’s Theorem [26] Micali , proposes that the Returns 
are Cauchy distributed under certain assumptions (see 
Appendix C paragraph 4.2). As the volatility increases to 
very high levels (to 40% as typical in the money markets, 
to 4000% in the energy markets), it makes this kind of 
property (Cauchy), in terms of the volatility definition, 
unreasonable for usage with the Black & Scholes (B&S) 
model to price Options in the energy markets. A similar 
discourse is also reflected in other works by [27] Moore, 
[1] Alexander, [5] Cootner and [24] Mandelbrot. 
 
The treatment of EVT for electricity prices, merits a 
separate thesis in its own right; here, the mere linkage to 
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the volumetric losses is introduced from a statistical 
modelling approach (see Appendix B). 
 
To limit the vastness of this platform, only the Coal Fired 
plant population is considered in this thesis. The Coal 
Fired stations form approximately 90% of the total 
Generation IC and unless specified, data is considered per 
GU over one-year window time periods. The data was 
collected in its raw form in terms of the records provided 
and filed in electronic format using Excel. It was filtered to 
a formatted spreadsheet to assess missing values or GU’s 
not commissioned. The Excel working files names are 
given in Appendix C in the EDA paragraph. 
 
As expressed above, this is where statistical modelling 
kicks-in and with appropriate statistical tools, scientific 
deduction (information) ought to be made from the data. 
Hence, [37] Tukey’s Exploratory Data Analysis (EDA) 
finds its way in the beginning, even (or especially) in the 
Extreme Value Theory methodology used. EDA facilitates 
a researcher to use basic statistical techniques (such as 
scatter-plots, brushing, distribution fitting, contingency 
tables …) in order to have a preliminary knowledge of the 
data behaviour. After having a clear understanding of such, 
using EDA, Multivariate Exploratory techniques (in this 
case, Cluster Analysis) would enhance the insight of how 
to organise the energy losses into meaningful structures. 
For instance, it would enable a researcher to classify the 
energy losses into categories that range from expected, 
main/major events, semi-catastrophic, and catastrophic, 
say. Particular care was taken in the data collection and 
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compilation of the statistical data files by using Data 
Mining methodology; this is given in Appendix C. 
Further insight is given from a statistical perspective on the 
number of GU’s failing and the size of the loss (see Fig 1.1 
above top RHS). This forms an evolutionary research after 
having performed EDA (Cluster Analysis) to explore 
further the Poisson behaviour (number of GU’s failing per 
year) and the size of large MWH Losses incurred. This 
work is covered in Chapter 2. This follows into the natural 
progression of the usage of EVT in Chapter 3 with a more 
classical frequentist approach. Since EVT forms the kernel 
of the thesis, a basic overview is already provided in that 
chapter, while further details are supplied in Appendix A 
and C. Chapter 4 is a must, with its Bayesian approach, as 
it reveals the answers that would be left unresolved, in the 
author’s opinion, in Chapter 3. 
Chapter 5 concludes the thesis with a summary describing 
if the questions posed were answered and what 
opportunities were uncovered. 
 

1.2 Basics of Extreme Value Theory  
EVT, albeit a new technique, has been used extensively in 
the Actuarial and Financial Sciences. Its particular 
usefulness in the Risk Management field is becoming more 
and more evident as time goes on. It is expected to provide 
management with robust risk measures in decision taking. 
The EVT technique essentially concentrates at the 
behaviour of the tails of a distribution. Before introducing 
the EVT technique, it is important to understand that there 
are numerous ways other than EVT to resolve the problem 
of long (fat) tails. These are: Student’s T [39] Wilson, 



 7 

Mixture of Normals [22] Hull et al, Generalised Error 
Distribution (GED) [29] Nelson , however, in this thesis, 
EVT is the technique used to deal with the problem of fat 
tails. Fat tails are defined here as tails of a greater 
thickness than normal. Even so, some distributions with fat 
tails exhibit longer tails than others (see Fig. 1.2). The 
effect of these “longer” tails is important in estimating the 
frequencies as correctly as possible, especially in the 
understanding the effects of low frequency (small 
occurrences) but high impact events. For instance, in terms 
of the relative frequency difference, an excess frequency 
can be, say, 2000 times larger than the normally thought of 
frequency. Therefore, the consistent deficiency of the 
relative frequency (long tail), calls for different modelling 
and hence, EVT [32] Reiss and the risk costs could be 
high. 
Classic EVT can be classified in at least two groups. Both 
these groups divide the data into consecutive windows. 
These groups are: the Block Method, which focuses on the 
maxima within these windows and the Peak Over 
Threshold (POT) method, which focuses on the events that 
exceed a certain threshold; these are then modelled 
separately from the events below the threshold [13] 
Embrechts. 
The Central Limit Theorem (CLT) plays an important role 
in seeding the basis of EVT. The CLT tries to find 
constants an > 0 and bn, such that (Sn - bn)/ an tends to a 
(non-degenerate) standard normal as n → ∞. In this case, 
Sn = ∑ (Xi), bn= n.E(X) and  
an = (n.Var(X)) 1/2. 
In general, the Central Limit method can be applied to 
determine the distributions that may be obtained at the 
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limits. However when the parental (underlying) 
distribution has very long tails, the method may yield 
distributions with infinite variances and, hence, non-
normal limits for the estimate of the expectation [2] 
Beirlant. These factors are important in the probabilistic 
aspect of EVT when considering maxima or minima 
(instead of the expectation mentioned in the previous 
phrase), whereby one would replace Mn = max{X1, X2, …, 
Xn) and replace the Central Limit method by the Extremal 
Limit method (see Appendix A for a more detailed 
rendition, Eq. A2.0). 
 

 
 Fig 1.2: Effect of Long Tails 

 

1.2.1 Maximum Domain of Attraction  
A logical progression would now be to move onto the 
Maximum Domain of Attraction (MDA – see Appendix A 
for details, Eq A2.1) to link the parental (underlying) 

  EXTREMES 
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distribution to EVT. This is better illustrated by means of 
an example. 
 
For instance, if one has a variable X with a parental 
distribution that follows an exponential pdf (e.g. X ≡ the 
mean time to fail for each year) what would be the extreme 
value distribution attracted to the pdf of X?  
 
An answer could be construed in the following manner: 
The pdf of X is fX(x) = λ.exp(-λx), for λ > 0 and x ≥ 0. 
Hence, its CDF (of X) is:  
FX(x) = 1- exp(-λx), as given (see Appendix A Eq. A1.0). 
By taking  an = 1/ λ   and   bn  = {Ln (n) / λ} and 
substituting in A2.0 (in the Appendix), we get: 
P((Mn - bn) / an ≤ x) = P({λMn – Ln (n)} ≤ x) 
 = P(Mn ≤ {x + Ln (n)}/ λ) = Fn({x + Ln (n)}/ λ) 
  → GX(x), as n → ∞  (see A2.0) 
Now, FX(x) = 1- exp(-λx) 
∴ Fn(({x + Ln (n)}/ λ) = [FX({x + Ln (n)}/ λ)]n  
by substitution in the CDF above 
= [1- exp(-λ{x + Ln (n)}/ λ)) ]n  
= [1- exp(-{x + Ln (n)}) ]n 
∴ P(Mn ≤ {x + Ln (n)}/ λ)  
= [1- exp(-{x + Ln (n)}) ]n   Eq 1.0 
= [1- {exp(-x). exp(-Ln (n))} ]n 
= [1- {exp(-x). 1/n} ]n    Eq 1.1 
 
But exp(a) = [1 + a/n ]n as n → ∞ ,  
hence let a = -exp(-x) and substitute in Eq 1.1, we get: 
P(Mn ≤ {x + Ln (n)}/ λ) = [1+ {a/n} ]n = exp(a), 
but a = -exp(-x) 
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∴ P(Mn ≤ {x + Ln (n)}/ λ) = GX(x) = exp(-exp(-x)) 
 which is of a Gumbel form (see A2.5 in Appendix) 
 
Hence, the Exponential distribution lies in the domain of 
attraction of a Gumbel extreme value distribution. 
 
The following distributions lie in the Gumbel domain [2] 
Beirlant: 
Benktander II, Weibull, Exponential, Gamma, Logistic, 
Normal, Log-Normal. 
 
Following the same line of thought, for the other two 
families of the Generalised Extreme Value Distribution 
(GEV), see A2.2 in the Appendix, from [2] Beirlant, we 
get the following distributions in the Weibull domain: 
Uniform, Beta, Reversed Burr, Extreme Value Weibull. 
 
And in the Fréchet domain: 
Pareto, Generalised Pareto, Burr (XII), Burr (III), Cauchy, 
F-distribution, Inverse Gamma, Log Gamma, Fréchet, T-
distribution. 
 
 
 

1.2.2 GEV Parametric Estimation 
There are numerous methods in estimating the GEV 
distributions parameters; from the “Naïve” to the complex. 
The most important ones, especially in estimating the 
Extreme Value Index (EVI), are reflected below, (see 
Appendix A par. 2.1 and 2.3): 
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 Maximum Likelihood Estimation (MLE) 
 Pickands Estimation (PE) method 
 Hill Estimation (HE) method 
 Regular Variation Approach (RVA)  
 Dekkers-Einmahl-deHaan Estimation 

(DEHE) method 
 Zipf Estimation (ZE) method 
 Probability Weighted Moments (PWM) 

method 
 L-Moments method 
 Bayesian method 

 

1.2.3 Entropy Method 
The challenge in EVT is the determination of the 
probability density function from which the samples have 
been drawn. This determination is dependent on the EVT 
parameters which in turn depend on the threshold. 
However, once that aspect has been assessed, gauging the 
level(s) of threshold(s) becomes a new challenge. Here, 
one could use, say, the Mean Excess Function method or 
the Entropy method. 
Entropy is more familiar in the world of thermodynamics, 
physics and chemistry, and although it has a certain 
mystique and cannot be directly measured, its occurrence 
can be inferred by changes in its variables. Maxwell, 
Boltzmann and Gibbs extended the work of 
thermodynamics in what today is termed Statistical 
Mechanics. In the latter, the macrostate variable is 
considered as an expression of a function of microstate 
variables, or expressed mathematically [33] Shannon: 
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H (p) =  [ ]∑−
k

i
ii pLogp )(.λ                Eq 1.2 

Where, p = {p1, p2, …, pk} is the probability density vector 
of element I (see Appendix C paragraph 2.8 for more 
details).  
Equation 1.2 can be reduced to: 
H (p) = λ{Log(k)}     Eq 1.3 
As an example: Let  λ  = 1, in these cases,  
Case 1:  a GU has equal probability of failing or not 
Case 2:  a GU fails with a probability of 0.03 and operates 
with a probability of 0.97 
In Case 1, H (p) = 1.000          (using Eq 1.3), and in 
Case 2,     H (p) = 0.194          (using Eq 1.2) 
The larger the Entropy, the more unpredictable the 
outcome, as illustrated in Fig. 1.3 
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 Fig 1.3: Entropy of a GU failure rate 
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In EVT, this type technique of using the statistical entropy 
with Dirichlet distributional properties is usually employed 
within the Peak Over Threshold (POT - see Appendix A) 
method. It uses different entropy values to estimate the 
number of points to be used in the tail of the distribution so 
as to assess the threshold level (the lower the entropy, the 
better the predictability of the threshold level). 
More on this methodology is reflected in Chapter 4 
paragraph 4.5. 
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CHAPTER 2 

Exploratory Data 
Analysis (EDA) 
 

Multivariate exploratory techniques are included in this 
section. EDA is closely related to the concept of Data 
Mining. EDA is used to identify particular behaviours in 
variables when there are no prior expectations of those 
behaviours. When using EDA techniques, many variables 
are scrutinized, in the search for coherent patterns. Scatter 
plots techniques are included in the relevant paragraphs  
 

2.1 Data Structure 
The data was formatted according to Appendix C – EDA 
paragraph 
The Table below (2.1), reflects a Sub-sample of the data 
set acquired it also shows the Power Station (PS) 
abbreviation code (e.g. Arnot PS: AR) and the GU’s within 
that Station, e.g. Arnot has 6 GU’s as well as Duvha PS, 
while Hendrina PS has 10 GU’s. The 1st Row indicates the 
No. of hours in a year, taking into account leap years, this 
was used for the computation of the energy in MWh from 
the Capacity (in MW) loss. 
The 2nd Row gives the years that the sample of the 
population reflected. 
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8760 8760 8784 8760 8760 8760 8784 8760 8760 8760 8784 8760 8760 8760 8784 8760
STATIUNIT 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

AR 1 251788.7 768085.6 680909.3 180675 37580.4 63019.44 54785.81 99732.6 44518.32 74871.72 42611.18 27173.52 102334.3 266531.8 40292.21 347763.2
AR 2 277227.7 475825.7 311032.7 245139.8 161884.8 288501.8 119137.4 104068.8 44229.24 23704.56 126384.2 46252.8 218255.4 65910.24 246970.9 758835
AR 3 424080.4 492014.2 350455.2 117366.5 80942.4 62730.36 7536.672 39314.88 130375.1 13586.76 6087.312 62441.28 23993.64 17055.72 144356.3 346896
AR 4 91927.44 228084.1 324366.8 93661.92 18501.12 14493.6 41338.44 37869.48 122859 20291.04 89614.8
AR 5 225193.3 392859.7 82033.78 115632 352774.2 23415.48 33244.2 33533.28 155371.4 36135
AR 6 692635.7 379273 302046.6 53768.88 32087.88 51745.32 48698.5 15899.4
DU 1 679491.3 557092.2 241933.3 669921 277035 1591692 517201.9 44829.3 213568.8 529892.4 80307.72 23673.9 25688.7 33244.2 50002.92 32740.5
DU 2 370219.5 200472.6 551042.3 216591 80592 1188732 30809.88 15111 160176.6 337982.7 120714.1 20148 18636.9 4939786 739437.1 86636.4
DU 3 304738.5 503700 111117.6 206517 347553 15111 135361.4 379286.1 123406.5 219109.5 74246.76 45333 19644.3 13096.2 52528.32 81599.4
DU 4 951993 356619.6 348505.2 347553 831105 191406 796006.1 23673.9 34755.3 72029.1 393962.4 114843.6 318338.4 27199.8 117683.6 36770.1
DU 5 952496.7 676469.1 866212.2 1395249 85629 166221 155059.6 149095.2 244798.2 139021.2 156069.7 10074 57421.8 32236.8 109097.3 23170.2
DU 6 223642.8 789297.9 600540.1 266961 25185 1405323 1296035 115347.3 116354.7 124413.9 56568.96 75555 4533.3 182339.4 67680.72 34251.6
HE 1 269965.7 261643.7 782408.4 88712.52 98199.6 120336.1 42224.69 10319.28 1497.96 64245.84 48733.63 32955.12 80556.96 89877.6 24366.82 81722.04
HE 2 306083.2 539598.5 162222.9 174262.7 163111.2 123165.6 131013.4 79391.88 12982.32 132819.1 36717.12 65078.04 110849 189741.6 103141.7 48600.48
HE 3 250325.8 191572.4 486001.2 95370.12 149796 29959.2 136520.9 113012.8 128325.2 121501.2 53406.72 33288 168270.8 76562.4 81779.04 120502.6
HE 4 196565.6 162944.8 359660.9 91542 81555.6 123165.6 38219.18 1830.84 6657.6 500651.5 46063.3 5492.52 68240.4 94704.36 91625.9 123498.5
HE 5 133152 289938.5 366336.7 317234.6 226358.4 190407.4 92961.07 101861.3 58420.44 66076.68 167396.7 65244.48 125995.1 54425.88 46563.98 191905.3
HE 6 175760.6 249660 185087.7 163111.2 211378.8 51929.28 131347.2 81555.6 10652.16 17975.52 82279.73 26963.28 7822.68 21803.64 47565.36 87381
HE 7 162944.8 553246.6 236658.5 620321.9 133152 76229.52 409229 35784.6 63413.64 29127 216964.8 18474.84 18474.84 24300.24 28372.32 123165.6
HE 8 315736.7 44605.92 153711.2 83053.56 53260.8 64245.84 101472.8 122499.8 10485.72 25631.76 6008.256 70903.44 61582.8 122999.2 43559.86 73732.92
HE 9 201059.5 155455 88454.88 74232.24 76562.4 75730.2 48733.63 30125.64 27296.16 33121.56 18525.46 17309.76 65910.24 52095.72 18358.56 44273.04
HE 10 269133.5 75230.88 229148.2 26630.4 38114.76 99303.12 58919.76 185072.5 392995.5 56226.38 70820.22 42297.66 31601.7 52976.3 41811.48
KE 1 718740.5 599324.2 638631.9 232105 347596.8 62231.04 79828.99 101475.8 69519.36 10652.16 65774.59 14016 37002.24 164828.2 69147.65 90263.04
KE 2 437299.2 556554.2 31956.48 26910.72 149130.2 87699.46 63912.96 62791.68 2242.56 44974.08 602688 22425.6 56064 13492.22 76247.04
KE 3 201259 17379.84 22425.6 91944.96 153474 151372.8 56064 7288.32 11243.52 12894.72 15137.28 1360673 112997.4 113249.3
KE 4 469417 63912.96 28032 127265.3 145041.4 144084.5 27471.36 25228.8 283336.7 78489.6 1121.28 103157.8 82639.87 28592.64
KE 5 46533.12 11212.8 37562.88 183269.4 103157.8 10091.52 120537.6 41601.02 3924.48 57185.28 159782.4 12930.05 173798.4
KE 6 22425.6 72322.56 56779.78 560.64 302745.6 31956.48 73645.06 21304.32 2242.56 250045.4 20238.34 24668.16
KR 1 563815.5 138561.3 132265.1 52844.7 815556 694470.9 35048.16 165191.7 157285.8 144802.8 71765.28 170601 70320.9 1090182 415571 186828.9
KR 2 760214.7 495159 640463.4 309578.4 557574 86548.8 35048.16 282531.9 28710.9 129823.2 0 80307.3 116924.1 177674.7 120165.1 155205.3
KR 3 755221.5 153957 186506.3 339953.7 615828 22053.3 78023.88 157701.9 98199.6 131071.5 180247.7 72401.4 20388.9 99031.8 155630.5 439817.7
KR 4 840105.9 915420 196937.3 119420.7 174762 64079.4 83865.24 64079.4 51596.4 86964.9 211123.4 76562.4 46603.2 815556 86368.68 148131.6
KR 5 734416.5 264223.5 388033.2 310410.6 449388 42026.1 210289 93622.5 182667.9 96951.3 58413.6 71985.3 151460.4 130655.4 969665.8 194318.7
KR 6 659518.5 79475.1 66758.4 175178.1 158118 42442.2 165227 148963.8 151460.4 74065.8 124754.8 43274.4 91125.9 116924.1 941710.7 256317.6  

 
Table 2.1: MWh Losses actuals 1990 to 2005 -Sub-sample 
 
The matrix contains the MWh Losses for every GU for 
every year. The “black” blocks, originally missing data, 
were investigated further. These yielded the following 
information. The large ones at the top & bottom, were not 
missing information, but legitimate beahaviour of the 
population viz. the GU’s at Arnot PS were “mothballed” 
for 5 years and then gradually brought back into service. 
The GU’s at Kendal PS were new GU’s being 
commissioned gradually into the system. Hendrina GU 10 
was truly a missing value for 1993 and unfortunately valid 
records were not available (this was the only true missing 
value – the others could be explained in a similar fashion 
as above). The data matrix of 16 yrs x 64 GU’s = 1024 
data points of which 929 could be used in univariate mode 
(approx 91%). 
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STATION STAT 
Code UNIT IC STATION STAT 

Code UNIT IC STATION STAT 
Code UNIT IC

AR C1 Ar1 330 KE C23 Ke1 640 MB C47 Mb1 615
AR C2 Ar2 330 KE C24 Ke2 640 MB C48 Mb2 615
AR C3 Ar3 330 KE C25 Ke3 640 MB C49 Mb3 615
AR C4 Ar4 330 KE C26 Ke4 640 MB C50 Mb4 615
AR C5 Ar5 330 KE C27 Ke5 640 MB C51 Mb5 615
AR C6 Ar6 330 KE C28 Ke6 640 MB C52 Mb6 615

DU C7 Du1 575 KR C29 Kr1 475 ML C53 Ml1 575
DU C8 Du2 575 KR C30 Kr2 475 ML C54 Ml2 575
DU C9 Du3 575 KR C31 Kr3 475 ML C55 Ml3 575
DU C10 Du4 575 KR C32 Kr4 475 ML C56 Ml4 575
DU C11 Du5 575 KR C33 Kr5 475 ML C57 Ml5 575
DU C12 Du6 575 KR C34 Kr6 475 ML C58 Ml6 575

HE C13 He1 190 LE C35 Le1 593 TU C59 Tu1 585
HE C14 He2 190 LE C36 Le2 593 TU C60 Tu2 585
HE C15 He3 190 LE C37 Le3 593 TU C61 Tu3 585
HE C16 He4 190 LE C38 Le4 593 TU C62 Tu4 585
HE C17 He5 190 LE C39 Le5 593 TU C63 Tu5 585
HE C18 He6 190 LE C40 Le6 593 TU C64 Tu6 585

HE C19 He7 190 MJ C41 Mj1 612
HE C20 He8 190 MJ C42 Mj2 612
HE C21 He9 190 MJ C43 Mj3 612
HE C22 He10 185 MJ C44 Mj4 669

MJ C45 Mj5 669
MJ C46 Mj6 669

Table 2.2: Stations, Coding, GU’s & Installed Capacity  
Table 2.2 gives the coding used for each GU with its 
relevant information used in multivariate techniques, e.g. 
Stat Code C8 corresponds to GU 2 at Duvha PS with an 
Installed Capacity (IC) of 575 MW. 

2.2 Cluster Analysis 
Cluster Analysis (CA) helps in organising the MWh 
Losses of the GU’s into meaningful categories. This 
multivariate method uses distances (dissimilarities) 
between GU’s MWh Losses when forming the Clusters. 
The usual statistical way used to calculate the distances is 
the Euclidean method or essentially the geometric distance 
in a multidimensional space: 
        δ (x;y) = [Σi  (xi - yi )

2 ]0.5     
The Chebychev distance was the one chosen as one would 
want to detect the GU’s  MWh Losses if they were 
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different on anyone of the years in question, in this case 
the distance is modelled as: δ (x;y) = Max |xi - yi |    
Once these distances have been computed a linkage rule is 
required to link the Clusters which are sufficiently similar. 
The most common one is called Single Linkage or Nearest 
Neighbour; in this case, the distance between the Clusters 
is determined by the distance of the closest GU’s MWh 
Losses (Nearest Neighbours) in the different Clusters.  
The rule of Complete Linkage (Furthest Neighbour) was 
used here whereby the distance between the Clusters is 
determined by the greatest distance between any two MWh 
Losses in the different Clusters. This technique is 
particularly useful if the MWh Losses would tend to 
bunch-up. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2.1: Cluster Analysis-Diagrammatic parameters selection 
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% Disagreement
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User defined
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Case wise (Row) deletion could have been used to handle 
Missing Data. However, the substitution by Means 
methods was deployed in order not to reduce the data 
matrix size. Both methods were tested and no difference 
was detected at the nodes; there was a marginal change in 
the cluster selection at the lower end (“the better years”). 
 
First Step was to use the Joining Tree method and Fig 2.1 
above illustrates the parameters selected (in White over the 
Blue background) for the analysis. The software used was 
STATISTICA. The outputs are shown in Figs 2.2 and 2.3 
below as well as Table 2.3. 

Tree Diagram for 16 Variables
Complete Linkage

Chebychev distance metric

(Dlink/Dmax)*100

     Y03
     Y02
     Y97
     Y92
     Y05
     Y95
     Y93
     Y04
     Y00
     Y99
     Y01
     Y98
     Y96
     Y91
     Y94
     Y90

0 20 40 60 80 100 120

 Fig 2.2: Joining Tree Method of Clustering 
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In the hierarchical tree of Fig 2.2 above three nodes (in 
red) can be identified. This tends to imply that Y03 (Year 
2003) stands on its own i.t.o. the GU’s MWh Losses. The 
next links are Y02 (2002) and both Y90 (1990) and Y94 
(1994). This kind of categorisation invoked interest and a 
more detailed method of 2-Way Joining in Cluster 
Analysis was used (see Fig 2.1 above). In this analysis the 
same pattern was observed but more information was now 
available (see Fig 2.3 and Table 2.3 below) 

 4.491e5
 8.981e5
 1.347e6
 1.796e6
 2.245e6
 2.694e6
 3.144e6
 3.593e6
 4.042e6
 4.491e6

Two-Way Joining Results

C_47C_59C_33C_54C_29C_30C_23C_17C_6C_4C_32C_55C_19C_61C_18C_60C_31C_62C_53C_15C_64C_63C_34C_36C_35C_7C_8C_16C_21C_13C_38C_3C_27C_26C_25C_28C_58C_24C_46C_45C_44C_42C_41C_43C_5C_40C_51C_2C_52C_50C_37C_49C_11C_20C_14C_22C_9C_57C_56C_10C_48C_39C_12C_1

     Y90
     Y92

     Y93
     Y91

     Y94
     Y96

     Y05
     Y98

     Y04
     Y97

     Y03
     Y95

     Y99
     Y00

     Y01
     Y02

Fig 2.3: 2-Way Joining Method of Clustering (Legend 
in MWh) 
 
From the re-ordered table (Table 2.3 below) and Fig 2.3 
(highlights in red circles) above, it can be deduced that 
large MWh Losses incurred in those particular years 
(values highlighted in the Table); this was not evident from 
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Fig 2.2 that the nodal clustering was due to these very 
large values. 
This was an enabling finding as it was now providing a 
basis for categorising these extreme events. After 
inspecting the data, there seemed to be a natural 900 000 
MWh (or 900 GWh) spread amongst the categories. 
The reasons for the high losses in 2003 were due to a 
catastrophic event due to fire at one 575 MW GU. 
The GWh Losses were then classified into six categories 
ranging from Sub-critical to Catastrophic and these are 
illustrated in Fig 2.4 below. 
It must be noted, from the legend in Fig 2.3, the following 
GWh categorical values: 
           449; 899; 1348; 1797; 2246; 2695; 3144; 3593; 4042; 4491 
The values highlighted in red will bear significance later in 
Chapter 3 in the analysis of Extremes. 
 

 

Catastrophic >4500 
Semi-Catastrophic 3600<x<4500

Major Events 2700<x<3600

Main Events
CATEGORIES
in MWh '000 

Sub-Critical Events 400<x<900

1800<x<2700

900<x<1800Critical Events

  
Fig 2.4: Classification of Large MWh (‘000), i.e. GWh, 
Losses 
 
The results of the data classification are given in Table 2.4 
below. 
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However caution needs to be exerted in the interpretation 
of the losses within the classification. For instance a GU 
out for a whole year at Hendrina Power Station would be 
classified differently from a GU out for the same period at 
Majuba Power Station as shown below. 

                                

HE MJ

Normal Year 1,620,600  5,860,440  
Leap Year 1,625,040  5,876,496   

 
This means that for a catastrophic event to occur at 
Hendrina (equivalent to 1 GU out at Majuba), 3 GU’s 
would be out for a year and 1 GU for half a year. This is 
according to the statistical Classification; however from a 
managerial perspective, 1 GU out at Hendrina, although it 
would classify as Critical, it might actually be just as 
“Catastrophic”, since Hendrina is one of the “cheap” and 
base-loaded Power Stations. 
This may be rectified after the management/executive 
would decide on the severity of the impact of the loss and 
then assign weights to different GU’s or/and Power 
Stations. Using the example above, if the management, 
say,  felt that 1 GU at Hendrina lost for 1 year is equivalent 
to 1 GU loss at Majuba also for 1 year, whatever reason 
given, then the “Loss Score” would be Loss @ Hendrina x 
3.5. These can then be classified in the table illustrated in 
Fig 2.4. 
These weights (e.g. 3.5) can also be normalised for all the 
GU’s so that the Loss Score for the System be determined. 
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Table 2.3: Re-ordered MWh Losses from 2-Way 
Method of Clustering  
. 
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1990 1991 1992 1993 1994

UNIT Years 930 49 53 56 53 55
Catastrophic >4500 

Semi-Catastrophic 3600<x<4500 3,724,586         3,854,453         
Major Events 2700<x<3600

2,277,010         2,231,391         
Main Events 1,989,804         

CATEGORIES 1,862,243         
in MWh '000 1,449,316         1,552,256         1,395,249         

768,086            782,408            620,322            
539,598            486,001            
553,247            

1800<x<2700

900<x<1800Critical Events

Sub-Critical Events 400<x<900

 
  1990 - 1994 
 

1995 1996 1997 1998 1999
UNIT Years 930 55 55 56 58 60

Catastrophic >4500 
Semi-Catastrophic 3600<x<4500

Major Events 2700<x<3600
2,183,843         2,607,502         

Main Events
CATEGORIES
in MWh '000 1,591,692         1,296,035         

1,405,323         
500,652            

1800<x<2700

900<x<1800Critical Events

Sub-Critical Events 400<x<900

 
  1995 – 1999 
 

2000 2001 2002 2003 2004 2005
UNIT Years 930 61 63 64 64 64 64

Catastrophic >4500 4,939,786         
Semi-Catastrophic 3600<x<4500

Major Events 2700<x<3600 3,030,951         
1,883,072         

Main Events
CATEGORIES
in MWh '000 1,592,515         969,666            1,560,482         

1,090,182         941,711            1,133,479         
739,437            758,835            
548,517            462,239            
482,518            439,818            
466,747            431,491            
415,571            

1800<x<2700

900<x<1800Critical Events

Sub-Critical Events 400<x<900

 
  2000 – 2005 

 
Table 2.4: Categorised Large MWh Losses 1990 - 2005 
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2.3 The Number of GU’s failure and Loss 
Size Exposures 
In the Introduction, the statement of the problem was 
presented and the GU’s losses (or Volume losses) were 
highlighted as the prominent issue. From this part of the 
Chapter onward, the topic of these exposures is analysed 
statistically for the Generation Division of EHL, in two 
parts: the number of GU’s failing and the size of the 
failure. The data used for the risk exposure spanned for 
every GU from 1990 to 2005. Prior to 1990, the forced 
outages (UCLF) for the Generation System averaged 
approx. 11%, oscillating between 8% and 14%. However, 
one ought to consider that in 1994 a management strategy 
(called the “90:7:3”) was put into effect to purposefully 
reduce the forced outages (UCLF) to a value of 3%, with 
realisation as soon as possible, but definitive before the 
turn of the millennium (i.e. by 1999). This target was 
considered accomplished in 1996 (see Fig. 2.5 below). 
Therefore, given that this strategy is into effect, and 
observing its behaviour, the data from 1996 may be 
considered as stationary for other type of analyses (such as 
in Performance Management). This is particularly 
important for the analysis in paragraph 2.2.1, while for 
paragraph 2.2.2 the whole data set is used. 
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UCLF System as %
(90:7:3 Effect visible)
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 Fig 2.5: UCLF actuals 1990 to 2005 
 

2.3.1 Number of Generating Units failing 
Following up from Fig. 1.1 the GU failure (X) can be 
characterised from a Binomial distribution. Assume n 
identical GU of equal installed capacity (this kind of 
assumption can be valid for a Power Station: say a six-
pack like Duvha PS, however Majuba has different IC’s 
for its GU’s – see Table 2.2, hence caution); each of these 
units has an expected forced outage rate (UCLF) q, then by 
characterising these GU with a Binomial distribution 
B(n;q), one would get the probability, P(Xi), of i GU’s 
failing being: 

 )1()( qqCXP inin

ii −= −
,   Eq 2.1 

where C represents the Combination function of i elements 
into n within the B(n;q) – see paragraph 2.2 (and equation 
C2.2 in Appendix C). 
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As seen in the equation above, a clear understanding of the 
forced outages on the system is necessary.  
Another effect comes into play as well: due to the 
customers demand (or/and economic growth) the 
augmentation of installed capacity necessitated the number 
of GU’s to increase (see Table 2.4 the Unit Years row, the 
No. of GU’s per year increases from 1990 to 2005). This 
has an interesting effect on the modelling of the GU 
failures as a B(n;q) 

Pdf B(n;p)
Effect of GU's  increase from 55 in 1996 to 64 in 2005

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of GU failing with a UCLF of 3.09

pd
f

B(n;p) 96
B(n;p) 05

 Fig 2.6: Effect of GU’s increase onto the B(n;q) 
 
Fig 2.6 indicates the effect of the increase of 9 GU’s on the 
system (under the assumption of equal GU’s – here we 
could be more accurate and convolute the Binomial for 
each installed capacity category and weight it accordingly 
to arrive at the Total System value). One can see that for 2 
GU’s the probability of failure is about the same but, for 
less than 2 GU’s, the probability of failure is less for 64 
GU’s on the System than 55 GU’s. However, the 
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probability of failure of 3 units or more has increased from 
1996 with the installation of more capacity. 
Therefore to maintain the same characteristics for the 
system (with respect to the probabilities of failure), the 
system would have to improve the forced outage rate 
(UCLF). This is shown in Fig 2.7 below where an 
improvement of 0.49% in UCLF, rebalanced the 
probabilities to the 55 GU basis (shift from the “red” pdf to 
the “orange” pdf). 

Effect of UCLF improvement (3.09 to 2.6)
 with increase on IC (55 to 64 GU's)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of GU's Failing

pd
f

B(n;p) 55 GU

B(n;p) 64 GU UCLF =3.09

B(n;p) 64 GU UCLF =2.60

Fig 2.7: Effect of UCLF improvement onto the B(n;q) 
 
   

  
 
Table 2.5: Probability of more than 2 GU’s failing 
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As shown in Table 2.5, the system would be expected to 
operate at an improved UCLF (say 2.6%), given the 
increased capacity (to 64 GU’s), so as not to worsen the 
probability of failure of more than 2 GU’s (0.24). 
 
However GU’s tend to obey the laws of Reliability Theory, 
and as such when new they have high failure rates (also 
called “infant mortality” period or early period) then the 
GU tend to follow a period of stationarity (also called 
occasional period) and after that the failure rate tends to 
increase as the plant is getting old (called the degenerative 
period). This behaviour is often referred to as the “bath-
tub” curve of the hazard rate. 
Hence, bringing in new GU’s not only increases the 
probability of GU’s failing but it also increases the failure 
rate (due to the teething problems of the bath-tub), 
compounding the effect as it would be difficult to bring 
down the UCLF with new GU’s coming in. 
 By the end of 1995, most of major GU’s were now 
operational, hence one might ask whether the drop in 
UCLF was due to the 90:7;3 initiative, was it due to usual 
Reliability Theory behaviour, a bit of both and maybe 
some luck? From a personal perspective, it was both, and, 
having been involved in the 90:7:3 initiatives, the 90:7:3 
with considerably more weight than the Reliability Theory 
one. 
The Binomial process above can now be expanded further. 
Let us illustrate this expansion by the compilation of Table 
2.6 below. The 930 value reflects the total number of Unit 
Years (i.e. the sum of however many GU’s were in the 
fleet every year) over the 16 years period. 
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Table 2.6: Table of Expectations in Categories 
 
The next column gives No. of GU’s for each Category 
accumulated from the previous one (e.g. in Semi-
Catastrophic there are 2 Events + 1 Event in the 
Catastrophic Category; in the Major Events there is 1 
Event + the previous 3 accumulated ones, etc…). The 
“Rate” can be interpreted as the “q” in Eq 2.1. 
 Since the Poisson model [Psn(λ)] (see Appendix C 
paragraph 2.3) is derived as the limit of the Binomial  
as n → ∞ and q → 0 and nq = λ being constant, the 
E[x] = n . q (see comments on the Rate in Table 2.6 
above), this may be used to compute the expectations in 
each category (refer to Appendix C paragraph 2.3 for the 
calculations in the table). 
The expectation in the last column of Table 2.6 above can 
be interpreted as follows: on average, one would expect, in 
a year, to have 2.7 GU’s failing in the Sub-Critical 
category, 1.6 in the Critical, 0.8 GU in the Main Events 
category, and skipping the other categories but going 
straight to the Catastrophic, one would expect such an 
event once every 14.5 years (= 1 / 0.0688). 

UNIT Years 930 No. of GU 
Cumulative

Rate in 
Category E[x]

Catastrophic >4500 1 0.0010753 0.0688172
Semi-Catastrophic 3600<x<4500 3 0.0032258 0.2064516

Major Events 2700<x<3600 4 0.0043011 0.2752688

Main Events
CATEGORIES
in MWh '000 

39 0.0419355

0.7569892

1.5827957

2.6838710

11 0.0118280

23 0.0247312

Sub-Critical Events 400<x<900

x<2700

Critical Events 900<x<1800

Vince MICALI:
Unitary rate (i.e. for any population N in a 
particular year). This means that for a 
year with a Tot fleet of 64 units, we 
would multiply this rate by 64 to get the 
E[x]

Vince MICALI:
Expected No. of GU's failing in these 
Categories (or higher Categories) in 
any year.

UNIT Years 930 No. of GU 
Cumulative

Rate in 
Category E[x]

Catastrophic >4500 1 0.0010753 0.0688172
Semi-Catastrophic 3600<x<4500 3 0.0032258 0.2064516

Major Events 2700<x<3600 4 0.0043011 0.2752688

Main Events
CATEGORIES
in MWh '000 

39 0.0419355

0.7569892

1.5827957

2.6838710

11 0.0118280

23 0.0247312

Sub-Critical Events 400<x<900

x<2700

Critical Events 900<x<1800

Vince MICALI:
Unitary rate (i.e. for any population N in a 
particular year). This means that for a 
year with a Tot fleet of 64 units, we 
would multiply this rate by 64 to get the 
E[x]

Vince MICALI:
Expected No. of GU's failing in these 
Categories (or higher Categories) in 
any year.

UNIT Years 930 No. of GU 
Cumulative

Rate in 
Category E[x]

Catastrophic >4500 1 0.0010753 0.0688172
Semi-Catastrophic 3600<x<4500 3 0.0032258 0.2064516

Major Events 2700<x<3600 4 0.0043011 0.2752688

Main Events
CATEGORIES
in MWh '000 

39 0.0419355

0.7569892

1.5827957

2.6838710

11 0.0118280

23 0.0247312

Sub-Critical Events 400<x<900

x<2700

Critical Events 900<x<1800

Vince MICALI:
Unitary rate (i.e. for any population N in a 
particular year). This means that for a 
year with a Tot fleet of 64 units, we 
would multiply this rate by 64 to get the 
E[x]

Vince MICALI:
Expected No. of GU's failing in these 
Categories (or higher Categories) in 
any year.
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Furthermore, the Poisson Distribution may now be used to 
compute the probabilities in each of the categories given in 
the top table of Table 2.7 

GU's in Category 
failing 0 1 2 3 4 5 6

Catastrophic 0.933497304 0.0642407 0.002210432 5.07052E-05 8.72348E-07 1.20065E-08 1.37709E-10
Semi-Catastrophic 0.813465622 0.1679413 0.017335875 0.001193006 6.15745E-05 2.54243E-06 8.74815E-08

Major Events 0.759367965 0.2090303 0.028769765 0.002639806 0.000181664 1.00013E-05 4.58841E-07
Main Events 0.469076577 0.3550859 0.134398113 0.033912642 0.006417876 0.000971653 0.000122588

Critical Events 0.205400 0.3251063 0.257288449 0.135745017 0.053714157 0.017003707 0.004485566
Sub-Critical Events 0.068298261 0.1833037 0.245981768 0.220061108 0.147653905 0.079256806 0.035452507

Expected Events in 
Categories 0 1 2 3 4 5 6

Catastrophic 15 1 0 0 0 0 0
Semi-Catastrophic 13 3 0 0 0 0 0

Major Events 12 3 0 0 0 0 0
Main Events 8 6 2 1 0 0 0

Critical Events 3 5 4 2 1 0 0
Sub-Critical Events 1 3 4 4 2 1 1

Observed Events in 
Categories 0 1 2 3 4 5 6

Catastrophic 15 1 0 0 0 0 0
Semi-Catastrophic 14 2 0 0 0 0 0

Major Events 15 1 0 0 0 0 0
Main Events 11 4 0 1 0 0 0

Critical Events 8 4 4 0 0 0 0
Sub-Critical Events 10 2 1 1 1 1 0

  
Table 2.7: Table of Expectations (top) and Contingency 
Tables 
These may be used further to compute the expected 
frequencies in each class. This is done as follows. For 
example, in the 16 years, we have observed 15 years with 
0 catastrophic events and 1 year with a catastrophic one. 
We would have expected 0.933497*16 ≈ 15 and 
0.0642*16 ≈ 1 events according to the Poisson model. The 
other frequencies for the rest of the classes in the middle 
and bottom tables of Table 2.7 are computed in a similar 
fashion. 
Validation of the Poisson model for the Categories: 
More Contingency tables are compiled for the various 
categories and the χ2 test used to validate the Poisson 
model. 
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GROUPED

Semi-catastrophic 0 1
EXPECTED 13 3
OBSERVED 14 2

  χ2 : 0.250
Prob signif. 

χ2 : 0.6170

df= 1

GROUPED
Major Events 0 1

EXPECTED 12 3
OBSERVED 15 1

  χ2 : 2.312
Prob signif. 

χ2 : 0.1284

df= 1

GROUPED
Main Events 0 1 2 3

EXPECTED 8 6 2 1
OBSERVED 11 4 0 1

  χ2 : 4.661
Prob signif. 

χ2 : 0.1984

df= 3

GROUPED
Critical Events 0 1 2 3 4

EXPECTED 3 5 4 2 1
OBSERVED 8 4 4 0 0

  χ2 : 10.073
Prob signif. 

χ2 : 0.0392

df= 4

GROUPED
Sub-Critical Events 0 1 2 3 4

EXPECTED 1 3 4 4 2
OBSERVED 10 2 1 1 1

  χ2 : 77.680
Prob signif. 

χ2 : 0.0000

df= 4  
Table 2.8: Contingency Tables of Grouped Categories 
As the results were a bit sparse, Grouping from Sub-
Critical Events to Semi-Catastrophic was performed. The 
“bins” were reduced [e.g. from 7 to 5 (i.e. spanned from 0 
to 4 Events)]. Catastrophic had almost a perfect fit, so the 
table was excluded as redundant. 
From Table 2.8, it is significant to note the following: 
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o The top table can be considered as a 2 x 2 Contingency 
table 

o That the χ2  test indicated that the model fitted well in 
the categories from Main Events to Catastrophic 

o It did not fit well for the other 2 categories, probably 
due to the interval limits for the two categories Critical 
and Sub-Critical events. 

 

2.3.2 Size of Volume failure 
In terms of the energy loss (power x time) in MWh, in 
theory it would be quite possible to determine that the total 
maximum loss is 318 TWh in a year (given that it is a leap 
year); however this kind of loss would be cataclysmic for 
South Africa which would be similar to the probability of a 
global nuclear warfare and the annihilation of a country. 
For all practical purposes, the asymptotic properties of the 
distributions are assumed in this thesis. From the other end, 
there were 2 very small losses (0.1 MWh) that were 
excluded from the analyses in Chapter 3, reducing the total 
GU-Years from 930 to 928. 
Plotting the size of the losses that every GU incurred in 
any year is shown in Fig 2.8 below, indicating that over a 
period from 1990 to 2005 the max size of the loss was 
4939.79 GWh, 1.6% of the total maximum potential loss. 
However, this kind of loss is considered catastrophic as it 
represents one large GU out of action for one whole year, 
resulting in losses of revenue approximating R 550 million 
(in 2003 Rands). If one adds up the repair to damage that 
would put a GU out for such a time, the costs would be 
over a billion Rand. 



 33

Units vs GWh Loss (1990-2005)

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Units

G
W

h 
L

os
s

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005

 
Fig 2.8: GWh Losses incurred by GU’s in particular years 
 
Let us assume that the MWh losses can be expressed as an 
essentially positive random variable (energy losses ≡ X) 
expressed by a particular distribution function having a pdf 
fX(x) and a CDF FX(x). Here it is also assumed that F is 
continuously differentiable and that the following applies: 

         FX(x) =  ∫
x

0

fX(x).dx 

(see A1.0 and related issues in Appendix A) 
Since empirical quantiles open the way to tail estimation, 
let )(ˆ xFX , the empirical CDF be derived by ordering Xi’s in 

such form: ***
nXXX ≤≤≤ K21  and associating each  *

iX  
with its percentile p = i /(n + 1), i = 1,2,…,n . 
This )(ˆ xFX  is depicted below, in Fig 2.9. Here, the very 
long tail of the distribution is evident.    
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  Fig 2.9: CDF of GWh Losses 
Having looked at the individual GU’s energy losses, and 
the maximum loss that an individual GU could incur in a 
year, one could also ask what is the maximum sum of all 
the GU losses in a year. Another relevant question could 
be how the values of the maximum GU losses affect the 
value of the maximum sum of the GU losses, over a 
threshold t ; in other words how do these individual losses 
affect the System. Referring to [13] Embrechts it is shown 
there that: 

1
)),,(max(

)(

1

1 =
>

>++

∞⎯→⎯ tXXP
tXXP

m

m

t
Lim K

K
      

, for every m ≥ 2     Eq 2.2 
 
Hence the tails of the distributions, either of the sum or the 
individual GU’s losses of the first m GU’s losses that 
would exceed the threshold t, are asymptotically of the 
same order. This indicates the strong influence that the 
maximum individual GU energy loss has on the system. 
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One could model further this aspect of total losses using 
the classical risk model: 
  U(τ) = u + α.τ – S(τ) 
Where u is the initial capacity, α is the available capacity 
@ time τ and S(τ) is the sum of the GU losses (i.e the 
Generation System Total Losses) until time τ.  

Then, S(τ)  =  ∑
=

)(

1

τN

i
iX  , where N(τ) is the number of GU’s 

that have failed until time τ and is a homogeneous Poisson 
process independent of Xi , the GWh Losses. 
Taking this modelling aspect one further step ahead onto 
the Poisson process (see Fig 1.1). The Poisson 
approximation provides the basic essentials for the analysis 
of infrequent extremes from a sample. It is also the key to 
the Weak Limit Theory of upper order statistics as well as 
for the Weak Convergence of Point Processes, [13] 
Embrechts. 
Usage of the Cramér-Lundberg model: 

a] The GU’s losses size process: 
The sizes Xi are positive iid rv’s having common 
non-lattice F, finite mean 
μ = E[Xi] and variance σ2 = var[Xi] < ∞ 
b] Times at which the GU losses occur are random 
instances of time: 
0 < T1 < T2 < … a.s. (almost sure [i.e. with 
probability of almost 1]) 
c] The arrival process 
The number of GU’s in the interval [0,τ] is denoted 
by 
N(τ) = sup{n ≥ 1: Tn ≤ τ} 
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d] The inter-arrival times of losses 
Y1 = T1, Yk = Tk – Tk-1 , k = 2,3,…   are iid 
exponentially distributed with  
finite mean E[Y1 ] = 1/ λ . 

A consequence of the definition above is that N(τ) in a 
homogeneous Poisson process with intensity λ >0 and N(τ) 
> 0 hence: 

P ( N(τ) = k )  = !)( kke λτλτ−       , for k = 0,1,2,… 

Here the loss size X and inter-arrival time Y of losses are 
independent of each other [13] Embrechts. See Appendix 
C (equation C2.4) for an extension on this aspect. 
When looking at S(τ) from a distributional aspect and 
express it as: 
Gτ(s) = P[S(τ) ≤ s], [3] Beirlant (p117) showed that, using 
the independence assumption between {N(τ) ; τ ≥ 0} and 
{Xi ; i ≥ 1} and a conditioning argument on N(τ): 

Gτ(s) = ∑
∞

=0

* )().(
n

n
n Fp ττ , where *n, refers to the 

distribution of the total loss,  
Sn(τ) = X1+X2+…+Xn, the n-th convolution of F with 
itself. Considerable research is being done in this 
compound distribution function, [3] Beirlant (p117) and pp 
13, 37-49, 571-576 [13] Embrechts. 
In this field Super- and Sub-exponential distributions play 
an important role, for instance if the largest of the GU 
losses (max [Xi]) influences the stochastic behaviour of  
Sn(t), then the  Sub-exponential distributional properties 
ought to be used. 
The number of GU’s incurring a loss, has a distribution 
considered “light” if: 
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E[zN(τ)] = ∑
=0

).(
n

n
n zp τ    < ∞     , for some z > 1 

Hence a light “GUs-Losses-number” distribution has 
exponentially small probabilities. If we believe or can 
verify this statement, then according to [3] Beirlant, 
Cline’s (1987) and (for more precise estimates) Willekens-
Teugels’ (1992) results can be used for the computation of 
quantiles of S(τ). Caution ought to be exercised since the 
inversion of Cline’s model yields conservative results on 
the computation of high quantiles. Much more research is 
needed in this field and therefore the results are limited to 
the EDA for this topic. 
                                                             

  

Year Max Loss Total Loss
1996 1296.0 8147
1997 2607.5 9513
1998 651.8 7238
1999 529.9 6421
2000 394.0 5002
2001 602.7 4379
2002 3031.0 7270
2003 4939.8 16885
2004 969.7 9876
2005 1883.1 12647  

Table 2.9: Maximum GU loss and Total System loss 
The subset 1996 to 2005 was used as this window is 
considered a more stationary period. 
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 Fig 2.10: Annual Total System GWh Losses 
 
 

Relationship (1996-2005) CF Stations annually: Total Loss vs Max Loss 
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Fig 2.11: Relationship: System GWh Losses vs GU Max Loss 
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Fig 2.12: Distributional Fits of System GWh Losses 
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Fig 2.13: LogLogistic Fit to System GWh Losses 
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Fig 2.14: Relationship: System GWh Losses UCLF and 
Load Factor 
 
The Total System Losses in GWh (TSL) for the period 
1996 to 2005 are depicted in Fig 2.10. The TSL shows an 
increasing upward trend, or possibly a cyclic behaviour as 
time increases. Fig 2.11 shows the relationship between the 
GUs’ max loss in a particular year associated with its 
corresponding TSL. Even though the Logarithmic model 
y = b.Ln(x)+a has the lowest R2 (blue line), from an 
engineering perspective it makes more sense for the 
following reason: the Max GWh loss (y-axis) is limited to 
the IC x Hours p.a. (say 5270.4 GWh for a 600 MW GU in 
a leap year), hence one would expect the relationship to be 
asymptotic towards that value; the limit of the TSL being 
approximately 318 000 GWh (x-axis, 10 time more to the 
right than the value illustrated). 
If not trended, and distributional fits are performed on the 
TSL, the results are shown in Fig 2.12 and 2.13, with the 
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LogLogistic distributional fit being the “best”. This 
indicated a “threshold” (shift parameter) of 1763.07 GWh. 
Although this analysis bodes well, it is somewhat limited 
as it is not leveraging the nature of the trend, cyclical or 
curvy-linear relationship, seemingly with time. Further 
work by the author indicates that another concomitant 
variable plays an important role, i.e. the Load Factor (LF). 
The LF is time related and a function of the energy demand 
imposed by the market on the IC. The more demand is 
imposed on the GUs’ the higher the stress on the GUs’ the 
higher the losses at System level (the model shown in Fig 
2.14 is only valid at System level, though, and not at GU 
level: as the LF increases, at GU level, the GU fails and 
hence the LF at that GU is 0, however another GU “picks-
up” the load, hence the LF at System level is seen as 
increasing with the corresponding loss at System level 
increasing). This relationship is illustrated in Fig 2.14 (the 
2006 value is shown by X). Further studies were 
performed by the author on this issue to validate the 
relationship, with positive results. This also involved 
experimental work on the Cobb-Douglas production 
model: ekY.Y = A.Xb.Zc.ε’ or in linear form: 
 kY + Ln(Y) = a + b.Ln(X) + c.Ln(Z) + ε ,  
where Y= UCLF, X= LF and Z the lagged (5year) PCLF or, 
most likely, the cost of production; a simplified version is 
shown in Fig 2.14. 
It would also be appropriate to utilise the property of the 
losses conditional to the load when estimating the TSL and 
its expected extremes. To do that, appropriate forecasting 
techniques ought to be used to forecast the energy demand 
with its appropriate credible set (or confidence region; the 
Bayesian “confidence interval”), say the High Posterior 
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Density (hpd) credible set. This could then be used to infer 
the TSL losses on the logarithmic model proposed above. 
A contour of TSL given a region of LF can then be 
constructed. 
Delving into EVT, a recent method developed by [28] Nel 
et al using the Logistic Copula can be used to estimate the 
joint probability of the annual GU maximum loss and the 
annual TSL by considering the joint distribution of the of 
the GU and TSL marginals through the Logistic Copula. 
Should the annual values be too small of a sample to 
consider, the quarterly max GU and TSL values could be 
utilised; this might be of interest to determine the winter 
and summer risk exposure to maximum losses and the 
provision of reserve capacity in those periods. 
 
To return to the focal point of this thesis, i.e. the GUs’ 
extreme losses incurred in a year, the above topic as well 
as this Chapter is ended here but certainly gives a 
background for further research. 
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CHAPTER 3 

Analyses of Extremes in 
GWh Losses 
 

3.1 Introduction 
 
The risk associated with extreme events has and is 
intriguing management more and more. In the energy 
platform this aspect is no different and the implementation 
of risk models that allow for rare but damaging events is 
starting to become more intrinsic in the running of the 
electricity business under the umbrella of Risk 
Management. 
It is envisaged that an energy Vol@R in the form of GWh 
and provision for reserve capacity, would become part of 
NERSA legislature for utilities in South Africa. 
The approach in this thesis is in attempting to model these 
types of risks in such a way that the GUs’ extreme losses 
are addressed. Eventually, this is foreseen to provide a 
measure for risk as mentioned above (Vol@R). 

Although the research indicated that [16] Fuller in 1914 
and [18] Griffith in 1920 played a role in describing 
extreme events, it is still the author’s belief that the seed of 
EVT results from [35] Tippett. 

Fig 1.2 portrayed a visual of the occurrence of extremes in 
a distribution. In paragraph 1.2 the basics and an outline of 
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EVT have been mentioned in terms of the history, 
Maximum Domains of Attraction (MDA), various 
methodologies to estimate the parameters of the 
distributions in the extreme values domain. It also gives a 
short introduction to using the method of “Entropy” to, 
say, assess an optimal level of the threshold given the 
distribution parameters estimates. The entropy concept is 
also used in EVT in stochastic modelling so that modelling 
is not done just heuristically and informally, but a more 
general approach is taken so that a simplistic, explicit and 
reproducible manner is used, [43] Zellner  

The extremes of the GUs’ losses in GWh for the period 
1990 to 2005 in the form of the empirical CDF, are 
illustrated in Fig 2.9. From there the “long” tail of the 
losses behaviour is clearly visible. What is also visible is 
that, at the tail, the set consists of very few data points 
relative to the rest of the set. 
 
3.2 Block Maxima 
 
Even though in this part of the modelling, two approaches 
are used, the Block Maxima (BM) and the Peak-Over-
Threshold (POT), the BM was explored but the POT 
approach was eventually adopted. 
The idea was to model the extreme yearly GU GWh loss. 
The methodology consisted in taking the maximum GWh 
loss for each year over all the GUs’, Yi = Max {Xj}, for 
i=1,2,…,n-th year and j=1,2,…,m-th GU. Hence for year 
2005, the max loss over 64 GUs’ was Y16 = 1883 GWh loss 
for the 16th year since 1990, Fig 3.1 below shows the data 
points for Yi. 
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  Fig 3.1: Yearly Maximum GU GWh  
 
From EVT, the distribution of Yi = Max {Xj}, as m →∞ 
converges to a GEV or more specifically to a SGEV: 
 
               exp { -(1 + γ.[(x-μ)/σ]-1/γ }  , if γ ≠ 0 
Gγ(x) =                     γ ∈ ℜ   Eq 3.1
    exp { -exp{-(x-μ)/σ } }  , if γ = 0 
 
where γ is the shape parameter, μ the location parameter 
and σ the scale parameter. 
By using the PWM method the parameters were estimated 
as: 

    

Shape 0
Scale 995.04

Location 1358.55  
 
With these estimates, Eq 3.1 reduces to: 
Gγ(x) =  exp{ -exp{-(x-μ)/σ } }  which is of the Gumbel 
type (see Appendix Eq. A2.5) 
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 Fig 3.2: Yearly Max Distribution: Gumbel 
 
The Gumbel pdf is given by: 
gγ(x) = (1/σ). exp {-(x-μ)/σ}. exp {-exp {-(x-μ)/σ}}  Eq 3.2 
for x ∈ ℜ (see Eq. A2.8)   
Using the estimates above, the pdf illustrated in Fig 3.2 is 
obtained. The actual yearly maxima are shown by the red 
blocks when entered into the pdf equation above. 
The interpretation of Fig 3.2 is quite useful. 
Over a similar window period the expectation is to see 
values of 1359 GWh losses more often than other values as 
a yearly maximum. Half of the time, over a similar 
window period, the system is expected to incur yearly 
maxima greater than 1700 GWh. 
What is also of interest is the return period. 
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One could be interested what value could be exceeded in 
any particular year with a chance of one in twenty (i.e. 
p=1/20 = 0.05). By using: 
 QY;p = μ – σ Ln (-Ln(1-p))     Eq 3.3 
(see Appendix A, paragraph 2.3.1), and the estimates 
above, we get QY;0.05 = 4314 GWh. 
Let us assume that the management needs to know what is 
the yearly maximum GWh loss that we expect to exceed 
every 10 years, i.e. P(Y > 10y) = 0.1  
∴ from Eq 3.3 above, 10y = 3598 GWh; i.e. the company 
should expect the maximal annual GWh loss to exceed 
3598 GWh every 10 years. 
 
  

 

p0 p Qy;p
0.85 0.150 3166.5

0.875 0.125 3362.0
0.9 0.100 3597.8

0.925 0.075 3897.4
0.95 0.050 4314.0

0.975 0.025 5016.6
0.980 0.020 5241.1
0.985 0.015 5529.9
0.990 0.010 5935.9
0.9375 0.0625 4085.45 1/16

0.97302 0.02698 4939.789 1/37  
Table 3.1: Quantiles, Block-Maxima method 
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    Fig 3.3: Return period of GWh Losses – Yearly Maxima 
 
The GWh loss levels can be expressed in the form of Fig 
3.3 above. This may be interpreted as follows: by entering 
the expected year one reads off the value on the y-axis (the 
values are computed by means of Eq. 3.3). For instance, 
the management can expect every 20 years to exceed the 
value of 4314 GWh loss. These quantiles refer to the Stress 
Loss, for instance, p0 = 0.95 yields the 20 year return level 
of a GU GWh loss It may also be considered as a kind of 
unconditional quantile estimate for the unknown 
underlying distribution of  F (which is in the MDA of the 
Gumbel, see Appendix A – Classical EVT). 
However, the quantiles in Table 3.1 are based on limited 
information and inferences are made upon the parental 
distribution based on 16 values out of 928. If one had to 
then be even more prescriptive and invoke stationarity, 
then even less observations (see Table 2.9 in Chapter 2, the 
data spans from 1996 instead of 1990)) can be used (i.e. 
that the block maxima are invariant under time shifts – this 
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was relaxed when doing the analysis). Comparing Table 
3.1 results from the fitted pdf, the expectation of the 
quantile for 1/16 years is 4085.5 GWh, however within this 
period, a value of 4939.8 GWh was observed; by 
computing the inverse, for a value of 4939.8 GWh we get a 
return period of 0.02698 or 1/37 years, over than twice the 
span!  
Clearly, this method seems not to be yielding the expected 
results. This might be that for the next 21 years we won’t 
observe such a high value, although unlikely; it might also 
be that there is not enough history. Or this might well be 
that, even with a limited dataset, by making use of the 
relationship of the losses within the categories, one could 
obtain better results. 
For instance, assume that X is the random vector of the 
GUs’ losses falling in different categories, such as those 
illustrated in Table 2.4 in Chapter 2.  
Then, X = (X1, X2,…,Xd) for each of the d different 
categories, assume that the X’s have a joint distribution 
FX (x1, x2,…,xd) = P(X1 ≤ x1, X2 ≤ x2,…, Xd ≤ xd) and assume 
that the individual losses have continuous marginals Fi (x) 
= P{Xi ≤ x}, then by [25] McNeil p111, 
FX (x1, x2,…,xd) = C [F1 (x1), F2 (x2),…, Fd (xd)] Eq 3.4 
where C  is the Copula of F and measures the dependence 
structure of X. For the GEV in the Block Maxima 
application these are referred to as MEV (Multivariate 
Extreme Value) Copulas. 
In the BM methodology used, the Gumbel Copula would 
be given by Eq 3.5 below:  
C ]}])({})([{[

21
/1

2
/1

1),(
βββ

β
vLnvLnGu evv −+−−=  , 0 < β <1 Eq 3.5 
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The Copula would show the tail dependence, i.e. the 
tendency of extreme values to occur together in the 
different categories. 
Let d=2 (i.e. only two categories of losses): 
If β =1, C 2121 .),( vvvvGu =β , which models the 
independence of (X1, X2)′  
For β = ]0;1[  , then the Copula models the dependence 
between X1 and X2 . 
At β = 0, the process would have perfect dependence 
between X1 and X2 i.e. X1 = g(X2). 
In Chapter 2 Table 2.4 exhibited 6 categories. As it may be 
seen, the modelling of 6 dimensions in amalgamating Eq 
3.5 into Eq 3.4 becomes very complex. This is a typical 
problem when d becomes large in the usage of Copulas in 
the BM methodology. This problem is usually referred to 
as the “curse of dimensionality”; a usual solution is to 
collapse the model from a Multivariate into a Univariate 
one. 
 
NB: In the parameter estimation for the BM pdf above, the 
PWM method was used. The reason for this is that the 
value for γ was not known. Seen that the GEV applies to 
the BM method, if one were to choose MLE to estimate the 
parameters, one ought to exercise caution as a condition 
for using MLE is that the data must be free of the 
parameters we are trying to estimate, this is usually 
referred to as regularity. The GEV is known to be “non-
regular” for γ ≠ 0. 
 
Although the BM method provided an insight in the 
extremes and surely more research for the future in using 
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the Copulas, unfortunately, with all the data that was 
collected, it did not yield the needed information 
adequately (see Table 3.1 and comments in p.49 [top]). 
This enticed further research into the Peak-Over-Threshold 
method as a different approach to analyse the GWh losses. 
 
3.3 Peak Over Threshold (POT)  
As described in the previous paragraph, the BM approach 
yielded possibilities, such as stress-loss assessment, usage 
of Copulas, but somehow lacked effective returns out of 
the analyses (see Table 3.1 above whereby that max loss 
should have predicted 1/16 and not 1/37). Somewhat 
lately, a more modern approach has been one of using 
large observations which exceed a relatively high 
threshold. This method is known as the Peak Over 
Threshold (POT) method. Because of the usually limited 
data sets, the POT method is generally considered, at 
present, the most effective applied approach to EVT. There 
are two further types of methods within POT: The semi-
parametric (POTsp) and the full-parametric (POTfp). The 
POTsp concentrates around the Hill, Pickands, Zipf, 
Beirlant-Q estimators while the POTfp, is  based on the 
GPD properties. 
There is a further methodology that is gathering 
momentum and that is the one that applies itself to both the 
BM and POT methodologies: the Bayesian approach to 
EVT, Chapter 4 is devoted to this methodology. 
In this Chapter, the analysis concentrates on the classical 
approach, and utilises the POTsp to narrow down the 
analysis; the POTfp is the avenue taken for the GUs GWh 
losses parametric estimation. 
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3.3.1 Semi-parametric method (POTsp) 
 
As in the classics, it is said that a picture explains a 
thousand words; this approach follows that kind of 
philosophy. The Quantiles properties are leveraged to yield 
required results. For instance, Quantiles (of the sample and 
distribution) are linearly related if the drawn sample is 
derived from the hypothesised distribution. By utilising 
this property a power instrument called the Q-Q plot can 
be used to derive the goodness-of-fit of the GWh Losses 
(see Appendix C paragraph 2.5 on derivation of Quantiles 
from particular distributions). 
Since we are dealing with extremes the first attempt is at 
plotting the classical ones that map onto the MDA: the 
Weibull, Gumbel and Fréchet distributions. 
This was performed and the results are illustrated in Fig 
3.4 to Fig 3.7 here below. 
The Exponential Q-Q plot of Fig 3.6 was given as 
illustrative of a specific part of the Gumbel domain (note 
the kink between the12th and 11th largest observations). 
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Weibull Quantile Plot
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 Fig 3.4: Weibull Q-Q Plot of the GWh Losses 
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 Fig 3.5: Gumbel Q-Q Plot of the GWh Losses 
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     Fig 3.6: Exponential Q-Q Plot of the GWh Losses  
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Visually, Fig 3.4 to Fig 3.6 exhibit a significant departure 
at the tail (using the red straight line as a reference). Since 
the objective here is to narrow down to which population 
the GWh Losses belong to, the Gumbel and Weibull 
families already show that the tails from these families do 
not represent well the behaviour of the GWh losses. There 
remains one other class and that is the Fréchet class of 
distributions. When exploring this avenue, the Q-Q plot 
shown in Fig 3.7 was obtained. It is visually clear that this 
type of distribution seems more plausible than the others, 
as the linear tail trend fit well in the tail and well into the 
empirical on the left hand side. 

GPareto Quantile Plot 
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Fig 3.7: Generalised Pareto Q-Q Plot of the GWh Losses 
 
The Q-Q plot of the GPD also indicates that there seems to 
be a kink between the 12th and 11th largest observations. 
Zooming in at this aspect of the tail and utilising the 11 
largest observations in the Quantile domain, and applying a 
linear model fit to obtain the parameters, Fig 3.8 was 
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obtained. The EVI (see Appendix A paragraph 2.1) can be 
estimated from the slope of this fit namely 0.4341 with a 
95% CI [0.3793 ; 0.4889]. 
This seems to give a reasonable result and prompted 
further investigation of this tail: the fit in Fig 3.8, indicated 
a “blip” in the 3rd largest observation. This loss was 
incurred at a GU3 of a particular power station in ‘90, if a 
“background loss” of approx. 500 GWh was removed, then 
a much better fit was obtained which is illustrated in Fig 
3.9 yielding to an EVI estimate of 0.4213 with a 95% CI 
[0.3898 ; 0.4528]. With an EVI > 0 , the process indicates 
that it not does not derive from a Gumbel Class (Appendix 
A, Eq A2.3 to A2.5). 

Tail of Generalised Pareto Fit (EVI Estimation)
y = 0.4341x + 5.6017

R2 = 0.9727
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k =11 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 5.6017 0.1282 43.698782 0.000000 5.3117 5.8916
X -Slope 0.4341 0.0242 17.924033 0.000000 0.3793 0.4889  

    
Fig 3.8: GPD Q-Q Plot of the 11th Largest Observations 
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Tail of Generalised Pareto Fit (EVI Estimation) y = 0.4213x + 5.6556
R2 = 0.9903
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k =11 (Adj.) Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 5.6556 0.0737 76.736524 0.000000 5.4889 5.8223
X -Slope 0.4213 0.0139 30.256506 0.000000 0.3898 0.4528  

Fig 3.9: GPD Q-Q Plot of the 11th Largest Observations 
(Adjusted) 
 
[3] Beirlant has shown that if the behaviour can be 
expressed “when a non-decreasing continuous function g 
exists between Y and X, such as Y = g(X), then the same 
relation exists between the corresponding quantiles of the 
respective distributions”, i.e.  
QY(p) = g(QX(p)) ,  ∀ p ∈   (0;1), extensive work was also 
done by [12] Dierckx in this regard. Hence, having carried 
out the analyses that yielded Fig 3.4 to 3.9 (see [3] Beirlant 
pp 81-87, particularly top of p85), the Q-Q method 
emphasised the characterization of the behaviour of the 
GWh Losses at annual GU level, which can therefore be 
described by a Generalised Pareto Distribution.  
Mean Excess Function (MEF) Diagnostic (see Appendix 
A paragraph 2.4)  
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Mean Excess Function
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  Fig 3.10: MEF vs GWh Losses 
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  Fig 3.11: MEF vs k 
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In Fig 3.10, there is again substantiation that the GWh 
Losses derive from a distribution in the Fréchet class; the 
linear trend is more prominent than the curvy-linear one. 
[3] Beirlant, p39 Fig I15, shows that the linear behaviour 
belongs more to the Pareto type than the Gumbel or 
Weibull types (see also [3] Beirlant Fig I.18 p42, in 
comparing with Fig 3.10 and Fig 3.11). 
Fig 3.11 shows the MEF versus k, the indicator that 
represents the largest observation, e.g. the largest 
observation would be the first, therefore k=1, the 2nd 
largest, k=2, etc…, this means that the set of k would span 
from1 to n-1, where n is the total number of observations. 
Then 

 MEF = ê(k) = kn

k

i
in yy

k −
=

+− −∑
1

1
1    Eq 3.6

 where y represents the ordered GWh losses  
This instrument can be used in management circles when 
the mean GWh loss of say 20 GUs’ might incur at the 
extremes. By using Fig 3.11 (or more specifically, 
computing the MEF thereof) the Mean Excess loss at 
k = 20 is 893 GWh. 
 
Statement: The MEF is related to the Conditional Tail 
Expectation (CTE). 
Let the goal be in estimating the CTE μp then,  
μp = E [Y|Y>yp], where yp is the upper pth quantile and not 
very small (e.g. 5%). Let (k/n) ≈  p and define 

 Dk = ∑
+−=

n

kni
iY

k 1

1 , then for large n,  

k ( Dk - μp ) ~ N [ 0 ; 2
pσ  + p(yp - μp)2 ],  
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where 2
pσ  = var [Y |Y > yp]. 

The values of yp , μp and 2
pσ  can be estimated from the 

sample by using the sample quantile Yn-k , the computed Dk 
and (SD)2  , respectively; where (SD)2  is the sample variance 
of the top-k order statistic. 
The CTE and MEF are then related by: 
 E [Y |Y > c]  =  c + ê(c). 
The MEF extends to the Hill estimator (this estimator is 
biased, p56 [3] Beirlant). 
On the Q-Q plots of Fig 3.7 to Fig 3.9 it was mentioned 
that the slope is expected to be linear if the variable is 
behaving in the Fréchet class; further, this slope is defined 
as the EVI (see Appendix A paragraph 2.1) or the inverse 
of the Pareto Index (if the distribution is of the Pareto 
type). 
The Hill estimator is given by: 

   Hk;n =  )()(1

1
1 kn

k

i
in yLnyLn

k −
=

+− −∑    Eq 3.7 

Hill Estimator
Plateaus indicate values of Pareto Indeces
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 Fig 3.12: Hill Estimator vs k 
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As shown in Fig 3.12, the Hill estimator exhibits two 
plateaus, one at 0.4808 and another at 0.9095. If we 
compare this to the results obtained in Fig 3.8 (i.e. without 
the outlier adjustment), then the value for the EVI of 
0.4808 is within the 95% CI, and this seems a plausible 
value. 
A more thorough analysis by inspection yielded a value for 
the EVI of 0.47508. 
 
The Pickands estimator result is given in Appendix C, 
paragraph 2.6.  
 
Fig 3.12 is very similar to the one obtained by [3] Beirlant 
Fig I20 p 44 of a Burr distribution. Beirlant goes further in 
assessing an EVI by means of weighting the Hill estimator 
to arrive at an optimal k (pp 59-64). 
This method yields an EVI of 0.4684 at k =61, which is 
comparable to the one obtained in Fig 3.8; its CI’s can be 
obtained by ([3] Beirlant p64): 
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γγ  , ∴  at 95% two-sided, 

  γ̂  = [0.3744  ; 0.6253] 
Although this interval is wider from the upper side, than 
the one obtained from the Quantile regression (γ is 
adjusted for the outlier), the results remain relatively 
comparable. 
From Fig 3.9’s parameters the following model for the 
GWh losses was derived: 
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In a year:   
GU-GWh Losses = t . e –γ. Ln (1-p)  , 0 ≤ p < 1 Eq 3.8 
Here the EVI may be interpreted as the probabilistic rate at 
which all GUs would tend to incur the losses and this rate 
would induce the losses to vary, non-linearly according to 
p (at least from   p  ≥  93%), see Fig 3.13 below. 
In Eq 3.8, t may be interpreted as the expected 
“background” losses or a possible threshold. For p = 0, Eq 
3.8 reduces to t = 285.89 GWh. 
The results of Eq 3.8 can essentially be summarised in the 
table below: 
 

p 1-p Q(p) =-Ln(1-p) Ln(GWh) GWh

0.95 5.0% 2.9957 6.9177 1010.02
0.955 4.5% 3.1011 6.9621 1055.86
0.96 4.0% 3.2189 7.0117 1109.58

0.965 3.5% 3.3524 7.0680 1173.79
0.97 3.0% 3.5066 7.1329 1252.55

0.975 2.5% 3.6889 7.2098 1352.55
0.98 2.0% 3.9120 7.3038 1485.88

0.985 1.5% 4.1997 7.4250 1677.34
0.99 1.0% 4.6052 7.5958 1989.79

0.995 0.5% 5.2983 7.8878 2664.60
0.996 0.4% 5.5215 7.9818 2927.25
0.997 0.3% 5.8091 8.1030 3304.43
0.998 0.2% 6.2146 8.2738 3919.98
0.999 0.1% 6.9078 8.5659 5249.38  

 Table 3.2: Quantiles, POTsp method 
 
Practically, from Table 3.2, one may deduce that with a 
fleet of 64 units, the company expects to exceed 1010 
GWh once in twenty years. Another way of interpreting 
the table above, is that since the expectation is in GU-
Years, is that, 1 / [(1-p). 64] = return period,  
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i.e. for 1-p = 0.1%, one would expect that a loss by a GU 
of 5249 GWh be equalled or exceeded every 15.63 Years 
(or 15 years and 8 months). Similarly, from another angle, 
with a p = 99.8%, one would expect that a loss by a GU of 
3920 GWh be equalled or exceeded every 7.8 Years (or 7 
years and 10 months). If the fleet was to increase to, say 70 
GUs, then with p = 99.8%, one would expect that a loss by 
a GU of 3920 GWh be equalled or exceeded every 7.14 
Years (or 7 years and 2 months). Also, the expectation to 
have the absolute maximal GWh Loss of 5935 GWh, is 
0.07% or with a fleet of 64 GUs, once in 20.9 Years (or 20 
years and 11 months).  A comparison may be made with 
Fig 2.9, whereby from table 3.2 we get that there is a 5% 
chance that a value of 1010 GWh would be exceeded. 

GU GWh Losses Model 
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 Fig 3.13: GU-GWh Losses Tail Model  
  
The model may be inversed so as to derive the expected 
p’s : 
p = 1 - e –[Ln (GWh)-Ln (t)] / γ , γ ≠ 0   Eq 3.9 
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Using Eq 3.9 and keeping t constant (even though its 95% 
CI is [241.99 ; 337.76]), but letting γ  be within its 95% CI, 
Fig 3.14 was obtained. 
Scrutinising these results one may see that the empirical 
values do not fit well with a t = 285.89 GWh (the “black 
line” in Fig 3.14 tends to be outside the confidence bands). 
A choice criterion might be to choose t =1296 GWh; that is 
the value at which the empirical crosses the level of 
significance, but the odds that this value would be the most 
likely t, are risky. 
Another choice criterion might be a t = 1591 GWh; this 
being the value at which the empirical is close to the 
expectation (the “blue line” in Fig 3.15), here k = 13 
largest values. 
Or one may try to get even closer to expectation by using 
t = 1862 GWh while here k = 11 largest values. Although 
this is not surprising, as the Q-Q plot was fitted with k =11 
(see Fig 3.6 to 3.9 – kink level); what is surprising is that 
the fit extends up to k =21 with a value of t =1296 GWh. 

GPD Quantiles Distributional fit ( t  fixed; γ 95% CI )
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 Fig 3.14: GU-GWh Losses GPD Fit 
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GPD Quantiles Distributional fit ( t  fixed; γ 95% CI )
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 Fig 3.15: GU-GWh Losses GPD Fit (zoomed) 
 
Fig 3.15 zooms-in to illustrate the fit up to k =13 with a 
t = 1591 GWh 
 
3.3.2 Full-parametric method (POTfp) 
The POTsp approach yielded very good results, and as it 
might have been perceived, raised a few more questions. 
The most fundamental one from the previous paragraph 
was “what should the value of t be?”, “how should it be 
chosen?” “can it be estimated effectively? 
It is already known (from paragraph 3.3.1, above) that the 
GWh losses follow a Fréchet type of distribution. 
Furthering the thought, from the works of [31] Pickands, 
the study pinpointed onto making use of the GPD 
properties (see Appendix A paragraphs 2.2 and 2.3.2) to 
model the GWh Losses behaviour in more detail. 
Let X represent the ordered GWh losses and let t be the 
threshold, if Yi = Xi – t , 
for Xi > t, then for t – large, Y ~ GPD, whereby: 
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                      1- (1 + γ.y /σ)-1/γ   , if γ ≠ 0 , γ.y> -σ , y > 0 
GPDγ,σ(y) =           
           1 -exp{- y /σ }      , if γ = 0 , y ≥ 0  
               Eq 3.10 
 
When γ > 0, the GPD is heavy tailed, this means that the 
distribution does not have a complete set of moments 
(while the Normal, by contrast, has a complete set). Hence 
with the shape γ > 0, the moments are infinite for k ≥ 1/ γ, 
when γ = 0.5 the GPD has an infinite variance and when γ 
= 0.25 the GPD has an infinite 4th moment. This does not 
mean that there is no justification in a real market for 
infinite moments (like the 2nd and the 4th). 
Usually the choice of t̂  should be such that it’s high 
enough so that the asymptotic properties for the GPD can 
be satisfied and low enough so that there is sufficient data 
to estimate the parameters. 
 
Given k exceedances above t, two methods were used to 
estimate the location ( t̂ ), the shape ( γ̂ ) and scale (σ̂ ) 
parameters: the L-Moments method and the Bayesian 
method (see paragraph 1.2.2 in the 1st Chapter). The 
Bayesian method is reflected in Chapter 4. 
 
The estimation of percentiles may be computed as follows 
Let zp = upper pth percentile of GPDγ,σ(x-t), the estimate of 
zp is: 
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where P(X > t) > p and P(X > t) is estimated by the sample 
proportion exceeding t.  
That is P(X > t) = Nt / n  and  p= (1 – q) and inverting by 
making the exponent γ negative. 
Let us say for instance that we would like to position our 
threshold at the 98.75th percentile, this means that the 
sample proportion [(n – Nt ) / n] = 0.9875, since n =928, 
Nt  = 928.(1-0.9875) = 11.6, i.e. we ought to have 11 or 12 
observations above our threshold. In Eq 3.11, say with 
t = 1725 (at the 98.75th percentile), then: 
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estimate γ̂  and σ̂  
The reason of estimating the parameters of the tail using 
properties of the GPD under a threshold condition is 
usually because the data is very sparse at the tail end. 
 
3.3.2.1 GPD Parameters Estimation 
The usual preferred method is the MLE, however in this 
thesis a different approach is used. The first is the one of 
L-Moments (LM) and the second one, which is given in 
Chapter 4 is the Bayesian method. 
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Whenever using these methods, the cautionary statement 
(underlined) made in the paragraph above must be kept in 
mind.  
The LM method (see Appendix A paragraph 2.3, aspect 
IV) resulted as an excellent method, particularly for the 
assessment of the threshold. The PWM is the precursor to 
the LM but with significant advantages, notably the ability 
to summarise a statistical distribution in a more meaningful 
way: they are linear functions of the sample values, they 
are virtually unbiased and have relatively low sample 
variance. LM ratio estimators have also a small bias and 
variance especially in comparison with the classical 
coefficients of skewness and kurtosis. LM estimators are 
relatively insensitive to  outliers 
The LM method has shown its power in the case of 
heterogeneous data sets; the quantile estimation for a 
Pareto distribution gives the smallest bias and RMSE when 
compared with MLE, LS and classical Moments [40] van 
Gelder. 
Assuming a threshold t, and the GWh Losses represented 
by X with a distribution function FX(x), consider Y = X – t , 
[31] Pickands has shown that asymptotically, the 
distribution of Y (i.e. the X’s conditional on t), follows a 
GPD, given in Eq 3.10, above. 
This distribution is unbounded (i.e. 0 < y < ∞), if γ ≥ 0 and 
bounded (i.e. 0 < y < {σ/γ}), if γ < 0 (Eq 3.10). 
Eq 3.10 has a unique threshold property, i.e. if X~GPD 
then Y, the conditional distribution of the excesses, also 
follows a GPD with the same γ in X’s GPD. 
Computations of quantiles of exceedances from Eq 3.11 of 
a value xr, based on a r-year period, corresponds to a 
period Nt . r / n, where ξ = tN̂  is the Mean Exceedance 
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rate per year. From Table 2.4 in Chapter 2, Table 3.3 
below was obtained, 

No. Exceedances over 
a threshold of    t = 

400
2005 7
2004 7
2003 3
2002 1
2001 0
2000 0
1999 1
1998 0
1997 1
1996 1
1995 3
1994 2
1993 2
1992 6
1991 3
1990 2

Total 39
Tot Years 16

Mean Exceedance Rate 2.44  
 Table 3.3: Mean Exceedance Rate 
 
The table above shows that, should threshold of 400 GWh 
be used then,  ξ, the Mean Exceedance rate is 2.44 GUs 
p.a.  That is one would expect 2.44 GUs each year to 
exceed the threshold of 400 GWh  (derived from a total of 
39 GUs over a period of 16 years). The recurrence period 
would be 1/ξ = 0.41, i.e. one would expect one GU every 
(0.41x12) approx. 5 months, to exceed a loss of 400 GWh.   
Again this aspect shows the importance of not only of 
estimating the shape and scale but also of the threshold. 
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Eq 3.11 reveals an interesting trade off, as shown in this 
diagram 
 
 
 
 
 
Hence an optimal threshold might exist that would result in 
a minimal trade off of accuracies 
[7] Davison et al, have also shown that the distribution of 
the maximum excesses, 
 Z = Max {Yi}, i= 1, 2…, k follows a GEV, provided that 
the exceedances over the threshold are generated from a 
Poisson process. 
 
Returning to L-Moments, the method of 3-LM was used so 
as to get an indication of the threshold estimate. The 3-LM 
was initially applied to the full dataset and yielded to 
following result (refer to Appendix A paragraph 2.3, aspect 
IV): 

r 1 2 3
b(r) 186.1983 161.1779 144.0855
b(0) 229.6999

λ1 229.6999
λ2 142.6968
λ3 79.57717
λ4 51.0534

L-CV τ 0.621231
τ3 0.557666
τ4 0.357775

Shape γ 0.432056
Scale σ 127.0721

Location t 5.959328  
Table 3.4: 3-LM Parameter Estimates - Full Dataset 

t

Inclusion of additional Data:
Accuracy1 Movement Further in Tail Region:

Accuracy2

Accuracy 1 >> Accuracy 2

t

Inclusion of additional Data:
Accuracy1 Movement Further in Tail Region:

Accuracy2

Accuracy 1 >> Accuracy 2
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The indicator for the Threshold is 6 GWh as expected from 
the Full dataset; comparing it to the one obtained by the 
Two-Way Joining method in Cluster Analysis: 449.1 GWh 
(Fig 2.3 the lowest value in the Legend) it indicates that 
further selection is required. The shape parameter, with the 
full dataset, shows that the full distribution, if of the Pareto 
type, would be unbounded (γ > 0).  
As suggested by [30] Pandey et al, when the 3-LM is 
applied on a Y = X – t, type of variable, it is very efficient 
under the GPD domain (but still exercise caution as 
mentioned above).  
Under this premise, the moments were computed and the 
results are tabulated here below. 
Threshold values were selected according to various 
criteria, for instance, the value of 484 was chosen as this 
seemed the expected background average GWh loss, 
resulting primarily from the work in Chapter 4. 
  
 

Shape Scale Location
t γ σ u k MEF

150 0.30693345 253.959047 -14.532722 351 359.99
375 0.34645987 288.806697 31.8118215 155 458.78

403.4 0.36770832 280.830467 39.9049166 143 467.35
449.1 0.38927422 272.856838 30.3970655 132 466.15
484 0.40434481 271.215555 32.7506348 120 477.55
878 0.36912826 429.504954 74.3137793 39 724.29
1076 0.48827845 419.759019 -3.7451523 27 816.71

Q-Q Plot 1296 0.40722789 436.672533 114.265318 21 815.16
Q-Q Plot 1591 0.44453959 414.14702 261.011381 13 954.48

1796 0.53903737 311.70399 308.219593 11 1036.63
Q-Q Plot 1862 0.53903737 311.70399 242.219593 11 959.45

1917 0.58509384 268.114843 418.941368 9 1236.99
2252 0.67061101 185.041956 591.941207 6 1766.92  

Table 3.5: 3-LM Parameter Estimates–Various Thresholds 
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The value of 403.4 GWh was obtained visually from the 
full distribution Q-Q plot of Fig 3.7 in Chapter 3 (giving an 
intercept of 6 and calculating e6 = 403.4). The values of 
449.1 and 1796 were obtained from the lowest threshold in 
the two-way joining Cluster Analysis results of Fig 2.3. 
The value of 1076 was arbitrarily chosen (almost as a mid-
point), while the value of 2252 was taken from the results 
of the entropy method (see Chapter 4 and Appendix C) at 
k = 6. The values of 1296, 1591 and 1862 were as a direct 
result from the POTsp methodology. 
Using Table 3.5, the following graphs were produced: 
Fig 3.16 a) indicates the γ increases after t > 878 GWh, 
with a marked kink at 1862 GWh, before rising.  
The kink is also evident in Fig 3.16 b) with a decrease in 
MEF at t = 1862 GWh 
The location parameter also drops at this level. These kinds 
of effects seem to be indicative that the parameters yielded 
from using t = 1862 GWh would be the ones to use as a 
preferred choice, i.e.  

Shape Scale Location
γ σ u

0.53903737 311.70399 242.219593
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 Fig 3.16 a) : EVI, γ at various threshold levels 
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 Fig 3.16 b): EVI, σ at various threshold levels 
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3.3.2.2 GWh Quantile Model 
 

Shape Scale Location t = 1862
t γ σ u k

150 0.30693345 253.959047 -1726.5327 351
375 0.34645987 288.806697 -1455.1882 155

403.4 0.36770832 280.830467 -1418.6951 143
449.1 0.38927422 272.856838 -1382.5029 132
484 0.40434481 271.215555 -1345.2494 120
878 0.36912826 429.504954 -909.68622 39

1076 0.57558759 292.836049 -659.43715 27
Q-Q Plot 1296 0.40722789 436.672533 -451.73468 21
Q-Q Plot 1591 0.44453959 414.14702 -9.9886194 13

1796 0.53903737 311.70399 242.219593 11
Q-Q Plot 1862 0.53903737 311.70399 242.219593 11

1917 0.58509384 268.114843 473.941368 9
2252 0.67061101 185.041956 981.941207 6
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Fig 3.17: EVI, σ at various threshold levels – 3LM 
(Known Threshold) 
 
Fig 3.17 indicates that the parameter estimates, when the 
thresholds are known, differ substantially, but are still in 
concordance with results obtained from the POTsp. The 
shift occurs in that thresholds below 1000 GWh do not 
seem plausible, and that parameters associated with a 
threshold of 1591 GWh (also a value from the Q-Q plot) 
seem more plausible. Therefore the following values were 
adopted: 

   

Shape Scale Location
γ σ u

0.44453959 414.14702 -9.9886194    
Now, one may make usage of Eq 3.11:  
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where P(X > t) > p and P(X > t) is estimated by the sample 
proportion exceeding t.  
Unfortunately, the parameters above yielded a poor fit. The 
parameters were solved by a squared error (keeping the 
threshold constant and adding the last percentile) 
minimizing algorithm that yielded the following new 
parameters: 

  

n 928
Shape Scale Location

Nt γ σ u
13 0.3964544 756.88837 1591

0.4445396 414.14702 1591  
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Fig 3.18: Upper Percentiles; re-parameterisation Nt = 13 
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Shape Scale Location
Nt γ σ u
11 0.2801847 908.44831 1841.8416

0.5390374 311.70399 1862  
  
 

Upper Percentiles Graph

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

GWh

U
pp

er
 p

er
ce

nt
ile

s

t=1591
t=1862
Actuals

 
Fig 3.19: Upper Percentiles; re-parameterisation Nt = 11 
 
For Nt = 13 (giving a min of 756.8 GWh), the fit for the 
model with a threshold of 1591 when re-parameterised is 
shown in Fig 3.18 (blue line) while the model with a 
threshold of 1862 was kept with the original parameters 
(red line), for comparative reasons. The actual, empirical 
percentiles are given by the black and yellow curve. The 
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necessity for adjusting the parameters is evident. Using the 
same algorithm, the model with the 1862 threshold did not 
perform as well. By contrast when reducing Nt to 11, it (the 
red line) performed much better (Fig 3.19) than the model 
with the 1591 threshold; the latter was then fixed with its 
original parameters for comparative reasons. 
From Eq 3.10, the final adopted model for the GWH Loss 
quantiles is: 
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5.9088.1841ˆ
2802.0qxq  

    Eq 3.12  
      for GWh Losses above 765.8 GWh. 
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 Fig 3.20: GWh Losses Quantiles 
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The Eq 3.12 can be expressed in graphical form as shown 
in Fig 3.20 and may be used as follows: for  a GWh Loss 
greater than 2700 GWh, reading off the graph (or using 
Table 3.6 below for more exact values), there is a 
(1 – 0.995) = 0.005 chance of occurrence; now, for a fleet 
of 64 GUs one would expect to see a GU with such a loss, 
or greater, once every 3.125 years (1/[0.005x64]). On the 
average, this seems consistent with the observations in 
Table 2.4. 
  

 

γ σ u
0.28018471 908.448309 1841.84157

Percentile GWh Loss Percentile GWh Loss Percentile GWh Loss
0.95 765.76 0.967 1033.22 0.984 1580.47

0.951 778.05 0.968 1054.29 0.985 1634.87
0.952 790.67 0.969 1076.23 0.986 1694.11
0.953 803.64 0.97 1099.08 0.987 1759.04
0.954 816.96 0.971 1122.94 0.988 1830.70
0.955 830.66 0.972 1147.87 0.989 1910.44
0.956 844.75 0.973 1173.97 0.99 2000.05
0.957 859.26 0.974 1201.34 0.991 2101.93
0.958 874.21 0.975 1230.09 0.992 2219.44
0.959 889.62 0.976 1260.35 0.993 2357.44

0.96 905.51 0.977 1292.27 0.994 2523.30
0.961 921.93 0.978 1326.01 0.995 2728.95
0.962 938.90 0.979 1361.79 0.996 2995.37
0.963 956.44 0.98 1399.81 0.997 3364.37
0.964 974.60 0.981 1440.34 0.998 3937.62
0.965 993.42 0.982 1483.70 0.999 5081.85
0.966 1012.95 0.983 1530.26  

Table 3.6: Percentiles for GWh Losses–Final Adopted Model 
 
These satisfactory findings conclude the work in this 
Chapter. 
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 CHAPTER 4 

Bayesian Approach to 
the GPD Fit 
 

4.1 Introduction 
 
The workings in this Chapter utilise extensively de Waal’s 
contribution in [2] Beirlant, Chapter 11. 
After using LM method to estimate the GPD parameters, 
such as the EVI and estimating the threshold t, one ought 
to consider that the EVI would have a confidence interval 
(in the classical frequentist terminology) and hence the 
results obtained in Chapter 3, paragraph 3.3.2.2, would not 
be sufficient: a confidence band or region ought to be 
determined. 
However, with reference to the classical sense, in obtaining 
a (1 – α)% confidence interval, one might be solving a 
different issue, since, from the author’s philosophical 
perspective, it is difficult to conceptualise repeatability 
when events are supposed to be rare; in this classical sense 
the “IF the experiment could be repeated” is a big “if”, and 
in the author’s belief, an assumption on the prior is far 
more plausible than a big “IF”. 
One might need to answer what is the probability 
distribution of the worst GWh losses that would be 
observed in 20xx. This refers to a predictive distribution of 
an unobserved variable. Hence a predictive probability 
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would have to be constructed for 20xx conditional on the 
event of, say, a “new” catastrophic loss would happen. It is 
not evident that this issue may be solved by a classical 
approach; however by using a Bayesian approach, one may 
define the issue as follows. 
Let the GWh Loss be represented by the dataset X = (x1, x2, 
…, xn) and be modelled by the conditional predictive 
distribution fX [x|(γ,σ)], essentially this is what was done in 
Chapter 3 and fX [x|(γ,σ)]is also referred to as the 
Likelihood of  (γ,σ). 
Let π [(γ,σ) | X] be the posterior density of the parameters 
(γ,σ) given the past data X. 
 Let π (γ,σ)  be the prior denoting the density of the 
parameters. 
 Now, the Likelihood of (γ,σ), 

 fX [x|(γ,σ)] = ∏
=

n

i 1

fX [xi|(γ,σ)], assuming that the GWh 

losses are independent. According to Bayes’ Theorem: 

 π [(γ;σ) | X] = 
∫
Ω

);();();|(
);();|(

σγσγπσγ
σγπσγ
dxf

xf

X

X ,  Eq 4.1 

 where Ω is the parameters’ space 
Now the denominator: 

∫
Ω

);();();|( σγσγπσγ dxf X = constant 

Therefore Eq 4.1 can be expressed as (the symbol ∝ means 
"proportional to"): 
 π [(γ;σ) | X] ∝ π (γ;σ)  x  fX [x|(γ;σ)]   Eq 4.2     
   i.e. Posterior Density ∝  Prior Density  x  Likelihood 
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Estimates of  γ , σ can be obtained from the mode, median 
or mean of the Posterior. 
The credibility around these estimates can be described by 
the Posterior itself in terms of the “highest posterior 
density (hpd) region”, according to a certain probability   
(1 – α), being the hpd region which will contain         
100(1 – α)% of the values, with no need to fall back into 
asymptotic theory (as in the classical way when obtaining 
confidence intervals). 
Another attractive aspect is the ease of prediction: if Xn+1 is 
a future prediction with density fX [xn+1 | (γ,σ)], then the 
predictive distribution, over the parameter space Ω, is 
given by: 
fX [xn+1 | X] = ∫

Ω

fX [xn+1|(γ;σ)] . π [(γ;σ) | X]  d(γ;σ) ,  

Hence this predictive density reflects its uncertainties 
through the future observations’ uncertainties and the ones 
of the Posterior.  
This is excellent logic in approaching the challenge, 
measures ahead than the classical approach, however the 
million dollar question hinges around the Prior: which 
prior one chooses á-priorí? When calling onto a prior 
density by some means of information or supposition, the 
process is called elicitation. 
For the estimation of the γ and σ parameters and in the 
elicitation of the prior, the variance-covariance matrix of 
( γ̂ ,σ̂ ) is approximated by using the sample Fisher-
Information Matrix (FIM), which in turn is used to define 
Jeffreys’ prior, J (γ,σ). 
J (γ;σ)  ∝   |)σγ,(| I , where I(γ;σ) is the FIM with 



 81

I (θ) = Ε 
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

∂
∂

θ
θ

2
X

2 )(|X(fln
, where θ is the distribution’s 

parameters vector. 
Jeffreys’ prior is considered the standard starting rule for 
an objective Bayesian analysis. 
 
Another prior is the Maximal Data Information (MDI) 
prior by [43] Zellner, designed to provide maximal average 
data information on the γ and σ parameters, and is defined 
as: 
π (γ;σ)  ∝  exp { E[fX (X|(γ;σ))]}   
 
In this chapter we will address the fit of the Log-Normal 
and the GPD to the GWh losses using MCMC. The prior 
on the two parameters that we will consider will be an 
objective prior, namely the MDI prior by Zellner (1977) 
(see bottom of page 447). A big advantage of the Bayesian 
approach is that confidence intervals on the parameters are 
easily to establish and also the prediction of high quantiles 
with confidence limits are easy to compute. 
 
Let us begin with a preamble resulting from the works of 
[23] Kedem et al. 
Let X represent the GWh Losses and let X(ω) be the r.v. 
with a distribution that indicates a GU not failing with 
probability 1 – p and within this event, it admits a 
continuum of GWh Losses. Therefore, if GX(x) denotes the 
distribution function of X, then it is of the mixed type 
resulting in the following: 
GX(x) = (1 – p) HX(x) + p FX(x), 
where  HX(x) = 1 and FX(x) = 0 if  x = 0   and 
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 HX(x) = 0 and FX(x) = FX(x) if  x > 0    
with HX(x) being discrete and FX(x) being continuous and p 
representing the probability of a GU failing. 
To establish a linear relationship between X’s expectation 
and the expected value of an integrable function of X, we 
proceed as follows: 
Let ϕ (X) be an arbitrarily integral function of X. Then: 
Ε[ϕ (X)] = (1 – p) ϕ (0) + p E[ϕ (X) | X > 0]  Eq 4.3     
In particular for ϕ (X) = X, Eq 4.3 results in: 
Ε[X] = p E[X | X > 0]     Eq 4.4 
from Eq 4.4, p = Ε[X] / E[X | X > 0]   Eq 4.5 
substituting p in Eq 4.3 : 

]0|)([
]0|[

][)0()
]0|[

][1()]([ >
>

+
>

−= XXE
XXE
XE

XXE
XEXE ϕϕϕ  

Solving for E[X], we get: 

{ })0()]([
)0(]0|)([

]0|[][ ϕϕ
ϕϕ

−
−>

>
= XE

XXE
XXEXE  

{ })0()]([][ ϕϕβϕ −= XEXE      Eq 4.6 
whereby βϕ now becomes the slope of the linear 
relationship between Ε[X] and Ε[ϕ (X)]; this slope only 
depends on the continuous part of the distribution of X and 
ϕ (0), hence the slope is independent of the probability of a 
GU failing, it depends only on the GWh Losses’ 
distribution i.e. FX(x), assuming that it exists, and if ϕ (0) = 
0, which means that then there is no intercept in Eq 4.6. 
 
Let us now fix a time τ and let Xτ(a) be a r.v. that yields a 
GWh Loss at time τ. Again, Xτ(a) would have a mixed 
distribution governed by pτ the probability of a GU failing 
at time τ and its losses behaving as fXτ (xτ). 
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Equation Eq 4.6 can now be modified as: 
{ })0()]([)(][ ϕϕτβ τϕτ −= XEXE ,    Eq 4.7 

where, 
)0(]0|)([

]0|[)(
ϕϕ

τβ
ττ

ττ
ϕ −>

>
=

XXE
XXE    Eq 4.8 

But now, βϕ(τ ) depends on τ. By making use of the 
simplifying homogeneity assumption, we assume that 
βϕ(τ ) is independent of τ. The homogeneity assumption 
would state that the continuous part of the distribution of 
the GWh Losses is homogeneous in the time dimension: 
i.e. τ∀ ,  fXτ (xτ) = fX(x). No similar assumption was made 
on pτ. 
pτ ϕϕ βτβ =⇒ )( .      Eq 4.9 
However, there is an underlying assumption that the failure 
rates (linked to pτ) are not homogeneous with time, i.e. pτ 
might be smaller than pτ+κ . 
Let τX and )( τϕ X  represent the sample averages obtained 
at time τ, and let t represent a threshold such that: 

txx >= ,1)(ϕ                Eq 4.10 
txx ≤= ,0)(ϕ       

     
then, )()]([,0)0( tXPXE >== ττϕϕ  
From Eq 4.7, Eq 4.8 and Eq 4.9 

)()(][ tXPtXE >= τϕτ β               Eq 4.11 
and under homogeneity conditions, 

)0|)(
]0|[)(

>>
>

=
XtXP

XXEtϕβ                   Eq 4.12 

This means that now )(tϕβ depends only on fX(x) and t and 
not on time τ. 
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Let ][ tXI >τ be the indicator function of the event tX >τ , 
then ][ tXI >τ  is denoted as the average number of GUs 
failing per period τ above a critical level t of the GWh 
Losses (this can be estimated by counting the cells with an 
event from table 2.4 in Chapter 2, after choosing a certain 
critical level t and dividing it by the ave. No. of total GUs 
p.a.). 
Since τX is the approximation of ][ τXE  and ][ tXI >τ is 
the approximation of )( tXP >τ , then from Eq 4.11 

][)( tXItX >≅ τϕτ β , where )(tϕβ is a constant for each 
critical level t . 
The linear relationship in Eq 4.12 indicates that one may 
expect a high correlation between the average GWh Losses 
and the average number of GUs failing, then the question 
arises “but at what level of t?”. 
Eq 4.12 starts to offer a direction in the provision of an 
answer. If t can be chosen so as to minimise the variance of 
the MLE of )(tϕβ under an appropriate choice of fX(x) then 
the answer to the question above would be provided. As 
noted in [23] Kedem et al, since the study centers on Eq 
4.10, the notation on the slope changes to focus more on 
the vector parameter θ  stemming from the choice of fX(x). 
In this case )(tϕβ ≡ )(tθβ .              Eq 4.13 
The process would then be to fix a threshold t and then 
derive the MLE of )(tθβ under the choice of fX(x). Note the 
change in the notation from ϕ to θ. From the MLE theory: 

)](;[)ˆ( 1 θθθ −→− I0Nn
L

              Eq 4.14 
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where )(θI is the Fisher Information Matrix (see Appendix 
C, paragraph 3.1 and paragraph 3.2 for the Delta-Method) 
and assessed with the choice of fX(x). 
The asymptotic distribution of )(ˆ tθβ is obtained by 
invoking the Delta-Method and is expressed by: 

 ∞→→− ntNttn
L

,)](;[))()(( ˆ θθθ νββ 0        Eq 4.15 
where for a 2-parameter pdf (i.e. θ = (θ1 ; θ2) see Eq C3.26 
Appendix C),  
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4.2 The Fit of the Tail – Log Normal and 
GPD 
 
4.2.1 Log Normal 
Let us assume that as a choice of pdf for the GWh Losses, 
the Log-Normal distribution is selected (this is not an 
Extreme Value distribution). As expressed in the paragraph 
above Eq 4.3, the GWh Losses represented by X are 
essentially positive; hence the assumption of Log-Normal 
behaviour in this variable is not far-fetched; the example 
here is used to illustrate the position of the threshold if 
using this assumption (see Fig 1.2). 
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In this case then: ⎟
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E[X | X > 0] = 
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2σμ+
e  and )( tXP > = ])([1

σ
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Φ−
tLn  

and ])([
σ

μφ −tLn is the density of the Standard Normal 

distribution. While ])([
σ

μ−
Φ

tLn is the distribution 

function of the Standard Normal. 
In essence, as mentioned in the paragraph above, the 
derivation of an “optimal” t, that gauges the average GWh 
Losses and the average number of GUs failing, can now be 
assessed. To enable us to do that we need to derive the 
MLE )(ˆ tθβ  from the GWh Losses data set. From Eq 4.12 
and Eq 4.13 above: 
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2
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=
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>
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+

tLn
e
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XXEt        Eq 4.17 

 or, as estimates from the dataset: 
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The matrix )(θ-1I  derived from inverting Eq C3.6 in 
Appendix C yields: 

)(θ-1I = 
⎥
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Then from the Delta Method (see Appendix C & paragraph 
3.2) and Eq 4.15, Eq 4.16: 
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from Eq 4.17: 

=
∂

∂
μ

βθ )(t

⎭
⎬
⎫

⎩
⎨
⎧ −

−
−

Φ−

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−

+

])([1])([1.
])([1

2

2
1)2( 2

σ
μφ

σσ
μ

σ
μ

σμ
tLntLn

tLn
e

 



 88

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∴

2)(
μ

βθ t

2

2

2

2
1)2(

])([1])([1.
])([1

2

⎭
⎬
⎫

⎩
⎨
⎧ −

−
−

Φ−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−

+

σ
μφ

σσ
μ

σ
μ

σμ
tLntLn

tLn
e  

                Eq 4.19 
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                Eq 4.20 
 
Hence, now )(tθν  may be computed from Eq 4.18, by 
using Eq 4.19 and Eq 4.20 
 
In [23] Kedem et al, the authors have show that the 
minimum of )(tθν exists, hence from the computations’ 
results, Fig 4.1 was obtained. 
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The graph is similar to the one of [23] Kedem et al. It 
reflects that the minimum is at t = 484 Gwh Loss.  
 
 

Function vθ(t) - Based on a LogNormal GWh Losses
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Fig 4.1: Log of variance vs Threshold: min @ 484 GWh Loss 
      
     

 

μ = 4.6640
σ = 1.2725

E[X ] = 238.34
P[X>t ] = 0.1163  

 

Min Ln νt = 9.55
Min νt = 14,004     

tmin = 484
βθ(t) = 2049  

 
 
This value of 484 GWh answers the question posed in 
Chapter 2, just above and in relation to Eq 2.2, i.e. on how 
the individual GU’s Losses affect the System. It seems that 
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according to this method and results, the individual GUs’ 
losing more than 484 GWh in a year affect the System in 
that year. This has a bearing on fig 3.2 of the System 
Yearly Maxima (Gumbel), in Chapter 3. 
The GWh losses at or below 484 GWh may be considered 
as “background-noise” losses. 
As a subjective interpretation, the analysis appears to 
indicate that the slope “stretches” to a value of 2049 GWh 
(see Eq 4.17). This value could also indicate that the tail 
deviates from the Log-Normal after the 9th largest 
observation.  
 
4.2.2 Generalised Pareto Distribution (GPD) 
 
In a similar way as in paragraph 4.2.1, let us now assume 
that after using an initial threshold of  484 GWh we wish 
to fit a distribution to the tail. We can use the method by 
[23] Kedem et al. 

In this case then: ⎟
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(see Table A1.1 in Appendix A) 
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By using equations Eq 4.21 to Eq 4.24 and the quotient 
rule of differentiation on 
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and 
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The FIM for the GPD is (See Appendix C Eq 3.19) 
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The matrix )(θ-1I  derived from inverting matrix Eq 4.27 
above yields: 
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Then from the Delta Method (see Appendix C & paragraph 
3.2) and Eq 4.15, Eq 4.16: 
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Corresponding to the variance of t.  
 
Care ought to be taken when choosing the FIM on the 
sequence of the parameters, otherwise the threshold 
associated with the minimum variance level, might be 
underestimated. For instance if using Eq 4.28 the equation 
from the Delta Method becomes 
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Now if we consider taking the parameters for the GPD 
given in Table 3.6 (Chapter 3) and utilise the coding given 
in Fig 4.2 below, we obtain the graph shown in the same 
Fig 4.2; the results produce a threshold of 5309 GWh close 
to the maximum absolute expected loss of a 669 MW GU 
(5876.5 GWh, see p. 30).  
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%gpdtail2.m Mean of the GPD related to the tail probability 
sig=908.5;xi=.2802; 
T=[]; 
for u=1841 
x=u:1:6000; 
S=(1+xi*(x-u)/sig).^(-1/xi); 
I=[1/sig^2/(1+2*xi) -1/sig/(1+2*xi)/(1+xi) 
    -1/sig/(1+2*xi)/(1+xi) 2/(1+2*xi)/(1+xi)]; 
V=[]; 
for tau=u:1:6000 
w=(sig+xi*u)/(1-xi); 
v=(1+xi*(tau-u)/sig)^(-1/xi); 
dwdg=((1-xi)*u+sig+xi*u)/(1-xi)^2; 
dvdg=(1+xi*(tau-u)/sig)^(-1/xi)*(log(1+xi*(tau-
u)/sig)/xi^2-(1+xi*(tau-u)/sig)^(-1)*(tau-u)/sig/xi); 
dwds=1/(1-xi); 
dvds=(1+xi*(tau-u)/sig)^(-1-1/xi)*(tau-u)/sig^2; 
c1=(v*dwdg-w*dvdg)/v^2; 
c2=(v*dwds-w*dvds)/v^2; 
varb=[c1 c2]*inv(I)*[c1 c2]'; 
V=[V varb]; 
end 
tau=u:1:6000; 
[d1 d2]=min(V); 
P=(1+(tau(d2)-u)*xi/sig)^(-1/xi); 
mef=(sig+xi*u)/(1-xi); 
beta=mef/P; 
T=[T; u tau(d2) beta V(d2)]; 
end 
plot(tau,V) 
title('Variance of Beta') 
text(5000,3*10^14,['Tau=',num2str(T(:,2))]) 
xlabel('Tau'); text 

Fig 4.2 Graph and Coding for the GPD–Min Variance β 
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The fit of the tail of a distribution onto a GPD depends on 
selecting a threshold t. A simple method of selecting the 
threshold is by inspecting the Pareto quantile plot (Fig 3.7) 
where the graph tends to be linear. A possible candidate 
seems to be 6e = 403.43. The threshold from the lognormal 
fit in paragraph 4.2.1 gave a threshold of t = 484 where the 
variance of the estimate of the regression of the mean on 
the tail probability is at minimum. This is close to visual 
selected threshold (6.1821 vs 6). 
When dealing with the tail of the distribution of a r.v. 
behaviour over a threshold, the GPD is usually the model 
of choice. The minimum variance value, derived from the 
GPD using [23] Kedem methodology, namely t = 2126 is 
chosen with γ = 0.2802 and σ = 512.3 
The joint posterior density of the two parameters γ and σ is 
given by: 
                     π (γ,σ | data)∝  Likelihood x prior 
where the Likelihood and MDI prior are respectively given 
by [2] Beirlant et al p 447:  
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A subjective prior can be elicitated from experience, but 
we will stick to the objective prior. Other priors such as 
Jeffreys prior (see Eq C3.20 in Appendix C) is a popular 
prior, but it is restricted to γ < 0.5 and tends to pull the 
estimate of γ towards zero, hence the choice of the MDI 
prior. 
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Starting the Markov process with initial values 
γ = 0.2802 and σ = 908.5, the process was run for 30000 
iterations. The convergence was found to be good. The 
final posterior distributions are given in Fig 4.3 below, 
which includes the code. The estimates from the 
simulations are obtained as  76.768ˆ2869.0ˆ == σγ .                 
The 95% hpd region for the GWh Losses based on a GPD 
with the parameters estimates above and on a threshold of 
2126 GWh is: [2343.3 ; 3090.5] 
The methodology used and the coding supplied in Fig 4.3 
provide the technique in the paragraph following, i.e. the 
prediction of High Quantiles through Markov Chain Monte 
Carlo (MCMC). 
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%gpdvince1.m Fit a GPD to GU energy loss data GHWloss1.m 

GWHloss1 
t=2126;r=find(L2>t); 
n=length(r);ntot= length(L2); 
x=sort(L2(r))-t;alpha=512.3;xi=.2802; 
I=0;X=[]; 
for i=1:30000 
  lpost=-(1+1/xi)*sum(log(1+xi*x/alpha))-(n+1)*log(alpha)-
xi; 
alphas=exp(.04*randn(1,1)+log(alpha));xis=.0004*randn(1,1)+
xi; 
  lposts=-(1+1/xis)*sum(log(1+xis*x/alphas))-
(n+1)*log(alphas)-xis; 
   if rand(1,1)<exp(lposts-lpost) 
   alpha=alphas;xi=xis; 
   I=I+1; 
   end 
   X=[X;[alpha xi]]; 
end 
alpha=mean(X(5000:30000,1)) 
xi=mean(X(5000:30000,2));n;ntot 
p=0.005;m=n/(ntot.*p) 
subplot(3,1,1); hist(X(:,1),20) 
xlabel('Sigma');subplot(3,1,2) 
hist(X(:,2),20);xlabel('Gamma') 
U=X(:,1).*(m.^X(:,2)-1)./X(:,2)+t; 
subplot(3,1,3) 
hist(U,20);xlabel('Post pred quantile at p=.005') 
G=zeros(length(x),1);subplot(111) 
Fig 4.3 Graphs and Coding for the GPD – Posterior  
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4.3 Predicting High Quantiles through 
MCMC 
 
The prediction of high quantiles forms a very necessary 
part of an extreme value analysis. 
Assume that one would like to make inferences about 
future values of high quantiles. The predictive distribution 
is given below (see paragraph 4.1 above) 

∫
Ω

++ = );()|;();|()|( 11 σγσγπσγ dXxfXxf nXnX       Eq 4.31 

This shows that the predictive density consists of the 
integration of the likelihood (of a single x, i.e. xn+1, 
multiplied by the posterior.  
From paragraph 4.2 above, 
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Therefore using the two equations above, the following 
posterior is obtained: 
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This equation of the log-posterior distribution is equivalent 
to the line “lpost” in the code in Fig 4.3 above. 

The equation: 
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and “n” = tN  and, still in the  same code, “U” represents 
the predictive distribution derived from a whole set of qx̂ ’s 
which are in turn derived from a whole set of σ̂ and γ̂  
being simulated (“alphas” and “xis” respectively in the 
code) 
Another way that this may also get a point-estimate 
through the formulae (see [2] Beirlant et al) is to estimate 
the percentiles, by letting zp = upper pth percentile of 
GPDγ,σ(x-t); then the estimate of zp is: 
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where the probability P(X > t) is greater than a value p and 
P(X > t) is estimated by the sample proportion exceeding t.  
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That is P(X > t) = Nt / n  and  p= (1 – q) and inverting by 
making the exponent γ negative. 
Let us say for instance that we would like to position our 
threshold at the 99.05th percentile, this means that the 
sample proportion [(n – Nt ) / n] = 0.9905, since n =928, 
Nt  = 928.(1-0.9905) = 8.8, i.e. we ought to have approx. 9 
observations above our threshold. 
By choosing 2126 GWh, there is consistency with the 
results in paragraph 4.2.2 as that is the point of minimum 
variance and by using the parameters  

76.768ˆ2869.0ˆ == σγ  
In the above equation, then we get: 
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Let us now operate more into the tail, say at the 99.75th 
percentile, therefore expecting 2 or 3 observations at this 
level. 
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From the simulations above on fitting the GPD (Fig 4.3), 
the predicted simulated distributions are shown in the 
graphs. There one may remark that the computations at 

76.768ˆ =σ (the mode, in Fig 4.3) might have the tendency 
to underestimate the percentiles at the upper end of the tail 
(compare 2331.1 with the empirical 3724.6 at the 0.9970 
percentile), therefore the value of 908.5 for sigma seems to 
be more appropriate. More experimenting on the 
sensitivity of the sigma (see coding in Fig 4.3 the value of 
0.04 in “alphas”) would be necessary and then benchmark 
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to the Table 3.6 (derived from Eq 3.12). More research in 
this area is necessary. 
 

4.4 Relationship between MEF and the 
Tail of the GPD 
 
In paragraph 4.2.2, the relationship between the Mean 
Excess Function and the tail probability was shown in 
detail following the works of [23] Kedem et al. 
There it was shown that there is a relationship between the 
Mean Excess Function (MEF)  
et = E [(X - t) | X > t] and the tail probability pt = P (X > τ | 
X > t) for some threshold τ conditional that we only 
consider excess losses above t (= 484 GWh in our case). 
The relationship that was considered was 
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As shown in Table A1.1 in Appendix A, that the mean 

excess function for the GPD is given by 
γ
γσ

−
+

=
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tet , 

following the arguments of [23] Kedem et al, by means of 
partial derivatives with respect to γ and σ respectively and 
using the Fisher Information Matrix and its inverse, as well 
as invoking the Delta Method, we obtained the variance of 
the maximum likelihood estimate of  )(ˆ tθβ  and resulting 
in the finding of τ that minimizes this variance. 
Experimenting, we found initially that the threshold where 
the tail of the GPD starts effecting the mean excess 
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function, is τ = 449 (while for the Log Normal it was 
484). The corresponding estimate for )(ˆ tθβ  being 1253.5. 
Testing further, choosing a threshold of 550, we got 
estimates of 75.272ˆ5102.0ˆ == σγ ; the Q-Q plot is 
shown in Fig 4.4 below. The fit of the extreme values 
appears to be quite good. As a subjective interpretation, the 
value of 550 GWh seems to coincide with the suppression 
of the outlying GWh mentioned in Chapter 3 Fig 3.9 (see 
paragraph above figure) as the background loss within an 
extreme value that “misbehaved”. 
  

  
Fig 4.4 Q-Q Plot GPD 272.75σ0.5102γ == ˆˆ  and t = 550 
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Extra assessments into the relationship, yielded a threshold 
at 850 GWh at which the GPD tail shows the best 
relationship with the mean excess over the threshold; this 
estimates the )(ˆ tθβ  at 5310.5 GWh 
 
     

  
 Fig 4.5 Minimum Variance found at t = 878 
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4.5 The Dirichlet Process 
 
As seen in Fig 3.10 of Chapter 3, in the assessment at 
when the Mean Excess Function becomes linear becomes 
difficult. [10] De Waal and [11] De Waal et al worked on 
that challenge and utilised the method of the Negative 
Differential Entropy (NDE). There the choice of the 
threshold (using the POT method) is applied to model 
extremes through the NDE of the Dirichlet process using a 
Bayesian approach. This methodology also can be used as 
a goodness of fit technique. 
Let x1,..,xk be k ordered observations exceeding the 
threshold t of a random sample of n observations from an 
unknown distribution with a distribution function FX (x | t). 
The aim is to estimate FX (x | t) if we assume a proposed 
distribution GPDγ,σ(x-t). The FX (x | t) then is modelled as a 
Dirichlet process with the GPD as its parameters. Then 
from [20] Honkela, [11] De Waal et al, gets (see Eq C2.14 
in Appendix C): 
 
NDE = E[Log p(p)] 
E[Log p(p)]= Jk 

Jk = ∑
=

Ψ−Ψ−+−
n

i
ii uuuZLog

1
000 )]()([)1()(u      Eq 4.33 

Subsequently, as proposed by [11] De Waal et al, one 
needs to select k (i.e. the threshold) such that the NDE, in 
Eq 4.33 is at minimum, conversely this means that the 
information is at maximum (see the principles of entropy 
in Appendix C paragraphs 2.8 and 2.9). 
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A set of results is given in Fig 4.6 here below, together 
with the algorithm used. 
 
As explained above, this kind of method provides the 
means to select, at the minimum NDE, the threshold with 
the GPD parameters that were estimated. By substituting 
the GPD parameters with new estimates, new levels of 
NDE are obtained; higher NDE levels would indicate a 
poorer GPD fit. Not sufficient credit is given to this 
method in this thesis, suffice it to say that it was 
experimented with and at prima-facie it looks promising. 
A more detailed rendition is given in Appendix C 
paragraphs 2.8 and 2.9 
 
The results obtained from the graph in Fig 4.6 indicated 
that the most contributing values to fit of the GPD tail were 
the 6 largest extremes. 
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Fig 4.6 Graphic Result & Matlab Algorithm of NDE  
 

t = js(n-k+1) – 0.1
gam = Σ(x) / (k – 1)

G = 1- exp{ -x / gam}

ν(1) = β.G(1)
ν(k+1) = β.(1-G(k))

ν(2:k) = β.(G(k) – G(k-1))
ν0 = Σ(ν)

J = [ J ;  k  gam  gammaln(ν0) - Σ{ gammaln(ν) + Σ{(n-1).(ψ(ν).ψ(ν0))}} / gammaln(k+1) ] 

%L2 is the data
js = sorted(L2)
n= length(js)

α = 1
j = [ ]

For k=2 to 8

ν = zeros(1,k+1)
β = α.(k+1)

x = k.{Ln(js(n-k+1:n)) – Ln(js(n-k:n-1))}
x = sort(x)

t = js(n-k+1) – 0.1
gam = Σ(x) / (k – 1)

G = 1- exp{ -x / gam}

ν(1) = β.G(1)
ν(k+1) = β.(1-G(k))

ν(2:k) = β.(G(k) – G(k-1))
ν0 = Σ(ν)

J = [ J ;  k  gam  gammaln(ν0) - Σ{ gammaln(ν) + Σ{(n-1).(ψ(ν).ψ(ν0))}} / gammaln(k+1) ] 

%L2 is the data
js = sorted(L2)
n= length(js)

α = 1
j = [ ]

For k=2 to 8

ν = zeros(1,k+1)
β = α.(k+1)

x = k.{Ln(js(n-k+1:n)) – Ln(js(n-k:n-1))}
x = sort(x)

%L2 is the data
js = sorted(L2)
n= length(js)

α = 1
j = [ ]

For k=2 to 8

ν = zeros(1,k+1)
β = α.(k+1)

x = k.{Ln(js(n-k+1:n)) – Ln(js(n-k:n-1))}
x = sort(x)
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CHAPTER 5 

Conclusions 
 

5.1 Categorisation 
The means of using Cluster Analysis provided an initial 
method to classify large losses incurred by the GUs. In 
particular the Two-Way Joining method (results shown in 
Fig 2.3) provided initial “limits” with which these 
categories could be formed. These were practically applied 
in our business as what we termed “layers” for the GWh 
Losses. 
The yearly total System GWh Loss indicated that a 
Loglogistic distribution fit is appropriate with a threshold 
of 1763 GWh. 
This was shown to be useful but not sufficient; hence the 
usage of EVT became necessary for predicting extreme 
values in a more detailed manner. 
   

5.2 Fitting of the Tail 
The semi-parametric (Eq 3.8 and Figures 3.13 to 3.15) and 
full-parametric POT methodology proved very useful in 
the provision for the GPD fit of the tail of the GWh Losses. 
Figures 3.13 to 3.15, with particular emphasis on the latter 
provide the highlight of Chapter 3 with an interesting 
methodology to estimate the initial parameters (the 3-LM 
method). Chapter 3 concluded with the final adopted 
model for the GWh Loss quantiles being:     
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        for GWh Losses above 765.8 GWh. 
 
Illustrated by Fig 3.20 and tabulated in Table 3.6 
 

5.3 Bayesian Methods 
Classical methods allowed us to estimate the GPD 
parameters (by 3LM methodology) and infer on the 
distribution GPD (y | σ,γ,t) , however as pointed out in 
Chapter 4, this did not make allowance for the errors 
incurred when estimating σ,γ, inducing a false expectation 
of the predictive distribution, as the classical methodology 
did not cater for the fact that a future value is a stochastic 
event in itself (see Eq 4.31). 
The Dirichlet methodology provides an interesting angle to 
the Bayesian philosophy in analysing the problem of the 
GWh Losses. 
 

5.4 General 
From an engineering perspective other interesting findings 
was that further research in the extremes with the 
introduction of covariates such as the Load Factor (LF) is a 
necessity. The assumptions in this thesis are that the LF is 
constant and the Installed Capacity (IC) does not change, 
which implies that the forced outages, UCLF (the GWh 
Losses) are in stationary mode of “bathtub hazard 
function”; what happens if, as is expected in the near 
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future, these are not constant? For instance (see pp 89-90 
for more details): 
1] IC changes, i.e. New Capacity (large, significant 
generating units) is installed; this introduces high “infant 
mortality” rate (i.e. higher than expected UCLF) which 
“lifts” the function LF vs UCLF, therefore higher than 
expected losses ⇒  a different γ, possibly different MDI? 
This increase in capacity is expected in 2011. 
2] the LF changes according to the increase in demand and 
according to the LF vs UCLF function, the GWh losses 
(UCLF) would increase. 
Care ought to be taken of the changes in γ [i.e. in the 
behaviour of the losses] due to time – but in our case it’s 
actually due to changes in LF that in turn, changes with 
time. 
 
Closing Comment 
The bullets given in page vii) at the beginning of the thesis 
were fully investigated and answered. Extreme Value 
Theory (EVT) methods did quantify the meaning of 
“Large” (or “excessive”) GWh Losses. Within the 
preamble of EVT and using Cluster Analysis, it was 
possible to categorise the losses into “layers”. A scientific 
model was developed (see 5.2 above) which needs to be 
periodically validated and maintained. Latest Statistical 
techniques (such as the Dirichlet one) were researched and 
applied with promising results. And in conclusion, as 
having provided the answers above, it is felt that EVT 
resolved our challenge. In addition, it opened pockets (as 
pointed in various parts of the thesis) of new areas of 
research. 
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APPENDIX A 
Notation and Classic EVT Workings 
 
1 Notation 
 
Most of the work in this part of the Appendix is referenced 
to [2] and [3] Beirlant, [13] Embrechts and [25] McNeil. 
The more practical and applied workings of EVT are 
particularly referenced to [2] and [3]  Beirlant while the 
more rigorous theoretical ones are referred to [13] 
Embrechts. 
 
Let X be a continuous random variable (rv), then FX(x) is 
its CDF, i.e. FX(x) = P(X ≤ x) 
The tail, or survivor function is denoted by: 
1 - FX(x) = P(X > x) and where it exists, the probability 
density function (pdf) is fX(x) and satisfies 

FX(x) =  ∫
∞−

x
fX(x).dx     A1.0 

For q ∈ (0 ;1), the q-th quantile of the distribution of X is: 
F-1 (q) = inf{x∈ℜ: FX(x) ≥ q}   A1.1 
 
The expectation of X is, 

E [X] =  ∫
∞+

∞−

x.fX(x).dx       A1.2 

The variance of X is, 
Var [X] = E [ (X-E[X])2 ]    A1.3 
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The covariance of X and Y is, 
Cov [X,Y] = E [ (X-E[X]) . (Y-E[Y])]   A1.4 
 
The conditional expectation of Y, given X is, 

  E [Y|X=x] =  ∫
∞+

∞−

y.fY|X(y|x).dy    A1.5 
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2 Classical EVT 
 
In studying the maxima of rv’s (or minima), it is important 
to find the limiting distribution of these maxima (or 
minima). It is hence with this objective in mind that 
statisticians of note have researched the possible 
distributions of the maxima. The objective being twofold 
[2] Beirlant:  
1] find all possible (non-degenerate) distributions G that 
can appear as a limit. This is known as the Extremal Limit 
problem. 
2] characterize the distributions F for which there exist 
sequences {an ; n ≥ 1} and {bn ; n ≥ 1} such that 
 P((Mn - bn) / an ≤  x) → GX(x)  holds for any such specific 
limiting distribution [2] Beirlant, where  
Mn = max(X1, X2, … , Xn) be the maximum of the sample 
of n. In this thesis, X could be associated to the GWh 
Losses out of a sample of n GU’s in a particular year. 
∴ P(Mn ≤  x) =  P(X1 ≤  x , X2 ≤  x , … , Xn ≤  x) = Fn(x) 
 
1] Has been resolved in the works of [15] Fisher et al 
known as the Fisher-Tippet Theorem 
 
2] Has been dealt with by [13] Embrechts and [2] Beirlant 
as follows 
One can now find sequences of ℜ, an > 0 and bn > 0 such 
that (Mn - bn) / an , i.e. the sequence of normalised maxima, 
converges in distribution. 
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If GX(x) is a non-degenerate distribution function of X , 
which will specify a unique type of distribution, and [13] 
Embrechts 
 
P((Mn - bn) / an ≤ x) 
= Fn(an x + bn)  → GX(x), as n → ∞    A2.0 
then we say that: 

 
F is in the maximum domain of attraction (MDA) of G, 

i.e. 
F ∈ MDA (G) 

 
 
Two rv’s U and V, are of the same type (i.e. equality in 
type) iff  U        a .V + b 
     
                                re-scaling    re-location 
This means same type of distribution under same scaling and location 
 
In terms of their CDF’s, FU and FV , this means: 
FU(x) =  FV((x – b)/a)      A2.1  
 
This means that rv’s of the same type have the same 
CDF’s, up to possible changes of scale and location [25] 
McNeil. 
It also means that if G is the possible limiting distribution 
function for the sequence (Mn - bn) / an , then the set of 
such distribution functions exhibiting attraction to their 
limits is called the domain of attraction of G [2] Beirlant. 
 
 
 

=d 
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2.1 The Generalized Extreme Value Distribution and 
Index (GEV & EVI) 
 
The GEV of a rv X is given by [2] Beirlant: 
 
 
               exp { -(1 + γ.x)-1/γ }  , if γ ≠ 0 
Gγ(x) =        γ ∈ ℜ A2.2 
    exp { -exp{-x} }  , if γ = 0 
 
 
 
where 1 + γ.x > 0 and γ is the shape parameter and is also 
termed the Extreme Value Index (EVI). The EVI forms an 
integral and fundamental part of EVT analyses. 
 
 
In A2.2, x can be replaced by x’ = (x – μ) / σ , in which 
case the GEV is termed the Standard Generalized 
Extreme Value Distribution (SGEV) with the following 
conditions: 
  x > μ − (σ / γ)  for γ > 0 
  x < μ − (σ / γ)  for γ < 0 
  x ∈ ℜ              for γ = 0 
Here γ is called the shape parameter, μ the location 
parameter and σ the scale parameter 
 
Since this parameterization is continuous in γ, three 
extremal types of distribution can be derived (by using 
A2.1, [15] Fisher, [13] Embrechts and [2] Beirlant using 
the Helly-Bray Theorem ):   



 115 

 
γ > 0  ⇒  Fréchet:  Gγ ( (x – 1)/γ ) = Φ1/γ(x) 
γ < 0  ⇒  Weibull: Gγ (-(x + 1)/γ ) = Ψ−1/γ(x) 
γ = 0  ⇒  Gumbel: G0 (x) = Λ (x) 
 
By substitution in A2.2, the following CDF’s are obtained: 
 
   0  x ≤ 0 
Fréchet:   Φα(x) =     α > 0 A2.3 
  γ > 0   exp{-x -α} x > 0 
 
 
   exp{-(-x) α} x ≤ 0 
Weibull:   Ψα(x) =     α > 0   A2.4 
  γ < 0   1  x > 0 
 
Gumbel:    Λ(x) = exp{-e -x} x ∈ ℜ  A2.5 
  γ = 0 
    
 
By differentiating the CDF (using A1.0) the following 
pdf’s can be obtained: 
 
 
          0                 x ≤ 0 
Fréchet:   φα(x) =                 α > 0   A2.6 
         αx -α−1.exp{-x -α}    x > 0 
 
Depicted below in Fig A1.1 
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          α(-x) α−1.exp{-(-x) α}  x ≤ 0 
Weibull:  ψα(x) =         α > 0  A2.7 
          0            x > 0 
 
Depicted below in Fig A1.2 
 
Gumbel:    λ(x) = e -x .exp{-e -x}  x ∈ ℜ    A2.8 
Depicted below in Fig A1.3   
 
In the Fréchet domain, the: 
 
1] Burr distribution is characterized by: 
 for x > 0; η, τ, λ > 0: 
FX(x) = 1 - [ η / (η + xτ) ]λ  
fX(x) = -λτ [xτ−1] [ η / (η + xτ) ]λ−1  
EVI: 1/(λτ) 
 
2] Generalised Pareto (GP) distribution is characterized by: 
for x > 0; σ, γ ≠ 0: 
FX(x) = 1 - [ 1 + ( γ x / σ )  ]−1/γ  
fX(x) = ( 1 / σ ) [ 1 + ( γ x / σ )  ]−(1/γ) − 1  
EVI: γ 
 
3] Pareto (Pa) distribution is characterized by: 
for x > 1; γ > 0 for the mean to exist and x > 2 for the 
variance to exist: 
FX(x) = 1 - [x ]−1/γ  
fX(x) = ( 1 / γ ) [x]−(1/γ) − 1  
EVI: γ 
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Fig A1.1: Fréchet’s pdf (GEV with γ = 1) 

Weibul pdf : ψ(x)
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Fig A1.2: pdf of Weibull (GEV with γ = - 1) 

Gumbel pdf : λ(x)
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Fig A1.3: pdf of Gumbel (GEV with γ = 0) 
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2.2 The Fréchet-Pareto Case: γ > 0 [2] Beirlant 
 
In this part, attention is focused on this particular domain 
of the GEV distribution. In some publications this type is 
also called the EVD type II. Subclasses of this type are 
called the Hall Class of distributions.   
Since in this kind of domain, the value of γ is not known, 
[2] Beirlant recommends that from a statistical perspective, 
the analyst ought to work with the Quantile functions to 
estimate the γ. 
When looking at this domain, it is important to define one 
of the most important underlying distributions, the 
Generalised Pareto distribution or GPD. 
 
The Generalised Pareto (GPD) distribution [13] 
Embrechts 
There are special circumstances whereby the maxima 
derived from a series that behaves as a GPD follow a GEV 
of the form: 
 
                1- (1 + γ.x /σ)-1/γ, if γ ≠ 0 
GPDγ,σ(x) =                         x ∈  (0,∞), γ ∈ ℜ   A2.9 
     1 -exp{- x /σ }   , if γ = 0 
 
From above, if γ = 0 then it’s Exponential, however, when 
γ < 0 then 
GPDγ,σ(x) = 1- (1 + γ.x /σ)-1/γ   and x ∈  (0,−σ/γ) and the 
distribution becomes known as a Pareto II type 
 
Usually the GPD ([31] Pickands) is used with a given 
threshold t; in that case, x in A2.9 is replaced by (x – t), 
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whereby (x – t) ≥ 0 for γ ≥ 0 and 0 ≤ (x – t) ≤ −σ/γ for 
γ < 0. 
Refer to the POT method below for more information on 
the threshold t. 
 
Under certain conditions the GP becomes a Strict Pareto 
(SP) with the following CDF: 
SP1/γ (x) = 1 - x -1/γ   , if x > 1, γ > 0 
 
 

 
       
  from: van Gelder PHAJM 
 
 
 

Pareto 
(concave) 

Exponential 
(straight) 

Pareto Il 
(convex) 

threshold 
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2.3 Methods of Block Maxima (BM) and Peak-Over-
Threshold (POT)  
 
In the EDA phase of the analytical process there are two 
classical groups in dividing the data. Both groups divide 
the data into consecutive blocks, but: 
 i] the one that focuses on the series of Maxima (or 
Minima) in the blocks is termed Block Maxima (Minima) 
(BM), and 
ii] the one that focuses on the series of events exceeding a 
certain High (or Low) Threshold is termed the Peak-Over-
Threshold (POT) or also known as the Probability View. 
 
It is also proposed in this thesis that the Block Minima 
is referred to as Bm and the Threshold for the Minima 
group be referred to as the Trough-Under-Threshold 
(TUT) method; in this case it is likely that, more often 
than not, the probability density function is bounded 
(e.g. at zero) and therefore more research would be 
needed in this area. 
 
In both these groups, the series are modeled separately 
from the rest of the observations, [2] Beirlant, [13] 
Embrechts, [25] McNeil and parametric estimation for the 
quantiles is used. 
These methods deal with the aspect of tail estimations. It 
encompasses all values of the EVI (γ). While the BM 
method is inspired by the limiting behaviour of the 
normalised maximum of a rv, the POT method considers 
the conditional distribution of the excesses over a 
relatively high threshold [2] Beirlant.   
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A third approach (to the BM and POT) called the 
Quantile method may also be used [2] Beirlant. 
 
As pointed out in [2] Beirlant, the utilization of the set of 
maxima is a weakness in the sense that not the whole data 
set is utilized. This is compounded in determining the 
block-size especially in the case of Time-Series. To deal 
with the BM problem, POT was one of the methods 
developed to deal with it. 
When dealing with Time-Series and one structures the 
series into a time dependent model (such as AR or 
GARCH dealing with Returns or squared-Returns (catering 
for the conditional volatility) respectively, say [see 
Appendix B, for more information on Returns]), then the 
Residuals can be analysed using EVT.  
 
Tail estimation of parameters  
Out of the numerous methods in estimating the GEV 
families parameters, the most important ones are reflected 
below, [13] Embrechts, [2] Beirlant, [21] Hosking: 
 
I] Maximum Likelihood Estimation (MLE) 
The log-likelihood of a sample Yi  from a GEV, is given 
by: 
logL(σ,γ,μ) 
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Provided 1 + γ{(Yi – μ ) / σ) > 0, when γ  = 0, the log-
likelihood function reduces to  
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logL(σ,γ,μ) 
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[2] Beirlant 
The MLE for (σ,γ,μ) are derived by maximizing A2.10 – 
A2.11 in equating the partial derivatives (w.r.t .the 
parameters) of A2.10 to zero and solving for the 
parameters. 
A condition for MLE method is that the data must be free 
of the parameters that need estimating, this is usually 
referred to as regularity. 
The GEV is known to be “non-regular” for γ ≠ 0. 
 
II] Probability Weighted Moments (PWM) 
 
The PWM estimator for (σ,γ,μ) is solution to the 
simultaneous moments equations below [2] Beirlant, p134: 
Μ1,0,0 = μ − σ . {1−Γ (1 − γ)} / γ   A2.12 
2Μ1,1,0 − Μ1,0,0 = σ . {Γ (1 − γ)(2γ − 1)} / γ  A2.13 
(3Μ1,2,0 − Μ1,0,0) / (2Μ1,1,0 − Μ1,0,0)  
= (3γ − 1) / (2γ − 1)          A2.14 
 
The asymptotic consistent estimator for Μ1,r,0 is: 
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By using A2.15, Μ1,0,0 corresponds to the arithmetic mean 
which would estimate μ; one would then proceed to 
compute Μ1,1,0  and Μ1,2,0  by using A2.15, the LHS of 
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A2.14 is then solved numerically to estimate γ, 
subsequently A2.13 is solved for σ. 
 
For both methods above, one can apply inferential 
techniques to obtain confidence intervals on the estimators 
[2] Beirlant p137. 
 
III] Regular Variation Approach (RVA) 
 
If expected γ > 0 then one may utilize this type of 
estimation for γ. This estimator is essentially based on the 
same principles as the Pickands estimator even though it 
bears some resemblance to the Hill estimator. 
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IV] L-Moments (L-M) 
 
In the works of [21] Hosking, one may see that the use of 
L-M is an efficient method in estimating parameters of a 
wide range of distributions from small samples. The 
Probability Weighted Moments (PWM) are the precursors 
to L-M. The L-M are linear combinations of PWM that 
have simple interpretations as measures of location, scale 
(dispersion) and shape. These linear combinations of PWM 
make them less subjected to outliers. 
If FX(x) is given then, the PWM are, by definition: 
 

βr = ∫ x{ FX(x)}r . d FX(x),    r = 0,1,2,... 



 124 

 
The L-M are linear combinations of βr transformed by 
means of shifted Legendre polynomials, which are 
orthogonal on the interval (0;1) with a constant weight 
function. 
∴  λ1 = β0 
 λ2 = 2β1 – β0     A2.16 
 λ3 = 6β2 – 6β1 + β0 
 λ4 = 20β3 – 30β2 + 12β1 – β0   
    
 
The LM ratios are defined as, for 0 < τ < 1 :  τ = λ2 / λ1  
and τr = λr / λ2 
τ3 is a measure of skewness and τ4 is a measure of kurtosis, 
-1 < τ3 ; τ4 < +1 
The L derived Coefficient of Variation is: L-CV = τ 
 
From a sample size n, the PWM can be derived from 
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 the βj PWM can be estimated by bj , j =0,1,…,r 
subsequently the λi can be estimated from ℓi derived from 
the set of equations A2.16 
by substituting bj  for each βj and for each λi linearised 
moment required. Subsequently the τ and τr ratios can also 
be estimated by u and ur 
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The workings of [40] van Gelder and [30] Pandey have 
shown the application of LM in the estimation of the GPD 
parameters. 
 
The Location (t), the Scale (σ) and the shape (γ) can be 
then estimated by: 
γ̂  = (3 u3 – 1)/ (u3 + 1) 
σ̂  = (1 – γ̂ ) (2 – γ̂ ) ℓ2     A2.17 
t̂  = ℓ1 – ( 2 – γ̂ ) ℓ2  
 
This method when the 3 parameters need estimating is 
known as the 3-LM method, Pandey [30] et al; in that work 
the efficiency of this method was illustrated. 
 
When t, the location parameter, is known, e.g. a given 
threshold, the method reduces to what is termed the 2-LM 
method and the estimates may be computed as follows:  
  γ̂  = 2 – {(λ1 - t) / λ2 } 
 and 
 σ̂  = (1 - γ̂ ) . (λ1 - t)  
 
Pandey [30] states in the workings that LM are efficient 
estimators of the GPD when using POT methodology to 
estimate the tail of extremes. 
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2.3.1 Method of BM 
This method is particular to the Fisher-Tippett Theorem 
which deals with the limit law for the BM with n being the 
block size. 
Let Yi be an iid GEV rv derived as sample maxima from 
observations Xj  
where i = 1, 2, …, n    and    j = 1, 2, …, m   (in Fig A1.4 
n=4 and m=20). 
By using Eq. A2.2 and substituting x for (x – μ)/σ one can 
then use the methodologies described above ( I]  to IV] ) to 
estimate the GEV distribution parameters and 
corresponding confidence intervals (see II] above) [2]  
Beirlant p137. 
 
 
 
 
 
 
 
 
 
 Fig A1.4: Observations vs Exceedances (BM) 
 
The inversion of the GEV distribution function yields the 
estimates of the extreme quantiles: 
  μ + σ/γ [(-log(1-p))-γ – 1] , γ ≠ 0 
QY;p =   
  μ – σ log (-log(1-p)), γ = 0 
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Whereby μ,  σ and γ are estimated according to either 
methods I] to IV]. 
When the GEV is used as an approximation of the largest 
observation in a block sample, then: 
 
    μ + σ/γ [(-log(1-p)n)-γ – 1] , γ ≠ 0 
q*

Y;p =   
    μ – σ log (-log(1-p)n), γ = 0 
 
where n is the block length, [2] Beirlant  
 
 2.3.2 Method of POT 
 
Here one is dealing with the conditional survival function 
of the exceedances (or peaks) Y = X – t , where t is the 
threshold. In some literature (and above) this is also 
referred as u 
 
 
 
 
 
 
 
 
Fig A1.5: Observations vs Exceedances (POT) 

Fig A1.5 above depicts the series Y over a threshold t. The 
differences between the BM and POT methods are clearly 
visible: the BM method yields Y1 to Y4, while the POT 
method yields Y1 to Y5 (inclusion of X10 in the maxima 
dataset). 
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Although the ML and PWM present themselves in this 
paragraph, the methodology utilised here to estimate the 
EVI, is termed the Elemental Percentile Method (EPM) [2] 
Beirlant. This method overcomes some of the difficulties 
in the ML and PWM methods (γ restrictions). In the EPM 
there are no γ restrictions. 
Following up from the visual of Fig A1.5, let Yi be an iid 
GEV rv derived as sample maxima from observations Xj 
where i = 1, 2, …, n and    j = 1, 2, …, m. 
A level t is chosen as a threshold as a point of departure 
whereby the exceedances of X are observed above t (see 
Fig. A1.5). 
This means that P[M < t] = {P[Yi < t])N 
Therefore there are two important issues to consider when 
using the POT method: 
 i) the selection of t, and 
ii) the independence of the peaks 
 

 
 
Fig A1.6: CDF of X and Conditional Dist. Function on t 
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The discussions and debates on the selection of t still ensue 
today ([11] De Waal, et al). It may be chosen graphically 
([2] Beirlant [13] Embrechts) and visually. 
In this method one would “choose” a threshold or estimate 
it by the MEF or EDP techniques (see below). Then one 
would estimate the parameters of the GPD by the methods 
I] to IV] above. This does not go through without 
challenges, as the estimation of t and the GPD parameters 
are intertwined. 
The selection of this threshold is main issue: if t is too high 
then there are too few exceedances and therefore too high 
variance of the parametric estimators; if t is too low the 
estimators become biased and a GPD approximation is not 
possible; hence the challenge to obtain an “optimal  t”. The 
choice of t is critical for a good fit of the excesses to the 
distribution function. This threshold may be estimated as a 
trade off between the goodness-of-fit (it must be noted that 
this increases as t is set higher [for maxima]) and the 
available number of excesses above t. It may be derived by 
using the mean squared error of the Hill estimator ([11] De 
Waal, et al) or by the usage of the graphical choice (Visual 
Method - VM) which implies a visual determination of a 
“kink” in the tail of the GPD Q-Q plot; the threshold level 
is determined by inversing the Q function. A spin-off of 
this method is the determination of the EVI by isolating the 
values to the right of the “kink”. Subsequently a linear 
regressional fit is applied to these values and the estimated 
slope determines the EVI. 
Three methods were researched in this thesis to arrive at a 
solution for this challenge: the Visual Method (VM), the 
Mean Excess Function (MEF) method and the Entropy of 
Dirichlet Process method (EDP) [10] De Waal. 



 130 

 
In the POT methodology, at the threshold t one observes 
the exceedances of t and this means that the distribution of 
the excesses is given by: 

Ft(y) = Pr{ X ≤ t+y | X > t} = 
)(1

)()(
tF

tFytF
X

XX
−

−+    , y > 0 

The asymptotic form of Ft(y) was given first by [31] 
Pickands, which states that if the EVD of F exists, there 
are constants ct > 0 such that as t tends to either –∞ or +∞ , 
then: 
Ft(ct . z) → GPD, as given in Eq A2.9 
One benefit of POT over BM is that since each 
exceedances is associated with a specific event, it is 
possible to make the parameters σ and γ, in Eq. A2.9 
depend on covariates [34] Smith, et al. 
For instance, one could be assessing the probability of a 
certain exceedances in the UCLF, as a function of the Load 
Factor, which is the energy demand imposed on the 
installed capacity.   
It is generally accepted that from a time-series analysis 
perspective the POT approach is preferred to the BM one 
(albeit its challenges: does not handle stochastic volatility 
well in financial time series). 
If we allow time to play an important role in POT, then one 
can express Eq A2.9 in the form of an intensity set A of 
exceedances within a time window (T1 ; T2) as:   
Λ (A) = (T2 – T1) (1 + γ.(y – μ) /ζ)-1/γ    
The interpretation of these parameters is equivalent to 
those in Eq. A2.9, suffice it to say that, if T is in years, 
then it reflects the probability that the set A is “empty” of 
exceedances or that the probability of an annual maximum 
is ≤ y. The GPD can be derived as a consequence of Λ (A) 
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which ties in with the POT method. In the author’s 
opinion, research ought to be done in this camp as the 
distribution of T might be inverse-Gaussian when (T1 ; T2)  
is not considered as fixed but rather as a time variant 
interval, under which exceedances occur (i.e. the 
exceedances is the event that triggers the time-interval, e.g. 
time-to-fail or rather time-to-exceed t).  
 
2.4 Mean Excess Function 
 
This type of diagnostic may be used to test the assumptions 
on the variable’s behaviour under a threshold condition. 
As mentioned, the t may be derived by the use of the MEF 
on the GPD [13] Embrechts. The MEF can be a useful tool 
for distinguishing distribution functions in their right tails 
(and its estimations).  
 
Example using the MEF (refer to Fig A1.6): 
Let us say that we model Y as a Max(X) – t  ~  Exp(λ), i.e.  
yi = Max(xj) – t , with CDF:    F(y) = 1- e(-yλ) 
Let e(t) =1/λ, be the Mean Excess Function, then 
1/λ is the mean exceedances above t and can be estimated 

by ∑
=

n

i
iy

n 1

1
 

Other distributions’ MEF’s can also be derived, e.g. the 
Pareto as indicated in the table below, [13] Embrechts. 
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Distribution pdf e(t) 

Pareto 1+α

ακα

x
.

 1−
+

α
κ t

   

, α >0 

Exponential 
 

λλ λ ,,. )( xe x− >0 λ
1

 

Burr 1

1

)(
)(..

+

−

+ ατ

τα

λ
λατ

x
x  1−ατ

t , α 

>0 

GPD 
( 1 / σ ) [1 + ( γ x/σ )]−(1/γ) − 1  

γ
γσ

−
+

1
t , 

1>γ >0 
Table A1.1: Mean Excess Functions based on threshold t 
 
From Table A1.1 one would plot various thresholds t on 
the x-axis versus its relative MEF (y-axis). 
In the case of a GPD, from Table A1.1, 
e(t) = [{σ/(1-γ)} + {γ/(1-γ)}. t], one would expect that by 
plotting t vs e(t), one should observe a straight line with 
slope {γ/(1-γ)}. Hence this has the benefit of selecting a 
threshold t , given that we estimated γ. However some 
caution needs to be exercised, since (as mentioned before) 
for large t there are a few observations and therefore a high 
variability in the mean. 
Let a threshold t0 be of a “high” value and let (y – t0) follow 
a GPD with parameters γ and σ with 0<γ<1 and the 
E {(y – t0)| y > t0} = σ / (1 – γ), then ∀ t > t0, the MEF is by 
definition: 
e(t) = E {(y – t)| y > t} = [σ − (−γ).( t − t0 )] / (1 – γ) 
= [σ + γ.( t − t0 )] / (1 – γ) 
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which is of the form given in Table A1.1 for the GPD.  
Hence for a given γ, e(t) is a linear function of t and 
provides a method to infer t0 for the GPD. 
Let the empirical MEF be 

ê(t) ∑
=

−=
tN

i
i

t
ty

N
1

)(1 , where Y is the ordered-X, then by 

plotting ê(t) on t we get the Mean Excess plot, expected to 
be linear at t > t0. 
It can be shown that a reduction of ê(t) is 

ê(t) ∑
=

+−=
tN

i
i

t
y

N
t

1

)(1 , for each of the Nt ‘s, this tends to 

simplify the computations. 
 
Although, practically, it may be difficult to interpret the 
plot because for large t there are few exceedances as 
mentioned above, the plot’s real purpose is to detect 
significant shifts in the slope at different t‘s. 
  
More sophisticated methods may be used when sampling 
Y’s off the X’s especially under a Time Series condition, 
whereby the peaks ought not to be associated with cyclic 
behaviour of the variable X (see, for instance, [13] 
Embrechts p270 on the effects of autocorrelation when 
using the Hill estimator). 
 
 
2.5 GEV Mean and Variance  
 
Here the Mean and Variance of the GEV is related to μ and 
σ (see SGEV in 2.1 above) 
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E[X] = μ + σ . {Γ (1 − γ) −1 } / γ          →    μ +  0.5772 σ   
for  γ → 0 
Note that ψ(1) = diGamma = -0.5772, and 0.5772 is 
Euler’s constant 
and 
Var[X] = σ2. {Γ (1 − 2γ) − Γ2(1 − γ) } / γ2 

        →    [(π2)/6].σ2   for  γ → 0 
Note that ψ’(1) = triGamma = (π2)/6 

where Γ(x) = ∫
∞

−−

0

1 dyey yx   

(See Appendix C paragraph 2.7 for more details) 
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APPENDIX B 
Work on Price 
 
To perform work in the area of electricity prices in a power 
pool, an understanding of the meaning of Returns is 
necessary. 
 
Definition A: Returns 
Returns are defined as the change in value of the asset plus 
the cumulative cash flow over the original value of the 
asset [38] Wilmott 
Let St be the asset value at unit time t.  
Then the Returns from time unit t to time unit t + 1 is 
defined [38] Wilmott: 
 
Rt = (St+1 – St) / St      B1.0 
 
 
 
 

1. Modelling Returns: First Approach 
 
To guide us in the choice of what parameter would 
represent the randomness of the Returns, one could select a 
measure of spread within a certain time differential. 
For instance, one could choose the standard deviation of 
the Returns, defined as 
 

StDev (Rt) = 2

11
1 )(∑

=

−
−

n

t
t RR

n
   B1.1 
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Where, ∑
=

=
n

t
tR

n
R

1

1  

 
Assumption 1.1: Let the Returns be Normally distributed, 
i.e. R ~ N(μ;σ2) 
This implies the following: 
 

fR(r) = 2

2

2

2
1 σ

μ

πσ

)( −
−

r

e  

 
Let Z = (R – μ) / σ , to standardise.    
  
 
Implying R = μ + Z.σ     B1.2 
 
With, 

fZ(z) = 2

2

2
1 )( z

e
−

π
 , and Z ~ N(0;1) 

 
The Returns are now being expressed by means of (B1.1) 
a measure of expectation μ and variation σ. 
 
 

1.1 Effect of time upon Returns 
 
It is however expected that the time unit of choice would 
also have some effect on the behaviour that is attempted to 
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be modelled (If one samples hourly, daily, weekly,…, the 
results would be different). 
 
Under the absence of randomness, (B1.2) would be:  
R = μ        B1.3 
 
Assumption 1.2: Let δt be a determined time differential 
(e.g. δt could be a time step of 1 hr, 1 day,…) 
R = μ . δt      B1.4 
if δt =1 , (B1.3) =(B1.4) 
 
Equation A can now be expressed in the form: 
 
Rt = (St+1 – St) / St  = μ . δt  
Re-arranging: 
St+1 = St (1 + μ . δt)     B1.5 
 
Starting at t = 0, equation (1.5) becomes after one time step 
t = δt, 
S1 = S0 (1 + μ . δt)     B1.6 
after the second time step t = 2δt, 
S2 = S1 (1 + μ . δt)     B1.7 
Substituting (B1.6) in (B1.7): 
S2 = S0 (1 + μ . δt)2  
after n time steps t = nδt  
Sn = S0 (1 + μ . δt)n      
Let   X = eln(X) , Xn = en.ln(X)  
therefore  S0 .(X)n = S0 . en.ln(X) , by letting X = (1 + μ . δt), 
we get: 
S0 (1 + μ . δt)n  = S0 . en.ln(1 + μ . δt)    B1.8 
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Since  (1 + μ . δt)n  ≈ en. μ . δt , by Taylor’s expansion and 
Infinite series 
and substituting in (B1.8), 
Sn = S0 (1 + μ . δt)n  ≈  S0 . en. μ . δt  
Then, if after n time steps, let T = n.δt,   
Sn = S0 (1 + μ . δt)n  ≈  S0 . e μ .T   B1.9 

1.2 Random representation 
 
In the derivation of equation (B1.9), no variation was taken 
account of. If now the variation effect is taken into account 
and imbedding the time component, then equation (B1.1) 
is affected by n.δt terms by using the same argument in the 
paragraph above. 
Since T = n.δt ,  n = T / δt , substituting in (B1.1): 

StDev (Rt) = 2

1
)(

/

∑
=

−
−

tT

i
i RR

tT
t δ

δ
δ    B1.10 

Hence, the deviation of the Returns is of the order (δt)1/2 , 
if it were to be represented in equation (B1.4) in taking 
cognisance of the variation. 
From equation (B1.2), the Returns could be modelled as: 
  Rt = (St+1 – St) / St  = δtZσμ.δt +  
Which may be written as: 
 
                         (St+1 – St) = δtZσSδtμ.S tt +          B1.11 
 
  Change in      Model representing  
  Asset price    a Random process 
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Another way of looking at equation (B1.10) is: 
Var (Rt ) = E [ 2)( RRt − ] = 2σ , 
Over small time unit intervals, the variance is: Var (Rt ) . 
δt  = 2σ .δt  
Therefore the standard deviation of the Returns can be 
expressed by: 
Stdev (Rt ) = δtσ      B1.12 
 
Combining equations (B1.2), (B1.4) and (B1.12), the same 
result as equation (B1.11) can be obtained. 
 
The model represented in equation B1.11 is 
fundamental in modelling the behaviour of returns. 
 
Remarks 1:  1.1] The prices themselves take on discrete 

values and change at fixed point in time 
 1.2] Changes in the values of prices over 

time are uncertain or random 
 1.3] The following approximations apply: 
  a) the random process is 

continuous over time 
  b) the spot prices vary continuously 

2. Stochastic Processes 
 
Definition 2.1: Markov Process (MP) 
A Markov Process is a stochastic process where only the 
value of a variable at present time t, is relevant for 
predicting the future [38] Wilmott. 



 140 

In statistical terms, it’s the conditional distribution of X(t), 
given the information up until τ < t , depends only on 
X(τ).[38] Wilmott 
 
Definition 2.2: Wiener Process (WP) or Brownian 
Motion 
It is a particular kind of MP and is given as the limiting 
process of a random walk as the time differential between 
the steps tends to zero. [38] Wilmott 
In statistical terms: 
If W ~ WP, then: 
1) ΔW = Z tΔ  and  Z ~ N(0;1)    B2.1 
2) Values of ΔW, for any two different short time intervals 
Δt are independent ∴ ΔW are not correlated over time. 
Properties of a WP: 
Let W ~ WP, then: 
E[ΔW] = E[Z tΔ ] 
 = E[Z] . E[ tΔ ] 
 =  0  . E[ tΔ ] 
 = 0 
 
Var[ΔW] = E[{ΔW  - E[ΔW]}2 
The expected value of ΔW is zero (see above), hence: 
Var[ΔW] = E[{ΔW}2] 
      = E[{Z tΔ }2] 
      = Δt . E[{Z}2]  but E[Z2] = Var(Z) = 1  
      = Δt 
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Definition 2.3: Generalised Wiener Process (GWP) 
A GWP for a variable X, is defined as the summation of a 
drift and a stochastic component, in the form of: 
   dx = a.dt + b.dW  
where, 
 a and b ∈ ℜ  
 W ~ WP 
 dW = Z tΔ  
 
Properties of a GWP 

• If  b = 0 , then dx/dt = a (constant). By integrating, 
x = a.t + x0 ; x0 = x(0) 
Hence, X has an expected drift rate of “a”, per unit 

time. 
• If a =0 , then dx = b. Z tΔ , this is a WP with zero 

drift and variance rate of b2, per unit time. 
 
 
Definition 2.4: Itô Process (IP) 
An IP is a GWP where “a” and “b” are functions of time 
“t” and a variable X expressed in the following form: 
  dx = a(x;t).dt + b(x;t).dW 
 
Lemma: (Itô’s Lemma) 
Suppose that dx follows an IP, then:  
Some function dG of X and t follows: 
 

dG = (
x
G

∂
∂ a + 

t
G

∂
∂  + 

2
1  . 2

2

x
G

∂
∂ b2) dt + 

x
G

∂
∂ b. dW   B2.2 
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3. Modelling Returns: second method 
Modelling Returns as a Generalised Wiener Process 
Let  
 St = Spot price @ time t 
   t = time of observation 
 μ  =  drift rate 

σ   =  volatility 
 dW = Z tΔ  
 
and  dSt = (St+1 – St)  
 
∴ Looking at the form of a GWP and it could be said 
that St+1 is the stochastic price following a GWP given  St . 
Then from Definition 2.3,  
 dSt = μ St dt + σ St dW  
       = μ St dt + σ St Z tΔ     , dt << 1  B3.1 
 
or as dt  → 1, 
    St+1 – St = μ St δt + σ St Z δt      
 
which is similar to Eq. B1.11, which is similar to Eq. B3.1 
when δt → 0 (see [38] Wilmott p61 last two paragraphs of 
3.7). 
 
But Eq. B3.1 lacks continuity and therefore cannot be 
solved using normal calculus (remember: Z is stochastic, 
Z ~ N(0;1) ). 
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Hence, Eq. B3.1 can be solved by either using a numerical 
method (such as Monte Carlo simulation) or Stochastic 
integration (e.g. using the Gamma Function, its Lemma 
and moment Generating Functions). 
The important point of using a GWP, is that now build up a 
continuous-time model instead of discrete time events. 
 
 
Due to the exponential properties of the spot prices (e.g. 
Eq. B1.9,∴ ln(Sn/So) = μT), returns are generally modelled 
in terms of the logs. 
Hence, the widely accepted model for returns, equities, 
currencies, commodities and indices, is expressed in terms 
of the stochastic equation: 
 
 dSt = μ St dt + σ St dW   B3.2 
 
 
This is a continuous-time model of an asset price, and 
forms the foundation of Finance Theory (notice the 
similarity with Eq B1.11 and B3.1). 
 
Using Itô’s Lemma, Eq. B3.2 can be expressed in terms of 
ln(St) 
 

Let G = ln(St);   
tS

G
∂
∂  = 

tS
1 ;   2

2

tS
G

∂

∂  = - 2

1

tS
;   

t
G

∂
∂  = 0;   

a = μ St and  b = σ St 
Substituting in Eq. B3.2, we get: 
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d{ln(St)} = (
tS

G
∂
∂

μSt +
t
G

∂
∂ +

2
1  . 2

2

tS
G

∂

∂
σ2St

2) dt   

+  
tS

G
∂
∂

σ St. dW 

= (μ - 
2
1

σ2 ) dt + σ . dW    B3.3 

 
Therefore, ln(St) follows a GWP with rates: 

drift = μ - 
2
1

σ2  and variance = σ2  

∴if dt = T – t, this means: 
 

d{ln(St)} = ln ST - ln St  ~  N{(μ - 
2
1

σ2 )( T – t); σ2 (T – t)}  

 ∴   ln {
t

T

S
S

} ~  N{(μ - 
2
1

σ2 )( T – t); σ2 (T – t)} 

 
From Eq. B3.3, 

 ln {
t

T

S
S

} =  (μ - 
2
1

σ2 )( T – t) +  σ (WT – Wt) 

 
 

∴ ST  =  St . exp{ (μ - 
2
1

σ2 )( T – t) +  σ (WT – Wt)} 

 
 
Hence, the spot price at time T, contingent on the spot 
price at t, was derived. 
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In addition: 
 

E[ST] = St . exp{(μ - 
2
1

σ2)( T – t)} . E[exp{σ (WT – Wt)}] 

  = St . exp{(μ - 
2
1

σ2)( T – t)}. exp{
2
1

σ2 (T – t) 

 
∴  E [ST  ] = St . e μ .(T – t) 
 
 
∴  E [ST  ] = St . e μ .dt       B3.4 
 
(Compare this result to Eq. B1.9 for interest) 
 
Equation B3.4 implies the following important points: 
 

 The expected spot prices grow exponentially over 
time with an expected return m (remember the 
Nominal Annual continually Compounded  

 A = P.ert, where P = Investment, r = Interest and  
 t = maturity time) 
 

 The spot prices are always positive 
 

 No mean reversion was represented 
 No seasonality was modelled in Eq. B3.4 
 The volatility is constant 

 
 
 



 146 

REMARKS: 
 

 A point of interest here is that the violation of the 
price positivity, would destroy Eq. B3.2 which 
forms the basis of Finance Theory (e.g. fair pricing 
of all types of options would be destroyed and infer 
chaotic behaviour in the derivatives markets). 
The Australian market experimented at paying the 
customers to take the energy for production 
purposes. This induces negative pricing, destroying 
Eq. B3.2. 
The argument still stands that if the customer uses 
the energy still (as it’s not storable), then why not 
sell it at the very minimal unit price (e.g. R1, US$ 
1, €1, A$1, £1, ¥1, etc…). 

 
 Another interesting aspect is the distribution of the 

Returns. Is it important for 
S
δS  to be N(μ;σ2)?  

Let Y = 
S
δS  be a random variable with a 

determined distribution. What matters as far as 
transaction costs, is not the mean of Y, nor its 
standard deviation ([38] Wilmott p346, 24.11) but 
|Y | (the absolute average value of the relative 
returns). 

 
 Let ARt be the arithmetic representation of the 

Returns (also termed Net Returns) and GRt   the 
geometric representation (also termed Log 
Returns) of the Returns. Then mathematically they 
can be expressed [42] van Zyl as: 
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ARt = 

t

t1t

S
SS −+    and    GRt   =  ln (

t

1t

S
S + ) 

 

∴  GRt   =  ln (
t

tt1t

S
SSS +−+ ) = ln (1 + ARt)  

          = ARt  - 
2

t
2A R  + 

3
t

3A R  - 
4

t
4A R  + …

      [17] Giordano 
 If ARt  << 1, then 
 
 GRt  ≈  ARt   
 

(However the problem comes into using the 
standard deviation of the Arithmetic returns, as 
we’ll see below) 
 

 Also, 
  GRt   =   ln (1 + ARt) 
  GRt  ln(e) =   ln (1 + ARt) , since ln(e) = 1 
 i.e.  
  ln (exp{ GRt  }) =  ln (1 + ARt)  
 
∴   exp{ GRt  } = 1 + ARt    

 
  exp{ GRt  }  - ARt  = 1       
 
This is an exact relationship between the arithmetic 
and geometric interpretations of the Returns 
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Scenario 1 (S1): Take a change between 100 @ time t, 
down to 20 @ time t+1, then  
 
ARt = 

t

t1t

S
SS −+    = (20 – 100)/100 = -80% ;  

GRt   =  ln (
t

1t

S
S + ) = ln(20/100) = -1.61 

Scenario 2 (S2): Take a change between 20 @ time t, up to 
100 @ time t+1, then  
 
ARt = 

t

t1t

S
SS −+    = (100 – 20)/20 = 400% ; 

 GRt   =  ln (
t

1t

S
S + ) = ln(100/20) = +1.61 

This clearly indicates that taking the standard deviation of 
all the  ARt  induces artificial bias in the distribution of the 
Net Returns (different values [-80% ; 400%] for the same 
change of 80). 
 
Hence expressing the volatility as a percentage of the Log 
Returns seems the more plausible thing to do. However, 
this could result in a debate in terms of Eq. B1.11 and 
Eq. B3.1 
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APPENDIX C 
 
1. Exploratory Data Analysis (EDA) 
In EDA, some methods in Data Mining were used: 
- Data exploration, i.e. investigating: 

 the Problem Space: Extreme GWh losses events 
occurring in the production of electricity 
 the Solution Space: application of EVT to 

understand the behaviour of these extreme events 
 the Data Space itself: data collection, preparation, 

use of EDA techniques 
- Data preparation 

 Data cleansing: Care and caution was taken so as 
no data tampering happened. 
 Meticulous scrutiny of the data was carried out to 

assure that: 
• No duplication occurred (software transfer 
between media) 
• There were no inconsistencies (e.g. same 
acronym for different Power Stations, like Mt 
for both Matimba and Matla) 
• Default values were correct (e.g. a “blank”  
for missing values and not a zero) 

- Data transformation 
 Transforming UCLF percentages into GWh losses 
 Encoding by scale augmentation: Clustering of 

GWh losses into event categories (such as Main 
Event, Semi-catastrophic an Catastrophic) 
 Basic data enhancement such as deriving Total 

GWh losses for each year over the period, 
descriptive statistics and basic plots. 
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The working files are named: “Units 1990-2005.xls” and 
“GWh Losses EDA v3.xls”, “Workbook.xls” and 
“Workbook (Entropy-GEV).xls” 
 
 
Software Used:  
 
StatsticA for Windows v 5.1 
Matlab v5.3 Used at the Risk Laboratory at the University 
of the Free State 
ForecastPro for Windows 
Excel 2002 Including macros and Visual Basic coding 
Powerpoint 2002 
Word 2002 
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2. General Statistical Work  
 
2.1 Bayes Theorem 
 
From Bayes Theorem: 
f X|Y (x|y) = f X,Y (x,y) / fY(y)    C2.0 
 
When X and Y are independent: 
 f X,Y (x,y) = fX(x) . fY(y)    C2.1 
By substituting C1.1 in C1.0 
f X|Y (x|y) = fX(x) 
 
2.2 Binomial Distribution 
 
Usually expressed as the probability of successes, in this 
thesis it is expressed as the probability of failures. 
Let: 

X (an integer value) be the No. of failures in the 
sample X = {0, 1, …, n} 

p = success rate 
q = 1- p = failure rate 
n = sample size 

Then the Binomial Distribution, given n and q is expressed 
by: 

B(n;q) ;   P(X = x) = xnx qq
xnx

n −−
−

)1(
)!(!

!   C2.2 

 
and P(X = x) is interpreted as the probability of x failure(s) 
out of n objects 
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2.3 Poisson Distribution 
 
This distribution is derived from a Poisson process which 
exists if one can observe discrete events in a certain 
continuous window (e.g. defects per inch or per second or 
per cubic metre). 
The Poisson model [ Psn(λ)] is derived as the limit of the 
Binomial as n → ∞ and q → 0 and the product n . q = λ 
being constant, the expectation E[x] = n . q 
The Poisson Distribution, given λ,  is expressed by: 

Psn(λ):   P (X = x) = 
!
.

x
e xλλ−

     C2.3 

Example: Say we have observed, in the Catastrophic 
category, 1 event over the period of 930 Unit Years, then q 
= 1/ 930 = 0.00107, if in a particular year we have a fleet 
of 64 GU’s then E[x] = 64 . q = 0.0688, therefore by using 
Eq C2.3, the chance of having zero Catastrophic events in 
a particular year with 64 GU’s is: 
Psn(0.068):   P (X = 0) = exp(0-0.0688) . 1 / 1 = 0.9335 
 
 
2.4 Relationship between the Poisson and Binomial 
Distributions 
 
Let X1 and X2 be two iid Psn(λi) rv’s, and let Y = X1 + X2  
From C1.0, we get: 
f X|Y (x|y)  = P(X1 = x1 , Y = y) / P(Y = y) 
 
= P(X1 = x1 , X2 = y – x1) / P(Y = y) 
 
From C1.1, we get: 
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f X|Y (x|y) = [P(X1 = x1). P(X2 = y – x1)] / P(Y = y) 
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Therefore, given the sum Y of X1 and X2 being two iid 
Psn (λi) rv’s, the conditional distribution of Xi is binomial 
(see Eq1.2 in main body of thesis) with parameters n = y 
and q = (λi) / (λ1 + λ2) 
 

Expanding for Y = ∑
=

n

i
iX

1
 

 
 
f X|Y (x|y)   

=    

1
1

1
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Therefore, given Y = ∑
=

n

i
iX

1
 of  all Xi being n iid Psn (λi) 

rv’s, the conditional distribution of Xi is binomial with 

parameters n = y and q = (λi) / ∑
=

n

i
i

1
λ   

 
Note here that the joint pdf may be constructed by the 
product of the conditional and the marginal. 

∴   f X,Y (x,y) =  f X|Y (x|y) . fY(y) 
 

 



 155 

2.5 Quantiles 
 
From A1.1, 
For q ∈ (0 ;1), the q-th quantile of the distribution of a rv X 
is: 
F-1 (q) = inf{x∈ℜ: FX(x) ≥ q}    
   
Exponential Distribution (Gumbel domain) 
Let X be exponentially distributed with pdf 
 fX(x) = λ.exp(-λx), for λ > 0 and x ≥ 0. 
Hence, its CDF (of X) is:  
FX(x) = 1- exp(-λx), as given (see Appendix A Eq. A1.0). 
Consequently,  Qx(p) = inf{x: P(X≤x)  ≥ p}, from A1.1 
above. 
Thus, p-th Quantile, for any given 0 < p < 1, is the root of 
FX(x) = p , i.e.  
1 - exp(-λx)  = p  or  exp(-λx)  = 1 – p,  
hence  -λx = ln (1 – p) 
Therefore, Qx(p) = - [{ln (1 – p)] / λ 
Since  λ  is a constant, 
for a Q-Q plot,  
use { - [{ln (1 – p)] ; x } as { Horiz. ; Vert. } co-ordinates 
 
Weibull Distribution (Weibull domain) 
Let X, essentially positive, be Weibull distributed with the 
following CDF 
FX(x) = 1 – exp( λx τ−   )  , x > 0 

Therefore:  1 – exp( λx τ−   )  = p or  exp( λx τ−   )  = 1 – p 
Hence: (-λxτ) = ln (1 – p), 
Therefore τ.ln (x) = ln [(- 1/λ) ln (1 – p)] 



 156 

ln [Qx(p)] = 1/ τ  ln [(- 1/λ) ln (1 – p)] 
Since  λ  τ are constants, 
for a Q-Q plot, use 
{ ln [- ln (1 – p)]; ln ( x )} as { Horiz.;Vert. } co-ordinates 
 
Pareto Distribution (Fréchet domain) 
Let X, essentially positive, be Pareto distributed, then 
FX(x) = 1- x (-1/γ) , x > 0 
Therefore:  1- x (-1/γ)  = p or  x (-1/γ)  = 1 – p 
Hence: (-1/γ) ln (x) = ln (1 – p), 
Therefore ln (x) = - γ ln (1 – p) 
ln [Qx(p)] = - γ ln (1 – p)    C2.6 
Since  γ  is a constant, 
for a Q-Q plot, use  
{ - [{ln (1 – p)] ; ln ( x )} as { Horiz. ; Vert. } co-ordinates 
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2.6 Pickands Estimator 
 
This estimator for the EVI is given by: 
 

EVIk = 
⎭
⎬
⎫

⎩
⎨
⎧

−
−

=
+−+−

+−+−

1412

121
, )2(

1ˆ
knkn

knkn
kP XX

XXLn
Ln

γ , kmax is n/4 

 
Utilising the model above on the GUs GWh losses, the 
results of EVIk  , plotted against k, are shown in the graph 
here below: 
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The large volatility of the EVI is evident, and by the time 
that the limit of observations was reached, there was no 
stability in the indicator. A possibility is that it may have 
reached it at a value of between 0.2 and 0.4. 
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In [2] Beirlant, it is mentioned that more efficient changes 
in this estimator are being proposed (such as 
Segers[2004]). 
 
 
2.7 Gamma Series Functions 
 
It is possible to estimate the Gamma function near a point 
by using a series expansion at that point. 
To be able to do that one needs to invoke some important 
findings. 
 
2.7.1 Euler’s Function 
 
In 1730, Euler introduced the following definition: 

dtetxdttLnx txx −
∞

−− ∫∫ =Γ−=Γ .)()]([)(
0

1
1

0

1 or  

by substituting u = -Ln(t) in the 1st function. 
 
2.7.2 The Weierstrass Formula 
 
The relation px = exln(p) = e x[ln(p)-1-1/2-…-1/p] . ex+x/2+…+x/p,  
involves: 
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Euler’s constant (also called the Euler-Mascheroni 
constant) is defined as: 
 

ε = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++

∞→
)(1...

2
11 pLn

p
Lim
p

 = 0.5772156649… 

 
and the Weierstrass formula for the Gamma Function is 
(from Weierstrass theorem): 
 x∀  ∈  ℜ+  ,  ∉   {0, −ℑ }  (i.e. all real numbers except 0 
and negative integers) 
 

∏
∞

=

−
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⎛
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Γ 1
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ε    C2.7 

 
by taking the logs of C2.7, the following is obtained: 
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by differentiating C2.8 
 

∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+−−=Γ
1

111)]}([{
p pxpx

xLn
dx
d ε  

             ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+−=
1 1

11

p pxp
ε  

for x ≠  0, -1,-2,…. 
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for x ≠  0, -1,-2,….   
 
The equation C2.9 is defined as the psi or digamma 
function for any non-zero or negative integer 
One may continue differentiating to obtain Polygamma 
functions: 
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or, in general form, the Polygamma can be expressed as: 
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this means that equation C2.9 is usually expressed in the 
form: 
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For a continuous x, equation C2.11 can be expressed as 
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)(1 xΨ is defined as the trigamma function. 
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Legendre’s Theorem: 
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Gauss’ Theorem: 
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Euler’s Corollary (by setting x = 1/n in Gauss’): 
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2.8 Entropy 
 
Entropy referred here is Statistical Entropy. It originates 
from the works in thermodynamics by L Boltzmann, an 
Austrian phycicist who was researching entropy using 
probability theory. In later works, the definition of 
Statistical Entropy was defined in terms of a macrostate 
variable to be considered as an expression of a function of 
microstate variables, or mathematically: 

H (p) = [ ]∑
=

−
k

i
ii pLogp

1

)(.λ                  C2.12 

Where, p = {p1, p2, …, pk} is the probability density vector 
of element I; i.e. pi  is the probability that i will be in a 
given microstate and all pi’s are evaluated for the same 
macrostate; λ is a constant (Boltzmann constant in 
thermodynamics), but may be set arbitrarily to 1 without 
affecting the concept of entropy in Statistical Mechanics. 
Since all pi’s are probabilities between 0 and 1, this implies 
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that by taking the Log, the results would be negative, to 
counteract this effect, a negative sign is placed in front of 
the equation. The Log is taken to the base 2 to reflect the 
presence/absence of the element i in the microstate. 
If all pi’s are equal (e.g. distributed Uniformly), then:  

 H (p) = [ ]∑
=

−
k

i
ii pLogp

1

)(.λ  = -λ {k.p Log(p)}, since all 

p’s are equal, k.p =1 and p =1/k therefore the entropy 
equation reduces to:  
H (p) = λ{Log(k)}                                 
Hence, under this condition, the relevant factor becomes 
the number of i’s (states in microstate). 
The larger the Entropy, the more unpredictable the 
outcome. 
 
Although not utilised in the thesis, the Kullback-Leibler 
(KL) information-theoretic measure is worth mentioning. 
The KL is a value of similarity between a statistical model 
and a true distribution. In some cases, the statistical model 
would be the observed distribution while the true one may 
be generated (say by a simulating process). The KL value 
is essentially positive and zero when the 2 distributions 
coincide, but caution needs to be exercised as it is not a 
metric (it does not satisfy the triangle of inequality and is 
not symmetric; it is a convex function of the “true” 
distribution). 
The KL may be thought of as the relative entropy of one 
distribution p with another distribution q. One may think of 
the KL (using Log2) as the observed average number of 
failures by maintaining events from a distribution p with a 
maintenance plan based on the distribution q.    
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Since the KL is defined as the difference between an 
approximating entropy and the source entropy (with the 
latter always smaller), as an experiment approaches, 
through experience, the distribution given, the KL 
decreases towards zero. 
However since the KL in itself might be misleading (if 
source entropy is 1 and KL is 0.1, then the latter is small; if 
source entropy is 0.1 and KL is 0.1, then the latter is 
relatively large). Hence the Relative Kullback is generally 
utilised as: 100 (KL / H), where H is the source entropy 
(referred to as the arc source entropy, this can be 
interpreted in our case as the minimum average number of 
fail/succeed tests which must be performed to determine a 
maintenance plan). 
An interesting topic but outside the realm of this thesis. 
 
 
2.9 Dirichlet Process 
 
2.9.1 Distributional Properties 
A few definitions need mentioning, namely the 
Multinomial distribution one and the Dirichlet one. 
The Multinomial distribution is a discrete distribution 
which gives the probability of choosing a collection of m 
items from a set of n items with repetitions and the 
probabilities of each choice given by p = {p1, p2, …, pn}, 
these probabilities form the parameters of the Multinomial 

distribution: ∏
=

=
n

i i

x
i

x
pnp

i

1 !
!)(xX  

The Dirichlet distribution is the conjugate prior of the 
parameters of the Multinomial distribution. The pdf of the 
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Dirichlet for variables p = {p1, p2, …, pn}, with parameters 
u = {u1,u2, …, un},  is defined as: 

Dir (p;u) = ∏
=

−
n

i

u
i

ip
Z 1

1

)(
1
u

     C2.13 

with p = {p1, p2, …, pn} ≥ 0 ,  ∑
=

n

i
ip

1

= 1   

and u = {u1,u2, …, un} > 0 , 
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The parameters u can be interpreted as “prior observation 
counts” for events governed by p.   

Let u0 = ∑
=

n

i
iu

1

, then the mean and variance of equation 

C2.13 are: 

E[pi] = 
0u

ui  and Var[pi] = 
)1(
)(

0
2
0

0

+
−

uu
uuu ii  

If ui → 0  , then Dir (p;u) becomes non-informative and 
pi’s stay the same if all ui’s are scaled with the same 
multiplicative constant, but Var[pi] will get smaller as ui’s 
increase. 
 
2.9.2 Negative Differential Entropy 
Define the Negative Differential Entropy (NDE) as 
E[Log p(p)] and the expectation E[Log pi], by reducing this 
expectation over a two dimensional space of the Dirichlet 
distribution represented by: 
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(p;1 – p) ~ Dir(ui ;u0 – ui) 
the expectation is then given by: 

E[Log pi] = ∫ −−− −
−ΓΓ

Γ1
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)( dppLogpp
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u
ii uuu

ii
 

 
 Using the digamma functions, [20] Honkela evaluates the 
expectation as: 
   
  E[Log pi] = )()( 000 uui Ψ−Ψ  
 
 
Honkela utilises the above equation to evaluate the NDE 
as: 
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2.9.3 Comparative Formulae 
Comparison between Honkela equation C2.14 and 
equation (2) in [11] De Waal, et al 
 
From equation C2.12 
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Which is similar to (2) in [11] De Waal et al, with ui = νi  
and pi = yi and n = k+1 
 
Equations C2.14 and C2.15 are equivalent 
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2.10 Wobbles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By original 3-LM with a threshold of 1704 GWh (although 
not a good threshold choice, at k=8) : we can see the 
wobble (blue dotted line).The issue here would be to 
establish if the wobbles are important underlying 
distributional phenomena, and not manufactures of the 
sample, [19] Hernandez-Campos. 
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3 Bayesian Methods 
 
3.1 Fisher Information Matrix (FIM) 
 
To arrive to the FIM, it is necessary to define the Score 
Function (V). V is the partial derivative with respect to a 
parameter θ of the Likelihood function. 
Let X be a r.v. and its corresponding Likelihood be 
L(X |θ ), then the score function is: 
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)(
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=   C3.1 

V is a function of θ and X   and is a sufficient statistic for θ. 
 
Sufficiency criterion: If T(X) is sufficient for θ then 
 fX (X|θ ) = g{T(X),θ }. h(X) for some functions g and h. 
 
Also, E[V] = 0 
The variance of V is defined as the Fisher Information and 
is denoted by I(θ ). Therefore: 

Var [V] = I(θ ) = E 
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It is worth noting that 0 < I(θ ) < ∞  and I(θ ) is not a 
function of a particular observation. 
Hence the I(θ ) is the amount of information that an 
observed r.v. X carries about a parameter θ , upon 
which, L(θ;X) i.e. its Likelihood, depends. 
If L(X |θ ) =  fX (X|θ ) and the condition 
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 ∫ ∂
∂ dxXf X )(2

2
θ

θ
 = 0  is met, then C3.2 may be 

expressed as:  

I(θ ) = – E ⎥
⎦

⎤
⎢
⎣

⎡

∂
∂ )]([2
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θ
XfLn X    C3.3 

Since this is the 2nd partial derivative of the Ln of f with 
respect to θ , I(θ )  may be interpreted as measure of the 
spread near the maximum likelihood estimate of θ  (even if 
the sign is negative). This kind of information became 
known as the Fisher Information Metric is a type of 
Riemannian metric on the space of probabilities. 
  
Properties: If two r.v.’s, X and Y are independent, then: 
IX;Y(θ ) = IX(θ ) + IY(θ )  
Interpreted, this means that provided two r.v.’s are 
independent, then the variance of their sum, is the sum of 
their variances. 
From C3.3 and the sufficiency criterion as well as the fact 
that h(X) is independent of θ, we get: 
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θ

θ
XTLnXfLn X ∂

∂
=

∂
∂   and if T = tX(x) 

is a statistic, then 
  IT(θ ) ≤  IX(θ )  with     IT(θ ) =  IX(θ ) ⇔  T is a sufficient 
statistic. The inequality (Cramer-Rao) indicates that the 
reciprocal of the Fisher Information, is an asymptotic 
lower bound on the variance of any unbiased estimator for 
θ . 
When θ is an m vector, then the Fisher Information 
becomes a m x m Fisher Information Matrix (FIM) with 
elements: 
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[I(θ )]i;j = – E 
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[I(θ )]i;j is positive definite symmetric defining θ   in the 
m-dimensional space. Same definition as above (in bold 
underlined) but catering for multidimensionality.   
Let θ   = (μ;σ), i.e. a 2 parameter vector, then, from C3.4, 
[I(θ )]i;j is a 2 x 2 FIM with 
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Example 1: Log Normal case 
for a Log Normal r.v. X, by transformation Y=Ln(X), Y ~ 
N(μ;σ2) 

i.e. the pdf is given by:
2
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and hence the Log-Likelihood is: 
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using partial derivatives on the Log-Likelihood with 
respect to μ and σ2 , we get:  
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∴ using matrix C3.5 we get as the elements of [I(θ )]i;j: 
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Since [I(θ )]i;j is an expectation (see C3.5) and since 
E[Y]= μ ,  Ε[y− μ] = 0; also, Ε[(y− μ)2] = σ2 , we can 
reduce the four equations above to: 
 

[I(θ )]i;j=  –

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

2

2

20

01

σ

σ  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

2

20

01

σ

σ   C3.6 

 

Det [I(θ )]i;j=  4
2

σ
  – 0    

This implies that the reference prior should be: 

 π (μ;σ2 | y) ∝ 
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In concordance with the usual prior for a N(μ;σ2) which 
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Example 2: The GPD case 
Let Y ~ GPD (γ;σ) where Y = X – t of a r.v. X over a 
threshold t and assume γ ≠ 0, then: 
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Likelihood: 
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Log-Likelihood: 
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The “trick” here is in the reduction of the equations into a 

form of 
2
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may then use the properties of expectations, as developed 
by Davison AC, see [41] van Noortwijk, when developing 
the Fisher Information Matrix . 
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Taking 1st partial derivative of the Log-Likelihood w.r.t. γ : 
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Using C3.8 in the equation above, we get: 
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Taking 1st partial derivative of the Log-Likelihood (C3.7) 
w.r.t. σ : 
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Using C3.8 in the equation above, and substituting in 
C3.10 we get: 
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Let )1(and)11(
σ

γ
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ykp −=−=         and substitute in 

C3.11, we get: 
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Using equation C3.9 and taking its 2nd partial derivative 

w.r.t. γ  , letting )1(
σ

γ yk −= and using equation 3.8, we 

get:  
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Using equation C3.9 and taking its 2nd partial derivative 

w.r.t. σ , letting )1(
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γ yk −= and using equation 3.8, we 

get:  
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Since the matrix is symmetric we only need to evaluate 
one element of the opposite of the trace; using equation 
C3.12 and taking it’s the partial derivative w.r.t. γ , letting 

)1(
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γ yk −= and using equation 3.8, we get: 
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The Fisher Information Matrix (FIM) for a GPD is then: 
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Using the expectation properties, see [41] van Noortwijk, 
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referred to as property I, II and III respectively: P-I, P-II 
and P-III 

and all valid for γ  <  
2
1 . 

Hence, taking the expectation of the 1st element of the 
FIM: 
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Similarly, taking the expectation of the 2nd element 
(diagonally) of the FIM: 
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Again, in a similar way, taking the expectation of the 
remaining element of the FIM: 
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Hence the FIM becomes: 
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Therefore, Jeffreys’ Prior for a Y ~ GPD (γ;σ),  
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 for    
2
1

−  <  γ  <  
2
1        

 
Although the equations of the FIM elements, prior to 
taking expectations, are different in appearance but not in 
content, the results of C3.19 and C3.20 are equivalent to 
the one obtained by [41] van Noortwijk p J4 ([I(γ;σ )] in 
this thesis and [I(σ;γ )] in van Noortwijk), quid est 
demonstrandum. 
 
Inverting the FIM, let  [I(θ )]i;j  =   [I(θ )]: 
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or in another form: 
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3.2 The Delta Method (DM) 
 
This method is a general procedure to determine estimates 
and provides the approximation of standard errors of 
arbitrary function of normally distributed random 
variables; it may also be used for the computation of 
confidence intervals for functions of MLE. This method 
uses a function that would be too complex to compute and 
by employing a linear approximation of that complex 
function, it formulates the variance of the simpler linear 
function that may be utilised for inference. 

Let  ∞→→− nVarNn
L

,)]ˆ(;[)ˆ( θθθ 0  from MLE 
theory 
Let g(θ ) be a non-linear continuous function of θ, e.g. 
predicted probabilities from, say, a Log-Normal , a GPD, 
etc… 
Then, using Taylor series as an expansion, we get: 
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where, θ~ is a value between θ̂  and θ.  
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then Eq C3.23 becomes: 
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)~ˆ()~ˆ()~(')~()ˆ( θθθθθθθ −+−=− oggg T , representing 

the MLE of g(θ ) 
by taking the variance: 
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Practically the partial derivatives are evaluated atθ̂  relative 
to θ. 
Since Eq C3.24 can be expressed in terms of the Fisher 
Information Matrix (Eq 3.2 above), then Eq C3.25 may be 
expressed as: 
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4 General Discussions and Remarks  
 
4.1 Discussion on EDA 
 
Linear Correlations 
Correlations were found amongst GU’s GWH Losses, eg 
for Arnot GU3 with the following GU’s: 
 

   

TU1 0.827
KE1 0.799
ML3 0.795
MB5 0.735
LE1 0.733
HE9 0.732
TU4 0.696
HE2 0.645
HE6 0.637
MJ3 0.602
HE1 0.601
ML1 0.595
HE3 0.591   

 
However, these correlations are not necessarily yielding 
usable information: Coal is not a factor (different and 
unique sources). Plant equipment and design also not and 
the same goes for the quality of water. Nodal connections 
are same for some and totally different for others. At this 
point in time it is difficult to harness these correlations 
(future work will be performed using Correspondence 
Analysis), in other words, for instance, how do we answer 
the question: “so what that Arnot GU 3 is highly correlated 
to Tutuka GU 1, in terms of yearly GWh Losses?” 
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The hypothesis at the moment that the author can theorize 
is Management intervention and Load Factor (LF) effects. 
The latter has been mentioned in paragraph 2.3.3, pp.30-31 
and illustrated in Fig 2.14 p.30. As stated in that paragraph 
this would constitute further analyses with a different 
dataset of a much larger nature. This has already been 
commenced by the author and just to give an idea, the size 
of one Power Station file consisting of 6 GU’s is 17 
Gigabytes! 
 
Time Series Analyses 
This included analyses of the Autocorrelations and Partial 
Autocorrelations Functions. A sample of the results for 4 
GU’s (the others tend to follow similar results and 
patterns) are illustrated in the next two pages. 
The only GU that showed significance (in the 1st order 
autocorrelation) was Duvha GU 4.  
The Ljung-Box statistic indicated significance at the 95% 
level.  
The reason is known to our business: there was a particular 
managerial intervention which was put into effect from 
1996. The trend might be misleading for this interpretation 
and change-point analysis more appropriate in this case. 
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Report for DU2

Analysis

Using rule-based logic the choice was narrowed down to exponential smoothing or Box-Jenkins.

Series is too short to consider Box-Jenkins.

 Exponential Smoothing is used.

Model Details

Selection
Simple exponential smoothing: No trend, No seasonality

Component Smoothing Wgt Final Value
Level 0.05 499760

Within-Sample Statistics

Sample size 16 No. parameters 1
Mean 567318 Std. deviation 1208578.89
R-square 0 Adj. R-square 0
Durbin-Watson 2.04 Ljung-Box(10) 2.3 P=0.01
Forecast error 1247059.53 BIC 1316744.68
MAPE 467.94 RMSE 1207460.19
MAD 534168.34  

 

Report for DU4

Analysis

Using rule-based logic the choice was narrowed down to exponential smoothing or Box-Jenkins.

Series is too short to consider Box-Jenkins.

 Exponential Smoothing is used.

Model Details

Selection
Holt exponential smoothing: Linear trend, No seasonality

Component Smoothing Wgt Final Value
Level 0.06474 48106
Trend 0.9998 -21647

Within-Sample Statistics

Sample size 16 No. parameters 2
Mean 310152.76 Std. deviation 304437.36
R-square 0.27 Adj. R-square 0.22
Durbin-Watson 2.46 Ljung-Box(9) 19.1 P=0.98
Forecast error 269720.36 BIC 300037.31
MAPE 178.2 RMSE 252300.29
MAD 197138.88  
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Report for HE10

Analysis

Using rule-based logic the choice was narrowed down to exponential smoothing or Box-Jenkins.

Series is too short to consider Box-Jenkins.

 Exponential Smoothing is used.

Model Details

Selection
Simple exponential smoothing: No trend, No seasonality

Component Smoothing Wgt Final Value
Level 0.06563 79929

Within-Sample Statistics

Sample size 12 No. parameters 1
Mean 91397.48 Std. deviation 104215.34
R-square 0 Adj. R-square 0
Durbin-Watson 1.48 Ljung-Box(6) 4.3 P=0.36
Forecast error 108509.78 BIC 115223.34
MAPE 82.47 RMSE 103890.2
MAD 66003.92  

 

Report for KR6

Analysis

Using rule-based logic the choice was narrowed down to exponential smoothing or Box-Jenkins.

Series is too short to consider Box-Jenkins.

 Exponential Smoothing is used.

Model Details

Selection
Simple exponential smoothing: No trend, No seasonality

Component Smoothing Wgt Final Value
Level 0 256318

Within-Sample Statistics

Sample size 16 No. parameters 1
Mean 205957.17 Std. deviation 244182.91
R-square 0 Adj. R-square 0
Durbin-Watson 1.65 Ljung-Box(10) 1.8 P=0.00
Forecast error 249660.85 BIC 263611.79
MAPE 162.09 RMSE 241733.08
MAD 186434.63  
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4.2 Steven’s Theorem 
 
The theorem originates from problem that the author was 
facing when trying to price Options using the Black-and-
Scholes model in the realm of large volatilities in Energy 
Markets. The theorem was presented at the South African 
Statistical Conference (Cape Town) in November 2001. 
“Steven” is an acronym for: Statistical Estimator for the 
Volatility – an Evaluation which is the Title of the 
presentation. 
 
Steven’s Theorem: 
If we assume that the α angles formed by the spot 
prices (S) and the horizontal axis (time) follow a 
Uniform distribution, then the spot price difference (r) 
in the returns (R), behaves as a Cauchy distribution. 
 
Implications of Steven’s Theorem: 
This implies that the distribution of the returns (R) 
depends on the instantaneous distribution of the Spot 
prices. 
If this is assumed to be N(μ;σ), then (R), by simulation, 
shows to be Cauchy 
 
 
The author chose to prove this geometrically: 
One of the definitions for the volatility is that it’s the 
Standard Deviation of the Returns  
 
(Ri) which in turn are defined as: 
 
 

i

i1i
i S

SS −
= +R
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26

““how the other angle behaveshow the other angle behaves””
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22
ΠΠ

≤α≤−

Assume Assume αα is Uniformly distributed overis Uniformly distributed over

Π
1f A =α )(Then, for that interval the pdf is:Then, for that interval the pdf is:

Since |ti-ti+1| = 1, distance, then tan α = (r /1)
i.e. tan-1 r = α, r = S2 –S1
Therefore, gR(r) . dt = fA(α). |dα/dr| .dr

gR(r) = [1/ Π ].[1/(1+r2)]
 

The Cauchy pdf is given by: 
 
 
 
If μ = 0 and τ = 1, then the Cauchy above becomes: 

+∞<<∞−
+

= x
x

xf X ,
)(1

1.1)( 2π
 

This is of the form as shown in the last slide [gR(r)]. 
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