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CHAPTER 1  

GENERAL INTRODUCTION 

 

Genotype x Environment (G x E) interaction is commonly observed as changes in the 

performance of cultivars in different environments. It has been a constraint to breeding and 

selection efforts for decades, as superior cultivar performance in one environment is not 

necessarily repeated in others. Consequently, breeders and agronomists evaluate cultivar 

performance across many environments in what is commonly referred to as multi-

environment trials (METs). A MET often (not always) consists of the same set of cultivars 

planted in the same year at different locations (Gauch, 1992). The purpose of MET networks 

is to evaluate and select promising cultivars for commercial production in a target region. 

Resource constraints in most MET networks prevent trial siting under all possible production 

scenarios characterising a target region. It is therefore imperative that selection occurs at sites 

that are representative of the target region. Additionally, sites within a network should ideally 

maximize G x E interactions so that valuable resources are not wasted on sites that produce 

similar genotypic responses. Therefore, the choice of test sites within a MET network is 

critical to deliver well adapted, high yielding cultivars. Consequently, it is essential that 

breeders are aware of the nature of G x E interactions as well as the extent of test site 

similarity within a MET network. This awareness and subsequent corrective action is 

conventionally achieved through various statistical analyses that have been developed over 

time. Furthermore, G x E interactions are a result of differential responses of genotypes to 

variations in biotic and abiotic factors. The identification of such factors is essential (yet an 

uncommon practice) in determining breeding objectives and optimizing the structure of a 

MET network.  

The sustainable production of sugarcane (Saccharum spp.) in South Africa is highly 

dependent on the continual release of adapted sugarcane cultivars by the South African 

Sugarcane Research Institute (SASRI). Breeding and selection efforts at SASRI commenced 

following a period of importation, quarantine, and testing of cultivars from other countries 

prior to 1945. Crossing and selection programs were well established by 1965, with selection 

stations operating in the irrigated north and in the southern rainfed regions. After many years 

of changing selection farms, a total of five selection farms were established for the rainfed 
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regions by 1998 (Nuss, 1998). In choosing the selection farms, the broad characterisation of 

the rainfed parts of the industry into the coastal (low altitude), midlands (high altitude) and 

hinterland (intermediate altitude) regions was taken into consideration, in order to implement 

region-specific selection (Nuss, 1998). The coastal, hinterland and midlands regions are 

characterised by typical crop harvest ages of 12, 15-18, and 20-24 months, respectively. 

Within each region, the selection farms were chosen based on expert knowledge of soil and 

climatic conditions and variable cropping scenarios. Each selection farm has a selection 

program (which comprises “on-station” and “off-station” selection sites) linked to it.  Figure 

1.1 shows the different regions making up the South African sugar industry and the locations 

of the five selection farms (also aligned with selection programs). Since the establishment of 

the selection programs there have been limited studies aimed at evaluating and optimizing the 

efficiencies of the trial networks to improve cultivar delivery to the industry. Most studies 

that were conducted either focused on the irrigated northern regions (Parfitt, 2000), or were 

very limited in scope and objectives relative to the entire MET network (Redshaw et al., 

2002).  At inception of this study, information on the magnitude and significance of G x E 

interactions; the appropriateness of the broad regional subdivisions for cultivar selection and 

evaluation; the similarities between test sites within selection programs; the variation 

associated with different components of G x E interactions; and the performance and stability 

of released cultivars for the rainfed regions, was severely lacking. Such information is 

essential to improve the structure of the trial networks and evaluate the efficiencies of current 

approaches.       

In addition to the general lack of information on G x E interactions in the different rainfed 

regions prior to this study, there was also no information on the overall causes of G x E 

interactions. The rainfed regions of the industry are characterized by large variations in soil 

and climatic conditions. Such variability has resulted in the development of different crop 

management strategies derived from research outputs and grower experience.  The effects of 

specific soil and climatic factors on sugarcane growth and yields in the industry are extensive 

and well documented. Factors such as crop nutrition, soil type, pests and diseases, seasonal 

weather, cultivar, and management practices (age at harvest, time of harvest, etc.) have an 

impact on sugarcane production, and the relative importance of each is unknown. From a 

sugarcane improvement perspective, however, it is necessary to gain an understanding of the 

relative importance of these production factors to the G x E interactions. Such understanding 

will allow for development of selection programs that are specifically designed to 
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accommodate variations in these important factors, leading to delivery of more adapted 

cultivars. The relative effects of soil, climate, and management factors on G x E interactions 

in the rainfed regions of the industry have never been investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The rainfed regions of the South African sugar industry with SASRI 

selection stations indicated  
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Multi-environment trials are key tools in any cultivar improvement/evaluation program, 

where they have contributed to breeding advances and recommendations for decades. 

Research institutes, government departments, and universities invest massively in sugarcane 

METs throughout the world annually. The full value of such investments is often not realized 

because of the empirical approach to data analysis that is often adopted with METs. This is 

largely due to the lack of appropriate soil, climatic and management data associated with 

METs, which, if available, can allow for more comprehensive analytical interpretations of 

MET data.  The analysis of soil and climatic data associated with sugarcane METs is limited 

to a single study (Jackson et al., 1995) and studies documenting possible approaches and 

methodologies to accomplish these analyses have not been conducted. In particular, the 

recent advances in crop modelling, and improved quality and accessibility of weather data 

present opportunities for more extensive characterisations of METs. For example, 

summarizing climatic data within specific growth phases defined by crop models may assist 

in determining growth phase sensitivities to various factors. A large-scale characterisation of 

sugarcane METs across diverse conditions by integrating crop models, climatic data, and soil 

information has not been attempted previously. Methodologies and approaches to derive and 

incorporate associated data into sugarcane MET datasets will be illustrated throughout the 

chapters of this thesis.   

The statistical methods of analysing sugarcane G x E interactions have included conventional 

analysis of variance, regression analysis, additive main effects and multiplicative interaction, 

and variance components analyses (Crossa, 1990; Kang and Miller, 1984). Newer methods 

such as GGE (genotype + genotype x environment) biplot analysis have only been evaluated 

with sugarcane in a limited number of studies (Queme et al., 2007; Glaz and Kang, 2008). 

Additionally, other statistical methods such as pattern analysis (joint use of ordination and 

clustering), factorial regression, and other multivariate approaches, which are more suited to 

analytical/interpretive studies of G x E interactions, have not been used with sugarcane MET 

data. For example, methods that involve the grouping of sugarcane genotypes based on 

agronomic traits, and the evaluation of group performance in different environments, may 

assist in developing sugarcane trait selection strategies. Therefore, in addition to evaluating 

how associated climatic, soil, and management data can be incorporated into sugarcane MET 

data analyses, this study will also evaluate the appropriateness of various statistical methods 

for the analysis and interpretation of sugarcane G x E interactions.  
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The broad goal of this study was to systematically analyse, identify causes, and explore more 

comprehensive methods of analysing the G x E interactions of sugarcane, to optimize future 

MET networks. 

The primary objectives of this study were: 

1) To investigate the nature of G x E interactions, the components of variation, genotype 

performance and stability, and the mega-environment constitution of the rainfed 

regions using GGE biplot and variance components analysis. 

2) To investigate the relative influence of soil, climatic, and management factors on the 

G x E interactions across rainfed regions of the industry.  

3) To investigate test site similarities, causes of G x E interactions and opportunities for 

differential trait selection strategies in the midlands region of the industry.  

4) To determine if sugarcane G x E interactions can be more comprehensively explained 

using environmental covariates summarized within growth phases.  

5) To illustrate the integration of soil and climate data with statistical and crop models to 

comprehensively interpret sugarcane G x E interactions in the coastal region of the 

industry.  

The above objectives were specifically related to chapters in the study. The secondary 

objectives, which are common themes across all chapters, were:  

1) To develop and illustrate methods to enhance the value of sugarcane METs for future 

G x E studies through use of integrated methods of characterising sugarcane field 

trials.  

2) To evaluate the appropriateness of multivariate statistical analysis techniques for the 

interpretation of sugarcane G x E interactions.    
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1  Sugarcane and the South African industry 

Sugarcane is a giant member of the grass family (Poaceae), and is cultivated primarily for the 

extraction of sucrose (sugar) from the plant stalks. More modern end-uses of this tropical 

crop include the utilization of plant biomass for co-generation (production of energy from 

combustion of fibre to operate sugar factories) and the production of ethanol from sugar or 

lignocellulose (Gomez et al., 2008). In South Africa, the crop is cultivated exclusively for 

sugar, to satisfy both local consumption and export demand. South Africa ranks 

approximately ninth as the world’s largest sugar producing country, with countries like 

Brazil, India, and China dominating the world markets (Gopinathan, 2010). Sugarcane 

production in South Africa predominantly occurs along the east coast, extending from 

approximately 25°33’S to 30°93’S and between 29°92’E and 32°32’E, under a diverse range 

of conditions. With production occurring the furthest south of the equator for the crop, 

sugarcane in South Africa is grown in environments that are occasionally not typically 

conducive to a tropical crop. Nevertheless, the South African sugar industry is still a cost 

competitive producer of approximately 2.2 million tons of sugar per annum from an 

estimated 430 000 ha under cultivation (Meyer, 2007).  The industry comprises 13 Mill 

supply areas (MSA), which are each characterized by a single mill owned by a milling 

company. Each sugar mill receives sugarcane from surrounding commercial and small-scale 

farms that are located in close proximity (approximately 50 km radius on average). Mill 

supply areas vary from being fairly homogenous to extremely diverse production regions, 

depending on factors such as altitude and soil type.  Sugarcane milling proceeds for a 9-

month period from April to December each year, when sucrose content of the sugarcane 

stalks is highest.  

The crop is vegetatively propagated through the planting of cane setts (segments of the stalk) 

consisting of approximately three to five viable buds into furrows drawn alongside each other 

and ranging in spacing from 1 to 1.5 m. In South Africa, planting usually occurs in autumn or 

spring (preferred due to better soil moisture conditions). Germination, tillering, and stalk 

elongation rates are highly dependent on genotypic and environmental factors (Smit et al., 
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2004). The crop is harvested when sucrose accumulation within the stalks reaches a peak, and 

the time to maturity also varies depending on genotype and growing conditions. In South 

Africa, sugarcane is harvested any time between 12 and 24 months of age, depending on 

temperatures (influenced by altitude). In the northern production area (where sugarcane is 

grown under irrigated conditions) and along the coastal belt, harvesting generally occurs at 

12-months of age. In the hinterland and midlands regions, harvest age ranges from 15 to 24 

months.  

In most sugarcane industries, including South Africa, harvesting is carried out manually, and 

involves the cutting of stalks at the base of the stools. As an aid to the harvesting process, the 

leaf material of the standing crop is usually burnt prior to harvest. Numerous studies have 

investigated the potential drawbacks of burning compared to the environmentally friendlier 

practice of cutting “green” cane and returning organic matter to the soil; a practice termed 

“trashing” (Van Antwerpen and Meyer, 1998).  Once stalks are harvested, buds below the 

ground are released from apical dominance and subsequently germinate to produce a new 

crop. This regrowth is termed ratooning. Successive ratoons are characterized by reductions 

in cane yield (ton cane/ha) due to systemic diseases or physical damage to stools, and the 

number of ratoons obtained from a single harvest also depends on genotypic and 

environmental factors.  

Sugarcane growers are remunerated for sugarcane deliveries to the mill through the 

implementation of the Recoverable Value (RV) payment system, which takes into 

consideration quality characteristics of the sugarcane. The RV formula is: 

RV% = S – d*N – c*F, where                                                                                      (1) 

S = sucrose % in cane 

N = non sucrose % in cane 

F = fibre % in cane  

d = coefficient to account for losses of sucrose through molasses during processing 

c = coefficient to account for losses of sucrose from bagasse during processing 

The coefficients d and c are based on milling statistics from the previous three seasons, and 

therefore vary considerably from season to season. Growers are remunerated based on the 
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total tons RV (cane yield in tons/ha x RV%) delivered to the mill per season, adjusted for 

within season variability in quality. 

2.2 Sugarcane breeding and evaluation 

The successful production of sugarcane in South Africa is attributed to the continuous supply 

of locally developed, high yielding sugarcane cultivars by SASRI. Modern sugarcane 

cultivars are complex hybrids of S. officinarum, S. barberi, S. sinense and S. spontaneum. 

Such hybrids are produced in South Africa through the artificial stimulation of flowering in a 

controlled environment. Natural flowering only occurs under specific climatic conditions and 

is more widespread in most tropical areas. In South Africa, natural flowering proceeds 

without the development of viable pollen thereby necessitating artificial interventions (Brett, 

1946). Parents are selected from local or imported germplasm according to specific breeding 

objectives and crosses are made annually. Glasshouse-germinated seedlings are then 

distributed to one of seven core selection stations located throughout the industry. Five of 

these selection stations are situated in the rainfed regions (Figure 1.1). Each station represents 

the general conditions within a region and is characterized by a unique selection program 

lasting between 12 and 15 years from seedlings to release. The selection stages comprise 

evaluations at the single plant level through to fully replicated cultivar trials in later stages. 

Inter-program and off-station evaluation occurs in the later selection stages only (Parfitt, 

2005). Selection priorities in South Africa include RV yielding ability and pest and disease 

resistance. Similar selection procedures and breeding objectives are implemented in other 

sugar industries as well. There are currently 56 commercial cultivars available for cultivation 

in the South African industry, however; only about 40% of those cultivars contribute 

significantly to production (Ramburan et al., 2010a).   

Although breeding and selection procedures are similar to other crop breeding programs, the 

South African industry is unique in its post-release evaluation procedures. Whereas most 

sugar industries utilize production databases and rely on individual estate evaluations 

(Ramburan and Van den Berg, 2011), the South African industry has its own post-release 

cultivar evaluation project, which is coordinated by SASRI. This is a continuous project 

aimed at increasing the amount of information on released cultivars to strengthen cultivar 

recommendations. During selection, the range of conditions accross which cultivars are tested 

are limited and cultivars are released primarily based on their responses to soil and climatic 

conditions experienced on selection stations. The focus of post-release evaluation is to 
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identify specific adaptations of released cultivars with respect to environmental and 

management factors. Post-release evaluation in the sugar industry was initiated in the 1970s, 

and continues to form an integral part of SASRI’s core functions. Although invaluable to the 

industry in direct recommendations and technology transfer, the scientific applications of 

such procedures are often overlooked. Post-release evaluation essentially comprises METs 

that allow for studies of G x E interactions in a similar way to pre-release testing.  

2.2 G x E interaction 

 

The term genotype refers to the full complement of genes inherited by an individual that is 

important for the expression of a trait under investigation, and it is a fixed character that 

remains constant and unchanged by environmental effects throughout the individual’s life. 

The phenotype refers to the morphological and physiological characteristic of an individual, 

which changes continually depending on the interaction of the genotype with the 

environment. The environment refers to the sum total of the effects of physical, chemical and 

biological factors on an individual other than its genotype (Yan and Kang, 2003).  

Crop cultivars are released for commercial production based on their ability to produce high 

yields (of food, feed, fibre, or fuel) and other essential agronomic characteristics. The yield 

performance of cultivars is under the control of genetic and environmental influences, and 

selection attempts to exploit the genetic basis of that phenotype so that released cultivars can 

continually produce high yields. However, due to the quantitative nature of the trait 

(controlled by many genes), genes vary in their contribution to yield as environmental 

conditions change.  This introduces a degree of uncertainty when evaluating genotype 

performance in specific environments, as the actual contribution due to genotype may be 

influenced (either positively or negatively) by environmental conditions. Consequently, there 

is uncertainty of the repeatability of genotypic performance in different environments. This is 

the basis of G x E interaction, which has been a constraint to improvements from selection 

for decades. Therefore, in its simplest form G x E interaction may be described as changes in 

the relative performance of genotypes over environments. According to Cooper and Byth 

(1996),  G x E interaction occurs in every aspect of biological science, and as a result, any 

scientific inference made from research is conditional because of the existence of G x E. 

Yan and Kang (2003) described the different types of G x E interactions and highlighted the 

implications of these in plant breeding and crop production (Figure 2.1). Crossover 
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interactions (change in rankings of varieties across environments) are of greatest interest to 

breeders as these directly affect genotype selection in specific environments. Consequently, 

promising selections in one environment may perform poorly in another. Such crossover 

interactions often compel breeders to implement multiple selection programs within 

industries based on the homogeneity of regions, thereby utilizing greater resources. Ignoring 

significant G x E in favour of resource savings can have detrimental effects. Inaccurate 

characterization of genotype adaptability may lead to poor productivity in environments that 

interact negatively with specific genotypes and this has implications on industry 

sustainability. With regards to genetic gains from selection, large G x E interactions, as 

components of total phenotypic variance, affect heritability (proportion of total phenotypic 

variance that is due to genetic variance) negatively. The larger the G x E interaction 

component, the smaller the heritability estimate; thus, progress from selection would be 

reduced as well (Yan and Kang, 2003).  

The methods employed for the analysis of G x E interactions can be classified into two major 

groups depending on the nature of the data available and the objectives of the analysis. The 

classical analysis of G x E interactions involves exploiting yield-based data and evaluating 

genotypic performance across trials. Alternatively, it is often desirable to describe the 

reaction of genotypes to environments relative to the biophysical variables that directly affect 

crop yield i.e. to interpret G x E interactions. Voltas et al. (2005) refer to these approaches as 

empirical or analytical strategies of G x E analysis.  
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Figure 2.1 Graphical representation of types of G x E interaction: (a) no interaction – X 

and Y responses parallel in the two environments; (b) non-crossover type interaction – 

both X and Y increase but unequal inter-genotypic differences in the two environments; 

(c) crossover interaction – genotypic modification by environment in opposite direction 

but inter-genotypic difference remains the same; (d) crossover interaction – unequal 

inter-genotypic difference but both X and Y increase; (e) crossover interaction – 

unequal inter-genotypic difference in the two environments: X shows a decrease 

whereas Y shows an increase in environment 2. - adapted from Yan and Kang (2003)  

2.3.1 Classical analysis of G x E interactions (Empirical approach) 

 

Genotype x environment interaction has been a focus of plant breeders as early as the 1950’s, 

and there is a wide range of literature outlining examples and methods of dealing with this 

phenomenon. More recently, statistical advances have given rise to numerous techniques of 

analyzing yield results from METs, which are the fundamental tools by which G x E 

interactions are evaluated in most crop industries. According to Gauch (1992), a MET 

consists of the same set of genotypes planted in the same year at different locations. The 

primary objective of METs is to identify superior genotypes for a target region, and to 
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determine if the target region can be subdivided into different mega-environments (Yan et al., 

2000).  A mega-environment may be defined as a portion of a crop species’ growing region 

with a homogeneous environment that causes some genotypes to perform similarly (Gauch 

and Zobel, 1997), and is normally identified through analysis of MET data. Currently, there is 

a wide range of statistical techniques used for the analysis of yield data collected from METs. 

The most common and contemporary techniques are briefly described below.  

2.3.1.1 The analysis of variance (ANOVA) 

 

If one considers a trial in which the yield of G genotypes is measured in E environments, 

each with R replicates, then the classical model for analyzing the total yield variation 

contained in the GER observations is the analysis of variance (Fisher, 1925). After removing 

the replicate effects, the GE observations are partitioned into the additive main effects for 

genotypes and environments, and the non-additive effects due to the G x E interaction 

(Crossa, 1990). The ANOVA model of the combined data is then expressed as 

Yij = µ + Gi + Ej + GEij + eij                                                                                                  (2) 

where Yij is the expected yield of the i
th

 genotype in the j
th

 environment; µ is the grand mean; 

Gi, Ej, and GEij represent the effects of the genotype, environment, and the G x E interaction 

respectively; and eij is the error term. In this model, the non-additivity interaction implies that 

the expected value of the i
th

 genotype in the j
th

 environment depends not only on the levels of 

G and E separately, but also on the way in which G interacts with E.    

The ANOVA model has been applied to MET datasets to estimate components of variation 

associated with genotypes, environments, and G x E interaction. Knowledge of the size of 

variance components has been used in MET analyses to obtain estimates of genotype effects, 

to determine the optimum allocation of resources (number of plots and locations), and to 

estimate the heritability and predicted gain of a trait under selection (Crossa, 1990).  Despite 

the above uses of the ANOVA model in the analysis of MET datasets, there are certain 

limitations. One of these limitations is that it does not explore underlying structures within 

the G x E interaction and does not provide a pattern of response of genotypes and 

environment. 
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2.3.1.2 Joint linear regression 

The joint linear regression method is a popular technique used to determine the yield stability 

of genotypes evaluated in METs. The concept of stability has been described in many 

different ways, and there is a range of other stability statistics that have been utilized over the 

years (Yan and Kang, 2003). In a broad sense, stability may be referred to as consistency of 

genotype performance and minimum variation among environments. The linear regression 

approach, which was popularized by Finlay and Wilkinson (1963), uses the marginal means 

of the environments as independent variables regressed against genotype yields. In this 

method, the environmental mean acts as a surrogate for the cumulative effects of soil and 

climatic factors, and genotype responses to these factors can be interpreted from the slope of 

the regression curves.  The model partitions the G x E interaction into a component due to 

linear regression (bi) and a component due to deviations from regression (dij) so that equation 

(2) becomes 

Yij = µ + Gi + Ej + (biEj + dij) + eij                                                                                          (3) 

Despite being one of the more popular techniques used in G x E analysis, the linear 

regression method has limitations. Firstly, the genotype mean is not independent of the 

marginal means of the environments, and this violates one of the assumptions of regression 

analysis. Secondly, the analysis assumes a linear relationship, and when violated, the 

effectiveness of the analysis is reduced. Thirdly, the results of the analysis can be misleading 

when the data set includes results from a few extremely low or high yielding environments or 

genotypes (Crossa, 1990). Nevertheless, the method is still a valuable technique that can be 

used to describe the structures and patterns of G x E interactions as it provides an easily 

interpretable measure of yield stability (i.e. the slope of the regression line).     

Multi-environment trial data vary in their complexity, and the methodology chosen for their 

analysis will depend on the characteristics intrinsic to specific datasets (DeLacy et al., 1996). 

In some instances where two or more techniques are compared, the outputs of the analysis are 

found to be more dependent on the quality of the data rather than on the technique used. 

Multivariate techniques such as pattern analysis, the additive main effects and multiplicative 

interaction (AMMI), and GGE (genotype + G x E) biplot analysis have gained popularity due 

to their ability to produce biplots that allow for rapid visualization of patterns of G x E 

interactions. 
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2.3.1.3 Multivariate methods 

The main purposes of multivariate analysis are to distinguish systematic from non-systematic 

variation, to summarize the data, and to reveal a structure within the data (Crossa, 1990). 

These techniques are appropriate for the analysis of two-way data matrices such as G x E 

data. Two groups of multivariate techniques have been used to investigate the internal 

structure of G x E interactions. These include ordination techniques such as principal 

components analysis (PCA) and classification techniques such as cluster analysis. Pattern 

analysis involves the joint use of cluster analysis and ordination techniques to explain G x E 

interactions (McLaren, 1996).  

Principal components analysis is a frequently used multivariate method that can be applied to 

reduce the complexity of a two-way G x E data matrix (many dimensions) into a subspace of 

fewer dimensions. It is derived from a mathematical theorem called singular value 

decomposition (SVD). If one considers G points in an E-dimensional space having E axes, 

then provided that some correlations exist among the variables, the cloud of points would 

actually have most of its structure in a subspace of fewer than E dimensions. Principal 

components analysis then defines new coordinate axes that go in the major directions of the 

cloud and projects the points from the original high-dimensional space into a low-

dimensional subspace (Gauch, 1992). The first PCA axis is normally placed in the direction 

of the cloud that minimizes the sum of squared perpendicular projections (sums of squares) 

from data points onto the axis. The next PCA axis may be defined perpendicular to the first, 

thereby accounting for the remaining variation, and this continues for as many PCA axes as 

desired. Most often, however, only two axes are kept due to the ease of interpretation when 

illustrated in biplots.  The sums of squares (SS) of a PCA axis is termed its “eigenvalue”, and 

its direction relative to the original axis system is termed its “eigenvector”. The projection of 

genotype and environment data points onto the axes then determines their coordinates in a 

two-dimensional biplot. The PCA model may be written as: 

Yij = µ + ∑λk αik δjk                                                                                                                (4) 

where Yij  is the value of the i
th

 genotype in the j
th

 environment; µ  is the grand mean; λk is 

the singular value for PC axis k; αik and δjk are the PC scores for axis k of the i
th

 genotype and 

j
th

 environment, respectively.  
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Cluster analysis is a numerical classification technique that defines clusters of individuals, 

and may be defined as either hierarchical or non-hierarchical. In hierarchical methods the 

individuals are organized into a hierarchy where individuals or groups are fused one at a time 

to individuals or groups with the most similar patterns accross all environments. In non-

hierarchical systems the individuals are organized into a set number of groups in the best 

possible manner (DeLacy et al., 1996).  With hierarchical methods, the process usually starts 

with a dissimilarity matrix where two individuals with the smallest dissimilarity between 

them are fused into a group. The dissimilarities between this group and all remaining 

individuals is then calculated and added to the matrix of dissimilarities among the remaining 

individuals to form a new matrix. The procedure is then repeated continually with group-

group dissimilarities being calculated thereafter. After intensive calculations, the structure of 

the groupings is usually represented by dendrograms that depict composition of groups and 

the degree of dissimilarity among groups. With respect to analysis of MET data, genotypes or 

environments that cluster together are expected to have similar contributions to the G x E 

interaction.   

2.3.1.3.1 AMMI 

The AMMI method combines the traditional ANOVA and PCA into a single analysis with 

both additive and multiplicative parameters (Gauch, 1992). The first part of AMMI uses the 

normal ANOVA procedures to estimate the genotype and environment main effects. The 

second part involves the PCA of the interaction residuals (residuals after main effects are 

removed). The AMMI model equation is: 

Yij = µ + Gi + Ej + ∑λk αik δjk + Rij + ε                                                                                     (5) 

where Yij  is the value of the i
th

 genotype in the j
th

 environment; µ  is the grand mean; Gi  is 

the deviation of the i
th

 genotype from the grand mean; Ej  is the deviation of the j
th

 

environment from the grand mean; λk is the singular value for PC axis k; αik and δjk are the 

PC scores for axis k of the i
th

 genotype and j
th

 environment, respectively; Rij is the residual 

and ε is the error term (Gauch, 1992).  The AMMI produces reliable estimates of genotype 

and environment performance and summarizes the relationships between these components 

graphically into biplots. The most commonly used biplot is the AMMI1, which plots the 

interaction principal component (IPCA1) scores against the genotype and environment 

means. This allows visualization of genotype and environment main effects, the stability of 

genotypes, the relative adaptability of genotypes to different environments, and the mega-
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environments represented by the data.  The AMMI has also been shown to improve the 

accuracy of yield estimates, which was equivalent to increasing the number of replicates by a 

factor of two to five (Crossa, 1990). The AMMI continues to be a commonly used method for 

analyzing METs in a range of crop industries presently. 

Crossa et al. (1991) showed that AMMI could be used to separate wheat (Triticum aestivum) 

selection environments into homogenous subsets, characterize 18 genotypes based on yield 

stability, and give more precise estimates of genotype yields than unadjusted means in an 

analysis of a CIMMYT international MET dataset. Gauch and Zobel (1997) demonstrated 

that AMMI could be used to separate four mega-environments in a Louisiana maize (Zea 

maize) MET. Sivapalan et al. (2000) used AMMI to identify five groups of wheat genotypes 

and four groups of Australian environments that discriminated those genotypes similarly and 

also identified genotypes that could be used as indicators in broad and specific environments. 

Abamu et al. (1998) utilized AMMI to understand G x E interactions for rice (Oryza sativa) 

reactions to blast (Pyricularia oryzae) disease. Ibanez et al. (2001) showed that AMMI 

explained twice as much of the G x E interaction compared with linear regression analysis in 

a study involving lovegrass (Erogrostis curvula). More recently, Gauch (2006) highlighted 

the strengths and weaknesses of AMMI and reiterated its superiority as a tool for the analysis 

of METs.  

2.3.1.3.2 GGE biplot 

The GGE (genotype + G x E) biplot method (Yan et al., 2000) also makes use of PCA, and 

differs from AMMI based on how the two-way table of G x E means are treated before 

performing SVD. The AMMI applies SVD to the data minus the genotype and environment 

means, while GGE biplot applies SVD to the data minus the environment means only 

(Gauch, 2006).  As a result, conventional AMMI biplots describe only G x E effects, while 

GGE biplots describe genotype and G x E effects. This is based on the concept that effects of 

environments are usually large, however, these effects are not relevant to cultivar evaluation 

and focus should therefore be on the genotype and G x E effects only. The GGE biplot model 

is: 

Yij - Ej = ∑λk αik δjk + Rij + ε                                                                                                    (6) 

Since the introduction of GGE biplot and the associated user-friendly software (Yan, 2001), 

there have been numerous applications of the method to MET analyses as well as the analysis 
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of other types of data with two-way structures.  Yan et al. (2000) used the GGE biplot 

technique to show that winter wheat production environments in Canada should be grouped 

into two mega-environments, as opposed to a traditional grouping of 4 sub-areas.  Yan and 

Rajcan (2002) employed the GGE biplot technique to soybean (Glycine max) MET data and 

identified a single mega-environment with frequent crossover G x E interactions. In the same 

study it was demonstrated that GGE biplots could be utilized successfully to investigate 

genotype x trait data to reveal interrelationships among soybean traits and compare genotypes 

on the basis of multiple traits. Dehghani et al. (2006) used GGE biplot to identify three barley 

(Hordeum vulgare) mega-environments in Iran. Yan and Kang (2003) demonstrated the 

application of the GGE biplot technique for the analysis of trait x quantitative trait loci 

interactions in barley. Sharma et al. (2010) used GGE biplot to determine the performance, 

stability, and superiority of winter wheat breeding lines in irrigated environments in central 

and west Asia. The recent popularity of GGE biplot is linked to its versatility and ability to 

analyse a range of data types with a two-way structure. More recently, however, Yang et al. 

(2009) reported that GGE biplot is more of a descriptive tool as the statistical significance of 

any differences between genotypes and environments on the biplot is not indicated, and users 

should consequently proceed with caution when using the methodology.  

2.3.2 Interpretation of G x E interactions (Analytical approach) 

Crop growth and potential yield are essentially defined by the availability of resources (light, 

water, nutrients) and the efficiency of resource use, and the extent to which the attainment of 

such potential is limited by biological and physical hazards. In this sense, G x E interaction 

may be explained as the differential use of resources by different genotypes in different 

environments, as well as differential genotype escape from/tolerance of, environmental 

hazards in different environments (Bidinger et al., 1996). It therefore follows that an 

understanding of the causes (resources or hazards) of G x E interactions would allow for 

more directed approaches to understand the phenomenon. For example, the identification of a 

predominant limiting factor within a target population of environments in a MET could lead 

to the development of more efficient breeding strategies. Also, characterization of 

environments according to a range of environmental factors offers the potential to improve 

gains from selection through better choice of environments for field trials. In a study 

involving factors affecting G x E interaction of maize, Romay et al. (2010) indicated that 

when plant breeders think of breeding for environmental stress tolerance, they often design a 

breeding program for improving yield under one of the common climatic stresses, without 
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conducting preliminary studies on which environmental factors actually limit the crop and 

which genetic parameters are essentially affected. This highlights the importance of 

interpretive studies of G x E as tools for the design of breeding programs. Another advantage 

of interpreting G x E interactions is that it can provide insight into the genetic/physiological 

make-up of genotypes and eventually assist in ideotype design, direct breeding objectives, 

and identify genotypes suitable for further fundamental physiological research. 

Interpretation of G x E essentially involves characterizing plant responses to environmental 

factors, an objective which can be met through the use of physiological crop models. 

However, most physiological models are too restrictive to deal with the diversity of 

interacting factors or require too much investment in resources to gain enough information 

necessary to explain differences in performance (Cooper and Byth, 1996).  Statistical models 

used in MET analyses are based on actual responses to environments, and if utilized 

differently, can provide valuable insight into differences in plant growth.  

Genotype x environment interactions are commonly interpreted following the 

characterization of environments in METs. This normally occurs through the gathering of 

relevant climatic and soil data from trial sites during cropping seasons. These supplementary 

data are then interpreted in conjunction with yield data to help explain responses. Very often, 

additional genotypic data are also gathered and interpreted relative to supplementary 

environmental data to investigate trait responses to environmental drivers. However, 

genotype responses depend on the influence of many interacting factors that differ in type, 

intensity, and timing. In addition to the direct effects of such factors on genotype 

performance, their interactions as well as their indirect associated effects must be considered. 

As a result of our lack of complete understanding of the effects of interactions between 

factors, different indirect approaches have been used to characterize environments to 

facilitate better interpretations.  

2.3.2.1 Methods of characterizing environments 

 

Bidinger et al. (1996) suggested a resource-yield approach, where the G x E interaction is 

interpreted at several levels: resource availability, resource capture, resource use efficiency, 

and partitioning to yield. In terms of resource availability, it is relatively simple to evaluate 

performance (conventionally yield) of genotypes by grouping trial sites according to 

available resources. For example, trials in a MET dataset could be grouped into subsets 
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according to total rainfall received during the season, and genotype x subset interactions 

could be used to characterize genotype adaptability to low rainfall conditions.  This method 

can be further extended to include a soil water balance, whereby sites are characterized by the 

fraction of total potential evapotranspiration experienced during the season. The input data 

required for such characterizations include daily rainfall, total available soil moisture (TAM), 

and pan-evaporation, which can easily be accessed from most trial sites. This method can be 

used to create a range of indices that can be summarized within crop growth phases to help 

understand crop sensitivities to moisture stress and also group trial sites to interpret G x E 

interactions.  

However, crop growth and yield is more closely related to the amount of resources actually 

used by the crop than to the amount simply available. Therefore, characterizing trial sites 

according to resources captured provides more accurate descriptions of G x E interactions. 

For example, the fraction of incoming radiation intercepted by a crop can be estimated from 

standard crop coefficients, and sites can be grouped according to this fractional interception. 

At a more detailed level, methods utilizing radiation use efficiency (RUE) and transpiration 

efficiency (TE) can also be applied to understand how G x E interactions are influenced by 

differential radiation and transpiration-driven biomass production. With detailed crop 

measurements, it is even possible to interpret G x E interactions in relation to differences in 

partitioning at the genotype and environmental levels. Unfortunately, this level of detail is 

seldom available in traditional METs, where the extent of information is limited to 

meteorological and soil data (Bidinger et al., 1996). Nevertheless, with the application of 

integrated techniques utilized in crop research, novel approaches have been adopted for the 

characterization of environments in METs. 

2.3.2.2 Basic use of meteorological data 

Meteorological data recorded at weather stations close to trial sites have been used to explain 

differential genotypic responses in a range of studies. Baril et al. (1995) used meteorological 

data to calculate environmental covariates that included the number of frost days in the first 

and second halves of April, mean temperature over the growing season, and total radiation 

over the growing season, to interpret G x E interactions in potato (Solanum tuberosum) 

variety trials. Many studies have additionally summarized meteorological data within crop 

growth phases to identify sensitive periods and their effects on G x E interactions.  Van 

Eeuwijk and Elgersma (1993) defined five developmental periods  in perennial ryegrass 
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(Lolium perenne) and summarized the minimum and maximum temperatures, rainfall, 

relative humidity and wind velocity for each period from METs, to identify factors 

influencing G x E interactions of seed yield.  Vargas et al. (1998) summarized the mean daily 

maximum and minimum temperatures, monthly total precipitation, and sun hours per day 

within different months of the growing season (December to March) to interpret G x E 

interactions in a wheat MET dataset. In a second dataset, the same workers summarized the 

mean daily maximum and minimum temperatures, and sun hours per day within the 

vegetative stage, spike growth stage, grain filling stage, and entire growth cycle of another 

bread wheat MET dataset. It is interesting to note that most studies where covariates were 

summarized within growth phases was done on determinate grain crops such as wheat, 

barley, or maize, while very limited similar work has been done on crops like sugarcane 

where harvesting of vegetative organs is of primary economic concern.  

In some instances, knowledge of plant responses to critical environmental limitations has 

been included in the analyses. For example, Van Eeuwijk et al. (1995) used “the number of 

days with mean temperature below 10°C in May” as a covariate when analyzing and 

interpreting a maize MET dataset. More recently, Romay et al. (2010) used “the number of 

days with maximum temperature above 25°C” and “number of days with average daily 

temperature above 15°C” as covariates when investigating the climatic and genotypic effects 

of environmental factors on grain yield of maize. In addition to the direct usage of 

meteorological and soil data to characterize environments, the recent advances in crop 

modeling have allowed indirect applications of these data to more effectively describe 

environments.  

2.3.2.3 Use of crop growth models and indices to characterize environments 

Meteorological data can also be used to calculate derived indices to describe a season or 

growth phase, which is then used as a covariate in the analysis of METs. Most studies have 

focused on calculating indices related to water usage and water stress. Van Oosterom et al. 

(1996a) calculated a water satisfaction index (WSI) from daily data on rainfall, pan 

evaporation, and a crop coefficient. The changes in the WSI before and after flowering 

enabled the estimation of the magnitude of pre- and post-flowering drought stress in pearl 

millet (Pennisetum glaucum). It was also shown that the WSI was three times more effective 

in explaining yield differences between environments than was actual seasonal rainfall. 

Similarly, the use of yield to characterize environments is generally less accurate than 
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applying resource use/availability concepts because yield is determined by both genetic and 

environmental effects. Voltas et al. (1999) calculated a ratio of rainfall and total 

evapotranspiration demand as a covariate to investigate G x E interactions for grain filling in 

barley. Voltas et al. (2005) used a daily water balance from soil characteristics and calculated 

the total accumulated available water (AW) as well as accumulated daily evapotranspiration 

demand (ET) from temperature and solar radiation measurements. A drought index (1-

AW/ET) was subsequently calculated either pre- or post-anthesis for winter and spring wheat 

MET datasets to help interpret G x E interactions. Muchow et al. (1996), in a case study of 

sorghum (Sorgum bicolor) growth in water-stressed environments compared three indices of 

water deficit that varied in complexity and data input requirement. It was found that a simple 

index based on rainfall and potential evapotranspiration poorly characterized environments, 

while indices based on a soil water balance and relative transpiration index derived from a 

sorghum simulation model were more successful in identifying groups of seasons.   

As suggested by Muchow et al. (1996), crop growth models are powerful tools that can be 

used in combination with MET data to help interpret G x E interactions. Their usefulness in 

this regard seems to lie in their ability to provide better characterizations of environments by 

estimating parameters such as crop evapotranspiration. However, other applications of crop 

models in G x E analyses have also been shown. Aggarwal et al. (1996) varied genotypic 

parameters in a rice simulation model and identified useful physiological traits that could be 

improved to enhance genotypic yield potentials. In the same study, it was shown that crop 

simulation models were able to generate G x E interactions similar to those observed in 

experimental data. This concept of varying input parameters in simulation models to create 

hypothetical genotypes was also demonstrated by Hammer et al. (1996), who indicated that 

such techniques could be used to generate hypotheses on plant types most suited to specific 

environments i.e. the methods can be used in the process of ideotype design. In another 

application of simulation modelling, Henderson et al. (1996) compared experimental results 

from METs with model simulations based on the characteristics of the environments to 

determine the contribution of genotype to the G x E interactions of rice in Thailand. Such 

successful applications of simulation models and environmental characterizations are in part 

attributed to an increased understanding of environmental control of crop growth and yield, 

which allow for more effective descriptions and analyses of environmental effects in MET 

programs. When used in combination with modern pattern analysis techniques (GGE biplot, 
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AMMI) and other statistical methods, this knowledge allows for a more effective exploitation 

of information contained within G x E datasets. 

2.3.3 Interpretation of G x E interaction using statistical models 

The analytical method of analyzing G x E interactions is generally considered more useful 

than the straightforward empirical method, as there is greater scope for understanding 

differential plant responses to environmental drivers. These methods require supplementary 

data such as meteorological, soil, or genotype trait information from METs in order to be 

administered. Such data can be obtained using some of the techniques described in the 

previous sections.  Current methods of interpreting G x E interactions make use of factorial 

regression techniques, as well as various complementary analyses of AMMI and GGE biplot.  

2.3.3.1 Interpretation of G x E interactions using Factorial Regression 

Factorial regression is a useful tool to describe the G x E interaction in terms of genotypic 

and environmental covariates (Denis, 1988). The general form of a factorial regression model 

based on a two-way  G x E table with concomitant variables measured in environments is 

Yij = µ + Gi + Ej + ∑δikZjk                                                                                                       (7) 

where  Yij, µ, Gi, and  Ej are the same as in (1); Zjk refers to the value of any environmental 

variable k for environment j; δik represents the sensitivity of genotype i to the explicit 

environmental variable k. The model can also be extended to accommodate phenotypic 

descriptors other than yield as described by Vargas et al. (1999). Factorial regression can be 

used to describe the G x E interaction in terms of differential sensitivity of genotypes to 

measured environmental variables. After fitting the main effects of genotype and 

environment, associated variables on the levels of the environmental factor can then be 

introduced into the model in a multiple regression approach. One of the advantages of 

factorial regression is that hypotheses about the influence of associated environmental 

variables on the G x E interaction can be statistically tested and viewed within an ANOVA 

table.   

Many studies have employed factorial regression techniques and successfully interpreted G x 

E interactions. Baril et al. (1995) applied factorial regression to interpret G x E interactions of 

potato. In that study it was found that factorial regression was successfully implemented to 

interpret potato responses to factors such as temperature, frost, and soil type, and it was 
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shown that soil type was the main determinant of the G x E interaction. Van Eeuwijk et al. 

(1995), using factorial regression analyses, showed that the total radiation during the growing 

season, the number of days with mean temperature below 10°C in May, and the mean 

temperature between July and August accounted for 51.8% of the cultivar x year interaction 

in a Dutch maize MET.  Factorial regression also showed that the incidences of drought and 

high temperatures during grain filling were responsible for the differential genotypic 

responses in individual grain weight in a study of G x E interactions for grain filling in barley 

(Voltas et al., 1999). In an analysis of Spanish winter and spring wheat trials, Voltas et al. 

(2005) used GGE biplot and factorial regression to identify genotypic and environmental 

factors causing yield variation. In that study it was shown that pre-flowering thermal time and 

drought incidence during grain filling caused genotype-dependant responses in grain yield of 

winter wheat. Other examples of successful applications of factorial regression are given by 

Ceretta and Van Eeuwijk (2008) and Romay et al. (2010).  

As with all linear regression models, factorial regression models become difficult to deal with 

when there are many explanatory variables that are highly correlated, and Voltas et al. (2005) 

therefore suggests that the relevant environmental descriptors used should be restricted to a 

reasonably low number for ease of interpretation. To this end, the use of graphical displays 

such as biplots derived from AMMI or GGE biplot do offer the visual interpretive advantage 

when combined with complementary analyses.  

2.3.3.2 Interpretation of G x E interactions using AMMI  

Although routinely employed in empirical studies of G x E interactions to investigate 

genotypic stability, environmental grouping, and differential genotypic adaptability, AMMI 

biplots can also be used analytically to interpret the G x E interaction. Van Eeuwijk and 

Elgersma (1993) showed that the AMMI IPCA1 and IPCA2 scores of environments can be 

regressed against measured environmental covariates. Differential positioning of 

environments on a biplot can then be interpreted relative to environmental covariates if 

significant correlations between IPCA scores and environmental covariates exist. Van 

Eeuwijk and Elgersma (1993) found that four environmental covariates (summarized within 

development periods) showed strong correlations to environment IPCA scores and these 

corresponded to the covariates identified by factorial regression, in an analysis of G x E 

interactions of ryegrass. Similarly, Van Oosterom et al. (1996b) related IPCA1 scores to 

environmental covariates and found that factors such as the mean maximum temperature 
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during 10 days after flowering and the changes in a water satisfaction index during grain 

filling were some of the causes of G x E interactions of pearl millet. 

 The concept of regressing environment IPCA scores on the environmental covariates can be 

extended to enrich AMMI biplots with environmental covariates included as points (Van 

Eeuwijk et al., 1995). In this case, the regression coefficients from the regression of the 

covariates on the scores of both AMMI axes simultaneously serve as coordinates for that 

covariate on the biplot. The same methodology can be employed to include cultivar 

covariates on the biplot. A condition for the inclusion of such information on the AMMI 

biplot is that enough variation in the covariates is explained by the regression on the scores. 

The enrichment of AMMI biplots using regressions of IPCA scores on environmental 

covariates has been demonstrated in studies. Vargas et al. (1999) simultaneously enriched 

AMMI biplots with genotypic and environmental covariates in a study of a wheat MET 

dataset. In that study, it was found that this technique, together with factorial regression and 

partial least squares regression (PLS) identified similar cultivar and environmental covariates 

that explained most of the G x E interaction. Voltas et al. (1999) used this method to identify 

genotypic and environmental covariates influencing G x E interactions for grain filling in 

barley. Here, the method identified three covariates, namely; the ratio of rainfall to 

evapotranspiration demand, maximum temperatures during grain filling, and mean individual 

grain weight, which were subsequently included into a factorial regression model to interpret 

G x E interactions. The approach employed in these studies, and others (Voltas et al., 1999) 

used the enriched AMMI biplots as a preliminary screening of environmental and genotypic 

covariates before these were tested statistically using factorial regression.  

2.3.3.3 Interpretation of G x E interactions using GGE biplots 

The PC scores of genotypes and environments obtained from a GGE biplot can also be used 

to interpret causes of G x E interactions. Yan and Hunt (2001) correlated genotypic and 

environmental PC1 and PC2 scores from a GGE biplot to genotypic traits and environmental 

factors measured as covariates. They found that plant height and maturity were the main 

genotypic causes of G x E interaction, while cold temperatures in winter and hot temperatures 

in summer were the major environmental causes of G x E interaction of winter wheat yields 

in Canada. In order to identify specific genotypic traits driving the G x E interaction of barley 

in North America, Yan and Tinker (2005) constructed a covariate-effect biplot. This type of 

biplot is based on a trait x environment two-way table of correlation coefficients between the 
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traits and yield in each of the test environments. The method was used to identify kernel 

weight, earlier heading, and better lodging resistance as appropriate selection traits for the 

improvement of barley yields in an eastern mega-environment. The frequency of use of GGE 

biplot as a tool for the interpretation (analytical) of G x E interaction has not been as high 

compared to the use of AMMI or factorial regression. However, the use of GGE biplot as a 

complementary tool to assist with G x E interpretation has been demonstrated (Voltas et al., 

2005).  

2.3.3.4 Interpretation of G x E interaction using partial least squares regression 

 

In situations where there are many explanatory genotypic or environmental covariates which 

are highly correlated, the technique of PLS regression may be appropriate to interpret G x E 

interactions. The PLS regression method is a multivariate regression technique that can be 

used to compare blocks of variates, or relate one or several response variates to several 

correlated explanatory variates. The method involves relating X and Y matrices in one single 

estimation procedure. The Y matrix may contain the G x E yield data as dependant variables, 

while the X matrix contains the external environmental covariates as explanatory variates 

(Vargas et al., 1998).  

2.4 Analysis of G x E interactions of sugarcane  

Despite the wide range of available techniques to analyze G x E interactions, their 

applications to sugarcane are limited in comparison with other field crops. The majority of 

studies of G x E interactions of sugarcane fall within the empirical category, where the focus 

was on genotype stability and identification of homogenous environments within breeding 

programs (Kang and Miller, 1984; Tai et al., 1982). Jackson et al. (1991) used ANOVA, 

cluster analysis and PCA to investigate the G x E interactions of three datasets of sugarcane 

pre-release trials in Australia. In that study significant G x E interactions were observed in all 

three datasets, and it was concluded that testing across sites was more important than testing 

across ratoons within sites for identification of superior clones. Rattey and Kimbeng (2001) 

used variance components analyses to estimate the magnitude of G x E interactions and 

determine optimal resource allocation in final stage selection trials in the Burdekin district of 

Australia. They found that genotype x crop (ratoon) contributed more to G x E interactions 

than genotype x location x ratoon and genotype x location interactions, respectively.   



27 
 

A limited number of sugarcane G x E studies have employed multivariate techniques. 

Bissessur et al. (2001) showed that AMMI was more effective than ANOVA at identifying 

significant G x E interactions in a study of final stage selection trials in Mauritius. They 

found that AMMI was effective at identifying cultivars with broad and specific adaptation 

and recommended that the technique be routinely used to obtain additional information on 

clones prior to their commercial cultivation. Similarly, Queme et al. (2001) and Queme et al. 

(2005) demonstrated that AMMI could be successfully employed to analyse G x E 

interactions and identify specific cultivar adaptability of sugarcane METs in Guatemala. In 

India, Srivastava et al. (1999) showed that AMMI was more accurate than the sites regression 

model (Finlay and Wilkinson, 1963) as it captured a greater percentage of the G x E 

interaction sums of squares in an analysis of eight sugarcane cultivars in a MET. Redshaw et 

al. (2002) compared AMMI and restricted maximum likelihood (REML) techniques for the 

analysis of an unbalanced MET dataset in South Africa. That initial study showed that the 

dryland regions of the South African sugar industry could be divided into four mega-

environments and the authors concluded that both AMMI and REML applications should be 

investigated further.  

Compared to AMMI, relatively fewer studies have employed the GGE biplot method as a 

tool for the analysis of sugarcane METs. Queme et al. (2007) employed the GGE biplot 

technique to group sites and identify superior cultivars in each group using MET data from a 

low production zone in Guatemala. Glaz and Kang (2008) used GGE biplots to identify 

redundant sites used during selection in the Florida sugarcane industry. They used the 

technique to successfully identify locations with organic soils that, if replaced by locations 

with sandy soils, would be least likely to compromise the ability of the selection program to 

identify superior cultivars for the industry.  

The G x E interactions in sugarcane have also been demonstrated using numerous variations 

of traditional analyses and “non-conventional” methods. Such studies have tended to focus on 

the crop characteristics of specific industries. For example, Gilbert et al. (2006) employed 

analyses such as repeated measures ANOVA and identified significant genotype x 

environment, environment x time of harvest, and genotype x environment x time of harvest 

interactions in Florida. Jackson et al. (2007) used restricted maximum likelihood (REML) 

analysis to investigate the magnitude of genotype x region interactions relative to genotype x 

environment interactions within regions for the Australian sugar industry. This study showed 

that genotype x region interactions were small compared to genotype x environment 
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interactions within regions, and that indirect selection in a region different to that being 

targeted would be only slightly less effective than selection within the targeted region itself.  

In South Africa, Ramburan et al. (2010b) categorized post-release cultivar evaluation trials 

based on age and time of harvest and demonstrated highly significant genotype x age and 

genotype x time of harvest interactions using REML. These results were subsequently used to 

characterize varieties for inclusion into a decision support system.   

Despite the examples of the existence of G x E interactions in sugarcane, attempts to interpret 

such interactions are very limited. The most recent and only attempt to interpret sugarcane G 

x E interactions relative to environmental factors was conducted by Jackson et al. (1995). 

That study used cluster analysis and principal component analysis to relate sugarcane family 

x site interactions to environmental factors. They found that key climatic factors such as 

rainfall, temperature and solar radiation did not appear to be important in causing family x 

site interactions. However, significant correlations were found between soil nutrients 

(calcium, copper and zinc) and the PC2 scores from PCA analysis, suggesting that these 

nutrients had effects on the family x site interactions.  The scarcity of studies involving 

interpretation of sugarcane G x E interactions and the relative benefits of such studies to 

improvements in selection strategies, as demonstrated in other crops, suggest that more 

priority should be given to this area of sugarcane research. Due to the lack of widespread 

post-release cultivar evaluation programs in sugarcane (Ramburan and Van den Berg, 2011), 

most studies on G x E interactions of sugarcane have been conducted within the realms of 

breeding and selection. Post-release cultivar evaluation programs may also be suitable 

resources within which analytical (interpretive) studies of G x E interactions are possible. 

This is due to the wider range of environmental conditions typically evaluated, which is 

associated with greater representativeness of an industry.  

2.5 Summary 

The existence of significant crossover G x E interactions can be a serious constraint to crop 

improvement, leading to reduced genetic gains from selection and a waste of invested 

resources. Most of the common statistical techniques available to analyse G x E interactions 

are empirical in nature, focusing on quantification of G x E effects, identifying stable 

cultivars, and identification of mega-environments. These include techniques such as 

ANOVA (Fisher, 1925), joint linear regression (Finlay and Wilkinson, 1963), REML 

(Patterson and Thompson, 1971), AMMI (Gauch, 1992), or GGE biplots (Yan et al., 2000).  
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Comparatively fewer studies have attempted to interpret G x E interactions in relation to 

major environmental variables, and in doing gain a more comprehensive understanding of the 

interactions.  Such information can be utilized to improve gains from selection through 

strategic site selection, identify cultivars suitable for fundamental physiological research, and 

assist in ideotype design.  The techniques used to interpret G x E involves characterization of 

trial sites according to environmental factors, either using direct measurements, calculated 

indices, or derived variables from crop growth models. These covariates can then be analyzed 

in combination with modern multivariate techniques such as pattern analysis, AMMI or GGE 

biplot to identify patterns of G x E interactions and identify critical factors driving the 

interactions. Complementary analyses such as factorial regression may then be used to 

statistically test the significance of specific factor effects on the G x E interactions (Vargas et 

al., 1999).  These techniques, or various modifications thereof, have been demonstrated 

successfully in a range of other crops (Baril et al., 1995; Van Eeuwijk et al., 1995; Van 

Oosterom et al., 1996b; Voltas et al., 2005; Yan and Tinker, 2005).   

Studies of G x E interactions of sugarcane are limited, and when attempted, have focused in a 

largely empirical manner on design of breeding and selection networks (Jackson et al., 1991; 

Rattey and Kimbeng, 2001; Queme et al., 2005; Srivastava et al., 1999). Apart from a single 

interpretive study of G x E interaction in sugarcane (Jackson et al., 1995), no other attempt 

has been made to understand sugarcane cultivar responses to environmental factors using a 

MET approach.   This is in spite of numerous examples demonstrating the existence of G x E 

interaction in various sugarcane industries around the world. The interpretation of G x E 

interactions of sugarcane through analysis of an extensive MET dataset (with environmental 

covariates) may provide opportunities to gain further understanding of sugarcane growth and 

development. Additionally, the use of a post-release cultivar evaluation program as a tool to 

implement these strategies may be a logical option due to the diversity of conditions 

evaluated and the general flexibility of such trial networks (Ramburan and Van den Berg, 

2011). Such a thrust would represent a first for sugarcane and will shed light on the likely 

causes of G x E interactions in the crop.  
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CHAPTER 3 

VARIANCE COMPONENTS, MEGA-ENVIRONMENTS, AND 

GENOTYPE STABILITY ACROSS THE RAINFED REGIONS
1
 

3.1 Abstract 

 

The objective of this study was to evaluate the current regional sub-divisions, genotype 

stability, and magnitude of G x E interactions in the rainfed parts of the industry to direct 

future selection and evaluation procedures. Cane yield (TCANE), estimated recoverable 

crystal (ERC) and tons ERC/ha (TERC) data of 15 genotypes from 153 environments (trial x 

ratoon combinations) harvested between 1999 and 2009 were analysed using variance 

components and GGE biplot analysis. Differences between trials accounted for the largest 

proportion of variation in TCANE (35%), ERC (44%), and TERC (47%), while genotype 

differences were smaller than the G x E interactions for TCANE and TERC, but not for ERC. 

Larger genotype x trial interactions compared with genotype x ratoon interactions suggested 

that more emphasis be placed on sampling more trial sites rather than testing more ratoons 

within trials. The GGE biplots for TERC revealed four mega-environments, each with 

environments from the coast, hinterland and midlands. Ratoons of the same trials and trials 

from the same location occasionally grouped into different mega-environments, suggesting 

large spatial and temporal (seasonal) variability in environmental conditions that can only be 

managed through extensive trial characterisation. Genotype N31 was identified as most stable 

and high yielding, suggesting the potential value of the variety as an alternative control to 

NCo376 for rainfed selection sites. These findings highlighted the need for increased G x E 

studies to enhance efficiencies of the trial networks in the industry, and illustrated the 

usefulness of GGE biplot as a tool to evaluate sugarcane multi-environment trials. 

3.2 Introduction 

 

Multi-environment trials (METs) are routinely conducted in major cropping industries 

throughout the world to gain insights into G x E interactions and identify high yielding, stable 

cultivars that are more adapted to regional agro-climatic conditions. Besides identifying 

                                                           
1
Ramburan, S., Zhou, M., 2011. Investigating sugarcane genotype x environment interactions under rainfed conditions in 

South Africa using variance components and biplot analysis. Proceedings of the South African Sugar Technologists 

Association 84, 345-358. 
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superior cultivars suited to particular environments, METs also provide information on the 

nature of the target population of environments (TPEs), and how they should be subdivided 

for further selection and evaluation. Such subdivisions into mega-environments (MEs) are 

necessary for the implementation of region-specific breeding strategies, which can ensure the 

greatest gains from selection. A ME may be defined as a portion of a crop species’ growing 

region with a homogeneous environment that causes some genotypes to perform similarly 

(Gauch and Zobel, 1997), and is normally identified through analyses of MET data. 

Subdivision of the TPE is also important for the development of recommendation domains.  

 

Investigations of MEs are a prerequisite for any meaningful cultivar evaluation and 

recommendation procedures (Yan and Hunt, 2001). This implies that cultivar improvement 

and evaluation networks established without preliminary ME investigations could be at risk 

of reduced genetic gains from selection due to inaccurate regional subdivisions. Another 

important objective of G x E research is to gain an understanding of the relative contributions 

of different components of variation on yield variability (Smith et al., 2005).  Such 

information is essential to inform decisions on selection and evaluation, investigate 

contributions of repeatable and non-repeatable components of G x E interactions, and 

improve the efficiencies of trial networks (DeLacy et al., 2010).   

 

The rainfed environments of the South African sugar industry are partitioned into three broad 

regions characterized by different production conditions. The coastal (C) region is 

characterized by areas with low altitude (< 200 m asl), higher temperatures, and high 

topographic, soil, and rainfall variability. The midlands (M) region is characterized by higher 

altitudes (> 600 m asl), lower temperatures, flatter topography, and lower soil variability, 

while the hinterland (H) region is a transitional region between the midlands and the coast. 

The large spatial and temporal variation in production conditions, combined with the wide 

range of planting times (February to December) and harvest ages (10 to 24 months) creates a 

highly heterogeneous TPE. Cultivars for the rainfed parts of the sugar industry currently 

originate from five separate selection programs conducted on selection stations run by 

SASRI.   The C region contains two selection stations/programs, broadly representing coastal 

high and low potential conditions, respectively. The midlands region is also characterized by 

two selection programs, broadly representing humic and sandy soils, while the hinterland 

region is represented by a single program. All selection programmes were established within 

the last 10-15 years. 
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The choice of stations (farms) for each program was based on expert knowledge of 

geographic, soil and climatic variability between the different sugarcane producing regions 

and the representativeness of stations to general growing conditions within the respective 

regions (Nuss, 1998). The choice of stations proceeded without any formalized preliminary 

study of their relevance as selection sites for the TPEs, and their effectiveness in this regard 

has not been evaluated to date. Additionally, no attempts have been made to identify MEs 

and hence evaluate the accuracy of the broad regional divisions (coastal, hinterland, and 

midlands). Currently, plant breeding selection trials at the different stations and on selected 

off-station sites (which are largely permanent) represent only a small proportion of the TPEs, 

and may not be representative enough for comprehensive ME investigations. Post-release 

cultivar evaluation trials are routinely conducted throughout the rainfed regions of the 

industry on commercial farms with different combinations of soil types, harvest age, harvest 

season, and husbandry practices, and are more representative of industry conditions. More 

importantly, the vast spatial distribution of this trial network suggests that it is a better sample 

of the TPE’s compared with selection trials only.  

Methods of analyzing MET data have included the conventional analysis of variance, linear 

regression (Finlay and Wilkinson, 1963), stability variance (Shukla, 1972), and AMMI 

(Gauch, 1992). The GGE biplot method developed by Yan et al. (2000) has recently gained 

popularity as a tool to investigate various aspects of G x E interactions. The method has been 

successfully applied to crops such as wheat (Sharma et al., 2010), barley (Dehghani et al., 

2006), and soybean (Yan and Rajcan, 2002). Studies with sugarcane in Florida, USA (Glaz 

and Kang, 2008) and Guatemala (Queme et al., 2001) have also employed GGE biplot 

analysis; however, the methodology has not been attempted in South Africa. Variance 

components analyses have also been used widely to evaluate the relative contributions of 

relevant terms to variability and to assess the precision of trial networks to optimize resources 

(Ceretta and Van Eeuwijk, 2008). For example, De la Vega and Chapman (2010) used linear 

mixed models to estimate variance components attributed to trials, hybrids, replicates, and 

incomplete blocks, and tracked genetic progress for yield of commercial sunflower in 

Argentina. 

 

Despite the availability of appropriate data and methods of analysis, no attempts have been 

made to improve sugarcane selection and evaluation procedures in South Africa using 

contemporary G x E analysis techniques. A systematic analysis of a series of METs has not 
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been conducted for the rainfed production regions, and information on ME constitution, 

industry-wide genotypic performance and stability, and components of variation are lacking. 

Recent concerns around the relevance of selection sites and differential performance of 

varieties in the TPE compared with performance during selection have prompted such an 

analysis. As the first step of a systematic analysis of G x E interactions, the objectives of this 

study were (i) to investigate the magnitude of G x E interactions, (ii) to evaluate variance 

components, and (iii) to identify MEs within the rainfed parts of the South African sugar 

industry. 

3.3 Materials and methods 

3.3.1 Trial datasets 

The MET dataset used for this study comprised 43 trials conducted in 18 different locations, 

and harvested across one to six ratoons during the period 1999-2009. The majority of the 

trials (32) formed part of SASRI’s post-release cultivar evaluation project; while other (11) 

late stage plant breeding selection trials were included as well. Most trials were established 

on commercial fields across the three regions and allowed to run for as many ratoons as the 

commercial plantings surrounding the trials. Plant breeding trials that were included in the 

dataset only ran for a maximum of three ratoons (plant crop plus two ratoons), and were 

conducted on SASRI selection stations. For the purpose of this study, an environment was 

defined as a trial x ratoon combination i.e. each crop that was harvested constituted an 

environment. As with most studies of this nature, the ‘location’ was a loose spatial reference 

identified by a town name, and trials at different sites in each location were numbered in the 

order of establishment. Table 3.1 describes the environments, which are abbreviated 

according to the region, location, site, and ratoon number, respectively. For example, CEM21 

refers to a first ratoon crop, of the second trial conducted at Empangeni, in the coastal region. 

Cultivar (will be used interchangeably with the term genotype) numbers per trial varied from 

five to 12, and not all cultivars were included in each trial. Consequently, only the 15 most 

commonly tested cultivars were included in the analyses, with the majority of the trials 

containing the commercial control NCo376. 

 

All trials were conducted as randomised complete block designs with four to six replicates. 

Trial plots consisted of five or six rows that were between 8 and 10 m long, spaced 1.0 to 

1.2 m apart. Weed and fertilizer management proceeded as per commercial farm practice. At 

harvest, three or four net rows were cut and bundled by hand and weighed using a hydraulic 
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grab apparatus equipped with a load cell to determine cane yield in ton cane/ha (TCANE). A 

12-stalk sucrose sample was taken from each plot to determine estimated recoverable crystal 

percentage (ERC), which is an estimate of the RV described in formula (1) in Chapter 2. For 

each trial plot, the tons ERC/ha (TERC) was calculated as the product of TCANE and ERC. 

 

Table 3.1 Definitions of the environments making up the multi-environment trial 

dataset. Trials were conducted at various locations in the coastal (C), hinterland (H) 

and midlands (M) regions and were coded as environments defined by the respective 

site and ratoon number 

Ref Region Location 
Trial 

(within 
location) 

Ratoon 
Environ 

code 
Ref Region Location 

Trial 
(within 

location) 
Ratoon 

Environ 
code 

1 C Amatikulu (AK) 1 0 CAK10 80 H Doringkop (DK) 1 0 HDK10 

2 C Amatikulu (AK) 1 1 CAK11 81 H Doringkop (DK) 1 1 HDK11 

3 C Amatikulu (AK) 2 0 CAK20 82 H Doringkop (DK) 1 2 HDK12 

4 C Amatikulu (AK) 3 0 CAK30 83 H Doringkop (DK) 1 3 HDK13 

5 C Amatikulu (AK) 3 1 CAK31 84 H Doringkop (DK) 1 4 HDK14 

6 C Amatikulu (AK) 3 2 CAK32 85 H Doringkop (DK) 2 1 HDK21 

7 C Amatikulu (AK) 3 3 CAK33 86 H Doringkop (DK) 2 2 HDK22 

8 C Amatikulu (AK) 4 0 CAK40 87 H Doringkop (DK) 2 3 HDK23 

9 C Amatikulu (AK) 4 1 CAK41 88 H Doringkop (DK) 3 0 HDK30 

10 C Amatikulu (AK) 4 2 CAK42 89 H Doringkop (DK) 3 1 HDK31 

11 C Amatikulu (AK) 4 3 CAK43 90 H Doringkop (DK) 3 2 HDK32 

12 C Amatikulu (AK) 4 4 CAK44 91 H Eshowe (ES) 1 0 HES10 

13 C Amatikulu (AK) 4 5 CAK45 92 H Eshowe (ES) 1 1 HES11 

14 C Empangeni (EM) 1 0 CEM10 93 H Eshowe (ES) 1 2 HES12 

15 C Empangeni (EM) 2 0 CEM20 94 H Eshowe (ES) 1 3 HES13 

16 C Empangeni (EM) 2 1 CEM21 95 H Kearsney (KS) 1 1 HKS11 

17 C Empangeni (EM) 2 2 CEM22 96 H Kearsney (KS) 1 2 HKS12 

18 C Empangeni (EM) 2 3 CEM23 97 H Kearsney (KS) 2 1 HKS21 

19 C Empangeni (EM) 2 4 CEM24 98 H Kearsney (KS) 2 2 HKS22 

20 C Empangeni (EM) 2 5 CEM25 99 H Kearsney (KS) 3 0 HKS30 

21 C Empangeni (EM) 3 0 CEM30 100 H Kearsney (KS) 3 1 HKS31 

22 C Empangeni (EM) 3 1 CEM31 101 H Kearsney (KS) 3 2 HKS32 

23 C Empangeni (EM) 3 2 CEM32 102 H Kearsney (KS) 4 0 HKS40 

24 C Empangeni (EM) 3 3 CEM33 103 H Kearsney (KS) 4 1 HKS41 

25 C Empangeni (EM) 3 4 CEM34 104 H Kearsney (KS) 4 2 HKS42 

26 C Empangeni (EM) 3 5 CEM35 105 H Kearsney (KS) 4 3 HKS43 

27 C Empangeni (EM) 3 6 CEM36 106 H Kearsney (KS) 4 4 HKS44 

28 C Empangeni (EM) 4 0 CEM40 107 H Kearsney (KS) 4 5 HKS45 

29 C Empangeni (EM) 4 1 CEM41 108 H Kearsney (KS) 5 0 HKS50 

30 C Empangeni (EM) 4 2 CEM42 109 H Kearsney (KS) 5 1 HKS51 

31 C Empangeni (EM) 4 3 CEM43 110 H Kearsney (KS) 5 2 HKS52 

32 C Empangeni (EM) 4 4 CEM44 111 H Kearsney (KS) 5 3 HKS53 

33 C Empangeni (EM) 4 5 CEM45 112 H Kearsney (KS) 5 4 HKS54 

34 C Empangeni (EM) 4 6 CEM46 113 H Melmoth (MM) 1 0 HMM10 

35 C Empangeni (EM) 5 0 CEM50 114 H Melmoth (MM) 1 1 HMM11 

36 C Empangeni (EM) 6 0 CEM60 115 H Melmoth (MM) 1 2 HMM12 

37 C Empangeni (EM) 6 1 CEM61 116 H Paddock (PD) 1 0 HPD10 

38 C Empangeni (EM) 6 2 CEM62 117 H Paddock (PD) 2 0 HPD20 

39 C Empangeni (EM) 7 0 CEM70 118 H Paddock (PD) 2 2 HPD22 



41 
 

 

3.3.2 Variance components analysis 

To evaluate the variance contributions of different components, the following random effect 

model was fitted to the plot data: 

 

Yijkl = µ + Tj + B(T)l(j) + Gi + GTij + GB(T)il(j) + Rk + RTjk + RB(T)kl(j) + RGik + RGTijk + e 

 

where Yijkl is the phenotypic performance of observation l of genotype i in ratoon k of trial j, 

µ is the grand mean, Tj is the trial main effect, B(T)l(j) is the effect of block within trial, Gi is 

the genotype main effect, GTij is the effect of the genotype x trial interaction, GB(T)il(j) is the 

40 C Empangeni (EM) 7 1 CEM71 119 H Paddock (PD) 2 3 HPD23 

41 C Empangeni (EM) 7 2 CEM72 120 H Paddock (PD) 2 4 HPD24 

42 C Hibberdene (HB) 1 0 CHB10 121 M Bruyns Hill (BH) 1 0 MBH10 

43 C Hibberdene (HB) 1 1 CHB11 122 M Bruyns Hill (BH) 1 1 MBH11 

44 C Hibberdene (HB) 1 2 CHB12 123 M Bruyns Hill (BH) 1 2 MBH12 

45 C Hibberdene (HB) 1 3 CHB13 124 M Bruyns Hill (BH) 2 0 MBH20 

46 C Scottburgh (SC) 1 0 CSC10 125 M Bruyns Hill (BH) 2 1 MBH21 

47 C Scottburgh (SC) 1 1 CSC11 126 M Bruyns Hill (BH) 2 2 MBH22 

48 C Scottburgh (SC) 1 2 CSC12 127 M Bruyns Hill (BH) 3 0 MBH30 

49 C Scottburgh (SC) 1 3 CSC13 128 M Bruyns Hill (BH) 3 1 MBH31 

50 C Scottburgh (SC) 1 4 CSC14 129 M Bruyns Hill (BH) 3 2 MBH32 

51 C Scottburgh (SC) 1 5 CSC15 130 M Bruyns Hill (BH) 4 0 MBH40 

52 C Scottburgh (SC) 1 6 CSC16 131 M Bruyns Hill (BH) 4 1 MBH41 

53 C Scottburgh (SC) 2 1 CSC21 132 M Bruyns Hill (BH) 4 2 MBH42 

54 C Scottburgh (SC) 2 2 CSC22 133 M Dalton (DL) 1 1 MDL11 

55 C Scottburgh (SC) 2 3 CSC23 134 M Dalton (DL) 1 2 MDL12 

56 C Scottburgh (SC) 2 4 CSC24 135 M Eston (ES) 1 0 MES10 

57 C Umfolozi (UF) 1 0 CUF10 136 M Eston (ES) 1 1 MES11 

58 C Umfolozi (UF) 1 1 CUF11 137 M Glenside (GS) 1 1 MGS11 

59 C Umfolozi (UF) 1 2 CUF12 138 M Glenside (GS) 1 2 MGS12 

60 C Umfolozi (UF) 1 3 CUF13 139 M Glenside (GS) 1 3 MGS13 

61 C Umfolozi (UF) 1 4 CUF14 140 M Glenside (GS) 2 0 MGS20 

62 C Umfolozi (UF) 1 5 CUF15 141 M Glenside (GS) 2 1 MGS21 

63 C Umfolozi (UF) 2 0 CUF20 142 M Glenside (GS) 3 0 MGS30 

64 C Umfolozi (UF) 3 0 CUF30 143 M Glenside (GS) 3 1 MGS31 

65 C Umfolozi (UF) 3 1 CUF31 144 M Glenside (GS) 3 2 MGS32 

66 C Umfolozi (UF) 3 2 CUF32 145 M Mid Illovo (MI) 1 0 MMI10 

67 C Umfolozi (UF) 3 3 CUF33 146 M Mid Illovo (MI) 1 1 MMI11 

68 C Umfolozi (UF) 4 0 CUF40 147 M Mid Illovo (MI) 1 3 MMI13 

69 C Umfolozi (UF) 4 1 CUF41 148 M York (YK) 1 0 MYK10 

70 C Umfolozi (UF) 4 2 CUF42 149 M York (YK) 1 1 MYK11 

71 C Umfolozi (UF) 4 3 CUF43 150 M York (YK) 1 2 MYK12 

72 C Verulam (VM) 1 0 CVM10 151 M York (YK) 2 0 MYK20 

73 C Verulam (VM) 1 1 CVM11 152 M York (YK) 2 1 MYK21 

74 C Verulam (VM) 1 2 CVM12 153 M York (YK) 2 2 MYK22 

75 C Zinkwazi (ZK) 1 0 CZK10       

76 C Zinkwazi (ZK) 1 1 CZK11       

77 C Zinkwazi (ZK) 1 2 CZK12       

78 C Zinkwazi (ZK) 1 3 CZK13       

79 C Zinkwazi (ZK) 1 4 CZK14       
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effect of genotype x block (within trial), Rk is the main effect of ratoon, RTjk  is the effect of 

the ratoon x trial interaction, RB(T)kl(j) is the effect of the ratoon x block (within trial) 

interaction,  RGik is the effect of the ratoon x genotype interaction, RGTijk  is the effect of the 

genotype x trial x ratoon interaction, and e is the error. Restricted maximum likelihood 

(Patterson and Thompson, 1971) using the sparse Average Information Algorithm (Gilmour 

et al. 1995) was used to estimate the variance components, as implemented in GenStat 12.0 

(Anon, 2009). 

3.3.3 GGE biplot analysis 

The two-way tables of variety x environment data for TCANE, ERC and TERC were 

analysed using GGE biplot software (Yan, 2001). The GGE biplot analysis produces biplots 

derived from principal components analysis of the environment-centered data (data minus the 

environment means), which therefore represents the genotype main effect and the G x E 

interaction. The genotypes and environments are represented by points on a two-dimensional 

plot of principal component (PC) scores (conventionally PC1 and PC2). The distance of an 

environment from the biplot origin is a measure of its ability to discriminate between 

genotypes, the distance between two environments measures their dissimilarity in 

discriminating the genotypes, and the angle between the environments represents their 

correlation. Acute angles represent positive correlations, obtuse angles represent negative 

correlations, and right angles represent no correlations between environments (Yan and 

Tinker, 2005). In general, the proximity of environments on the biplots is an indication of 

their similarity, and the proximity of genotypes to environments is an indication of the degree 

of positive interaction with the environment. The GGE biplot provides a range of viewing 

options to investigate relationships between environments and genotypes, identify mega-

environments, examine the representativeness of test environments as selection sites, rank 

genotypes based on performance in single environments, and much more. Extensive 

descriptions of user options are given by Yan and Tinker (2005) and some of these will be 

described later. 

 

3.4 Results 

3.4.1 Variance components 

The model is defined to split all variance components so that they are separated as much as 

possible, thereby allowing for an evaluation of the variance components of interest. In this 

model, terms such as ‘ratoon x block (within trial)’ and ‘genotype x block (within trial)’ are 
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not of interest, as there would be no need to interpret replicate effects in a trial. These terms 

are simply included to remove the variability in the trial associated with the design. 

 

The estimates of variance components are presented in Table 3.2. The largest proportion of 

the total variation in TERC (47%) was accounted for by the main effect of trials followed by 

the environment (trial x ratoon combination) component (24%). In terms of the components 

related to the G x E interaction (genotype, genotype x trial, genotype x ratoon, and genotype 

x trial x ratoon), the genotype x trial and genotype x trial x ratoon accounted for the largest 

variation. This highlights the importance of trial site contribution to the G x E interaction, as 

well as the influence of trial site on the variation in ratoon yields. The main effect of 

genotype accounted for 1.2% of the total variation compared with the 7.2% accounted for by 

the G x E interaction (as expressed by the sum of the genotype x trial, genotype x ratoon, and 

genotype x trial x ratoon interactions). This suggests that only a small proportion of the total 

variation was due to the mean differences between genotypes, and that the G x E interaction 

was more pronounced. The variation accounted for by the main effect of ratoon was less than 

the variation accounted for by the individual ratoon interaction components. The genotype x 

ratoon interaction accounted for a minor proportion (0.25%) of the total variation relative to 

the trial x ratoon interaction (24.4%), suggesting that variation in ratoon yields is influenced 

to a larger extent by site differences compared with genotype differences. 

 

The proportion of variation accounted for by the different terms for TCANE was similar to 

that of TERC. Most of the variation was accounted for by the main effect of trials (35%), 

followed by the trial x ratoon interaction component (33%). The G x E interaction (as 

expressed by the sum of the genotype interaction variance components) accounted for more 

variation (6.7%) than the main effect of genotype (4.2%), suggesting that TCANE, together 

with TERC, is influenced to a larger extent by G x E interactions than by genotypic main 

effects. However, when only considering terms related to the G x E interaction (genotype, 

genotype x trial, genotype x ratoon, and genotype x trial x ratoon), the genotype main effect 

accounted for most of the variation, followed by the genotype x trial, genotype x trial x 

ratoon, and genotype x ratoon interactions, respectively. The small variation accounted for by 

the genotype x ratoon interactions relative to the genotype x trial interaction once again 

highlights the greater influence of site factors than genotype on ratoon yield variation. The 

strong genotype x trial x ratoon interaction suggests that cultivar cane yields and their 

ratooning ability were trial specific. 



44 
 

 

Similarly, for ERC, the largest proportion of the variation was accounted for by the main 

effect of trials (44.0%) followed by the trial x ratoon interaction (i.e. environment main 

effect; 28.6%). In contrast to TCANE and TERC, the main effect of genotype accounted for a 

higher proportion (5.5%) of the variation than the combined G x E interaction components 

(5.1%). This suggests that ERC is more strongly influenced by genetic composition than G x 

E interactions. Once again, the variation accounted for by the genotype x ratoon interaction 

was minor (0.1%) compared with the contribution of the trial x ratoon interaction (28.0%). 

When only considering terms related to the G x E interaction (genotype, genotype x trial, 

genotype x ratoon, and genotype x trial x ratoon), the genotype main effect was once again 

the largest. This was followed by the genotype x trial x ratoon effects, indicating that 

genotype variability for ERC across ratoons was largely controlled by trial location. The 

genotype x trial component was the third largest, followed by the genotype x ratoon 

interaction. This suggests that ERC among genotypes was least influenced by ratoons. 

3.4.2 Biplot analysis 

3.4.2.1 Mega-environment analysis 

Figure 3.1 represents the polygon view of GGE biplots for TCANE, ERC and TERC based 

on the two-way table of G x E means. The polygon is drawn on vertex genotypes that were 

the most responsive (i.e. the best or poorest performers at some or all of the environments). 

Perpendicular lines are drawn from each side of the polygon to the origin, such that the biplot 

is divided into sectors representing different mega-environments. Environments within a ME 

sector have the same effects on variety performance and should be considered as a 

homogenous group. 

 

For TERC, the biplot explained a total of 42% of the total variation of the two-way data 

matrix (Figure 3.1a), highlighting the complexity of the G x E structure in the dataset. The 

TERC biplot showed four distinct mega-environments represented by the N31, N12, N29, 

and N36 sectors, respectively. The majority of the midlands (M) environments were located 

within the N31 and N12 sectors, while the N29 and N36 sectors contained both coastal (C) 

and hinterland (H) environments. The seven M environments that were separated from the 

larger M cluster were actually from trials conducted in frost pockets and harvested on a 12-

month cutting cycle compared with the conventional 18-24 month cycle. In general, the 

ratoons within trials clustered together strongly, followed by a clear separation of the M 
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environments from C and H environments. The MEs identified here are not in keeping with 

the geographical regional divisions utilised currently for the rainfed parts of the industry 

(midlands, coast, hinterland). For example, if the current regional separations were 

appropriate, the biplot would consist of three MEs corresponding to the C, H and M regions. 

The MEs identified here may not necessarily group according to any geographical zoning, 

and attempts should be made to identify the main environmental factors characterising these 

MEs. 

 

Table 3.2 Variance components estimates and percentage of total phenotypic variance 

for tons cane/ha (TCANE), estimated recoverable crystal percentage (ERC %), and tons 

estimated recoverable crystal/ha (TERC). Standard errors of estimates are in brackets 

 

    *Percentge of total phenotypic variance 

 

The TCANE biplot (Figure 3.1b) also accounted for approximately 42% of the variation in 

the G x E table of means and was very similar to the biplot produced for TERC. However, 

this biplot exhibited three MEs instead of four, as the N12 ME observed in the TERC biplot 

now fell within the N31 sector. The majority of the M environments fell within the N31 

sector, which also contained some C and H environments.   This implies that N31 was the 

highest yielding cultivar in the environments grouped into that ME. The N36 sector contained 

both C and H environments, as well as four M environments that were different from the 

other M environments. The N29 sector contained C and H environments only. 

  

TERC TCANE ERC% 

Variance % Variance %
*
 Variance % 

Trial 8.41 (2.22) 47.34 312 (92.4) 35.0 2.54 (0.69) 44.2 

Block (within trial) 0.28 (0.06)   1.60 20.2 (4.4)   2.3 0.03 (0.009)   0.5 

Genotype 0.22 (0.22)   1.24 37.5 (15.8)   4.2 0.31 (0.12)   5.5 

Genotype x trial 0.62 (0.61)    3.48 33.5 (5.7)   3.8 0.11 (0.02)   1.9 

Genotype x block (within trial) 0.79 (0.79)   4.47 53.4 (4)   6.0 0.02 (0.01)   0.3 

Ratoon 0.08 (0.08)   0.47 0 0 0 0 

Ratoon x trial 4.34 (0.64) 24.43 294 (42.6) 32.9 1.64 (0.23) 28.6 

Ratoon x block (within trial) 0.23 (0.03)   1.30 14.2 (2.1)   1.6 0.04 (0.01)   0.7 

Genotype x ratoon 0.05 (0.02)   0.25 2.6 (1.2)   0.3 0.01 (0.007)   0.1 

Genotype x trial x ratoon 0.61 (0.06)  3.45 23.2 (2.7)   2.6 0.18 (0.02)   3.1 

Error 2.13 (0.05) 11.98 104 (2.9) 11.7 0.87 (0.02) 15.2 
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Figure 3.1 Polygon views of GGE biplots for TERC (a), TCANE (b) and ERC (c) based 

on data of 15 genotypes tested accross 153 environments. For better visualization of 

regional overlapping and separation, the environments are abbreviated by their first 

letters only (in red), while the genotypes are indicated in blue 

 

The ERC biplot, which accounted for 40% of the variation in the G x E table showed that the 

majority of the C and H environments fell within a ME characterized by the vertex genotype 

N29 (Figure 3.1c). This genotype was released to the industry for its characteristically high 

ERC%. The M environments were scattered throughout the biplot, forming indistinct clusters. 

However, the vertex genotype N37 formed a ME composed primarily of M environments in 

a b 

c 
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the top left hand corner of the biplot. The formation of a dominant ME for ERC may be 

linked to the larger ratio of G to G x E observed from variance components analyses (Table 

3.2), which indicates that ERC is influenced to a larger extent by genetic effects than by the 

G x E interaction effects. 

 

Although environments tended to cluster according to the ratoons harvested within a trial, 

frequently, a given trial showed diverse responses between ratoons. These patterns are 

illustrated in Figure 3.2, which shows the biplot for TERC (same as Figure 3.1a, but with full 

names of the environments indicated). Environments CEM30, CEM32, CEM34 and CEM36 

were located within the N31 ME while the other ratoons from this site (CEM31, CEM33, 

CEM35) were located in different MEs. Genetic correlations between these environments 

confirmed that CEM30, CEM32, CEM34 and CEM36 were positively correlated while 

CEM31, CEM33 and CEM35 were negatively correlated to the former ratoons (Table 3.3). 

Similarly, environments HES10, HES11, and HES12 formed part of the N29 ME, while the 

next crop from this trial (HES13) was located in the N36 ME. Table 3.3 data confirms the 

negative correlations between HES13 and the other ratoons from that particular trial. Other 

examples may be identified through further interrogation of Figure 3.2. Similar observations 

were also made in the TCANE and ERC biplots (not shown). This differential grouping of 

ratoons from a trial site demonstrates the trial x ratoon interaction, which was also observed 

to be highly influential from the variance components analysis (Table 3.2). In addition to 

differential responses of ratoons within trials, it was also frequently observed that trials from 

a particular location grouped into different mega-environments (Figure 3.2). For example, 

ratoons from CAK1, CAK2 and CAK3 were located in different ME sectors. Table 3.3 data 

shows positive correlations between ratoons of CAK1 and CAK2, while correlations between 

those trials and ratoons of CAK3 were negative. 
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Figure 3.2 Polygon view of a GGE biplot for TERC based on data of 15 genotypes tested 

over 153 environments. Environments are shown in red and genotypes are shown in 

blue. Environments cited in text are shown in bold, black font. The six M environments 

are circled  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HES13 
CAK30 
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Table 3.3 Phenotypic correlations between selected environments showing the variable 

relationships between ratoons of the same trials and between trials within the same 

location 

 

 

CEM30 CEM31 CEM32 CEM33 CEM34 CEM35 CEM36 

CEM30 1 

      CEM31   -0.75
**

 1 

     CEM32   0.91
**

 -0.46 1 

    CEM33   -0.56
*
     0.79

**
 -0.22 1 

   CEM34 0.37  0.11   0.61
*
 0.23 1 

  CEM35 -0.04  0.44  0.24   0.61
*
 0.68

**
 1 

 CEM36     0.98
**

   -0.65
**

     0.96
**

    -0.44   0.47 0.11 1 

 

HES10 HES11 HES12 HES13 

   HES10 1 

      HES11 0.61
*
 1 

     HES12    0.32 0.73
**

 1 

    HES13   -0.39  -0.75
**

 -0.52
*
 1 

   

 

CAK10 CAK11 CAK20 CAK30 CAK31 CAK32 

 CAK10 1 

      CAK11 0.54* 1 

     CAK20 0.79
**

 0.55
*
 1 

    CAK30  -0.27  -0.55
*
  -0.01 1 

   CAK31  -0.76
**

  -0.41  -0.72
**

   0.22 1 

  CAK32  -0.51
*
  -0.57

*
  -0.25 0.91

**
 0.51

*
 1 

 CAK33  -0.59
*
  -0.51

*
  -0.31 0.84

**
 0.49

*
 0.89

**
 

 
   *P≤0.05, **P≤0.01 

 

3.4.2.2 Genotype performance and stability 

Figure 3.3a is a different view of the TERC biplot highlighting the average performance and 

stability of the different genotypes. In this view, the average TERC of the genotypes are 

indicated by the projections of their markers onto a derived axis (red line with single 

arrowhead). When perpendicular lines are drawn from the genotype markers to this axis, the 

TERC rankings of genotypes can be seen. When comparing the biplot results with the mean 

TERC of the genotypes, the biplot approximated the ranking of the genotypes very well 

(correlation = 0.78). Thus, genotype N31 had the highest mean TERC, followed by N12, and 

then N16, while N19 had the lowest mean TERC. The stability of the genotypes is measured 

by the projections of their markers on the other derived axis (blue line with double 

arrowhead). Perpendicular lines are drawn from the genotype markers to this axis and the 

points at which they intersect this axis then define their stability. The greater the absolute 
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distance of the intersections from the origin, the less stable a genotype is. Thus, genotypes 

like N33, N31 and N21 were the most stable, while genotypes such as N29, N36 and N17 

were the most responsive. The center of the concentric circles in the biplot represents the 

location of a hypothetical ‘ideal’ genotype (i.e. highest yield and highest stability). Genotype 

N31 was located closest to this point, suggesting that it may be the ideal genotype to utilize as 

a control when selecting for TERC in selection programs. 

 

Performance and stability of genotypes based on TCANE can be seen in Figure 3.3b. The 

biplot and genotype rankings are very similar to the TERC biplot, with genotype N31 

showing the highest TCANE and exhibiting stability, i.e closest to the ideal genotype. The 

correlation between biplot ranks and genotype means was 0.88, suggesting that the 

projections of the genotype markers were a good approximation of the average genotype 

performance. Once again, N31 was located closest to the ideal genotype, suggesting that it 

would be a good candidate as a control during selection for TCANE. 

 

Regarding ERC (Figure 3.3c), genotype N29 was ranked as the top performer, followed by 

N35 and N27, while the lowest ranked genotype was N17 (correlation between biplot ranks 

and means was 0.88). Genotypes N41, N36, N39 and N21 were the most stable for ERC. 

Genotype N31, which was stable in terms of TCANE (Figure 3.3a), was responsive in terms 

of ERC. In contrast, genotype N36 was responsive for TCANE (Figure 3.3a) and stable for 

ERC (Figure 3.3b). Genotypes N33 and N21 were stable for both TCANE and ERC; 

however, their mean performance was not impressive for both traits. Genotype N29 was the 

closest to the ideal genotype for ERC, suggesting that it would be a good candidate for a 

control genotype when selecting specifically for ERC. 
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Figure 3.3 The ‘means vs. stability’ view of GGE biplots for TERC (a), TCANE (b), and 

ERC (c) based on data from 15 genotypes tested over 153 environments. Environments 

are indicated by an asterisk, while genotypes are indicated by their names 

 

3.5 Discussion 

 

The results of this study have provided valuable insights into the nature of the G x E 

interactions characterising the rainfed parts of the industry. The large component of variation 

accounted for by the genotype x trial interaction relative to the genotype x ratoon interaction 

highlights that there may not be much value in extending trials to longer crops. It follows 

a b 

c 
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that, to increase responses to selection, greater emphasis should be placed on sampling more 

trial sites than on testing ratoons within a trial site. This confirms results obtained in other 

studies on sugarcane in Australia (Jackson et al., 1991; Mirzawan et al., 1994). This trend 

was also evident in the biplots where, in general, environments that clustered close together 

were ratoons of the same trial. However, frequently, ratoons of the same trial also showed 

diverse responses (Figure 3.2), showing that seasonal/ratoon differences could have an effect 

on the categorization of a particular environment into a ME. The grouping of ratoons from a 

trial into different ME sectors suggests the existence of influential climatic (soil 

characteristics remain constant), biotic, or management factors that can produce genotypic 

rank changes between ratoons. Further analyses of the factors characterizing such 

environments may help explain the reasons for these differential ratoon responses within 

trials. The existence of ‘subsets of environments’ or ‘environment types’ that are 

characterized by similar biotic and abiotic stresses may be a possibility, and these should be 

investigated for future improvements of the trial networks. 

 

The occasional differential grouping of trials from the same location into different MEs 

suggests rapid changes in the values of relevant environmental factors for environments that 

were geographically close. This may be due to the use of different experimental fields within 

a location, where factors such as cropping history, management practices (the majority of 

trials were conducted on commercial farms), and variations in soil physical and chemical 

properties brought about by topographic position have large confounding effects. These are 

further complicated by the effects of different times of harvest and harvest ages, thereby 

giving rise to large and complex G x E interactions that can only be interpreted through 

proper characterization of trial sites. Other studies have also addressed the issue of such 

genotype x management interactions for grain yield of wheat (Cooper et al., 2001). 

Furthermore, in this study the effect of season (year) per se was not taken into consideration, 

and was largely analysed through the effects of the ratoon factor, with which it was 

confounded. The thinking behind this was that crops of the same ratoon age (i.e 1
st
, 2

nd
,3

rd
 

ratoon etc) that were harvested in a particular season, would have probably started at different 

times of the year and would be at different ages, thereby making the interpretation of the 

season effect very difficult. This confounding effect of ratoon with season is the reason for 

the large trial x ratoon interaction observed with all three traits (Table 3.2). 
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Biplot analysis has shown that selection strategies for TERC in the rainfed parts of the sugar 

industry should be targeted at four MEs, which do not necessarily conform to the traditional 

regional sub-divisions currently in use. Mega-environments consisted of a mix of C, H, and 

M environments, which discriminated genotypes similarly, implying that certain 

environments, although geographically distinct, had a similar effect on genotypic responses. 

This was particularly true of environments belonging to the C and H regions, as the M 

environments tended to cluster fairly tightly, with only few outliers. The six M environments 

that were outliers (Figure 3.2) were actually trials conducted in frost pockets in the midlands 

that were harvested on a 12-month cutting cycle as opposed to the conventional 18-24 month 

cycle for that region. This suggests a possible dominant role of harvest age in determining 

environmental groupings. Further analysis of the biplot also showed that environments 

representative of the five selection programmes (coastal high potential, coastal low potential, 

hinterland, midlands humic, midlands sandy) did not cluster together to form five separate 

mega-environments. This may imply the need for possible adaptation of the current selection 

strategy to target the MEs identified in this study. Such adaptations may only be possible 

after detailed characterizations of the MEs, together with adequate demonstration of the 

repeatability of the observed responses. 

 

In addition to the implications on selection, the results of this study have provided insight into 

the redundancy of trial sites for the purposes of post-release evaluation. Environments tightly 

clustered within a ME should be similar with regard to genotypic performance (Yan and 

Tinker, 2005), suggesting that one or more environments could be removed without much 

loss of information. In this study, a range of M environments clustered tightly within the N31 

sector in Figure 3.1a. These environments included those representing the ‘sandy’ and 

‘humic’ conditions, which are currently evaluated in the midlands and for which two separate 

selection programs currently exist. The appropriateness of the sandy vs. humic subdivision in 

the midlands has never been tested and the results of this study suggest the need for such an 

evaluation to optimize resources and improve the efficiencies of both selection and evaluation 

(this will be addressed in Chapter 5). Another example is the tight clustering of ratoons from 

the trials CUF3, CUF4 and CEM3 (see the left hand side of Figure 3.2), which suggests that 

at least one of those trial sites could be removed for post-release evaluation purposes. 

 

The analysis of genotype performance and stability identified N31 as the ideal genotype for 

TERC and TCANE, while N29 was identified as the ideal genotype for ERC. These results 
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suggest that these genotypes may be ideal candidates for controls in selection trials to 

improve genetic gains. Currently, however, genotype NCo376 is used as a control in all plant 

breeding selection trials.  The poor relative performance (TERC, TCANE and ERC) and 

stability of NCo376 is an indication of successful selection gains achieved through the release 

of newer genotypes. In order to sustain future gains, the use of alternate, higher yielding and 

stable controls such as N31 must be considered. The variance components ratio of genotype 

to G x E was higher for ERC than for TERC and TCANE, suggesting that gains from 

selection are likely to be more rapid for ERC relative to the other two traits. This has indeed 

been the case in the South African sugar industry, where the average ERC of new commercial 

releases have increased substantially relative to TCANE. Additionally, adoption of new 

cultivars in the South African sugar industry has not occurred at the same rate as cultivar 

release, leading to large areas dominated by single (older) cultivars such as NCo376. The 

results of this study demonstrate the potential benefits of adopting newer cultivars. 

 

This study has highlighted a number of issues deserving of consideration for future G x E 

studies in the industry. However, it is acknowledged that this study is characterized by many 

shortcomings due primarily to the nature of the data used. Only highly selected released 

cultivars were analysed, thereby reducing the potential genotypic variability in the dataset. 

This was due to the lack of balanced datasets across the different post-release trials. Only a 

few plant breeding selection trials were included, based on the commercial controls which 

were common to the post-release trials. Future studies should consider the use of a mixed 

model approach, with the inclusion of “region” as an additional factor in the model. Despite 

these limitations, the study provided useful insights into the complexity of G x E interactions 

in the industry, which is dealt with in subsequent chapters.   

 

3.6 Conclusions 

 

This study was the first to evaluate the variance components and MEs associated with METs 

conducted in the rainfed regions of the South African sugar industry. The results have 

demonstrated the existence of large and complex G x E interactions that may be exploited for 

improved selection and evaluation. Important findings of the study that must be confirmed 

with further detailed investigations were:  
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 The identification of larger trial x ratoon interactions relative to genotype x ratoon 

interactions, which have direct impact on the design of the selection and evaluation 

network. 

 The existence of four MEs that do not correspond to the current regional sub-divisions 

used in the rainfed parts of the industry.  

 A discrepancy between the current five selection programs and the target environments 

comprising the rainfed regions. 

 The existence of differential ME groupings of ratoons within trials and trials within 

locations, highlighting the need to characterize trials according to environmental factors. 

 The evaluation of relative performance and stability of genotypes for use as controls 

when selecting for different yield traits. 

 

Future studies should involve a complete characterization of environments used for selection 

relative to climatic variables, soil characteristics, and management/crop factors (age and time 

of harvest). Such studies will also allow for the analytical interpretation of G x E interactions 

which has implications for developing more targeted breeding programmes, better choice of 

environments for selection and evaluation, and will provide insight into the genetic and 

physiological makeup of genotypes for further physiological studies. 
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CHAPTER 4 

INTERPRETATION OF GENOTYPE X ENVIRONMENT 

INTERACTIONS OF SUGARCANE: IDENTIFYING SIGNIFICANT 

ENVIRONMENTAL FACTORS
2
 

4.1 Abstract 

 

An understanding of the causes of G x E interactions is essential for the implementation of 

efficient selection and evaluation networks. Currently, studies involving the interpretation of 

sugarcane G x E interactions are limited. The objective of this study was to investigate the 

relative influence of environmental factors on the G x E interactions in sugarcane under 

rainfed conditions in South Africa through a comprehensive analysis of a MET dataset. 

Fifteen commercial cultivars were evaluated across 147 environments (trial x ratoon 

combinations) across the coastal (C), hinterland (H) and midlands (M) regions of the sugar 

industry. Environments were characterized according to five site covariates (soil depth, clay 

percentage, organic matter percentage, nitrogen mineralization category, and total available 

moisture) and nine seasonal covariates (time of harvest, age at harvest, average daily heat 

units, solar radiation, rainfall, evaporation, and three derived water stress indices).  

AMMI2 biplots for TCANE, ERC and TERC revealed overlapping of C and H environments, 

while M environments formed unique clusters characterized by specific cultivar 

adaptabilities. The PCA allowed visualization of the covariates determining the regional 

separation patterns. The AMMI interaction principal components axes (IPCA) 1 and 2 scores 

were correlated to the covariates and showed that harvest age, temperature, and water stress 

were mainly responsible for separation of M environments from C and H environments on 

the TCANE and TERC biplots. Time of harvest was identified as an important covariate 

influencing ERC G x E patterns in the C and H regions. The third water stress index (based 

on a ratio of observed yields to simulated irrigated yields) was a dominant factor influencing 

G x E patterns within the C and H regions and was identified as a superior indicator of water 

deficient environments for future studies. The M trials were characterized by shallower soils 

with lower total available moisture and greater variability in this regard compared with the C 

                                                           
2
Ramburan, S., Zhou, M., Labuschagne, M., 2011. Interpretation of genotype x environment interactions of sugarcane: 

Identifying significant environmental factors. Field Crops Research 124, 392-399. 
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and H trials. Nitrogen mineralization category, organic matter percent, and clay percent were 

not significantly correlated to IPCA scores, while soil depth was identified as a major site 

selection criterion in the M region. The M region should be treated as a single mega-

environment, while the C and H regions could be combined for future interpretive studies, 

where covariates should be summarized within growth phases. The results of this study will 

assist in restructuring the MET network through exploitation and targeting of the relevant 

environmental factors within the different regions.  

4.2 Introduction 

The analysis of the MET dataset in Chapter 3 illustrated the large and complex G x E 

interactions in the rainfed regions of the industry.  The study, which employed GGE biplot 

analysis (Yan et al., 2000) showed differential ME groupings of ratoons from the same trials 

and trials from the same locations, suggesting large spatial and temporal fluctuations in major 

yield determining environmental factors.  That study highlighted the need to investigate the 

nature of such G x E interactions for exploitation within the breeding and evaluation 

networks.  

Genotype x environment interaction has long been a barrier to efficient plant improvement 

through its impairment of efforts to select superior genotypes and its negative impact on 

heritability. For sugarcane, the majority of G x E studies have been empirical in nature, 

focusing mainly on quantifying G x E interactions and genotype stability (Tai et al., 1982; 

Queme et al., 2005; Jackson et al., 2007), identifying mega-environments (Jackson et al., 

1991; Mirzawan et al., 1994; Queme et al., 2007), and quantifying sources of variation for 

resource allocation (Bissessur et al., 2010, Rattey and Kimbeng, 2001). In comparison, fewer 

sugarcane studies have focused on the interpretation of G x E interactions to understand the 

nature and causes thereof. Such an understanding may benefit sugarcane improvement 

initiatives and allow for the exploitation of G x E interactions rather than its avoidance or 

acceptance. An understanding of the factors responsible for G x E interactions can be used to 

establish breeding objectives, formulate recommendation domains, contribute to ideotype 

design, and identify ideal test conditions (Yan and Hunt, 2001). 

Approaches currently used to gain an understanding of the causes of G x E interactions can 

be categorized into two strategies. The first involves the use of factorial regression models 

based on two-way G x E tables with concomitant variables which could either be 

environmental factors, genotypic traits, or combinations thereof (Baril et al., 1995). The 
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second strategy involves the correlation of genotypic or environmental scores derived from 

AMMI analysis to genotypic or environmental covariates (Van Eeuwijk et al., 1995). Both 

strategies, although different in approaches, have been shown to produce similar results 

(Vargas et al., 1999). With a large number of environmental covariates (that may or may not 

be correlated) factorial regression becomes difficult to implement. 

Consequently, many studies have utilized the second strategy due to the production of PCA-

based biplots, which allow for easy visualization of responses and relationships. In addition, 

biplots produced from AMMI analysis can be enriched with covariates to allow for easier 

interpretation, provided there are strong correlations between AMMI IPCA scores and the 

covariates. Voltas et al. (1999) used this method to identify genotypic and environmental 

covariates influencing G x E interactions for grain filling in barley. The three covariates 

identified were subsequently included into a factorial regression model to interpret G x E 

interactions. Van Oosterom et al. (1996) related AMMI IPCA scores to environmental 

covariates and found that factors such as the mean maximum temperature 10 days after 

flowering and the changes in a water satisfaction index during grain filling were some of the 

causes of G x E interactions of pearl millet. Van Eeuwijk and Elgersma (1993) found that 

four environmental covariates showed strong correlations to AMMI environment IPCA 

scores and these corresponded to the covariates identified by factorial regression, in an 

analysis of G x E interactions of ryegrass. De Vita et al. (2010) used this approach to 

investigate environmental and genotypic causes of yield variation of wheat in Italy, and 

identified water availability as a key factor. Vargas et al. (1999) showed that this approach 

produced results that were comparable with those of factorial regression and partial least 

squares regression in their analysis of two wheat datasets. The methodology can also be 

adapted to understand genetic causes of G x E interactions.  Annicchiarico et al. (2010) 

investigated the adaptation of lupin (Lupinus albus) landraces by correlating AMMI IPCA 

scores of different germplasm pools to mean values of different morphophysiological traits.   

Interpretive studies of sugarcane G x E interactions are currently limited to a single analytical 

study that investigated causes of G x E interactions in Australian selection trials (Jackson et 

al., 1995). Subsequent interpretive studies of sugarcane G x E interactions involved the 

straightforward characterization of METs (in a single-factor approach) according to soil type 

(Del Blanco et al., 2010; Glaz and Kang, 2008), age at harvest (Ramburan and Sewpersad, 

2009), regional characteristics (Bissessur et al., 2010), and time of harvest (Gilbert et al., 

2006). However, since Jackson et al. (1995), no further attempts have been made to 
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investigate the nature of sugarcane G x E interactions within a MET framework through 

combined analysis of the major environmental drivers of crop growth. This approach should 

allow for a better understanding of crop performance in different environments and can only 

be achieved through a detailed characterization of the soil and climatic factors associated 

with METs. The complexity of sugarcane G x E interactions in South Africa necessitates an 

investigation into the nature thereof, leading to more informed breeding objectives, better test 

site selection, development of appropriate recommendation domains, and sugarcane ideotype 

design. The objective of this study was to investigate the relative influence of different 

environmental factors on the G x E interactions of sugarcane under rainfed conditions 

through an interpretive analysis of the MET dataset from Chapter 3.  

4.3 Materials and methods 

4.3.1 MET dataset 

The trial dataset used in this study comprised 43 trials (32 post-release cultivar evaluation 

trials and 11 advanced plant breeding selection trials) grown in 18 different locations, 

harvested during the period 1999-2009. Trial details, distribution, and abbreviations were 

described in detail in Chapter 3. Genotypic data for cane yield (TCANE), estimated 

recoverable crystal percentage (ERC) and tons ERC/ha (TERC) of the 15 cultivars most 

common to all trials were analyzed. 

4.3.2 Environment characterization  

For each trial in the dataset, stable site characteristics were determined through soil profile 

analyses and conventional soil sampling procedures to develop five site covariates. A 

minimum of three soil pits were dug at random points within each trial (sites where older 

trials were established were identified from farm records) to determine a range of 

characteristics. These included the effective rooting depth (Depth), clay percent (Clay), 

organic matter percent (OM), and N mineralization category (Ncat) (1=low, 2=medium, 

3=high, 4=very high) (Anonymous, 2000). The total available moisture (TAM) for each site 

was subsequently estimated from Clay and Depth, from a formula developed by Van 

Antwerpen et al. (1994).  

Apart from the stable site covariates, nine other covariates that varied seasonally (hence 

termed seasonal covariates) were also developed.  For each environment (trial x ratoon 

combination) weather data were summarized from weather stations that were closest to the 

trial sites, and used to calculate the following covariates: average daily thermal time (base 
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10°C) in heat units (TT); average daily solar radiation (RAD) in MJ/m
2
/sec, average daily 

rainfall (RAIN) in mm, average daily evaporation (EVP) in mm, and three water stress 

indices (WSI1, WSI2, and WSI3) that ranged from 0 to 1. The WSI1 was calculated by using 

the TAM, crop start/ratoon dates, and relevant weather station data as inputs to run the 

Canesim crop growth model (Singels and Donaldson, 2000), which estimated the actual crop 

evapotranspiration (EVTact) for the respective crop cycle. The same model scenarios were 

also run for the same cycle as if fully irrigated to simulate unstressed crop growth and 

estimate the potential evapotranspiration (EVTpot) had there been irrigation. The WSI1 was 

subsequently calculated as the ratio of EVTact : EVTpot, where a high WSI1 represented no 

moisture stress, while values closer to zero represented higher levels of stress. The second 

WSI (WSI2), was based on cane yields, and was calculated as a ratio of simulated rainfed 

cane yield: simulated irrigated cane yield. The third WSI (WSI3) was calculated as a ratio of 

observed trial mean yield: simulated irrigated yield.  For each environment, the age at which 

the crop was harvested (AGE) and the time of harvest (TOH) were also recorded as 

additional covariates. Details of the five site and nine seasonal covariates, together with their 

means and ranges are indicated in Table 4.1.  
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Table 4.1 Descriptions of nine seasonal and five site covariates measured over 43 trials 

and 147 environments 

Covariate Description Mean Range 

    

 
Seasonal covariates  

TT 
Thermal time in heat units using a base temperature of 10°C 

(Heat units/day) 
10.78 6.74-13.97 

RAD Average daily solar radiation  (MJ/m
2
/sec/day) 15.77 12.99-17.89 

RAIN Average daily rainfall  (mm/day) 2.56 0.98-4.57 

EVP Average daily A-pan evaporation (mm/day)  4.37 2.83-8.33 

WSI1 
Water stress index 1. Simulated  rainfed evapotranspiration  vs. 

simulated irrigated evapotranspiration  
0.48 0.15-0.98 

WSI2 
Water stress index 2. Simulated rainfed cane yield vs. simulated 

irrigated cane yield 
0.43 0.08-0.99 

WSI3 
Water stress index 3. Observed trial mean yield vs. simulated 

irrigated cane yield 
0.61 0.18-1.32 

AGE Age at harvest (months) 15.69 10.72-25.97 

TOH 
Time of harvest (1-9). Coded as month 1 (April) to month 9 

(December) 
N/A N/A 

 
Site covariates  

Depth Effective rooting depth (mm) 667.44 300-1200 

Clay Clay percentage (%) 30.02 5 - 65 

OM Organic matter percentage (%) 2.16 0.2-4.54 

Ncat Nitrogen mineralization category (1-4) N/A N/A 

TAM Total available moisture (mm) 74.35 30-192 

 

4.3.3 Statistical analyses 

4.3.3.1 G x E interactions 

The two-way tables of G x E means for TERC, TCANE and ERC were analyzed using 

AMMI, as described by model 5 in Chapter 2.  The AMMI2 biplots were produced to 

visualize the G x E interactions for TERC, TCANE and ERC. The AMMI2 biplots are 

characterized by the projection of the genotype and environment IPCA1 and IPCA2 scores 

onto a two-dimensional biplot. The interpretations of G x E interactions from an AMMI2 
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biplot are similar to those from other forms of biplot analysis.  Genotypes and environments 

are represented by points. The distance from the origin of the biplot to these points represents 

the amount of interaction that is exhibited by the respective genotype or environment. The 

angles between two genotype vectors correspond to their correlation. In general, acute angles 

represent positive correlations, right angles represent no correlation, and obtuse angles 

represent negative correlations (Voltas et al., 1999). Similar interpretations hold true for 

environments.   The magnitude of interactions between genotypes and environments can be 

interpreted by their respective vector direction, where similar directions indicate positive 

interactions and vice versa (Gauch, 1992).  

In order to study the correlation structures of the environments in relation to the nine seasonal 

covariates, a PCA was conducted on the environment x covariate two-way table. The biplot 

of the first two PC axes was used to assess the main differences between the environments, 

identify the covariates driving such differences, and to reveal relationships and redundancies 

between the covariates. The PCA provided an overview of the environmental factors 

characterizing the different regions. However, in order to investigate the effects of the 

environmental factors on the G x E interactions, the covariates were further correlated to the 

AMMI IPCA1 and IPCA2 environment scores. Significant correlations suggested that any 

separation of the environments on the AMMI2 biplots was attributed to the relevant 

covariate, thereby highlighting the importance of that covariate to the G x E interactions.   

Hence, the results of the correlation analysis, together with the differential grouping of 

environments in the biplots allowed for biological interpretations of the factors driving G x E 

interactions.  

4.3.3.2 G x trial interactions 

In the above analysis, an environment was considered a trial x ratoon combination 

characterized by varying seasonal covariates. Each trial, however, was also characterized by 

stable/fixed/immovable site covariates usually related to soil factors. Therefore, the effects of 

the five site covariates could not be evaluated using the above procedures, as ratoons of the 

same trial would be characterized by the same site covariates, resulting in overlapping of 

these environments on the PCA biplot. Consequently, a second approach to the analysis was 

adopted, where the phenotypic performance of a genotype was averaged across ratoons of a 

trial, and the AMMI analysis was conducted on the G x trial two-way table of means. In order 

to study the correlation structures of the trials in relation to environmental factors, the nine 

seasonal covariates (averaged across ratoons, within a trial), together with the five site 
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covariates were analyzed using PCA, as above. This PCA allowed for the comparison of the 

relative effects of site versus seasonal covariates on the separation of the trials used in the 

study. The effects of the covariates on the G x trial interactions were subsequently evaluated 

through correlation analysis, as above. This approach represented an evaluation of the 

repeatable component of G x E, while the former approach represented an analysis of a 

mixture of repeatable and non-repeatable G x E. All statistical analyses were conducted using 

Genstat® Version 12.1 statistical software (Anonymous, 2009) and biplots were produced 

using Canoco® for Windows Version 4.51 (Ter Braak and Smilauer, 2003). 

4.4 Results 

4.4.1 G x E interactions 

4.4.1.1 AMMI analysis  

The AMMI analysis of variance results are presented in Table 4.2. The analysis was 

conducted using genotypic means for each environment averaged across replicates and the 

pooled error was determined from the individual trial errors. The results indicate that the 

genotype and environment main effects were significant for all three variables. As a 

percentage of total sums of squares, the environment accounted for 39.9, 40.4 and 42.8% of 

variation, while genotype accounted for 3.7, 6.1, and 3.8% of variation in TERC, TCANE, 

and ERC, respectively. The G x E interaction accounted for 56.0, 53.3, and 53.1% of total 

variation for TERC, TCANE and ERC, respectively.  

Table 4.2 Analysis of variance for cane yield (TCANE), estimated recoverable crystal 

(ERC), and ton ERC/ha (TERC) of 15 sugarcane genotypes evaluated in 147 

environments 

      TERC   TCANE   ERC 

Souce of variation df 

 

SS MS 

 

SS MS 

 

SS MS 

Genotype (G) 14 

 

2647 189** 

 

231862 79161** 

 

920 65.7** 

Environment (E) 146 

 

28766 197** 

 

1521952 49826** 

 

10129 69.4** 

G x E 2044   40518 16.9**   2007361 812**   12545   5.3** 

Error (pooled) 

  

91.6 3.2 

 

4684 172 

 

29.7 0.9 

df Degrees of freedom, SS sums of squares, MS mean squares, ** P<0.001 

Figure 4.1a represents the AMMI2 biplot for TERC, which accounted for 52.6% of the G x E 

interaction and showed considerable separation of the M environments (i.e. environments in 

the M region) from the C and H environments.  There was substantial overlap between the C 
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and H environments, suggesting that trials within these two regions may discriminate 

cultivars similarly.  Isolated groups of M environments, which were located in the upper and 

lower left quadrant of the biplot represented trials conducted in frost pockets and harvested at 

12-months of age. The C and H environments exhibited substantial deviation along the 

IPCA2 axis, while the M environments were spread more explicitly along the first axis. Three 

groups of cultivars were apparent:  N12, N16, N31 and N37 grouped together and showed 

better adaptability to the M environments in general; N19, N17, N41, N36, N39 and N33 

grouped together in the upper left quadrant and did not appear to have any specific regional 

affinity; and N21, N35, N27, NCo376 and N29 grouped together in the bottom left quadrant 

and were correlated to some of the C and H environments.  The four cultivars that grouped 

together with the M environments are typically harvested older than 15 months of age. This 

suggests that the regional grouping may be due to the harvest age effect, rather than a true 

positive interaction. 

The biplot for TCANE depicted in Figure 4.1b, which accounted for 53.8% of the G x E 

interaction, revealed substantial clustering of the environments closer to the biplot origin, 

suggesting that environments were less interactive for TCANE than for TERC (Figure 4.1a). 

However, the regional groupings were similar to that of the TERC biplot, with the C and H 

environments showing considerable overlap, separate from most of the M environments. The 

H and M environments were spread more explicitly along the IPCA2 axis, while the C 

environments showed greater separation along the first axis. Cultivar groupings were also 

similar to the TERC biplot.  

The ERC biplot (52% of G x E interaction) in Figure 4.1c displayed considerable overlapping 

of the C, H, and M environments, which tended to cluster close to the biplot origin. Three 

ratoons from the trial in a frost pocket in the Midlands formed a cluster on the right side of 

the biplot. No other environments showed significant deviations along the IPCA1 axis. Four 

C environments, and one H environment exhibited high IPCA2 scores, however, in general 

there was tight clustering of environments along the IPCA2 axis as well. The cultivar 

groupings differed slightly from those observed in the TCANE and TERC biplots:  N37, N39, 

N41, and N36 grouped together in the top left quadrant; N17 and N19 formed another group 

in the top right quadrant; NCo376, N35, N29 and N27 grouped in the bottom right quadrant; 

while the remaining cultivars formed a group in the bottom left quadrant.  There was no clear 

affinity of cultivar groups to specific regions, as observed with TERC (Figure 4.1a) and 

TCANE (Figure 4.1b). 
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Figure 4.1 AMMI2 biplots for TERC (a), TCANE (b) and ERC (c) of 15 genotypes 

evaluated across 147 environments 
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4.4.1.2 Relationship between environments based on PCA 

Figure 4.2 represents the PCA based on the environment x covariate two-way table, which 

accounted for 51.2% of the total variation. Separation of the C, H, and M regions were 

observed along the second PC axis, with most of the M environments forming a cluster at the 

bottom, while most of the C and H environments overlapped towards the middle and upper 

sector of the biplot. Some H environments formed part of the cluster of M environments in 

the bottom of the biplot, and were positively correlated to AGE. The covariates that had the 

largest effects on environmental separation (as indicated by the lengths of their vectors) 

included AGE, TT, WSI1, and WSI2. This was followed by RAIN, which was negatively 

correlated to EVP and RAD, while TOH and WSI3 showed minor effects on environment 

separation. The TT, RAD and EVP covariates were positively correlated and were associated 

to a larger extent with the C and H environments in general. The WSI1 (based on simulated 

rainfed vs. simulated irrigated evapotranspiration) and WSI2 (based on simulated rainfed vs. 

simulated irrigated cane yields) were positively correlated, as the Canesim model calculates 

cane yield as a function of evapotranspiration. Consequently, either one of these covariates 

could be used in future studies.  Although also correlated to the other two water stress 

indices, the WSI3 (based on actual trial yield vs.  simulated irrigated yield) showed a slightly 

different response, and was closely associated with RAIN.  The M environments were 

characterized by higher AGE as well as lower TT, RAD, EVP and RAIN. Additionally, the 

negative correlation of the M environments to TOH suggests greater bias towards harvesting 

such trials early in the season.  
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Figure 4.2 PCA biplot summarizing the relationships among 147 environments and nine 

environmental covariates  

 

4.4.1.3 Interpretation of G x E interactions  

The correlations between the AMMI IPCA scores and each of the nine seasonal covariates 

are indicated in Table 4.3. These correlations must be interpreted jointly with the 

environmental separation patterns observed in the AMMI biplots in Figure 4.1. The effects of 

the covariates on the G x E interactions are analyzed by interpreting the positions of 

environments (IPCA1 and IPCA2 scores) on the AMMI biplots and relating those 

positions/patterns to any observed correlations to the covariates. Most of the significant 

correlations were observed between the covariates and the IPCA1 scores. The AGE, TT, 

WSI1 and WSI3 covariates showed significant correlations with IPCA1 scores for all three 

variables. The TERC and TCANE AMMI biplots in Figures 4.1a and 4.1b showed that most 

of the M environments were characterized by higher IPCA1 scores compared with the C and 

H environments. The positive correlations of AGE to the TERC (0.58) and TCANE (0.37) 

IPCA1 scores suggest that the M environments were characterized by greater AGE. This is 

confirmed by the direction of the AGE vector in the PCA biplot in Figure 4.2. Similarly, the 

significant negative correlations of RAIN, TT, WSI1, WSI2, and WSI3 to the TERC and 

TCANE IPCA1 scores suggest that the M environments were characterized by lower daily 

rainfall and temperature, and higher water stress (low WSI values) compared with the C and 
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H environments. The three M environments with low IPCA1 scores in Figure 4.1a represent 

ratoons of a trial in a frost pocket (valley bottom), usually characterized by deeper soils with 

better water holding capacity and less water stress (high WSI values). Figure 4.1a showed a 

greater spread of the C and H environments compared with the M environments along the 

IPCA2 axis. Consequently, the positive correlation (0.55) between these IPCA2 scores and 

WSI3 shown in Table 4.3 suggest large variability in water stress within these regions, 

highlighting its importance for selection and evaluation. The significant correlations of AGE, 

RAD, TOH, TT and WSI3 to the TCANE IPCA2 scores, and the substantial deviation of the 

H environments along this axis in Figure 4.1b, highlights the importance of these covariates 

as discriminating factors within this region.  

The ERC AMMI biplot did not reveal clear separation of the C, H, and M regions, thereby 

preventing clear associations between the environment groups and the covariates. There was 

greater deviation of environments along the IPCA2 axis compared with the IPCA1 axis 

(ignoring the three frost pocket environments). The WSI3 showed a weak (0.28) but 

significant (P<0.001) correlation to the ERC IPCA1 scores, while TOH was the only 

covariate that showed a significant correlation to the ERC IPCA2 scores. Therefore, the 

deviation of the C and H environments along the IPCA2 axis in Figure 4.1c is an indication 

of the importance of TOH as an ERC determinant in these two regions. Although EVP and 

RAD showed moderate effects on the separation of the M environments from the C and H 

environments in the PCA (Figure 4.2), these covariates showed no significant correlations to 

the AMMI IPCA1 scores, and only a single significant (P<0.05) correlation to IPCA2 scores 

for TCANE (Table 4.3).  
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Table 4.3 Correlation coefficients between nine seasonal and five site covariates and 

interaction principal component 1 (IPCA1) and 2 (IPCA2) environment scores derived 

from AMMI analysis of cane yield (TCANE), estimated recoverable crystal (ERC) and 

tons ERC/ha (TERC)  

 

4.4.2 G x Trial interactions 

In this approach, the phenotypic data of the genotypes were averaged across ratoons within a 

trial and the two-way tables of G x trials were analyzed using AMMI. The AMMI biplots for 

the G x trial interactions (not shown) revealed similar patterns of responses observed in the G 

x E biplots.  Genotypic groupings mimicked the G x E biplots, while trials within regions 

showed similar deviations as the environments (within regions) in the previous analysis (G x 

E analysis). The second PCA analysis i.e. with site covariates included and seasonal 

covariates averaged across ratoons, accounted for 44.4% of the variation and revealed slightly 

different patterns to the first PCA analysis (Figure 4.3).  Once again, most of the M trials 

formed a group and were positively correlated to AGE. All site covariates were positively 

correlated to each other, with Clay and TAM accounting for most of the variability (longest 

vectors). Either site covariate could therefore be used as a group representative for further 

evaluations. Additionally, WSI3 (actual trial mean yield vs. simulated irrigated yield) was 

Covariate 

 

G x E analysis 

 

G x Trial analysis 

  

 IPCA1   IPCA2 

 

 IPCA1   IPCA2 

  
TERC TCANE ERC 

 

TERC TCANE ERC 

 

TERC TCANE ERC 

 

TERC TCANE ERC 

AGE 

 

  0.58***   0.37*** -0.20** 

 

 0.16ns    0.33*** 0.02ns 

 

  0.65*** -0.51*** -0.29ns 

 

-0.06ns  0.08ns -0.34* 

EVP 

 

-0.12ns -0.03ns  0.07ns 

 

-0.08ns -0.09ns -0.00ns 

 

-0.21ns 0.17ns  0.04ns 

 

-0.10ns -0.18ns  0.09ns 

RAD 

 

 0.09ns -0.01ns -0.14ns 

 

 0.11ns 0.18* -0.06ns 

 

0.12ns 0.02ns -0.19ns 

 

0.09ns  0.09ns -0.09ns 

RAIN 

 

 -0.29*** -0.25** -0.08ns 

 

 0.02ns -0.02ns -0.10ns 

 

-0.44**  0.42**  0.18ns 

 

0.23ns 0.13ns  0.19ns 

TOH 

 

-0.14ns 0.01ns 0.19* 

 

 0.00ns -0.22**   0.36*** 

 

-0.15ns -0.01ns  0.19ns 

 

0.09ns -0.00ns -0.01ns 

TT 

 

-0.24** -0.25** -0.23** 

 

-0.19* -0.19* -0.07ns 

 

-0.23ns  0.35* -0.23ns 

 

-0.08ns -0.09ns  0.12ns 

WSI1 

 

-0.25** -0.25** 0.17* 

 

  0.16ns   0.09ns -0.07ns 

 

-0.34*   0.29ns 0.31* 

 

0.32*  0.26ns  0.14ns 

WSI2 

 

-0.18* -0.22**  0.09ns 

 

  0.15ns   0.12ns -0.11ns 

 

-0.24ns   0.22ns  0.22ns 

 

 0.28ns  0.26ns  0.14ns 

WSI3 

 

  -0.31***  -0.44***   0.28*** 

 

   0.55***    0.40*** -0.04ns 

 

-0.27ns   0.28ns  0.45** 

 

 0.58***  0.42** -0.06ns 

Clay 

 

- - - 

 

- - - 

 

-0.16ns   0.08ns  0.23ns 

 

 0.1ns 0.14ns  0.28ns 

Depth 

 

- - - 

 

- - - 

 

-0.33*  0.30* 0.32* 

 

0.04ns  -0.17ns -0.06ns 

Ncat 

 

- - - 

 

- - - 

 

  0.12ns -0.12ns  0.05ns 

 

0.26ns 0.34*  0.04ns 

OM 

 

- - - 

 

- - - 

 

  0.24ns -0.28ns  0.04ns 

 

0.25ns 0.37* -0.02ns 

TAM   - - -   - - -   -0.32* 0.34*  0.24ns   0.19ns  0.07ns  0.07ns 
* P<0.05, **P<0.01, *** P<0.001, ns = not significant 
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more strongly associated with the site covariates than the other two water stress indices. This 

suggests its possible superiority as a representative index to characterize water availability, 

which is essentially defined by the site covariates. The site covariates appeared to be 

negatively associated with a large proportion of the H trials, suggesting that these trial sites 

are dominated by poorer soils. Also, RAIN, TT, and TOH were once again correlated and 

negatively associated with the M environments, while EVP and RAD accounted for very little 

variation.  

The correlations of the G x Trial AMMI IPCA scores to the site and season covariates are 

also shown in Table 4.3.  The AGE covariate showed strong significant correlations to the 

IPCA1 scores for TERC (0.65) and TCANE (-0.51), once again highlighting its important 

role in discriminating regions and trials. The RAIN covariate showed stronger correlations 

with the G x T IPCA1 scores for TERC and TCANE compared with the G x E IPCA1 scores 

for the same variables, while TT only showed a significant correlation with the TCANE 

IPCA1 score. The WSI3 showed stronger correlations than WSI1 for the ERC IPCA1 scores, 

TERC IPCA2 scores, and TCANE IPCA2 scores. These stronger correlations again highlight 

the superiority of WSI3 for use as an indicator of water deficient environments in this study. 

From all site covariates, DEPTH showed significant correlations with IPCA1 scores for the 

three variates and interpretation of this correlation with the AMMI biplots suggested that 

most of the M trials were characterized by shallower soils. The biplots also showed that most 

of the deviation along the IPCA1 axis was observed by the M trials, suggesting that sites in 

this region were the most variable in soil depth. The Ncat and OM showed significant 

(P<0.05) correlations with the TCANE IPCA2 scores, suggesting that deviations of trials 

along this axis, which were evident within all three regions, were due to differences in Ncat 

and OM. The TAM caused separation of trials along the TCANE and TERC IPCA1 axis, and 

interpretations from the biplots suggested that M trials were characterized by lower TAM.   
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Figure 4.3 PCA biplot summarizing the relationships among 43 trials, nine seasonal 

covariates, and five site covariates  

 

4.5 Discussion and conclusions 

The results of this study showed that the M environments/trials were unique in their ability to 

discriminate cultivar performance in TERC and TCANE. The M environments regularly 

formed distinct clusters, separate from the C and H environments, on both the AMMI and 

PCA biplots. The overlap of the C and H environments on the AMMI biplots suggests that 

these regions discriminated cultivars similarly, while the PCA biplots showed that the 

environments in these regions were also characterized by similar climatic and soil features. 

These regions should be considered a single mega-environment within the rainfed selection 

program and for any future studies involving the interpretation of G x E interactions. The 

similarities between environments in the C and H regions were also highlighted in Chapter 3, 

where GGE biplot analysis was performed on the same dataset.  The biplots produced from 

the GGE biplot analyses differ slightly from those of AMMI analyses. The discrepancy lies in 

the treatment of the G x E matrix prior to performing singular value decomposition. The GGE 

biplot technique utilizes environment centered data (matrix minus environment means), while 

AMMI uses the matrix of residuals (matrix minus genotype and environment means). Despite 
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this difference, the techniques allowed for similar conclusions to be drawn. The AMMI was 

selected as the analysis of choice in this study due to the demonstrated successes of 

interpreting environmental covariates through its use (De Vita et al., 2010; Van Eeuwijk et 

al., 1995; Van Oosterom et al., 1996; Voltas et al., 1999).  

The approach used in this study identified factors that separated rainfed environments. 

However, the correlations between AMMI IPCA scores and covariates were generally weak 

(strongest correlation of 0.65). This may be due to the large size of the dataset, which led to 

weak but significant correlations. This limited the further use of the technique to enrich the 

AMMI biplots with the covariates (Van Eeuwijk and Elgersma, 1993), which could have 

allowed for easier interpretations. Nevertheless, the useful inferences made about the nature 

of the different environments and regions will inform future site selection for breeding and 

evaluation.  The variability and significance (P<0.01) of water stress within the C and H 

regions suggest that improved genetic tolerance to limited water availability may be achieved 

through selection in contrasting environments within these regions. The results also suggested 

that the M region was characterized by greater variability in soil depth. This is in contrast to 

local knowledge of regional soil characteristics, as greater topographic variability 

characteristic of the C and H regions was expected to produce greater variability in soil depth. 

The discrepancy may be linked to biased trial site selection in the C and H regions, where the 

most homogeneous, accessible, high potential fields were conventionally chosen. 

Consequently, more emphasis should be placed on selecting trial sites with contrasting soil 

characteristics within the C and H regions.    

The PCA of the environment x covariate matrix identified AGE as a dominant factor 

influencing the separation of the M region from other regions in the rainfed parts of the 

industry. The M region is characterized by higher altitude, which is normally associated with 

lower temperatures and slower growth rates, thereby requiring longer crop cycles. The 

negative correlation between AGE and TT is depicted in Figure 4.2, which also shows that 

the M environments are characterized by lower daily RAD, RAIN, and EVP. These are 

typical indications of an overall lower climatic potential of cropping environments. However, 

this is not the case with the M environments, where lower climatic potential is compensated 

for by the longer cutting cycle (AGE). Other studies have demonstrated higher yields in M 

environments. The present study has shown that these higher yields are related to increased 

harvest age rather than superior climatic potential of the region.  
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In this study, the influence of climatic factors and water stress was captured using the average 

daily values for the entire crop cycles (plant/ratoon to harvest). These averages may not be 

appropriate (and may be misleading), especially when considering the within-season weather 

variations and their influence on particular growth phases. For example, high water stress 

during the early growth phase of tillering may negatively affect stalk population and final 

cane yield. Favourable moisture conditions in later growth phases will improve the seasonal 

average; however, the effects of early water stress may go undetected. Radiation, evaporation 

and rainfall did not show clear, consistent associations with IPCA scores. This lack of 

correlation may have also been due to the use of seasonal averages, as high levels during one 

growth phase may have been offset by lower levels during another phase. A more accurate 

approach would be to characterize climatic and water stress covariates within individual 

growth phases to determine their specific effects on G x E interactions. This approach has 

been used in other crops such as barley (Voltas et al., 1999), ryegrass (Van Eeuwijk and 

Elgersma, 1993) and wheat (Voltas et al., 2005). No attempts have been made to interpret 

sugarcane G x E interactions using this approach, and the following chapters will address this 

issue.  

The G x E interactions may be categorized as being repeatable or non-repeatable, depending 

on the likelihood of particular G x E interaction events being observed again (DeLacy et al., 

2010).  The first approach to the analysis in this study (G x E) represented an investigation 

into the combined influence of repeatable and non-repeatable G x E interactions, while the 

second approach to the analysis (G x Trial) represented an evaluation of the repeatable 

component of G x E interactions. The second approach was not successful at identifying site 

factors that correlated with IPCA scores, as most covariates were not significant. This was 

unexpected as Clay, in particular, is generally considered an important site factor causing 

variation in cultivar responses in the sugar industry. The lack of frequent correlations 

between IPCA scores and covariates such as Clay, Ncat, and OM suggest that these may not 

be as influential on G x E interactions as previously thought. Stronger correlations were 

observed between IPCA scores and the covariates relating to soil physical characteristics i.e. 

Depth and TAM. Based on their influence on the repeatable G x Trial interaction, these 

covariates should be given priority when selecting contrasting sites for selection and 

evaluation. Furthermore, their mutual correlation shown in Figure 4.3, suggests that either 
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one may be used as a representative covariate for future studies (TAM was derived from 

Depth measurements).  

With respect to water stress indices, WSI3 was identified as the most promising at detecting 

genotypic responses to environmental differences in water stress, due to its correlations with 

IPCA scores, as well as its correlations with the site covariates in Figure 4.3. In this respect 

(correlation with site covariates), WSI3 best captured the combined influence of the site 

covariates, suggesting its potential use in future studies as an integrated covariate that 

represents the ability of soil to provide moisture. The WSI1 and WSI2, which were based on 

simulated evapotranspiration and cane yields, respectively, didn’t correlate as strongly with 

IPCA scores as WSI3. This is likely due to WSI3 being derived from observed trial mean 

yields, while the other two indices were based completely on simulated responses and the 

inaccuracies usually associated with such simulations.  

In this study, the categorization of environments into the C, H, and M regions were pre-

determined and based on industry knowledge. The joint use of AMMI and PCA successfully 

separated the regions (the M region specifically) according to their environmental 

characteristics and the genotypic responses, thereby confirming local knowledge. The 

patterns of genotypic responses to environments in the AMMI analyses were explained by the 

environmental characterization based on seasonal and site covariates. This suggests that the 

methodology could have potential benefits to sugarcane G x E studies, particularly in areas 

where little is known about the mega-environment constitution of a crop area.  This is in 

contrast to Ceretta and Van Eeuwijk (2008), who found that differential barley cultivar 

responses between two environments (using GGE biplot) were not fully explained by an 

environmental characterization based on PCA of meteorological variables. Additionally, this 

study highlighted the value of environmental characterization of sugarcane field trials and 

demonstrated the potential for integrated use of crop models to interpret G x E interactions. 

Future initiatives will focus on optimizing the use of crop models in G x E interpretive 

studies through evaluations of effectiveness of different weather data sources, comparisons of 

simulated vs. observed yields, and using simulated yields as hypothetical probe genotypes 

(commonly studied genotypes for which detailed physiological and yield parameters are 

known).   

In addition to the effects of some covariates on regional separation, substantial variation was 

also observed within regions i.e. environments within regions showed deviation along IPCA 
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axes. Attempts will be made, within regions, to group environments based on either seasonal 

covariates or G x E patterns. These analyses will also involve the use of genotypic covariates 

(traits) to help investigate the responses of sugarcane phenotypic groups to environmental 

factors. Such an approach will complement this study and provide a clearer understanding of 

variation within regions to inform trial site selection and region-specific breeding objectives.  
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CHAPTER 5 

TEST SITE SIMILARITY, TRAIT RELATIONS AND CAUSES OF 

GENOTYPE X ENVIRONMENT INTERACTIONS IN SUGARCANE IN 

THE MIDLANDS REGION OF SOUTH AFRICA
3
 

5.1 Abstract 

 

Commercial genotypes are selected for the midlands region of the South African sugar 

industry from six testing sites. The similarities between these sites in genotype performance 

have never been evaluated, and factors causing observed G x E interactions in the midlands 

are unclear. The objectives of this study were (i) to investigate the mega-environment (ME) 

patterns of the test sites, (ii) to investigate causes of G x E interactions, and (iii) to investigate 

whether sugarcane G x E patterns could be explained by relevant environmental factors and 

different genotypic trait relations. Estimated recoverable crystal (ERC) yield data from eight 

series (1999 to 2006) of multi-environment trials (METs) were analyzed using GGE biplot 

analysis. Data from post-release evaluation trials were incorporated into the multi-series 

dataset to identify overall MEs for the region. Pattern analysis was used to formulate 

environment groups and genotype sets based on G x E patterns and trait relations, 

respectively. Average daily temperature, rainfall, evaporation, and radiation; age and time of 

harvest, and a derived water stress index were calculated for each trial. Soil characteristics 

including effective rooting depth, clay and organic matter percentages, nitrogen 

mineralization category, and total available moisture were also determined.  

The testing sites formed a single, complex ME with frequent crossover G x E interaction. 

Post-release trials in frost pockets formed a unique ME, suggesting that the network should 

be re-designed to incorporate such a testing site. Site S3 was identified as redundant and 

should be removed from the trial network, while site B3 was flagged as another possible 

redundant site. Pattern analysis identified six environment groups and five genotype sets, the 

characteristics of which were interpreted using known production scenarios in the region. The 

clustering of sites on the biplots was related to similarities in soil characteristics, while the 

                                                           
3
Ramburan, S., Zhou, M., Labuschagne, M., 2012. Investigating test site similarity, trait relations, and causes of genotype x 

environment interactions in the Midlands region of South Africa. Field Crops Research 129, 71-80. 
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climatic covariates had negligible effects, and were not associated with G x E patterns. Trait 

relations between genotype sets did not differ drastically among environment groups, 

however, useful trait relations were established to aid with future selection. The approaches 

and principles described in this study can be used in other sugarcane studies to enhance the 

value of METs and gain an understanding of causes of G x E interactions.  

5.2 Introduction 

G x E interaction complicates the identification of superior genotypes in MET networks. 

Consequently, MET networks must include a range of locations, years, and management 

regimes. This ensures that genotypes are selected under wide variation in biotic and abiotic 

factors, with the expectation of superior performance being repeated after release. Such an 

empirical approach is the basis of most crop improvement programs, which are consequently 

highly dependent on the representativeness of test sites. However, for reasons such as limited 

resources, logistics, politics, convenience, and difficulties with land acquisition, the selection 

of test sites for breeding programs is often not ideal (Hamblin et al., 1980). Long-established 

programs conventionally comprise sites that were subjectively designated according to 

factors such as soil type, management regime, and geographic zoning. Resource limitations, 

financial constraints, and the increasing demand for high yielding genotypes necessitate the 

continual evaluation of the appropriateness of selection sites for the improvement of network 

efficiencies.  

In addition to identifying superior genotypes for specific environments, MET networks can 

also provide information on the nature of the target population of environments. The GGE 

biplot analysis (Yan et al., 2000) has gained popularity as a tool to investigate G x E 

interactions, and in particular, to identify MEs within a MET network. The method evaluates 

the similarity among test sites in their ability to discriminate genotypes, and identifies the 

most interactive or redundant sites within a MET network.  Yan et al. (2000) used the GGE 

biplot technique to show that winter wheat production environments in Canada should be 

grouped into two mega-environments, as opposed to a traditional grouping of four sub-areas.  

Yan and Rajcan (2002) employed the GGE biplot technique to soybean MET data and 

identified a single mega-environment with frequent crossover G x E interactions. Malla et al. 

(2010) used GGE biplots to divide the South Dakota winter wheat testing environments into 

homogenous groups.  Sharma et al. (2010) used GGE biplots to determine the performance, 

stability, and superiority of winter wheat breeding lines in irrigated environments in central 
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and west Asia. Several other studies have successfully applied GGE biplot analysis to 

evaluate similarities between test environments (Dehghani et al., 2006; Setimela et al., 2010; 

Zhe et al., 2010). The application of GGE biplot analysis in sugarcane is limited to studies 

conducted in Florida, USA (Glaz and Kang, 2008), and Guatemala (Queme et al., 2010). 

Although historic breeding advance has been achieved empirically, it is generally accepted 

that an understanding of the nature and causes of G x E interactions will further accelerate 

genetic gains from breeding. A lack of knowledge of the causes and repeatability of G x E 

interactions reduces confidence in the effectiveness of selection (Mirzawan et al., 1994). 

Knowledge of the factors responsible for both predictable (influenced by site and 

management factors) and unpredictable (influenced by season or crop year) G x E 

interactions is critical for the structuring of effective MET networks and for the development 

of recommendation domains. For example, the identification of overriding factors causing 

repeatable G x E interaction may indicate the need for dedicated selection sites with 

contrasting levels of such factors e.g. moisture stress. Furthermore, an understanding of the 

variability in crop trait relations in response to fluctuations in G x E dependant factors may 

lead to more targeted trait selection strategies for different MEs within a target region. 

However, because of the lack of associated climatic, soil, and genotypic trait data from 

METs, such interpretive studies of G x E interactions are limited in comparison to traditional 

empirical studies. When associated environmental data are available, interpretive studies of G 

x E interactions have conventionally involved the correlation of climatic data to environment 

scores derived from PCA – based methods,, such as AMMI (Gauch, 1992). This approach has 

been used in interpretive studies on crops such as barley (Voltas et al., 1999), pearl millet 

(Van Oosterom et al., 1996), ryegrass (Van Eeuwijk and Elgersma, 1993), wheat (De Vita et 

al., 2010) and others. The interpretation of sugarcane G x E interactions using this approach 

is limited to a single study (Jackson et al., 1995).    

The G x E interactions are conventionally analyzed using a combination of PCA and 

classification methods, such as cluster analysis. The combined use of these techniques is 

commonly referred to as pattern analysis (DeLacy et al., 1996). In this approach, individuals 

(genotypes or environments) are classified into homogenous groups depending on relative 

genotype performance (in the case of environments) or phenotypic trait similarities (in the 

case of genotypes). The PCA is often used to visualize G x E patterns in biplots, while cluster 

analysis allows for the grouping of environments that discriminate genotypes similarly. In 

some cases, cluster analysis is used to group genotypes based on their trait values (De la 
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Vega and Chapman, 2010). Clustering and PCA (ordination) are powerful tools, which, when 

combined with associated environmental covariates can allow for the interpretation of causes 

of G x E interactions. DeLacy et al. (2010) recently demonstrated the use of pattern analysis 

methodology in a study of sorghum in India, where trait relations of genotypes were studied 

in five different environment groups derived from cluster analysis of G x E yield data. Given 

the large diversity of genotypes expressing different traits in a range of environments typical 

of conventional METs, any methodology involving the grouping of genotypes and 

environments will greatly assist in interpreting G x E interactions. For example, the 

performance of genotype groups in different types of environments will imply the need for 

differential trait selection strategies within a testing network.  

The previous two chapters of this study have illustrated the complex G x E interactions 

present in the rainfed regions of the South African sugar industry. Those chapters showed 

that the midlands region is unique in the way it discriminates genotype performance (Chapter 

3) and with regard to the environmental factors driving those differences (Chapter 4). 

Production in the midlands  region occurs at high altitudes (>600 m above sea level) with low 

temperatures leading to occasional frost in low lying fields, and with harvest ages that vary 

between 12 to 24 months.  The region is divided into northern and southern production areas, 

and all genotype selection occurs in the northern areas only. Commercial sugarcane 

genotypes are selected and released for this region from one of two selection programs. The 

Bruyns Hill (B) and Glenside (S) selection programs run concurrently to identify promising 

genotypes suited to humic (high potential) and sandy (low potential) soils, respectively.  Each 

program is represented by three permanent testing sites located either on SASRI owned 

research farms (B1 and S1), or on grower co-operator farms (B2, B3, S2, S3) in the region. 

The so-called “off-station” sites B2, B3, S2 and S3, on co-operator farms, represent growing 

conditions that are slightly different from those experienced on the research farms. The 

criteria for choosing the research farms and the off-station sites varied widely, and included 

factors such as perceived/expected differences in soil types, geographical differences, 

politics, and convenience. The cultivar information gathered from the selection programs is 

supplemented by post-release evaluation trials conducted on commercial farms. The objective 

of post-release trials is to gather additional information on the performance of cultivars under 

more diverse conditions not represented by the selection trials, primarily for recommendation 

purposes (Ramburan and Van den Berg, 2011).  
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Since the inception of the above selection sites in 1997 (Nuss, 1998) and the ad hoc 

establishment of post-release trials since the 1980s, no study has been conducted to evaluate 

the relationships between the test sites in genotypic performance. Although G x E interactions 

are regularly observed between the B1 and S1 sites (on research farms), very often, similar 

genotypic performance has been observed between the off-station sites, and their similarities 

in this regard need to be evaluated. Despite the availability of appropriate data and a wide 

range of statistical tools, there has not been a systematic analysis of the MET network for the 

midlands region.  The objectives of this study were (i) to investigate the ME groupings of the 

test sites used for the midlands region to determine the need for network re-structuring, (ii) to 

investigate causes of G x E interactions that can inform future test site location within the 

region, and (iii) to investigate whether sugarcane G x E patterns could be explained by 

relevant environmental factors and different genotypic trait structures for differential trait 

selection strategies in future.  

5.3 Materials and methods 

5.3.1 The MET dataset 

The dataset used for this study comprised advanced plant breeding selection trials established 

between 1999 and 2006 at six locations (B1, B2, B3, S1, S2, and S3) in the midlands region. 

Each year, a set of 32 to 41 promising sugarcane genotypes that had progressed through the 

selection stages were tested in a MET, together with three to six commercial checks. Trials 

established in each planting year (series) were harvested as plant, first and second ratoon 

crops. However, some trials were not harvested across all ratoons. The genotype x trial 

dataset was balanced within a series, but unbalanced across different series (except for 

common control genotypes). In this analysis, the trial series are named according to the year 

of planting i.e. 1999, 2000, 2001, 2002, 2003, 2004, 2005 and 2006. Trials were harvested 

between April and December and varied in harvest age between 12 and 24 months. The trials 

were planted as randomized complete-block designs with three to four replicates. 

Experimental units comprised five sugarcane rows that were 10 m long, and spaced 1 m 

apart. At each harvest event, three net rows were hand-harvested and weighed using a digital 

scale mounted on a tractor operated hydraulic boom, and used to determine cane yield 

(TCANE) in ton/ha. A 12-stalk sample was taken from each plot to determine individual stalk 

mass (STKMS) and a range of milling characteristics, including estimated recoverable crystal 

(ERC), dry matter (DM), and fibre (FIB) percentages. The TERC was calculated as a product 

of TCANE and ERC. Other important traits measured at harvest included stalk population 
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(POP) in stalks/ha and stalk diameter (DIAM) in mm. Visual ratings (1 to 9) of lodging 

(LOD), canopy formation (CAN) and stalk bending (SKEW) were also  done in each trial at 

appropriate growth stages.  

For each trial in the dataset, stable site characteristics were determined through soil profile 

analyses and conventional soil sampling procedures to develop five site covariates. Apart 

from the stable site covariates, seven other covariates that varied seasonally with each ratoon 

(hence termed seasonal covariates) were also determined.  The descriptions of the site and 

seasonal covariates are given in Chapter 4. The water stress index (WSI) in this study was 

calculated as a ratio of simulated rainfed evapotranspiration to simulated irrigated 

evapotranspiration.  Further details of the covariates, together with their means and ranges are 

indicated in Table 5.1. 

Table 5.1 Descriptions of seven seasonal and five site covariates measured over 57 trials 

and 119 environments (trial x ratoon combinations) 

Covariate Description Mean Range 

    

 

Seasonal covariates  

TT 
Thermal time in heat units using a base temperature of 10°C (Heat 

units/day) 
8.05 7.10-9.36 

RAD Average daily solar radiation  (MJ/m
2
/sec/day) 16.39 14.34-17.58 

RAIN Average daily rainfall  (mm/day) 2.16 1.22-3.24 

EVP Average daily A-pan evaporation (mm/day)  3.85 2.93-5.64 

WSI 
Water stress index. Simulated  rainfed evapotranspiration  vs. simulated 

irrigated evapotranspiration  
0.49 0.26-0.71 

AGE Age at harvest (months) 21.18 7.39-28.19 

TOH Time of harvest (1-9). Coded as month 1 (April) to month 9 (December) 3.58 1-9 

 

Site covariates  

ERD Estimated rooting depth (cm) 62.53 35-91 

Clay Clay percentage (%) 19.54 6 - 44 

OM Organic matter percentage (%) 2.46 0.79-6.57 

Ncat Nitrogen mineralization category (1-4) N/A N/A 

TAM Total available moisture (mm) 60.43 23.44-104.34 

 

5.3.2 Empirical analysis of G x E interactions 

A trial x ratoon combination was considered an environment. Within each series, the two-

way array of genotype x environment TERC means (derived from restricted maximum 
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likelihood analysis) was analyzed using GGE biplot software (Yan, 2001). A detailed 

description of this software is given in Chapter 3. In this study, the polygon viewing option 

was used to investigate the ME constitution of the midlands.  In this view, a polygon is drawn 

by connecting genotypes that are located furthest away from the biplot origin. These vertex 

genotypes were the most responsive i.e. they were either the best or poorest performers in 

some or all of the environments. A perpendicular line is drawn from each side of the polygon 

through the biplot origin such that the biplot is divided into sectors. The vertex genotype in 

each sector is the best genotype in all environments whose markers fall within that sector. 

Environments within the same sector share the same winning genotype, and environments in 

different sectors have different winning genotypes. Thus, the polygon view indicates the 

presence or absence of crossover G x E interaction, and is suggestive of the existence or 

absence of different mega-environments among the test sites (Yan and Rajcan, 2002). In 

addition to selection trials, post-release evaluation trials conducted on co-operator farms 

during the period 1999 to 2006 were also analyzed. These trials contained a subset of six 

commercial genotypes that were also routinely used as controls in the selection trials. The 

data from these trials were subsequently combined with the selection trial dataset, using only 

the six commercial genotypes. This allowed for a combined biplot analysis of the selection 

and post-release trials across trial series, to evaluate the overall ME constitution of the 

midlands region. 

5.3.3 Interpretation of G x E interactions 

The approach used to interpret the G x E interactions was to create genotype sets and 

environment groups based on phenotypic trait similarities and G x E patterns, respectively. 

Differential genotype-set responses were then interpreted in terms of environmental 

characteristics associated with each environment group. The environment groups were 

formed by applying pattern analysis methodology (DeLacy et al., 1996) to the combined 

selection and post-release trial dataset that contained the subset of six commercial genotypes, 

as described above. The G x E matrix of TERC means was subjected to GGE biplot analysis, 

and cluster analysis was performed on the first four PC environment scores that were derived. 

The cluster analysis employed hierarchical agglomerative clustering with squared Euclidean 

distance as the dissimilarity measure and average linkage as the fusion criterion, as 

implemented in Genstat 12.0 (Anonymous, 2009). The classifications were portrayed by a 

dendrogram, and resulted in the production of six environment groups. The average covariate 

values within each group were then compared to each other to determine if the environmental 
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groupings determined from G x E patterns could be explained by differences in 

environmental factors. 

The genotype sets were formed by fitting the following random model for each measured trait 

across all trial series: 

Yijkl = µ + Tj + B(T)l(j) + Gi + GTij + GB(T)il(j) + Rk + RTjk + RB(T)kl(j) + RGik + RGTijk + e 

where Yijkl is the observation l of genotype i in ratoon k of trial j, µ is the grand mean, Tj is the 

trial main effect, B(T)l(j) is the effect of block within trial,  Gi is the genotype main effect, 

GTij is the effect of the genotype x trial interaction, GB(T)il(j) is the effect of genotype x block 

(within trial), Rk is the main effect of ratoon, RTjk  is the effect of the ratoon x trial 

interaction, RB(T)kl(j)  is the effect of the ratoon x block (within trial) interaction,  RGik is the 

effect of the ratoon x genotype interaction, RGTijk  is the effect of the genotype x trial x 

ratoon interaction, and e is the error. Restricted maximum likelihood (Patterson and 

Thompson, 1971) using the sparse average information algorithm (Gilmour et al., 1995) was 

used, as implemented in GenStat 12.0 (Anonymous, 2009).  The associations among the trait 

best linear unbiased predictors (BLUPS) were examined through PCA and cluster analysis. 

Because of the different measurement scales, the data for the 11 traits were trait-standardized 

by subtracting the mean and dividing by the standard deviation prior to PCA and clustering. 

The genotype sets were formed through cluster analysis based on the first four PC scores 

(Gowda et al., 2011), which resulted in the formation of five sets portrayed by a dendrogram. 

The trait relations among the genotype sets were then examined within environment groups 

using PCA to determine if trait relations remained constant across groups.   

5.4 Results 

5.4.1 Empirical approach 

5.4.1.1 G x E interactions within series 

The GGE biplots for each series (1999 to 2006) are shown in Figure 5.1. Depending on the 

trial series, the biplots explained between 76.9 and 89.5% of the variation attributable to 

genotype and the G x E interaction, respectively. In general, ratoons of the same trial 

clustered tightly first, before clustering with other trials. Therefore, to assist with biplot 

interpretations, the genotypic yields were averaged across ratoons in each trial. None of the 

sites consistently responded as a distinct ME across all series. The 2000, 2001, 2002, 2003, 

2004, and 2005 series biplots showed sites separating into two distinct MEs, which did not 
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necessarily separate according to the B and S selection programs.  In fact, the B and S sites 

frequently grouped into the same MEs, except in the 2004 series, where the two MEs were 

represented by all B and S sites, respectively. The 1999 series showed most sites falling into 

one ME with the same winning genotype (N44).   However, this pattern was not repeated in 

other series.  

Site S1 only formed a unique ME in the 2000 series, but otherwise clustered tightly with 

other sites in the rest of the biplots. Sites S2 and S3 showed a similar response, forming 

unique MEs in the 2005 and 2006 series, respectively, but clustering with other sites in the 

rest of the biplots. Of the three S sites, S2 generally showed greater separation from the other 

S and B sites across the different series, particularly in 1999, 2002, 2003, 2004, and 2005. In 

general, S2 was located further away from the B sites than S1 and S3, suggesting that it was 

more effective than S1 and S3 at discriminating genotypes between sandy and humic soils. 

Site S1 grouped together with S2 and/or S3 in four out of eight series, while sites S2 and S3 

grouped together in six out of eight series. This suggests that S2 and S3 are very similar in 

their ability to discriminate genotype performance and that one of these sites may in fact be 

redundant. There was frequent correlation between sites S3 and B2, which either fell in the 

same ME (1999, 2000, 2001, 2003, 2005) or were in very close proximity to each other 

(2002, 2004, 2006). This implies that site S3 could be dropped from the selection program 

without much loss of information.  This is supported by the fact that S3 did not produce a 

unique response in seven out of eight series, it clustered frequently with site S2, and showed 

frequent similarity with B2 in genotype discrimination.  
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Figure 5.1   GGE biplots for estimated recoverable crystal yield from plant breeding 

trials established in the 1999-2006 series.  Genotypes are depicted by “+” and trial sites 

are shown in bold red font  

In general, the B sites did not show frequent separations from the S sites, and except for the 

2004 series, frequently fell within the same ME as some of the S sites.  Of the three B sites, 

site B1 generally showed greater separation from the other B and S sites across the different 

series, particularly in 1999, 2000, 2001, 2003, and 2004. Sites B1 and B2 fell into the same 

MEs in four out of eight series and fell into different MEs in the other four series. Although 

site B3 was only tested in four series, it always grouped with either B1 or B2, and never 

formed a unique ME. This suggests that B3 may in fact be another redundant site, which 

could be removed from the program without much loss of information, as it does not provide 

any unique information on genotype performance.  

5.4.1.2 G x E interactions across series 

The GGE biplot based on the subset of six commercial genotypes common across all series 

and post-release evaluation trials (highlighted in bold font), which were averaged across 

ratoons, showed that the midlands region can be represented by four ME’s (Figure 5.2). This 

biplot showed major overlap between the S and B sites, particularly in the sectors defined by 

genotypes N44 and N31. Trials F1, F2 and F3, which were post-release trials aimed at 

identifying genotypes suited to frost pockets, clustered together, forming a unique ME. 

Consequently, future restructuring of the MET network should consider including these as 

permanent sites for testing. There was no clear or consistent separation of the S and B sites 

(which is in keeping with the within-series analysis), however, the majority of the S sites 
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clustered in the N44 and N31 sectors, while a considerable number of the B sites grouped 

together in the N16 sector. A post-release evaluation trial conducted in the midlands south 

region (represented by E1), grouped with a number of B environments in the N16 sector, 

suggesting that this site may not provide further information on variety performances.  

In series 1999, 2000, 2001 and 2006, sites S2 and S3 grouped into the N44 sector, while in 

series 2002, 2003, 2004, and 2005 sites S2 and S3 grouped into the N31 sector (Figure 5.2). 

This suggests that sites S2 and S3 showed the same switch in winning genotypes when 

environmental conditions (seasons) changed from one series to the next, and when genotypes 

changed from one series to the next. This once again highlights the similarities between these 

two sites which were observed in the within-series analysis, further confirming the site 

redundancy.  Sites B2 and S3 grouped together in the N44 ME in series 1999, 2001 and 2006, 

and also grouped together in the N31 ME in series 2002 and 2003. This is also in agreement 

with the within-series analysis, which suggested that site S3 could be dropped without much 

loss of information. Additionally, the trials in the biplot did not cluster according to the series 

within which they were planted, suggesting that the effects of season (trials planted in the 

same series would be subjected to the same seasons) was not as pronounced as the site 

differences. In general, this biplot depicted the large changes in temporal and spatial 

environmental conditions across the trial network, which needed to be investigated more 

intensively.  
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Figure 5.2 GGE biplot for estimated recoverable crystal (ERC) yield from plant 

breeding trials established from 1999-2006 across all planting series. The genotypes are 

depicted by “+” and the trial sites are shown in red font. The trial sites are depicted by 

S1, S2, S3, B1, B2, and B3, and are preceded by the corresponding series year (9=1999, 

0=2000, 1=2001, 2=2002 etc.). Post-release evaluation trials are highlighted in bold black 

font 

 

5.4.2 Analytical approach 

5.4.2.1 Site soil differences 

Figure 5.3 represents the average ERD, Clay %, Ncat and OM % of the six selection sites. 

Site B1 was characterized by fields with higher ERD and Clay % than most of the other sites. 

Sites B1 and B3 were characterized by similar clay % and NCat, however, B3 showed 

significantly higher OM % than all sites. The ERD of B2 was not significantly different from 

B3, however, B2 did show significantly lower levels of Clay %, Ncat and OM% than the 

other B sites.  Site S2 was characterized by the lowest ERD, Clay %, Ncat, and OM% of all 

sites.  Sites B2 and S3 showed no significant differences in any of the parameters measured. 
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Sites B1 and S1 (the SASRI selection farms) were contrasting in the measured parameters, 

suggesting that the soil characteristics on these farms are indeed different.   

 

 

 

 

 

 

 

Figure 5.3 Average estimated rooting depth (ERD) and clay percentage (a), and 

nitrogen mineralization category and organic matter percentage (b) for fields at 

different selection sites in the midlands region. The number of fields used for trials at 

each site are indicated in parentheses. Significant differences (P<0.05) are depicted by 

error bars  

 

5.4.2.2 Genotype sets 

The clustering of all 223 genotypes derived from PCA of the trait BLUPs resulted in five 

genotype sets (dendrograms not shown).  In some trials, commercial genotypes were 

duplicated as treatments, and these duplications were detected by the cluster analysis. For 

example, genotypes N16, N16a, and N16b clustered together in set A; N37, N37a, and N37b 

clustered in set B; N31, N31a and N31b clustered in set D; and NCo376, NCo376a, and 

NCo376b clustered in set E. Despite the duplicates being treated as different varieties in all 

analyses, the cluster analysis grouped them together appropriately, adding confidence to the 

clustering strategy used. Based on the mean trait values for each set (Table 5.2) it was 

deduced that set D was characterized mainly by genotypes with poor quality (ERC), high 

TCANE and FIB, and that typically produced a sparse canopy, but a high population of 

thinner, lighter stalks that were prone to stalk bending and lodging.  Characteristics of 

genotypes in set B were generally contrasting to those of set D. Genotypes in sets A and E 

were generally characterized by moderate to low cane yields with quality characteristics 
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slightly better than set D genotypes. These genotypes formed denser canopies and produced 

lower populations of thicker, heavier stalks. Set C genotypes were characterized by 

contrasting traits to those in sets A and E.  

Table 5.2  Mean values for cane yield (TCANE), estimated recoverable crystal percentage 

(ERC), dry matter percent (DM), fibre percent (FIB), stalk diameter (DIAM), stalk population 

(POP), stalk mass (STKMS), canopy rating (CAN), skewness rating (SKEW), and lodge rating 

(LOD) of five genotype sets identified by cluster analysis 

Genotype 

sets 

TCANE 

(t /ha) 

ERC 

(%) 

DM 

(%) 

FIB 

(%) 

DIAM 

(mm) 

POP 

(stalks/ha) 

STKMS 

(grams) 

CAN 

(1-9) 

SKEW 

(1-9) 

LOD  

(1-9) 

A 92.68
a*

 13.09
b
 28.29

b
 12.88

c
 6.59

a
 93180

c
 830.33

a
 2.75

b
 3.77

c
 4.31

b
 

B 86.37
b
 13.66

a
 28.65

a
 12.78

c
 6.01

b
 94138

bc
 703.97

c
 2.72

b
 3.75

c
 4.27

b
 

C 85.59
b
 12.89

c
 28.65

a
 13.36

b
 5.53

d
 96115

b
 646.77

c
 2.73

b
 4.04

b
 4.68

a
 

D 101.46
a
 12.47

d
 28.55

a
 13.67

a
 5.82

c
 98636

a
 775.16

b
 2.63

c
 4.19

a
 4.63

a
 

E 84.86
b
 12.75

c
 28.29

b
 13.09

c
 6.45

a
 88994

d
 777.97

b
 3.01

a
 3.55

d
 4.13

c
 

*Values with common letters within columns are not significantly different (P<0.05) 

 

5.4.2.3 Environment groups 

The clustering of environments based on the first four PC scores of the G x E matrix across 

all series resulted in six environment-groups (dendrogram not shown). In general, ratoons of 

the same trial grouped together first, before grouping with other trials. There was no clear 

separation between the B and S sites in grouping, however, groups 1, 2, and 3 were 

dominated by B environments while groups 4, 5, and 6 were dominated by S environments. 

All environments from post-release trials conducted in frost pockets clustered together in 

group 2, adding confidence to the clustering strategy used.   

Table 5.3 represents the mean values of environment covariates, as well as the average 

TCANE for each group. In general, it was found that there were no significant differences 

between groups in TT.  Group 4 was the lowest yielding and also had the lowest WSI values. 

Examination of the groups revealed that environments in group 4 were typically plant crops 

that were usually established in November and harvested at approximately 20 months of age 

(average AGE was 20.6 months)  around July (average TOH was 3.8) the following year. 

Group 4 environments were therefore subjected to one summer cycle only before being 

harvested in the second winter cycle. This may be the primary reason for the greater levels of 

stress (low average WSI) associated with group 4. Group 2, which consisted mainly of 
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environments in frost pockets, were characterized by low AGE, lower RAD, and similar EVP 

compared with the other groups. Despite trials being harvested much younger, environments 

in group 2 still produced above average yields. This may be attributed to the large proportion 

of high yielding, fast growing genotypes that are typically included in frost trials to maximize 

growth in relatively shorter growing periods. Group 2 also showed above average WSI. This 

may be due to the fact that most of the frost trials are conducted in valley bottom sites (where 

frost is most common), which are normally characterized by deeper soils that have higher 

water retention characteristics.  Group 3 environments, harvested at above average AGE, 

showed the lowest EVP, highest RAIN and WSI, and produced the highest average yields 

compared with the other groups.  Group 3 primarily comprised environments from the B 

sites, which were characterized by more favourable soils (Figure 5.3). This allowed the high 

rainfall to be effectively captured, resulting in lower moisture stress and higher yields. 

Groups 1 and 6 had similar EVP, RAD, and WSI, however, they differed slightly in RAIN 

and AGE. Group 5 environments were slightly warmer than the other groups, with high EVP 

and RAD, which translated into greater moisture stress (low WSI values).  

Table 5.3 Average daily values for thermal time (TT), evaporation (EVP), radiation (RAD), 

rainfall (RAIN), water stress index (WSI), age at harvest (AGE), time of harvest (TOH) and 

cane yield (TCANE) of six environment groups identified through cluster analysis  

Environment 

group 

TT 

(°C days) 

EVP 

(mm/day) 

RAD 

(MJ/m
2
/sec/day) 

RAIN 

(mm/day) 

WSI 

(0-1) 

AGE 

(months) 

TOH 

(1-9) 

TCANE 

(t/ha) 

1 8.03
a*

 3.95
a
 16.78

a
 2.05

a
 0.49

a
 22.41

a
 3.55

ab
 89

b
 

2 8.00
a
 3.93

a
 15.80

b
 2.13

a
 0.49

a
 17.03

b
 3.67

a
 90

b
 

3 8.07
a
 3.67

b
 16.09

b
 2.21

a
 0.51

a
 22.21

ab
 3.48

b
 115.1

a
 

4 8.06
a
 3.77

ab
 16.20

ab
 2.15

a
 0.45

b
 20.6

b
 3.80

a
 76.9

b
 

5 8.16
a
 3.96

a
 16.72

a
 2.17

a
 0.47

b
 21.81

ab
 3.82

a
 88.1

b
 

6 8.02
a
 3.92

a
 16.69

a
 2.21

a
 0.49

a
 22.05

ab
 3.32

b
 82.3

b
 

*Values with common letters within columns are not significantly different (P<0.05) 

 

5.4.2.4 Trait relations within environment groups 

In general, the trait relations among the genotype sets were fairly consistent across the six 

environment groups (Figure 5.4).  For each environment-group, there was strong association 

between DIAM, CAN, and STKMS, which appeared to be strong characteristics of genotype 

sets A and E.  However, these relationships were weaker in environment group 5 (Figure 

5.4e).  The above traits were generally negatively correlated with DM, POP and FIB, which 
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were associated with genotype sets D and C across all environment groups. The SKEW and 

LOD were always positively correlated to each other and both these traits were negatively 

associated with CAN and DIAM across all environment groups. The ERC was negatively 

correlated with TCANE in all groups except environment group 4 (Figure 5.4d), where it was 

correlated with TCANE, TERC, LOD, SKEW, and STKMS.  Environment group 4 was the 

lowest yielding and most stressed (low TCANE and WSI) group, and under these conditions, 

the relationship between ERC and TERC was stronger compared with other groups, where 

the overriding effect of TCANE on TERC was more apparent. Genotype set B was 

characterized by high ERC, irrespective of the environment group. Genotype set D was 

characterized by high TCANE and TERC in environment groups 1 (Figure 5.4a), 2 (Figure 

5.4b), 3 (Figure 5.4c), and 5 (Figure 5.4e), but this relationship was weaker for groups 4 

(Figure 5.4d) and 6 (Figure 5.4f).  The TCANE was always correlated with POP and 

STKMS, even though the latter two traits were always negatively correlated with each other.  

However, in environment group 6 (Figure 5.4f), STKMS showed a stronger correlation with 

TCANE than POP, suggesting that in such environments (early harvest, high rainfall, no 

moisture stress, high radiation, and moderate evaporation), TCANE is influenced more by 

STKMS than by POP. The negative correlation between ERC and FIB was consistent across 

all groups, while in group 6 ERC was not correlated with any other trait. The positive 

correlation between FIB and TCANE was not evident in environment group 4 (Figure 5.4d), 

suggesting that this relationship may not be strong in low yielding environments.  The trait 

relations in environment group 2 (i.e. consisting of trials in frost pockets) did not differ 

markedly from the other groups, suggesting that there may be limited opportunity for 

differential trait selection strategies for such scenarios in the midlands region.  
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Figure 5.4 Trait relations among five genotype-sets across six environment-groups 

identified through cluster analysis.  The genotype-sets are represented by red points on 

the biplots, while the traits are represented by arrows. The biplots represent 

environment-groups 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) that were identified from 

cluster analysis. TCANE=cane yield, ERC=estimated recoverable crystal percentage, 

TERC=ERC yield, DM=dry matter percentage, FIB=fibre percentage, DIAM=stalk 

diameter, POP=stalk population, STKMS=stalk mass, LOD=lodging, CAN=canopy 

formation, and SKEW=stalk skewness  
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5.5 Discussion 

The results of the GGE biplot analysis showed that none of the selection sites consistently 

formed a single ME across all series.  All sites were generally correlated with each other to 

varying degrees in each series, with occasional separation into two MEs. However, such 

separation of the sites into two MEs was also inconsistent in which sites fell into which ME.  

These responses suggest that the selection sites in the midlands region represent a single, 

complex ME with frequent crossover G x E interaction between sites. Similar conclusions 

were made by Yan and Rajcan (2002), who used GGE biplot analysis and concluded that 

there was not enough evidence to suggest that an Ontario soybean sub-region could be 

separated into different MEs. The overall lack of consistency in the ME constitution across 

the different series may be caused by changes in the genotypes tested in each series, 

variations in age, TOH, planting and ratooning dates across series, and changes in 

experimental fields used for trials in each series. Such factors may impact on the consistency 

of correlations between the trial sites, thereby impacting on ME identification. However, 

despite this, the analysis still revealed some consistent correlations, which allowed for 

definitive recommendations on future network design. This includes the redundancy of site 

S3, which did not produce a unique response in most series, and clustered frequently with 

sites S2 and B2 in the biplots. It is therefore recommended that site S3 be removed from the 

network in favour of a more diverse site. Such a site should preferably be within a different 

geographic zone e.g. the midlands south region of the industry. The practical and logistical 

implication of such a change will have to be considered by breeders. Additionally, the 

similarity of site B3 to both B1 and B2 suggests that the relevance of this site to the trial 

network be re-evaluated after a few more series (B3 was only evaluated across four series in 

this study).    

The four MEs identified in the across-series analysis must be interpreted with caution, as the 

analysis only comprised six commercial genotypes. Nevertheless, the interpretations were in 

agreement with the within-series analysis e.g. the redundancy of site S3 and its similarity 

with site B2. The across-series analysis also suggested the existence of a ME made up of sites 

in frost pockets in the midlands. Frost-prone areas in the midlands currently represent 

approximately 15% of the area, and genotypes suited to this production scenario are usually 

identified through post-release evaluation trials. The scenario involves planting fast growing, 

high ERC genotypes that can accumulate acceptable TCANE in 12 months, despite cool 

temperatures. With many growers requesting such genotypes for the midlands in recent times, 
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it may be worthwhile considering a selection site dedicated to the shorter cutting cycle. Such 

an initiative may also be seen as a pro-active approach toward mitigating climate change, as 

temperatures are expected to increase in the midlands moving into the future. The removal of 

site S3 in favour of a site in a frost prone area is therefore recommended.  

Site S2 generally showed greater discriminating ability than the other S sites, as it was 

located further away from the other S and B sites on the biplots. The ability of S2 to 

discriminate genotypic performance may be related to the poor soil characteristics associated 

with this site (Figure 5.3), suggesting that it is an appropriate low potential site that should 

remain in the network. Additionally, sites S3 and B2 did not differ significantly in ERD, 

Clay% and Ncat (Figure 5.3). This may be one of the reasons for the frequent similarity 

between these sites in genotypic performance observed in the GGE biplots. Furthermore, sites 

S3 and B2 are geographically close, suggesting that they would be exposed to similar 

climatic influences. Despite the high OM% associated with site B3, this site did not produce 

differential genotype performance, as B3 frequently grouped with B1 and B2 in the biplots.  

This shows that OM% may not be as influential as Clay% and ERD in defining the 

discriminating ability of the site. The above interpretations show that differential site 

groupings identified through an empirical G x E analysis could be explained to a certain 

extent by differences in trial site characteristics. Limited studies have attempted to link G x E 

patterns to actual site differences, and such an approach adds confidence to any 

recommendations for network redesign that may be required.  

The genotype sets that were identified through cluster analysis showed that set D consisted 

primarily of genotypes where typical Saccharum spontaneum traits were more evident, while 

sets A and E consisted of genotypes where typical Saccharum officinarum traits were more 

evident.   Sets B and C may have represented genotypes where traits of the two types were 

combined. The trait relations observed were generally in keeping with known sugarcane trait 

associations (Kang et al., 1989). These trait relations varied only slightly from one 

environment group to another, suggesting that the differences between the environment 

groups were not sufficient to have major influences on trait relations. The narrow trait 

variations could also reflect the stability of trait expression as well as the narrow trait 

variation in the population of varieties in the study. Indeed, the grouping of the test sites into 

a single ME in many of the biplots is testament to their similarity. Even within environment 

group 2 (which consisted of trials in frost pockets) there did not appear to be any major 

deviation from the trait relations, suggesting that differential trait selection strategies for 
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variable conditions in the midlands may not be very successful. However, the trait analysis 

did provide insights that will assist in future selection. For example, the strong, consistent 

correlations between SKEW and LOD, CAN and DIAM, and FIB and POP suggest that there 

may be duplication in efforts in measuring all these traits. Resources may be better allocated 

for other trait measurements that are not routinely included in the current protocols. 

Additionally, the consistent trait correlations mentioned above also suggest that there may be 

an opportunity for indirect selection using traits that are easier to measure.  

The approach in this study was to use genotype sets and environment groups (both derived 

from pattern analysis) to aid in the interpretation of complex G x E interactions. The fact that 

the groups identified from G x E patterns showed differences in covariate parameters 

suggests that the G x E patterns may have been attributable to those covariate differences. 

However, such differences in the covariates were not explicit enough to allow for the 

formulation of recommendation domains for the midlands region, and in general, it was 

difficult to find commonalities between the two grouping approaches used (G x E grouping 

and covariate grouping). The lack of explicit differences in covariates between the 

environment groups may be because of the lack of diversity between the environments tested 

in the study or the limited diversity in genotypes in the study. In general, the midlands region 

is fairly uniform in soil and climatic factors compared with other regions (coast and 

hinterland) in the South African sugar industry. Therefore, the approach may be more useful 

when environments sampled from the complete target population of environments for the 

industry are analyzed. Additionally, the use of daily averages may not have been the most 

appropriate scale for the covariates, especially considering that the average ratoon length 

studied was approximately 24 months. The averaging of data across this two-year cycle 

would have effectively nullified any intermittent periods of extreme climatic variability that 

may have affected G x E patterns.  Future studies should therefore summarize covariate 

values within growth phases to identify such effects.  

5.6 Conclusions 

This study was the first to investigate the similarities between selection sites in the midlands 

region in the way they discriminate between genotypic performance. In addition to 

identifying a redundant site (S3) that should be relocated, as well as flagging another site 

(B3) for possible redundancy, this study has shown that an analytical approach to the G x E 

study allowed for comprehensive interpretations of the G x E interactions. A simple 
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characterization of soil factors gave confidence to site similarities suggested by the traditional 

empirical G x E analysis. A further characterization of environments in relation to covariates 

helped explain specific similarities/differences between environments. The grouping 

approach used, although aimed at simplifying interpretations, still required some in-depth 

scrutiny of patterns. However, coupled with adequate local knowledge of the cropping 

systems in the region, this method allowed for sensible and realistic interpretations of the G x 

E patterns. Future studies will apply this approach to more diverse datasets across all regions 

of the sugar industry. Other studies of sugarcane G x E interactions can use the approaches 

and principles demonstrated here to enhance the value of METs for the purposes of 

understanding and exploiting G x E interactions.  
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CHAPTER 6 

A GROWTH PHASE APPROACH TO INTERPRET SUGARCANE 

GENOTYPE X ENVIRONMENT INTERACTIONS: INVESTIGATING 

TIME OF HARVEST EFFECTS
4,5

 

6.1 Abstract 

 

Environmental conditions during specific growth phases of sugarcane may be a determinant 

of complex G x E interactions. The objective of this study was to employ multivariate 

analysis techniques to evaluate the appropriateness of a growth phase approach to analyze 

sugarcane cultivar x time of harvest (TOH) interactions, and to assess the feasibility of these 

methods being applied to complex G x E datasets in future. Two field trials consisting of the 

same set of seven commercial cultivars were established on adjacent fields and harvested 

either early (April/May) or late (October/November) in the season for six ratoons. Climatic 

data were summarized within individual growth phases (establishment, elongation, and 

ripening) and used to create environmental covariates for thermal time (TT), rainfall (RAIN), 

radiation (RAD), and a water stress index (WSI). Additive main effects and multiplicative 

interaction (AMMI) analysis, principal components analysis (PCA), factorial regression, and 

covariate-effect biplot analysis were used to analyse and interpret the G x E interaction for 

TERC, TCANE, and ERC.   

The G x E interactions were significant (p<0.001) for all three variables. The AMMI biplots 

showed distinct separations between environments, and characterized cultivars according to 

their adaptability to early (NCo376, N36, N35, N29) and late (N27, N19, N17) harvesting. 

The PCA and factorial regression identified RAD and TT as significant environmental 

covariates affecting TOH, while WSI and RAIN had insignificant effects. The effects on G x 

E interactions were greatest when these covariates varied within the stalk elongation phase. 

The covariate-effect biplot identified correlations between plant population and early 

                                                           
4
Ramburan, S., 2011. Sugarcane cultivar x time of harvest interactions in South Africa. South African Journal of Plant and 

Soil 28, 75-84.
  

5
Ramburan, S., 2011. Interpreting sugarcane varietal adaptability to time of harvest. Proceedings of the South African Sugar 

Technologists Association 84, 375-388. 
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harvests, while stalk mass was correlated to late harvests. These findings showed that a 

growth phase approach coupled with various multivariate methods is appropriate for 

comprehensive analyses of sugarcane G x E interactions.  Future studies will apply these 

concepts to larger G x E datasets.  

6.2 Introduction 

 

The shortcomings of using environmental covariates averaged across a cropping season to 

characterize METs were highlighted in the previous two studies (Chapters 4 and 5). Although 

providing valuable information on the relative effects of covariates on G x E interactions, this 

method did not allow for more comprehensive interpretations that may have value beyond the 

realms of conventional G x E research. For example, a simple measurement of average 

rainfall at trial sites may help explain site differences and variable genotypic performance 

across sites. However, the value of this information to other disciplines such as crop 

physiology is limited if the distribution of rainfall and specific water stress events across the 

season cannot be captured from these observations. Most crop improvement programs (and 

other research disciplines) are under resource constraints, and the expansion of programs to 

include selection and evaluation under specific limiting biotic and abiotic factors is seldom 

feasible. Therefore, more effort must be invested in extracting greater value from METs, not 

just as tools for crop improvement, but also to inform other research disciplines. It is in this 

context that a growth phase approach to interpreting sugarcane G x E interactions is 

envisaged. This concept is investigated in this chapter using genotype x time of harvest 

(TOH) interactions observed in a cultivar evaluation trial.  

In the South African sugar industry, cane is harvested and milled over a nine-month period 

between April and December. The TOH refers to the period within a milling season when the 

crop is harvested, and this can be categorized into early (April-June), mid (July-September), 

and late (October-December) season (Ramburan et al., 2010). Cultivar x TOH interactions 

are known to exist, however, this receives less attention during selection due to resource 

constraints. The effects of cultivar x TOH interactions on sugarcane productivity have been 

investigated in isolated studies. Gilbert et al. (2006) demonstrated highly significant 

differences in TOH and significant G x E interactions in three case studies with sugarcane in 

Florida.  In Mauritius, Julien and Delaveau (1977) showed that dry matter partitioning in 

sugarcane was influenced to a greater extent by TOH than by location, while Nayamuth et al. 

(2005) proposed that genotypes could be classified into three distinct maturity groups (early, 
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mid, and late) based on their sucrose accumulation patterns.    In Australia, Di Bella et al. 

(2009) found significant cultivar x TOH interactions for cane and sugar yields in ratoon crops 

at multiple locations. Similarly, other examples of cultivar x TOH interactions in South 

Africa are available (Parfitt, 2000; Thomas & Parfitt, 2000; Donaldson et al., 2008; 

Ramburan et al., 2010). The previous studies in South Africa have focused on TOH effects in 

the irrigated northern regions, while no attempts have been made to evaluate the cultivar x 

TOH interactions in the southern rainfed regions, where the additional effects of water stress 

must also be considered.  

Studies on cultivar x TOH interactions have focused on cultivar characterization and have 

also acted as decision aids for the design of sugarcane breeding programmes (Gilbert et al., 

2006). Few dedicated attempts have been made to explain and interpret such interactions in 

relation to major environmental factors. Donaldson et al. (2008) found that early season crops 

intercepted lower fractions of incident radiation compared with late season crops in South 

Africa and also suggested that differences in biomass production between early and late 

harvests were due to lower radiation use efficiencies and premature ripening of late season 

crops. Singels et al. (2005b) reviewed biomass production of sugarcane in South Africa and 

also highlighted important temperature and radiation influences on TOH variability. These 

detailed studies explained TOH variability and interpreted cultivar adaptability to TOH by 

focusing largely on single factors and their influence on important crop development traits 

and biomass partitioning concepts used in crop modelling. The relative contributions of 

different environmental factors to the cultivar x TOH interaction, and their effects on 

commercial production have not been evaluated. Studies involving the interpretation of G x E 

interactions through use of environmental covariates (Vargas et al., 1999; Yan & Kang, 2003) 

could contribute to the understanding of TOH effects on commercial sugarcane production.   

Currently there is uncertainty about the adaptability of new commercial cultivars to TOH, and 

the reasons for production differences between early and late season harvests in rainfed 

regions in South Africa remain unclear. Because of limited selection for TOH and 

confounding effects of site, crop age, and season during selection, there is consequently a 

need for the objective characterization of commercial cultivars post-release. Additionally, 

information on the environmental drivers characterizing early and late season harvests and 

cultivar responses to these drivers will assist in understanding their physiological/genetic 

make-up and help direct future breeding efforts for TOH. Furthermore, little is known about 

the individual contribution of yield components to the cultivar x TOH interactions.  
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Multivariate analysis techniques have been commonly employed to interpret cultivar growth 

phase sensitivities to environmental factors in crops such as ryegrass (Van Eeuwijk & 

Elgersma, 1993), wheat (Voltas et al., 2005), barley (Voltas, et al., 1999), and pearl millet 

(Van Oosterom et al., 1996). Analysis of such cultivar sensitivities may identify specific 

growth phases (and environmental factors) responsible for production variability between 

early and late harvests of sugarcane in South Africa.  If successful, such multivariate methods 

could be extended to include more complex G x E datasets, where a large number of 

environmental covariates are summarized within growth phases to interpret G x E 

interactions.  The main objective of this study was to evaluate the appropriateness of a growth 

phase approach to analyze sugarcane cultivar x TOH interactions and assess the feasibility of 

these methods being applied to complex G x E datasets in future. A secondary objective was 

to characterize new commercial cultivars in relation to TOH adaptability, and investigate the 

relative effects of yield components to the cultivar x TOH interaction through the application 

of multivariate analysis techniques. 

6.3 Materials and methods 

 

6.3.1 Field trials and weather variables 

Two field trials were conducted on adjacent fields on a SASRI experimental farm (28°43’S, 

31°53’E, 102 m.a.s.l.) on the north coast of Kwa-Zulu Natal province, South Africa. The 

trials were established under rainfed conditions in randomized complete-block designs with 

six replicates and seven cultivars in 57.6 m
2
 plots (6 rows, 8 m long and 1.2 m row spacing).  

The treatments comprised new (N36, N35, N29, N27) and established (N19, N17, NCo376) 

cultivars, whose relative adaptabilities to different harvest times were unknown. One trial was 

established in November 2000 and harvested annually in the late season (October/November) 

for six  successive ratoons (regrowth after harvest), while the other trial was established in 

March 2001 and harvested annually in the early season (April/May) for the same duration. 

Both trials were established on a deep Hutton soil, with 41% clay and a total available 

moisture of 48 mm. Nutrient and weed management proceeded as required, according to 

routine soil analyses and weed dispositions, respectively.  

At each harvest, net cane plots of 38.4 m
2
 were cut and weighed using a mechanical grab 

apparatus attached to an electronic scale to determine TCANE. Plot samples of 12 stalks were 

taken from the trials at each harvest to determine a range of quality traits, the most important 

of which was ERC. The TERC was calculated as the product of ERC and TCANE.  Other 
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relevant cultivar traits determined at the plot level at each harvest included stalk population 

(POP) in stalks/ha, stalk mass (STKMS) in g/stalk, and stalk length (STKLTH) in cm. The 

POP was determined by counting the number of mature stalks per 8 m row and expressing 

that on a per hectare basis, STKMS was determined from the weight of a 12-stalk sample, 

while STKLTH was determined by measuring the length (from base to natural breaking 

point) of 20 stalks from each plot.  

Daily weather data from an on-farm weather station were recorded during each crop cycle. 

The average duration of three growth phases, namely crop establishment (1), stalk elongation 

(2), and ripening (3) were estimated from previous observations (unpublished data
6
), and the 

weather data within each phase were then summarized as environmental covariates.  These 

covariates included average daily rainfall (RAIN) in mm, average daily solar radiation (RAD) 

in MJ m
-2

 sec
-1

, thermal time (TT) in heat units (base 10°C), and a water stress index (WSI). 

The WSI was calculated by considering the total available moisture from soil depth and clay 

content. This information was fed into the Canesim crop growth model (Singels & 

Donaldson, 2000), which utilized climatic data from the weather station and estimated the 

actual evapotranspiration (EVTact) for each crop cycle. The model was also run for each crop 

cycle as if fully irrigated to estimate potential evapotranspiration (EVTpot) had there been 

irrigation.  The EVTpot represented unstressed crop growth and the WSI was calculated as the 

ratio of EVTact : EVTpot, where a high WSI represented no moisture stress, while values 

closer to zero represented higher levels of stress. Table 6.1 contains a summary of the daily 

averages for the environmental covariates for each crop cycle and illustrates how they 

originated. For example, RAIN1, RAIN2 and RAIN3 refer to average daily rainfall during 

establishment, elongation and ripening, respectively. Similar designations were used for the 

other covariates. Figure 6.1 contains the long-term mean temperatures, solar radiation, and 

rainfall for the trial site and illustrates the approximate harvest/ratoon times for the early and 

late trials.  

                                                           
6
 MA Smit, South African Sugarcane Research Institute, Mount Edgecombe, South Africa, 2010. 
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Table 6.1 Mean daily values of rainfall (mm) thermal time (Heat units), radiation (MJ/m
2
/sec), 

and water stress index (0-1), during three growth phases (establishment, elongation, ripening) of 

early and late harvests  

 

Covariate Environments 

  

Early harvests 

 

Late harvests 

  

E1 E2 E3 E4 E5 E6 

 

L1 L2 L3 L4 L5 L6 

Rainfall (mm) 

             

 

    Establishment (RAIN1) 1.44 1.27 1.03 1.16 1.71 3.20 

 

1.83 1.84 3.86 1.53 2.16 2.48 

 

    Elongation (RAIN2) 1.86 3.87 1.58 2.17 2.83 3.00 

 

1.83 1.84 1.35 1.83 3.29 3.57 

 

    Ripening (RAIN3) 1.94 3.85 2.24 4.12 2.51 2.18 

 

1.42 1.12 1.51 1.06 1.49 1.85 

               Thermal time (Heat units) 

             

 

    Establishment (TT1) 10.03 10.08 9.61 10.85 9.99 9.49 

 

14.48 14.46 14.90 15.33 14.10 14.71 

 

    Elongation (TT2) 14.13 14.37 15.91 14.41 14.94 14.04 

 

12.07 12.13 11.98 13.04 12.45 12.58 

 

    Ripening (TT3) 14.02 13.49 14.05 13.91 14.19 12.80 

 

10.40 10.33 9.53 10.76 10.20 9.73 

               Radiation (MJ m-2 sec-1) 

             

 

    Establishment (RAD1) 13.13 12.74 14.36 12.74 12.97 12.97 

 

19.59 19.58 20.35 21.11 18.92 21.19 

 

    Elongation (RAD2) 19.27 17.96 21.66 18.90 21.73 20.32 

 

14.29 14.36 14.77 15.50 15.12 15.05 

 

    Ripening (RAD3) 16.67 14.89 16.52 16.13 16.73 17.58 

 

14.34 13.34 14.93 12.37 13.19 13.77 

               Water stress index (0-1) 

             

 

    Establishment (WSI1) 0.45 0.39 0.61 0.02 0.70 0.80 

 

0.44 0.37 0.58 0.44 0.53 0.53 

 

    Elongation (WSI2) 0.09 0.36 0.24 0.002 0.31 0.42 

 

0.04 0.08 0.26 0.28 0.59 0.45 

 

    Ripening (WSI3) 0.06 0.82 0.37 0.002 0.40 0.55 

 

0.21 0.14 0.30 0.18 0.31 0.45 

 

 

 

 

 

 

 

Figure 6.1 Mean temperatures, solar radiation and rainfall for the trial site, with the 

approximate harvest windows for the early and late season trials 

Early harvests Late harvests 
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6.3.2 AMMI analyses 

A trial and ratoon combination was considered an environment, which resulted in a total of 

12 environments, designated E1 to E6 (early season) and L1 to L6 (late season). The G x E 

interaction for TCANE, ERC and TERC was analysed using the AMMI model, as described 

in previous chapters. For each of the relevant variables, AMMI2 biplots of interaction 

principal component axes (IPCA)1 and two scores for genotypes and environments were 

constructed to help visualize the TOH adaptability of cultivars and to determine if these 

responses were consistent across seasons. The AMMI2 biplot is commonly used in the 

analysis of METs and is derived from the singular value decomposition of the matrix of 

interaction residuals (Gauch, 1992). In these biplots, cultivars and environments are depicted 

as points in a two dimensional space and their coordinates are defined by their IPCA1 and 

IPCA2 scores. Here, cultivars and environments are represented by arrows and points, 

respectively. The distance from the origin of the biplot represents the amount of interaction 

that is exhibited by the respective cultivar or environment. The angles between two cultivar 

arrows correspond to their correlation. In general, acute angles represent positive correlations, 

right angles represent no correlation, and obtuse angles represent negative correlations 

(Voltas et al., 1999). Similar interpretations hold true for environments. The magnitude of 

interactions between cultivars and environments can be interpreted by their respective vector 

direction, where similar directions indicate positive interactions and vice versa (Gauch, 

1992).  

6.3.3 Interpretation of G x E interactions using environmental covariates 

In order to identify the most relevant environmental covariates and reveal possible co-

linearity, a preliminary PCA was conducted on the environment x covariate two-way table. 

This analysis helped visualize the relations and possible redundancies in the covariate dataset. 

The results of the PCA were further supplemented by the correlation of the AMMI IPCA1 

and IPCA2 environment scores with the environmental covariates (Van Eeuwijk and 

Elgersma, 1993). These techniques aided to limit the number of environmental covariates to 

the most relevant and provided candidates for inclusion in factorial regression analysis.  

The general form of a factorial regression model based on a two-way G x E table with 

concomitant environmental variables was described by model 7 in Chapter 2. Factorial 

regression can be used to describe the G x E interaction as differential sensitivity of 

genotypes to measured environmental variables (Voltas et al., 1999). After fitting the main 

effects of genotype and environment, associated variables on the levels of the environmental 
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factor can then be introduced into the model in a multiple regression approach. One of the 

advantages of factorial regression is that hypotheses about the influence of associated 

environmental variables on the G x E interaction can be statistically tested and viewed within 

an ANOVA table.   

6.3.4 Relationships among yield components 

In an attempt to explain the G x E interaction of TCANE relative to cultivar traits, a 

covariate-effect biplot was produced (Yan and Tinker, 2005). This biplot is produced through 

the singular value decomposition of a trait x environment two-way table of correlation 

coefficients between TCANE and the relevant trait in the relevant environment. A 

comprehensive description of this type of biplot is given by Yan and Tinker (2005). With this 

technique, the correlation coefficients were used as a measure of the effects of the 

explanatory traits (POP, STKMS, STKLTH) on TCANE, and this helped determine the 

extent to which TCANE was influenced by different traits at different harvest times. All 

statistical analyses were conducted using Genstat® Version 12.1 statistical software 

(Anonymous, 2009) and biplots were produced using Canoco® for Windows Version 4.51 

(Ter Braak and Smilauer, 2003).  

6.4 Results 

6.4.1 AMMI analysis 

The AMMI2 analysis of variance indicated that environments (E), genotypes (G), and the G x 

E interactions were highly significant (P<0.001) for all three variables (Table 6.2). The E 

accounted for the largest amount of variation, comprising 71, 61 and 64% of the total sums of 

squares (SS) for TCANE, ERC, and TERC, respectively. The SS for G was greater than the G 

x E SS for TCANE and ERC, while these two components had similar contributions to 

variation in TERC. Both the IPCA1 and IPCA2 axes were also significant for the three 

variables, and although explaining only a small proportion of the total SS, they did explain 

the majority of variation of the G x E interactions. For TCANE, IPCA1 and IPCA2 explained 

56 and 23% of the G x E interaction, respectively.  The relative proportions of the G x E 

interactions explained by IPCA1 (32%) and IPCA2 (28%) for ERC were more balanced, 

while 53 and 23% of the G x E interaction for TERC was explained by IPCA1 and IPCA2, 

respectively.  
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Table 6.2  AMMI2 analysis of variance for cane yield (TCANE), estimated recoverable crystal 

percentage (ERC) and tons ERC (TERC), including the first two interaction principal 

component analyses (IPCA) axes 

Source  df    SS  MS %SS
a
    SS  MS %SS    SS  MS %SS 

   

TCANE 

 

ERC 

 

TERC 

Total 503 

 

218310 434 

  

2086.8 4.15 

  

3611 7.18 

   Genotype (G) 6 

 

11674 1946** 5.3 

 

256.8 42.8** 12.3 

 

218 36.35** 6.0 

  Environment (E) 11 

 

154293 14027** 70.7 

 

1281 116.46** 61.4 

 

2307 209.74** 63.9 

  G X E 66 

 

10466 159** 4.8 

 

118.7 1.8** 5.7 

 

224 3.39** 6.2 

       IPCA 1 16 

 

5853 366** 2.7 

 

38.4 2.4** 1.8 

 

118 7.38** 3.3 

       IPCA 2 14 

 

2427 173** 1.1 

 

33.6 2.4** 1.6 

 

50 3.57* 1.4 

  Residuals 36 

 

2186 61 

  

46.7 1.3 

  

56 1.55 

   Error 360   29534 82     378.6 1.05     609 1.69   

*P≤0.05, **P≤0.01 

a 
% of total sums of squares for each term or interaction 

The AMMI means of each cultivar in each environment revealed that the  average TCANE of 

the early harvests were generally higher than the later harvests; however, the early TOH had 

greater variability as a whole (not shown). Cultivars that produced high TCANE in the early 

and late season were N36, N27 and N17. The late season harvest produced considerably 

higher ERC levels than the early season, with cultivars N29, N35, and N36 performing the 

best at both harvest times. Although TCANE was greater for early harvests, the higher ERC 

of the late harvests had an overriding effect on the final TERC, which was greater at the latter 

harvest time.  

The AMMI2 biplot for TCANE, which captured 79% of the total G x E interaction, revealed 

two distinct non-overlapping clusters for the early and late season harvests (Figure 6.2a). 

These groupings were spread more explicitly across IPCA1.  Cultivars N17, N19, and N36 

demonstrated clear adaptation to the late season harvest, while cultivars N27, N29, N35, and 

NCo376 interacted positively with the early season harvest.  The ERC biplot (Figure 6.2b) 

also showed TOH separation along the IPCA1 axis, however, significant spread was also 

observed along the second axis with no clear distinction between early and late harvests.  

Here, the varieties N29, N35, and N36, which are all characterized as high ERC varieties in 

the industry, were positively correlated with each other. For the TERC biplot (Figure 6.2c), 

the first two axes accounted for 75% of the G x E interaction and also showed distinct 

clustering of the early and late harvests along the IPCA1 axis. Cultivars N17, N19, and N27 
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showed similar responses to late season harvesting, while varieties NCo376, N29, N35, and 

N36 interacted positively with the early season.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 AMMI2 biplots for TCANE (a), ERC (b), and TERC (c). Varieties are represented 

by arrows while environments are represented by points. Early season harvests are represented 

by red circles and late season harvests are represented by blue squares. (The percentage of the 

interaction explained by the IPCA axes are indicated in parentheses in the axis titles)  

 

6.4.2 Identification and interpretation of environmental covariates 

6.4.2.1 PCA analysis 

The PCA of the environment x covariate two-way table helped identify covariates that had 

the greatest influence on TOH variability (Figure 6.3). The first two PCA axes for the 

environmental covariates accounted for 93% of the total variation, with most of the variation 

c 

a b 
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accounted for by the first axis (88%).  This suggests that the wide spread of covariates along 

the PC2 axis in Figure 6.3 is rather misleading when considering the total variation in the 

environment x covariate table. It also suggests that covariates spread along the PC1 axis have 

a greater effect on variability among the harvest times.  The TT1 and TT3 were negatively 

correlated (as indicated by the opposite directions of their vectors). This was expected, as 

high temperatures during establishment (TT1) of a late season crop is often accompanied by 

lower temperatures during ripening (TT3) of the crop the following winter.  The RAIN3 and 

WSI3, together with RAIN1 and WSI1 were highly correlated, as high rainfall often implies 

less water stress (hence high WSI values).  The RAD2, RAD3, TT2, and TT3 were all 

correlated, with RAD2 accounting for the greatest amount of variation (longest vector) 

thereby suggesting that it could be a representative of that group of covariates for subsequent 

analyses. Similarly, the PCA suggested that RAD1, RAIN3, and WSI1 could be used as the 

other candidate covariates for factorial regression.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3  Principal component biplot of the environment x covariate two-way table. 

Environmental covariates are in green and depicted by arrows. Early and late harvests 

are depicted as red circles and blue squares, respectively. (The percentage of variation 

explained by the PC axes are indicated in parentheses in the axis titles)   
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6.4.2.2 Correlations with IPCA scores 

The covariates analysed with PCA were also evaluated for significance through correlation 

with the environment IPCA1 and IPCA2 scores obtained from AMMI analysis (Van Eeuwijk 

& Elgersma, 1993). Table 6.3 contains the correlations between IPCA scores and 

environmental covariates for TCANE, ERC, and TERC.  Based on the clustering of early and 

late season environments according to IPCA scores in Figure 6.2a, and the correlations 

between the covariates and IPCA scores in Table 6.3, a number of biological interpretations 

can be made. For TCANE, the significant positive correlations with IPCA1 of RAD1 and 

TT1 suggest that early season harvests (low IPCA scores in Figure 6.2a) are characterized by 

lower average daily radiation and average daily heat units during the establishment phase. In 

contrast, late season harvests (high IPCA scores in Figure 6.2a) were characterized by higher 

levels of RAD1 and TT1. The significant negative correlations with IPCA1 of RAD2, RAD3, 

TT2 and TT3 can be interpreted in a similar way. Late season harvests (high IPCA scores) 

were characterized by lower average daily radiation and average daily heat units during the 

elongation and ripening phases, while early season harvests (low IPCA scores) were 

characterized by higher levels of these covariates.  These interpretations can be confirmed 

through examination of Figure 6.1, where it is shown that late season harvests encountered 

summer conditions during the early growth phases, while early season harvests experienced 

summer conditions during later phases of growth.  

On the basis of correlation analysis, it can be deduced that early season harvests generally 

show greater TCANE than late harvests because of more favourable radiation and 

temperature conditions during the elongation and ripening stages. In sugarcane, most yield 

accumulation occurs during the stalk elongation phase (Robertson et al., 1996); therefore, 

favourable conditions during this phase will result in greater exploitation and net gain in yield 

compared with favourable conditions during any other growth phase. It follows that late 

season harvests produce lower TCANE because of poor radiation and temperature conditions 

during elongation.   

The separation of environments along IPCA1 was not distinct for ERC (Figure 6.2b), with 

occasional overlap between early and late harvests being observed. In general, however, early 

season harvests had higher IPCA1 scores compared with late season harvests. An analysis of 

correlations (Table 6.3) suggested that late season harvests were characterized by lower 

RAD2, RAD3, TT2, and TT3 (significant positive correlations with IPCA1) compared with 

early harvests. The poor radiation and temperature conditions experienced during winter are 
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known to improve the ERC% of sugarcane in South Africa, and these results confirm these 

observations. Conversely, the early harvests were characterized by higher RAD2, RAD3, 

TT2, and TT3, which stimulated vegetative growth during summer, thereby utilizing stored 

sucrose and reducing ERC%.  

Correlations for TERC were similar to ERC, with significant negative correlations of IPCA1 

with RAD1 and TT1 and significant positive correlations with RAD2, RAD3, TT2, and TT3 

(Table 6.3). These interpretations correspond to explanations derived from the analyses of 

TCANE.  Early season harvests were characterized by higher RAD2, RAD3, TT2, and TT3 

compared with late harvests. However, the TERC of early harvests were generally lower than 

the late harvests (not shown), suggesting that ERC had a more dominant influence on TERC 

than TCANE. In addition, a significant positive correlation with RAIN3 was observed, 

suggesting that late season harvests (lower IPCA1 scores) were characterized by lower 

rainfall during ripening compared with early harvests (this can be confirmed from Figure 

6.3). Low moisture during ripening of late season harvests created water-deficit stresses, 

thereby stimulating the accumulation of sucrose and higher ERC% compared with early 

harvests.  

The spread of early season harvests along IPCA2 for TCANE and TERC suggests greater 

variability in water stress during ripening compared with the late season harvests, which 

tended to cluster more closely along IPCA2 (Figures 6.2a,b). For example, a comparison of 

environments E2 and E5, which were widely spaced along IPCA2 in Figure 6.2a, indicates 

that E2 had a WSI3 value of 0.82 (low water stress) compared with a value of 0.4 for 

environment E5. A similar interpretation can be made for environments E1 (WSI3 = 0.06) 

and E6 (WSI3 = 0.55) in Figure 6.2b. In general, these interpretations suggest that IPCA2 

captured the effects of water stress during ripening.  

6.4.2.3 Factorial regression 

For brevity, only the factorial regression analysis of TCANE is reported here. Based on the 

significance of correlations with IPCA scores, the magnitude of interaction accounted for 

from the PCA, and the levels of colinearity observed in the PCA, only a few relevant 

covariates were chosen for factorial regression analyses. Various combinations of these 

selected covariates were attempted in the factorial regression model to maximize the 

proportion of G x E explained. The model that accounted for the greatest amount of variation, 

with an acceptable number of covariates included the terms RAD2, TT1 and RAIN3 (Table 
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6.4). Still, of these covariates, only RAD2 was significant (P<0.001). Genotypic sensitivity 

analyses showed that cultivars N17, N19, and N36 showed positive responses to RAD2 

(radiation during stalk elongation), while cultivars N27, N29, N35, and NCo376 responded 

negatively (Table 6.5). A similar grouping of the cultivars can be observed in Figure 6.2a, 

suggesting that the differential responses of varieties to radiation during stalk elongation may 

be one of key factors influencing variability in time of harvest.   

Table 6.3  Correlation coefficients between radiation (RAD), rainfall (RAIN), thermal time (TT) 

and water stress index (WSI) during three growth phases (establishment (1), elongation (2), and 

ripening (3)) and IPCA1 and IPCA2 scores from AMMI analysis for cane yield (TCANE), 

estimated recoverable crystal percentage (ERC), and tons ERC (TERC) 

Covariate   IPCA1 

 

IPCA2 

 

 TCANE ERC TERC 

 

TCANE ERC TERC 

RAD1  0.83** -073** -0.87** 

 

-0.27ns -0.32ns -0.19ns 

RAD2  -0.84** 0.61* 0.82** 

 

0.12ns 0.27ns 0.26ns 

RAD3  -0.84** 0.57* 0.77** 

 

0.07ns 0.39ns 0.27ns 

RAIN1  0.25ns -0.21ns -0.26ns 

 

0.02ns 0.19ns -0.07ns 

RAIN2  -0.09ns -0.03ns 0.21ns 

 

0.23ns 0.28ns -0.03ns 

RAIN3  -0.46ns 0.39ns 0.57* 

 

0.32ns 0.32ns -0.04ns 

TT1  0.87** -0.71** -0.92** 

 

-0.29ns -0.38ns -0.15ns 

TT2  -0.75** 0.59* 0.81** 

 

0.23ns 0.22ns 0.09ns 

TT3  -0.82** 0.70* 0.83** 

 

0.17ns 0.15ns 0.22ns 

WSI1  -0.14ns 0.10ns 0.21ns 

 

0.10ns 0.27ns -0.01ns 

WSI2  0.15ns -0.09ns 0.04ns 

 

0.31ns 0.11ns -0.21ns 

WSI3  -0.04ns 0.19ns 0.41ns 

 

0.64* 0.58* -0.47ns 

                       *P<0.05, ** P<0.01, ns Not significant 

Table 6.4  Factorial regression model for partitioning of G x E interaction for cane yield 

(TCANE). The percentage of sums of squares (%SS) of the G x E interaction is indicated 

Source df SS 

%SS 

(G x E) MS P-value 

      Genotype (G) 6 11674.34 

 

1945.72 <.001 

Environment (E) 11 154293.28 

 

14026.66 <.001 

G X E 66 10466.29 

 

158.58 <.001 

       G X RAD2 6 4376.07 41.8 729.35 <.001 

       G X TT1 6 468.58 4.5 78.1 0.456 

       G X RAIN3 6 368.11 3.5 61.35 0.61 

Residual 415 33941.63 

 

82 
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Table 6.5  Estimates of cultivar sensitivities to radiation during stalk elongation (RAD2) 

according to the factorial regression model 

Cultivar Sensitivity
α
 

 N17 1.73 

 N19 1.09 

 N27 -0.97 

 N29 -0.85 

 N35 -1.13 

 N36 0.71 

 NCO376 -0.59 

α
Estimates the expected change in TCANE of cultivars exposed to a one-unit change in RAD2 

6.4.3 Relationships among yield components 

The covariate effect biplot based on a trait x environment table of correlation coefficients 

explained 90% of the total variation in the table, suggesting that it was a good approximation 

thereof (Figure 6.4).  In this biplot, the length of a trait vector represents the magnitude of its 

effects on TCANE. Interestingly, POP and STKLTH had slightly greater effects on TCANE 

than STKMS. The near opposite directions of the POP and STKMS vectors indicate that 

these two cultivar traits had contrasting effects on TCANE. Similarly, STKLTH showed no 

strong correlation to either STKMS or POP (almost right angles), suggesting that its effects 

on TCANE was not similar to the other traits. The early and late harvests demonstrated a 

moderate degree of separation on the biplot, which were more distinct along IPCA2. The 

early harvests E1, E3, E4, E5 and E6 were positively correlated to POP, suggesting that 

TCANE is influenced to a greater extent by POP in the early season than the late season. In 

contrast, the late harvests L2, L3, L4, L5, and L6 were positively correlated with STKMS, 

suggesting that TCANE is affected more by STKMS in the late season compared with the 

early season. The STKLTH did not appear to have distinctive correlations to either harvest 

time. The covariate effect biplots for ERC and TERC (data not shown) indicated similar trait 

relations as those observed with TCANE, however, early and late harvests showed 

considerable overlap suggesting no distinct clustering for these traits.   
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Figure 6.4 Trait x environment biplot based on a trait x environment two-way table of 

correlation coefficients between traits and TCANE in each environment. Stalk 

population (POP), stalk mass (STKMS) and stalk length (STKLTH) are represented by 

arrows. Early season harvests are represented by red circles and late season harvests 

are represented by blue squares. (The percentage of the interaction explained by the 

IPCA axes are indicated in parentheses in the axis titles)   

6.5 Discussion and conclusions 

 

The separation of cultivars and environments in the AMMI2 biplots of all three variables 

demonstrated distinct cultivar adaptation to TOH in the sugar industry. This has direct 

implications on the design of coastal selection programs, where currently, the majority of 

advanced selection trials are harvested late, and evaluation of adaptability to early season 

harvesting primarily occurs post-release. These results suggest that selection for early season 

harvesting along the coast may result in more significant gains. However, the practical 

implications of splitting advanced selection trials equally into early and late harvests must be 

considered.  

In this study, the higher TCANE of the early harvests was attributed to greater exploitation of 

higher temperatures and radiation during stalk elongation and ripening, while the phases of 

stalk elongation and ripening in late harvests corresponded to periods of low temperatures 

and radiation. This synchronization of phenology and environmental potential is proposed as 

the main reason for differences in TCANE between early and late harvests. Donaldson et al. 

(2008) indicated that lower biomass production associated with late harvests were caused by 
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premature ripening of stalks in response to winter temperatures experienced the following 

year. They proposed that the accumulation of sucrose in immature stalks triggers a feedback 

mechanism which inhibits further structural growth, resulting in lower biomass production. 

Indeed, a feedback mechanism may very well be responsible at the physiological level, and 

the outcomes of this study may be explained using this concept. Furthermore, the differential 

responses of cultivars to early and late harvests demonstrated differences in their ability to 

exploit these growing conditions at specific growth phases. Singels et al. (2005b) reached 

similar conclusions about differential cultivar responses to TOH and explained these 

differences within the context of biomass partitioning and radiation use.  

Many of the responses observed in this study may be explained using concepts identified in 

other physiological studies (Singels et al., 2005a; Singels et al., 2005b; Donaldson et al., 

2008), and they correspond to what is generally known about sugarcane growth and 

development in the industry. This suggests that the multivariate techniques employed here 

(although only allowing for basic physiological interpretations from the available data) do 

have potential in future studies involving interpretations of G x E interactions. The approach 

may seem rather laborious for a study involving only 12 environments; however, when 

applied to more complex datasets comprising detailed crop and environmental parameters, 

this approach should yield more valuable interpretations that can inform selection and/or 

further physiological studies. Additionally, cultivars chosen for detailed physiological studies 

are conventionally selected based on expert opinion, subjective information and anecdotal 

evidence. This type of study should be viewed as an objective way to characterize cultivars to 

inform further physiological/crop modelling studies, and is conventionally regarded as 

‘hypothesis generating’, rather than ‘hypothesis testing’ research. 

The analysis of environment x trait relations in the covariate-effect biplot revealed positive 

correlations between stalk population and TCANE in four of the six early season harvests 

(Figure 6.4). This implies that early harvests were more dependent on the yield-population 

relationship, and selection for higher yield in the early season may be accelerated through 

selection of high stalk population cultivars. This response may be linked to the effects of 

temperature on the duration of tillering in grasses. Lower temperatures increase the duration 

of tillering in other crops such as wheat, thereby resulting in greater tiller numbers at harvest 

(Ramburan and Greenfield, 2007). Hence, tillering and establishment of early harvests 

through winter may promote higher stalk populations in a similar manner. This may in turn 

be followed by favourable temperature and moisture conditions during spring, thereby 
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limiting tiller mortality until harvest.  Conversely, cane yields of late season harvests were 

more dependent on individual stalk mass, which implies that gains from selection for cane 

yield in the late season could be accelerated by selecting for higher stalk mass. The biplot 

also demonstrated the well-known negative correlation between POP and STKMS in 

sugarcane. These results indicate possible benefits of employing differential trait selection 

strategies for different harvest times in the South African industry. However, a more 

comprehensive study involving a greater number of relevant cultivar traits is needed.  

Rainfall and the water stress index were not correlated to IPCA1 or IPCA2 to the extent that 

temperature and radiation was, suggesting that significant variability between early and late 

harvests were not due to these former covariates.  This may be due to the fact that the trials 

were located adjacent to each other and conducted simultaneously, thereby creating 

confounding effects of environmental factors. For example, RAIN1 (average daily rainfall 

during establishment) for early trials would have been similar to RAIN3 (average daily 

rainfall during ripening) for late season trials. This overlap of seasons and environmental 

factors between the two harvests may have effectively nullified any real differences in 

rainfall. This highlights the need for diverse environments when studying G x E interactions. 

Nevertheless, the significant correlation between the IPCA2 score and the WSI3 suggests that 

the WSI covariate may have potential in further studies involving cultivar sensitivities to 

drought stress.  

In this study, the duration of growth phases was estimated from stalk population and stalk 

height measurements done in previous studies, and were not based on actual measurements of 

phenology and development within the trials. It is acknowledged that this crude estimation is 

not ideal, especially when considering the effects of different seasons and responses of 

different cultivars in development. Most G x E interpretive studies of this nature have been 

conducted on determinate grain crops such as wheat and maize, where growth phase changes 

can be identified from visual observation (e.g. flag leaf appearance in wheat, or silking in 

maize). In sugarcane, such distinct growth phase switches are difficult to define, and may 

require detailed monitoring of different crop parameters for more accurate estimations. 

However, even when a crude estimation was used in this study, the biological interpretations 

from the analyses corresponded to known knowledge of sugarcane growth. Nevertheless, 

future studies of this nature should include better estimates of growth phases, either through 

detailed measurements or through the applications of crop models. 
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Much difficulty was experienced in fitting the factorial regression model. Although the 

number of environmental covariates for further analysis was culled through the use of PCA 

and correlations with IPCA scores from AMMI, the high degree of co-linearity between 

covariates prevented the fitting of a more accurate model. The sequence in which terms were 

added to the model made a large difference to the proportion of G x E accounted for, 

suggesting that the results from the factorial regression should be interpreted with caution.  

Future attempts to fit factorial regression models should involve more contrasting 

environmental conditions.  

It is acknowledged that the dataset used in this study was not ideal for interpretation of G x E, 

as the experiments did not constitute a MET (Gauch, 1992) per se. In fact, the experiments 

analysed in this study were designed to provide practical industry recommendations, yet the 

application of multivariate analysis techniques demonstrated how such experiments can be 

utilized to investigate and interpret growth and development in sugarcane. Despite the fact 

that the trials were adjacent to each other and experienced overlapping climatic influences, 

the relative effects of temperature and radiation at different growth phases were clearly 

evident. This implies that application of this methodology to METs using sites that vary 

substantially in their characteristics in the SA sugar industry may reveal trends and 

mechanisms defining the adaptability of cultivars to different conditions.  The following 

chapter will build on the methodologies outlined here to provide comprehensive 

interpretations of G x E interactions in the diverse coastal region of the industry.  
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CHAPTER 7 

INTEGRATING EMPIRICAL AND ANALYTICAL APPROACHES TO 

INVESTIGATE SUGARCANE G X E INTERACTIONS IN THE 

COASTAL AND HINTERLAND REGIONS OF SOUTH AFRICA
7
 

7.1 Abstract 

 

The interpretation of sugarcane G x E interactions through simultaneous consideration of 

environmental covariates and genotypic traits across many trial series has not been attempted. 

The objectives of this study were (1) to investigate the magnitude of G x E interactions and 

test site similarity in the long and short cycle selection programs along the coast, (2) to 

identify factors responsible for G x E interactions by integrating genotypic trait and climatic 

data into routine G x E analyses, and (3) to evaluate and illustrate the integrated use of crop 

models, climatic and soil data for the growth-phased interpretation of sugarcane G x E 

interactions. The ERC yield data from eight series of METs were analyzed using variance 

components, GGE biplot analysis and AMMI. Environmental covariates were computed for 

each environment (trial x ratoon combination). The time to canopy formation was estimated 

from the Canesim crop model and environmental covariates were summarized before and 

after canopy formation. Environmental covariates and genotypic traits were correlated to 

AMMI IPCA scores and superimposed on the biplots.  

The G x E interaction accounted for more variation than the main effect of genotype across 

all series for the long cycle, while the opposite was true for the short cycle. The repeatable 

component of G x E interaction (genotype x site) was more dominant in the long cycle than 

in the short cycle, where the non-repeatable component (genotype x ratoon and genotype x 

ratoon x site) dominated. The GGE biplots identified sites K1 and G2 as redundant within the 

long cycle, while site T2 was recommended for removal from the short cycle program.  The 

G sites were characterized by lower yield potential conditions compared with the K sites, 

which generally experienced higher rainfall and lower water stress. The joint examination of 

AMMI biplots with covariates and genotypic traits superimposed allowed for identification of 

environmental factors that affected the different genotypic traits. The biplots permitted a 

range of biological interpretations and trait relations to be studied. The splitting of 

                                                           
7
Ramburan, S., Zhou, M., Labuschagne, M.T.  Integrating empirical and analytical approaches to investigate 

sugarcane genotype x environment interactions. Crop Science 52, 2153-2165. 
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environmental covariates into pre-and post-canopy values did not add much value to the 

interpretations. The approaches and methods illustrated in this study may be utilized in other 

sugarcane G x E studies to improve the utility and value of MET data.   

7.2 Introduction 

 

The G x E interactions in plant improvement programs have historically been analyzed using 

empirical approaches that have a direct impact on selection decisions. Such empirical 

analyses are also aimed at quantifying the size and repeatability of the interactions, and 

identifying the similarity of test sites for selection. Although breeding advance has been 

achieved through this approach, it is acknowledged that applying integrated approaches to 

these analyses through the use of associated soil and climatic data, together with derived 

information from crop models may allow for more comprehensive interpretations of MET 

data. Integrated studies of this nature are very rare, because of the lack of soil and climatic 

data associated with METs. Where associated soil and climatic data are available, a range of 

statistical techniques have been applied to interpret G x E interactions.   

The most common method of interpreting G x E interactions involves the correlation of 

climatic data to PC scores derived from PCA-based methods such as AMMI. This approach 

has been successfully used to understand causes of G x E interactions in crops such as barley 

(Voltas et al., 1999), pearl millet (Van Oosterom et al., 1996), ryegrass (Van Eeuwijk and 

Elgersma, 1993), wheat (De Vita et al., 2010) and others. Yan and Hunt (2001) correlated PC 

scores derived from GGE biplot analysis to agronomic traits, disease incidence ratings, and 

climatic covariates in a study of winter wheat METs in Ontario.  Most studies of this nature 

have focused on correlating IPCA scores to environmental covariates only (as demonstrated 

in Chapters 4 and 6). Comparatively fewer studies have integrated interpretations of 

environmental and genotypic covariates. Such an integrated analysis may allow for the 

understanding of the genotypic characteristics that contribute to a superior genotype, and the 

environmental factors that can be manipulated to facilitate selection for such genotypes (Yan 

and Hunt, 2001). Furthermore, a joint visual examination of biplots containing both 

environmental covariates and genotypic traits may facilitate easier interpretations compared 

with a straightforward correlation analysis.  

Chapter 5 illustrated an approach for the combined use of empirical and analytical methods to 

better understand G x E interactions and trait relations. The grouping approach used showed 
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that G x E patterns could be explained by environmental differences between sites and 

provided insights into how different groups of genotypes responded to different types of 

environments. Although very useful, the approach requires extensive statistical analyses and 

data processing. The correlation of AMMI IPCA scores to covariates and the subsequent 

enrichment of the biplots with the covariates (as described above and illustrated in Chapters 4 

and 6) is much simpler and can provide comparable interpretations.   However, this approach 

has not been tested across many trial series to evaluate repeatability of the interpretations 

(Chapters 4 and 6, and other studies applied this method to single datasets only).   

Also, in Chapter 6, environmental covariates were summarized within growth phases that 

were crudely estimated. It is envisaged that a more scientific approach to estimating changes 

in crop development, through the use of crop models, may be more accurate. This approach, 

combined with an interpretation of genotypic trait and environmental covariate effects on G x 

E interactions may allow for more comprehensive insights into factors causing differential 

genotype performance in different environments.  If the approach is successful (i.e. shows 

consistent interpretations across trial series), it is envisaged that the technique may be applied 

with other covariates that include pest and disease ratings or factors relating to crop nutrition. 

The outcome would be an integrated analysis technique that allows for the testing of trial site 

similarity within a MET network, the identification of environmental factors characterizing 

trial sites, investigating genotypic trait relations, characterizing genotypes according to trait 

parameters and responses to environmental stresses (for recommendation purposes), and the 

identification of major causes of G x E interactions to inform future trial site selection.  This 

chapter therefore focuses on the above issues within the diverse coastal and hinterland 

regions of the industry.   

In addition to understanding the causes of G x E interactions from an environmental and 

genotypic perspective, an integrated analysis that incorporates all growth influencing factors 

may also provide knowledge of crop growth that goes beyond the realms of traditional G x E 

research. For example, integrated G x E analysis techniques have been used to determine and 

confirm the sensitivities of crops to environmental factors at different growth phases (Voltas 

et al., 1999). For sugarcane, knowledge of crop responses to environmental factors at 

different growth phases is traditionally gathered from detailed field trials that are not 

routinely repeated in space and time. Consequently, these trials do not accommodate G x E 

influences on different crop parameters. An integrated analysis method that accounts for G x 

E interactions and provides information that contributes to understanding of crop growth and 
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development is therefore needed. Such analyses may be regarded as preliminary 

investigations that will inform further detailed physiological/crop modelling research. An 

initial step in developing such methodology would be to evaluate the extent of interpretations 

that are possible from a conventional MET dataset comprising diverse genotypes and 

environments. Advanced plant breeding selection trials in the coastal and hinterland regions 

of the industry are ideally suited for such an evaluation.  

The coastal and hinterland regions represent the most heterogeneous population of 

environments in the industry, characterized by large temporal and spatial fluctuations in 

production conditions.  Commercial genotypes are selected for this region from two separate 

selection programs that are defined by the average age at which sugarcane is harvested in the 

region. The designated short and long cycle programs are designed to identify promising 

genotypes suited to harvesting at 12 to 15 and 15 to 18 months of age, respectively. The 

Gingindlovu (G) and Kearsney (K) selection schemes run concurrently to identify genotypes 

for production on a long cutting cycle at low and higher altitude (hinterland), respectively. 

This scheme is characterized by permanent selection sites located either on SASRI owned 

research farms (G1 and K1), or on grower co-operator farms in the region (K2, G2, and G3).  

The so-called “off-station” sites K2, G2, and G3 represent production conditions that are 

slightly different from the research farms. The Gingindlovu research farm also supports 

selection for the short cycle program. In this instance, the Gingindlovu (U) and Empangeni 

(T) selection schemes run concurrently to identify genotypes for production on a short cutting 

cycle, under low and high yield potential conditions, respectively. Again, this scheme is 

characterized by permanent selection sites on SASRI owned research farms (U1 and T1), or 

on grower co-operator farms in the region (U2 and T2), under different conditions. Site T3 

represents a late season harvest on the SASRI owned T1 site. Since inception of the long and 

short cycle programs, no studies have actively investigated the nature of G x E interactions, 

the contribution of different components of variation to the G x E interaction, and the 

similarities between the test sites used for selection. Such information is essential to optimize 

the design of the selection network. As shown in Chapter 5, variance components analysis 

and GGE biplot analysis are techniques that are suited to investigating the above issues.  

Given the above considerations, the objectives of this study were  (1) to  investigate the 

magnitude of G x E interactions and test site similarity in the selection programs using 

variance components and GGE biplot analysis, (2) to identify factors responsible for G x E 

interactions by integrating trait and climatic data into routine AMMI analyses, and (3) to 
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evaluate and illustrate the integrated use of crop models, climatic and soil data as tools for the 

growth-phased interpretation of sugarcane G x E interactions.  

7.3 Materials and methods 

 

7.3.1 The MET dataset 

The dataset used for this study comprised 77 advanced plant breeding selection trials 

established between 2000 and 2008 at 10 selection sites in the coastal and hinterland regions 

of the industry. Within each program, a set of 20 to 27 promising sugarcane genotypes that 

had progressed through the initial selection stages were annually included in advanced METs, 

together with two to eight commercial checks. The genotype sets differed completely 

between the long and short cycle programs. Consequently, the dataset was split into the long 

(41 trials) and short (36 trials) cycle programs and analyzed separately.  Trials that were 

established in each planting year (series) were harvested as plant, first and second ratoon 

crops. However, some trials were not harvested across all ratoons. In each program, the 

genotype x trial datasets were balanced within series but unbalanced across series (except for 

commercial checks). All trials were planted in randomized complete blocks with three to four 

replicates. Experimental units comprised five sugarcane rows that were 10 m long, and 

spaced 1.2 m apart. At each harvest event, three net rows were hand-harvested and weighed 

using a digital scale mounted on a tractor-operated hydraulic boom, to determine TCANE. 

Twelve-stalk samples were taken from each plot to determine individual stalk mass (STKMS) 

and a range of milling characteristics, including estimated recoverable crystal (ERC), and 

fibre (FIB) percentages. The TERC was calculated as a product of TCANE and ERC. Other 

important traits measured at harvest included stalk population (POP) in stalks/ha and stalk 

diameter (DIAM) in mm. Visual ratings (1 to 9) of lodging (LOD), canopy formation (CAN) 

and stalk bending (SKEW) were also  done in each trial at appropriate growth stages. 

7.3.2 Seasonal covariates 

For each trial in the dataset, covariates that varied seasonally with each ratoon (hence termed 

seasonal covariates) were determined.  The descriptions of the covariates and how they were 

determined are given in Chapter 4. Briefly, these included average daily rainfall in mm 

(RAIN), average daily thermal time (TT) in heat units (base 10°C), average daily solar 

radiation (RAD) in MJ/m
2
/sec/day, average daily A-pan evaporation (EVP) in mm, and a 

water stress index (WSI).  The WSI in this study was calculated as a ratio of simulated 

rainfed evapotranspiration to simulated irrigated evapotranspiration from the Canesim crop 
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model as described in Chapter 4. The age at harvest (AGE) and time of harvest (TOH) were 

also recorded as covariates.  The Canesim model, which was run for each environment using 

the relevant soil and weather parameters, simulated canopy formation and stalk elongation. 

This allowed for an estimation of the approximate number of days to full canopy formation 

for each environment. Using this information, the average daily values of seasonal covariates 

were then calculated “before” and “after” canopy formation. Figure 7.1 is an example of an 

output from a model simulation, depicting how the approximate time of canopy was 

determined for environments tested in this study. Each of the five seasonal covariates 

described above were then calculated for the pre-canopy (1) as well as the post-canopy (2) 

phases. For example, RAIN1 and RAIN2 referred to average daily rainfall before and after 

canopy formation, respectively. The other covariates were coded similarly (except for AGE 

and TOH).  

 

 

 

 

 

 

 

 

 

Figure 7.1 An example of an output of a Canesim simulation of a sugarcane crop. The 

black arrow shows the point of 100% canopy cover, which was used to split the crop 

cycle and calculate covariate values before and after canopy formation  

7.3.3 Variance components analysis 

The following random model was fitted to the TERC data for each trial series (2000-2009) 

Yijkl = µ + Tj + B(T)l(j) + Gi + GTij + GB(T)il(j) + Rk + RTjk + RB(T)kl(j) + RGik + RGTijk + e 
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where Yijkl is the observation l of genotype i in ratoon k of trial j, µ is the grand mean, Tj is the 

trial main effect, B(T)l(j) is the effect of block within trial,  Gi is the genotype main effect, 

GTij is the effect of the genotype x trial interaction, GB(T)il(j) is the effect of genotype x block 

(within trial), Rk is the main effect of ratoon, RTjk is the effect of the ratoon x trial interaction, 

RB(T)kl(j)  is the effect of the ratoon x block (within trial) interaction,  RGik is the effect of the 

ratoon x genotype interaction, RGTijk  is the effect of the genotype x trial x ratoon interaction, 

and e is the error. Restricted maximum likelihood (Patterson and Thompson 1971) using the 

sparse average information algorithm (Gilmour et al. 1995) was used, as implemented in 

GenStat 12.0 (Anonymous, 2009).   

7.3.4 GGE biplot analysis 

Within each series, the two-way matrix of G x E TERC means was analyzed using GGE 

biplot analysis (Yan et al., 2000). A detailed description of this analysis and software is given 

in Chapter 3. In this study, the polygon viewing option was implemented as it is the most 

appropriate to study site similarities and MEs. A description of this viewing option was given 

in previous chapters.   

7.3.5 AMMI analysis and G x E interpretation 

In order to identify the causes of G x E interactions, AMMI analysis was conducted on a 

balanced subset of genotypes within each series (genotypes that were not included in all trials 

were removed).  Details of the AMMI model and associated biplots were given in previous 

chapters. The environment IPCA scores that were derived from AMMI analysis were 

regressed against the seasonal covariates. The derived regression coefficients from the above 

regression then defined the positions of the covariate on the AMMI biplot (Van Eeuwijk and 

Elgersma, 1993). For example, the regression coefficient derived from the regression of the 

covariate and IPCA1 scores was used as the x-coordinate in the biplot, while the regression 

coefficient derived from the covariate and IPCA2 regression was used as the y-coordinate in 

the biplot. In this way, the AMMI biplots were enriched with the seasonal covariates.  When 

the covariates were superimposed onto the biplot, as described above, the adaptability of 

genotypes to the different environments are interpreted as they are in a conventional biplot. 

However, the difference now is that the environmental characteristics (covariates) of the 

different environments could be simultaneously viewed. This allowed for an interpretation of 

the environmental factors characterizing the different test sites, and helped identify genotypes 

that showed responses to those factors.   
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Similarly, the genotype IPCA scores derived from AMMI analysis were regressed against 

genotype traits, and the derived regression coefficients then defined the positions of traits on 

the biplots. The traits were subsequently superimposed onto the biplot, as described above. 

The resultant biplots (one containing covariates and the other containing genotype traits) 

were then examined together to allow for the simultaneous interpretation of genotype 

adaptabilities to environments, the environmental covariates driving those trends, and the 

genotype traits that were primarily responsible for differential responses.  This analysis was 

conducted for each series with the objective of identifying trends that were repeatable, 

thereby adding confidence to interpretations and recommendations. 

7.4 Results 

7.4.1 Variance components  

The variances associated with the most relevant terms of the random model are expressed in 

Table 7.1 as a percentage of total variation within each series.  For the long cycle, site 

differences accounted for the largest proportion of total variation in four (2000, 2001, 2003, 

and 2005) of the eight series. In the other four series the ratoon (series 2006), and site x 

ratoon interaction (2002, 2004, and 2007) accounted for the largest proportion of variation. 

The main effect of ratoon (confounded with season) varied dramatically, accounting for 0% 

of the variance in series 2001, 2002, and 2003 (this suggests that the variation accounted for 

by the main effect of ratoon was less than the variation accounted for by the individual ratoon 

interaction components). This variance accounted for by ratoon ranged up to 44.6% of total 

variance in series 2006.  The low variance associated with the site x ratoon interaction in 

series 2000 is attributable to the fact that only two crops were harvested from each trial 

within that series. The G x E interaction (expressed as a sum of the genotype x site, genotype 

x ratoon, and genotype x site x ratoon interactions) accounted for considerably more variation 

than the main effect of genotype across all series. The genotype x site term accounted for 

more variation than the combined effects of genotype x ratoon and genotype x site x ratoon in 

five out of eight series. This implies that the repeatable component of G x E (i.e. genotype x 

site) is exploitable and homogenous regions can be identified.  The site x ratoon interaction 

accounted for a higher proportion of variation than the genotype x ratoon interaction across 

all series (except for series 2000). This suggests that ratooning ability is influenced to a larger 

extent by site differences than by genotype differences. 
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The percentage of total variation accounted for by site differences was considerably lower for 

the short cycle (Table 7.1).  Only in the 2004 series did the site component account for the 

largest proportion of variation. In general, the ratoon and/or the site x ratoon interaction 

accounted for most of the variation across the series, except for series 2004 and 2006 where 

large proportions of variation were attributed to error.  The genotype term accounted for more 

variation than the G x E interaction (expressed as a sum of the genotype component terms) in 

series 2001, 2003, and 2004. This is in contrast to the long cycle where the G x E interaction 

always accounted for more variation than genotype. Also, in contrast to the long cycle, the 

genotype x site term accounted for less variation than the combined effects of genotype x 

ratoon and genotype x site x ratoon in seven out of eight series. This implies that for the short 

cycle, the non-repeatable component of G x E (i.e. genotype x ratoon and genotype x site x 

ratoon) is more dominant than the repeatable component. Therefore, the identification of 

homogenous regions for selection and recommendations may be more difficult in the short 

cycle.  

Table 7.1 The percantage of total phenotypic variance associated with relevant random 

terms from variance components analysis, over eight trial series on the long and short 

cycles 

  Series (Long Cycle)     

Random term 2000 

 

2001 

 

2002 

 

2003 

 

2004 

 

2005 

 

2006 

 

2007 

 
2008 

Site 64.1 

 

45.4 

 

16.4 

 

47.8 

 

6.3 

 

32.8 

 

13.9 

 

20.2 

 

- 

Genotype 0.5 

 

0.9 

 

0.2 

 

2.3 

 

4.3 

 

4.4 

 

2.9 

 

1.9 

 

- 

Genotype x Site 10.7 

 

10.2 

 

14.8 

 

3.0 

 

2.9 

 

2.7 

 

2.2 

 

8.2 

 

- 

Ratoon 10.4 

 

0 

 

0 

 

0 

 

7.6 

 

21.7 

 

44.6 

 

21.1 

 

- 

Site x Ratoon 0.2 

 

27.1 

 

37.6 

 

28.6 

 

35 

 

12.9 

 

16.1 

 

24.9 

 

- 

Genotype x Ratoon 1.3 

 

0.1 

 

1.6 

 

0.8 

 

0.5 

 

1.7 

 

1.5 

 

1.1 

 

- 

Genotype x Site x Ratoon 0.8 

 

1.3 

 

3.8 

 

2.1 

 

4.3 

 

3.3 

 

1.5 

 

1.3 

 

- 

Residual 10.4 

 

8.4 

 

23.8 

 

15.7 

 

21.4 

 

11 

 

12.5 

 

12.5 

 

- 

 
Series (Short Cycle)     

 

2000 

 

2001 

 

2002 

 

2003 

 

2004 

 

2005 

 

2006 

 

2007 

 
2008 

Site - 

 

13.6 

 

6.3 

 

0.3 

 

13.6 

 

57.7 

 

16.2 

 

7.8 

 

17.8 

Genotype - 

 

3.1 

 

7.1 

 

8.1 

 

12.2 

 

3.7 

 

8.3 

 

7.6 

 

3.2 

Genotype x Site - 

 

0.4 

 

2.9 

 

1.9 

 

3.4 

 

2.7 

 

9.3 

 

5.2 

 

1.1 

Ratoon - 

 

37.5 

 

34.1 

 

0 

 

7.9 

 

1.3 

 

6.2 

 

0 

 

27.9 

Site x Ratoon - 

 

19.5 

 

10.9 

 

62.1 

 

13 

 

8.6 

 

7.8 

 

39.1 

 

27.5 

Genotype x Ratoon - 

 

1.8 

 

1.5 

 

1.6 

 

4.8 

 

3.5 

 

2.1 

 

1.3 

 

0.7 

Genotype x Site x Ratoon - 

 

0.8 

 

6.5 

 

1.6 

 

2.9 

 

1.9 

 

3.3 

 

5 

 

3.5 

Residual -   8 

 

18.7 

 

20.1 

 

31.1 

 

9.9 

 

22.8 

 

16.7 

 

11.1 
- No data available for analysis in that series 
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7.4.2 GGE Biplot analysis 

7.4.2.1 Long cycle 

Depending on the series, the biplots for the long cycle accounted for 47.8 to 67% of genotype 

plus G x E interaction, and therefore represented reasonable approximations of the genotype 

and G x E effects (Figure 7.2).  In most long cycle biplots, ratoons of the same trial clustered 

together tightly before clustering with other trials. The G and K trial sites frequently formed 

separate mega-environments (series 2000, 2001, 2002, and 2003) or formed separate clusters 

within a ME that was shared (series 2005).   Ratoons from sites K1 and K2 occasionally fell 

within a unique ME sector (series 2001, 2002, and 2003) and they also tended to cluster 

together when sharing a ME with the G sites (series 2005). Of the two K sites, K2 was more 

discriminative, as it was located in unique ME sectors in five out of eight biplots (series 2000, 

2001, 2002, 2003, and 2004) and was located further away from the G sites in the other 

biplots. Site K1, on the other hand, either grouped together with K2 in a ME sector, or 

clustered with the G sites. This suggests that K1 may in fact be a redundant site as it did not 

uniquely discriminate genotype responses in any series.  

As a group, the three G sites generally clustered together in the biplots, forming groups that 

were clearly different from the K sites. However, none of the G sites consistently formed a 

distinct ME across all series.  The ratoons from site G1 either fell into the same ME sector as 

the corresponding ratoons from site G2 (series 2001, 2003, 2004, 2005, and 2006), or they 

were located in very close proximity to each other at the diagonal defining the MEs (series 

2000, 2002, and 2007). This suggests that G1 and G2 may be similar in the way they 

discriminate genotype performance. Ratoons from site G3 occasionally showed a tendency to 

detach from the larger G cluster (series 2001, 2004, 2005, 2006, and 2007), suggesting that it 

may discriminate genotype performance differently to the other G sites. However, in general, 

the G sites did not cluster according to any observable pattern.  In series 2006, the clustering 

of the G sites seemed to be dependent on the ratoon numbers rather than the actual sites, 

suggesting that ratoon (season) may have had a dominating effect in that series. This is 

reflected in the variance components analysis, where ratoon accounted for a large proportion 

(44.6%) of the total variation.  

7.4.2.2 Short cycle 

For the short cycle, the ratoons of the same trial generally clustered together on the biplots 

(Figure 7.3). Therefore, for easier interpretation, the genotype values were averaged across 
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ratoons of the same trial. Consequently, the biplots for the short cycle accounted for 62.1 to 

83.4% of the genotype plus G x E interaction. In general, the separation of the high potential 

(T) and low potential (U) sites into different MEs was only observed in the 2005 and 2006 

series. In the other series, all sites either fell into the same ME (series 2002 and 2004), or a 

single site formed a separate ME (series 2001, 2003, 2007 and 2008). In the latter group of 

series, site U2 formed a unique ME in two of the series (2003 and 2007), while site T1 and 

U1 formed a ME in series 2001 and 2008, respectively.  Sites U1 and U2 distinctly fell into 

the same ME in four out of the eight series. Of these two sites, U2 appeared to be more 

discriminative, as it was frequently located further away from the T sites compared with U1.     

Conversely, site U1 did not appear to be very discriminative, as it formed a unique ME in one 

series only (2008), and it clustered frequently with either T1 or T2 in the other series. Despite 

this, however, there was not enough evidence to suggest that U1 was a redundant site. Sites 

T1 and T2 fell into the same ME sector in six out of eight series, suggesting that one of these 

sites may be redundant. Of these two sites, T1 appeared to be more discriminative (was 

located further away from the U sites) in most series. This suggests that T1 should remain in 

the trial network while T2 could be dropped, as it provided no new information on genotype 

performance.  Additionally, site T3 was only evaluated across four series but always fell into 

the same ME as site T1. Once again, this suggests that T3 provides no new information on 

genotype performance and could therefore be considered for removal from the trial network.  
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Figure 7.2 GGE biplots for eight series (2000 to 2007) of multi-environment trials 

conducted on the long cutting cycle program along the coast. The Gingindlovu (G) and 

Kearsney (K) environments are shown in red, and are represented by the site and 

ratoon numbers, respectively. Genotypes are represented by “+”   
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Figure 7.3 GGE biplots for eight series (2001 to 2008) of multi-environment trials 

conducted on the short cutting cycle program along the coast. The Gingindlovu (U1 and 

U2) and Empangeni (T1, T2 and T3) sites (averaged across ratoons) are shown in red. 

Genotypes are represented by “+”   
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7.4.3 Interpretation of G x E interactions 

7.4.3.1 Long cycle 

The AMMI biplots with environmental covariates and genotypic traits superimposed are 

shown for all series from the long cycle in Figures 7.4, 7.5 and 7.6. The AMMI biplot for 

each series was produced twice; once with the environmental covariates superimposed, and 

once with the genotypic traits superimposed. The resulting two biplots for each series are 

displayed adjacent to each other and may be interpreted together. In these biplots, the length 

and direction of the covariates or traits are indications of their influence on the separation of 

environments or genotypes on the biplots. For example, in series 2000 (Figure 7.4) the 

separation of the K environments from the G environments may be attributed to the 

covariates RAIN1, RAIN2, EVP1, WSI2, and TT2 because these covariates were spread 

explicitly along the IPCA1 axis together with the environments. Similarly, the separation of 

sites G21 and G32 along the IPCA2 axis may be attributed to differences in TOH, EVP2, 

RAD1 etc.  A similar interpretation will apply for the genotypic traits. Here, the length and 

direction of the trait vectors are indications of their influence on the separation of the 

genotypes on the biplots. For example, genotypes that were located on the right hand side of 

the biplot were characterized by high POP and TCANE, while those on the left hand side 

were characterized by high SKEW. These traits were therefore the most influential in causing 

separation of the genotypes along the IPCA1 axis in the 2000 series.  

In all series the K sites showed considerable separation from the G sites on the AMMI 

biplots. However, environment K10 separated from the cluster of K environments in the 

2003, 2004 (Figure 7.5), and 2007 (Figure 7.6) series. In general, the K and G environments 

separated along the IPCA1 axis in most series.  Thereafter, further separation within the K 

and G sites occurred along the IPCA2 axis. In series 2000, 2001, 2002 (Figure 7.4), and 2007 

(Figure 7.6), the K environments were explicitly associated with higher WSI2, RAIN2 and 

EVP2.  In the remaining series, the K environments (especially those from site K2) were 

always associated with WSI2 (low levels of water stress after canopy formation). The G 

environments, however, were always associated with higher temperatures, radiation, and age 

irrespective of the growth stage. Across all biplots, the age at harvest was always associated 

with the G environments, while the time of harvest did not show any consistent associations. 

Although sites K1 and K2 often separated along the IPCA2 axis, this separation could not be 

attributed to any specific group of covariates, as the covariates were not concomitantly spread 
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along this axis with the two K sites. Regarding the covariates causing the separation of the G 

environments on the biplots, it was evident in the 2000 series that the 2
nd

 ratoons at all three 

sites were associated with RAD1, RAD2, AGE, WSI1, and TT1, while the 1
st
 ratoons were 

associated with TOH and EVP2. However, this distinct pattern was not repeated in the other 

series. The covariates causing the separation of the G environments along IPCA2 were not 

constant. However, RAIN2 did produce high absolute IPCA2 scores in series 2003, 2004 and 

2005 (Figure 7.5) when ratoons of site G2 showed concomitant deviations along this axis. 

This implies that site G2 may be characterized by higher rainfall after canopy formation 

compared with the other two G sites.  

The biplots with genotypic traits superimposed did not show any distinct, consistent 

clustering of genotypes into groups across all series (because different genotypes were used 

in each series). Instead, the genotypes were widely spread in each series, showing their 

diversity in genetic make-up and the level of diversity in their responses to the environments. 

The lack of the same genotype set in each series prevented the identification of traits that 

consistently caused separation of the genotypes on the biplots. The only genotype common to 

all series was NCo376, which showed consistent associations with the K environments and 

was always characterized by high TCANE. Nevertheless, some other trait relations and their 

associations with environments and covariates could be identified. For example, in seven out 

of eight series, FIB and POP were correlated to each other. As a group, FIB and POP were 

negatively correlated to SKEW in six out of eight series. This shows that high FIB and POP 

genotypes are characterized by straight stalks. As expected, SKEW and LOD were always 

positively correlated, as these are traits that are related to each other. The STKMS and DIAM 

were associated with each other in seven out of eight series, showing that thicker stalks are 

generally heavier. The TCANE and ERC were always negatively associated.   

The joint examination of biplots for each series allowed for a number of biological 

interpretations. For example, in the 2000 series (Figure 7.4), the high RAIN1 associated with 

the K2 environments (left biplot) may have contributed to improved POP (right biplot). The 

high RAIN2 and WSI2 in the K environments thereafter ensured that STKMS was also 

improved. The improvement in these yield components (POP and STKMS) resulted in an 

overall improvement in TCANE, which determined the affinity of some genotypes to the K 

environments. In contrast, the G environments from the 2000 series were characterized by 

higher temperatures and radiation (left biplot), which lead to quicker canopy formation (right 

biplot). Furthermore, the low rainfall associated with the G environments resulted in higher 
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ERC. The above interpretations were also relevant to the 2001 and 2002 series (except that 

POP was associated more with the G environments in 2001 and 2002). In some series such as 

2004 and 2005 (Figure 7.5), the K environments were not explicitly associated with higher 

rainfall but were still associated with high WSI2. This may be because of the deeper soils and 

higher total available moisture (not shown) associated with the K sites in general, which most 

often produced higher TCANE.   

The joint examination of the biplots for each series also allowed for some relationships 

between covariates and traits to be studied. For example, environments from site K2 were 

always associated with WSI2 on the covariate biplots and STKMS on the trait biplots. This is 

clear evidence of the effects that good moisture conditions after canopy formation may have 

on stalk mass. In contrast, environments from the G sites were most often associated with 

TT1 on the covariate biplots and CAN on the trait biplots. This represents the effects of high 

temperatures on the speed of canopy formation, which is a well-known relationship. 

Additionally, in all series, environments associated with low rainfall on the covariate biplots 

were also characterized by high ERC on the trait biplots. This represents the effects of 

moisture on the stimulation of vegetative growth (using up stored sucrose), resulting in a 

reduction in ERC.  

For each covariate studied, the pre-and post-canopy splits were generally positively 

associated with each other on the biplots. An exception to this was series 2002 (Figure 7.4) 

where the pre-canopy evaporation and WSI was negatively associated to the corresponding 

post-canopy covariates. In this respect, the post-canopy evaporation and WSI was associated 

with ratoons of site K2, while the pre-canopy evaporation and water stress was associated 

with all the other environments. A similar response was observed in 2007 (Figure 7.6), where 

the pre-canopy WSI and rainfall was negatively associated with the corresponding post-

canopy covariates. Once again, ratoons of site K2 were associated with higher post-canopy 

values. 
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Figure 7.4 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the long cycle of series 2000, 2001, and 2002. 

Environmental covariates (green font) are superimposed on the biplots on the left while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  
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Figure 7.5 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the long cycle of series 2003, 2004, and 2005. 

Environmental covariates (green font) are superimposed on the biplots on the left while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  
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Figure 7.6 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the long cycle of series 2006 and 2007. 

Environmental covariates (green font) are superimposed on the biplots on the left while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  

7.4.3.2 Short cycle 

In keeping with the GGE biplot analysis, the short cycle G x E interactions were interpreted 

by averaging the genotype performance, environmental covariates, and genotypic trait values 

across ratoons for each trial. The AMMI2 biplots for the short cycle did not reveal any 

distinct and consistent clustering of the trial sites (Figures 7.7, 7.8, and 7.9). In 2001, 2002, 

and 2003, sites U1 and U2 were separated from sites T1 and T2 along the diagonals of the 

biplots, while in 2005 the T and U sites were separated along the vertical axis. In the other 

series, no consistent patterns of separation between the T and U sites were evident. In 

general, sites T1 and T2 were located in close proximity to each other on the biplots in five 

2006 

2007 
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(2002, 2003, 2006, 2007, and 2008) out of the eight series.  In the four series where site T3 

was evaluated, it separated from the other T sites on the biplots. Aside from the 2001 series, 

sites U1 and U2 were generally separated from each other, often located in different 

quadrants of the biplots.  

In the first three series, the environmental covariates formed a single cluster (2001) or 

separated (2002 and 2003) into different clusters on the biplots according to the location of 

site U1 (Figure 7.7). In 2004, no distinct covariate clustering could be identified. However, in 

2005, 2006, 2007 and 2008, the covariates formed two separate clusters; one of which was 

always correlated to site T3. The covariate cluster comprising TOH, TT1, RAIN1, RAD1, 

EVP1 and WSI1 were correlated to site T3 in 2005, 2006, 2007 and 2008. This was attributed 

to site T3 being dedicated to late season harvesting, which meant that crops were exposed to 

summer conditions (high temperatures, rainfall, radiation, evaporation etc.) before canopy 

formation. The same crops were subsequently exposed to winter conditions after canopy 

formation; hence the negative correlations between site T3 and TT2, RAD2, EVP2, and 

RAIN2. Interestingly, WSI2 was also correlated with site T3, suggesting that late season 

crops did not experience moisture stress after canopy formation. This may be primarily 

attributed to the low evaporative demand after canopy formation, as depicted by the negative 

correlation between site T3 and EVP2.  Site U1 was separated from the other sites along the 

IPCA1 axis in most series. In all cases, U1 was also positively correlated with RAIN2 

suggesting that this site generally received high rainfall after canopy formation. Aside from 

2002 and 2003, site U2 did not show consistent associations with any covariates on the 

biplots.  

Once again, the biplots with genotypic traits superimposed could not reveal consistent 

clustering of genotypes, as different genotypes were used in each series. The genotype 

NCo376 was common to all series, and again showed positive correlations with TCANE in 

six (2001, 2002, 2004, 2005, 2006, and 2007) out of eight series. In general, the trait relations 

identified in the short cycle biplots were almost identical to those observed in the long cycle. 

These included the positive correlations between FIB and POP; this was observed in all of the 

series. The SKEW and LOD were once again positively correlated with each other across all 

series. Similarly, STKMS and DIAM consistently showed strong correlations with each 

other. The TCANE and ERC were usually negatively correlated, however, in series 2001, 

2003, and 2005, these two traits showed some correlation. This may be because of the use of 
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genotypes that were ‘well-balanced’ in yielding ability and quality characteristics in those 

series.  

The joint examination of the covariate and trait biplots for each series also allowed for some 

relationships between covariates and traits to be studied. For example, in 2002 and 2003, site 

U1 was positively correlated to WSI1, RAIN1, RAIN2, EVP2, TT2, WSI2 and RAD2. 

Genotypes that performed well at site U1 in these series were subsequently characterized by 

high TCANE, which is a trait known to be influenced by favourable conditions brought about 

by the above covariates. In contrast, sites T1, T2, and U2 were not explicitly associated with 

any of the above covariates in the 2002 and 2003 series, and these sites were subsequently 

negatively associated with TCANE.  In 2005, 2007, and 2008, site T3 (late season harvest) 

was associated with TT1, RAD1, EVP1 and RAIN1. Favourable conditions before canopy 

formation may have stimulated the tillering phase, which normally results in lower tiller 

numbers (due to shorter phase duration). Consequently, genotypes that were adapted to site 

T3 were generally those that were negatively correlated to final stalk population (POP) in 

series 2005, 2007 and 2008. It was interesting to note that site T3 was always negatively 

correlated to FIB, suggesting that late season harvesting may not be favourable when fibre is 

a desired product.   
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Figure 7.7 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the short cycle of series 2001, 2002, and 2003. 

Environmental covariates (green font) are superimposed on the biplots on the left, while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  
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Figure 7.8 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the short cycle of series 2004, 2005, and 2006. 

Environmental covariates (green font) are superimposed on the biplots on the left, while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  
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Figure 7.9 AMMI2 biplots based on ERC yield of genotypes (red font) and 

environments (black font) evaluated in the short cycle of series 2007 and 2008. 

Environmental covariates (green font) are superimposed on the biplots on the left, while 

genotypic traits (blue font) are superimposed on biplots on the right. (The percentage 

variance accounted for by each IPCA axis are indicted in parentheses)  

 

7.5 Discussion  

 

The variance components analysis showed that the G x E interaction accounted for more 

variation than the main effects of genotype across all series on the long cycle. In contrast, 

some series on the short cycle showed the opposite trend i.e. genotype accounted for more 

variation than the G x E interaction. This implies that selection of genotypes for superior 

TERC may be more feasible on the short compared with the long cutting cycle along the 
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coast. Also, testing across sites was less important on the short cycle compared with the long 

cycle, where complex G x E interactions were more evident. Zhou et al. (2011) conducted an 

extensive study of variance components associated with selection programs along the coast 

and reached similar conclusions. Furthermore, on the long cycle the repeatable component of 

G x E (i.e. genotype x site) accounted for more variation than the combined effects of 

genotype x ratoon and genotype x site x ratoon. This implies that this component is 

exploitable and homogenous regions can be identified. Indeed, this was shown clearly by the 

GGE biplot analysis, where the G and K sites frequently formed separate clusters. This study, 

which has complemented that of Zhou et al. (2011) by further identifying mega-

environments, has shown that the long and short cycles must be treated differently when 

considering any network re-structuring.  

The GGE biplot analysis has proven to be an excellent tool for the investigation of test site 

similarity. It was apparent from the long cycle biplots that the K and G sites were different 

from each other and should therefore remain separate. However, within the K and G groups, 

there was clear evidence of site redundancy. Site K1 was less discriminative than K2, was 

always located within the same ME as K2, and occasionally clustered with G sites. This 

suggests that K1 is redundant and should be considered for removal from the trial network. 

However, K1 is a SASRI-owned selection farm, and the practicalities of staying with such a 

site may possibly outweigh its redundancy within the network.  Plant breeders may have to 

conduct further evaluations in this regard to arrive at a final recommendation. All of the G 

sites were positively correlated to each other in all series and in general, site G1 and G2 were 

the most similar. As G1 is also a SASRI-owned selection site, it is therefore recommended 

that site G2 be dropped from the trial network instead in favour of an alternative site.  

The investigation of site redundancy was less straightforward for the short cycle. Site U1 did 

not appear to be discriminative, however, it did constitute a ME in one series. It is therefore 

recommended that further studies be initiated before a decision is taken on the retention of 

site U1 within this program. Site T2, however, was found to be very similar to site T1 across 

all series and could therefore be removed from the trial network. Additionally, T3 also 

showed similarities to site T1. Site T3 represents a different time of harvest (relative to T1) 

on the SASRI-owned selection farm. The GGE biplot analysis in this study has shown that T1 

(early harvest) and T3 (late harvest) may be similar. However, the AMMI biplots showed that 

T1 and T3 were separated on the biplots. The discrepancy lies in the fact that GGE biplot 

performs singular value decomposition on the G + G x E matrix after removal of the 
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environment means only (Yan et al., 2000) while AMMI removes the genotype and 

environment means (Gauch, 1992). This implies that the similarities between sites T1 and T3 

on the GGE biplots are also influenced by genotypic effects. Given that Chapter 6 showed 

clear differential responses between early and late harvests at the same site, any 

recommendations about the similarity of T1 and T3 should only be made after further 

investigation. In general, however, GGE biplot and AMMI produced comparable results, and 

similar conclusions could be made with regard to site similarity using both methods.  

The AMMI biplots with covariates and traits superimposed suggested that the G sites were 

characterized by lower yield potential conditions compared with the K sites. This was 

supported by the response of genotype N33 in the 2000 series. This genotype was released to 

the industry specifically for low potential conditions, and its affinity for the G environments 

in the 2000 series (Figure 7.4) confirms this. Also, the lack of a consistent genotype set 

across series prevented an accurate estimate of which traits were most influential on the 

separation of genotypes on the biplots. In general, the trait relations were fairly consistent 

from one series to the next, and any deviation in trait relations could be attributed to 

variations in the trait profiles of the specific genotype sets. Despite the use of different 

genotype sets, traits such as TCANE, FIB, SKEW, and ERC, were characterized by larger 

IPCA scores than the other traits on average, and also produced the most number of 

significant (P<0.05) correlations with the IPCA scores (not shown). This is very important, as 

one of the requirements of superimposing covariates onto AMMI biplots is that the 

correlation between the IPCA scores and the covariates are strong (Voltas et al., 2005).  

Additionally, this study has shown that standard agronomic traits that are routinely gathered 

from sugarcane METs can be superimposed onto an AMMI biplot for visualization of relative 

trait importance. This suggests that there may be potential to include even more detailed 

physiological and genetic trait measurements into such biplots in future.   

The successful growth-phased approach to interpret G x E interactions in Chapter 6 prompted 

the expansion of this approach to a larger dataset in this study. However, the previous chapter 

revealed that the period of ripening in sugarcane was difficult to isolate, as it is a continuous 

process that occurs within the stalk and it is therefore very difficult to establish when ripening 

commences. It was therefore more logical to split the growth phases into two, using the crop 

model to estimate time to canopy for different crops. This approach has not been attempted in 

sugarcane previously. One of the limitations of this approach is that different genotypes 

exhibit different rates of canopy formation and using an average time to canopy formation for 
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a trial may be misleading. One way of overcoming this is to have an estimate of time to 

canopy formation for each genotype. In this study the CAN, trait was a general rating of 

canopy density at a specific time (usually done once in the growing season). Future studies 

should investigate the possibility of converting this relatively easy rating into an estimate of 

time to canopy formation by taking two or three CAN ratings at different times during the 

establishment phase. 

In general, it was found that for each covariate, the pre- and post-canopy splits were 

associated with each other. Aside from two exceptions (series 2002 and 2007), the general 

correlation of the pre-and post-canopy covariates across all series show that either one of the 

splits, or even a seasonal average for the covariates would have been sufficient to interpret 

the responses. This is in contrast to the previous chapter, where it was shown that the 

covariates summarized within three growth phases gave better interpretations of the G x E 

interactions. The lack of separation of pre- and post-canopy covariates in this study 

(compared to the previous chapter) may be because of the use of more diverse environments 

that are characterized by large differences in climate. In other words, the differences in 

climatic conditions between sites had an overriding effect relative to the differences between 

pre- and post-canopy growth phases. This was indeed the case with the long cutting cycle 

where the G sites were generally characterized by high temperatures, low rainfall, high 

radiation, and high water stress, irrespective of the growth phase.  In the short cycle, 

however, the separation of the pre- and post-canopy covariates on the 2005, 2006, 2007, and 

2008 biplots were explicit, suggesting once again that the splitting of the covariates may lead 

to useful interpretations when differences between environments are subtle.  

Past studies that have used the approach employed here to interpret G x E interactions mainly 

used single data sets, where specific sites were tested once only (Van Eeuwijk and Elgersma, 

1993; Jackson et al., 1995; Vargas, et al., 1999; Voltas et al., 1999). This study is the first to 

attempt this approach across a range of trial series where the same trial sites are used across 

many seasons. This study has consequently evaluated the repeatability of this method of G x 

E interpretation. The consistent association of environmental covariates with certain sites (K 

sites and WSI2, G sites and TT1 etc.) across all series does indeed show that this approach 

can produce repeatable results. Additionally, other methods, such as partial least squares 

regression (PLS), have been used in past studies to incorporate environmental covariates and 

genotypic traits into G x E biplots (Vargas et al., 1999; Joshi et al., 2010). However, such a 

technique requires extensive understanding of complex matrix computations which are not 
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familiar to most crop scientists. Furthermore, when large numbers of environments, 

genotypes, environmental covariates, and genotypic traits are available, the PLS biplot may 

become difficult to interpret. Hence, the separation of the environmental covariates and 

genotypic traits into separate biplots in this study was seen as a more practical approach.  

7.6 Conclusions  

 

The variance components analysis conducted in this study has provided valuable information 

on the relative contributions of different components to the overall variation within the long 

and short cycle networks. Greater selection gains are more likely to be observed in the short 

cycle compared with the long cycle, because of the greater influence of G x E interactions in 

the latter. The G x site component for the long cycle accounts for large variation, suggesting 

that testing across sites on this cycle is sufficient. However, across-site testing on the short 

cycle did not account for a large proportion of variation, suggesting that more effort should 

be placed on identifying more diverse test sites.  

The GGE biplot analysis identified sites K1 and G2 from the long cycle for possible removal 

from the trial network in favour of more diverse test sites.  Similarly, site T2 from the short 

cycle did not provide any new information of genotype performance across eight series and 

can therefore be removed from the network. It is further recommended that follow-up studies 

investigating similarities between sites T1, T3, and U1 be initiated once data from a few more 

series become available. The factors responsible for differential genotype performance at 

sites on the long cycle include temperature, evaporation, rainfall, radiation, and water stress 

caused by differences in soil properties. The G sites may be characterized as low yield 

potential relative to the K sites on the long cycle. The computation of covariates based on 

pre- and post-canopy growth did not add much value to the interpretations in this dataset. 

However, further refinement of this technique may provide more comprehensive 

interpretations.  

This was the first study to attempt an integration of a sugarcane crop model within a 

conventional G x E analysis framework. The use of the model to compute the water stress 

index was successful and will be applied to further sugarcane studies. There are many 

external factors and traits that can affect G x E interactions. However, this study has shown 

that a relatively simple   environmental characterization using soil and weather data, coupled 

with the use of a crop model and basic agronomic traits, may help identify key aspects of 
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sugarcane growth causing superior performance of genotypes in different environments. The 

use of empirical and analytical methods that complement each other synergistically has been 

illustrated, and other sugarcane studies may benefit from the principles and approaches used 

here.  
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Prior to this study, information on the nature and causes of G x E interactions in the rainfed 

parts of the sugar industry was severely lacking. Given the diverse conditions, this study was 

initiated to conduct a systematic analysis of the G x E interactions through application of 

novel approaches that may add value to future sugarcane METs. Chapters 3 and 4 of this 

study were therefore seen as broad investigations of the G x E interactions across the rainfed 

regions and the purpose of such studies were to direct or inform the approach that would be 

followed for the detailed G x E studies within the different regions. To this end, these 

chapters illustrated the complex nature of the G x E interactions in the rainfed parts and 

showed how post-release recommendation trials can be utilized to ultimately inform pre-

release selection programs. Chapters 3 and 4 identified that the midlands region was unique, 

while the coastal and hinterland regions showed some similarity and could subsequently be 

analysed together.  Following this combined analysis in Chapter 7, it was concluded that the 

C and H programs were in fact different. The reason for the difference in results between 

Chapter 3 and Chapter 7 lies in the difference in data sets used. In Chapter 3, released 

cultivars with stable performance were evaluated whereas in Chapter 7, unreleased, diverse 

genotypes were tested.  

Chapter 3 also showed how ratoons from the same trials and trials from the same location 

showed variable genotypic responses, thereby highlighting the need to characterize the METs 

in relation to environmental factors. Furthermore, Chapter 3 also highlighted the possibilities 

of site similarities (e.g. humic vs. sandy sites in the midlands) as well as the uniqueness of 

sites in frost pockets. These observations were subsequently confirmed in Chapter 5 when the 

midlands region was studied in detail. This therefore illustrates how important broad studies 

are, and how valuable they can be at flagging issues that need further attention when 

conducting a systematic analysis of G x E interactions at an industry/regional level. Chapters 

3 and 4 therefore provided a base from which more detailed studies and some novel 

approaches to interpret G x E interactions could be conducted. This was despite the use of 

highly selected, relatively stable commercial cultivars in the G x E studies in Chapters 3 and 

4.  
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The statistical methods used in this study were based on multivariate techniques that 

produced visual outputs (biplots) from which G x E interactions could be investigated. Given 

the large quantities of data originating from numerous selection programs in the industry, the 

multivariate methods were chosen based on the ease of interpretation. More statistically 

robust methodologies may have been more accurate; however, it is believed that many of the 

patterns and trends that were observed in these studies may have gone unnoticed. Of 

particular value was GGE biplot analysis, which was ideal for the evaluation of test site 

similarity and identification of homogenous MEs (particularly in Chapters 5 and 7). The 

inability to evaluate statistical significance of genotype and environment co-ordinates on the 

biplot is one of the limitations of GGE biplot (Yang et al., 2009). Therefore, despite the 

evaluation of test site similarity across numerous trial series in Chapters 5 and 7, any 

decisions about the removal of certain sites from the trial networks will only be made after 

further statistical evaluations and practical considerations. Still, GGE biplot analysis allowed 

for quick visual examinations of site similarities in this study and its use in other sugarcane G 

x E studies is recommended. Furthermore, its use as a tool to identify genotypic traits 

responsible for yield variations in different environments was clearly illustrated in Chapter 6, 

where a covariate effect biplot (Yan and Tinker, 2005) was produced.   

Despite the demonstrated applications of GGE biplot to identify causes of G x E interactions 

(Yan and Hunt, 2001), the preferred method of interpreting interactions in this study was 

AMMI analysis instead. This was mainly because of the numerous demonstrated successful 

uses of AMMI to interpret G x E interactions in a range of crops (Van Eeuwijk and Elgersma, 

1993; Van Oosterom et al., 1996; Romay et al., 2010). The methodology involves correlating 

AMMI IPCA scores to environmental covariates and genotypic traits, and further facilitating 

interpretation by superimposing these covariates and traits onto the AMMI biplots. The 

technique proved successful in identifying key covariates affecting G x E interactions across 

regions in Chapter 4 and when identifying factors causing genotype x time of harvest 

interactions (Chapter 6). Correlations between covariates and IPCA scores were generally 

weaker in Chapter 7. Nevertheless, the enrichment of the AMMI biplots with the covariates 

and genotypic traits in Chapter 7 allowed for a comprehensive interpretation that may not 

have been possible using other methods. Another key advantage of using this approach is that 

it is relatively simple to understand and implement as opposed to other more complicated 

analyses like partial least squares regression (Vargas et al., 1998). Furthermore, the use of 
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AMMI served to confirm many of the G x E patterns that were initially observed using GGE 

biplot analysis, thereby adding confidence to the recommendations.  

The pattern analysis approach to interpret G x E interactions proposed in Chapter 5 is a novel 

way to understand general sugarcane growth responses to varying types of environments. The 

approach may be used in preliminary studies, where information is required on the trait 

profiles of germplasm collections and the types of environments characterising an industry. 

Once identified, representative genotypes in each set may be used in detailed growth 

experiments. Such experiments should be conducted in environmental conditions typical of 

the environment groups identified. This will allow for the growth of different genotype sets to 

be modelled as opposed to modelling the growth of specific genotypes, which is difficult in a 

genetically complex crop like sugarcane. The pattern analysis and grouping strategies 

proposed in this study therefore have potential beyond conventional G x E research, as it can 

assist in selecting representative genotypes (and environments) for detailed physiological and 

crop modelling research.  

The use of variance components analyses in this study was primarily aimed at evaluating the 

relative contributions of different sources to yield variation. In Chapter 3, the variance 

components analysis provided insights into the variation accounted for by different 

components across regions. That study was the first to highlight that the genotype x ratoon  

term accounted for less variation than the site x ratoon interaction in the industry. This is 

especially relevant in an industry where there is a general perception that variation in ratoon 

performance is more dependent on genotype than site conditions. This point was highlighted 

once again by the variance components analysis in Chapter 7, which also indicated that 

selection gains are more likely on the short cutting cycle compared with the long cutting 

cycle. This has indeed been the case in the industry during the last few years as fewer 

commercial genotypes have originated from long cycle compared with the short cycle. The 

use of variance components to determine optimal numbers of trials, replicates etc. was out of 

the scope of this study and may be addressed in follow-up studies to Zhou et al. (2011) in 

order to optimize the efficiencies of the trial networks.  

In general, the combination of statistical methods adopted in this study highlighted the 

different approaches that could be used for the analysis and interpretation of sugarcane 

METs. In most instances, the nature of the datasets determined the most appropriate analysis 

to employ. The main factors responsible for G x E interactions varied slightly from one 
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chapter to the next. This may have been because of the differences in methodologies. 

However, it is more likely attributable to differences in production conditions from one 

region to the next. An ongoing objective throughout the chapters of this study was to evaluate 

the appropriateness of multivariate methods for the interpretation of G x E interactions. In 

retrospect, it is apparent that no single methodology was appropriate across all datasets. 

Instead a combination of approaches, depending on the nature of the data, seemed more 

appropriate. 

One of the novel features of this study was the use of weather data to supplement 

conventional sugarcane METs. Most sugarcane G x E studies have been largely empirical in 

nature (Queme et al., 2007; Jackson et al., 2007), and aside from a single analytical study 

(Jackson et al., 1995), no other attempts had been made to interpret sugarcane G x E 

interactions on a large scale. In many instances, the lack of appropriate weather stations at 

trial sites is a limitation to such interpretive studies. In fact, the weather data used in this 

study was also not ideal. At times, data had to be used from weather stations that were 

located at a distance from the actual trial sites, which may have compromised the accuracy of 

some of the analyses.  In some cases data from the same weather stations were used for two 

different sites (with trials on the same cutting cycles). As a result, any grouping of sites based 

on weather data may have been attributable to the origin of the data rather than the true 

similarity of the sites being tested. Consequently, any future attempts to adopt the 

methodologies used in this study should ensure that weather data are sourced from an 

appropriately positioned weather station. For the selection programs investigated in this 

study, it is therefore recommended that an automatic weather station be established at each 

testing site.    

In addition to the use of basic weather data, one of the novel approaches that featured 

prominently in this study was the use of crop growth models to characterize sugarcane METs. 

Such an approach has not been used previously in sugarcane and it has provided valuable 

insights and ideas that future studies can build on. Collectively, the studies reported in the 

individual chapters represent the largest ever simulation of sugarcane METs. These 

simulations were done using a single approach throughout the study. The accuracy of the 

simulations might have been improved had different approaches been tested. However, 

“optimizing the use of crop models to characterize METs” was out of the scope of this 

particular study. Chapter 5 did touch on this issue by testing different water stress indices 

derived from crop models, but in general, the different possibilities of characterizing trials 
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using models were not evaluated here. Aspects that should be tested in future include a 

comparison of model simulations using visual estimates of effective rooting depth (done 

throughout this study) vs. actual soil textural measurements conducted to depth to determine 

rooting depth. The latter method may provide a better estimate of the total available moisture 

which may result in more accurate simulations. Another application of crop models to G x E 

research would be to treat the simulated yields as the yield of a hypothetical genotype in each 

trial, and subject that dataset to conventional G x E analyses. This will investigate the bias of 

crop models to different environments, as well as the performance of other genotypes relative 

to the hypothetical genotype. Furthermore, if the growth parameters associated with the 

simulations are known (as they are with all crop models), then it may be possible to use it as a 

probe genotype to study the characteristics of other genotypes in the dataset. Another aspect 

needing attention is to investigate the effects of increasing distances from weather stations, 

and how this affects the correlations between actual and simulated yields. These are just some 

of the ideas that have evolved from this study which will be used to optimize the use of crop 

models in sugarcane G x E analyses in the future.   

Chapters 4 and 5 suggested that the computation of environmental covariates be aligned with 

specific growth phases, as seasonal averages may have been misleading. In Chapter 6 this 

was tested (using a small dataset), and showed that relevant biological interpretations were 

possible when environmental factors were summarized within three growth phases. However, 

in Chapter 7 (larger dataset), the splitting of the growth phases did not appear to add much 

value to the interpretations on the long cycle.  This was attributed to the more diverse set of 

environments that were studied in Chapter 7, where the general climatic differences between 

sites had an overriding effect on the subtle differences that may have existed between growth 

phases. Conversely, when the short cycle was analysed in Chapter 7, the pre- and post-

canopy splits of the environmental covariates were explicitly associated with the late and 

early harvests, respectively. Therefore, it would appear that the splitting of the sugarcane 

growth cycle does have value when climatic differences between environments are subtle (as 

was the case in the short cycle dataset in Chapter 7). Further testing on a large scale with 

diverse environments and more appropriate weather data is needed to evaluate whether a 

general splitting of the growth phases will be valuable in future G x E studies. The strategy of 

using the crop model to estimate the growth phases has not been attempted in other studies 

previously, and future sugarcane studies should consider refining this approach.  
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In this study, the effects of environmental covariates on the G x E interactions were studied 

within selection programs that were already well established (Chapters 5 and 7). This implies 

a certain degree of homogeneity within the programs in soil and climate, which would have 

been the criteria for site selection upon establishment. It is hypothesised that the effects of 

environmental covariates would have been more pronounced had evaluation occurred across 

selection programs rather than within. Evidence of this is shown in Chapter 4, where post-

release trials from different regions were tested. In that study, the environmental covariates 

produced large significant correlations with AMMI IPCA scores. This is in contrast to the 

size and significance of correlations observed between covariates and IPCA scores in the 

within-program analyses in Chapter 7.  One of the limitations of conducting such analyses 

across diverse regions is the lack of genotype-balanced datasets across years and sites. Future 

sugarcane studies aimed at understanding the causes of G x E interactions should therefore 

consider applying these methodologies across selection programs rather than within 

programs. In the South African industry, it is recommended that a genotype-balanced MET 

be established across the different regions to follow up on some of the concepts outlined in 

this study.  

An aspect that featured prominently in the chapters of this study was that of sugarcane trait 

relations. In Chapter 5, it was shown that the trait relations between genotype sets did not 

vary much from one environmental group to the next. This suggests that the differences in 

environmental conditions were not large enough to alter trait relations, or there was low 

variability in trait expression in the population of genotypes studied. In general, the chapters 

in this study illustrated and confirmed some valuable trait relations that may be utilized in 

selection programs. For example, the strong correlation between CAN, ERC, and DIAM, 

which were generally negatively correlated to traits like FIB and POP. Some of the trait 

relations were consistently strong, while others varied in strength from one dataset to the 

next. It was interesting (Chapter 6) to note that POP had a large effect on TCANE when 

harvesting early in the season, while STKMS had a larger effect on TCANE when harvesting 

late in the season. In Chapter 7, the short trials were mostly harvested early in the season and 

the biplots revealed that POP and TCANE were always positively correlated. This shows that 

even when using two different types of analyses and two different datasets, the same 

conclusions could be reached about how the trait relations varied, and this adds to the validity 

of the strategies employed. The long cycle trials in Chapter 7 were harvested at 18 months of 

age, implying that some crops were harvested early while others were harvested late in the 
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season. This confounding effect of age and time of harvest should be investigated further. 

Given the complex combinations of age and time of harvest possible in the South African 

sugar industry, it is recommended that “cropping scenarios” be defined for future studies.  

In Chapter 7, the trait relations were also fairly consistent within selection programs, 

however, when comparing the short and long cycle programs there were deviations in trait 

relations. For example, on the long cycle, the relationship between TCANE and POP was 

generally weak across series, while TCANE and STKMS seemed to show a stronger 

relationship. On the short cycle, TCANE and POP were associated across most series; while 

TCANE and STKMS showed negative associations in five series. This illustrates the relative 

influence of different yield components on TCANE when different cutting cycles are 

implemented and shows how trait selection strategies have to be adapted when age at harvest 

is increased in sugarcane. The differences in trait relations described above may be the result 

of the greater incidences of Eldana (Eldana saccharina spp.) damage associated with the long 

cutting cycle. Eldana damage generally increases in older sugarcane and stalk boring results 

in the reduction in STKMS. It is hypothesised that the strong dependency of TCANE on 

STKMS on the long cycle is because of this effect of Eldana. In fact, the effects of Eldana 

and other pests and diseases were not taken into consideration throughout this study. This 

shortcoming is mainly attributable to the lack of pest and disease ratings in selection trials. 

Such biotic factors can have massive influence on the G x E interactions (Yan and Hunt, 

2001) and any further attempts at understanding causes of G x E interaction in sugarcane 

should account for the effects of pests and diseases as well.    

In general, the different methods of studying trait relations in this study proved to be accurate 

and comprehensive. However, future studies should consider using these techniques to 

analyse relations between traits defining certain lower level plant processes typically used in 

crop modelling. Most physiological and crop modelling research is done in isolation, 

somewhat detached from G x E research typically relevant to agronomists and plant breeders. 

In order to integrate these disciplines, the principles and approaches illustrated in this study 

are relevant, and may be downscaled to lower level plant processes to facilitate further 

understanding of sugarcane growth and development. To accomplish this, sugarcane METs 

must be comprehensively characterized in relation to phenotype, genotype, and environment. 

This should not be seen as the role of the plant breeder exclusively, but rather a joint effort 

including agronomists and physiologists as well. In this respect, more integrated studies of 
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this nature are necessary, especially in crops like sugarcane where G x E studies in general 

are uncommon.  

The way forward following this study will be to immediately address the site similarity issues 

that were identified in the different selection programs. This may require further practical 

considerations before final decisions are made. The massive trial datasets that were generated 

and characterized in this study will be expanded through inclusion of data from current trial 

series. These datasets will then be explored further to investigate breeding progress and 

inform selection strategies. Further studies will also be conducted to try and optimize the use 

of crop models and weather data for the characterization of sugarcane METs. And finally, 

attempts will be made for the routine inclusion of more detailed crop growth measurements in 

selection trials to enhance their value to other research disciplines and contribute to the 

understanding of sugarcane G x E interactions.  
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SUMMARY 

 

Information on the nature and causes of G x E interactions in the rainfed parts of the South 

African sugar industry were lacking. The aim of this study was to systematically analyse, 

identify causes, and explore more comprehensive methods of analysing and understanding 

the G x E interactions of sugarcane, in order to optimize future MET networks. Data from 

plant breeding selection trials and post-release evaluation trials were systematically analysed 

using various statistical approaches combined with the use of soil and climatic data and crop 

models. Statistical methods based on multivariate methodologies such as GGE biplot, AMMI, 

and pattern analysis, were used to explore the effects of different environmental factors on 

sugarcane performance and agronomic traits. 

The age at harvest was the main factor causing different genotypic responses in the midlands 

region, which was unique in comparison with the coastal and hinterland regions that shared 

similar characteristics.  In the midlands region, two testing sites were identified as being 

redundant and were recommended for removal from the trial network in favour of a testing 

site in a frost pocket. In the coastal/hinterland region, three sites were identified as being 

redundant. Along the coast, time of harvest influenced G x E interactions, with yields 

showing stronger correlations to stalk population in the early season and stalk weight in the 

late season. In all regions, site x ratoon interactions accounted for more variation in yield than 

genotype x ratoon interactions, suggesting that variation in ratoon performance is influenced 

more by site differences than genotype differences. The repeatable component of G x E 

interaction (genotype x site) was larger than the non-repeatable components (genotype x 

ratoon and genotype x site x ratoon) on the long cycle program on the coast, however, this 

was not the case on the short cycle. This suggests that more effort be placed on identifying 

more diverse test sites on the short cycle.  

In addition to providing direct recommendations for the industry selection programs, this 

study also illustrated novel methods of understanding sugarcane growth in different 

environments.  The benefits of using a crop growth model to characterize sugarcane METs 

for water stress were illustrated throughout the study. The further use of the crop model to 

establish sugarcane growth phases also proved useful, and is likely to be more valuable when 

diverse datasets are analysed.  Trials were characterized in terms of basic climatic and soil 

variables, which proved to be invaluable in understanding the causes of G x E interactions. 
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The characterisation of the current sites ensures that future site selection will be more 

rigorous, as plant breeders will be more aware of the conditions to select for or against.   

The study showed that the integration of empirical and analytical statistical approaches was 

more valuable than using either approach in isolation, as is conventionally done in sugarcane. 

Additionally, these techniques were applied across many trial series and shown to produce 

repeatable results. The different strategies used to investigate sugarcane trait relations in this 

study have not been reported elsewhere, and future sugarcane studies dealing with similar 

traits (or other traits associated with lower level plant processes) may benefit from applying 

these methodologies. Furthermore, the integration of these multivariate methods with the 

largest ever simulation of sugarcane METs has opened new doors for the combined use of 

crop and statistical models in sugarcane research – an area not previously explored for this 

crop.   The study illustrated novel methods of identifying factors responsible for sugarcane G 

x E interactions and introduced new ways of characterizing sugarcane METs through the use 

of crop growth models and supplementary environmental data. 

 


