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Chapter 1

INTRODUCTION

1.1 GENERAL
Most of the Earth’s liquid freshwater is found, not in lakes and rivers, but is stored

underground in conglomerations of voids, called aquifers, present in the geological
formations constituting the earth’s mantle, where they act as reservoirs of water for rivers
and streams, especially during periods of drought or low rainfall—a phenomenon
commonly called base flow. This resource, conventionally referred to as groundwater,
therefore forms an essential, in fact major, component of the fresh water resources, as
illustrated by the fact that nearly two billion (2 109) people depend directly on groundwater
For their drinking water, while 40% of the world’s food are produced on farmlands irrigated
with groundwater (Morris et al, 2003). It is therefore of vital importance that this essential
resource should be protected at all costs if it is to keep sustaining the human race and the
various ecosystems that depend on it in the future.

One reason why groundwater, so often constitutes the main source of drinking water in
many cities and towns around the world, is because it is frequently present in sufficient
quantities at the point of demand. However, this seemingly advantage may sometimes be its
greatest disadvantage, especially in situations where the groundwater occurs at shallow
depths and the area overlying the aquifer is populated densely. This problem is particularly
relevant in the present technological age with its vast quantities of waste that is often
disposed in an uncontrolled manner. Such a situation occurs at Douala the economic capital
of Cameroon in central Africa. The city not only hosts more than 80% of industries in the
country, but also has the largest urban population of approximately 3 000 000 with a
population density of approximately 350 persons per square kilometre (Eneke et al, 2011),
which continue to increase at a rate of approximately 120 000 migrants per year from the
rural areas (Guevart et al, 2006), while the groundwater level is very shallow and may
sometimes rise above the soil surface, especially during floods, which occur not too
infrequently.

There are essentially two difficulties that hamper the restoration of large-scale polluted
aquifers. The first is that groundwater is nothing else than rainwater that infiltrated the soil
surface at one time or another and therefore could contain large quantities of dissolved
solids that are potentially hazardous to living organisms. The second is that groundwater is,
with the exception of natural springs and other seepage faces, invisible. It is thus not always

easy to detect and control groundwater pollution. Although the pollution problem is not
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restricted to groundwater as such, it is aggravated here, because of the ancient belief that
wastes are safely disposed of, if buried below the earth’s surface. It took disasters like Love
Canal and the Price Landfill (Princeton University Water Resource Program, 1984) to
discover the detrimental effects that this practice may have on the population living on or
near polluted aquifers. Extreme care therefore should be exercised to prevent the pollution
of any aquifer that may pose problems to living organisms or to try and restore a polluted
aquifer threatening the natural environment. Groundwater pollution therefore needs to be
addressed once discovered with the view, to prevent its spread and to clean and restore
contaminated aquifers that may pose unacceptable risks to the environment.

1.2 PURPOSE OF THIS STUDY

While the problem of groundwater pollution is nowadays recognized worldwide and many
governments have started to take aggressive action to address it (Wisegeek, 2012), such
investigations are often conducted in a haphazard and injudicious fashion, or simply
neglected. Two reasons are often advanced to account for this state of affairs. The first that
groundwater is, with the exception of natural springs and seepage faces, invisible and the
second that groundwater originated from rainwater that infiltrated into the soil surface and
hence dissolve any solids, some of which are hazardous to living organisms, during the
infiltration process. It is thus not always easy to detect and control groundwater pollution,
or to restore a polluted aquifer.

One approach to address the previously described situations would be to base the
investigations of a polluted groundwater resource on a well-established and international
accepted structured methodology or framework. However, environmental phenomena are
complex and often site-dependent.The development of such a framework can thus be a
formidable task, as can be seen from a review of the methodology developed during the
coordinated research program on the Improvement of Safety Assessment Methodologies for
Near Surface Disposal Facilities (ISAM) organized by the International Atomic Energy
Agency (IAEA) to improve the disposal of low and intermediate level radioactive waste
(IAEA, 20044, 2004b). No attempt will therefore be made to develop such a framework for
Douala. What will be done instead is to use information from the ISAM and related
methodologies (Jousma and Roelofsen, 2003) to propose a set of guidelines for the future
restoration of the groundwater resources of Douala and demonstrate their application to

the groundwater resources.
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1.3  SCOPE OF THE STUDY

The best way to develop a set of guidelines for the restoration of the groundwater resources
at Douala is to have a detailed knowledge of all the factors that may contribute to the
pollution. These include the origin and types of waste contributing to the pollution, the
process that generates the waste, the nature of the natural environment and the effects that
the waste have on humans and the natural environment. The thesis therefore begins with a
discussion of these aspects, as they presently exist at Douala in Chapter 2.

One could in principle use any approach to develop a framework for the restoration of a
contaminated groundwater resource. However, as a review of the ISAM and related
methodologies referred to above will show, much can be gained by dividing the resource
and its immediate surroundings, henceforth referred to as the site into three basic
components: the near field or source (equated here with the contaminated aquifer), the
geosphere (the geological formations in which the aquifer occurs) and the biosphere (the
regions of the earth’s crust and atmosphere surrounding the aquifer occupied by living
organisms). This approach was also used in the development of the set of guidelines,
proposed in Chapter 3 for the Douala aquifer.

There are many “trial-and-error” approaches that can be used to implement a framework
for the remediation of a contaminated aquifer. However, experiences worldwide have
shown that the most useful approach is to supplement the framework with an appropriate
computational model, able to simulate the behaviour of the site under different conditions
and stresses (National Academy of Science, 2007). One approach to develop such a model is
to use the existing information and develop an appropriate conceptual model of the site.
This conceptual model is then translated into a mathematical model and implemented
either analytically or numerically on a computer to simulate the future behaviour of the
aquifer and to study the efficiency of the guidelines proposed in Chapter 3 to clean up the
aquifer. The basic mathematical principles are underlying such a model together is
discussed in Chapter 4. New analytical solutions of the groundwater flow and advection
dispersion equations are discussed in Chapter 5. The implementation on a computer
through the commercial computer package FEFLOW (Diersch, 2009) is discussed in Chapter
6. Various methods can be used for the remediation of contaminated groundwater (U.S.
Environmental Protection Agency (EPA), 2012), such as pump-and-treat methods (U.S.
Geological Survey (USGS), 1999), air sparging and vacuum extraction techniques

(Suthersan, 1999). The methods are, unfortunately, often costly, ineffective and needs
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constant human attention and therefore may not be appropriate for every contaminated
site. This applies in particular to Douala, which is situated at an elevation of 60 mamsl in the
littoral province of Cameroon, approximately 50 km from the Gulf of Guinea. The city
experiences in general a humid equatorial climate with a maximum annual rainfall of
4 000 mm, while daily temperatures ranges from 23°C to 33°. What seems to be required
here is a method that can cope with these climatic conditions with little human intervention.
A method that seems to be perfectly suitable for this purpose and has become a viable
alternative to pump-and-treat methods over the past few decades is permeable reactive
trench technology (Hudak, 2009; ITRC (Interstate Technology & Regulatory Council, 2011),
also called permeable reactive boundaries or Deep Aquifer Remediation Tools
(U.S.Geological Survey (USGS), 1999). This technology is discussed in more detail in
Chapter 5 and its possible implementation at Douala investigated with the computational
model developed for the Douala aquifer. Computational models have been used for years in
groundwater investigations (Pinder and Gray, 1977; Botha, 1985), often with the
assumption that results obtained from such models describe the behaviour of the aquifer
accurately. However, mechanistic modelling of physical systems is often complicated by the
presence of uncertainties (Isukapalli and Georgopoulos, 2001). The implications of these
uncertainties are particularly important in the assessment of several potential regulatory
options, for example, with respect to the selection of a strategy for the control of pollutant
levels. While these uncertainties have regularly been neglected in the past, it is nowadays
imperative that groundwater models be accompanied by estimates of uncertainties
associated with the model. Although a large number of approaches are available for this
purpose (National Aeronautic and Space Administration (NASA, 2010), they often require
exorbitant computing resources. One approach based on the Latin Hypercube Sampling
method (Helton and Davis, 2003) is used in Chapter 7 to derive uncertainty estimates based
on the analytical solution of the one-dimensional hydrodynamic dispersion equation
derived in Chapter 5. It has been known for years that the hydrodynamic dispersion
equation discussed in Chapter 5, is not able to account for the long-tail plumes often
observed in studies of contaminated fractured-rock aquifers. One approach that has become
quite fashionable in recent years to account for this is the replacement of the ordinary
spatial and temporal derivatives in the hydrodynamic equation of Chapter 4, separately or
simultaneously, with fractional derivatives. This approach and its application to the
hydrodynamic equation is illustrated in Chapter 8 with the help of the mathematical

computer package Mathematica (Wolfram Research Inc., 2012).
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Chapter 2

OVERVIEW OF POLLUTION IN DOUALA CITY

2.1 GEOGRAPHICAL FEATURES

Douala City is situated at latitude 4 1" North and longitude 9 45" East on the Wouri estuary,
approximately 50 km from where the estuary opens in the Atlantic Ocean, which enhances
tidal inflow of saline water along the waterfront. The estuary with its richly endowed

natural and socio-economic resources is the dominant feature along the littoral zone of

Cameroon.
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Figure 2-1: Map of the five districts of Douala and surrounding towns (Atheull et al, 2009).
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Douala is administratively divided into 5 districts governed by councils following the typical
Cameroonian centralised command system where a government delegate appointed by the
President of the Republic, presides over a council. The city houses today about 3.5 million
people in a nucleated settlement pattern (Gue'vart et al, 2006). The famous central area of
the city, Akwa, has banks, commercial enterprises and other small-scale businesses.

The topography surrounding Douala which slopes gently from an altitude of approximately
57 m in the east towards approximately 3 m along the Wouri River in the west, see
(Gue'vart et al, 2006).This and the high run-off rate in the Wouri estuarine system cause
groundwater levels in the city to be shallow and even above the soil surface in some areas.
The city is consequently often subjected to frequent severe floods almost all year round.
This applies in particular to the flood-prone areas like Mabanda and Bonendale in Bonaberi
to the north and the Youpwe area in the south, as illustrated by the computer generated
view of the 2010 flood in (Gue'vart et al, 2006). As can be expected, such floods affect the

economy of the city and life in the city adversely.

Figure 2-2: Aerial view of Douala's urban sprawl (Atheull et a/, 2009).
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Figure 2-2: Computer generated view of the general topography of Douala.

Simulation
oF vt
level in
Douala
during an
inondation

- " Estuary of Wourri

Figure 2-3: Computer generated view of the inundation in Douala caused by the 2010 flood.

2.2 ECONOMIC ACTIVITIES

The Douala metropolitan area—the economic hub of the Republic of Cameroon and the
capital of Cameroon's Littoral Province—is not only the largest city in Cameroon, but also
the nation's commercial capital. Consequently, it handles the majority of the country's chief

exports, such as oil, cocoa, cotton and coffee and the trade with neighbouring landlocked
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Chad and the Central African Republic. The port of Douala with its 10 km wharf is situated
on the mouth of the River Wouri, 25 km from the sea. Although a commercial port, it can
only handle vessels with relative shallow draughts, because of its location on an estuary.
There is also a banana port in the industrial area of at Bonaberi.

Douala has two designated industrial zones Bassa and Bonaberi, situated in contrasting
environments. The Bassa zone evolved on a well-drained landscape along the estuarine-
creek of the Dibamba River to the east of the city, while the Bonaberi zone evolved almost
entirely on marginal depressions of the aquatic terrain adjacent to the Douala lagoon,

necessitating extensive land reclamation for the industrial development.

Figure 2-4: Location of the two industrial zones in Douala (In Bonaberi we have the

pollution west and in Bonanjo we have the pollution East).
The industrial areas of Douala accommodate most of Cameroon’s industries. These include
manufacturing plants, chemical plants, including CHOCOCAM (Chocolate Cameroon)—the
sole producer of quality chocolate products in the region, and breweries. The companies
running the plants are often accused of not only spilling by products accidentally into the
Wouri River and estuary, but also dump it deliberately. It is also alleged that gaseous
emissions from the plants are responsible for the occurrence of acid rain and associated

illnesses in the city. Douala also houses a number of markets, including the Marché Central
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one of the biggest African style markets in Cameroon and the entire sub-Saharan region of

Central Africa.

Figure 2-5: Typical scenes of buyers and sellers at Douala markets.
The market consists of thousands of shops and stores with traders from all over Africa and
countries such as China, Lebanon, and Korea. Other markets include the Congo Market and
the Marché De Sanaga Marché Eko Sale that concentrates on clothing and carpentry work,
and household and fashions respectively Figure 2-6 shows typical scenes of buyers and
sellers at Douala markets. Agriculture, which accounts for almost 50% of foreign currency
earnings in Cameroon, plays an important role in the economic activities of both Douala and
the surrounding coastal areas, where traditional and modern agriculture co-exist. However,
the most important occupation of the rural population in the immediate vicinity of Douala is
small-scale fishery, which produces more than half of the animal protein consumed in the

city.
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2.3 ECOLOGICAL PROBLEMS EXPERIENCED IN DOUALA

2.3.1 Pollution in Douala

The modern metropolitan area of Douala is essentially the product of the Government’s
policy of what may be called industrial agglomeration of economical benefits with little or
no attention to the influence that the development may have on the environment. The
government-supported infrastructure for controlling pollution is consequently dispersed,
weak and ineffective and there is severe shortage of funding (Munde, 2011). This situation
is particularly troublesome in the Bonaberi area where the major industries are related to
the petroleum industry. The effluents discharged into the lagoon and surrounding areas
therefore often consist of degraded petroleum products, although sources of pollution from
other industries, such as pest control in cocoa, coffee and banana plantations, which are not
regulated (Sama, 1996), also contribute to the overall pollution. For example, pesticides that
have long been banned elsewhere in the world, such as DDT, are still used and often stored
in leaky storage facilities (Munde, 2011). This poses a considerable threat to the local
fishing industry and human health (Gabche and Smith, 2007).

The environmental problems in the Bonaberi area is further aggravated by the rapidly
growing population and the limited availability of land, which force poor people to encroach
onto wetlands (Mclnnes et al, 2002) and the often maliciously disposal of waste. A dense
mangrove swamp forest with its luxuriant palms has been almost completely destroyed
since 2002, by urbanization. The houses and industrial buildings on the cleared land are
poorly built, without adequate drainage. The situation is further aggravated by floods and
sea-water intrusions that cause water levels to rise from the 2 m normal elevation of the
area to 5m within a few minutes, destroying buildings and washing waste and raw sewage
into the estuary and nearby springs and boreholes. This situation is particularly
troublesome as approximately only 65 000 inhabitants out of a population of 3 million have
access to clean reticulated water. The rest, including 80% of the low-income populations in
the informal settlements, are forced to use springs and boreholes for their daily needs

(Takemet al., 2009).
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Figure 2-6: Malicious disposal of waste in the Bépanda neighbourhood of Douala (Takem et
al,2009)
By-products from the mainly chemical plants in the Bassa industrial zone are often

discharged into the nearby estuarine creek of the Dibamba River, thereby causing the

encroachment of invasive species, in the adjacent wetlands.

2.3.2 Water-borne Diseases

As could be expected from the preceding discussion water-borne diseases, ranging from
simple to complex skin infections such as filarial to highly mortal diseases such as cholera,
dysentery and diarrhoea are quite common in Douala (Fonteh, 2003). In fact, water-borne
diseases were responsible for 15% of the deaths of children less than 5 years old that died
in 2000 (Katte et al, 2003), and for approximately 50% of all deaths in the country lists

some of the major water-borne diseases that occur in the country.
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Table 2-1:Major water-borne diseases that occur in Cameroon (Katte et al, 2003)

Diseases Description Mode of infection Symptoms Mode of

eradication

Hepatitis A Viral disease that | Food or water | Fever, jaundice, and | Vaccine
interferes with the | contaminated with faecal | diarrhoea; 15% of | available
functioning of the liver | matter victims have prolonged

symptoms over 6-9
months

Hepatitis E Water-borne viral | Faecal contamination of | Jaundice, fatigue, | vaccine
disease, interferes | drinking water abdominal pain, and | available
with functioning of the dark coloured urine
liver

Typhoid Fever | Bacterial disease Contact with food or | Victims exhibit | Availability

water contaminated by | sustained high fevers | of drugs
faecal matter or sewage left untreated

mortality rates can

reach 20%

Leptospirosis Bacterial disease that | contact with water, food, | Severe fever, severe | Availability
affects animals and | or soil contaminated by | headache,  vomiting, | of drugs
humans animal urine jaundice, diarrhoea

Schistosomiasis | Caused by parasitic | Larval form of the | Urinary or intestinal | Drugs
trematode  flatworm | parasite penetrates the | disease, decreased | available
Schistosoma; and fresh | skin of people exposed to | work  or learning

water snails

contaminated water

capacity;
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Chapter 3

RESTORATION OF THE GROUNDWATER RESOURCES AT DOUALA
3.1 GENERAL

The term restoration is defined in the Oxford English Dictionary as: “The action or process
of restoring something to an unimpaired or perfect state” While such an objective may be
attainable in some situations or in an idealized world, experience shows that it is very
difficult to achieve in the real world. This is especially true for what may be termed
environmental phenomena and their related sciences. The situation here was further
aggravated under the system of command-and-control regulations that dominated the
environmental sciences through the mid-1980’s in that regulators and industry frequently
played adversarial roles. This caused a great deal of energy to be consumed in challenging
the regulatory system, resulting in inefficiencies when regulators specified inappropriate
technology solutions and in unpredictability when courts resolved disputes over compliance
dates and other program features (NAS, 2006) (pK75). The result was that
restorationprocedures were often conducted in haphazard and dubious ways a situation
further aggravated by the development of the desktop computer. However, the modern
shift to more collaborative market-sensitive regulatory strategies, allows an affected
community to partake in the restoration and at to share responsibility for taking actions to
protect human health and the environment.

Environmental phenomena are complex and often site-dependent. Various guidelines have
consequently been developed in recent years to assist in the application of more
collaborative market-sensitive regulatory and restorative strategies for these phenomena.
As can be expected these guidelines not only vary from one phenomenon to the next, but
often also mutually. Nevertheless, there is enough evidence today to conclude that no
environmental restoration should be undertaken, without reference to one or more of these
guidelines. This applies in particular to the field of Geohydrology, where the major
constituents (water and rocks) are invisible. However, as can be seen from an evaluation of
guidelines related to the assessment and monitoring of groundwater resources, e.g.(Jousma
and Roelofsen, 2003; IAEA, 2004; NAS, 2006; World Meteorological Organization, 2008;
Dent, 2012), the differences are often more related to details rather than principles. In fact,
judging from the references quoted above, guidelines for the restoration of contaminant

groundwater resources can be essentially summarized in five major recommendations.
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a) Specification of the restoration context.

b) The consistent and detailed documentation of the state of the contaminated resource
at the time restoration is initiated and during the restoration.

c) Identify and justify the actions and their goals that need to be taken during the
restoration, and develop appropriate methods for their implementation.

d) Formulate, and implement appropriate models and use them consistently in
combination with appropriate monitoring data to guide and assess the effectiveness
of the restoration activities and to motivate and take corrective action where
necessary.

e) Analyze the restoration results continuously and use them to build confidence in the
community affected or stakeholders, as they are commonly called.

An attempt will be made in the discussion that follows to develop a preliminary
methodology for the restoration of the groundwater resources at Douala based on these

recommendations.

3.2  SPECIFICATION OF THE RESTORATION CONTEXT

The restoration of contaminated aquifers was in the past often conducted in a haphazard
manner without a clear view of what should be achieved and what resources, including
economic resources, are available for the task. The main aim of the restoration context is to
try to focus the restoration by developing a well-documented framework for the project
with special reference to the following not necessarily exhaustive list of objectives: purpose
of the restoration and its envisaged goals or end-points; the available time frames and any
regulatory constraints that need to be satisfied by the restoration or taken into account
during the actual execution of the restoration procedures.

Not enough information is at present available to specify a detailed restoration context for
Douala. Three aspects that would certainly have to be addressed in an actual restoration of
the area are: (a) the supply of clean water to the inhabitants of the city, (b) reduction in the

pollution sources and (c) a healthier biosphere.
3.3 THE DETAILED DOCUMENTATION OF THE STATE OF THE CONTAMINATED

RESOURCE

The discussion can be clarified considerably by following the approach advanced in (IAEA,

2004) and divide the resource (or aquifer, as it is more commonly called) into three inter-
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dependent domains.

a) The source—the zone of the earth’s surface in direct contact with the source or
sources of pollution.

b) The geosphere—the soil and rock formations underlying the near field that may
eventually be contaminated by the pollution sources in the near field.

c) The biosphere—the part of the earth's crust, waters, and atmosphere that supports

life.

3.3.1 The source

The available information on the disposal of waste at Douala is more of a qualitative rather
than quantitive nature due to the ubiquitous sources of pollution; see Section 2.3.1 and
Figure 2-7. One exception to this rule is the PK10-Génie Militaire landfill site depicted in
Figure 3-1. The site, which is 10 km from Douala city centre, has been used since 2003 by
the company HYSACAM (“Hygiéne et Salubrité du Cameroun”) under a contract with the
Douala Municipality “Communauté Urbaine de Douala” or CUD to dispose municipal waste
collected in the city and to manage the site. The site covers an area of approximately 63 ha
of which nearly 10 ha have been used to dispose approximately 1 700 000 tonnes of waste
by the end of 2011. The landfill is controlled, but there are no specific waste recovery or
disposal practices in HYSACAM'’s operating contract with the CUD only requires that the
waste be placed in successive layers 700mm thick, separated by 200mm layers of soil or
inert material in cells, which are compacted and covered daily. Unfortunately, these
specifications have not been strictly applied at PK10. Current practices include capping with
soil material but it is not done systematically, so landfill management cannot be considered
optimal. Lists of the composition and the annual quantity of Douala waste received at the

PK10 landfill is given in Table (3-1)
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Figure 3-1: Map of the Pk 10 landfill location near Douala (UNFCCC, 2011)

Table 3-1: Composition of the annual waste stream disposed at the Pk 10 landfill (Tonnes).
Year Food! Garden? Glass3 Pulp* Textiles Wood> Total

2003 18 389 3009 10 241 625 669 502 33435
2004 67433 11035 37 554 2293 2452 1839 122606
2005 67240 11003 37 447 2286 2245 1834 122055
2006 96130 15730 53536 3268 3496 2622 174782
2007 96125 15730 53533 3268 3495 2622 174773
2008 135044 22098 75207 4591 4911 3683 245534
2009 136033 22260 77 758 4625 4947 7710 253333
2010 142835 23373 79 556 4856 5194 3896 259710
2011 149977 24542 83 523 5099 5454 4090 272685
Total 909206 148780 508355 30911 32863 28798 1658913
Ratio  54,8% 9,0% 30,6% 1,9% 2,0% L7% 100%

Food, food waste, beverages and tobacco!; Garden, yard and park waste?, Glass, plastic, metal, other inert
waste3; Pulp, paper and cardboard*; Wood and wood products3?

As shown by the data in (UNFCCC, 2011), the majority of waste disposed at the PK10 site
consists of organic compounds, with the result that large quantities of biogas are produced
at the site. A project entitled.

Douala Landfill gas recovery and flaring project has consequently been negotiated with the
United Nations Framework Convention on Climate Change (UNFCCC, 2011) as part of their
Clean Development Mechanism (CDM) to install a landfill gas (LFG) recovery and flaring
system at the site. This will allow HYSACAM to introduce an optimal management system

for the landfill based on a feasibility study of the project by the Italian company
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BIOTECNOGAS (UNFCCC, 2011). A further aspect of the study is to reshape and fully cap the
landfill surface thereby improving the efficiency of LFG recovery and at the same time limit
water infiltration (UNFCCC, 2011).It will take about two years (2010-2011) before the
landfill management is fully optimized according to Biotecnogas’ recommendations. On top
of that, new waste will be placed into better-structured cells and covered regularly. Thus
once optimization measures are applied, from 2012 HYSACAM will be able to stick perfectly
with the contractual specifications agreed with CUD. The PK10 landfill will therefore involve
a controlled placement of waste (waste is directed to specific deposition areas and there is
already a control of scavenging and fires) with (i) cover material; (ii) mechanical

compacting; and (iii) levelling of the waste.

3.3.2 Chemical Properties of the Water

Chemical analysis of water samples was carried out at the Indian Institute of Technology
Bombay and the Water Analysis Laboratory of the Hydrologic Research Centre of Cameroon.
HCO3was determined as the total alkalinityby titrationas outlined in APHA/AWWA/WEF(
Gue'vart et al, 2006). Cations were analyzed by inductively coupled plasma atomic
emission spectrometry (ICP-AES): Na and K, and Ca, Mg and total hardness by the EDTA
titrimetric method (APHA/AWWA/WEF, 1998) (Gue’vart et al, 2006). A UV-visible light
spectrophotometer was used to analyze S0% by turbidimetry according to
APHA/AWWA/WEF ( Gue’vart et al, 2006). Chloride was determined by the Ion Selective
Electrode Meter (ORION). NO3was determined by ion chromatography with the instrument
model DX-120(Dionex) ( Gue’vart et al., 2006).

Table 3-2: Seasonal variation of the chemical content in springs (SP) and bore wells (B)

February=dry and August=rainy ( Gue'vart et al., 2006)

Locality name Month Feb Aug. Feb. Aug. | Feb. Aug. | Feb. Aug.

SampleID | pH NO;(mg/D) S04(mg/D Cl(mg/1)
Bobong(Il) SP1 4.51 5.06 49.83 26.43 23.20 10.75 18.3 18.51
Genie SP2 3.81 4.08 5481 56.61 17.10 0.710 14.81 4.21
Ndogsimbi(CCC) SP3 4.65 4,58 4437 24.74 22.70 9.010 28 11.35
Ndogbong SP4 4.01 4.04 59.80 63.03 4.520 3.330 11.3 16.54
Ndokotti(SOCART SP5 495 5.30 47.80 31.29 19.48 22.20 38.0 4441
0) SP6 4.10 3.98 9430 83.16 06.30 01.22 19.6 22.06
Bonabassem B1 4.26 457 0.210 0.360 0.320 0.540 2.3 01.46
Mussoke B2 4.63 4.75 0.340 0.480 04.82 05.46 540 02.70
Pays Bas B3 4.10 443 11.54 13.42 05.10 0.630 3.70 01.80
Genie B4 4.27 495 22.75 26.43 06.21 06.96 4512 0.31
Casmondo
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3.3.3 Microbial analysis

The microbiological contents in the water samples were determined using fecal coliform
and fecal streptococcus as indicator bacteria. The isolation and enumeration of coliform
were carried out using the membrane filtration method. Fecal streptococcus was isolated
and enumerated by membrane filtration, and growth on membrane enterococcus agar (
Gue'vart et a/ 2006). The following table 3-3 shows the Seasonal variation of the microbial
content in springs and bore wells during the dry and rainy season in some settlement in

Douala.

Table 3-3: Seasonal variation of the microbial content in springs (SP) and bore wells (B)
February= dry and August=rainy( Gue’vart et al ., 2006)

Locality name Month | Feb. Aug | Feb. July Feb July
Sample | EC(pus/cm)) | FC FC FS FC
ID (cfu/100 | (cfu/100) | (cfu/100 | (cfu/100)
ml) ml)
Bobong(II) SP1 188.5 205 720 950 215 280
Genie SP2 188 202 19 30 6 10
Ndogsimbi(CCC) SP3 208 335 26 20 5 2
Ndogbong SP4 202.4 213 500 800 420 300
Ndogbong(SOCARTO) | SP5 263 274 22 10 4 1
Bonabassem SP6 258.4 270 27 1 13 0
Mussoke B1 254 30.5 3 1 0 0
Pays Bas B2 338 359 94 70 21 6
Genie B3 252 45 633 1200 681 800
Casmondo B4 340 362 2311 2.100 1421 1500

3.4  GEOSPHERE

As said earlier, the geosphere sometimes referred to as the near-field - the rock and
unconsolidated material that lies between the near-field and the biosphere. It can consist of
both the unsaturated zone which is above the groundwater table and the saturated zone
which is below the groundwater table. We will then start the description here with the

hydrogeology of the area under investigation.

3.4.1 Hydrogeology

Two shallow and deep aquifer units have been identified in the Douala sedimentary basin by
SNEC based on the work of (Dumort, 1968) and (Regnoult, 1986). A generalized
stratigraphic sequence of the major aquifer units of the Douala sedimentary basin
modified from (Mafany, 1999) and (Regnoult, 1986) is given in Fig.1. The shallow aquifer is
made up of the Mio-Pliocene sands at the base and the Quaternary alluvium at the top (Fig.
3.2), which together form the Wouri Formation. It consists of fine- to coarse-grained sand

and gravel mixed with silt and clay, and lies on top of the Miocene shale of the Matanda
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Formation, which serves as an aquicludes. According to (Djeuda-Tchapnga et al, 2001), the
aquifer’s thickness ranges between 50 and 60 m. Several lentils of channel-filled sands,
hosted in clay layers, occur within this main aquifer, which act as perched aquifers. The
water table is generally less than 10 m below the surface ( Gue’vart et al, 2006). Bore-well
discharges of 80 m3/h well have also been reported ( Gue’vart et al., 2006). The aquifer is
mainly recharged by precipitation. Waste water from drainage channels also infiltrates into
this aquifer. Several streams drain the area and may also recharge the aquifer depending on
the season and the water levels. Average groundwater level fluctuations range between 0.3
and 2.1 m between the dry and wet seasons. The aquifer is highly exploited by dug wells
that record water levels of approximately 1-20 m. Many springs flow from valleys at the
base of small cliffs where the topography intersects the water table in the shallow aquifer.
These perennial springs are the major source of drinking water in the sub-urban
settlements, though their yields have not been measured. However, because of poor
sanitation facilities, there are several potential sources of pollution mixing together at close
proximity to the springs. During the rainy season, the area surrounding the springs is
flooded with solid and liquid waste from the pit latrines, stagnant surface water from
puddles located upstream, leachate from solid waste dumps, waste water from washing
cloths and wastewater mixed with human feces and animal dung. The deep aquifer consists
of the Basal sandstones of the Moundeck Formation, underlain by the Precambrian granites
and overlain by shale and marl of the Logbaba Formation and the Palaeocene sands of the
Nkappa Formation (Fig. 3.2). The Palaeocene aquifer of this area has a thickness of about

200 m see in ( Gue'vart etal, 2006).
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Figure 3-2: Chrono-stratigraphic column of the Douala basin showing the four major aquifer
units (Modified from Mafany, 1999; Regnoult, 1986)

3.4.2 Geological setting

The study area is part of the Phanerozoic Cretaceous-Quaternary Douala Sedimentary Basin,
covering an area of about 7,000 km square with a maximum width of 60 km (Mafany, 1999;
Regnoult, 1986). It is one of the several divergent margin basins along the Southwest
African Coast whose origin and structure are associated with the opening of the South
Atlantic Ocean during the breakup of the Gondwana. The geology of this basin has been
described by several researchers (Mafany, 1999; Regnoult 1986, Tamfu and Batupe 1995).
The stratigraphic of the Douala sedimentary basin, according to (Tamfu and Batupe 1995),
consists of Precambrian basement, unconformable overlain by a sedimentary sequence
ranging in age from Cretaceous to Recent (Fig. 3-2). The city of Douala rests directly on the
Mio-Pliocene to Recent alluvial sediments of this basin, which constitute the Wouri
Formation of the Douala basin. The entire study area is dominated by this formation. It
generally consists of unconsolidated fine- to coarse-grained sand and gravel mixed with silt
and clay in various proportions. The alluviums composed predominantly of quartz and
kaolinite (Regnoult, 1986), with a general thickness that ranges between 50 and 60 m
(Djeuda-Tchapnga et al, 2001).
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3.4.3 Spring location

The anthropogenic activities (washing of clothes and kitchen utensils, garbage dumps, etc.)
around the springs (about 10-30 m radius) (Ndogsimbi, Bonabassem, Bobong II) were
found to have an impact on the water quality. Several pit latrines are located adjacent to and
at times up gradient of these springs at a distance of less than 30 m, a phenomenon that is
common to suburban communities in Cameroon (Tanawa et al, 2002). Domestic waste
water disposal in the open area adjacent to the springs is a common practice. Some springs
are located at the base of small hills on which are found overcrowded houses with solid
waste scattered on hill slopes together with stagnant water, and in some cases storm water
runoff from the neighbouring up-gradient area flowing into these springs. The area around
some of these springs (Bonabassem, Bobong II, SOCARTO and Genie; Fig. 3.3) usually is

flooded, especially during the rainy season, because of poor drainage.
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Figure 3-3: Geology drainage and sample points of Douala (Olirvy, 1986)
3.4.4 Hydro-geochemistry

Chemical reactions determine occurrence, distribution, and behaviour of aquatic species.
Aquatic species are defined as organic and inorganic substances dissolved in water in
contrast to colloids (1-1000 nm) and particles (> 1000 nm). This definition includes free

anions and cations sensu strictu as well as complexes. The term complex applies to



39

negatively charged species such as OH™ , HCO3~CO3, SO~ , NO%~,PO3™, positively charged
species such as ZnOH*+,CaH2P04* , CaCl*, and zero-charged species such as CaC03, FeS04
or NaHCO3 as well as organic ligands. Interactions of different species within the aqueous
phase, with gases and solid phases (minerals) as well as Equilibrium reactions 5 transport
and decay processes (biological decomposition, radioactive decay) are fundamental in
determining the hydro-geochemical composition of ground and surface water. Hydro-
geochemical reactions involving only a single phase are called homogeneous, whereas
heterogeneous reactions occur between two or more phases such as gas and water, water
and solids, or gas and solids. In contrast to open systems, closed systems enable only
exchange of energy, not constituents with the surrounding environment. The ability of solid
substances to exchange cations or anions with cation or anions in aqueous solution is called
ion-exchange capacity. In natural systems anions are exchanged very rarely, in contrast to
cations, which exchange more readily forming a succession of decreasing intensity: Baz+>
Sr2+> Ca?t > Mg?+> Be?+ and Cs*> K+> Nat+> Li+. Generally, multivalent ions (Ca?* ) are
more strongly bound than monovalent ions (Nat), yet the selectivity decreases with
increasing ionic strength (Stumm and Morgan, 1996). Large ions like Raz+ or Cst as well as
small ions like Lit or Be2*+ are merely exchanged to a lower extent. The H+ proton, having a
high charge density and small diameter, is an exception and is preferentially absorbed. The
following table shows the major ion composition of water sample in Douala city. The hydro-
geochemical characteristics of the water samples were studied using the data from the

samples from the year 2009 shown in Table 3-4 ( Gue'vart etal, 2006).

Table 3-4: Major ion composition of water sample collected in January 2006

Sample | pH Cond Na* Kt Ca?*t Mg?*t | Cl™ HCO; | S03~
Name (us/cm) | (mg/D) | (mg/D) | (mg/D) | (mg/D) | (mg/D) | (mg/D) | (mg/D
SP1 4.5 220 14.4 4,51 4 2.4 18.6 10 15.5
SP2 4 199 11.09 453 8 2.4 15.2 5 18.4
SP3 5 242 27.48 4.07 8 2.4 334 10 25.1
SP4 4.1 188 11.53 5.1 8 0.0 15.4 5 3.6
SP5 4.4 265 16.88 6.1 12 2.4 35.3 10 19.3
SP6 4.4 261 13.28 4,53 8 2.4 19.9 10 6.3
B1 4.3 30.2 0.54 1.62 8 0.0 3.1 5 15.7
B2 4.65 | 34.3 0.73 2.5 12 2.4 4.6 10 16.2
B3 4,24 | 50.1 4.1 1.85 8 0.0 4.3 5 17.8
B4 4.3 356 38.34 6.39 12 0.0 45.1 10 19.1
w1 6.1 54.2 3.12 2.3 12 0.0 2.27 35 2.26
W2 6.4 74.8 5.5 1.36 12 2.43 3 40 11.11




40

The pH of water ranged from 4.1 to 6.5. There was no marked difference in pH between the
springs and bore wells as the water is generally acidic. The acidic nature of groundwater
could be due to the organic acids in the soil as well as from atmospheric sources (Chapman,
1996). Although chemical data about the rainwater are not available, considering the
number of industrial establishments present in the region, it is assumed that the rainfall is
acidic due to the continuous emission of SO2 and NO2. The sandy nature of the soils and
short residence time of groundwater in the aquifer provide less time for water-rock
interaction, thereby allowing the groundwater to maintain the pH of the rainwater
(Chapman, 1996). Electrical conductivity varied from 54.2 ps/cm in W1 to 356 pus/cm in B4
(Table 6), whereas a background electrical conductivity of 50 pus/cm was reported by
(Kamta, 1999). The springs showed high conductivity (199-265 ps/cm) compared to bore
wells (30.2-50.1 ps/cm), except for B4 (356 ps/cm). A similar situation was observed with
respect to major ions and nitrate (Table 3-4).

3.4.5 Tectonic and seismic conditions

The Douala basin is bordered by Precambrian basement to the East and Northeast and by
the mount Cameroon volcanic line to the West and Northwest. It extends south into the
offshore across the shadow sheft off Cameroon into the deepwater area of Equatorial
Guinea. The area is divided into two sub-areas, comprising an uplifted Cretaceous platform
in the southern shallow water region, the Kribi-Campo sub-basin and the onshore and

offshore Cretaceous / tertiary Douala sub-basin in the North (Lakin, 2010).

3.4.6 Tectonic setting

The Douala basin developed during the Cretaceous break-up of Gondwana and the
separation of Africa from South America. The initial rifting phase may have commenced
during very Early Cretaceous time (Berritasian-Hauterivian) but the principal rifting
episode in these areas occurred from late Barremian-Aptain time (Lakin, 2010). The initial
formation of oceanic crust as the continents separated is believed to have commenced
during the Ilate-Aptian-late Albian interval. It would appear that the rifting was
asymmetrical, as many of the syn-rift features that would normally be expected are not
apparent at depth in this area, but they are abundant in the correspondent South American
segment (Lakin, 2010). Several additional tectonic events occurred during the passive
“drift” phase of the continent margin evolution at 84 Ma (Santonian), 65 Ma (K/T boundary)
and 37 Ma (late Eocene) (Lakin, 2010). These events, resulting in uplift, deformation and

erosion at the basin margins, are generally attributed to change in the plate motion and
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intraplate stress fields due to convergent and collision events between Africa and Europe
(Lakin, 2010). The Santonian uplift and possibly the late Eocene events also appear to have
resulted in significant mass wasting of the continental margin by gravity sliding,
Contribution towards reservoir formation (Lakin, 2010). The final uplift event relates to
growth of the Cameroon Volcanic Line (CVL) and effectively lasts from 37 Ma through to
present day on the northwest margin of the basin (Lakin, 2010). This relatively recent
volcanic activity is important as heat flows resulting from it are through to be instrumental
in pushing younger source rocks into oil window (Lakin, 2010)

3.4.7 Seismic conditions
The Uniform Building Code (UBC) lists Cameroon, specially the cities of Douala and

Yaoundé, as being in seismic zone zero (UBC, 1997). The design basis ground motion that
has a 10 percent change of being exceeded in 50 years as determined by a site-specific
hazard analysis or which may be determined from a hazard map. This corresponds to a 475
years recurrence interval. Nevertheless seismic zone zero is essentially aseismic.

3.5 BIOSPHERE

As we said earlier the biosphere is the physical media (atmosphere, soil, sediments and
surface water) and the living organisms including humans that interact with them. The
biosphere - e.g. climate and atmosphere, water bodies, human activity, biota, near surface
lithostratigraphy, topography, geographical extent and location. Hence we will start our

description with climate and the atmosphere of the area under investigation.

3.5.1 Climate and atmosphere

Douala features a tropical monsoon climate, with relatively constant temperatures
throughout the course of the year. The city typically features warm and humid conditions.
Douala sees plentiful rainfall during the course of the year, experiencing on average roughly
3850 mm of precipitation of rainfall per year. Its driest month is December where on
average 33 mm of precipitation falls while its wettest month is August when on average
nearly 800 mm of rain falls. The following graph shows the yearly and monthly

precipitations in Douala ( World Weather Information Service Douala,2012).
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Month ] F M A M ] J] A S 0 N D Year
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Figure 3-4: Precipitations Douala.svg: ( World Weather Information Service Douala,2012).

3.5.2 Water bodies
The Wouri estuary, or Cameroon estuary is a large tidal estuary in Cameroon where several

rivers come together, emptying into the Bight of Biafra. Douala, The area under assessment,
is at the mouth of the Wouri River where it enters the estuary. The estuary contains
extensive mangrove forests. The estuary lies to the east of Mount Cameroon and empties
into the Bight of Biafra. It is fed by the Mungo, Wouri and Dibamba Rivers see (Fig, 2-1). The
estuary lies in the Douala Basin, a low-lying depression about 30 meters (98 ft) on average
above sea level, with many creeks, sand bars and lagoons (Yerima, 2005). The Plio-
Pleistocene Wouri alluvial aquifer, a multi-layer system with alternating sequences of
marine sands and estuarine mud and silt lies below the estuary and surrounding region and
is an important source of well water. The upper aquifer in this system is an unconfined
sandy horizon that is hydraulically connected to the brackish waters of the estuary and to

the coastal wetlands (Yébalé (17.3km)) .
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Figure 3-5: Dibamba River, which flows into the estuary (Atheull et aZ, 2009).
The spring tides at the mouth of the estuary are 2.8 meters (9.2 ft). Rainfall is from 4,000

millimetres (160 in) to 5,000 millimetres (200 in) annually. Salinity is very low, particularly
during the rainy season. Surface salinity of 0.4% is common around Douala throughout the
year (Hughes, 1992). Mungo River splits into numerous small channels that empty into the
estuary complex (Yerima, 2005). The tidal wave in the bay travels as far as 40 kilometres
(25 mi) up the Mungo. In this section of the river, large flats and sand banks are exposed at
low tide (Yerima, 2005). The Wouri is affected by the tides for 45 kilometres (28 mi) above
Douala, with blocks of tidal forest along its shores throughout this stretch.

3.5.3 Biota
The Douala-Edea hosts an important wildlife reserve in the Littoral Region of Cameroon. It

is located on either side of the mouth of the Sanaga River along the shores of the Bight of
Biafra opposite the island of Bioko. 80% of the reserve is covered by tropical lowland
equatorial forest and 15% by Atlantic mangrove forests (Ngea, 2012). The Mouanko reserve
between the Sanaga and the Wouri estuary holds about 15,000 hectares (37,000 acres) of
mangrove forests (Ramsar, 2011). The mangroves form a buffer against coastal erosion, and

are a refuge for 80% of the local
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Figure 3-6: Mangrove of Douala forest (Din et a/, 2002)
marine and aquatic species for at least part of their lifecycle. They are threatened by logging

for construction timber and for firewood used in fish smoking, as well as by urban
infrastructure development (Ninan, 2009). Fauna include forest elephants, primates
(chimpanzees, monkey species such as BLACK COLUBUS), antelopes (SITATUNGA, blue
duiker, etc), West African manatees, sea turtles, dolphins, crocodiles, alligator, many fish
species, terrestrial and water bird species (Ngea, 2010).The RED-CAPPEDMANGABEY was
reported to be common in the reserve in 1972 (Lee, 1988). The endangered Red-Eared
Nose-Spotted Guenon was reported in the Lombé part of the reserve in densities of 2-3
groups per square kilometres, but populations had dropped elsewhere due to hunting (Lee,
1988). Animals in the reserve are poorly protected and poaching is widespread (Ramsar,

2011). Central chimpanzees in the reserve are threatened by hunters.

3.5.4 Near surface stratigraphic

The following picture shows the cross section of Douala basin. We chose a point A and point
B near the Southern pollution source and then we join the two points by a line. With the
appropriate software, we generate the cross section underlying the location under

investigation as showing in Figure 3-7.
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Figure 3-7: cross section of Douala Basin, demonstrates vertical and lateral changes in rock
type as well as geologic structures such as faults.
The basic stratigraphic of the Douala Basin is interpreted to include of rift, transition and

drift mega-sequences related to the tectonic evolution over Africa cratonic basement and
associated Atlantic margin (Lakin, 2010 in). Regional stratigraphic and tectonics can be
summarised in four main phases of evolution related to pre, syn and post rift separation of
Africa from South America (Lakin, 2010).

Phase 1 (Pre-rift) Basement: Earlier interpretations of the Douala basin place the transition
between Oceanic and continental crust approximately along the present coastline, but
Bowleven believe that asymmetric rifting took place, with much of the pre-rift sediment
moving South-Westwards towards present day South America (Lakin, 2010).

Phase 2 Rift and Transition (Early Cretaceous Berriasian-Aptian): The Early Cretaceous
sequences are not fully understood, as the high pressure experienced in the Upper
Cretaceous sediments have limited deep drilling. They have, nevertheless, been identified in
the Rio Muni Basin immediately to the South in Equatorial Guinea and from this; the rift
mega sequence is expected to include predominantly basal fluvial and alluvial sandstones
and conglomerates of the Lower Mundeck formation, similar to those encountered in fields
south of the permit at depths between 1000m and 2000m (Lakin, 2010). They are expected
to be thick and laterally continuous and will constitute a good secondary reservoir target.

These possibly pass upwards into lacustrine claysones, which may have secondary source
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potential (Lakin, 2010).

Phase 3 Transitions (Mid Cretaceous: Albian-U.Cenomanian/ Turonian): The transitional
mega sequence is expected to include predominantly clay stones of the Upper Mundeck
formation deposited in deepening water environments that may initially have been
lacustrine, and which passed through restricted, possibly evaporitic, marine conditions to
open, deepwater marine. The mega sequence is increasingly truncated towards the edge of
the basin in the northern part of the permit by the effects of the Santonian uplift. In the
shallow basement area of OLHP-1, this unit occurs in a more marginal “top set” facies
comprising alterations of arkosic and glauconitic sands passing up through limestone into
shale.

Phase 4 Post-Rift (Late Cretaceous; Santonian-Campanian): The Douala Basin came into
separate being during the Santonian, When thick clastic deposits were laid down in the
centre, thinning rapidly and becoming increasingly shaly to the east and south of the permit
area. Erosion took place around the basin margin during the Santonian uplift, removing
some previous reservoir facies, so the Campanian in these areas is resting on older rocks or
directly on basement. It is postulated that the eroded sediments were re-deposited in the
centre of the basin, in close proximity to Cenomanian-Turonian source rocks. Gravity sliding
may have created localised accommodation space to pond some of these reworked sands in
hanging wall growth structures or on the landward side of associated toe-thrusts detaching

in the lower Cretaceous above the syn-rift blocks.

3.5.5 Geographical context

The Douala coastal environment describes a barrier island lagoon formation. A number of
such old barrier island were colonized by the following districts (Akwa, Deido, Bépanda,
Bassa, Bonamoussadi) which today supports the high population density metropolitan area
of Douala (Gabche et al., 2007). The lagoon system is about 50 km away and has a broad
embayment as it opens in to the Atlantic Ocean, which greatly enhances tidal movement,
often leading to the inflow of saline waters. The area is characterized by low-lying
geomorphic features with faint slopes almost at sea level. Geographically Douala is located
at latitude 4 1° North and longitude 9 45" East. It is subdivided into 5 councils which are
governed following the typical Cameroonian centralised command system where a
government delegate appointed by the President of the Republic, rules over the councils’
mayors. This city of about 3.5 million inhabitants today, displays a nucleated settlement
pattern (Gue’vart et al,2006). The famous central town called Akwa, has banks, commercial

enterprises and other small scale businesses like hackers and street vendors. It also has two
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major designated industrial zones called Bassa and Bonaberi amongst few other smaller
ones. These two zones are located peripherally at the Eastern and Western fringes of the
city albeit they are both situated in areas containing easily contaminated streams and
brooks as well as below sea level. The two companies charged by the municipality to
dispose waste are HYSACAM and CAMHYGIENE. , The Douala coastal lagoon complex is
easily the dominant feature with richly endowed natural and socio-economic resources
along the littoral zone of Cameroon. It is fed mainly by the River Wouri, evolving a maze of
creeks and lagoons about 50 km from the Atlantic Ocean, with its largest surface extent

north of Bonaberi, to the north west of metropolitan Douala see (Fig, 2-5).

3.5.6 Human activities

Douala city is considered as the economic lung of Cameroon because it hosts about 70% of
the economic activities of the entire country. Most of the essential infrastructure is found in
the coastal region: roads, ports, airports, telecommunication, schools, hospitals etc. With
respect to national averages, this region has fewer jobs in the primary sector and more in
the secondary and tertiary sectors: 36.9% of the active population is engaged in the primary
sector as against 71.9% for the whole country: 21.4% and 41.7% work in the secondary and
tertiary sectors respectively (Asangwe, 2006). Being the seat of Cameroon's largest port and
its major international airport, Douala Airport, it is the nation's commercial capital hence
indisputably the largest city in Cameroon as well as the capital of Cameroon's Littoral
Province. Consequently, it handles the majority of the country's chief exports, such as oil,
cocoa and cotton, coffee, as well as trade with neighbouring landlocked Chad and the Central
African Republic. It is also home to the Eko Market, not only the country's largest market but
also the largest in the whole CEMAC Central African sub region. The port of Douala is
situated on the mouth of the River Wouri, 25 km from the sea, and this poses a problem of
siltation, thus demanding constant dredging. It is essentially a commercial port which
receives only vessels with little draught, considering its location on an estuary. The port has
a 10 km wharf. Upstream, there is a banana port at Bonaberi, in the vicinity of which is
located the industrial zone. The following figure (3-8) shows, the industrial activities taking

place in Douala port.
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Figure 3-8: Ship at the Douala Port with goods from abroad .

The industrial zone of Douala including, PILCAM (Societe Camerounaise de Fabrication des
Piles Electriques); CCC (Cameroon Chemical Complex)is the biggest soap manufacturer in
the nation; SCDP (Societe Camerounaise des Depot Petroliers) otherwise called in English
Cameroon Petroleum Products Depot Corporation has been alleged that their
hydrocarbon/petroleum products are not only occasionally accidentally spilled over during
their transportation processes, but also deliberately dumped into the River Wouri; ALPICAM
is a wood treatment facility whose usually nocturnal gaseous emissions have caused severe
acid rain and hence illnesses to its neighbourhood; SIPLAST is dealing with the recycling
and production of plastic materials and products; SMALTO is a paint manufacturer;
CHOCOCAM (Chocolate Cameroon) is a cacao beans processed products - Sole producer of
quality chocolate of in the region. Products include Cocoa Butter, Cocoa Powder, Black
Cocoa; SOCAPALM processes palm kernels, coconut and cotton seed to produce Crude
Palmoil, Coconut 0Oil, Cotton Seed 0il; NoSuCa (NoSuCa - Nouvelle Sucrieres du Cameroun)
both refined and crude sugar; Brasserie du Cameroun is a beer brewery company producing
various brands of Cameroon beers and soft soda drink products; Cimencam (Cement of
Cameroon) is the sole producer of quality cement for construction in the sub-Saharan region
of central Africa. When one get to a typical African market in Douala, one may think the
whole world is gathered there. Some popular market of Douala including, Marché de Lagos

(intersection of Rue de New Bell and Rue Congo Pariso); Marché Central (Douala Central
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market located at the intersection of Rue de New Bell and Rue Congo Pariso close to the
Akwa Shopping centres) one of the biggest African style markets in Cameroon and the entire
sub-Saharan region of Central Africa. The Douala Central Market holds thousands of shops
and store with traders from all over Africa. Prominent amongst these traders are Cameroon,
Benin, China, Mali, Nigerian, Togo, Lebanese, Koreans, Moroccans, Senegal and several
others nations. All items of interest can be found at the Douala Central market household
appliances, electronics such as cell phones, cameras, television screens..., textile, leather
products, groceries and countless others; Congo Market at Entrée Camp Bertau consisting of
clothing and carpentry work; Marché De Sanaga Marché EkoSale of household goods to
fashion accessoceries; Marché Bobbi Score - A typical Supermarket model in western
fashion; Marché de Fleur (off Ave Charles de Gaulle) Sale of crafts work - wood carvings,
masks, African wooden drums, special designer tablecloths stone jewelleries; Centre
Artisanal de Douala Sale of Cameroonian artworks - sculptors, masks and various crafts. Has
a good collect of arts from all cultures and regions of Cameroon. The following photo shows
some items sole in some Douala markets. In this coastal zone, the most important
occupation of the rural population is undoubtedly small-scale fishery. Fishery contributes
more than half of the animal protein consumed in Douala. The exploitable species of the
aquatic fauna consist essentially of fishes, shrimps and mollusks. Agriculture accounts for
almost 50% of foreign currency earnings in Cameroon. Thus, it plays an important role in
the economic activities of this coastal zone both in feeding the population and raising family

revenues. Traditional and modern agriculture co-exist in this coastal area see (Fig, 2-6).

3.5.7 Topography

Topography generally drops from East to West towards the Wouri River and leads to
flooding of the area. The altitude is about 57m in the East, passing on to 23m in the Centre
and dropping to 3 m in the West towards the Wouri River. The high magnitude of run-off
from the River Wouri estuarine system in to the land-water interface leads to a high water
table which leads to flooding of the area see (Fig, 2-2; 2-3).

3.5.8 Inundation

In Douala, severe flooding affected life, economy and, floods are the most common natural
disasters. In recent years, floods have received much media attention. Many poor
neighbourhoods got flooded so they went in debt to pay the price of repairing homes.
Douala’s vulnerability to flooding was highlighted by the loss of life and economic damage

from flooding events in flood-prone zones like Mabanda and Bonendale localities of
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Bonaberi to the north and Youpwe locality to the south (Asangwe, 2006). In addition,
summer flooding of the New Bell streams and waterways resulted in some of the worst
floods seen in the city in 2010. The consequences were death, drowning, injury and
destruction of property. Crops and businesses which residents depend on to make money
were destroyed. Vulnerable groups within communities are the elderly, disabled, children,

women, ethnic minorities, and those on low incomes (Asangwe, 2006).

Douala presents an array of varying creeks, lagoons, sand and rocky beaches, coastal plains,
wetlands and with faint slopes. Flooding is a major consequence of this scenario exhibited
by the dynamism of the River Wouri on the Douala metropolitan area all years round. This
ensures that the water table remain high and thus effect constant inundation. Geographers
say though the newly built up areas of Bonamoussadi, Makepe and Logpom are about 50
kilometres away from the Atlantic Ocean, it is just over 16 meters above sea level, while the
rapidly growing districts of the metropolis, like Bonaberi which includes Mabanda, Ndobo
are just between 3-7 meters above sea level. The low lying nature of the city provoking
floods is observed in the general lack of flowing drains in the core built up areas like
Mabanda and Akwa, resulting in stagnant water due to constantly high water table which
has a further consequence of increasing high rate of subsidence and tilting of residential
housing structures (Asangwe, 2006) . This has frequently inundated hazardous areas like
Mabanda, Bonendale and Youpwe, which offer spaces for the development of slum
settlements and now suffer subsidence of residential housing structures (Asangwe, 2006).

Figure 2-3 and 2-4 show the area affected by this natural disaster in the city of Douala.

3.6  SCENARIO DESCRIPTIONS

The ecology of Douala is under threat from growing pollution from industry, farming and
households, threatening both fish yields and human health (Gabche, 2007). Sources of
pollution include electroplating and oil refinery industries, pest control in cocoa, coffee and
banana plantations, and waste organic oils from land transport, process industries and
power generation (Sama, 1996). The bulk of human-generated sewage is also released into
the estuary without treatment. The government infrastructure for controlling pollution is
dispersed, weak and ineffective, and there is severe shortage of funding (Munde, 2011).
Agriculture is the mainstay of the Cameroon economy. Pesticides are not regulated, and also
contribute to pollution. Pesticides that have long been banned elsewhere are still in use, or
are being held in leaky storage facilities (Munde, 2011). The growing population is

increasing production of export crops such as coffee, cocoa, bananas, palm oil and cotton,
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using imported pesticides and fertilizers. Typically fertilizers contain urea, ammonia, and
phosphorus. Pesticides applied are mostly DDT and other derivatives of organ halogens
(Sama, 1996). About 80% of Cameroon's industries are based in or around Douala. Their
liquid waste is released into the estuary with little or no treatment (Sama, 1996). Douala's
Bassa industrial zone ends in the estuarine creek formation of the Dibamba River,
discharging pollutants. The wetlands are quickly being colonized by invasive species, and a
great number of phytoplankton species has been identified, some of which are caused by the
pollution. The Bonaberi suburb of Douala, with a rapidly growing population of over
500,000, illustrates the urban environmental problems. More than 75% of Bonaberi is 2
metres (6.6 ft) above sea level on average. With limited land, poor people have encroached
into wetlands (Mclnnes et al, 2002). As of 2002, the dense mangrove swamp forest, which
included luxuriant growths of palms, was undergoing extinction due to urbanization. The
houses and industrial buildings on the cleared land are poorly built, without adequate
drainage. Pools of stagnant water are breeding grounds for disease. Human and industrial
wastes end up in the channels of the Wouri, reducing its rate of flow. River floods and sea
incursions may cause rises of water level from 2 metres (6.6 ft) to 5 metres (16 ft) within a
few minutes, destroying buildings and washing raw sewage into the wells. Waterborne
diseases such as typhus and dysentery are common causes of death (Mclnnes et al, 2002)
see (Fig; 2-7). The inadequate supply of pipe-borne water, with approximately 65,000
persons connected out of the 3 million inhabitants ( Gue'vart et al, 2006), pushes the
suburban population to depend on springs and borehole (Takem et al, 2010). 80% of the
low-income populations in the informal settlements use springs and borehole water for part
or all of their drinking and other domestic needs (Takem et al, 2010). Such settlements in
Douala are Bapanda-Makepe, Ndogbong, Bonabassem, Ndogsimbi, Genie Millitaire and
Bobong II (Takem et a/, 2010). The following picture shows relatively the scenario of

ground-water pollution in Douala.
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Figure 3-9: Scenario of Groundwater pollution in Douala.

The target audience (stakeholders) for this situation of case is assumed to be a hypothetical
regulatory body and staff involved in producing the safety assessment. Other possible
stakeholders such as the public or other interest groups will be considered at this stage
(IAEA, 2004a).

Groundwater resource is an environmental restoration. However, the concept of restoration
awaits more precise definition, and the science of ecosystem restoration is in its infancy.
Nevertheless, it is clear that restoration is a call for water resources management that
accommodates and benefits from, rather than controls, annual and multiyear variability in
the patterns and timing of river flows and the extremes of flood and drought (NAS, 2004)
The purpose of the Working Group is to promote the appropriate and consistent use of
mathematical models in the remediation and restoration process at sites containing—or
contaminated with— radioactive and/or mixed waste materials. This report demonstrates a
thorough approach to documenting model applications in a consistent manner and is
intended to assist technical staff responsible for identifying and implementing flow and
transport models in support of cleanup decisions at radioactive and hazardous waste sites.
It is hoped that adoption of the tenets in the report will enhance the understanding between
modelers and their managers of what may be expected in model documentation; facilitate
the peer-review process by ensuring that modeling documentation is complete; ensure the
institutional memory is preserved; and institute greater consistency among modeling

reports (EPA, 1996).



53

Chapter 4

CLASSICAL MATHEMATICAL FORMULATION OF GROUNDWATER
POLLUTION

There is no universal view of how science proceeds in the development of a theory (Louie,
1983). Nevertheless, as a survey of the history of Physics (in contrast to more philosophical
concepts) will show the development of the “superb theories” of Physics can be

conveniently summarized in four steps, see e.g. (Davies, 1973; Louie, 1983).

Stepl Observe the phenomenon through the human senses, aided by suitable auxiliary
instruments, if necessary, and identifies at least one interaction (Botha, 1984).

Step2 Measure whatever properties of the observed interactions in the phenomenon,
commonly known as observables, are measurable and try to relate the observables
conceptually to one another, thereby establishing conceptual visualization for the
phenomenon. (Such a visualization can be presented formally in the form of a
manuscript, drawing or any other appropriate medium, but often consists of a mere
mental image, or simple sketch.) (Botha, 1984)

Step3 Apply the rules of mathematical analysis to the observable(s) included in the
conceptual visualization of the phenomenon and try to synthesize (Ritchey, 1996) a
framework, or hypothesis, able to predict the behaviour of the phenomenon, under
different conditions than that used in synthesizing the hypothesis.

Step4 Compare the behaviour of the phenomenon predicted by the hypothesis, established
in Step 3, with new observations of the phenomenon. It is only when the two sets of
data agreed satisfactorily that the hypothesis is regarded as a theory for the
phenomenon. Otherwise, one has to repeat the analysis, in many cases also the
observations to try to find a new hypothesis—hence theory. In the following section
we are going to establish step 3, which is we are going to discuss the development
of mathematical model that explains the measurement of the concentration of
pollution in the groundwater (Botha, 1984).

The description of transport is closely related to the terms convection, diffusion, dispersion,

and retardation as well as decomposition of the solute in the water. First, it is assumed that

there are no interactions between the species dissolved in water and the surrounding solid
phase. Furthermore, it is assumed that water is the only fluid phase. Multiphase flow, e.g. in

the systems water-air, water-organic phase (e.g. oil or DNAPL) or water-gas-organic phase,
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is not considered here. Convection (also known as advection) is the vector, which results
from the DARCY or the RICHARDS equations. It describes the flow velocity or the flow
distance for a certain time t. In general, convection has the major influence on mass
transport. Magnitude and direction of the convective transport are controlled by:

e The development of the flow field.

e The distribution of the hydraulic permeability within the flow field.

e The development of the groundwater table or the potentiometric surface.

e The presence of sources or sinks.
Concentration gradients are levelled out by diffusion by means of molecular movement. The
vector of diffusion is generally much smaller than the vector of convection in groundwater.
With increasing flow velocity diffusion can be neglected. In sediments, in which the k; value
is very low, and consequently the convective proportion is very small or even converging
towards zero (e.g. for clay), the diffusion could become the controlling factor for mass
transport. The third term in mass transport is dispersion. The dispersion describes the mass
flow, which results from velocity variations due to the geometry and the structure of the
rock system. From this definition it follows that the smaller the vector of convection the
smaller the effect of dispersion. The other way round, an increasing effect of dispersion
occurs with higher flow velocity. Consequently, the mathematical description of the species
distribution is an overlap of convection, diffusion, and dispersion. All phenomena that cause
species not to spread with the velocity of the water in soil or in groundwater are called
retardation. Retardation is possible without any mass decrease. Frequently, though,
retardation is combined with degradation. This “degradation” of the concentration of a
species can occur by means of radioactive decay of a radionuclide or biological degradation
of an organic substance. Also sorption and cation exchange can be included in this definition
of “degradation”, because the considered element is entirely or partially removed from the
aqueous phase.

4.1  CLASSICAL GROUNDWATER FLOW EQUATION

Used in hydrogeology, the groundwater flow equation is the mathematical relationship
which is used to describe the flow of groundwater through an aquifer. The transient flow of
groundwater is described by a form of the diffusion equation, similar to that used in heat
transfer to describe the flow of heat in a solid (heat conduction). The steady-state flow of
groundwater is described by a form of the Laplace equation, which is a form of potential

flow and has analogy in numerous fields. The groundwater flow equation is often derived
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for a small representative elemental volume (REV), where the properties of the medium are
assumed to be effectively constant. A mass balance is done on the water flowing in and out
of this small volume, the flux terms in the relationship being expressed in terms of head by
using the constitutive equation called Darcy's law, which requires that the flow is slow. A
mass balance must be performed, and used along with Darcy's law, to arrive at the transient
groundwater flow equation. This balance is analogous to the energy balance used in heat
transfer to arrive at the heat equation. It is simply a statement of accounting, that for a given
control volume, aside from sources or sinks, mass cannot be created or destroyed. The
conservation of mass states that for a given increment of time (A4t) the difference between
the mass flowing in across the boundaries, the mass flowing out across the boundaries, and

the sources within the volume, is the change in storage.

4.1.1 Hydraulic head
The estimation of near-field water flow is an important element of near-field modelling

since it is the driving force for the release of pollution in the liquid phase. Its aim in this
thesis is to the flow rate in the near-field for each phase of the near-field disposal facility’s
existence. The model flow hence is based on a numerical solution of the conventional

saturated groundwater flow equation for density-independent flow.

So(x, )0, P (x,t) = V. [K(x,)VP(x, )] + f(x,t) 4.1
where, Sy(x,t) is the specific storativity
K(x,t) is the hydraulic conductivity tensor of the aquifer
®(x, t) is the piezometric head.
f(x,t) is the strength of any source or sink, with x and t the usual spacial and time
coordinates.
V being the gradient operator.
This model showed that the dominant flow field in these aquifers is vertical and linear and
not horizontal and radial as commonly assumed. As a review of the derivation of Eq. (4.1)
will show, Darcy law:

q(x,t) = —K®(x,t) (4.2)
is used as a keystone in the derivation of Eq. (4.1). This law proposed by Darcy early in the

19th century, is relying on experimental results obtained from the flow of water through a
one-dimensional sand column. Alternatively, Darcy’s law states that the rate of flow
through a porous medium is proportional to the loss of head, and inversely proportional to
the length of the flow path. Note that the specific discharge q(x, t) has the dimensions of a

velocity. The concept specific discharge assumes that the water is moving through the entire
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porous medium, solid particles as well as pores, and is thus a macroscopic concept. The

great advantage of this concept is that the specific discharge can be easily measured.

4.1.2 Velocity field
Assume that the density of groundwater is constant. Consider a unit volume of a porous

medium and apply Darcy's law and the law of conservation of mass. The three dimensional
form of the partial differential equation for transient groundwater flow in saturated porous

media can be expressed as

oh
—w=Ss2! (4.3)

sy , Vsy +5V5z
dx 0x dx

where: V,,V,,, and V,are values of the specific discharge (or Darcy velocity) through the unit
volume along the X, y, and z coordinate axes, w [1/T] is a volumetric flux per unit volume
and represents internal sources and/or sinks of water; S [1/L] is the specific storage of
saturated porous media; h [L] is the hydraulic head; and t [T] is time.

4.2 DEVELOPMENT OF CLASSICAL MATHEMATICAL MODELS OF HYDRODYNAMIC
DISPERSION EQUATION

4.2.1 General
The primary mechanism for the transport of improperly discarded hazardous waste

through the environment is by the movement of water through the subsurface and surface
waterways. Study this movement requires that one must be able to measure the quantity of
waste present at a particular point in space time. The measure universally for chemical
pollution is the concentration, conventionally expressed in terms of either a mass fraction or
mass volume. Experimental evidence indicates that this dependence is rather weak, if the
fractional concentration is small. The density of the solute may thus be considered as
independent of the concentration when working with low concentration, or watery,
solutions. It has, therefore, become a custom to use the volumetric concentration (c), which
contain the solute density for high concentration solutions. However, this is not a fast rule

and one can use the two measures interchangeably, but not simultaneously (Botha, 1996).

4.2.2 Interactions between dissolved solids and a porous medium

Groundwater is, by its nature, always in contact with the matrix of the aquifer (Botha,
1996). There is thus a possibility that the solutes may interact with the rock matrix, and one
another. A true mathematical model of groundwater pollution must therefore be able to
account for interactions between the dissolved and matrix of the aquifer. It will thus be
advantageous to look at the nature of interaction between dissolved solids and a porous

medium that may be expected in groundwater pollution. Experimental evidence indicates
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that when a dissolved solid comes in contact with the matrix of porous medium it may:
d) Pass through the medium with no apparent effect
e) Be absorbed by the porous matrix and

f) Reacts with the porous matrix and other substances dissolved in the fluid. The
dissolved solids encountered in porous flow are, for this raison, often classified as
conservative, non-conservative and reactive tracers. This behaviour implies that the
quantity of dissolved solids in a porous medium depends not only on the flow
pattern, but also the nature of the porous matrix and the solution.

The reactions of inorganic compounds with aquifer material are relatively well-known
(Garrels and Christ, 1965) (Hem, 1970) (Kauskopf, 1967). Some of more common types of
reactions encountered in practice include, for example: (a) adsorption (including ion
exchange), (b) oxidation and reduction and (c) conversion of compounds to other oxidation
states. However, this is not the case with the many organic compounds occurring in
effluents, storm water and others sources (Zoeteman and Piet, 1980). This applied
especially to some of the modern biodegradable organic compounds that are compounds
that tend to degrade under natural conditions to simpler compounds such as carbon dioxide
and water. However, these compounds all tend to leave non-degradable fractions, which
persist in the water, and ultimately appear in the groundwater. This behaviour of organic
compounds, described by the term persistence, defined by (Zoeteman and Piet, 1980) as:
“The capacity of an aquatic pollution to resist to a reduction of the original concentration in
the water place, after a certain period of time, while undergoing a variety of physical,
chemical and biological processes”does not depend only on their chemistry, but also on the
nature of the particular ecosystem. A comparison of particular compounds from rivers and
aquifers has shown that most organic compounds are more persistent in groundwater, even
a hundred times more persistent, than in surface water (Zoeteman and Piet, 1980). This
persistence of organic compounds creates a considerable problem for the use of
groundwater source, since many of these occur in modern household detergents and
chemicals. It will clearly be formidable to task to develop a mathematical model for
groundwater pollution that takes the complexity of all possible interactions into account,
even if the model is restricted only to those compounds that have been identified hazardous
(Botha, 1996). Fortunately, the interactions do not all occur simultaneously in every
polluted aquifer. The mathematical model, discussed below, will therefore be restricted to

the adsorption of hydrophobic compounds and the decay of radioactive isotopes, which
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cover a considerable number of interactions of importance in groundwater pollution.
Nevertheless, this model may not be valid for all practical situations (Abriola and Pinder,
1985 a) (Abriola and Pinder, 1985 b).
The full derivation of this can be found in (Botha, 1996). The differential equation is
therefore nothing else than another expression of mass conservative and is given below as.
D (0c + pys) + V.{v(0c + pps)} + A(0s + pps) + V.F = 0. (4.43)
In the previous discussion no account was taken of sources and sinks in the derivation of
Equation (4.4). Nevertheless, this oversight can be easily rectified by simply adding the flux
term, f(x,t) with c, the concentration and f(x,t) the strength of the source, to the right-
hand side of Equation (4.4). This yields the so-called hydrodynamic dispersion equation
Di(0c + pps) + V.{v(Oc + pps)} + A(0s + pps) + V.F = ¢ f (x, 1), (4.4b)
which is the equation of customary used as mathematical model for mass transport in a
porous medium.

4.2.3 The Dispersion coefficient

Substitution of dispersion coefficient into Equation (4.4), yields the equation

D (6c + pps) + V.{v(Oc + pps)} + A(0s + pps) + V.(cq* — pODVC) = ¢of (x,t),  (4.5)
where

D =Dy + Dy, (4.6)

is known as hydrodynamic dispersion coefficient, or simply the dispersion coefficient.
Notice that the explicit dependence of D (and other variables) on the spatial coordinates has
been suppressed in Equation (4.5), for ease of notation.
The molecular diffusion coefficient for ordinary substances in water is not very large, as
indicated by the numerical values in Table 4-1. Molecular diffusion has consequently often
been neglected in the studies of groundwater pollution, by simply ignoring D,;, in Equation
(4.5). However, studies of pollution transport in heterogeneous and fractured rock aquifers
in the last two decades have shown that molecular diffusion may retard the movement of
pollutants considerably in these aquifers ( Sudicky, 1983).
To illustrate the behaviour of the molecular diffusion, consider the situation of a
heterogeneous aquifer, consisting of two layers with different hydraulic conductivities. The
higher hydraulic conductivity of Layer 2 will obviously cause this layer to form a
preferential flow path in the aquifer. Advection will there tend to transport any pollutant
that enters Layer 2 along this preferential flow path. However, this will create a

concentration gradient between the water in Layer 1 and 2. This gradient will not only cause
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the pollutants to diffuse into Layer 1, but also decrease the concentration of the pollutant.

Table 4-1: Molecular diffusion coefficients of selected substances in water, at a pressure of
100kpa (Botha, 1996)

Diffusing Substance D, (m?s™1) Temperature
(49
0,. 1,3.107° 10
2,0.107° 20
Na* 1,3.107° 20
Cl~ 2,0.107° 20
NaCl 1,2.107° 18
NHj 1,8.107° 15
HCOOH 1,1.107° 12
CH;COOH 0.9.107° 12
CH,O0H 1,3.107° 20

In Layer 2, thereby effectively retarding its motion, and smooth out any variations in the
concentrations of the two layers. The rate of longitudinal spreading in a heterogeneous
aquifer can thus be quite complex time-dependent process.

4.2.4 Mass Conservation in Hydrodynamic Dispersion
Equation (2.4) is nothing more than an expression for the mass conservation of the

dissolved solids, fluid and matrix combined. Since each of these components must also

satisfy the law of mass conservation separately, the possibility exists that Equation (2.4)

may contain a number of redundant terms. In this connection, it is interesting to note that

the terms containing the fluid motion fraction can also be expressed in the equivalent form.
D.(6c) + V. (vOc) = p0{D.C +v.VC} + C{D.(pB) + V. (pbv)}

where C is the mass fraction concentration . The time derivative in the second term on the

right-hand side of this equation can now be replaced by its equivalent expression given

below
Delpp (% D] = V. [ppVm (%, )] (4.6)
to obtain
D,(6c) + V. (vOc) = pf{D.C +v.VC}+ C{—V.pq + pf)} “4.7)
where
q(x,t) = =KV,

is the ordinary Darcy velocity, associated with the piezometric head ®(x,t). The terms
relating to the mass s(x, t) can be expresses similarly as
D¢(pps) + V. {v(pps)} = s{Dpp + V. ppv} + pp{D;s + v.Vs}.

The expression in the brackets, in the first term on the right-hand side of the equation,
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expresses nothing else than the law of mass conservation for the absorbed mass fraction s(x,
t) and the porous matrix. It must therefore vanish, according to the second equation in
Equation (4.6), so that

D¢(pps) + V.{v(pps)} = pp{Ds + v.Vs} (4.8)
Substitution of Equations (4.6) and (4.8) into Equation (4.4), using the definition of the
generalized Darcy velocity given below

qt(x't) = _KV(p(X' t) + evm(xﬁt)l

to obtain
V.(cq*) = CV.(pq + pbv) + p(q + 6v).VC,
yields
[00D:C + ppDis + pq.VC] + (pOv.VC + ppv.Vs) = V.(pODVC) — A(0pC + pps) +

pf(x,t)(Cy — C) — CV.(pOv) — pov.VC. (4.9
This is the most general equation for description of density-dependent mass transport in a
consolidating porous medium.
Equation (4.9) is quite complex and therefore seldom, if ever, applied in practice.
Fortunately, it is seldom necessary to consider consolidating media in studies of
groundwater pollution. The terms containing the matrix velocity, v, can therefore be safely
discarded in such studies. This yields the equation (4.10)
[p0D.C + ppDs + pq.VC] + (p6v.VC + p,v.Vs)
= V.(p8DVC) — A(6pC + pys) + pf(x,)(Co = ©),

that has to be used in modelling density-dependent mass transport, such as the
phenomenon of sea-water intrusion, for example. However, the equation can be simplified
farther, if one is only interested in the study of problems where the density remains
approximately constant. In such situations Equations (4.10) can be expressed in its more
usual form

0D.c + ppD;s + q.Vc = V.(6DVc) — A(Oc + pps) + (cg — o) f (x,1). (4.11)
The practicable application of the hydrodynamic dispersion equation in Equation (4.11), to
actual groundwater pollution problems, is not without its difficulties. For examples, there
are indications that it does not describe the physics of the groundwater pollution accurately
(Nguyen, and Pinder 1981). Nevertheless, it is the equation normally used for this purpose.
It worth noting that the hydrodynamic dispersion equation (4.11) representing the
variations of concentration of pollution in the aquifer in space and time is a partial

differential equation of integer orders.
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4.2.5 Hydraulic head
Groundwater flow directions are determined using a water-table or potentiometric surface

map based on water-level measurements made at the site. Groundwater flow is
perpendicular to the equipotential lines expressed on a map as contours of water-table or
potentiometric surface elevation. For simple flow fields, groundwater flow directions may
be determined using a three point problem approach. At most sites, however, sufficient
measurements should be taken to delineate localized variations in the flow field using
contour maps. Maps should be constructed for several different measurement events to
determine the range of seasonal hydraulic variations at the site. The final design of the PRB
should incorporate the effect of maximum variation in flow directions to avoid future
situations where the plume may bypass the barrier.
The estimation of near-field water flow is an important element of near-field modelling
since it is the driving force for the release of pollution in the liquid phase. Its aim in this
thesis is to the flow rate in the near-field for each phase of the near-field disposal facility’s
existence. The model flow hence is based on a numerical solution of the conventional
saturated groundwater flow equation for density-independent flow.

So(x, )0, @(x, t) = V.[K(x,t)VP(x, )] + f(x, t)
where, S,(x,t) is the specific storativity, K(x, t) is the hydraulic conductivity tensor of the
aquifer; ®(x,t) is the piezometric head, f(x, t) is the strength of any source or sink, with
x and t the usual spacial and time coordinates; V being the gradient operator.

4.2.6 Velocity field
Hydrologic or groundwater flow parameters are important in PRB design because these

parameters determine the groundwater capture zone, and the location, orientation,
configuration, and dimensions of the PRB. The objectives of taking hydrologic
measurements are to estimate the groundwater flow velocity and direction in the
prospective PRB location. These objectives can be achieved through measurement of aquifer
properties and the use of Darcy’s Law, through tracer testing, or through direct
measurement with appropriate probes. Most available probes are in various stages of
development and evaluation; therefore, at most sites, the most reliable method of estimating
groundwater velocity and direction involves using water-level measurements along with
Darcy’s Law. The use of the Darcy’s Law equation is the most common approach for
determining groundwater velocity in the aquifers.

Assume that the density of groundwater is constant. Consider a unit volume of a porous

medium and apply Darcy's law and the law of conservation of mass. The three dimensional
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form of the partial differential equation for transient groundwater flow in saturated porous
media can be expressed as
av. V. av. oh
Sx + Sy + Sz —w=Sg—
ox ox ox Jat

where V., V), and V,are values of the specific discharge (or Darcy velocity) through the unit

volume along the x, y, and z coordinate axes, w[1/T] is a volumetric flux per unit volume and
represents internal sources and/or sinks of water; S [1/L] is the specific storage of
saturated porous media; h [L] is the hydraulic head; and t [T] is time.

4.3  ANALYTICAL SOLUTIONS OF GROUNDWATER FLOW AND ADVECTION
DISPERSION EQUATIONS

Our concern here is to provide a solution to a model that describes more accurately the
events that take place in the aquifers; we first start with the test of aquifer parameters using
the groundwater flow equation or the Theis equation, following by the advection dispersion

equation.

4.3.1 Analytical solution of groundwater flow equation

In 1935, Theis was the first to developed an equation for unsteady state flow which
introduced the time factor and the storativity as

0FD(r,t) + 20, ®(r,t) =20, ®(r,t) = 0. (4.12)
Several solutions of the above partial differential equation have been proposed; see for
example (Theis, 1935) (Cooper-Jacob, 1952)(Atangana, Botha, 2012). On one hand Theis
solution was an exact solution to the partial differential equation and this solution is given

below as: (4.13)
Q (e
o (r,t) —m f Tdy
r2s
aTt

However, for practical purpose this solution is very difficult to implement. On the other

hand (Cooper Jacob, 1952) proposed an approximate solution of the partial differential

equation for a latter time and this solution is given below as (4.14)
230Q 225Kt
D(r,t) = L
D) ank %9 [ r2§ ]

The Cooper Jacob is the most used in groundwater studies because, at the time the solution
was proposed, it was easier to handle it with the Log paper than the exponential integral

,but now day many computational software are available to handle Theis without Log paper.



63

Nevertheless the Cooper Jacob solution has limitations, because his solution is a large time
approximation of the Theis non-equilibrium solution. The approximation involves

truncations of an infinite series expansion for the Theis well function that is valid when the
2
. So . . . .
variable: —: T: is small enough which the case in groundwater study is not always. Actually

the one-dimensional groundwater flow equation and its solution were first proposed by
(Terzaghi, 1923). Recently (Atangana and Botha, 2012) proposed an analytical
solution using the Homotopy Decomposition Method (HDM), their approximated

analytical solution is given below as:

2.30Q
4K

o(r,t) = Log [1 +

222 (4.15)
The following figure shows the graphical representation of the solutions for different values
of theoretical properties of the aquifer. The red line is the graphical representation of the
solution proposed by Cooper Jacob, the green line is the graphical representation of the
solution proposed by the author and the blue line is the graphical representation of the

solution proposed by Theis.
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Figure 4-1: Comparison for Q = 4.50 m/s, S= 0.001091 m™~1, T= 0.1265 m?/day and r =
32.039m
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Figure 4-2: Comparison for Q = 4.50 m/s, S= 0.001091 m~1, T= 0.1265 m?/day and r =
32.039 m
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Figure 4-3: Comparison for Q = 4.50 m/s, S= 0.001091 m~1, T= 0.1265 m? /day and r = 20
m
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Figure 4-4: Comparison for Q = 4.50 m/s, S= 0.001091 m~1, T= 0.1265 m? /day and r = 20
m
The above figure shows that for large distance from the observation borehole, the Cooper

Jacob is not valid for Theis equation, meaning fitting a set of experimental data with this
solution under this condition will lead to a wrong estimation of aquifer parameters under
investigation, or in the same condition one can see that the solution proposed approximate

successfully Theis solution.

4.3.2 Comparison with experimental data

In order to examine the validation of this solution, the above asymptotic solution is
compared with 2 sets of experimental see figure 4-5 and figure 4-6. Figure 4-5 shows the
comparison between experimental data from a pumping test conducted in the polder ‘Oude
Korendijk’, south of Rotterdam with Cooper Jacob, Theis and the proposed solutions. Here

1 and

the transmissivity was determined as T =360 m? per day, the storativity S = 0.179 m~
for a constant discharge rate of Q = 9.12 1/s at a distance of r = 90 m. The above shows the
comparison between experimental data from a pumping test conducted in the ‘Oude
Korendijk’, south of Rotterdam with Cooper Jacob, Theis and the proposed solutions. Here
the transmissivity was determined in Figure 4-3 as T =360 m? per day, the storativity S =
0.9 m'! and for a constant discharge rate of Q = 9.12 1/s at a distance of r = 215 m. The
graphical representations of the comparison revealed a good agreement of experimental

data with the proposed solution.
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Figure 4-5: Comparison between the existing, real world data and the proposed solution,
where the red point represent the data and the rest as said before in Fig 4-1 and Fig 4-3
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Figure 4-6: Comparison between the existing, real world data and the proposed solution,
where the red point represent the data and the rest as said before.
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4.4  ANALYTICAL SOLUTIONS OF ADVECTION DISPERSION EQUATION OF A
POLLUTED SITE

It is commonly assumed that aquifer system is initially free of chemical substances before
any injection of pollution. However this situation is unrealistic for the case of Douala,
because we do not know the history of the aquifer underlying the city of Douala. Therefore,
we must assume that this aquifer is not initially free of chemical, but instead there is a
certain value of concentration, ¢, initial found in this aquifer and chemical companies inject

chemical from one side of the aquifer.

4.4.1 Analytical solution

In this section we investigate the solution of the hydrodynamic dispersion equation subject
to the following initial and boundary conditions:
initials conditions
c(x,0) = ¢y, (4.16)
and boundary conditions
c(0,t) = ¢y exp(—yt) fort >0 and d,c(x,t) » 0asx — oo, (4.17)
Hence we assume that the groundwater is initially contaminated with ¢, ( case of Douala)
as initial concentration and boundaries conditions are the same as prescribed by Dirichlet.
To solve this equation we first apply the Laplace transform on both sides, as follows
£ (8.c(x,t) + qrayc(x, t) — D02c(x, t) + Ac(x, ) = L£(0) (4.18)
where the symbol £ is the Laplace transform operator, and yields to
sC(x) — €(0) + (q,0,C(x) — D,82C(x) + AC(x)) = 0 with C(x) = L(c(x,1)). (4.19)
Here s is the Laplace transform variable with respect to time variable and C(0) = ¢,. We
have from the above that, the partial differential equation becomes an ordinary non-
homogeneous differential equation of order 2 because the partial derivative here becomes a
total derivative and we have that, Equation (4.18) reduced to:
-D.C"+q.C'"+(s+1)C =c (4.20)
The homogeneous solution associated to the above equation is given as
Cp(x) = Ajexp(r1x) + A exp(ryx) (4.21)

where A;and A, are arbitrary constants,

Q.+ (@ + 4D, (s +2)
2= 2D,
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qr — \/(qrz + 4'Dr(s + /1)
n= 2D,

A particular solution associate to the equation is given by

Cp(x) = A;(x) exp(r1x) + Ay (x)exp(r2x) (4.22)
where A, (x) and A, (x) are function to be determined from the following system of equation

Aj (x) exp(ryx) + A3 (x) exp(r,x) = 0

{TlAll(x) exp(ryx) + 1245 (x) exp(rx) = g(x)
Hence the particular solution is given by (4.23)
Co
() = A+s

Thus the solution of the ordinary non-homogeneous differential equation is given as

Co
(A+s)

C(x) = Ay exp(ryx) + A, exp(ryx) + (4.24)

To determine the coefficient A;andA, we need to put our initial and boundaries conditions

in Laplace space as follows: (4.25)
Cq
L(c(0,t)) = .
(C( )) y+s
Applying the following boundary condition lim,._,, d,,C(x) — 0 we have
A2 =0.
Further, using the initial condition, (4.25) we have (4.26)
Co Cq
A =— .
1 A+s+y+s

It follows the solution of the ordinary differential equation is given as

Co +oex xqr—\/qrz+4-DT(/1+S) [C1 3 CO]
A+s P 2D, y+s A+sl

Therefore the solution of the hydrodynamic dispersion equation is given as (4.27)
c(x, t) = L7H(C(x))
where £71 is the inverse Laplace transform operator. The first term of the sum is invertible

and gives: (4.28)

L1 (;ﬁ) = co exp(—At).

To find the inverse Laplace of the second term of the sum we need to use the convolution

theorem since we have the product of two functions namely

rares
y+s A+sl

and
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oy [~V + 4D+ 5)
p 2D, '

The inverse Laplace of the above expression is obtained and is given below as

(—qrt+x)2—tA
L g —JaZ T an, G5\ | _rexp (=)
L exp| x D = = f(t).
T

2 £t3/2
\' Dy
an 4.29
d (4.29)
4 a Co
L { } = ¢, exp(—yt) — coexp(—At) = g(t).

The inverse Laplace of the second term of the sum can then be expressed as

y+s A+s

[ 1@t - vaz.
0

Using the table of integrals we find that the above integral yields to
ciexp[—yt] qr — u, X —u,t qr + u, X +u,t
— {exp(x 2D, )erfc(z\/D_rt>+exp(x 2D, )erfc(z\/D_rt>}
coexp(—At) X —qpt qr x +qyt
s {erfc <—2\/D_rt> + exp (xD—r) erfc <—2\/D_rt>}
where (4.30)

uy = a2 +4D,0-7)

and erfc(x) = \/%fxw exp(—v?) dv is known as complementary error function. Therefore the

analytical solution of the hydrodynamic dispersion equation subject to the prescribed initial

and boundaries conditions is given as: (4.31)

c(x,t) = M ex (x & — ur) erfc s +ex (x il ur) erfc ks
' 2 P\* 2, 2D, t P\*2p, 2/D,t

coexp(—At) { <x - qrt> ( qr) (x + qrt>}
——erfc|———|)texp|x—])erfc + ¢y exp(—At).

Here one can notices that if ¢, = 0, then the analytical solution of the hydrodynamic

dispersion equation is the same as the one given by (Clearly and Ungs 1978), that is, (4.32)

c(x t)=&[_yt] ex (xqr_ur)erfc Xt +ex (xu)erfc ke
’ 2 P\*2p, 2./D,t P\*2p, 2/D,;t))

In the following section, graphical representation of this solution will be investigated for

various parameters and this will be successfully achieved via the software Mathematica. For

given set of parameters the software will provide a surface represents a solution associated
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with respect to time and space. The used values for this purposed are arbitrary and not

result from specific field observation.

4.4.2 Numerical results

The following figures show the behaviour of the analytical solution of the advection
dispersion equation of the aquifer which is initially polluted with a certain concentrationc.

The parameters used for the simulation are theoretical.

00
2.0

Figure 4-7: Surface showing the concentration for tin [0, 2] and x in [0, 2],y=0 and
c(0,t) =c1=1000c(x,0) =c0=990,p, =1800,K; =1,q =2,A=1,and D = 80
The above figure shows that if one assume that the concentration at the origin for all t > 0
the concentration is a constant, that is y=0 and ¢(0,t) = c¢1 = 1000, the concentration at all
the position of the aquifer for t = 0, that is ¢(x,0) = c0 = 990, the dry bulk density of the
matrix p, = 1800, the volumetric moisture content of the medium 6 = 1, the volumetric
distribution coefficient K; = 1, the Darcy velocity q = 2, the decay constant A=1 and the
dispersion coefficient D = 80, then the concentration near the origin first increases respect
to time but decreases respect to position. Later on the concentration increases respect to the
position and decreases respect to time. The practical meaning of this is that, the pollution
observed at certain distance from the industry that continuously releases the hazardous
waste in the aquifer, is the mixture of the concentration from the industry and the initial

concentration that was already in the groundwater.
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Figure 4-8: Surface showing the concentration for x in [0 2] and tin [0 2] ¢(0.t) = c1 =
1000ex p(—t),c(x,0) = c0 = 990,p, = 1800,K; = 1,q = 2,,A=1,and D = 80.
The above figure shows that if one assume that, the concentration at the origin for all t>0
the concentration is not a constant, but a decreasing function of time, that is y = 1 and
c(0.t) = c1 = 1000exp(—t), the concentration at all the position of the aquifer for t = 0,
that is c(x,0) = c0 = 990, the dry bulk density of the matrix p, = 1800, the volumetric
moisture content of the medium 6 = 1, the volumetric distribution coefficient K; = 1, the
Darcy velocity g = 2, the decay constant A = 0, that is, there is no presence of radioactive in
the pollution and the dispersion coefficient D = 80, then the concentration of pollution in
groundwater will increase respect to time and respect to near the origin and the decreases

slowly in time and position.
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Figure 4-9: Surface showing the concentration for x in [0 2] and tin [0 2], ¢(0,t) =

clexp(—t) = 1000ex p(—t),c(x,0) = c0 =990,p, = 1800,K; = 1,q = 2,A=1, and
D =80
The above figure shows that if one suppose that the concentration at the origin for all t > 0
the concentration is not a constant, but a function of time, that is y =1 and ¢(0,t) =
clexp(—t) = 1000exp(—t), the concentration at all the position of the aquifer for ¢t = 0,
that is c(x,0) = c0 = 990, the dry bulk density of the matrix p, = 1800, the volumetric
moisture content of the medium 6 = 1, the volumetric distribution coefficient K; = 1, the
Darcy velocity g = 2, the decay constant A = 1 and the dispersion coefficient D = 80, then
the concentration near the origin first increases respect to time and decreases respect to
position. Later on the concentration increases respect to the position and decreases respect
to time. The practical meaning of this is that, the pollution observed at certain distance from
the industry that continuously releases the hazardous waste in the aquifer, is the mixture of
the concentration from the industry and the initial concentration that was already in the
groundwater. Here we realise that this situation is not too different from the situation

described in figure 4-1
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Figure 4-10: Surface showing the concentration for x in [0, 2] and tin [0 2] ¢(0,t) =
clexp(—t) = 1000ex p(—t),c(x,0) = c0 =990,p, = 1800,K; =1,q = 2,A=1, and
D = 80.

The above figure shows that if one suppose that the concentration at the origin for all t > 0
the concentration is not a constant, but a function of time, that is y =1 and ¢(0,t) =
clexp(—t) = 1000exp(—t), the concentration at all the position of the aquifer fort = 0,
that is c(x,0) = c0 = 990, the dry bulk density of the matrix p, = 1800, the volumetric
moisture content of the medium 6 = 1, the volumetric distribution coefficient K; = 1, the
Darcy velocity g = 2, the decay constant A = 1 and the dispersion coefficient D = 80, then
the concentration will increase in space and decrease in time. The practical meaning of this
is that, the pollution observed at certain distance from the industry that continuously
releases the hazardous waste in the aquifer, is the mixture of the concentration from the
industry and the initial concentration that was already in the groundwater since the initial
concentration in the groundwater is greater than the one releases by the industry, it follows
that the mixture will increase in space but at the same time as the time passes the mixture

will decrease slowly.
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Figure 4-11: Surface showing the concentration for x in [0 2] and tin [0 2] ¢(0,t) =
clexp(—t) = 1000ex p(—t),c(x,0) = c0 = 1990,,p, = 1800,K; =1,q = 2,2=1, and
D = 80.

The above figure shows that if one assume that, the concentration at the origin for all t > 0
the concentration is not a constant, but a decreasing function of time, that is y = 1 and
c(0,t) = c1 = 1000exp(—t), the concentration at all positions of the aquifer for t = 0, that
is ¢(x,0) = c0 = 1990, the dry bulk density of the matrix p, = 1800, the volumetric
moisture content of the medium 8 = 1, the volumetric distribution coefficient K; = 1, the
Darcy velocity g = 2, the decay constant A = 0, that is, there is no presence of radioactive in
the pollution and the dispersion coefficient D = 80, then the concentration of pollution in
groundwater will increase rapidly respect to time near the origin and the decreases slowly

in time and position
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Figure 4-12: Surface showing the concentration for xin [0 2] and tin [0 2] ¢(0,t) =
clexp(—t) = 1000,c(x,0) = c0 = 1990,,p, = 1800,K; = 1,q = 2,A=1,and D = 80

The above figure shows that if one suppose that the concentration at the origin for all t >
0 the concentration is a constant, thatis y = 0 and ¢(0,t) = ¢1 = 1000, the concentration at
all the position of the aquifer for t = 0, that is c(x,0) = c0 = 1990, the dry bulk density of
the matrix p;, = 1800, the volumetric moisture content of the medium 6 = 1, the volumetric
distribution coefficient K; = 1, the Darcy velocity g = 2, the decay constant A = 1 and the
dispersion coefficient D = 80, then the concentration near the origin first increases rapidly
respect to time and position. Later on the concentration increases respect to the position
and decreases respect to time. The practical meaning of this is that, the pollution observed
at certain distance from the industry that continuously releases the hazardous waste in the
aquifer, is the mixture of the concentration from the industry and the initial concentration
that was already in the groundwater, since the initial concentration in the groundwater is
greater than the one releases by the industry, if follows that this mixture will be more
important at the site than everywhere else. The first remark here is that the concentration
behaviour is sensible to the present or absence of radioactive nuclide in the system. The
second one is that the initial concentration plays a key role in the model. To have a proper
sensitivity of the parameters involved in this solution, in the following section our

discussion will be based on uncertainties and sensitivity analysis.
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Chapter 5

GROUNDWATER REMEDIATION TECHNIQUES

Groundwater contamination, as one of the most important health-related environmental
problems, has brought serious adverse effects on the environment and human health and
attracted more and more attention around the world. Groundwater remediation is one of
the major technical and environmental challenges in the field of water resources because
completion of groundwater remediation often needs to undergo a relatively long time
horizon of up to several decades or more. This involves removing or containing the plume of
contaminants within an aquifer. Many methods have been devised and used to treat the
many types of contaminants in the many types of aquifers. Eight of the more common
remediation methods are discussed below. Interested readers are referred to the following
references for more detail (Stewart, 2008)(Miller, 1980)(Hayman and Dupont, 2001) (Air
Sparging, 2009) and (Bob, 2009).

5.1 REMEDIATION METHODS

The method for remediation depends on the several factors: (a) Hydro-geological setting;
(b) Contaminant characteristics; (c) Physical properties (sink or float); (d) Chemical
properties (solubility, sorption); (e) Subsurface access, land use; (f) Toxicity-risk; (g) Cost.
All are expensive, and some are much more expensive than others (Stewart, 2008) .

Many remediation methods are used to clean the polluted aquifer, the more common are:
Pump-and-treat

This involves removing contaminated groundwater from strategically placed wells, treating
the extracted water after it is on the surface to remove the contaminates using mechanical,
chemical, or biological methods, and discharging the treated water to the subsurface,
surface, or municipal sewer system.

Hydraulic Containment
Pumping water from wells can be done in such a way that it changes the flow of water

through an aquifer in ways to keep contaminants away from wells used for cities or farms.
The technique works if the flow through the aquifer is relatively simple, so the plume of
contaminated water does not divide into different paths. It is often used together with pump
and treat, and it has the same limitations.

Air Sparging/Soil-Vapour Extraction

The limitations include: (a) difficulty flushing in low permeability zones, (b) difficulty
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operating below 9m (30ft), (c) difficulty extracting multi-component phases.

In-situ Oxidation

This method injects an oxidant such as hydrogen peroxide (H202) into the contaminated
aquifer. The contaminant is oxidized, primarily producing carbon dioxide and water.

Permeable Reactive Barriers
These methods use a trench backfilled with reactive material such as iron filings, activated

carbon, or peat, which absorb and transform the contaminant as water from the aquifer
passes through the barrier. This works only for relatively shallow aquifers.
Phyto-remediation

Some plants accumulate heavy metals and metal like elements, such as arsenic, lead,
uranium, selenium, cadmium, and other toxins such as nutrients, hydrocarbons, and
chlorinated hydrocarbons. Chinese Ladder fern Pteris vittata, also known as the brake fern,
is a highly efficient accumulator of arsenic. Genetically altered cottonwood trees suck
mercury from the contaminated soil in Danbury Connecticut and, transgenic Indian mustard
plants to soak up dangerously high selenium deposits in California. The remediation
consists of growing such plants so their roots tap the groundwater. Then, the plants are
harvested and disposed. The method is limited to remediation of groundwater that is close
enough to the surface that it can be reached by plant roots.

Natural Attenuation
Sometimes natural processes remove contaminants with no human intervention. The

removal may involve dilution, radioactive decay, sorption (attachment of compounds to
geologic materials by physical or chemical attraction), volatization, or natural chemical
reactions that stabilize, destroy, or transform contaminants.

Intrinsic and Enhanced Bioremediation

Biodegradation is the breakdown of carbon-based contaminants by microbial organisms
into smaller compounds. The microbial organisms transform the contaminants through
metabolic or enzymatic processes. Biodegradation processes vary greatly, but frequently the
final product of the degradation is carbon dioxide or methane. Biodegradation is a key
process in the natural attenuation of contaminants at hazardous waste sites.

The most widely used method of groundwater remediation is a combination of extraction,
ex-situ treatment, and discharge of the treated water, commonly known as pump and treat.
Pump-and-treat methods are costly and often ineffective in meeting long-term protection
standards (Travis and Doty, 1990) (Gillham and Burris, 1992). A potentially cost-effective
technology for the removal of organic and inorganic compounds from contaminated

aquifers that will be used in the model described in Chapter 6 is Deep Aquifer
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Remediation Tools (DART’s), more specifically its shallow aquifer equivalent Permeable
Reactive Barriers (PRB’s), which will now be described in more detail.

5.2  PERMEABLE REACTIVE BARRIERS

Instead of pumping water to the surface for ex-situ treatment, a tool has been developed to
take advantage of the natural groundwater gradient to channel groundwater into highly
permeable reactive material(s) (David et al, 1999). These Deep Aquifer Remediation Tools
(DARTS) are used in conjunction with non-pumping wells and offer a low-cost and virtually
maintenance-free alternative to ex-situ treatment methods. As the ground water passes
through the permeable reactive material, the contaminant is immobilized or transformed to
a non-toxic form by a variety of chemical reactions depending on the reactive material and
contaminant of concern (Davis et al, 1999) The DARTSs are deployed into an aquifer and

corresponding contaminant

Non-pumping well
designation X
@ % Model capture zone for
' each non-pumping well.
Capture zone width is two
O times the well diameter

Inside diameter of
non-pumping well

Figure 5-1: Schematic diagram showing non-pumping wells containing DARTs and modelled
pollution capture zone; Fry Canyon. Utah, 2004 (David et al, 1999).
plume through a series of non-pumping wells. (Wilson and Mackay, 1997) have found that

ground water will converge to arrays of un-pumped wells in response to the difference in
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hydraulic conductivity between the well and aquifer. Numerical simulations conducted
during DART development indicate that each well typically intercepts ground water in the
up-gradient part of the aquifer that is approximately twice the inside diameter of the well
(David et al, 1999). Trenching techniques are commonly used to emplace permeable
reactive barriers (PRBs) for in-situ contaminant removal in shallow aquifers (Manz and
Quinn, 1997) and (Schmithorst and Vardy, 1997). Trench emplacement of PRBs has a
number of disadvantages that include: (1) limited to shallow treatment zones; (2) requires
specialized trenching equipment; (3) increased health and safety concerns during
installation; and (4) replacement and disposal costs of reactive material after breakthrough
(David et al, 1999). Because DARTs are deployed through non-pumping wells, in-situ
treatment of deeper contaminant plumes (greater than 100 feet below land surface) that
could not be treated with currently available trenching technologies is now possible (David
et al, 1999). In addition, DARTs allow for easy retrieval, replacement, and disposal of
reactive material after chemical breakthrough. DARTSs are designed to fit a variety of well
dimensions and plume geometries. A DART is composed of three basic components: (1) a
rigid PVC shell with high-capacity flow channels to contain the permeable reactive material;
(2) flexible wings to direct the flow of ground water into the permeable reactive material;
and (3) passive samplers to determine the quality of the treated water (David et a/, 1999).
Multiple DARTSs can be joined together for the treatment of thicker contaminant plumes.
DARTSs also allow for “vertical stacking” of different reactive materials for the treatment of

chemically segregated contaminant plumes.

Reactive barrier material

Flexible wing Rigid PVC shell

Nonjpumping

-«

Ground-water flow

Figure 5-2: Schematic diagram of deep Aquifer Remediation Tool (DART) (David et al,
1999)
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Since 1997, several DART prototypes have been field tested in non-pumping wells for the
removal of uranium (U) from groundwater at sites in Utah and Wyoming (David et aj
1999). The reactive material used during these field tests consisted of a mixture of bone
charcoal and iron oxide pellets. The probable mechanism for U removal in this mixture is
sorption or precipitation of insoluble uranyl precipitates. Results from the latest DART field
test completed in July 1999 indicate an order of magnitude reduction in U concentrations
compared to pre-treatment water samples (David et al, 1999). Additional field tests of the
DARTSs are currently (September 1999) in progress and include the testing of an additional
barrier material (zero valent iron) (David et al, 1999). Previous research with zero-valent
iron (installed using trenching techniques) has indicated greater than 99.9 percent U
removal rates over extended field operations (David, et a/, 1999). Note that in a shallow
aquifer, the boreholes are replaced by a barrier.

5.3  OBIJECTIVE OF THE TECHNIQUE

The use of permeable reactive barriers for the restoration of contaminated groundwater has
evolved from innovative to accepted, standard practice, for the containment and treatment
of a variety of contaminants in ground water. Like any remedial technology, the decision to
use PRBs will be conditioned by the nature of the natural system, the target contaminants,
and the treatment objectives. As with any technology used to treat or extract contaminants
in the subsurface, successful implementation will be contingent on effective site
characterization, design, and construction. Our studies on long-term performance of the
technology at a number of sites have shown the following with respect to ensuring
(designing) and verifying (monitoring) that the PRB meets performance objectives (USEPA,
1988; 1998a, 1998b, 2000a, 2000b, 2008a):

e Adequate site characterization is necessary on the scale of the PRB. Site characterization
approaches, typical of remedial feasibility investigations, are oftentimes not adequate.
Additional localized characterization of the plume distribution in four dimensions
(including time), understanding of local hydrogeology, and knowledge of the geochemistry
of the site is required.

e Understanding of site hydrology has emerged as the most important factor for successful
implementation. This is not surprising given the nature of the technology. The PRB must be
located to intercept the plume. Once located in the subsurface, it cannot be moved, so an
understanding of how the PRB will impact the prevailing flow patterns is important. It is
imperative that the selected design allow for capture of the plume in its present

configuration, as well as allow for variations in flow direction, depth, velocity, and
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concentrations of contaminants, which may vary over time.

e There is a need to develop contingency plans in case a system fails to meet design
objectives. This requires specification of design criteria, performance objectives, and what
constitutes a failure in order to clearly trigger the activation of contingency plans, i.e,
alternative technologies or remedies to the installed PRB system.

Performance goals should target the adequacy of plume capture and contaminant treatment
such that acceptable down gradient water quality is achieved in a reasonable time frame.
Short-term objectives generally involve establishment of adequate residence time of the
contaminant(s) in the reactive media to achieve treatment goals, while long-term objectives

revolve around longevity or lifetime expectations for the system, which in turn, affect cost.

Specific criteria need to be established for all these concerns, and both parties (site owner
and regulator) need to be clear on what triggers contingency plans. Maximum contaminant
level (MCL) concentrations for contaminants in ground water are often used as criteria at
points of compliance. This approach becomes complicated when contaminant levels already
exceed goals at the point of compliance, and meeting these goals is contingent on desorption
of residual contaminants or flushing over time. A time period needs to be specified in such a
case that is reasonable given site characteristics and known contaminant behaviour.
Performance goals are usually developed for the site as a whole and contingent upon plume
and barrier location relative to compliance points and/or site boundaries. The performance
goals can be numeric, regulatory-driven targets and may have system design features
including remedial measures, such as natural attenuation, down gradient of the barrier
location. The time horizon for sustaining performance goals will depend on site-specific
factors related to chemical, physical and microbiological processes, but also such factors as
the extent of source removal, source containment or expected lifetime of the source as a
plume generator.

In many cases, contingency plans are required in the event that the PRB fails to meet
performance criteria. Such plans may range from minor modifications of the PRB to use of
an alternative technology. If the PRB fails to capture a portion of the plume, an extension to
the PRB may be prescribed. If concentrations of contaminants exiting the PRB are higher
than expected, then an additional wall may be required down gradient of the first wall. In
some installations, monitored natural attenuation of contaminants down gradient of the
wall is expected and designed into the system to help meet compliance goals. This will be

explicitly observed with the numerical results via FEFLOW in the next Chapter 6.
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Chapter 6

SUGGESTED NUMERICAL MODEL FOR GROUNDWATER POLLUTION
AT DOUALA CITY

In this chapter, the software “FEFLOW” is used to generate the numerical solution of
groundwater in the city of Douala. Any pre-existing geological background and site
information should be assembled and a preliminary conceptualization of the subsurface
geologic features should be completed. This model should have general information on the
site-wide lithology, various aquifer layers and confining units, contaminant plume
configuration, and factors such as precipitation. A conceptualization of the lithologic
variations also should be developed. These variations have a significant impact on aquifer
heterogeneity, which may be the most important control on the groundwater flow system
and placement of the PRB. This preliminary assessment should be used as a basis for further
delineation of the local geology for PRB installation. This was done earlier in chapter two
The topography of this area is generated by Google-Map. With the help of the software
“Surfer” the topography’s image is discredited to have the numerical data. 31X31 points
were selected to be used in FEFLOW, some assumption were made for this matter,
including, aquifer recharge, hydraulic conductivity and the specific storativity. The area
under investigation measures a distance about 40 kilometres from Nouvelle route de
Bonaberi to Yassa and 17.7 kilometres (11 miles) from the Wouri estuary to Logbessou-
Sunshine city. However, for the simulation purposed, we will only consider, from north to
south a distance of 5603 m and from East to west a distance of 5256 m.

6.1  MASS TRANSPORT AND VELOCITY FIELDS

In this section, we will describe the hydraulic head and the vector fields of Douala, and we
start this description with the hydraulic head following by the velocity field, the numerical
solution of this will be obtained via the software FEFLOW. The aquifer parameters used for
these simulation, are theoretical except the topography coordinates that are given by
Google-Earth.

From the numerical solution generated by FEFLOW one can see that the elevation of water
in this area varies between 0 and 15 meters. Note that the number zero here in the below
figure 6-3 corresponds to the elevation at the sea. The figure 6-4 below shows two zone of
convergence of water flow, the first zone here includes, Bonassama, Deido, Akwa I,

Bonamikengue and the bay of Bonaberi and the second zone including, New Bell, Douala
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International Airport and the Wouri estuary which is found in the mangrove, this mangrove.
Since the water flow is the driving force for the release of pollution in the liquid phase, it
follows that the high concentration of groundwater pollution released from different waste
disposal in Douala may possibly be found in these two zones. The following Figure (6-1)
shows the finite element mesh used for the model. To set up our model we considered here
two points of pollutions, one in the Bonaberi area and another one in the New Bell near the
estuary. This network is the base of the models that will be simulated throughout this thesis.
The model network was generated by making use of a 3D finite element ground water
modelling software package FEFLOW, developed by the German based DHI WASY Institute
for Water Resources Planning and Systems Research GmbH. The basic premise on which all
numerical models are based is that the area in question can be discredited into smaller
areas, also referred to as elements. In the case of Douala city, the two major areas were
discredited into 393,860 elements (795044 elements x 1 layer), with 217,074 nodal
positions (795608 nodes x2 slices). Different zones and layers were assigned in order to
compensate for hydro geological differences in characteristics over the area due to geology
and/or gradient at depth. No rotation of the model grid was required as it was assumed that
the natural flow occurs from South to North in the model domain. Two sources of
contaminations were introduced, one at industrial zone of Bonaberi and one in industrial
zone of Bassa as indicated in Figure (6-1) in chapter 2. From north to south we have a
distance of 5603 m and from East to west we have a distance of 5256 m, these distances
were measures via WISH.

We have placed the western source of groundwater pollution at the Bonaberi industrial zone.
We placed the Eartern source of groundwater pollution in the Bassa zone industrial, between
Bonanjo and Akwa, as display in figure (6-1). Figure (6-3) shows the initial head run as
transient state. The black areas between the two industrial zones correspond to the estuary
and will not take into account. Figure (6-4) shows the velocity field of Douala’s groundwater
flow. This figure is in perfect agreement with the topography and the hydraulic head field show
the convergent zones. It is worth noting the upper part of the area under study shows that the
water from the springs and rivers recharge the aquifer, but near the industrial zone including,
Bonassama, Deido, Akwa [, Bonamikengue and the bay of Bonaberi, the groundwater flows

toward the river Wouri.



Figure 6-1 Network of the numerical model at Douala city
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Figure 6-2: Elevation contour map, the elevation ranges from -15 to 0 and from 0 to 25.2, where 0 corresponds to the sea, -15 m corresponds to
the elevation below the sea and 25 m above the sea.
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Figure 6-3: Hydraulics Head in Douala generated by FEFLOW, with the hydraulic head ranging between from 0 to 15 m. Where the number zero
corresponds to the level of water at the Wouri estuary
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Figure 6-4: Velocity field of the area under study (Douala). The accumulation of the velocit rresponds to the convergence point of the
groundwater flow from the main aquifer to the Wouri estuary. The direction of the flow is more effective in the Eastern part of the model
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This is in perfect agreement with what was predicted from the hydraulic head; see Fig (6-3).
Therefore, these velocities will be used in the solution of the mass transport equation.

6.2 NUMERICAL IMPLEMENTATION OF THE GROUNDWATER RESTORATION AT
DOUALA CITY VIA OF PRB

The permeable reactive barrier (PRB) technology has gained acceptance as an effective
ground-water remediation strategy for the treatment of a variety of chlorinated organic and
inorganic compounds. The technology combines subsurface fluid-flow management with
contaminant treatment by chemical, physical or biological processes, or by combinations of
these three principal process categories. The PRB methodology has advantages over
traditional pump-and-treat systems in that it is passive and a large plume can be treated in a
cost-effective manner. More than one hundred implementations of the technology
worldwide have proven that passive reactive barriers can be cost-effective and efficient
approaches to remediate a variety of compounds of environmental concern. Yet, few case
studies are available that evaluate the long-term performance of these in-situ systems,
especially with respect to the long-term efficiency of contaminant removal, the build-up of
mineral precipitates, and the build-up of microbial biomass. On the Eastern source of
contamination we will accurately place the barrier to intercept the plume, but on the
western part the barrier will not be placed accurately for the sake of clarity. This choice is
to illustrate how important is to place adequately the barrier to intercept all the pathway of
the plume in the aquifer. The numerical simulations of the mass transport equation in
Douala cit obtained via FEFLOW have been depicted in Figure 6-7, Figure 6-8, Figure 6-9,
Figure 6-10, Figure 6-11 and Figure 6-12. In Figure 6-7 we placed the barrier between the
pollution source and the estuary and then we run the model for few days to see the effect of
the barrier to the pollution pathway. The similar scenario was done in the simulation of

Figure 6-8, Figure 6-9, Figure 6-10.
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Figure 6-5: clean up for year zero, 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic head
isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]
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Figure 6-6: Clean up after 10 years 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic head
isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]
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Figure 6-7: Clean up after 20 years, 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic head
isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]



92

1
0.0001

Figure 6-8: Clean up after 30 years, 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic head
isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]
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Figure 6-9: Clean up after 40 years, 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic head
isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]
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Figure 6-10: Clean up after 50 years, 100% of the mass concentration, the hydraulic head continuous ranging from 0 to 15 m and the hydraulic
head isolines ranging from 0.0001 to 15 m and mass concentration fringes ranging from [1-7.6] to [93.4-100]
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The above figure show that after a period of 30 years there will be no pollution after the
barrier in the Eastern part and after a period of 50 years no pollution will be observed after
the barrier in the western part. Note that if the barrier was placed accurately in the western
part, after 30 years no pollution will be observed as in the case of Eastern part. Therefore
care needs to be taken when placing the interceptor barrier.

6.3 REMARKS AND DISCUSSIONS

From the numerical our results via FEFLOW, one can see that, in many cases, contingency
plans are required in the event that the PRB fails to meet performance criteria. Such plans
may range from minor modifications of the PRB to use of an alternative technology. If the
PRB fails to capture a portion of the plume, an extension to the PRB may be prescribed. If
concentrations of contaminants exiting the PRB are higher than expected, then an additional
wall may be required down gradient of the first wall see for example the barrier placed in
Bonaberie. In some installations, monitored natural attenuation of contaminants down
gradient of the wall is expected and designed into the system to help meet compliance goals.
As with any groundwater remediation technology, adequate hydro-geological
characterization must be done to understand flow patterns and the distribution of the
contaminant plume, which was the main raison of the mass transport solution Figure 7-6.
This is particularly important for PRBs as the treatment system is immovable or passive, yet
it must intercept and capture the contaminant plume for effective treatment. Information to
be obtained includes advective velocity parameters such as the gradient, the hydraulic
conductivity, porosity, and other parameters collected as part of a hydro-geological
characterization program. It is also important to understand temporal changes in flow
direction and flux due to processes such as recharge, pumping of adjacent wells or other
disturbances. Observed changes in flow direction at the Douala City site, for example, have

ranged as high as 15 degrees from time to time.

In addition to the hydrology, the stratigraphic and lithology of the site is important to
understand and will dictate effective PRB design. If a low permeability layer exists at the
site, the PRB can be keyed into this layer. If it does not exist, then a hanging wall design must
be chosen which may add to the uncertainty of plume capture. If the site has low
permeability layers through which the PRB must be constructed, care must be taken during
construction to avoid smearing of such layers. This could impact hydraulic contact between
the formation and the reactive media. A thorough understanding of site stratigraphic is

especially important or helpful in choosing a particular construction method. Use of sheet
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piling to construct a reactive gate may not be a good choice where low permeability layers
exist because of the smearing potential and increased difficulty in re-establishing good

hydraulic contact between aquifer sediments and the reactive zone.

Characterization of contaminant concentrations in four dimensions is required for
successful implementation of a PRB. In addition to knowledge of the plume in the three-
dimensional space, it is also imperative to understand variability in plume shape and
direction over time. Plumes deviate in direction and location over time and may change
shape due to attenuation, degradation, mixing with other plumes, dilution, recharge, and

other natural and anthropogenic-induced disturbances.

PRBs are often located within plumes. This requires some understanding of the impact of
construction on plume behaviour, both up gradient and down gradient of the barrier. For
example, it is essential to verify that hydraulic contact between the plume and reactive
media is established. If a PRB is located below an impermeable surface structure such as a
parking lot, will the surface be repaved immediately or will recharge be allowed to occur
over the PRB? Some understanding of natural attenuation processes at the site is important
in being able to interpret the subsequent response of the natural system to the presence of
the PRB. This is most often manifested in trying to estimate how long the down gradient
aquifer will require to achieve cleanup goals. A key question to address is the length of time
required before contaminants located down gradient of the barrier flush out of the

sediments or degrade naturally.
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Chapter 7

SENSITIVITY AND UNCERTAINTY ANALYSIS

In more general terms uncertainty and sensitivity analysis investigate the robustness of a
study when the study includes some form of statistical modelling. Sensitivity analysis can be

useful to computer modellers for a range of purposes, including:

e Support decision making or the development of recommendations for
decision makers (e.g. testing the robustness of a result);

e Enhancing communication from modellers to decision makers (e.g. by
making recommendations more credible, understandable, compelling or
persuasive);

e Increased understanding or quantification of the system (e.g. understanding
relationships between input and output variables); and Model development

(e.g. searching for errors in the model)
In the following sections sensibilities and uncertainties we are discussed.

7.1  SENSITIVITY ANALYSIS

The aim of sensitivity analysis is to estimate the rate of change in the output of a model with
respect to change in model inputs. Such knowledge is important for (a) evaluating the
applicability of the model, (b) determining parameters for which it is important to have
more accurate values, and (c) understanding the behaviour of the system being modelled.
The choice of a sensitivity analysis method depends to a great extent on (a) the sensitivity
measure employed, (b) the desired accuracy in the estimates of the sensitivity measure, and
() the computational cost involved.

In general, the meaning of the term “sensitivity analysis” depends greatly on the sensitivity
measure that is used. Based on the choice of sensitivity metric and the variation in the
model parameters, sensitivity analysis methods can be broadly classified into the following
categories: Variation of parameters or model formulation: In this approach, the model is run
at a set of sample points (different combinations of parameters of concern) or with
straightforward changes in model structure (e.g., in model resolution).

Sensitivity measures that are appropriate for this type of analysis include the response from

arbitrary parameter variation, normalized response and extrema. Of these measures, the
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extreme values are often of critical importance in environmental applications.

Domain-wide sensitivity analysis: Here, the sensitivity involves the study of the system
behaviour over the entire range of parameter variation, often taking the uncertainty in the
parameter estimates into account.

Local sensitivity analysis: Here, the focus is on estimates of model sensitivity to input and
parameter variation in the vicinity of a sample point. This sensitivity is often characterized
through gradients or partial derivatives at the sample point. In the following paragraph,
local sensitivity analysis will be used in the case of our work.

7.1.1 Linear (first-order) sensitivity coefficients

The analytical solution of the advection dispersion equation subject to the prescribed initial

and boundaries conditions described in chapter 5 was given as:

0 crexp[—yt] { ( qr — ur) / (x — urt> N ( qr + ur) f <x + uﬂ)}
c(x,t) = ————{exp|x—=—erfc exp (x erfc
2 P\, 2Jb,c) " PV oD, 2Dyt

coexp(—At) { (x - qrt> ( qr) (x + qﬂ)}
——erfc|—— | + ex X—jJerjJc + co exp(—At).

From this solution one can see that the concentration is a function of the parameters

Y, qr Uy, Drand 4, thus we can write the concentration as follows

¢ = c(@r ur, Dr,y, 4, x,8) (7.1a)
Note that because u, is not an independent parameter and should thus be excluded
from the sensitivity analysis. Therefore, the concentration depends on the following
physical parameters and the independent variables x and . Then, Equation (7.1a)
can be reproduced as:

c=c(a,v,4,0,p,K,q,,x,t) (7.1b)

A common assumption in uncertainty analyses is that the independent variables are
perfectly known and therefore excluded from such analyses. The same applies to A as it
denotes the rate at which a given chemical reaction proceed and is usually well-known or
can be determined quite accurately in the laboratory.
Let (a;,i = 1...5) be the set of all parameters involve in Equation (7. 1) then we have that ¢
can be written as

¢ =c(a;,x,t) (7.2)

Consider the first-order sensitivity coefficients defined as

Cay (6, 0) = 2828 1 — 155 (7.3)

da;
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It is a straightforward matter to differentiate Equation (7.1) respect to each parameter.

Hence we begin with, (7.4)
— 2 — 2
| exp [~ SET e enp [ - SR
Cqy, = Cq. = —5Co exp[—t 4] L - L L
! " 2 JmD,t JmD,t
qrX qrt+x
exp [D_r xErfc [—2 Drt]
D,
1 exp[x]xErfc [_Zlf/r%x] explx]xErfc [Z\r/g_’;
+ —cexp[—y t] =+ .
2 2D, 2D,

The normalized solution of the above equation is illustrated graphically in the below figure

for different values of g,

l'i, felx, 1 !

Figure 7-1: Variation of the concentration as function of seepage velocity

It is worth noting from the graphs that,c,, (x,t) is a positive function for all values of the
retarded velocity vectorg,. Thus the concentration is an increasing function of the retarded

velocity vector g, in time and space.

We follow here with, 75
— 2 _ 2
1 exp [_ ﬂ] t exp [M _ (—qrt+x)
Cq, = Cy = _Clexp[_tﬂ.]t 4Dt _ Dy 4Dt
2 T 2 1/ T[DTt [T[Drt

X t+x
exp [qL xErfc|&
Dy 2,/Dyt

D,

The normalized solution of the above equation is illustrated graphically in the below figure
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for different values of y

Figure 7-2: Variation of the concentration as function of the parametery

It is worth noting from the graphs that, c,,(x,t) is a positive function for all values of the
retarded velocity vectorg,. Thus the concentration is an increasing function of the retarded

velocity vector yin time and space.

For the next parameters, in the concentration, we have (7.6)
(=qrt+x)?] .2 arx  (—qrt+x)?] 5
1 exp [_ 4Dyt ] = exp [D_ ~ape Y
Ca. = Cp. = —=cCoexp[—tA] |- L + T L
3 v 2 2\ (D, t)3/2 2\ (D, t)3/2
(— t+ )2 (_ t+ )Z
exp [— —(ZD tx ] (—q,t +x)? exp [ql;—x - —‘ZD tx ] tx(gqyt + x)
+ r + T T
4t (D,)3/? 2D,\1(D,t)3/2
arx _ Cart+0?] Jarx _ (Cart+a)? arx [qrt+x
_ exp [Dr 4Dt ] [Drz 4D, %t ] _ exp ( Dy ) xErfc 2./Dyt
2,/nD, D?

t
arx 2 qrt+x
B exp (Dr ) x“Erfc [—2 Drt]\
D?
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_ 2
exp [_ (=qrt+x)

1 D ] exp[tx](—u,t + x)
+ 561 exp[—ty] L

4D, (D, £)3/?
_ 2
+ - -
4D, N1(D, )3/ D?
exp ( xE f [uTHXq
We further have, (7.7)

- 2 2
1 exp [— 4;“:) ]exp[tx] exp [—% exp[tx]
T T
0q,Cc =y = Eclexp[—t vl |-

1 exp[x]Erfc exp[x]Erfc Xt
sl ] | ot )|

2D,

The normalized solution of the above equation is illustrated graphically in the below figure
for different values of y.

0000 /4

e, 1)
-0.001

Figure 7-3: Variation of the concentration as function of the parameter y = 0

The above figure shows that for y =0, d4,c(x,t) is a negative function implying, the

function ¢ = c(x, t, D,.) is decreasing in time and space respect to y
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Finally, we have for the last parameter (7.8)

(x—uyt)? _ (x+u,pt)?
4D,t exp(t x] B exp [ 4Dt

D tu, D tu,

exp [— expt x]

— 2 2
exp [_ (x—qrt) ] t exp [M _ (x+u,t) ]
+ —coexp[—A t]t 40t - Dr A0t
° Dt Dt
exp [% xErfc [—Zri:;
D,

The normalized solution of the above equation is illustrated graphically in the below figure
for different values of 4.
If one consider, R = 6 + p K (retardation factor), we obtain the following sign of the partial

derivative.

0000,

8, (clx, ) (1]} #,clx, )
P o001 /7777 (T 1 Y

=0.002

dgletx, )
0o

Iil
Figure 7-5: Derivative of the concentration as function of 8
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Figure 7-7: Derivative of the concentration as function of K

One can conclude from the above investigation that for the first order coefficient sensitivity,
the value of the retarded hydrodynamic dispersion coefficient must be measured very
accurately because the investigation shows that the concentration of pollution in space time
is more sensitive to the value of the retarded hydrodynamic dispersion coefficient than

other parameters involved in the solution.

7.1.2 Linear (Second-order) sensitivity coefficient

We will probably remember that with a function of one variable we looked at the second
derivative to establish whether a point was a maximum or a minimum or a point of
inflection. For functions of two variables, it's a little more complicated, because we don't
just have one second derivative any more, in fact we have three. For a function f(x, y), we
can differentiate twice with respect to x to find this second derivative: fi. Or we could
differentiate twice with respect to y to get this second derivative: f;;. Or we could

differentiate once with respect to x and then once with respect to y (or the other way round
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- it gives the same answer) to get this second derivative: f,; So how can we use all those
second derivatives to decide the nature of a point? This is the rule: If fufy,-fiy? is negative,
then the point is neither a max nor a min, it is a saddle point. If ffy,-fiy? is positive, and fi
and f;y are both negative, the point is a maximum. If ffy,-fy? is positive, and fxx and f,y are
both positive, the point is a minimum. So let's try out those rules on a function under
investigation, that is c(ai,a'j), i, )He{,.... 5 x {1, ... ,5}. Hence the sign of fufyy-fiy? will

be given for a few values of (a; a; ) and for all x,t > 0. We start this investigation by given

some second order partial derivatives as follows. (7.9)
2 2
1 exp [qrx (thD+x) ] tx exp [— —(qf;rf) t(—q,t +x)
05 ¢ = —>coexp[-At] | — rt r
2 D,\/mD,t 2D,\/mD,t

4Dyt D, 2D, Dyt

JDt D?

exp [qrx —(qTHx)Z] t (lrt + i) N exp [qu ] x2Erf [Zer

The sign of this derivative will not be investigated. But one can still go in detail in this study
by given the sign of this second order derivative which can be used to determine in which

interval one will have the maximum or minimum for a given set of («; @; ).

We follow here with: (7.10)
(x—tqy)? (x—tgy)?
1 exp |- S| enp [FE BT
02 ,c=—=coexp[-At] |- rt rt
ara 2° 2Vm(D,t)3/2 2Vr (D t)3/?
(x—tq,)? 2 arx _ (x—tqy)?
exp [ oy ] (tq, +x)= exp [ oy ] tx(g,t +x)

4D2\/mD,t 2+r(D,t)3/2

arx (x—tqr)z] (qrx (x—tqr)z) [qr ] [qrt+x
P |y (9rX _ WXTHr)T) oy xErfc
exp[ 4Dt t D,? 4D, %t p f Dyt

Dt Dr2
qrt+x

exp [qr ]x qrErfc Ppx:
_ i

exp[ (e—tar)® 4;(”) ]Exp[t x](—tu, + x) exp[ (x+tur) ]Exp t x](tu, + x)

1
+5ceml-ty]

4D, N (D, t)3/? 4Drx/_ (D, t)3/2
explx ]Erfc[ t:;ix exp[x]Erfc [;ur;rx
B 2D2 2D2

Note that ¢p_ p, was calculated but due to the length of the expression we decided to save
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page by leaving that expression out, but it will we be used in this work.

Let  fuq. (1) = Caa(x,t)cq, q,(x,t) = (Caq, (%, 1))

Note that several figures were obtained for different values of («, q,-), but not mention here.
From the above three figures we can see that fj, , (x,t) <0, then according to the rule, we

conclude that the set of (D,., g¢,-) > (0,0) are saddle points.

We follow here with: (7.11)
1 —q,t+x x t+x
93.2¢ = coexp[—tAlt? — s coexp[—tAlt? |Erfc [Clr—] + exp [CIT ]Erfc [qr ] .
2 2Dt Dy 2,/D,t
and
—tar 2 T tqr 2
1 exp [— % t(—tq, +x) exp [qD—x - % t(tq, + x)
Oyp,.C ==coexp[—At]t L + L o
'A,Dy 5 o pl ] Zﬁ(Drt)3/2 Zx/E(DTt)3/2

r rt+
exp [%] q-xErfc [(ZIJD_:Z]
— b7

Let fa,/’l (x, t) = Caf,a (.x, t)c}{,l(xf t) - (Ca:,ﬂ (‘x' t))z
The normalized solution of the above equation is illustrated graphically in the below figure

for different values of (a, 1).

Figure 7-8: Second derivative of the concentration fora =80, 1 =1
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80

Figure 7-9: second partial derivative of the concentration for a = Teo1’ K=0.4

Figure 7-10: second partial derivative of the concentration for « =1, K = 0.5
Note that several figures were obtained for different values of (a, 1), but the above three
were chosen to illustrate the behavior of the function under investigation. From the above
three figure one can see that there exists a set S, = {(a, Mel0,-) x [0,1]: f1(x,t) >
0 forallt,x > 0} of Maximum or minimum depending on whether ¢; ;, and ¢, _p_are both
negative, or are both positive. And there exists a set S;{(a, 1)e[0,-) x [0,1]: f,,(x,t) <

0forallt,x > 0} of saddle points.
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We follow with: (7.12)

—tu, +
explg, e 2122

tur+x]

1
0y = Eclexp[—t yle? + explq, + u,]xErfc [

2D, 2/D,t
— 2
1 exp [— % exp[t](qr — up)x(—tu, + x)
g€ =—=crexp[—tylt T
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B 2D2 '

Let fo, (x,t) = coa(x, t)cy, (x, 1) — (cqy (%, £))% The normalized solution of the above

equation is illustrated graphically in the below figure for different values of («, y).
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Figure 7-11: Second partial derivative of the concentration for (a ,4)
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Figure 7-12: Second partial derivative of the concentration for (p ,q)
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Figure 7-13: Second partial derivative of the concentration for (p ,q).

Note that several figures were obtained for different values of («,y), but the above three

were chosen to illustrate the behavior of the function under investigation. From the above
three figure one can see that there exists a set S, = {(a, Y)e[0,-) X [0,1]: fo, (x, ) >
0 forallt,x > 0} of Maximum or minimum depending on whether ¢; ; and ¢, _p_are both
negative, or are both positive. And there exists a set 53{(a, Y)e[0,-) X [0,1]: fo,, (x, t) <

0 forallt,x > 0} of saddle points.
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We end here with: 713)
— 2 _ 2
! exp [_ m] expltx] exp[ et ) oxpltx]
0y € ==ciexp[—ty]|— 4Dyt _ 4Dt
mUr 2 D‘r ﬂDrt DT T[Drt
—tu,+ 2
exp [~ 52 exp(6) (g7 — up)x(x — tuy)
_|_ T
4D2./mtD,
tuy+x)?
exp [ v :] ] exp(t)(qr + u)x(x + tu,)
+ T
4D?\/mtD,

Let fu,(x,t) = cqq(x,t)c, p(x, ) — (Cqp(x, )% The normalized solution of the above
equation is illustrated graphically in the below figure for different values of («, p).

Note that several figures were obtained for different values of (a,p), but the above two
were chosen to illustrate the behavior of the function under investigation. From the above
two figures, one can observe that there exists a set
S, = {(Dr,ur)e[O, =) x [0,1]: fp, o, . (x,t) > 0 forall t,x > 0} of Maximum or minimum
depending on whether ¢, ,_and cp_p, are both negative, or are both positive. And there
exists a set Ss{(Dy, u,)e[0,-) x [0, 1]: [, (2, t) <O forall t,x > 0} of saddle points.

The above analysis show that all aquifer parameters are bounded, that is has a lower and
upper bound. For practical purpose one will go to the field and measure the aquifer
parameters for each parameter, one will possibly be able to determine the upper and the
lower bound of these parameters. Knowing the upper and the lower bound of each
parameter, the uncertainty analysis will be followed. In the next section, aleatory and
epistemic uncertainties will be presented.

7.2 UNCERTAINTY ANALYSIS OF GROUNDWATER POLLUTION

We start this section by quoting (Feynman, 1956) “Any difference. But to get a law that is
right, or at least one that keeps going through the successive sieves, that goes on for many
more observations, requires a tremendous intelligence and imagination and a complete
revamping of our philosophy, our understanding of space and time. I am referring to the
relativity theory. It turns out that the tiny effects that turn up always require the most
revolutionary modifications of ideas. Scientists, therefore, are used to dealing with doubt
and uncertainty. All scientific knowledge is uncertain. This experience with doubt and
uncertainty is important. I believe that it is of very great value, and one that extends beyond

the sciences. I believe that to solve any problem that has never been solved before, you have
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to leave the door to the unknown ajar. You have to permit the possibility that you do not
have it exactly right. Otherwise, if you have made up your mind already, you might not solve
it. Doubt is clearly a value in the sciences. Whether it is in other fields are an open question
and an uncertain matter. I expect in the next lectures to discuss that very point and to try to
demonstrate that it is important to doubt and that doubt is not a fearful thing, but a thing of
very great value ”. Uncertainties can be classified into different categories:

1. Aleatory or statistical uncertainties are unknowns that differ each time we run the
same experiment. Statistical uncertainties are therefore something an experimenter
cannot do anything about: they exist, and they cannot be suppressed by more
accurate measurements.

2. Epistemic or systematic uncertainties are due to things we could in principle know
but don't in practice. This may be because we have not measured a quantity
sufficiently accurately, or because our model neglects certain effects, or because
particular data are deliberately hidden.

In real life applications, for instance in groundwater pollution, both kinds of uncertainties
are often present. Uncertainty quantification intends to work toward reducing type 2
uncertainties to type 1. The quantification for the type 1 uncertainty is relatively
straightforward to perform. Techniques such as Monte Carlo methods are frequently used.
Pdf (Probability density function) can be represented by its moments (in the Gaussian case,
the mean and covariance suffice), or more recently, by techniques such as Karhunen-Loéve
and polynomial chaos expansions. To evaluate type 2 and 3 uncertainties, the efforts are
made to gain better knowledge of the system, process or mechanism. Methods such as fuzzy
logic or evidence theory (Dempster-Shafer theory - generalization of Bayes theory) are
used.

In this section uncertainty is carried out to investigate the predictive accuracy of the
concentration models for describing the transport of improperly discarded hazardous waste
through the environment that is the movement of water through the subsurface and surface
waterway in the aquifer.

Uncertainty in groundwater hydrology originates from different sources. Neglecting
uncertainty in groundwater problems can lead to incorrect results and misleading output,
generally, there are various sources of uncertainty of the model outputs, such as the input
uncertainty reflecting the lack of knowledge or accuracy of the model inputs, and the
structural uncertainty related to the mathematical interpretation of the model (Bradford

and Toride, 2007). From the uncertainty analysis, a probability distribution of model
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outputs can be obtained, including the mean value, the variances and the quantiles (McKay

et al 1999)(]J.C. Helton, 1993) The uncertainties of the groundwater pollution model may

come from the following sources:

1) Conceptual Model Uncertainties
a) Geological uncertainties

®
(if)

The approximation of the geometry of the aquifer.

The heterogeneity or anisotropy of sediments or bedrock within the aquifer.

b) Physico-chemical Uncertainties

(iii)
(iv)
(Y]

(vi)

(vii)

Lack of understanding physical mechanisms responsible for the mass flux.

The contaminant transport mechanisms and chemical reactions.

The approximation of particle velocity by the average pore water velocity; it
has been observed that the particles of different sizes may travel faster or
slower that the carrying fluid in porous media (R.L. Iman and J.C. Helton, 1988).
Estimation of dispersion coefficients by fitting to experiments; for highly
heterogeneous porous media the observed breakthrough curves are more
dispersed and contain more scattered points(R.L. Iman and ].C. Helton. 1985).
The approximation of the density in most general the equation describing the

density as being a constant.

2) Mathematical Model Uncertainties

(viii)

(i)

(€9)
(xi)

(xii)

(xiii)

Derivation of the mathematical model from the conceptual model. The
approximation made in the most general equation for the description of
density-dependent mass transport in a consolidating porous medium which
consist of discarding the terms containing the matrix velocity.

The assumption made in finding the analytical of the hydrodynamic dispersion
equation including, there is no discharge from or recharge to the aquifer, the
Darcy velocity, and dispersion tensor are constant, and the matrix of dissolved
can be represented by the Freundlish isotherm.

The boundaries conditions to the problem frame.

The domain V spanned by x and its boundary #V is not known

The relational parameters, such as So(x, t) and K(x, t) is not well known at
all points x in V and any time t for which the differential equation has to be

solved.

Any forcing functions that appear in the differential equation describing the

hydrodynamic dispersion equation are well known
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(xiv) Boundary conditions, appropriate values of the dependent variable, are not
known at all points along #V and again at any time t for which differential

equation has to be solved.

(xv) Initial conditions, appropriate values of dependent variable are not usually
well known across V for a suitable time, to = 0 say.
3) Parameters Model Uncertainties
Parameter uncertainty can be defined as uncertainty that arises in selecting values for
parameters in the various models. There are many parameters in this assessment that are
uncertain. First, there are insufficient data about the site climatic, geological and
hydrological conditions. As a result, such parameters as sorption coefficients, moisture
content, river flow rate, river depth and width, hydraulic gradient in the aquifer and erosion
rate are taken from the general literature. Some parameters used need to be specified more
accurately, e.g. evaporation or distance between the disposal facility and the river, and
between the disposal facility and residences. On the other hand, the sensitivity analysis
aims at quantifying the individual contribution from each parameter’s uncertainty to the
uncertainty of outputs. Correlations between parameters may also be inferred from
sensitivity analysis. It is a frequent routine and recommended to perform the uncertainty
and sensitivity analysis in tandem (Bradford et aj 2004) (Sin et a/,2009a) (Sin et al, 2009b)
and ( Helton, 1997).
Several approaches have been developed to cope with uncertainty including; Data
uncertainty engine (DUE);Error propagation equations; Expert elicitation; Extended peer
review (review by stakeholders); Inverse modelling (parameter estimation);Inverse
modelling (predictive uncertainty); Monte Carlo analysis; Multiple model simulation;
NUSAP; Quality assurance, Scenario analysis; Sensitivity analysis; Stakeholder involvement
and Uncertainty matrix.
The most widely used methods in uncertainty analysis are Monte Carlo simulation (MCS)
and Latin hypercube sampling (LHS), developed from MCS. Despite the simplicity of MCS,
many runs are required to achieve a reliable result. In this thesis we are using the Latin

hypercube sampling Monte Carlo to address the uncertainties issues.

7.2.1 Method history and description

The method of LHS is an extension of quota sampling (Steinberg, 1963), and can be viewed
as an dimensionalextension of Latin square sampling (Raj and Des, 1968). This method first

was used in “Uncertainty Analysis” by selecting input values x = (x1,x3,...,X,) 1
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(random variable) of a function y = h(x), inorder to estimate the cumulative distribution
function (c.d.f.) and mean value of y (McKayet a/, 1979a)( Iman and Conover ,1980)( Iman
and Helton, 1988). This sampling approach ensures that each of the input variables has all
portions of its range represented. LHS is computationally cheap to generate and can cope
with many input variables. In what follows the generation and application of LHS in MC
yield estimation is presented.

7.2.2 Samples Generation
The LHS method (McKay et al, 1979b) is a type of stratified MC sampling (Hocevar et a/ .,

1983) . The sampling region is partitioned into a specific manner by dividing the range of
each component of x. We will only consider the case where the components of x are
independent or can be transformed to an independent base. Moreover, the sample
generation for correlated components with Gaussian distribution can be easily achieved
(Iman and Conover, 1982).

As originally described, in the following manner, LHS operates to generate a sample size N
from the n variables x4, x5,,,,,,x,. The range of each variable is partitioned into N non
overlapping intervals on the basis of equal probability size 1/N. One value from each
interval is selected at random with respect to the probability density in the interval. The N
values thus obtained for x;are paired in a random manner with the N values of x, . These N
pairs are combined in a random manner with the N values of x5 to form N triplets, and so on,
until a set of N n-tuples is formed.This set of n-tuples is the Latin hypercube sample. Thus,
for given values of N and n, there exist (N!)"~! possibles interval combinations for a LHS. A
10-run LHS for 3 normalized variables (range [-1,1]) with the uniform p.d.f. is listed below.
In this case the equal probability spaced values are -1,-0.8... 0.8, 1.

7.2.3 Efficiency of LHSMC
Consider the case that xdenotes an n-vectors random variable with p.d.f. f,,(x)forx € S.

Lethdenote an objective function given by h = q(x ). Consider now the following class of

estimators

T =—%, g(Hy). (7.14)
where g(.) is an arbitrary known function and H; = q(x;). If g(h) = hthat is if h a fixed
point for g, then T represents an estimator of [h] . If g(h) = H;one obtains the rth sample
moment. By choosing g(h) = u(c — h) (u(.) is astep function), one achieves the empirical
distribution function of hat the point c. Now consider the following theorems
Theorem 7.1: If x''s are generated by LHS method. Then, the statistic T Equation (7.14) is an

unbiased estimator of the mean of (h). That is,
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E[T] = E[g(h)]. (7.15)
Proof: This is a special case of Theorem 7.1 in (Iman and Conover, 1980). It should be
emphasized that even if the variables are correlated LHS estimator will be unbiased.
Let Ty denote estimator (7.14) with standard random sampling of, and T denote the
estimator with the LHS generator of x. Now consider the following theorem related to the
variances of Tgrand Tj.
Theorem 7.2: Ifh = q(x41,%5,....,X,) Is monotonic at least in (n — 1) of its arguments, and
ifg(h)isa monotonic function of h, then the variance of LHSMC estimator is less than that of
PMC, that is, in order words

Var (Tg) = Var(T,). (Keramat, 1996)
The goodness of an unbiased estimator of yield can be measured by the size of its variance.
From Theorem 7.2, it is seen that for the monotonic function q(.) for n — 1 variables and a
monotonicg(.) the LHSMC method gives better estimate than that of the random sampling,
without any significant additional computational costs.
Theorem 7.3: /fh = q(xq,%5,....,x,) Is monotonic in each of its arguments and if g(h)is
amonotonic function of h, then a lower bound of the variance differences between the

LHSMC and the PMC estimators is m

Var(T,) = Var(Tg) < — v max;epy,....m{Var(Er, (1))} (7.16)
where I; =1y 1141...n and pc(Iy, Iy, ..., 1) = [ g(R) fi (x)dx in which I; presents the ith
component of the cell I (the interval number in direction x;)( Keramat, 1996) It should be
emphasized that the monotonicity conditions of Theorem 9.2 and Theorem 9.3 are sufficient
condition and are not necessary. Consider now the following theorem with no assumption of

monotonicity in the two-dimensional space.

Theorem 7.4: Ifh = q(x1,x;) and g(h)are arbitrary functions, then the difference of
variances between the LHSMC and the PMC estimators is (Keramat, 1996) (7.17)

1 2
Var(T,) — Var(Tg) = m Var(u,) — NZ Var[E,l(uc)] .
=1

In order to compare two different estimation methods, an efficiency measure is introduced

as the product of the ratio of the respective variances with the ratio of the respective

computation times (Hocevar et a/, 1983) (7.18)
_ ORTR

=——,
o;'Ty

where 7z and oZdenote the computation time and the variance of the PMC estimator.
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7, and o7 are the computation time and the variance of the LHSMC respectively

7.3  APPLICATIONS

Iman and Helton (Iman and Helton, 1988) applied the LHS approach to cumulative
distribution function (c.d.f.) estimation of the three computer models: 1) Environmental
radionuclide movement, 2) Multi-component aerosol dynamics, and 3) Salt dissolution in
bedded salt formations. They reported a good agreement of c.d.f. estimations. In this section,
the application of Latin Hypercube Sampling Monte Carlo to groundwater pollution will be

discussed.

7.3.1 Latin hypercube sampling of parameters involved in the solution of advection
dispersion equation

The generation of an LHS is presented here for « = [D,, q,,, u,,y,A] and nS = 5. D, assigned
a triangular distribution and a mode of 1 on [0,2],) g, assigned a triangular distribution and
amode of 0.875 on [0, 1.75], Aand y assigned a uniform distribution on [0, 1]. The range of
the five parameters are subdivided into five intervals of equal probability, with this
represented by lines that originate at 0.2, 0.4, 0.6 and 0.8 on the ordinates Fig (6-20, 6-21, 6-
22 and 6-23), extend horizontally to the CDFs (Cumulative Distribution Function), and then
drop vertically to the abscissas to produce the five indicated intervals. Random values
D, (1), Dr(2), ., D (5); qr(1), 4 (2), 4, (3), ., 4r(5); 47 (1), qr(2), ..., ur(5)

A(1),A(2), ...,A(5)and y(1),y(2), ..., y(5) are then sampled from these intervals. The sample
of these random values is implemented by Q) sampling
RD,.(1),Rq,(1),Ru,(1),RA(1)and Ry(1) from a uniform and a triangular distribution on
[0,0.2], RD,(1),Rq,(1), Ru,.(1), RA(1)and Ry (1) from a uniform and triangular distribution
on [0.2, 0.4], and so on, and then (ii) using the CDFs to identify(i.e. sample) the
corresponding D,, q,,u,,y and A values, with this identification represented by the lines
that originate on the ordinates of Fig (6-20, 6-21, 6-22 and 6-23), extend horizontally to the
CDFs, and then drop vertically to the abscissas to produces

Dy (1), Dr(2), o, Dr(5); 4r(1), 4 (2),4r (3, ) 4 (5); 4r (1), 47 (2), o, ur (5)
A(1),2(2),...,A(5) and y(1),y(2), ...,¥(5). The generation of the LHS is then completed by
randomly pairing without replacement the resulting values for D,, q,,u,,yand A. As this
pairing is not unique, many possible LHSs can be result. In this case, we have 3125 possible
LHS’s. Note that, improbability and statistics, the triangular distribution is a continuous
probability distribution with lower limit a, upper limit b and mode ¢, where a < b and

a < ¢ < b.The probability density function is given by: (7.20)
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0forx<a
2(x—a)
2
flx) =+ (b-a)
2(b—x)
(b—a)(b—c)

fora<x<c

for x=c

forc<x<b

0 forb<x
and the Cumulative Distributive Function associated to this probability density function is
given by:
Oforx<a
(x—a)?
(b-a)(c—a)
c—a
CDF = (b—a)
(b —x)?
(b-a)b-oc)

fora<x<c

for x=c

forc<x<bh

1 forb <x
On the other hand the Cumulative Distribution Function associated to a normal distribution

on [a, b] is given by: The following figures show an example of CDF for some parameters.

0for x<a
x—a < x<h
P a fora<x<
1 forx=b

0.2t

0.5 1 1.5
Figure 7-14: CDF of the triangular distribution of 8 in [0, 1.75] and mode 0.875
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Figure 7-15: CDF of the triangular distribution of @ in [0, 2] and mode 1

0.8

0.6

0.4

0.2

Figure 7-16: CDF of the uniform distribution of @ in [0, 2] and mode 1



Table 7-1: Latin Hypercube sampling parameters from above distribution
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0.2 f
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2

2.5

Figure 7-17: CDF of a triangular distribution of u,. in [0, 2.5] and mode 1.

n 0 a q, K p
1 0.2 10 0.1 1 1200
2 0.4 20 0.4 20 1400
3 0.6 40 0.6 40 1800
4 0.8 60 0.8 60 2000
5 1 80 1 100 2200

As we said before, the pairing is not unique, and many possible LHSs can result. Without loss

of generality, the following Table shows the set of 5-tuples used in this work and for each

element of the set we associate a solution to a model.

Table 7-2: Latin Hypercube Sampling (pairing)

Conl 0.2 20 0.6 60 2200
Con2 1 60 0.6 20 1200
Con3 0.4 10 0.1 1 1800
Con4 0.8 80 0.8 100 1400
Con5 0.6 40 0.1 40 2000
Coné 0.4 20 01 20 2200
Con7 0.2 60 0.4 01 1200
Con8 0.8 10 0.1 100 1400
Con9 01 80 01 100 2200
Con10 0.6 40 0.6 40 2000

The preceding sampling procedures are probabilistically based in the sense that weights

=1,
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exist such that the result obtained with sample element x;can be used in conjunction with

the weight w;to obtain quantities such as expected values, variances and other entities that

derive from integration over the space of probability associated(].C. Helton, F.J. Davis,

2003). For random sampling and also Latin hypercube sampling, w;is the reciprocal of the

. . 1 1
sample size, that is w; = — and hence for our case w; = —
L ns 10

7.3.2 Analysis inputs to analysis results

Once the sample is generated, evaluation of the concentration creates the following mapping

from analysis inputs to analysis results.[a;, ¢;(x, t)], i =1, ...... ,10
Table 7-3: Parameter sets 1 and 2
Co, ! a Y A 0 Pb K q
990 1000 20 0 1 1/5 2200 60 3/5,
990 1000 60 0 1 1 1200 20 3/5
X t ax t) (%, t)
0.10 0.50 600.465 357 600.465 353
0.10 1.00 364.210 719 364.202 496
0.10 1.50 221.053 143 220.944 828
0.10 2.00 134.580 366 134.208 805
0.10 2.50 82.567 359 81.833 507
0.10 3.00 51.397 512 50.298 374
X t c(x t) c(x,t)
0.20 0.50 600.465 353 600.465 353
0.20 1.00 364.200 647 364.200 647
0.20 1.50 220.898 859 220.898 859
0.20 2.00 133.981 934 133.981 931
0.20 2.50 81.264 201 81.264 153
0.20 3.00 49.289 518 49.289 233
X t c(xt) c(x, t)
0.30 0.50 600.465 353 600.465 353
0.30 1.00 364.200 647 364.200 647
0.30 1.50 220.898 859 220.898 859
0.30 2.00 133.981 930 133.981 930
0.30 2.50 81.264 149 81.264 149
0.30 3.00 49.289 198 49.289 198




Figure 7-18: Output for set 1 and 2
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Table 7-4: Parameter sets 3 and 4
co, cl a Y A 0 pb K q
990 1000 10 0 1 2/5 1800 1 1/10
990 1000 80 0 1 4/5 1400 100 4/5
X t c(x t) c(x, t)
0.10 0.50 600.466 107 600.465 440
0.10 1.00 364.381 161 364.254 870
0.10 1.50 222.150 424 221418769
0.10 2.00 137.256 283 135.579 581
0.10 2.50 86.926 745 84.299 223
0.10 3.00 57.197 792 53.788 658
X t ax t) (%, t)
0.20 0.50 600.465 353 600.465 353
0.20 1.00 364.200 647 364.200 647
0.20 1.50 220.898 886 220.898 86
0.20 2.00 133.982 590 133.982 003
0.20 2.50 81.268 416 81.264 835
0.20 3.00 49.303 233 49.292 099
X t ci(x t) ca(x, t)
0.30 0.50 600.465 353 600.465 353
0.30 1.00 364.200 647 364.200 647
0.30 1.50 220.898 859 220.898 859
0.30 2.00 133.981 930 133.981 930
0.30 2.50 81.264 149 81.264 149
0.30 3.00 49.289 200 49.289 198




Figure 7-19: Output of set 3 and 4

Table 7-5: Parameter sets 5 and 6
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Co, c1 o Y A 0 Pb q
990 1000 40 0 1 3/5 2000 40 1/10
990 1000 20 0 1 2/5 2200 20 5/5

X t ca(x t) c(x,t)
0.10 0.50 600.465 353 600.465 434
0.10 1.00 364.200 647 364.252 940
0.10 1.50 220.898 859 221.405 532
0.10 2.00 133.981930 135.547 007
0.10 2.50 81.264 149 84.246 384
0.10 3.00 49.289 198 53.718 886

X t c(x t) c(x, t)
0.20 0.50 600.465 353 600.465 353
0.20 1.00 364.200 647 364.200 647
0.20 1.50 220.898 859 220.898 860
0.20 2.00 133.981930 133.981 998
0.20 2.50 81.264 149 81.264 799
0.20 3.00 49.289 198 49.291 969

X t ax t) (%, t)
0.30 0.50 600.465 353 600.465 353
0.30 1.00 364.200 647 364.200 647
0.30 1.50 220.898 859 220.898 859
0.30 2.00 133.981930 133.981 930
0.30 2.50 81.264 149 81.264 149
0.30 3.00 49.289 198 49.289 198
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Figure 7-20: Output of set 5 and 6

Table 7-6: Parameter Sets 7 and 8

Co c1 a Y A 0 Pb K q
990 1000 60 0 1 1/5 1200 1 2/5
990 1000 10 0 1 4/5 1400 100 1/10

X t ax t) (%, t)
0.10 0.50 704.987 753 600.465 353
0.10 1.00 600.179 033 364.200 647
0.10 1.50 550.359 324 220.898 859
0.10 2.00 524.673 999 133.981 930
0.10 2.50 510.888 768 81.264 149
0.10 3.00 503.309 636 49.289 198

X t ci(x, t) (%, t)
0.20 0.50 620.975 852 600.465 353
0.20 1.00 441.794 161 364.200 647
0.20 1.50 351.209 771 220.898 859
0.20 2.00 303.239 341 133.981 930
0.20 2.50 277.103 149 81.264 149
0.20 3.00 262.593 907 49.289 198

X t ci(xt) c2(x,t)
0.30 0.50 603.340 468 600.465 353
0.30 1.00 386.298 579 364.200 647
0.30 1.50 268.420 488 220.898 859
0.30 2.00 203.693 756 133.981 930
0.30 2.50 167.657 008 81.264 149
0.30 3.00 147.362 470 49.289 198
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Table 7-7: Parameter Sets 9 and 10

Figure 7-21: Output of set 7 and 8

Co c1 a Y A 0 Pb q
990 1000 80 0 1 1/5 1200 100 5/5
990 1000 40 0 1 4/5 2000 40 3/5

X t cl(x,t) c2(x,t)
0.10 0.50 600.465 357 600.465 353
0.10 1.00 364.210 719 364.202 496
0.10 1.50 221.053 143 220.944 828
0.10 2.00 134.580 366 134.208 805
0.10 2.50 82.567 359 81.833 507
0.10 3.00 51.397 512 50.298 374

X t ax t) (%, t)
0.20 0.50 600.465 353 600.465 353
0.20 1.00 364.200 647 364.200 647
0.20 1.50 220.898 859 220.898 859
0.20 2.00 133.981934 133.981 931
0.20 2.50 81.264 201 81.264 153
0.20 3.00 49.289 518 49.289 233

X t ci(x t) ca(x, t)
0.30 0.50 600.465 353 600.465 353
0.30 1.00 364.200 647 364.200 647
0.30 1.50 220.898 859 220.898 859
0.30 2.00 133.981 930 133.981 930
0.30 2.50 81.264 149 81.264 149
0.30 3.00 49.289 198 49.289 198
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Figure 7-22: Output of set 9 and 10
7.3.3 Cumulative distribution function

The distribution for the concentration is presented as a cumulative distribution function
(CDF) or as a complementary cumulative distribution function (CCDF), which is simply one
minus the CDF (Helton and Davis, 2003). Hence in our case the cumulative distribution

function can be approximated as follows: (7.21)

10
1
prob(c(a, x,t) > C(a,x, t)) = Z Scaxt) (ci(x, t)) 10
i=1

(1 if ci(x,t) > C(a,x,t)
where Scaxn(ci(x ) = {0 if ¢i(x,t)<C(a,x,t).
and prob(c(a, x,t) > C(a,x, t)) is the probability that a value larger than C(a, x,t) will
occur. The distribution function approximated above provides the most complete

representation of the uncertainty in the concentration that derives from the distributions.
80 2

Let C(a,x,t) = C(1801'1801

,0.875, =1, y = 0.85,x,t). We shall choose a set of (x,t) to
calculate the probability, and we will then calculate the mean of those probability. For
(x,t) = (1,1) we have:

Table 7-8: Concentration for (x,t) = (1,1)

ci(a,x, t) 58.2577
c(a,x,t) 74.8909
cs(a, x,t) 60.6521
ci(a, x, t) 58.0343
cs(a,x,t) 40.0718
cela,x,t) 46.8954
cr(a,x,t) 92.2647
cg(a, x,t) 28.3879
co(a, x, t) 44.8966
cio(a, x,t) 77.9576
C(a,x,t) 33.0835
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then the probability is given by (7.22)

10

1 9

prob(ela, ) > C@x,0) = Y. Seann (6 0) 1= =
i=1

For (x,t) = (20,20) we have:
Table 7-9: Concentration for (x, t) = (20,20)

ci(a, x,t) 0.00176227
cr(a,x,t) 0.634651

c3(a, x,t) 0.00250054
ci(a,x, t) 0.00131972
cs(a,x, t) 0.0000131415
cola, x, t) 12.3906
cz(a,x,t) 62.123

cg(a, x, t) 1.76417x 1077
co(a, x, t) 5.40976x 10~°
ciola, x,t) 1.00504
C(a,x,t) 1.85504% 1077

then, the probability is given by

10

1 9

prob(e(a 1) > Cax,0) = Y. Seqann (6x,0) 1= =
i=1

For (x,t) = (100,100) we have:
Table 7-10: Concentration for (x,t) = (100,100)

c1(a,x,t) 5.35161x 10722
co(a, x,t) 2.02342x 107°
ca(a,%,£) 1.42489x 1021
ci(a,x, t) 8.70786x 1022
co(a,%,t) 1.14739x 1031
cela, x,t) 1.48021
c7(a,x,t) 52.9736

cg(a, x,t) 3.34787x 10™%2
co(t, x, ) 4.73136% 10-33
cio(a, x,t) 1.02619%x 1078
C(a,x,t) 3.34807x 10~*2

then ,the probability is given by

10
1 9
prob(c(a, x,t) > C(a,x, t)) = Z Sclaxt) (Ci (x, t))E =3
i=1
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For (x,t) = (200,200) we have:
Table 6-11: Concentration for (x,t) = (200,200)

c;(a, x,t) 3.29798x 10~%5
e, (a,%,t) 4.71079% 1020
cs3(a, x,t) 2.25591x 10~4*
ca(a, x, t) 1.51925x 10~
ce(a, %, t) 2.63774x 10-5*
co(a,x,t) 0.137565
cy(a,x,t) 57.4742

cg(a, x,t) 1.24551x 10785
co(a, x,t) 1.33147x 10766
cio(a, x,t) 1.05306x 10718
C(a,x,t) 1.2455% 10785

then, the probability is given by

10 1
prob(c(e,x,6) > C(@,%,0) = Y Se(ax (46 0) 15 = 1.
i=1

For (x,t) = (2500,2500) we have:
Table 6-12: Concentration for (x,t) = (2500,2500)

c;(a, x, t) 1.3525% 10757°
c,(a,x,t) 8.8894x 107265
cs3(a, x, t) 8.76466 x 1067
ca(a, x, t) 8.416153x 107567
cs(a, x,t) 8.32007x 10816
ce(a, x,t) 0

cz(a,x,t) 83.3925

cg(a, x, t) 1.652x 101084
co(a, x,t) 0x 107828

cio(a, x,t) 1.90842x 107248
C(a,x,t) 1.652x 1071085

then, the probability is given by:

4

10
1
prob(e(@,x,6) > C(@x,0) = ) Soen (606 0) 15 = =
i=1

Therefore the mean of those probabilities is given by

9
prob(c(a,x,t) > Cla,x, 1) = 5

As said before, the distribution function approximated above provides the most complete

representation of the uncertainty in the concentration that derives from the distributions.
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7.3.4 Expected value of the sampling

For Latin hypercube sampling method, the form for the estimator of the expected value of

the concentration is given by (Helton and Davis, 2003): (7.23)
10
) =25 ()
c(x, =10, 1cl x,t),
1=

where ci(x, 6) = ¢(Dr (D), gr (D), ur (D), 4(D), ¥ (), x, t ) and Dy (), 4, (i), uy (1), A(Dand y (i)
the values are given in the tables above. The expected value approximated here provides a
summary of this distribution but with the inevitable loss of resolution that occurs when the
information contained in 20 numbers. The following surface shows the response of the

expected values as function of space and time.

0.10

Figure 7-23: Expected values of the sample as function of space and time
7.3.5 Variance of the sampling and Repeatability Uncertainty

Variance of the sample
The form for estimator of the variance of c(x, t) is given by (7.24)

10
Var(c(x,t)) = ﬁZ(ci(x, t) — c(x,t))?

The goodness of an unbiased estimator can be measured by its variance. The variance
approximated here provides a summary of this distribution but with the inevitable loss of
resolution that occurs when the information contained in 20 numbers (J.C. Helton, F.J. Davis,

2003). The following graph shows the cross section (x =25) of the variance for
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0.001 <t < 25 and the surface shows the respond of the variance of the distribution as

function of space and time

1500 |
1250

1000 |

] 10 15 20 25

Time
Figure 7-24: Cross section (x = 25) of the variance for a fixed value of x

Figure 7-25: Variance of the sample as function of time and space

Repeatability Uncertainty

[t is important noting that repeatability uncertainty is equal to the standard deviation of the
sample data (NASA HANDBOOK, 2010). In the case under investigation, the mathematical

expression is given as (7.25)

1

10
SeCat) = |gg—g ). (lnt) - e ).
i=1
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The normalized solution of the above equation is illustrated graphically in the below figure.

Figure 7-26: Repeatability uncertainty.
7.3.6 Develop the Error Model
An error model is an algebraic expression that defines the total error in the value of a

quantity in terms of all relevant measurement process or component errors. The error
model for the quantityc(a, x, t), the concentration of pollution that was calculated here is
given below as (NASA, 2010),

Ec(axt) = €p,Cp, (X, 1) + €q,.Cq. (X, 8) + &, ¢y (X, 1) + 02 (x, 1) + &,¢,(x, T) (7.26)
where
Ec(axt)is the error in the concentration; &p is the error in the retarded hydrodynamic
dispersion coefficient; ¢, is the error in the retarded velocity vector; &, is the error in u,;
gy/is the error in y; ¢&,is the error in therate of decay of the radionuclide;
and cp,cq,, Cy,, ¢, and ¢; are the first order sensitivity coefficients that determine the
relative contribution of the errors in D,, q,, u,, ¥ and 1 to the total error inc(e, x,t). The
first order sensitivity coefficients are the same as the one defined in section 6.1.

For this purpose we chose the following definition of error, (7.27)

maximum value — minimum value

Eq: , i=1,..5.

L maximum value X 100
Then,

&p, = 0.008571428,¢, = 0.008601823, &, = 0.007959183¢, = 0.0091, and ¢; = 0.009.
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Here we also chose

ul]

a; =

5
Zaik,i =1..5.
k=1

Thus D, = 1.06, g, = 0.98, u,, = 1.299, y = 0.5462 and 4 = 0.5245 which implies that
a = (1.06,0.98,1.299,0.5462,0.5245).

And the error in the concentration equation (7.8) becomes:

Ec(axt) = 0.008571428c) (x,t) + 0.008601823¢,, (x,t) + 0.007959183¢,, (x,t) +
0.009¢; (x,t) + 0.0091¢, (x, t).
The following surface plot shows the error in the concentration of the sample as a function

of time and space.

Erro (x,t)

Figure 7-27: Model error as function of space and time

7.3.7 Uncertainty in quantities or variables

The uncertainty in a quantity or variable is the square root of the variable’s mean square

error or variance. In mathematical terms, this is expressed as (NASA, 2010): (7.28)

Uc(axt) = \/sZDrCZDr(x, t) + 2, c?q (x,t) + %, c?y (x,t) + %3¢y (x, t) + €2,,c%, (x, 0).

Providing that the correlation coefficients for the error in D,, q,, u,, ¥ and A are equal to

zero. The response of this analytical expression is shown in the following surface.
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Avar(x,t)

Figure 7-28: Variable's mean square error as function of time and space.
7.3.8 Skewness and Kurtosis Tests

Descriptive statistics, such as skewness and kurtosis, can provide relevant information
about the normality of the data sample. Skewness is a measure of how symmetric the data
distribution is about its mean. Kurtosis is a measure of the “peakedness” of the distribution
(NASA, 2010). In mathematical terms for the case under investigation, these are expressed
as: Since ¢;(a,x,t),...., c1o(a,x,t)are our sampled functions from a sample of size 10,with
mean ¢(x, t)and standard deviation var(x,t) , then, the sample coefficient of skewness c3

and coefficient of kurtosis c, are given by (NASA, 2010) (7.29)

_ ﬁZi"(ci(x, t) —c(x, t))3

s = var[(c(x,t))3

The following surface shows the respond of the analytical expression of the sample

coefficient of skewness, as function of time and space
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0.001

Sk(x,t) -0.001

Figure 7-29: Sample coefficient of skewness
and (7.30)

1

_ 10-1
4 =

%O(Ci (x! t) - E(x' t))4
var(x, t)*

The following surface shows the respond of the analytical expression of the sample

coefficient of kurtosis as function of time and space

Figure 7-30: Sample coefficient of Kurtosis.

The above study is very important in groundwater study, very important because to have a
clear knowledge of aquifer parameters, several measurement of each parameter must be

done, and once these parameters are known they can be exposed to aleatory uncertainty

analysis.
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Chapter 8

THE CONCEPT OF NON-INTEGER ORDER DERIVATIVES

It is commonly believed that, the concept of fractional calculus stemmed from a question
rose in the year 1695 by Marquis de L Hospital (1661-1704) to Gottfried Wilhelm Leibniz
(1646-1716), which sought the meaning of Leibniz’s currently popular notation

dy
dxm’

neNy, =1{0,1,2,.... } (8.1)
for derivative of order whenn  (What if n = %). In his reply, dated 30 September 1695,

Leibniz wrote to L’ Hospital as follows: “ This is an apparent paradox from which, one day,
useful consequences will drawn.....”.

Starting from these speculation of G .W. Leibniz and others such as Leonard Euler (1730)
and George Bernard Friederich Riemann, the fractional calculus (FC) has been developed
progressively up to now. The fractional calculus therefore may be considered an old and yet
novel topic. However, it is only since about 1970 that the subject has been consistently in
the physical and engineering sciences (Ross, 1975). The topic is consequently not well
known in many branches of physical and engineering sciences. The discussion below
therefore begins with a brief overview of the history of fractional order derivatives.

8.1  BRIEF HISTORY OF FRACTIONAL ORDER DERIVATIVES

It is worth nothing that the standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in many cases. In the recent years,
fractional calculus has played a very important role in various fields such as mechanics,
electricity, chemistry, biology, economics, notably control theory, and signal and image
processing. Major topics include anomalous diffusion; vibration and control; continuous
time random walk; Levy statistics, fractional Brownian motion; fractional neutron point
kinetic model; power law; Riesz potential; fractional derivative and fractals; computational
fractional derivative equations; nonlocal phenomena; history-dependent process; porous
media; fractional filters; biomedical engineering; fractional phase-locked loops; fractional
variational principles; fractional transforms; fractional wavelet; fractional predator-prey
system; soft matter mechanics; fractional signal and image processing; singularities analysis
and integral representations for fractional differential systems; special functions related to

fractional calculus; non-Fourier heat conduction; acoustic dissipation, geophysics;
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relaxation; creep; viscoelasticity; rheology; fluid dynamics; chaos and groundwater
problems.. An excellent literature of this can be found in (Oldham and Spanier, 1974;
Podlubny,1999; Caputo, 1967; Atangana, 2012). These models are making use of the
fractional order derivatives that exist in the literature. However there are many of these
definitions in the literature nowadays, but few of them are commonly used, including
Riemann-Liouville (Kilbas et al, 2006; Samko, 1993), Caputo (Caputo, 1967), Weyl
(Atangana, 2012; Botha and Cloot, 2006, Atangana and Kilicman, 2013), (Atangana and
Secer, 2013)and Guy Jumarie (Jumarie, 2005, 2006), Hadamard (Podlubny,1999), Matt
Davison and Christopher Essex (Essex and Matt, 1998), Riesz (Oldham and Spanier, 1974),
Erdelyi-Kober (Magin, 2006) and Coimbra (Coimbra; 2003). All these fractional derivatives
definitions have their advantages and disadvantages. The purpose of this note is to present
the result of fractional order derivative for some function and from the results, establish the
disadvantages and advantages of theses fractional order derivative definitions. We shall

start with the definitions.

8.1.1 Definitions
There exists a vast literature on different definitions of fractional derivatives. The most

popular ones are the Riemann-Liouville and the Caputo derivatives. For Caputo we have

(8.2)
arf(e) ©
CD(Z f n—-a-1
() = formgy | = 0"
In the case of Riemann-Liouville we have the following definition (8.3)
a _ _ A\n—-a-—-1
DE(F®) = oy g j (- "y,
Guy Jumarie proposed a simple alternative def1n1t10n to the Riemann-Liouville derivative.
(8.4)
X
D) = s [ (= 0P ) - FO)e
x r(n-a)dxm '
0
For the case of Weyl we have the following definition (8.5)
D& _ f\n-a-1
H(f0) = r(n D A f (x — )" f(p)dt.
With the Erdelyi-Kober type we have the following definition: (8.6)

d n
) xorpe (PG,

ox ldx

DG o (f(x)) =x"" (
here (8.7)
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-o(n+a) x ton+o-1rct
ox f@®

Ig.cmﬁa(f(x)) = () J (t7 — xo)1-a dt.

With Hadamard type, we have the following definition (8.8)
X
d\" X\l dt
a — —_
D) = s () [ (097) rOF
0
With Riesz type, we have the following definition (8.9)
DE(f()) = ~— s | f@—nmalﬂom
* 2cos (%) F(“) dx

+ f (t — )™= F(£)dt

X

We will not mention the Grunward-Letnikov type here because it is in series form. This is
not more suitable for analytical purpose.

In 1998, (Davison and Essex, 1998) published a paper which provides a variation to the
Riemann-Liouville definition suitable for conventional initial value problems within the

realm of fractional calculus. The definition is as follows (8.10)

dn+1—k x (x _ t)—a dkf(t)

Dof () = dxn+i-k | T(1—a) dtk dt
0

In an article published by (Coimbra, 2003), a variable order differential operator is defined

as follows: (8.11)

df(t) (F(0%) — f(07))x—o@
a(t)
( )) f( -7 dt+ I‘(l - a(x))

DI (f(x)) =
8.2 ADVANTAGES AND DISADVANTAGES

8.2.1 Advantages

It is very important to point out that all these fractional derivative order definitions has
theirs advantages and disadvantages, here we shall include, Caputo, variational order,
Riemann-Liouville, Jumarie and Weyl. We shall examine first the variation order differential
operator. Anomalous diffusion phenomena are extensively observed in physics, chemistry
and biology fields (Solomon et a/, 1993; Bhalekar et al, 2011; Magin et al, 2008; Magin,
2006). To characterize anomalous diffusion phenomena, constant-order fractional diffusion

equations are introduced and have received tremendous success. However, it has been
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found that the constant order fractional diffusion equations are not capable of
characterizing some complex diffusion processes, for instance, diffusion process in
inhomogeneous or heterogeneous medium (Chechkin et al, 2005). In addition, when we
consider diffusion process in porous medium, if the medium structure or external field
changes with time, in this situation, the constant-order fractional diffusion equation model
cannot be used to well characterize such phenomenon (Santamaria et al, 2006; Sun et al,
2009). Still in some biology diffusion processes, the concentration of particles will
determine the diffusion pattern (Sun et a/, 2009; de Azevedo et al, 2006). To solve the
above problems, the variable-order (VO) fractional diffusion equation models have been
suggested for use (Chechkin et al, 2005; Sun et al,2011; Umarov and Steinberg, 2009).

The ground-breaking work of VO operator can be traced to Samko et al. by introducing the
variable order integration and Riemann-Liouville derivative in 1993 (Samko and
Ross,1993; Ross and Samko, 1995). It has been recognized as a powerful modelling
approach in the fields of viscoelasticity (Coimbra, 2003), viscoelastic deformation (Ingman
and Suzdalnitsky, 2005), viscous fluid (Pedro et al, 2008), anomalous diffusion (Kobelev et
al, 2003), Schrodinger equation (Atangana and Cloot, 2013) and groundwater flow
(Atangana and Botha, 2013) etc.....

With the Jumarie definition which is actually the modified Riemann-Liouville fractional
derivative, an arbitrary continuous function needs not to be differentiable; the fractional
derivative of a constant is equal to zero and more importantly it removes singularity at the
origin for all functions for which f(0) = constant for instance the exponentials functions,
Mittag-Leffler functions and so on.

With the Riemann-Liouville fractional derivative, an arbitrary function needs not to be
continuous at the origin and it needs not to be differentiable.

One of the great advantages of the Caputo fractional derivative is that, it allows traditional
initial and boundary conditions to be included in the formulation of the problem. In addition
its derivative for a constant is zero.

It is customary in groundwater investigations to choose a point on the centreline of the
pumped borehole as a reference for the observations and therefore neither the drawdown
nor its derivatives will vanish at the origin, as required (Cloot and Botha, 2006). In such
situations where the distribution of the piezometric head in the aquifer is a decreasing
function of the distance from the borehole the problem may be circumvented by rather
using the complementary, or Weyl, fractional order derivative (Cloot and Botha, 2006)

(Atangana, 2012).
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8.2.2 Disadvantages

Although these fractional derivative display advantages, they are not applicable in all the
situations however. We shall begin with the Liouville-Riemann type(Atangana and Secer,
2013).

The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. The Riemann-Liouville derivative
of a constant is not zero. In addition, if an arbitrary function is a constant at the origin, it
fractional derivatives has a singularity at the origin, for instance exponential and Mittag-
Leffler functions. Theses disadvantages reduce the field of application of the Riemann-
Liouville fractional derivative.

Caputo’s derivative demands higher conditions of regularity for differentiability: to compute
the fractional derivative of a function in the Caputo sense, we must first calculate its
derivative. Caputo derivatives are defined only for differentiable functions while functions
that have no first order derivative might have fractional derivatives of all orders less than
one in the Riemann-Liouville sense (Atangana and Secer, 2013) .

With the Jumarie fractional derivative, if the function is not continuous at the origin, the

1/2 and

fractional derivative will not exist, for instance, the fractional derivative of In(x), x~
many other one.

Variation order differential operator cannot easily be handled analytically. However, they
can be useful for numerical purposes.

Although Weyl fractional derivative found its place in groundwater investigation, its still
display a significant disadvantage, because the integral defining these Weyl derivatives are
improper, greater restrictions must be placed on a function. For instance the Weyl
derivative of a constant is not defined. In addition, general theorem about Weyl derivatives
are often more difficult to formulate and prove, as in the case of their corresponding

theorems for Riemann-Liouville derivatives (Atangana and Secer, 2013a) .

8.3  DERIVATIVES REVISITED

8.3.1 Variational order differential operator revisited
Let f: R — R,x — f(x) denotes a continuous but necessary differentiable, let a(x) be a

continuous function in (0, 1]. Then its variational order differential in [a,00) is defined as:

(8.12)

0 _ I DR
DG ) = PP\ o) j (= OO @ — f(@)dt |
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Where FP means finite part of the variation order operator (Atangana and Secer, 2013).
Notice that, the above derivative meets all the requirement of the variational order
differential operator; in additional the derivative of the constant is zero, which was not

possible with the standard version.

8.3.2 Variational order fractional derivatives via fractional difference revisited

Let f: R — R,x — f(x) denotes a continuous but necessary differentiable, let a(x) be a

continuous function in (0, 1] and h > 0 denote a constant discretization span. Define the

forward operator FWh by the expression: (8.13a)
FW(R)(f () = f(x + h).

Note that, the symbol means that the left side is defined by the right side. Then the variation

order fractional difference of order a(x) of f(x) is defined by the expression (8.13b)

¢ 1
a(x) — —_ 1) — Y — _ _
AP f(x) = (FW - 1) kéo( 1) Mk _a(x))f(x (a(x) = k)h).

And its variational order fractional derivative of order a(x) is defined by the limit  (8.13c)

A“D(f(x) = £(0))
ha()

a(x) — i
A0 ) = lim

8.3.3 Jumarie fractional derivative revisited

Recently, Guy Jumarie proposed a simple alternative definition to the Riemann-Liouville
derivative. His modified Riemann-Liouville derivative has the advantages of both the
standard Riemann-Liouville and Caputo fractional derivatives: it is defined for arbitrary
continuous (non-differentiable) functions and the fractional derivative of a constant is equal
to zero. However if the function is not defined at the origin, the fractional derivative will not
exist, therefore in order to circumvent this defeat we propose the following definition
(Atangana and Secer, 2013).

Let f:R— R,x — f(x) denotes a continuous but necessary at the origin and not

necessary differentiable, then its fractional derivative is defined as: (8.14)
X
D0 = PP | s [ = 07 e - o ae
0 I'(1—a)dx" '
0

Where FP means finite part of the variational order operator.

Notice that, the above derivative meets all the requirement of the fractional derivative
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operator; the derivative of the constant is zero, in addition the function needs not to be

continuous at the origin. With this definition, the fractional derivative of In(x) is given as

x~%*(EulerGamma + nCot[r a] — In(x) + PolyGammal|0, «])
r'l—-a

Remark: It is very important to notice that all existing fractional derivation has theirs

D§(In(x)) = —

advantages and disadvantages depending on the function under investigation. These
fractional derivatives must be used with care, in particular one will needs to chose a
fractional derivative according to the support of the function (Atangana and Secer, 2013a).

8.4  DEFINITIONS AND PROPERTIES

Definition 1 A real function f(x),x > 0, is said to be in the space C_,,

neR if there exists a
real number p > y, such that f(x) = xPh(x), where h(x) €C [0, ), and it is said to be in
space C;" if fMe Cy , meN

Definition 2 The Riemann-Liouville fractional integral operator of order a=0, of a

function feC_u, u = —1, is defined as (8.15)

Jf(x) = fox(x—t)“_lf(t)dt, a>0x>0

1
r(a)
Jof(x) = f Q0.
Properties of the operator can be found in (Luchko and Groneflo, 1998) (Oldham and
Spanier, 1974) we mention only the following:

For feC,, u= —1,a, B=0andy > —1:

JYPF(x) = JBF(x),  JUBF(x) = JFJOf (x)and JoxY = — LD _yaty  (g.16)

r(a+y+1)
The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operator D& proposed by Caputo in his work on the theory
of viscous-elasticity (Caputo, 1967).
Definition 3
The fractional derivative of f(x) in the Caputo sense is defined as (8.17)
x
DEFC) =D f(3) = s f (= LMt
m-—1<a<mmeNx>0fecCt.
also, we need here two of its basic properties.

Lemmallfm—-1<a<mmeNandf € C]',u=—1, then

&DZJf(x) = f(x)and J*D§f (x) = f(x) — Xpo f(k)(0+)%{ , x> 0. (8.18)
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Definition 4: Partial Derivatives of Fractional order
Assume now that f(x) is a function of n variables x; i = 1, ... ... ,n also of class C on D€ R,,.
As an extension of definition 3 we define partial derivative of order «a for f respect to x; the

function (8.19a)
1 o
8T = o=y ). G~ O O (e

If it exists, where 07} is the usual partial derivative of integer order m. Hence, the Caputo

fractional derivative is considered because it allows traditional initial and boundaries
conditions to be included in the formulation of the problem (Podlubny, 2002).
8.5 FUNDAMENTALS OF THE FRACTIONAL CALCULUS IN MULTIPLE DIMENSIONS

In this section the basic operators and definitions regarding to the calculus in more than one

dimension are generalized to the case of derivatives of fractional orders.

8.5.1 Clairaut’s theorem for partial derivatives of fractional orders

Assume that f(x) Is a function which ;05 [cj afj f ] and Cﬁ.afj [cia,‘j‘l. f ] exist are continuous

overadomain D € R,, then (8.19b)
0% (ol f] = ol [cogfli =)
Proof: Writing a = m; —r;; f = m;—7;;0 < 1,17 <1, we have on one hand that (8.20)
cog [c-aﬁf] J (x; — )" 1¢0 J (x; —s) 7t ed ’f(x)l ds|d
ciYx; |¢jYx; F(FI)F(I‘] i i j j x S=xj

i Tj- 1
r<rl>r(r,) f [f (xi = O)" (x; = 5)

F(rl)r(r)f .f (xl -7 ' (x _S) Cl X CJ xj f(x)ls =x; dsdt

C} X f(x)|s =x; dsld

and on the other hand we have the following (8.21)

1 %j L om[f _ .
ciaﬁ[ciaﬁfhm f (x5 — )1 g0 U (i = )17 i f () lsm, s | dt
)] 1 Cj Ci

i o ri—1 m;j .
= — — )i (x; — J 0. ,a"_lz __dsldt
F(rj)r(ri) xj [fcl G = (xj S) i%; [c: X f(&)ls_xl s]

1 Xj [Xi B . |
~ s [0 - g0 (@l
] 1 xj Xi

Using the continuity hypothesis we have, according to Clairaut (James, 1966) and Fubini

(Thomas and Finney, 1996) theorems that the right hand side and identical and thus so are
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the left hand sides therefore (8.22)

0% [qol f| = sl [cogfli# ).

8.5.2 Gradient, divergence and curl of fractional order

Consider the scalar field f(x) and the vector field F(x) that are assume to possess partial
derivatives of a with respect to all the Cartesian coordinates x; i = 1,2,3. We define the

gradient of order a as being the vector field (8.23)

3
CVEf = ) (@oLf) e
i=1

sy
l

where g; is the unit vector in the direction. The divergence of order a as being the scalar

field
3
CVE.F = Z C0ZF,
i=1
and the curl of orderaas being the vector field is hence defined as follows. (8.24)

where e;j; is the Levi-Civita symbol.

8.5.3 Fundamental relation for gradient, divergence and curl of fractional order

Assuming that the different operations for the scalar and vector fields exist, we have
1. cVi(af +Bg)= acVf + BcVig
2. eV (aF +BG)= acVg. (F) + BcVg. (G). (8.25)
3. Vg x (aF +BG)= acVg x (F) + BcVg x (6)
4. VL [cVEXF]=0

5. cVEx[cVif] =0

The first three relations are direct consequences of the linear characteristic of the different
operations are fairly trivial to establish. The last two relations rely on Clairaut’s result.
Consider for example relation (4). We have from the definition of the divergence and curl of

fractional order. (8.26)
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3

3 3
cV§. [cvE x F] = Z 2 z €ijiCi0x; ¢V, Fi.
k=1

i=1j=1
But the Levi-Civita symbol equals to zero whenever two or more indexes take the same

value and the triple sum in the relation reduces to
3

3
Z Z eijkcia,‘ficj aﬁij ZZ (eijkcia;é [C] a%}.Fk - Cka;ng}']) ; i #:] *k

3 3
i=1j=1k=1 i=1

or (8.27)
gvg. [gvg X E] = cia;gi [cj aj’c‘ij - cka)‘}kP}-] + cjag]. [ck a;'ngi - Cl-a)‘fiFk]
+ ¢ 05, [ci 0%, Fi — cja,‘iji] =0
by direct application of the generalized version of Clairaut’s theorem. Relation 5 is

established using similar arguments as for relation 4.

8.5.4 Directional derivatives of fractional orders

Let f(x) be a function of n variables for which the gradient of the fractional order (x,gvgf,

exists over a domain D of R,,. Then we define the directional derivatives of fractional order

a for the function f in the direction 6 to be the function (8.28)

eDgf = cVif.6; |16 = 1

8.5.5 The generalized Divergence theorem

To recall, let the vector field F have continuous derivatives on an open region of the space D

containing the volume V and S be the boundary surface of V positively outward orientated.

Then we have (8.29)
[If,V.EV = [ [ ¢F.nds.

Within the framework of fractional derivatives this theorem can be rephrased as following:

Notation

Let the vector field F having partial fractional derivatives of order S with respect to all

variables x = (x4, ..., x,)T on D. Then we denote by ngﬁ the vector (8.30)

n
eDfF =) (e} [c5(F)'] e e,
i=1
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n

= Z Ciafinigxi

i=1
Theorem 8.1

Let the vector field F have continuous fractional derivatives of order a on an open region of

the space D containing the volume V and S be the boundary surface of V positively outward

orientated. Then we have (8.31)
[If yev5. Eav = [ ;D5 ™" F. nds.

Proof:

The proof of this is very easy once one realize that
Vi F=V.cD'F
We have then by direct application of the classical version of the divergence theorem (7.32)
[l ,cVE.Fav = [[ V,.cDS 'F.nds
In the similar way, the well known theorems of Green and Stokes of classical vector calculus
may be suitable rewritten to accommodate directly the concept of derivatives of fractional

orders. We have the following expressions:

Theorem 2: Generalized Green'’s theorem

Let C be a simple positively orientated, piecewise-smooth, closed curve in R,, say the x-y

plane, further more let D be the interior of C. If f (x,y), g(x,y) are two functions having

continuous partial derivatives of fractional order a on D then (8.33)
J pcx0%g — 05 fdS = [ .c,03  fdx + c, 0¢ 1 gdy

Proof

This is clearly a direct application of the classical version of Green'’s theorem. Since,
[f pexdg — cydfds = I 0, (cxdF " g) — By (cy 05 F)dS (8:34)

Hence applying Green’s theorem yields (8.35)

J pcx0%g — ¢, 05 fdS = [ .c, 03 fdx + c, 0¢ 1 gdy
Note that for further purposes, this relation into the plane can be expressed in term of the
curl of fractional order a of the vector field F = (f, g,h), hbeing an arbitrary function
defined in D.

JI pcVE X E.ndS = [ .c, 08 fdx + ¢, 0¢  gdy, (8.36)



144

where n is the outward normal to the x-y plane pointing in the direction of e,.

Theorem 3: Generalized Stokes’s theorem
Let S be a regular surface of class C? described by the parametric equations

P(u,v) = (x(u, v),y(u,v), z(u, v));u,v €S, (8.37)
where x,y,zare the Cartesian coordinates. Consider a simple positively orientated,
piecewise-smooth, closed curve Cy, in theu — v plane, and let K be the interior of Cy. S and C
are images of the domain K and its boundary C,, in the Cartesian space and F is a vector field
having continuous partial derivatives of fractional order a on S then (8.38)

Ifslevs x F + (0x[cAS™] Frey)ex + (3y[cAS ] Fres)ey + (9y[cAS "] Frex)e,] ndsS
= [ 087 Fedx + ¢, 0 1F,dy + ¢, 0 ' F,dz.

Hence cA% stands for the differential operator
€AY = —1cV§ (8.39)
= (cyag - czaz"‘)gx + (c, 0% — Cxa,‘c")gy + (cxa,‘c" - cya}‘j‘)gz.

While n is the unit positive outside normal to S

Proof

It is easy to prove this by splitting the line integral
J €08 Fedx + ¢, 0F 7 Fydy + ¢, 0 " F,dz.

Into 3 components including, [.c,08 *Fdx, [.c 08 *F,dy and [.c,0¢ 'F,dz. We
consider the component fcczag“ldex without loss of generality. Let us assume, for clarity
of this purpose, that the boundary €}, can be described by the mean of one single parametric
relation Ck:(u(t),v(t)); t € [a, b] then the corresponding curve C in the Cartesian space of

coordinates is given by
P(t) = (x(u(t),v(t)),y(u(t),v(t)),z(u(t),v(t))). (8.40)
Therefore, defining ,f; = ¢,0% 1F, , we have the following

dx(u(t), v(t))

§ frax = f Al@®), v(e)) =

=f fiu(@®),v(t)) 0 xd—udt + fi(u(t),v(t))o xd—vdt
2t ’ v dt ! ’ vt dt
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= f fi(u,v)dy,xdu + f;(u, v)d,xdv.
c

k

Hence, applying the Green’s theorem in its classical version to this last result gives ~ (8.41)
J frdx =[] 0ulfy (w, v)0,x] = 0, [f1 (u, v)dyx]dudv = [[ 0,[f10,x] = 3y [f10,x]dudv
= [ ¢ [0xf10ux + 0y f10,y + 0,£10,2]0,x
— [0xf10yx + 0, £10,y + 0,f10,2]| 0, xdudv

d(z,x) a(x,y)
o(u,v) o(u,v) ldudv

= I [a,fim, — 3, finy ]ds.

Hence n,and n, are the components of the normal to S, that is (8.42)

- azfl

= [ s[0.f1

OyX X 0yx

n= (nxl le, nz) = m:
uz vZ
or explicitly

J e, 08 Fedx = [[ 4[0,(c, 08 E)ny, — 8y (c, 0 1F)n,|dS.

Repeating the same analogy for the two others line integral components yields (8.43)

Jocx02 7 FBydy = [[[0x(cx08™ E)n, — 0,(cx 07 Fy)ny |dS
and

S ey08  Fdz = [[ [0, (cy0F T F)n, — 0,(c, 0% 1F,)n,|dS.
Now adding those 3 relations and rearranging the terms with respect to the components of
the normal vector yields (8.44)

J c€,08  Fedx + ¢, 0F 7 Fydy + ¢, 0 " F,dz
~ || ocosrrom, - o o5 Eom,
s

+ [0, (cy 0 F, )ny — 0y (cy 0F1F, )0y | + [0 (c 0% 1F ),
— 0,(cx 0 F,)n,]dS.
Finally the expected result is obtained by adding to the kernel of the surface integral the

term of null value
(c,08F, — c,08 )N, + [(cx0¢F,) — (cx08F)Iny | + (cy 0% F, — ¢, 0% F)n,
Indeed we have then that
J €08 Eedx + ¢, 087 E, dy + ¢, 03 F,dz
= ffsaz(czag_lFx)ny - ay(czag_lFx)nz

+ [0, (¢, 087 F, )ny — 0, (cy 0 1E, )y | + [0 (0% 1, )0,
— 0,(cx0F 1F,)n,]dS.

That is (8.45)
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J €208 Fedx + ¢, 0¢ T E, dy + ¢, 03 " F,dz
= ﬂs[fvg XE+ (ax[EAi_l]- Eey)ex + (9, [EAg_l]' Ee,)ey
+(0y[cAF Y] Frex)e,] nds.

8.5.6 The Laplace operator of fractional order

With the concept of the gradient of fractional order leads to a possible generalization of the
Laplacian of a scalar function. By definition we call the Laplacian of fractional order (a, ) of
a scalar functions F the differential operator. (8.46)

hyhs
gt

+ 0q,

1 hyh 1 1
a Bl — 172 a-1) B a-1) = B
cve. [cvA] o {a,h Ihgf—lclaql {hf (claqu)} C,0% {hf (czaqu)}
hohs (1 4
_hg_l Cgag; 1{h_§(C36q3F) .

In following section the concept of fractional derivative will be used to generalize first the

+ 0g,

standard form the groundwater flow equation and secondly, the hydrodynamic dispersion
equation. An asymptotic solution of this new equation will be investigated via the Adomian
decomposition (Atangana, 2012a), Variational Iteration (He, 1977) methods and
straightforward resolution of this equation will be investigated in term of Mittag-Leffler

function.

8.6 A GENERALIZATION OF THE GROUNDWATER FLOW AND ADVECTION
DISPERSION EQUATIONS USING THE CONCEPT OF FRACTIONAL DERIVATIVES ORDERS

Fractional Calculus has been used to model physical and engineering processes, which are
found to be best described by fractional differential equations. It is worth nothing that the
standard mathematical models of integer-order derivatives, including nonlinear models, do
not work adequately in many cases. In the recent years, fractional calculus has played a very
important role in various fields such as mechanics, electricity, chemistry, biology,
economics, notably control theory, and signal and image processing. Major topics include
anomalous diffusion; vibration and control; continuous time random walk; Levy statistics,
fractional Brownian motion; fractional neutron point kinetic model; power law; Riesz
potential; fractional derivative and fractals; computational fractional derivative equations;
nonlocal phenomena; history-dependent process; porous media; fractional filters;
biomedical engineering; fractional phase-locked loops; fractional variational principles;

fractional transforms; fractional wavelet; fractional predator-prey system; soft matter
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mechanics; fractional signal and image processing; singularities analysis and integral
representations for fractional differential systems; special functions related to fractional
calculus; non-Fourier heat conduction; acoustic dissipation, geophysics; relaxation; creep;
viscoelasticity; rheology; fluid dynamics; chaos. An excellent literature of this can be found
in (Oldham and Spanier, 1974) ( Podlubny, 1999) (Kilbas et al, 2006) ( Caputo, 1967)
(Miller and B. Ross, 1993) (Samko et al, 1993) (Zaslavsky, 2005).

8.6.1 Generalization of groundwater flow equation

A problem that arises naturally in groundwater investigations is to choose an appropriate
geometry for the geological system in which the flow occurs. For example, one can use a
model based on percolation theory to simulate the flow in a fractured rock system with a
very large fracture density or the parallel plate model to simulate flow through a single
fracture. However, there are many fractured rock aquifers where the flow of groundwater
does not fit conventional geometries. This is in particular the case with the Karoo aquifers
in South Africa, characterised by the presence of a very few bedding parallel fractures that
serve as the main conduits of water in the aquifers. Attempts to fit a conventional radial flow
model to the observed drawdown always yield a fit that underestimates the observed
drawdown at early times and overestimates it at later times. The deviation of observations
from theoretically expected values is usually an indication that the theory is not
implemented correctly, or does not fit the observations. Recent investigations (Van Tonder
et al,, 2001) suggest that the flow is also influenced by the geometry of the bedding parallel
fractures, a feature that Theis cannot account for. It is therefore possible that Theis equation
may not be applicable to flow in these fractured aquifers. In an attempt to circumvent this
problem, Barker (Barker, 1988) introduced a model in which the geometry of the aquifer is
regarded as a fractal. Although this model has been applied with reasonable success in the
analysis of hydraulic tests from boreholes in Karoo aquifers (Van der Voort, 2001), it
introduces parameters for which no sound definition exist in the case of non-integer flow

dimensions.

The law, proposed by Darcy early in the 19thcentury, is relying on experimental results
obtained from the flow of water through a one-dimensional sand column, the geometry of
which differs completely from that of a fracture. There is therefore a possibility that the
Darcy law may not be valid for flow in fractured rock formations but is only a very crude

idealisation of the reality. Nevertheless, the relative success achieved by Botha, (Botha et al,,
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1998), to describe many of the properties of Karoo aquifers, suggests also that the basic
principle underlying this law may be correct: the observed drawdown is to be related to
either a variation in the hydraulic conductivity of the aquifer, or a change in the piezometric
head. Any new form of the law should therefore reduce to the classical form under the more
common conditions. Because K is essentially determined by the permeability of the rocks,
and not the flow pattern, the gradient term in Theis is the most likely cause for the deviation
between the observed and theoretical drawdown observed in the Karoo formations. In this
Possibility is further investigated for a radially symmetric form of Theis by replacing the
classical first order derivative of the piezometric head by a complementary derivative. It is
customary in groundwater investigations to choose a point on the centreline of the pumped
borehole as a reference for the observations and therefore neither the drawdown nor its
derivatives will vanish at the origin, as required. In such situations where the distribution of
the piezometric head in the aquifer is a decreasing function of the distance from the
borehole the problem may be circumvented by rather using the complementary, or Weyl,
fractional order derivative.

Broadly seen the generalised version of the Darcy law is affecting conceptually the physical
content of Darcy’s work in mainly two ways. Firstly, the new generalised constitutive
equation is not, unlike the usual Darcy relation, satisfying the popular principle of local
(spatial) action that postulates that the evolution of a system at a given spatial position and
at a given time is only affected by the behaviour of the different variables in the direct
neighbourhood around that point. Within the frame of Darcy’s law this principle implies that
the Darcy velocities may only be expressed as relations containing the value, at that point, of
the piezometric head and/or its derivatives. The use of a constitutive relation based on a
spatial integration of the piezometric head over the half infinite line is breaking away from
this postulate and is allowing for the consideration of more general situations where the
groundwater flow at a given point of the aquifer is governed not only by the properties of
the piezometric field at that specific position but also depends on the global spatial
distribution of that field in soil matrix. Note that there is a close relation between, the flow
equation and the mass transport (Advection Dispersion Equation). The successful
application of the fractional order derivative to groundwater flow equation lead us to the

mass transport equation. The following section deals with the fractional advection equation.
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8.7 GENERALIZED ADVECTION DISPERSION EQUATION USING THE CONCEPT OF
FRACTIONAL ORDER DERIVATIVES

Dispersion of aqueous tracers in natural systems including heterogeneous soils, aquifers,
and rivers, is typically observed to Benon-Fickian, also called “anomalous”. Anomalous
transport is very often found at all scales - from pore scale simulations (Zhang XX, Mouchao
, 2007), soil cores (Bromly and Hinz , 2004)(Cortis and Berkowitz , 2004), laboratory
experiments (Hatano and Hatano 1998)(Klise et al, 2004) to field scale observations see for
example (Adams and Gelhar , 1992) (Benson et al, 2000) and (Deng, 2004). Anomalous
transport may be characterized by trailing edges (also called heavy tails) of a plume
emanating from a point source, or nonlinear growth of the centred second moment. If the
growth rate is faster than linear, the transport is anomalous super-diffusion; slower than
linear growth rate is sub-diffusion (Bouchaud and Georges, 1990).The extreme heavy tails
of the solute transport dominate problems associated with toxic chemicals: early arrivals
pose the most risk, while late arrivals dominate the cost and strategy of cleanup. Proper
modelling of anomalous transport of tracers is a truly important step that has not been
achieved completely, even after decades of effort. Anomalous transport behaviour may be
due to different mechanisms. First, the complex flow velocity in natural, multi-scale
heterogeneous media leads to anomalous spreading of a conservative tracer that deviates
significantly from a Fickian model. For example, preferential flow paths can enhance
spreading of the plume front, resulting in anomalous super-diffusion. Second, mass
exchange between relatively mobile and immobile zones can retard the movement of
aqueous tracers and result in heavy tails concentration profile, which is typically referred to
as a sub-diffusive process (Bouchaud and Georges A, 1990). The second mechanism is due
to chemical reactions (including sorption/desorption), where the diffusion and dispersion
of solute in the mobile phase can still be Fickian. See also the recent discussion by
(Berkowitz et al, 2008).

Numerous numerical experiments indicate that anomalous dispersion cannot be described
by the traditional second-order advection- dispersion equation (ADE) without extremely
detailed information on the connectivity of high and low hydraulic conductivity (K)
sediments (Eggleston and Rojstaczer , 1998) (Zheng and Gorelick, 2003). Five alternative,
nonlocal transport techniques have been developed for the use of the general hydrology
community. These techniques are the Stochastic Averaging of the classical ADE (SA-ADE)
method, the (single- and) multiple-rate mass transfer (MRMT) method, an interested reader

can find this method in the recent work (Haggerty et al, 2000) (Haggerty et al,
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2002)(Harvey and Gorelick, 1995)(Harvey and Gorelick 2000), also see (Brusseau et al
,1995)(Carrera et al, 1997)( Coats and Smith, 1964)(Gerke and van Genuchten., 1993) the
continuous time random walk (CTRW) method (Dentz and Berkowitz , 2003)(Dentz et al,
2004) (Montroll and Weiss, 1965), the time fractional advection-dispersion equation
(fADE) method with the time scale index 0 <c <1 (Zhang et al, 2006)(Schumer R et al
2003)(Meerschaert and Scheffler, 2004) (Becker-Kern P, 2004), and the space fADE method
(Benson et al, 2000, 2001)(Clarke, 2005)(Schumer et al, 2000)(Zhang, 2007). These
alternative conceptual models describe nonlocal dependence on either time or space, or
both, to explain the development of anomalous dispersion. Here the nomenclature
“nonlocal” follows the definition given by Cushman (Coats and Smith, 1964): “If the
constitutive variable depends on what is happening at a point in space-time or a very small
neighbourhood of the point, the variable is said to be local and derived from a local theory ..
. On the other hand, if information is needed to define the constitutive variables from
regions of space and time distinct from a neighbourhood of the space-time point where
evaluation of the variables is to be made, then the theories and constitutive variables are
said to be nonlocal in character”. More specifically, the concentration change at some
location in time might depend on a wide variety of locations upstream meaning space
nonlocality (Cushman and Ginn , 2000)(Molz, 2002)(Schumer et al, 2001)(Zhang, 2007),
and it also might depend on the temporal history of concentration “loading” at that location
(time-nonlocality) (Cushman JH, 1991)(Cushman et al, 1994)(Dentz and Berkowitz,
2003)(Dentz et al, 2004) (Neuman, 1993)(Schumer et al, 2003). The temporal nonlocality
can be physically attributed to mass transfer of solute between relatively immobile and
mobile phases meaning the sorption or desorption mechanism discussed above (Dentz and
Berkowitz, 2003)(Dentz et al, 2004) and transport in segregated regions of high and low
permeability (Benson DA et, 2001)(Zinn and Harvey, 2003) (Benson DA et al, 2000
)(Berkowitz and Scher, 1998). The spatial nonlocality might be due to the high variation
and long-range dependence (or long spatial autocorrelation) of permeability (Grabasnjak,
2003)(Herrick, 2002)(Kohlbecker, 2006)(Trefry, 2003) and (Zhang, 2007), including the
preferential flow paths discussed above. In this thesis we focus our investigation on the

fractional advection dispersion equation (FADE).

With the fundamental of Fractional Calculus in multiple Dimensions we have introduced in
the previous section, a possible generalization of dispersion equation can be introduced as

follows. From the following equation:
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0D.c + ppD;s + q.Vc = V.(6DVc) — A(0c + pps) + (cg — ) f(x0).
Hence D, and Vc can be replaced by 097 and oV¥ respectively and become

0odfc + ppodfs +q.oVic = V(ODoVic) — A(6c + pps) + (co — o) f(x0). (8.57)

Where « is a real number lying in (0, 1] and the above equation in this thesis will be called
the generalized hydrodynamic dispersion equation. The hydrodynamic dispersion equation
in Equation (8.57) is quite complex, from the mathematical point of view, and must be
usually be solved numerically in practice until we find a suitable mathematical method to

solve it analytically.

The majority of the available analytical solutions for Equation (8.57) are based on three
assumptions:

a) There is no discharge from the recharge to the aquifer

b) The Darcy’s velocity, q and the dispersion tension, D, are constant

¢) The matrix fraction, s(x, t), of dissolved solids can be represented by the Freundlish

isotherm.

g) s(x,t) = K4 c(x,t)

where Kj; is the volumetric distribution coefficient. With these assumptions Equation (8.57)
can be written in more compact form as
RyDic + q.Vc =V.(0DyVc) — ARy, (8.58)

for the standard case . In order to include explicitly the possible effect of the flow geometry
into the mathematical model the Cartesian component of the gradient of the concentration,
Ac is replaced here by Caputo fractional derivative oV$ of order a. This provides a
generalized form of the classical equation governing the dispersion (8.58)

Rdoafc + q.0V%c = V(0D,oVic) — AR c. (8.59)
This integro-differential equation does contain the additional parameters including, fande,
which can be viewed as a new physical parameters that characterizes the dispersion
through the geological formations and hence also,

Ry =0+ ppK, (8.60)
is known as the retardation factor. Two particular important sets of problems, that satisfy
these assumptions, are the set of the one-dimensional problems, characterized by

q =iq,and8Dy, = a;q (8.61)

and the set of two-dimensional problems characterized by
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q =1iqx+qyj and 0Dy = ia;qy + jarq, =iD, + jDr,

In these cases Equation (7.59) can be divided through by R, to obtain
(')fc + q,.0V§c = V(0D.0oVic) — Ac. (8.62)

For the generalized form and here

are the retarded velocity vector and hydrodynamic dispersion coefficient, respectively.
Notice that since R; = 0, and q, < q, the Darcy velocity of the fluid, hence the name
retardation coefficient for R;. For Equation (8.62) there is no analytical solution is available
for the moment being. In the discussion to follow attention will be, therefore, limited to a

simple one-dimensional Dirichlet boundary condition problem.

8.7.1 Solution of generalized form of advection dispersion equation via Adomian
decomposition and Variational Iteration methods

As V.M. Alexandrov wrote in the foreword of a popular science book “Asymtotology: ideas,
methods, and applications”, asymptotic methods belong to the, perhaps, most romantic area
of modern mathematics (Andrianov and Manevitch, 2003). Though computer science is
growing very fast, and numerical simulation is applied everywhere, non-numerical issues
will still play a large role (Andrianov and Awrejcewicz, 2000; (Bender et al., 1989);
Delamotte, 1993; He, 1999). There exists some alternative analytical asymptotic
approaches, such as the non-perturbative method, modified Lindstedt-Poincare method
(Delamotte, 1993), variational iteration method (He, 1999), Adomian decomposition
method (ADM), homotopy perturbation method (He, 1999; He, 2000), book-keeping
artificial parameter perturbation method (He, 2001) and the homotopy decomposition
method by Atangana see in (Atangana and Alabaraoye, 2013) (Atangana et al., 2013)
and (Atangana and Secer, 2013b) . Our concern here is to make use of VIM and ADM to
provide asymptotic solutions to the fractional advection dispersion equations. For the case
of generalized form of advection dispersion equation, two different methods will be used to
investigate a possible analytical solution, including the Adomian Decomposition and
variational iteration methods. The equation under investigation is the one-dimensional

space-time fractional advection dispersion equation as shown below.

afc(x,t) + qrafc(x, t) — Dk c(x, t) + Ac(x,t) = 0. (8.63)
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Subject to the initial condition
c(x,0)=0
and boundary conditions
ch(x, t)=0 (x = 00),
here the operator oaf is fractional derivative in Caputo -Weyl sense which, because we
want our solution to vanish at infinity and
c(0,t) = co exp(—yt) (t>0),
where 0 <o <£1,0<f <1and 1< u < 2; ¢y is the initial concentration and y a is positive

constant.

Adomian Decomposition method

Hence the method is based on applying the operator J#, the inverse operator of (’)f, on both

sides of the Equation (7.63) to obtain: (8.64)
m-1
9P c(0,t)xk
qre(x, t) = Z — +J8 Dok c(x,t) — dfc(x, £) — Ac(x, B)].
k=0

The Adomian decomposition method (Adomian, 1988) assumes a series solution for c(x, t)

given by
clx, t) = Z cn(x, 1),
n=0

where the component ¢, (x, t) will be determined recursively, substituting this in Equation

(8.64) yields (8.65)
> & 98¢0, t)x*
Qrz cn(x, t) = Z Taxk
n=0 k=0 o o o
+J% [D,00" Z ¢ (x, £) — 0002 Z ca(x,t) — A Z e (x, t)l .
n=0 n=0 n=0

To the following decomposition method we introduce the recursive relation as

1
Chi1(x,t) = q—]f[—oaf‘cn(x, t) + Droa,‘fcn(x, t) — Acp(x, t)],
r

(8.66)
& 98¢ (0, t)x*
CO(X, t) = Z T
k=0

It is worth noting that if the zero’s component cy(x,t) is known then the remaining
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components c¢,(x,t),n =1, can be completely determined such that each term is
determined by using the previous terms, and the series solutions are entirely determined.
Finally, we approximate the solution c(x, t)by the truncated series
cy(,t) =¥Nte, (x,t)and limy_e cy(x, t) = c(x, t). (8.67)
For our purpose, we used the Dirichlet initial and boundary conditions as defined
previously. Therefore the recursive relation is given as
colx,t) =¢(0,t) = coexp(—yt), t>0.
Following the discussion presented earlier, we obtain the recurrence relation
Cner (x, ) = i]f[—oag‘cn(x, t) + Droaffcn(x, t) — e, (x, t)], (8.68)

It follows from the above recurrence formula that.

c(x,t) = —] [—oat co(x, ) + D00k co(x, 1) — Aco(x, t)]
= q—]f[—oafco exp(—yt) + Droa,’:co exp(—yt) — Acg exp(—yt)]
r
1 B
= q_]x [—00¢ co exp(—yt) — Acy exp(—yt)]
r

1
= q—]f [(=¥)%co exp(—yt) — Acy exp(—yt)]
o
T(1+pB)

1
c(x, t) = —]f[—oaf‘cl(x, t) + Droa,’fcl(x, t) — Acyi(x, t)]

1
= q—c0 exp(—yt) (N — D) ===

x2B x2B-u
r2g+1) DrI‘(Zﬁ —u+ 1

1
( ) {=()% — A}co exp(—yt) [{ (= -1}

c3(x, t) = q—]f[—oat“cz(x, t) + Droa,‘:cz(x, t) — Acy(x, t)]

x2B-2u
oa,‘jcz(x,t)=(q—) (=" — A exp(=yt) [m Dz —za+ D)
x2F
00fcy(x,t) = (— V)“( ) {=(N* = A}co exp(—yt) [{—(V)“—/l}m
x2B-u
Mo =)

Thus
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x3.3_# x3ﬁ_2M
r + Dr
TGBB—u+1) T3 —2u+1)

1 3
s(e ) = () =) = Bexp(yo) D ]+{—(y>“

x3B x3B-1

-4 [{_(”)a BRI TR eI 1)]
In this case, four components of the decomposition series of Equation (8.66) were obtained,
of which c(x,t) was evaluated to have the following asymptotic expansion. But is very
important to know that, for practise purpose, one will need compute the number terms that
will fit the experimental data.

c(x,t) = colx,t)+cy(x, t) + co(x, t) + c3(x, t) + -+ + (8.69)
Using the package mathematica, we roughly approximate the above series solution to:

cx, ) =" s yat)[ HB[x(qT ur)]

erf E,p [x(qr + ur)] erfe X+ u,t

2./D, ¢

Where E, s is the generalized Mittag-Leffler function

Variation Iteration Method
To solve the generalized hydrodynamic dispersion equation by means of variational

iteration method (He, 1977), we rewrite Equation (8.61) in the form (8.70)
(C(x, t))(xt + qr(c(x: t))xﬁ - (C(x, t))xu + AC(X, t) = 0

Where a,  and u are the parameters defined previously. The correction functional for the

above equation can be approximately expresses as follows (8.71)

Cnan(68) = n(x,0) + f o) (3500 6.0+ (E(6, D) = (ECE. D)y + 425, 0)) 1,

a¢
where 7 is a general Lagrange multiplier (Inokuti et aj 1978), which can be identified
optimally via variational theory, here (¢(t,{))q: » (€(t,{))x, and ¢(t,{) are considered as

restricted variations. Making the above functional stationary,
* 0
SCppq(x,t) = Scp(x,t) + 6 f (0) a—(cn((, t)d{
0

yields the following Lagrange multiplier T = —1. Therefore we obtain the following iteration

formula: (8.72)

Cns1(, 1) = cplx, £) — j(; ((Cn((r t)ae + Ar(ca(d, t))xﬁ — (cn(¢, t))xu + cn (¢, t)) aq.

In this case we begin with the initial approximation
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¢0(0,t) = cqexp(—yt),

By the above iteration formula, begin withcy(0,t), we can obtain the following

approximation (8.73)
¢o(0,t) = coexp(—yt)

6000 = 600 = [ (@6 Dae + 400G, D) = Deleo(@. D)y + 260(6,0) d
0

= co exp(=yt) + (=(=¥)* = Dcoexp(—yt)x
= coexp(=yt) [1 + (=(=1)* — Dx].

r@)-*#

Q@w—q@w—f[Zy—m(“A%Q 5

+A[L+ (" = /1)5]] d¢

u “ r(2)x2F u x?
= c1(x, 1) = coexp(—yt) [—2)/ * = a0 = D “pha—p ATt =4 7]]
— a a a F(z)xz_ﬁ a x2
=coexp(—yt) [1+ (y* — Dx + 2y*x + q,(y —A)m—l[x+(y —/1)7.

In this case three components of the series Equation (8.43) were obtained of which c(x, t)
was evaluated to have the following asymptotic expansion

c(x,t) = colx, t)+ci(x,t) + co(x,t) + -+ + (8.74)

It is worth noting that the solution obtained via Variation Iteration Method has repeated
terms. To reduce the repeated terms in this solution one need to cancel the repeated terms
or while calculating ¢, component, and then, the last component gives the approximated
solution of the differential equation. The following example is used as illustration. Consider
the differential equation describing the rate at which the radioactive material disintegrates,
thatis
DN(t) = —yN(t).
The analytical solution of the above differential equation is given as
N(t) = N(0) exp(—yt).

For the Variation iteration method the following recursive formula is considered

Np41(t) = Np(8) — Jt(DNn(C) — ¥Na(9))dg,
0

with Ny(t) = N(0)

(- t)k
k!

Here for any > 1,N,(t) = N(0)[1 + X}- ], it follows that when n is approaching

infinity N, (t) = N(0) X1 Zf) = N(0)exp(—yt), which is the exact solution of the
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equation.

8.7.2 Analytical solution of space-time fractional derivative of hydrodynamic advection-
dispersion equation in term of Mittag-Leffler function

In this section a straight fort method will be used to give an analytical solution of space-time
fractional derivative of hydrodynamic advection-dispersion equation in term of Mittag-
Leffler function. The method is based on Laplace transform, due to the complexity of the
Mittag-Leffler function, the graphical representation will not be given in this thesis. We start
this analysis with the fractional derivative according to Riemann-Liouville, following by the

fractional derivative according to Caputo (Atangana and Kilicman, 2013).

Case 1 Fractional derivative in Riemann-Liouville sense

The method here consists of applying the Laplace transform with respect to the time

variable on both sides of equation (8.63) to have

%(xs) v dbBc(x,s)

D ox“ axB

—R(A+ s)c(x,s) = Re(x,0), (8.75)

with the initial condition and further transformation, the above equation can then be in the

following-form (8.76)
0%c(x, s) 6 c(x,s)
92 9xF —1c(x,s) =0,
where s is the Laplace variable, p = — and R(M 9 Let ¢(x,s) = y(x), the equation (8.76)
becomes: (8.77)
%y(x)  Fy)
axe HaxB 7T ye) =0.

Applying the Laplace operator respect to the space variable on both sides of equation (7.77),

on the space component and replacing we have the following equation:
L

L@ =D hy

i=1

pi—l
p*—upf -z
(8.78)

where p is the Laplace variable for the space varaible and h; = 3% ‘c(0%).

-B
az_JB_M| < 1, we have the following expression > can be writing as

1
Z—pph-t

follows:

) o ipBhn

l

pr—upf -t Z(“ﬁ o’
j=0
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and hence replacing the above expression in equation (8.78) yields to the following

representation: (8.79)

—B pn+i-1
H®) —Z Z(pa S

The above expression is then simplified further, for p € C and|upﬁ‘“| < 1, we have that

first,
Tnp—ﬁ—ﬁnﬂ'—l Tnp(a—ﬁ)—(a+ﬁn—i+1)
G F -t T (e F —
and secondly the above equation can now be expressed as follows (8.80)
1 an+a—i 9\" a—f
= E’C x (a) Eq_ga+np+1-i(Ux*F)
where
(a)" ) o T(n+j+1) x/
a p LiT(na + B + ) jI
Hence the solutions of equation (8.77) can be given as follows (8.81)
o Th o\
yi(x) = Z mxanm_l (a) Eq-p, arpn1-i(ux®F)
n=0
Thus it follows that the solution of equation (8.63) is given as: (8.82)

l
y() = ) hiyi ()
i=1

In our case here l = 2 so that

2
c(x,s) = Z hici (x,s)

Thus the series solution of equation (7.63) can be now given by applying the inverse

Laplace operator on c(x, s) to have: (8.83)
o " ro\"
0= £ (3 a0t () 5, g )
n=0
Since the inverse Laplace operator is a linear operator it follows that (8.84)

n

ci(x,t) = ZT antas l(ax) Eq-p, a+pnsr-i(px®F).

n=0
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n n
Replacing t"* = (@) = (%) (A + s)™ so that (8.85)
R\" R\" exp{—At}t~1™"
= ) o - (5] 2
o (E)n exp{-At}t~1" o
D r(-n) —i _
ci(x,t) = Z . = xonta L(a) Eq-g, arpnei-i(px®F).
n=0
(8.86)
2
c(x,t) = z hic; (x,t)
i=1
® 5)” exp{-At}t 17" .
— D r(=n) - -
alxt) = ZO .y xamrast (a) Eq-p, arpn(ux®F)
n=
(8.89)
o (E)n exp{-Atjt—* ™" 5
D (- - _
ALY SE a2 () By g (xR,

n=0
To find the coefficient h;, i = 1,2, we need to apply the boundary and initial conditions on

c(x,t) yields to:

Example 1
Our concern here is to consider equation (8.63) when @ = 2 and 0 < § < 1. Following the
discursion presented earlier, the analytical solution ofspace-time fractional derivative of

hydrodynamic advection-dispersion equation has its two solutions given by:

[o¢]

exp{—At}t~1" a\" R
alot) = Z r(—n)n! X (a) EZ_B'Z(BXZ @
(8.90)
o exp{—At} ¢~ " o\" R
26 t) = Z r(—n)n! % (&) EZ_B'Z(ExZ @
=0

The above solutions form the fundamental system of solution when g < 1.

Case 2 Fractional derivative in Caputo sense

The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, investigate the solution

of space-time Caputo fractional derivative of hydrodynamic advection-dispersion equation.



160

For the Caputo derivative, the Laplace transform is based on the formula:

(L cD%y)(s) = s*(Ly)(s) — Z h; ga—i-1
i=0

with (8.91)
hi =y'(0) (i=01)
Thus applying the Laplace transform in both side of equation (8.63) on the component of

time, and applying again the Laplace transform on the component of space yields to: (8.92)
2-1

a—-i—1 pﬁll
OIOEDY -——uz
p*—upf -1 pe—upf -7

i=0

af | < 1, in analogy of the discussion presented earlier for the case of

Riemann-Liouville, we have the following (8.93)
T pePmnrin) G plamp-(Bneitirap)
OIOEDWIN MZ
Yy £ ln=0 (pa (ha—p — O n+l ‘u)n+1 (pa—ﬁ _“)n+1

Hence for p € Cand |,upﬁ_“| < 1, we have that

p@-B)~(n+j+1) 4 Lo ,
— na+i a—
(p*=F — wr+t _E<L [x (ax) Ea-p pnsiva (X )D

and (8.94)
pla—B-(Bntj+ita=p) 9 irasp I\ p
— na+i+a— a—
(pe—B — p)n+1 ﬁﬁ[ (ax) Eq_ppn+i+1+a- B(,ux )]

Thus from the above expression we derive the following solution to the space-time Caputo
fractional derivative of advection-dispersion equation (8.63): (8.95)
2-1 1-1
c(x,t) = Z hic;(x,t) —u Z hic;(x,t)
i=0 i=0
where fori =0 (8.96)

o exp{—At} ¢~ 1" 0\ _
ci(x,t) = Z Wxnaﬂ (a) Ea—ﬁ,ﬁn+i+1(ﬂxa ﬁ)
o exp{—At} ™1™ A AN ~
—HZWXWHM F (a) Eoppn+is1va—p(px®F)
n=0
andfori=1 (8.97)
> exp{—At}t1 " " _
ci(x,t) = Z Wxnaﬂ (a) Eq_p pniv1(ux®F)

n=0
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Further the coefficients h; are found by applying the initial and boundary conditions on

c(x,t).

Example 2
Our concern here is to consider equation (8.63) when @ = 2 and 0 < § < 1. Following the

discursion presented earlier, the analytical solution of space-time fractional derivative of

hydrodynamic advection-dispersion equation has its two solutions given by: (8.98)
o exp{—At} t~1 " a\" _
ci(x, t) = Z szn (a) Ey—p pn+1(ux?~F)
- exp{—At}t~1™" L 0\" _
_“Z I'(=m)n! X ﬁ(ﬁ) Ey-p pn+3-p (x> F)
n=0
and (8.99)
B - exp{—At}t~1" e n -8
ca(x,t) = wa " (a) Ez—ﬁ,ﬁmz(ﬂx )

These solutions are linearly independent and they provide the fundamental system of
solutions to space-time Caputo fractional derivative of hydrodynamic advection-dispersion
equation. We have to prove that the series are convergent. Note that the below series is
convergent and converges to:

Mn+j+1) . (1=0)7"TA+n)
ijF(a+ma+ﬁ)j!x T (-1 +x)T(a+na+p)

or (8.100)

i T(n+j+1) j>°° M(n+j+1)
j_OF(a+ma+B)j!x _j_OF(aj+ma+ﬁ)j!x

Because the series of left hand side is convergent it follows that the series of the right hand
is convergent and c,(x,t) and c;(x,t) are convergent. Due to the complexity of these

solutions, the graphical representation of these solutions will not be given in this thesis.

8.7.3 Approximated solution via Fourier transform

In order to be consistent in comparison, one need to propose an analytical solution to the
fractional version of the advection dispersion equation, and one compare the two solutions
by mean of experimental data. Solutions to common solute transport boundary value
problems (BVP) are usually obtained by means of Laplace or Fourier transforms. We will

solve the BVP for instantaneous injection of a “spike” of solute, i.e. the Green’s function. The
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fractional-in-space equation is solved via Fourier transform. To start here we choose the

fractional advection dispersion equation governed by:

d.c(x,t) + qr0%c(x,t) — Drodlc(x, t) + Ac(x, t) = 0 (8.102)
Applying the Fourier transform in x-direction on both sites of the above equation, we
obtained the following ordinary differential equation: (8.103)
dé(p,t) g s . o
—g = L4, ) = De(ip)He(p, ) +A¢(p, 1)
And the solution of the above ordinary differential equation is given as: (8.104)
¢(p,t) = exp[—[qr(ip)* — Dy (ip)* + Alt]
in/2

Using the trigonometry properties i = e'™/~, the above expression is transformed to

¢(p,t) = exp[—At] exp [— [qr(ip)“ - Drei(Sig”(p))w/Z] t]. (8.105)

This Fourier transform does not have a closed form inverse. However following the work
done by Benson in 1998, the expression can be put it in the form of the characteristic
function by substituting -p for p, the density can be manipulated into the canonical form of

the characteristic function for u-stable densities (Benson, 1998).

The solution to the classical ADE with the continuous source initial condition is generally
written in “closed form” using the error function. The error function itself is twice the
integral of the positive half of a Gaussian density with variance = 1/2, or standard deviation
of v2/2 (Benson, 1998). The analytical solution the ADE was given by (Cleary and Ungs,
1978), is

c(x t) _ COeXp[_yt] [ex x(qr - ur) eT‘fo — Ut exp x(qr + ur) er Cx + Uyt
' 2 2D, 2,/D,t 2D, 2,/D,t
where

Uy = \/‘17g + 4D, (A —v)
and
erfc(x) = %f exp(—t?)dt
T

is known as complementary error function. For the generalisation of this widely-used

formula, a similar solution to the Fractional Advection Dispersion Equation is given by:
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coexp(—yt X —Uu X — Uyt
c(x,t): 0 p( V) exp (Qr T)SERF#C r1

’ 2r 200, 6)%

x(qr +u X+ u,t
+ expMSERF“c rl ,

2Dy 2(D, t)

where (8.106)
SERF,c =1 — SERF,c, SERF, was defined by (Benson , 1998) as the u-stable error function
(SERF,) function similarly to the error function, that is, twice the integral of a symmetric u-

stable density from 0 to the argument (z): (8.107)

SERf,[z] = fo# (x)dx
0

where f,(x) is the standard, symmetric, u-stable density. The factor of 2 in the denominator

of the SERF argument has been dropped from equation (8.107) for simplicity. The u-stable

density is defined in series form as: (8.108)
I CD el o,
fu( z) = (271 1! [ " + 1] Z
Or in integral form we have: (8.109)
— u— 1
fu(2) = 2| — f U, (8)exp [ U (9)] a9

sin[224) a-w
z ] (8.110)

Uu(6) = [cos[ﬂ]

Up to this day the analytical expression of the u-stable density is not well known in general
but for some specific case that may not be relevant for our problem, therefore we propose
the following alternative expression as solution of the Fractional Advection Dispersion

Equation (Atangana, and Kilicman, 2013): (8.111)

coexp(—yt) x*(qr —uy) x* —uyt
> exp D erfc —
T 2(D,t)m

c(x, t) =

x%(qr + ur)> X%+ u,t
———|erfc| —

+ exp ( 1
2D, 2(D, t)"
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Here, note thatif ¢ = 1 and pu = 2, we recover ADE. In order to see the possible effect of the
fractional order into the solution, we present the graphical representation for several values
of a,and u for the same theoretical values of the problem. Now having both analytical
solutions of the two versions of the advection dispersion equation, one can proceed with the
comparison and this will be done below. The following figures 8-1 to 8-5 show the density
plot of the approximate solutions of the fractional advection dispersion equation. The
theoretical values used for these simulations are recorded in table below.

Table 8-1: Theoretical parameters used for numerical simulation

Parameters Co Y D, qr A
Values 100 0.94 0.89 0.9 1

The below figure show the numerical simulation of the concentration through the geological
formation as function of space, time and fractional order derivatives. The figures are

obtained via the software Mathematica.

Simulation of c(x,t) in the aquifer

time

0 2 4 B 8 10 12 14 16 18 20
Distance from source

Figure 8-1: Simulation of the FADE (¢ = 100, =0.45,=2,D=2;q=1,y =
0.25and A1 =1)
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Simulation of c(x t) in the aquifer

time

o
8]
B
o

8 10 12 14 16 18 20
Distance from source

Figure 8-2: Simulation of the ADE ¢y =100,a=1,=2,D=2;q=1,y=0.25and 1 =
1

Simulation of c(x t) in the aquifer

time

0 2 4 B 8 10 12 14 16 18 20
Distance from source

Figure 8-3: FADE ¢y = 100, =0.55,4=1.55D=2;q=1,y=0.25and1=1
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Simulation of c(x,t) in the aquifer

N

o o0 O

fime
n o N »
O

m o

QO N

2 4 =1 8 10 12 14 16 18 20
Distance from source

Figure 8-4: ¢y = 100, = 0.25,#=1.55D=2;q=1,y=0.25and 1 =1

Simulation of c(x,1) in the aquifer

fime
® O = >

[y

[}

0 >

4 5 & 10 12 14 16 1 20
Distance from source

Figure 8-5: Simulation of the FADE ¢y = 100, = 0.55, =1.95D=2;q=1y =

0.25andA =1
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The above simulation let no choice than to believe that the order of the derivative plays an
important role while simulation the plume of the pollution in the aquifer.

Several studies have been done for this concern, more precisely when the parameter 4 = 0,
see for example (Benson et al, 2000), however the approach used is their studies is rather
stochastic than deterministic. In this thesis we deal with the deterministic approach .To test
the accuracy and efficiency of FADE, we compare the solution of FADE, ADE and the
experimental data from field observation. The following figures 8-6 and 8-7 show the
comparison between FADE, ADE, and measured data from real field for different values of
a and u. The equations compared here are (8.111) and the solution by (Cleary and Ungs,
1978). A plume observed in natural systems is used in this section to distinguish further the
time and space non-localities. Realistic data from natural systems provide the most
important criteria for distinguishing the space- and time-nonlocal processes and evaluating
the applicability of the FADE models. Three experiments are selected, where tracer
transport through regional-scale natural systems with very different hydraulic properties
including, a natural two confined aquifers, were monitored. The observed anomalous
phenomena were studied extensively and modelled using the space FADE by different
researchers in the last several years. Analysis, comparison and application of various FADEs
in this study are intended to provide a general guidance for model selection.

The below simulation let no choice than to believe that the order of the derivative plays an
important role while simulation the plume of the pollution in the aquifer. The comparison
revealed that, the fractional advection dispersion equation is compatible with observations
of the plume in the laboratory and the field. It predicts power law, faster than the apparent
plume variance. It is shown that the traditional 2nd -order advection equation does not
adequately describe the movement of solute trace in the aquifer. On the basis this assertion
we conclude that, the fractional advection dispersion equation is better than the classical

version of advection dispersion equation (Abdon and Kilicman, 2013).
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Figure 8-6: Comparison of FADE, ADE and experimental data from real world, Dr = 4.5
M=1.95,a =0.99 and qr =0.51
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Figure 8-7: Comparison of FADE, ADE and experimental data from real world, Dr = 2.5
M =1.36,a =0.3and qr =0.4, c0 =150
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Figure 8-8: Comparison of FADE, ADE and experimental data from real world, Dr = 0.5
,it=1.68, a =0.64 and qr =0.5, cO = 155.
8.7.4 Discussions

Natural geological deposits with highly contrasting permeability may form mobile and
relatively immobile zones, where the potential mass exchange between mobile and
immobile zones results in a wide time distribution for solute “trapping”. The transport
process, groundwater is, by its very nature, always in contact with the matrix of an aquifer.
There is thus a possibility that the solutes may interact with the rock matrix, and one
another. A true mathematical model for groundwater pollution must therefore be able to
account for interactions between the dissolved solids and matrix of the aquifer. It will thus
be advantageous to look at the nature of the interactions between dissolved solids and a
porous medium that may be expected in groundwater pollution. Experimental evidence
indicates that when a dissolved solid comes in contact with the matrix of a porous medium
it may (a) pass through the medium with no apparent effect, (b) be absorbed by the porous
matrix and (c) reacts with the porous matrix and other substances dissolved in the fluid.
The dissolved solids encountered in porous flow are, for this reason, often classified as
conservative, non-conservative and reactive tracers. This behaviour implies that the
quantity of dissolved solids in a porous medium depends not only on the flow pattern, but
also the nature of the porous matrix and the solution. These situations (a) (b) and (c) can be

characterized efficiently by the time-nonlocal model, including the time FADE. If the high-

Time
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permeable material tends to form preferential flow paths, such as the interconnected paleo-
channels observed in alluvial depositional systems, then the solute transport may show a
heavy leading edge, which can be described by the space FADE with maximally positive
skewness as shown in Figures 8-1, 8-2 , 8-3 and 8-4. Development of partial differential
equations such as the advection-dispersion equation (ADE) begins with assumptions about
the random behaviour of a single particle: possible velocities it may experience in a flow
field and the length of time it may be immobilized. When assumptions underlying the ADE
are relaxed, a fractional ADE (FADE) can arise, with a non-integer-order derivative on time
or space terms. Fractional ADEs are nonlocal; they describe transport affected by hydraulic
conditions at a distance. Space fractional ADEs arise when velocity variations are heavy
tailed and describe particle motion that accounts for variation in the flow field over the
entire system. Time fractional ADEs arise as a result of power law particle residence time
distributions and describe particle motion with memory in time. As shown, the best-fitting
curve from the classical radial flow model greatly under-estimated early arrival. We also
remark that this solute flow model and its numerical solution match the test data closely
only up to the peak.

An excellent literatures review revealed that, the fractional advection dispersion equation
has proven useful in modelling contaminant flow in heterogeneous porous media (Benson
et al,2000 a, 2000 b and 2000 c). The fractional advection dispersion equation is known to
be a special case of a general transport equation with convolution flux (Cushman and Ginn
TR, 2000)and a limit case of the continuous time random walk with power-law particle
jumps (Berkowitz et al, 2006) (Meerschaert and Scheffler, 2004 ). It is a simple matter to
derive the fractional advection dispersion equation from the fractional conservation of mass
equation using a moving coordinate system at the plume centre of mass, in exactly the same
way that the usual advection dispersion equation follows from the traditional conservation
of mass equation see (Meerschaert et al, 2006). This approach validates the utility of the
fractional advection dispersion equation and related theories, by highlighting the scaling
factor that renders the fractional equation scale invariant. We believe that this scaling

captures the fractal nature of the porous medium (Wheatcraft and Tyler 1988).
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS
9.1 CONCLUSIONS

A large number of cities in tropical and subtropical areas of the earth depend on both
groundwater and surface water resources for their supply of drinking water. As discussed in
Chapter 2, one problem is that both sources are often highly polluted, a situation that is
particularly important for the city of Douala in the Cameroon. The present thesis is an
attempt to draw attention to this problem and to provide preliminary guidelines for the
future remediation of the groundwater resources at Douala. There is no doubt that to
achieve this will be an immense task. Nonetheless, the discussion also shows that such an
action should be undertaken urgently.

While it would be possible to instigate “trial-and-error” methods for the remediation of the
groundwater resources at Douala, past experiences worldwide have shown that the best
approach to remediate an aquifer is to have a good knowledge of the problem at hand and
use it to develop an appropriate conceptual model of the site. This conceptual model is then
translated into a mathematical model and implemented either analytically or numerically on
a computer and then used to simulate the expected future behaviour of the contaminated
aquifer with the view to devise an appropriate method to clean up the aquifer.

There is not much quantitative information available on the Douala aquifer at the moment.
Nevertheless, an analysis of the available information in Chapter 3 provided some guidance
in developing a preliminary conceptual and mathematical model of the aquifer, which was
implemented numerically with the computer package FEFLOW (Diersch, 2009) as discussed
in Chapter 6. Although there exists a large number of technologies that can be used to clean
up an aquifer, the investigation was limited to the so-called Deep Aquifer Remediation Tools
(DARTS) in particular it shallow aquifer equivalent to the Permeable Reaction Barriers. In
this technique the groundwater is allowed to pass through a permeable reactive barrier
(PRB), which transform the contaminant into a non-toxic form by a variety of chemical
reactions and then immobilized it. The reasons for this choice were twofold. The first is that
the Douala aquifer occurs at relatively shallow depths and the second that the technique
does not require constant active supervision. These expectations are largely supported by
the results of the FEFLOW model in Chapter 6. As discussed in Chapter 6, the barrier can be
emplaced either in a series of non-pumping wells or in a trench. Although not investigated in

detail, the FEFLOW model in Chapter 6 suggests that trenches might be particularly useful at
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Douala.

Mathematical models are only as effective in describing a contaminated aquifer as the
underlying conceptual model, which can never be complete. Results derived from
groundwater models are consequently always subject to uncertainties. While these
uncertainties have regularly been neglected in the past, it is nowadays imperative that a
groundwater model, whether it a flow or mass transport model, be accompanied by an
estimates of uncertainties associated with the model. Although a large number of
approaches are available for this purpose, they often require exorbitant computing
resources. The present investigation was consequently limited to the application of Latin
Hypercube Sampling method to the analytical solution of the conventional hydrodynamic
dispersion equation, discussed in Chapter 6. The discussion there showed that the Latin
Hypercube Sampling method might provide one with uncertainty estimates that might be
quite useful, especially during preliminary investigations.

It has been known for years that the hydrodynamic dispersion equation discussed in
Chapter 4, is not able to account for the long-tail plumes often observed in studies of
contaminated fractured-rock aquifers. One approach that has become quite fashionable in
recent years to account for this is to replace the ordinary spatial and temporal derivatives in
the hydrodynamic equation of Chapter 5, separately or simultaneously, with fractional
derivatives. As shown by the exploratory discussion of the approach in Chapter 8, the
method seems to be able to account for long tail plumes. However, an analysis of the
computations reported in Chapter 8 with the mathematical computer package Mathematica
revealed that the results depend not only on the definition of the fractional derivative used
in the computation, but also on how the derivatives are computed.

9.2 RECOMMENDATIONS

The most important factor for the successful implementation of the DART technology is an
adequate site characterization. Site characterizations typical of remedial feasibility
investigations, are usually not enough. This is not surprising given that the PRB (part of
DART) cannot be moved once installed. It will therefore be necessary to develop and
perform a detailed site characterization of the Douala area before the method can be

applied. Such an exercise should concentrate include detailed studies of:

a) the nature, origin and positions of the existing and expected future pollution sources

and their evolution over time

b) the stratigraphy and geochemistry of the contaminated area.
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¢) the prevailing surface- and groundwater flow patterns laterally and at depth
The possibility of course always exists that a project of this nature may fail at sometime in
the future, with unexpected consequences. However, this can be avoided to some extend by
the keeping a fully documented history of the evolution of the project and the development
of a continuously updated contingency plan detailing corrective actions that needed to be
taken should the system fail.
There is no doubt that the success with a remediation scheme for the Douala aquifer will
depend to a large extent on the development of an accurate numerical model for the aquifer.
However, as shown by the discussion in Chapter 7, any such model will be subject to
uncertainties. It is therefore important that the model used with the implementation of the
technology and the contingency plan be based on a sound uncertainty analysis
supplemented by an appropriate risk analysis.
There is little doubt that fractional derivatives may account for properties of mass transport
in the subsurface of the earth, that cannot be accommodate in the classical hydrodynamic
equation. However, the computations of fractional derivatives in Chapter 8, indicated that it
may be necessary to pay more attention to their definition and implementation than
suggested in the existing literature.
The framework and recommendations provided in this thesis, may not fully address the
problems associated with the pollution of the groundwater resources of Douala. However,
but it is hoped that it can serve as a basis for a more detailed project to create a cleaner and
healthier environment, if not for the present population of Douala, then for future

generations.
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Appendix

4-Table of fractional order derivative for some functions
We shall present for the Liouville fractional derivative (Atangana and Secer, 2013):

Functions

L-fractional derivative

xﬁ,ﬁ>—1

Cos(ax),a € R

Sin(ax),a €R

In(x)

e™ a€eR

Sinh(a x)

Cosh(ax)

Arcsin(x),
0<x<1

x"ET(1 4+ B)
rl—a+p)

x~%HypergeometricPFQ [{1}, {1 - %,% - %,} - iazxZ]
'l-a)

— . a 5 a 1
_ a’x?~%HypergeometricPFQ [{2}, {2 —313= 5,} —.a xz]
I'4—a)
ax1~%(2 — a)HypergeometricPFQ [{1}, {2 _a3_ Z,} — la2x2]
2’2 2 4
r2-a
2a3x3~*HypergeometricPFQ [{2}, {E —Z3- g’} —la2x?
_ 2 2 2 4
r'G—a)

x~%(EulerGamma + nCot[m a] — In(x) + PolyGammal0, a])
I'1l-oa

a”® ((a x)" 4+ ea"(F(l —a)-T(1 —aq, ax)))
'1—-a

(—a2x®)®) (~a)*(al (—) + I(1 — @, —ax))

e—ax(_a2x2)—a
2Ir(1 — a)

+a%?*(I'1—a)-T(1—a, ax))))

(Wl—a) (e_ax (—a?x?)~*((—a)*(ax)*(e% + axExpIntegralE[a, —ax])

+ a%e™(—ax)*(1 — ae™xaxExpIntegralE[a, ax])
+ ((—a)* + a%e?**)(—a?x2)*T(1 — a))))
1- ; 1z 3_a ,_a] .2
x*"“HypergeometricPFQ [{2,2,1},{2 o 2 2},x ]
r2—oa

5 a
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Arccos(x),
0<x<1

Arctan(x)

Ea(_ta)

Jn(x) ,Re[n] >

K,(x),1 > Re[n] > —

-1

b E-52-3)

—a (,T(_z + a) + 2xHypergeometricPFQ [{5’_'
2Q2 - a)r(1 —a)

3 a

x1= “*HypergeometricPFQ [{2,2, }'{E - 2— %},xz]
22 -3a+a®)r(1 —a)
x3~*HypergeometricPFQ [{—,—, 2} {E - E, 3 - %},xz]

2(2 - 3a + a®)I(1 — a) ((_ -9 (2- _))

X
NE

1-a
—— ((—4 +a) (=3 +a)(-2

11 3 «a 2 a )
’ }'{5_5’ _E}’_X ]
7 ) 2 2I 2 )

1
+ a)HypergeometricPFQ [{E

3
+ 4x2HypergeometricPFQ [{E,

1
G-o <e"‘x'1'“ ((—x)“(—Z +a)(T2-a) -T2 - a,—x))
+e*x(-1
+a) (xHypergeometricPFQ[{1,1}, {2,,3—a},—x](—2
+ a)(nCot(na) — In(x) + PolyGamma(0, a)))))
x ¢ .
F(l — a) - Ea(_t )
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n 1 n n
-1-n 1-n—-a 1 —_ — —_— —
2 X Csc(nm) <—F(2+n—a) HypergeometricPFQ [{2 2,1 2},{1 n,1
2
Y,(x),—1 < Re[n] < 1 _h_ a E_E_E}x_
2 2’2 2 2)4
+ ™ H tricPF {1+n1+n} {1+ 1+n
T tn_a ypergeometricPFQ 5t 5 5§ n, 3
a3 n a} x?
2’2 2 2) 4
Csc(nm)4™ 1 n n n
R tricPF {———,1——},{1— 1—=
x < T tn—o) ypergeometric Q[Z 3 3 n 3
a3 n a} x?)
2’22 2) &
+ ™ H tricPF 1+nl+n} 1+ 1+n
Zetalx] [+ n—a) YPErgeometricPEQ {2 2772 { Ty
a3 n a} x?)
2’272 21 &
Zw (—D%*(—x)~« n‘xaF(—a’)(—ln(n))a n*al(1 — «a, —xln(n))(—ln(n))a
n=1| T(A—-a) rl-oa rl1—oa
Erf(t)
—14x,1-a(y _ : ; 1 E_E _E — y2
2 x17*(2 — a)HypergeometricPFQRegularized 2,1 1 2,2 5 X
3 5 « a
+ 27 xx3-2HypergeometricPFQRegularized [{E 2}, {E —5 3 - E}
_xZ]
Here:

HypergeometricPFQ [{}.{}.{}] is the generalized hypergeometric function which is defined as

follow in the Euler integral representation:

I'(a)

I'(b)I'(c-b)

(0 < Re[b] < Re[c]; larg(1 — z)| < @)

ZF]_(a'l br CIZ) =

2711 = P11 — 2t)~%dt, c € C\Z5, a,b € C

The PolyGamma[n, z] and PolyGamma[z] are the logarithmic derivative of gamma function

given by

d‘l’l

PolyGammaln, z] = 1

F(Z)>,PolyGamma[z] = PolyGamma|O0, z]

(F’(Z)
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These functions are meromorphic of z with no branch cut discontinuities.

E, (—t%)is the generalized Mittag-Leffler function and is defined as
(_ta)k

Eo(—t®) = Y — =
— Ika + 1)

Tis denotes the gamma function, which is the Mellin transform of exponential function and is
defined as:

[oe]

I'(z) = f t?~letdt,Re[z] > 0
0
Jn(x), K, (x)andY;, (x)are Bessel functions first and second kind.

Zeta[s] is the zeta function, has no branch cut discontinuities and is defined as:

Zeta[x] = 2 n*
n=1
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Abstract

One reason why groundwater, so often constitutes the main source of drinking water in
many cities and towns around the world, is because it is frequently present in sufficient
quantities at the point of demand. However, this seemingly advantage may sometimes be its
greatest disadvantage, especially in situations where the groundwater occurs at shallow
depths and the area overlying the aquifer is populated densely. This problem is particularly
relevant in the present technological age with its vast quantities of waste that is often
disposed in an uncontrolled manner. Such a situation occurs at Douala the economic capital
of Cameroon in central Africa. The city not only host more than 80% of industries in the
country, but also has the largest urban population of approximately 3 000 000 with a
population density of approximately 350 persons per square kilometre, which continue to
increase at a rate of approximately 120 000 migrants per year from the rural areas, while
the groundwater level is very shallow and may sometimes rise above the soil surface,
especially during floods, which occur not too infrequently.

Although the pollution problem is not restricted to groundwater as such, it is aggravated
here, because of the ancient belief that wastes are safely disposed of, if buried below the
earth’s surface. It took disasters like Love Canal and the Price Landfill to discover the
detrimental effects that this practice may have on the population living on or near polluted
aquifers. Extreme care therefore should be exercised to prevent the pollution of any aquifer
that may pose problems to living organisms or to try and restore a polluted aquifer
threatening the natural environment. Groundwater pollution should therefore receive
urgent attention when discovered.

This thesis describes an attempt to develop a set of guidelines for the restoration of the
groundwater resources at Douala, based on the relatively new technique of permeable
reactive barriers for groundwater remediation—a technique that is also increasingly
applied in the restoration of the Superfund sites in the United States of America.

Modern attempts to clean up contaminated aquifers, relies heavily on the use of suitable
computational numerical models. Such models have in the past always been based on the
classical hydrodynamic dispersion equation. However, an analysis of the equation in this
thesis has shown that the equation cannot account for the long-tail contamination plumes
characteristic of fractured rock aquifers. Fortunately, it is not too difficult to develop a more

suitable equation. For, as shown in the thesis, all that one has to do is to replace the ordinary
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derivatives in the classical equation with fractional derivatives.

Mechanistic modeling of physical systems is often complicated by the presence of
uncertainties, which was in the past usually neglected in the models used in the restoration
of aquifers.While these uncertainties have regularly been neglected in the past, it is
nowadays imperative that any groundwater model be accompanied by estimates of
uncertainties associated with the model. Although a large number of approaches are
available for this purpose, they often require exorbitant computing resources. The present
investigation was consequently limited to the application of the Latin Hypercube Sampling
method applied to an analytical solution of the hydrodynamic dispersion equation.

It has been known for years that the hydrodynamic dispersion equation discussed in
Chapter 5, is not able to account for the long-tail plumes often observed in studies of
contaminated fractured-rock aquifers. An approach frequently used to account for this is to
replace the ordinary spatial and temporal derivatives in the hydrodynamic equation with
fractional derivatives—a procedure confirmed in this thesis.

Keywords and phrases: Groundwater pollution, Douala City, hydrodynamic dispersion
equation, groundwater flow equation, uncertainty and sensitivity analyses, groundwater

remediation; fractional derivatives, mathematical, analytical and numerical models.

OPSOMMING

Een van die redes waarom grondwater gereeld die primére bron van drinkwater in baie
stede en dorpe in die wéreld is, is omdat dit teenwoordig is in voldoende hoeveelhede
wanneer dit benodig word. Ongelukkig is hierdie voordeel dikwels 'n groot nadeel, veral in
digsbevolkte gebiede met vlak grondwatervlakke. Hierdie probleem kom veral voor in
digsbevolkte gebiede wat voortdurend groot hoeveelhede afval genereer en dit op n
ongekontroleerde wyse wegdoen. Dit is onder andere die geval in Douala, die ekonomiese
hoofstad van die staat Kameroen in sentraal Afrika. Die stad huisves meer as 80% van die
industrie in die land en het ook die grootste stedelike bevolking van ongeveer 3 000 000
met 'n digtheid van plus minus 350 persone per km? wat elke jaar met sowat 120 000 vanaf
die landelike gebiede toeneem. Die grondwatervlak is baie vlak en dagsoom dikwels tydens
vloede watgereeld voorkom.

Alhoewel die besoedelingsprobleem nie beperk is tot grondwater as sulks nie, word dit hier
vererger deur die historiese geloof dat afval veilig gestort word as dit in die grond begrawe

word. onder die. Dit het rampe soos die Love Canal en die Price stortingsterrein gekos om
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mense te besef dat hierdie praktyk uiters negatiewe impakte op die bevolking in die
onmiddellike omgewing van besoedelde akwifere mag hé. Uiterste voorsorg moet dus getref
word om te verhoed dat akwifere besoedel word.

Hierdie proefskrif beskryf 'n poging om 'n stel riglyne daar te stel vir die herstel van die
besoedelde grondwaterbronne van te Douala, wat gebaseer word op die redelike nuwe
tegniek van deurlaatbare reagerende versperrings—'n tegniek wat ook in die skoonmaak
van die sogenaamde “Superfund” terreine in die VSA toegepas word.

Hedendaagse pogings om besoedelde akwifere skoon te maak, steun geweldig op die
gebruik van geskikte rekenaar gebaseerde numeriese modelle. Hierdie modelle is tot nogtoe
gewoonlik op die klassieke hidrodinamiese dispersiewe vergelyking gebaseer. Die
ondersoek wat vir hierdie proefskrif onderneem is, ondersteun egter die hedendaagse
siening dat hierdie vergelyking nie besoedelingspluime met lang agterstukke—'n
karakteristieke eienskap van besoedelingspluime in gekraakte akwifere—kan beskryf nie.
Soos getoon in hierdie proefskrif, kan die probleem geredelik oorkom word deur klassieke
afgeleides wat in die hidrodinamiese dispersievergelyking voorkom met breukafgeleides te
vervang.

Meganistiese modellering van fisiese sisteme is altyd onderhewig aan onsekerhede wat in
die verlede gewoonlik in modelle van sulke geignoreer is wat gebruik is in die restourasie
van akwifere. Hierdie onsekerhede is in die verlede gewoonlik geignoreer. Deesdae is dit
egter noodsaaklik dat modelle skattings van dié onsekerhede moet bevat. Alhoewel daar 'n
groot verskeidenheid van metodes bestaan wat vir hierdie doel gebruik kan word, vereis dit
dikwels buitensporige hulpbronne. Die huidige ondersoek is daarom beperk tot die
aanwending van Latynse hiperkubus monsters, wat toegepas is op 'n analitiese oplossing
van die hidrodinamiese dispersiewe vergelyking wat getoon het dat dit uiters geskik vir die
doel is.

Sleutelwoorde en frases: Grondwaterbesoedeling, Douala Stad, hidrodinamiese
dispersievergelyking, grondwatervloeivergelyking, herstel van besoedelde akwifere,
onsekerheids- en sensitiwiteitsanalises, breukafgeleides, wiskundige, analitiese, en

numeriese modelle.



