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ABSTRACT 

Breast cancer is the leading cause of cancer death among women. Screening Mammography is 

the most effective method currently available for early detection of breast cancer. When breast 

cancer is detected at an early stage the prognosis is good because the tumour is smaller and 

more often well-differentiated, and less likely to have spread to regional lymph nodes. 

Computed radiography and direct digital detector mammography imaging systems provide a 

wide dynamic range for proper display of different densities of breast tissue areas. Their 

response over a wide range of X-ray intensities is linear; consequently, small differences 

between the attenuation coefficients of breast structures over a wide range of densities are 

clearly displayed. This includes the low signal areas associated with high densities found 

within tumours. Some masses infiltrate the surrounding breast tissue hence they exhibit ill-

defined and intensity inhomogeneous boundaries with rough contour, while other masses 

exhibit well-defined edges and in most cases they possess smooth, round or oval shapes with 

macro-lobulations. The morphologic features of a mass such as its shape, margin and density 

give a clue to its benign or malignant nature.  

This study investigates and quantifies the changes in shape-based descriptors due to changes in 

the location of the initial level set contour in region based active contour models in delineating 

mammographic masses and proposes new methods to eliminate contour leakage and contour traps 

in active contour segmentation models which are due to intensity inhomogeneity within tumours 

and boundary regions of tumours. Furthermore, the study proposes a contextual region of interest 

model to assess the variation of texture features from the core to its periphery of biopsy proven 

malignant masses as a concept of tumour modelling in mammography and also the variation of 

texture features between grade 2 and grade 3 masses as a concept of tumour grading in 

mammography with texture analysis. 
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CHAPTER1: INTRODUCTION 

1.1  Mammography 

Mammography is one of the most effective imaging modalities for early detection of breast 

cancer [1], [2], [3] because it has a high sensitivity and a specificity for early detection of breast 

cancer in screening mammography It uses low energy X-rays photons to produce an image of 

the human breast called a mammogram. Mammographic units (Fig. 1.1) are designed to 

produce mammograms with high contrast, high resolution and minimal radiation dose to the 

breast to ensure maximum visualization of breast anatomy and the signs of disease without 

subjecting the breast to unnecessary amounts of radiation. The low energy X-rays improve the 

differential absorption of X-rays between different components of the breast tissue, such as 

fatty tissue, fibrous connective tissue, mass lesions, micro-calcifications and thus improving 

image information (visibility of signs of disease) captured on mammograms. 

 

Fig 1.1 A mammographic X-ray unit with an acquisition station and monitor for softcopy 

display [Adapted from http://www.medicalexpo.com/prod/villa-sistemi-medicali/product-

70463-534527.html [26].]  

Screening mammography is a system of generalised breast cancer screening used to obtain 

mammograms from patients who have no symptoms of breast cancer [4], [5]. The 

mammograms are investigated for the presence of early stages of breast cancer, which might 

http://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiGlsCd7OjPAhVIBBoKHYi1A_4QjRwIBw&url=http://www.medicalexpo.com/medical-manufacturer/mammography-unit-284.html&psig=AFQjCNFcFa261vL-bzePJtfPVdG797r06Q&ust=1477034439784140
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be too small to be felt by the patient, or the physician. A standard screening examination 

requires two mammographic views of each breast. Nowadays it is a common practice in many 

countries for women above a locally defined age, and/or having a history of breast cancer in 

the family, to regularly undergo mammographic screening. The age at which this commences 

varies from country to country, due to differing availability of resources. The main purpose is 

to identity and remove any detected malignant tumour at an early stage when the presence of 

metastatic disease is less probable, and the possibility of local control is highest [6].  

Diagnostic mammography is requested after a suspicious finding on a screening mammogram, 

or the finding of abnormalities that may have been detected through breast self-exam (BSE) 

and/or clinical examination [7]. This examination is more time consuming and additional 

mammographic views such as a changed angle, magnification or spot compression views of 

the breast may be requested. These mammograms identify the location and size of the breast 

abnormality. They provide information about the surrounding tissue and the lymph nodes 

associated with the abnormality which are markers or indicators for malignancy. Studies have 

shown that dense breasts can limit the sensitivity of mammography both for detection of breast 

cancers and for delineating disease extent; thus, for dense breast imaging, another imaging 

modality such as ultrasound, or contrast-enhanced breast magnetic resonance imaging (MRI) 

may be requested to complement mammographic findings [5]. 

1.2 Standard mammographic views in screening mammography 

The cranio-caudal (CC) and the mediolateral-oblique (MLO) views are routinely acquired for 

screening mammography [8]. These projections maximize the amount of breast tissue that can 

be visualized on a detector. The CC projection is taken from a horizontally compressed breast 

and this view illustrates all the medial tissue, the nipple and in some cases part of the pectoral 

muscle. The MLO projection is taken at an angle such that the X-ray beam is directed from the 

superior-medial to the inferolateral aspect of the breast while the imaging detector is parallel 

to the long axis of the pectoral muscle. This view captures an image of part of the pectoral 

muscle. It ensures that the inframammary fold is open, while deep and superficial breast tissues 
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are well separated for optimal visualization. Fig. 1.2 illustrates the CC and the MLO 

projections with their respective mammograms. 

 

  

               

Cranio-caudal (CC) projection                                Right CC view and the Left CC view 

            

Mediolateral-oblique (MLO) projection                 Right MLO view and the Left MLO view 

   (a)                                                                                                      (b) 

Fig. 1.2: Standard mammographic projections and their corresponding mammograms (a) The CC 

projection and the MLO projection [Adapted from http://aibolita.com/womens-diseases/39943-

performing-the-examination.html [27]].  (b) The CC and MLO views of the right and left breast, 

displayed as mirrored pairs for image interpretation. 
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1.3  Mammography X-ray detectors 

The X-ray detector of a mammographic imaging system is designed to produce analogue or 

digital signals which are representative of the spatial pattern of X-rays transmitted through the 

breast tissue. These signals are transformed into grey scale values for visualization of the breast 

tissue (mammogram). 

 

1.3.1 Film-screen detector system 

Conventional film-screen mammography uses an intensifying screen in close proximity to the 

film to capture transmitted X-rays from the breast. The intensifying screen converts the 

transmitted X-ray to light photons, which spread out depending on the characteristics of the 

screen and illuminate the film to form a latent image of the breast. The conversion of X-rays 

to light photons is necessary in film screen imaging systems because film is more sensitive to 

light photons than X-ray photons. The use of screens thus significantly reduces the radiation 

dose required to create a satisfactory image of the breast. Although the film has a high spatial 

resolution, its response to X-ray intensities is not linear, having an S-shaped response curve. It 

has a limited dynamic range over which it can distinguish structures with small differences in 

contrast meanwhile tissue areas of high and low densities are sub-optimally imaged with poor 

contrast resolution. Generally, with this type of imaging system, the film is the sole medium 

for acquisition, display and storage of images, therefore any suboptimal conditions in any of 

these steps will have an adverse effect on the overall image quality of the mammographic 

imaging process [9].  

 

1.3.2 Digital detector system 

Digital detector systems in mammography have replaced analogue film screen systems in 

mammography over the last decade. This detector system decouples the image acquisition, 

image display, and the image archiving (storage) processes, thus allowing each stage of the 
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imaging chain to be optimised separately. Its response over a wide range of X-ray intensities 

is linear and it has a wide dynamic range for proper display of different densities of breast 

tissue areas and consequently improves the visibility of all mammographic features within the 

breast [10], [11]. Post processing of the images allows for the application of optimised 

histogram equalisation algorithms which ensure maximal display contrast over all areas of the 

image so that display window adjustment during the reporting process can be minimised.  

A digital detector system in mammography captures images in two ways: indirect conversion 

and direct conversion. 

1.3.2.1  Indirect Conversion digital detector system. 

This system uses a two-step process to capture the spatial distribution of X-rays photons 

transmitted through the breast in mammography. The X-ray detection device consists of a 

scintillator and an array of photodetectors. The scintillator absorbs the transmitted X-ray 

photons to produce light photons which are collected and detected with a photodetector. The 

most common scintillators are caesium iodide and gadolinium oxysulfide.  

The cassette-based computed radiography (CR) detector system in mammography is included 

in this category. Its detector system consists of a storage-phosphor plate with a layer of 

photostimulable crystals. The plate is placed in a cassette to fit the Bucky slot of a 

mammographic unit in the same manner as a screen-film cassette. The imaging plate absorbs 

and stores the transmitted X-ray photons from the breast in proportion to the intensity it 

receives to create a latent image. After exposure, the cassette is placed in a CR reader device 

which automatically opens the cassette and retrieves the image plate to extract the latent image. 

The image plate is scanned with a laser beam and the stored energy is released as light photons 

in an amount proportional to the stored energy. These light photons are collected and detected 

by a light guide and a photomultiplier tube respectively. The analogue signal is amplified and 

digitized for soft copy display, or processed and printed on a film. In the final stage, white light 

is incident on the plate to erase all residual signals and the plate is ready for reuse. 
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1.3.2.2 Direct Conversion digital detector system. 

In the direct detection approach, a high atomic number photoconductor is coated on a flat panel 

thin film transistor (TFT) array with a charge storage capacitor device. During exposure, the 

transmitted X-ray photons are absorbed by the photoconductor and charge carriers (electron-

hole pairs) are released. These charges drift towards the electrode of the charge-storage-

capacitor under the influence of an applied electric field, where they are collected, amplified 

and quantized for each pixel by the readout electronics.  

This detection system excludes the problems associated with lateral spread of light which is 

inherent to the indirect conversion detector system: lateral spread of light photons causing loss 

of high frequency image information and general degradation in spatial resolution and signal 

to noise ratio.  

In mammography, breast compression determines the quality of the mammogram. Breast 

compression is necessary because it spreads out the breast tissue and thus reduces the 

overlapping tissue and the effective thickness of the breast. This reduces the radiation dose 

required to produce diagnostic mammograms with adequate image quality and furthermore 

improves visualization of the breast tissue on mammograms. It also immobilizes the breast to 

avoid image blurring. Breast compression is painful for some women. Direct conversion 

mammographic detector system offers the possibility of a decrease in the breast compression 

force, because of its high detective quantum efficiency at higher x-ray energies. Post 

processing of the image also allows compensation for the differences in thickness from the 

chest wall edge of the breast to the nipple side of the breast which may occur when the applied 

compression force is reduced. 

1.4  Interpretation process of digital mammograms 

1.4.1 Hanging protocol 

After image acquisition and processing, the digital mammograms are displayed on the monitor 

of the picture archiving and communication system (PACS) workstation for image 

interpretation. The hanging protocol layout for image display on the monitor is a series of 
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actions performed to arrange mammograms for optimal viewing. It provides a consistent 

manner in which the different mammographic views of prior and current studies of a patient 

can be automatically displayed and hence reduces the amount of manual image arrangement 

and display adjustment required from the radiologist [12], [13]. Standard viewing practice is 

to compare the images of the right and the left breast using the same projection, and to also 

compare the current and prior views of the same breast and same projection. Fig. 1.3 illustrates 

the softcopy display of a prior and current study of a patient in a standard viewing format. 

  

 

1.4.2 Interpretation of mammograms 

The hanging protocol automatically displays the bilateral CC views and bilateral MLO views 

as a mirrored pair on the high-resolution monitor of a workstation as shown in Fig. 1.2. The 

Figure 1.3: Softcopy display of a prior and current study of a patient in a standard 

viewing format. Adapted from 

https://www.konicaminolta.com/healthcare/products/mammo/acies_mammo_viewer_lic

ense/feature.html [28] 

https://www.konicaminolta.com/healthcare/products/mammo/acies_mammo_viewer_license/feature.html
https://www.konicaminolta.com/healthcare/products/mammo/acies_mammo_viewer_license/feature.html
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mammograms of left and right breasts of the same view are inspected carefully and compared 

to evaluate breast symmetry, size, general density and glandular distribution. Next, 

corresponding regions on each mammogram of the same views are evaluated and compared to 

search for masses, densities, calcifications, architectural distortions, and associated findings, 

such as, skin or nipple retraction, skin thickening (which may be focal or diffuse), trabecular 

thickening and skin lesions. Usually when a suspicious region of interest has been identified 

on a mammogram, the radiologist will estimate, or measure, the distance of the lesion seen on 

one view from the nipple and look for a possible lesion at about the same distance from the 

nipple on the other view. The two most common abnormal mammographic findings that are 

associated with breast cancer are microcalcifications and mammographic masses. 

 

1.4.2.1 Microcalcifications 

These are tiny irregular granule like deposits of calcium with sizes less than 0.5mm, with 

density greater than the dense mammary tissue, which can be easily identified on 

mammograms of dense breasts. The radiologist assesses the size, distribution, form, and 

density of microcalcifications to determine the possibility of malignancy since the risk of 

malignancy varies with their morphology  [14]. 

1.4.2.2 Mammographic masses 

Mass lesions usually stand out against the grey-white mammary tissue or dark fat tissue, but 

in some cases, they have almost the same appearance as surrounding tissue and are therefore 

difficult to detect. This is especially so for dense breasts. They must be seen on more than one 

view, if not they are labelled as a density. The nature of malignancy is assessed with the 

characteristic of the morphologic features of the mass, which are shape, margin and density. 

Generally mammographic findings are described and classified with the Breast Imaging Report 

and Data System (BI-RADS ®) [15], [16]. Digital mammography allows maximal 

enhancement of the display contrast between the mass and the surrounding tissues. This should 
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allow easier detection and visualisation of masses acquired using digital mammographic 

systems. 

1.5  Breast Imaging Report and Data System  

BIRADS® is the earliest standard protocol for the classification of mammographic studies. It 

was developed by the American College of Radiology to harmonize the assessment of 

mammograms in the USA so that doubtful regions of interest on a mammogram could be 

assigned to a category reflecting the level of suspicion of the radiologist. This system of 

classification provides a standard set of guidelines for the interpretation of mammograms thus 

ensuring that clinical reports are reproducible and expressed in a common language to facilitate 

communication between referring clinicians and the reporting radiologists. 

Double reading is defined as the interpretation of a mammogram by two independent 

radiologists. Swedish and the European guidelines recommend double reading and this practice 

has been shown to increase cancer detection rates by 5-17% [17]. However recent study from 

Posso et al [18] has shown that double reading of digital mammograms is more expensive that 

single reading. They reported that, the cancer detection rate was similar for both reading 

strategies, however double reading yielded a higher proportion of false- positive results than 

single reading. The process of independent double reading of a mammogram can exert a lot of 

time pressure in institutions where there is a shortage of trained mammogram readers; 

therefore, commercially available, automated image analysis and prompting systems, such as 

computer aided detection (CAD) systems, whose performance has been evaluated and shown 

to match those of experienced readers, can be used as a second reader [19]. These systems 

mark suspicious areas for second look or areas that the radiologist might have overlooked. The 

algorithms of these computerised assessment techniques interpret breast density, or image 

signal intensities, as the spatial distribution of pixel values, or grey levels. These grey levels 

are grey tones whose spatial distribution patterns are known as texture. Therefore, texture 

analysis, which represents a set of mathematical models and procedures, can be used for 

characterisation of the variations in these distributions. Abnormal regions of interest in a 

mammogram such as tumour masses, architectural distortions and microcalcifications usually 
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manifest as a change in texture and/or anatomical structures from surrounding tissue. 

Algorithms utilising texture analysis models should therefore possibly be able to identify and 

quantify these textural and structural changes in a mammogram [20], [21]. 

1.6  Problem statement  

CR and direct digital detector imaging systems provide a wide dynamic range for proper 

display of different densities of breast tissue areas. Their response over a wide range of X-ray 

intensities is linear; consequently, small differences between the attenuation coefficients of 

structures over a wide range of densities are clearly displayed. This includes the low signal 

areas associated with high densities found within tumours, even though the signal to noise ratio 

within these areas is relatively low. In film screen mammography used previously, these areas 

had low exposure and thus low signal. Poor detail and contrast were thus achieved in image 

areas representing mammographic masses. These differences, now detectable and visible 

because of the use of digital acquisition systems, may translate to textural changes within a 

mass. The local distribution of these textural changes is concatenated to form feature vectors 

for classification of mammographic masses [22]. We are however not aware of any publication 

or literature in which these local textural changes have been used for modelling of texture 

changes in mass, to give an insight into the growth rate or clinical properties of a mass. This 

might be because most of the masses investigated by most researchers are relatively small, and 

in most cases compact with little or no textural information, since small masses are the most 

common type of breast mass seen in a population where screening programs are offered. Or it 

may be that these local micro-changes within a mass are small as one moves from the centre 

of the mass to the periphery and thus are difficult to quantify. A mammographic database with 

large masses (with diameter greater than 3 cm) representing malignant masses could 

potentially provide additional information for mathematical models that can describe the 

textural evolution of masses with time, hence predicting the future behaviour of non-malignant 

masses, which are relatively uniform and well defined. On the other hand, the ‘progressive 

changes’ in texture (both macro and micro-texture) (that is if they do exist) with different 

diameters of large masses, can also provide additional information. Current literature on 
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mathematical models of tumour progression in breast cancer screening have been developed 

based on the tumour size and the event of detection (age) for the European population [23], 

[24], [25] , but no literature could be found where these models take into consideration the 

classification of different types of breast tumours or textural changes from the core to the 

periphery of mammographic masses. 

1.7  Research objective 

The aim of this project is to extract quantifiable projection image features from mammograms, 

including texture features, which will be used for the assessment of mammographic masses 

and tumour modelling. These features and analysis could then potentially be incorporated into 

mammographic CAD systems, which could then be used to generate quantitative descriptors 

of tumours being investigated.  

 

The research objective consists of two main contributions:  

 

(1)   Investigation of changes in one dimensional shape-based descriptors and the  

  segmented areas of masses in direct digital mammograms due to changes in the  

  location of the initial level set contours 

(2)            Segmentation of the mass region with an appropriate segmentation algorithm.  

(3)            Evaluation of texture analysis in mammographic tumour modelling and tumour 

       grading. 

1.8  Thesis summary and organization 

In this Section we summarize the content of each chapter of the thesis. 

Chapter 2: Segmentation methods in mammographic masses 

This chapter presents an extensive literature survey covering segmentation methods of 

mammographic masses in mammography. It highlights the strengths and weaknesses of some 
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of these methods. In particular, the region based active segmentation methods are highlighted 

where the placement of the initial level set contour may influence the final segmentation 

outcome of objects with intensity inhomogeneity and weak boundaries.   

Chapter 3: Changes in shape-based descriptors and mass segmentation areas due to changes in 

the placement of the initial level set contour in region based active contour models. 

In this chapter the origin of intensity inhomogeneity is discussed, ill-defined and weak 

boundaries in mammographic masses. It investigates and quantifies the changes in shape-based 

descriptors due to changes in the location of the initial level set contour in region based active 

contour models in segmentation of digital mammographic masses.  

Chapter 4: Mass- specific threshold values of global minima for convex energy functionals with 

an interactive segmentation model.  

This chapter proposes a semi-automatic method to derive a user-independent location for the 

initial level set contour to ensure that final segmentation outcomes are precise and reproducible 

in region based active contour segmentation methods. 

Chapter 5: Mammographic mass characterization for tumour modelling and tumour grading. 

This chapter reviews the morphologically structure of mammographic masses and mathematical 

methods for texture analysis in mammography. It proposes a contextual region of interest model 

to assess the variation of texture features from the core to its periphery of biopsy proven grade 2 

and grade 3 masses and hence, provides data to evaluate the existence or non-existence of changes 

in texture features from the core to the periphery of these masses as a concept of tumour modelling 

in mammography. It investigates the concept of texture feature analysis as a tool for tumour 

grading in mammography. 

Chapter 6: This chapter summarises the findings of the study, concludes the work and also 

discuss the limitation of the study. 
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CHAPTER 2: SEGMENTATION METHODS IN MAMMOGRAPHIC MASSES 

2.1 Introduction 

A mammogram contains a large amount of image information (grey level values) which can 

be described as a complex combination of several different structures such as patterns, lines, 

edges and shapes. This visual information provides the relevant data for clinical interpretation 

and decision making in mammography [1]. Segmentation occurs naturally in the human visual 

system and this is certainly also the case during mammographic interpretation. Usually the 

radiologist will ignore some regions on the mammogram, but will place more emphasis on 

areas or regions deemed suspicious for further analysis [2]. Therefore, digital mammographic 

segmentation can be described as the problem of partitioning a mammogram in a semantically 

meaningful way, predominantly into the suspicious region of interest (object of interest) and 

the background (surrounding tissues). The delineated region of interest can be used for object 

recognition and classification [3]. The contour delineating the object of interest, such as a 

mammographic mass, represents its shape and this can provide relevant information as to the 

nature of its origin (that is malignant, infective, benign etc.) [1]. Useful information such as 

texture features can be derived from the delineated mass region for further assessment. Regions 

of interest (ROIs) indicating the mass-regions can be drawn manually, or with an algorithm 

supervised by the radiologist, or automatically. When contours (outlines of the masses) are 

drawn with a supervised algorithm or automatically, it is a good practice to quantify the 

precision of the algorithm, so that they provide regions of interest which closely match those 

of the radiologist, since an ill-defined region of interest (ROI) can cause ambiguity, or wrongful 

classification, and thus wrongful diagnosis of the mass. Segmentation accuracy can be 

expressed using a range of statistical measures such as: the Jaccard similarity, over-

segmentation or under-segmentation measures [4]. Mammograms can also be pre-processed to 

enhance texture and structural features before the application of segmentation algorithms. 

These pre-processing techniques can be implemented either in the frequency or spatial domain 

and they include global histogram modification [5], local processing [6] and multi scale 

processing techniques [7]. 



35 

 

2.2  Segmentation methods for mammographic masses 

2.2.1 Threshold algorithms 

In mammograms, some abnormalities have grey level intensities different from those of the 

surrounding tissues. Thresholding then becomes a simple and efficient technique to separate 

these abnormalities from surrounding tissues. Generally, it involves the determination of an 

optimal grey level threshold value according to some objective criteria and then assigns each 

pixel to the foreground or the background if its grey level value is more than or less than the 

prescribed threshold value respectively [8]. Global thresholding methods are based on global 

information of the mammogram whilst local thresholding makes use of regional information 

[9]. These algorithms exploit histogram shape-based information, entropy-based information, 

local characteristics and spatial information, while utilizing a predefined threshold value. 

However, mammograms with masses present a very challenging problem because an optimal 

threshold value is not always feasible for a specific mammogram. This is because the edge 

strength between the foreground (mass region) and the background (non-mass region) is not a 

constant value around the ROI. This is due to the unavoidable overlap between the mass and 

surrounding structures, such as the breast parenchyma tissue, which is inevitably present in 

projection mammography. This algorithm can serve as a pre-processing step for other 

algorithms.  

2.2.2 Iterative pixel classification 

Criteria for pixels in an image to be classified into different groups are determined by 

probability distribution functions such as: 

 Markov random field and its similarity with its neighbours based on prior information 

[10]  

 Region growing, with or without prior information [11]  

 Region clustering  
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 Dynamic programming based on the minimization of a cost function can also be 

included in this category [4]. 

These algorithms are all limited because they require that grey level intensities in the ROIs are 

roughly homogenous, which not the case in mammography is imaging. Intensity 

inhomogeneity is not only introduced by the anatomical structure of the breast, but it is also 

inherent to the imaging process (heel effect). Therefore, in most cases the grown region or the 

final cluster will depend on the initial seed position and the process of combining pixels with 

similar characteristics may converge to a local minimum within the ROI. 

2.2.3 Template matching 

A template is generated with prior information from a given data set of mammograms. These 

may be useful in identifying objects such as micro-calcifications. Templates separate the 

objects of interest from the background and usually they represent prototypes of the objects of 

interest generated from global or local features of the images which may or may not be part of 

the data set to be classified. The similarity between the template and the search image, or sub-

region in an image, can be measured by least square techniques, distance measures, mutual 

information etc [12] [13]. Mammographic masses have a variety of densities, sizes and shapes, 

therefore designing a deformable template model to extract each mass can be computationally 

expensive. In most cases, masses are grouped into different sizes and a template constructed 

for each range of sizes, as a result sub-pixel accuracy of mass boundaries, is rarely attained. 

2.2.4 Fuzzy technique 

Fuzzy set theory is the foundation of fuzzy techniques in image processing. It employs a fuzzy 

membership function which indicates the degree of certainty to which a feature vector belongs 

to a set. Unlike a crisp set, whereby a feature vector can or cannot be allocated as a member of 

a set, the membership function allows every feature to belong to a defined set with a certain 

degree of uncertainty. In segmentation algorithms, this technique incorporates other methods 

like thresholding and region growing or clustering [14]. Generally, a fuzzy membership 

function assigns a fuzzy membership to each pixel in the image, then an iterative process 
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begins, and the parameters of the fuzzy membership function are fine-tuned to achieve the 

desired level of performance which is characterized by a set of criteria (Fuzzy rules) [15]. 

Finally, pixels with the same membership value are grouped together. The main disadvantage 

of this method is the requirement of prior expert information to set up the membership function 

parameters and the fuzzy rules. 

2.2.5 Edge detection algorithms 

These algorithms detect the outlines of objects such as micro calcifications and masses in a 

mammogram. Boundaries are discontinuities in a ROI which can be assessed by gradient-based 

methods. These methods employ gradient-based algorithms in conjunction with other methods 

to refine the edge detection process. In some cases, an edge map is constructed where the value 

for each pixel is equivalent to the magnitude of the gradient image at that point and pixels 

along strong edges are selected and linked to each other thus defining the boundary of the 

object of interest. Edge based algorithms include density-weighted contrast enhancement  [16], 

active contours [17] and filters [18] such as Gaussian and Laplacian of Gaussians. Sometimes 

strong edges may be detected within the ROI due to the non-homogeneity of the grey values 

within the ROI and at some places along the boundary, a gentle, or even no transition, of grey 

levels between the ROI and the surrounding tissue may occur. Hence obtaining a threshold 

value for the edge strength which can be defined as the magnitude of the local changes in 

intensity of the ROI may not be as easy as it seems.  

2.2.6 Active contour segmentation model 

An active contour segmentation model [19] [20] is commonly applied in digital images because 

it provides sub-pixel accuracy in boundary detection. This model can be designed within the 

framework of minimizing an energy functional, thus allowing prior knowledge such as shape 

or intensity distribution to be incorporated into the function for a robust segmentation model. 

An active contour is a deformable spline consisting of a set of control points connected by 

straight lines. Each control point has a position in the image domain given by the x and y 

coordinates. Each point along the curve is under the influence of both internal and external 

forces, and the snake continuously tries to position itself so that the combined energy of these 

forces is minimized. The entire spline moves as adjustments are made by moving the control 
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points. Generally, the deformable spline is a closed loop, guided by external constraint forces 

and influenced by image forces towards the boundary of an object. The essential property of 

an active contour is its energy functional which causes it to evolve to reduce its energy as it 

approaches the boundary of the region of interest.  Active contours can be classified broadly 

as parametric models [21] [22] and geometric models [23]. In the geometric models, the initial 

contour is embedded in an implicit level set function of a two-dimensional distance function 

during curve evolution while in parametric models the curves are explicitly represented as 

parametrized curves during evolution. 

2.3 Parametric active contours (snakes) 

Each point on the initial contour is parametrized such that a given point(𝑥, 𝑦) on the contour 

is expressed as  

 𝜗(𝑠) = [𝑥(𝑠), 𝑦(𝑠)] (2.1) 

where, 𝑠, is a local parameter. Then a contour(𝐶), parametrized by the arc length(𝑠), is written 

as: 

 𝐶(𝑠) = [(𝑥(𝑠), 𝑦(𝑠)): 0 ≤ 𝑠 ≤ 𝐿], 𝑅 → Ω (2.2) 

where: L is the arc length of the contour, R represents a set of real numbers and Ω is the image 

domain. 

𝑦  

X 

Figure 2.1. Parametric curve in the (𝑥, 𝑦) plane 

 𝑥𝑖(𝑠), 𝑦𝑖(𝑠)  
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Kass et al [24] proposed an energy minimization scheme for the movement of a parametric 

curve, with total energy (𝐸(𝑐)) expressed as: 

 𝐸(𝑐) =  𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (2.3) 

where the internal energy (𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  of the curve aims to smooth the edge of the deforming 

curve and is expressed as: 

 
𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = ∫ 𝛼|𝐶′(𝑠)|2

𝐿

0

+ 𝛽|𝐶′′(𝑠)|2 
(2.4) 

and the external energy (𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) attracts the deforming curve to the boundaries of the object. 

 
𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ∫ 𝐸𝑖𝑚𝑔

𝐿

0

(𝐶(𝑠))𝑑𝑠 
(2.5) 

The image forces (𝐸𝑖𝑚𝑔) is commonly expressed as an edge indication function which is a 

function of the image gradient(−‖∇𝐼(𝑥, 𝑦)‖2). 

This deformable curve model cannot deal with changes in topology during deformation, that 

is, it cannot split to multiple boundaries or merge from multiple initial contours, hence it cannot 

detect all the objects in an image and secondly it is sensitivity to initialization conditions.  

2.4 The geometric active contour models  

Geometric active contours [25] combine the theory of curve evolution and the level sets method 

to determine the boundaries of objects within digital images such that the evolution of the 

contour is independent of curve parameterization and thus easily adapts to changes in the 

topology of the image domain. In the general formulation, it is set as the variation of an energy 

functional which is expressed as a partial differential equation in the Eulerian framework and 

takes a minimum value as the contour approaches the boundary of the object. Geometric active 

contours can be classified into two categories, namely edge–based active contour segmentation 

models and region-based active contour models. The foundations of both models are built on 
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the theory of level set function which can be modelled as a moving boundary or interface. 

Some of the terminologies in level set functions will be explained as the concept is gradually 

introduced into curve evolution. 

2.4.1 Some definitions in modelling the level set function as a moving interface  

Boundary interface 

A two-dimensional interface boundary, 𝐶(t), can be defined as a closed curve in the image 

domain, (Ω), that partitions of the image domain into the foreground, (Ω1), and the 

background, (Ω2), such that Ω =Ω1 +Ω2 as shown below: 

 

 

 

 

 

 

Level set of a function  

A level set of a function, 𝜑(𝑥, 𝑦), is the curve connecting the set of points, (𝑥, 𝑦), where 

𝜑(𝑥, 𝑦) is some constant value, c. It can be visualized as the cross section of the graph of 

𝜑(𝑥, 𝑦) = 𝑐 , where c is a constant value. For example, suppose  𝜑(𝑥, 𝑦) =  −𝑥2 − 𝑦2. The 

level sets of the function  𝜑(𝑥, 𝑦) are defined by: 

 {(𝑥, 𝑦) ∶  −𝑥2 − 𝑦2 = 𝑐} (2.6) 

(Ω1) (Ω2) 𝐶(t) 

Figure 2.2.  Shows the partition of an image domain with an interface boundary into the 

foreground and background. 
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Assuming that c = -300, then the graph below illustrates the relationship between the level set 

curve 𝜑(𝑥, 𝑦) = 𝑐 and the function 𝜑(𝑥, 𝑦).  Hence 𝜑(𝑥, 𝑦) is a two-dimensional function that 

can be embedded in a three-dimensional space (x, y and z) 

 

 

 

  

Figure 2.3.  Illustration of the function 𝜑(𝑥, 𝑦) =  −𝑥2 − 𝑦2  and the level set curve 

𝜑(𝑥, 𝑦) = -300, which a slice of the graph 𝑧 =  𝜑(𝑥, 𝑦) through the plane z = c =-300. 
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Zero Level set of an implicit function. 

Suppose the function, 𝜑(𝑥, 𝑦), is an implicit function, expressed as 𝜑(𝑥, 𝑦) =  −𝑥2 − 𝑦2 − 𝑐. 

The values of 𝜑(𝑥, 𝑦) can be represented as points in the Z axis in a three-dimensional 

Cartesian coordinate system. Suppose c= -300, then 𝜑(𝑥, 𝑦) =  −𝑥2 − 𝑦2 + 300, then the zero 

level set of the function is given by 300 =  𝑥2 + 𝑦2, which is a circle of radius  √300. The 

plot of the function is shown in Figure 2.3. Data points (x, y) within the radius have positive 

signs while points outside of the radius have negative signs. Hence to test if a data point is 

inside or outside the circle is simply a sign test. Generally, the zero level set of the function, 

 𝜑(𝑥, 𝑦), is defined by: 

 {(𝑥, 𝑦) ∶  𝜑(𝑥, 𝑦) = 0} (2.7) 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.4.  The zero level set of the function 𝜑(𝑥, 𝑦) =  −𝑥2 − 𝑦2 + 300 is denoted as 

the circle. 𝑥2 + 𝑦2 =  300 at the plane Z=0; 
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2.5  Level set functions and curve evolution in segmentation 

Osher-Sethain [26] [27] proposed a level set method as an efficient and stable algorithm in 

curve evolution to overcome the limitations of the parametric model of curve evolution. They 

transformed the evolution of a curve (usually set in two dimensions: x, y) into the evolution of 

a three-dimensional level set function.  In this method, the equation governing the propagation 

of the curve is expressed as a function that describes the speed of the curve flow in the direction 

normal to the curve. It uses a function, 𝜑(𝑥, 𝑦, 𝑡), whose isocontour, 𝜑(𝑥, 𝑦, 𝑡) = 0, represents 

an interface (boundary enclosing the region of interest) 𝐶(𝑡), and t is an artificial time to track 

the motion of the interface as it evolves. The interface 𝐶(t) (two-dimensional surface) is 

embedded in a three-dimensional space which defines the level set function. The level set 

function,  𝜑(𝑥, 𝑦, 𝑡) = 0, is numerically kept close to the signed distance function, where every 

point in the image domain is expressed as its closest distance to the boundary, 𝐶(t), and the 

sign of each point determines whether the point is inside or outside the boundary (Figure 2.5). 

The signed distance function provides data for the geometric features such as the curvature or 

the normal to the contour during curve evolution. 

 

 

 

 

 

 

 

 

 

 

 

                                        

𝜑(𝑥, 𝑦, 𝑡)

< 0  , 𝑖𝑛𝑠𝑖𝑑𝑒  

𝜑(𝑥, 𝑦, 𝑡) > 0 , 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 

𝐶(t) = 𝜑(𝑥, 𝑦, 𝑡) = 0; 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  

Figure 2.5. Partition of the image domain by the signed distance function. 

Image domain 
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Consider a signed distance function  𝜑(𝑥, 𝑦, 𝑡 = 0) = ±𝜖 , where 𝜖 is a narrow band of pixels 

around 𝐶(t) such that the values of 𝜑(𝑥, 𝑦, 𝑡) for points (x ,y) with distance, 𝜖, outside the 

contour, C(t), are positive and the values of 𝜑(𝑥, 𝑦, 𝑡) for points, (x ,y), with distance, 𝜖, inside 

the contour, C(t), are negative. Then any boundary, 𝐶(t), can be represented by an arbitrary 

function,  𝜑(𝑥, 𝑦, 𝑡), as long as the zero level set matches  𝐶(t).  

2.5.1 Derivation of the mathematical formula for moving-front curve evolution of the zero 

level set function 

Let each data point  of a moving interface (boundary(𝐶(𝑡))) at time = 𝑡, be represented as, 

 Χ(𝑡) =  (𝑥(𝑡), 𝑦(𝑡)). The evolution of the zero-level set (𝜑(X(𝑡), 𝑡) = 0) of the implicit 

function,  𝜑(X(𝑡), 𝑡), can be described as: 

 𝜕𝜑(Χ(𝑡), 𝑡)

𝜕𝑡
= 0 

 

(2.8) 

 𝜕𝜑

𝜕Χ(𝑡)
∗
𝜕Χ(𝑡)

𝜕𝑡
+ 

𝜕𝜑

𝜕𝑡
= 0 

 

(2.9) 

 𝜕𝜑

𝜕Χ(𝑡)
∗Χ𝑡 + 𝜑𝑡 = 0 

 

(2.10) 

 𝜐̅. ∇𝜑 + 𝜑𝑡 = 0 

 

(2.11) 

Let the velocity of the moving interface,  𝜐̅ =  𝜐𝑛𝑁̅ + 𝜐𝑇 𝑇 ̅, with 𝜐𝑛 and 𝜐𝑇  as the normal and 

the tangential components of the velocity respectively. Suppose 𝑁̅ and 𝑇̅ are the unit normal 

vector and unit tangent vector respectively, then the above equation can be written as:  
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 ∇𝜑 . (𝜐𝑛𝑁̅ + 𝜐𝑇 𝑇 ̅) + 𝜑𝑡 = 0 (2.12) 

The unit normal vector is in the same direction as ∇𝜑, but it is perpendicular to 𝑇 ̅, hence 

 ∇𝜑. 𝑇 = 0, therefore the above equation becomes: 

                          ∇𝜑 . (𝜐𝑛𝑁̅) + 𝜑𝑡 = 0  (2.13) 

 

 

∇𝜑 . (𝑁̅) =  
∇𝜑

|∇𝜑|
 . ∇𝜑 =  |∇𝜑| 

(2.14) 

The evolution of the level set function is  

 
𝜐𝑛. |∇𝜑| + 

𝜕𝜑

𝜕𝑡
= 0 

(2.15) 

 
𝜐𝑛 =  𝜐.

∇𝜑

|∇𝜑|
 

(2.16) 

Where  
𝜕𝜑

𝜕𝑡
=

𝜕𝜑

𝜕𝑥
 .
𝜕𝑥

𝜕𝑡
= 𝜐.  ∇𝜑 𝑎𝑛𝑑 |∇𝜑| =  √∑ 𝜑𝑥,𝑦,𝑖

2𝑛
𝑖=1  

The curve represented by the function, 𝜑(𝑥, 𝑦, 𝑡), evolves, with its level set function expressed 

as 𝜑(𝑥, 𝑦, 𝑡) = 0. The level set function is the hypersurface, C(𝑡), and it can split, merge and 

change topology unlike the parametric active contours discussed in section 2.3. The above 

equation (equation 2.16) can easily be solved on a discrete grid in the x,y domain and the 

derivatives of 𝜑(𝑥, 𝑦, 𝑡) approximated with the finite difference method. 𝜐𝑛 is also called the 

speed function (𝐹). Generally, the partial differential equation for the image segmentation 

process is expressed as: 

 𝛿𝜑

𝛿𝑡
= 𝐹|∇𝜑| 

(2.17) 

where (𝐹) is expressed as a function of image data, that is the local curvature (𝜅), at the zero-

level set which controls the evolution of the zero level set contour of 𝜑(𝑥, 𝑦, 𝑡) while the 
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implicit function, 𝜑(𝑥, 𝑦)  is the signed distance function. If 𝐹 > 0 then the level set contour 

will expand outwards normal to the boundary and vice versa, however as → 0, the contour 

approaches a steady state and finally becomes stationary, thus depicting the boundary of the 

region of interest.  

2.5.2 Classical edge–based active contour segmentation model 

The basic equation of the classical edge based active contour model [28] [29] [30], uses local 

edge information to attract the active contour towards the boundary of the object during curve 

evolution. The speed term, which regulates the convergence of the contour to the boundary of 

the object, is modelled on the mean curvature of data points on the level set curve of 𝜑.  The 

speed function is generally expressed as: 

 𝐹 = 𝑔(|∇𝐼|)  𝑑𝑖𝑣  
∇𝜑

|∇𝜑|
 +  𝛼 , in (0,∞) 𝑥 ℜ2 (2.18) 

The function, 𝑔(|∇𝐼|) is an edge detector function which forces the evolving curve to attain a 

zero speed as it gets closer to the boundaries of the object and 𝛼 is a balloon force which then 

increases the speed of convergence and I is the image.  

This algorithm will have some difficulties in segmenting objects with weak or ill-defined 

boundaries because the edge detector function is the stopping term to detect the desired 

boundary and this situation is common with medical image segmentation in which regions of 

interest are obscured in surrounding tissues, creating objects with blurry boundaries. 

2.5.3 Classical region–based active contour segmentation model 

Region-based variational level set method [31] [32] does not use an edge detector function to 

propagate the curve towards the desired boundary. Rather, its energy functional propagates the 

curve with statistical information from regions inside and outside the evolving curve. For a 

bimodal image, this model seeks to partition the image domain, (Ω), into 2 non-overlapping 

regions (Ω1,Ω2) with an evolving curve, 𝐶, as shown in Figure 2.5, by minimizing the 

following energy functional: 
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𝐸 =  ∑𝐸(Ω𝑖)

2

𝑖

  +  𝜆𝐸𝑟(𝐶) 

 

(2.19) 

where 𝐸(Ω𝑖) is the statistical information in region, Ω𝑖, and, 𝐸𝑟(𝐶), is a regularizing term 

and, 𝜆, a tuning parameter. The regional statistical competition between Ω1 and Ω2 has been 

modelled with known distributions, intensity histograms, texture maps or structure tensors by 

different authors, but the Chan-Vese algorithm [33] is the most popular model.  

2.6  Chan-Vese region-based segmentation model 

The energy functional for minimization is defined as a competition of the first moments of the 

local intensity distribution of the foreground ( Ω1) and the background(Ω2). Suppose 𝐶 is an 

evolving curve that partitions the image domain into the foreground, Ω1 , and the background, 

 Ω2. The Chan-Vese model [33] seeks an optimal contour, representing the boundary of an 

object, by minimizing the following energy functional:  

 𝐹(𝐶, 𝑐1, 𝑐2) = 𝜇. 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝜐. 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)) + 𝐹𝑑𝑎𝑡𝑎 
(2.20) 

𝜇 and 𝜐 are positive constants while Fdata represents the regional term guiding the contour in 

the image domain and is given by: 

 𝐹𝑑𝑎𝑡𝑎 = 𝜆1𝐹1(𝐶) + 𝜆2𝐹2(𝐶) (2.21) 

in which, 

 
𝐹1(𝐶) =  ∫ |𝐼(𝑥, 𝑦) − 𝑐1|

2 

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑥𝑑𝑦 

𝐹2(𝐶) =  ∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑥𝑑𝑦 

(2.22) 



48 

 

λ1 and λ2 are positive constants while the average image intensities of regions inside and outside 

the contour are 𝑐1 and 𝑐2 respectively. Hence the Chan-Vese segmentation method is 

summarised as: 

 arg min
𝑐1,𝑐2𝐶

=𝜇. 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝜐. 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶))

+ 𝜆1∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2 

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑥𝑑𝑦 

+ 𝜆2∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑥𝑑𝑦  

(2.23) 

2.6.1 Level set method to solve the Chan-Vese active contour models 

Suppose the function, 𝜑(𝑥, 𝑦, 𝑡), has an iso-contour, (𝑥, 𝑦, 𝑡) = 0, which represents an 

interface (boundary) 𝐶 and t is an artificial time to track the motion of the interface as it 

evolves. Then the relationship between the function 𝜑(𝑥, 𝑦, 𝑡) and the boundary of the region 

of interest 𝐶 can be written as  

 𝐶 =  {(𝑥, 𝑦) ∈Ω ∶ 𝜑(𝑥, 𝑦) = 0} (2.24) 

In other words, the zero crossing of the function 𝜑(𝑥, 𝑦, 𝑡) is the curve representing the 

boundary of the ROI (curve C) and 𝜑(𝑥, 𝑦, 𝑡) is commonly known as a level set function for 

Ω and generally expressed as the sign distance function (𝑖𝑒 |𝜑| = 1). If 𝐻𝜀 is a regularized 

Heaviside function, then the interior of C (𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)) can be approximated as: 

 

𝐻𝜀(𝜑(𝑥, 𝑦)) =  {

1,                                                       𝜑(𝑥, 𝑦) < −𝜖 

0,                                                         𝜑(𝑥, 𝑦) < −𝜖 
1

2
(1 +

2

𝜋
arctan (

𝑡

𝜖
)) ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

(2.25) 

and the exterior of C (𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)) is given as  1 − 𝐻𝜀(𝜑(𝑥, 𝑦)) . Then the Chan-Vese 

energy functional is: 
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𝐹(𝐶, 𝑐1, 𝑐2) = 𝜇∫ |𝛻𝐻𝜀(𝜙)|

𝛺

𝑑𝑥𝑑𝑦 + 𝜆1  ∫ (𝐼(𝑥, 𝑦) − 𝑐1)
2 𝐻𝜀(𝜙)

𝛺

𝑑𝑥𝑑𝑦 + 

                                                𝜆2 ∫ (𝐼(𝑥, 𝑦) − 𝑐2)
2 (1 − 𝐻𝜀(𝜙))𝛺

 𝑑𝑥𝑑𝑦  

(2.26) 

and the minimization equation expressed as: 

 
arg min
𝑐1,𝑐2𝐶

=𝜇∫ |𝛻𝐻𝜀(𝜑)|
𝛺

𝑑𝑥𝑑𝑦 +  𝜐∫𝐻𝜖(𝜑(𝑥, 𝑦))
𝛺

𝑑𝑥𝑑𝑦

+ 𝜆1  ∫ (𝐼(𝑥, 𝑦) − 𝑐1)
2 𝐻𝜀(𝜑)

𝛺

𝑑𝑥𝑑𝑦 

+ 𝜆2∫(𝐼(𝑥, 𝑦) − 𝑐2)
2 (1 − 𝐻𝜀(𝜑))

𝛺

 𝑑𝑥𝑑𝑦   

(2.27) 

and 

 |𝛻𝐻𝜀(𝜑)| =  𝛿𝜖(𝜑)|∇𝜑| (2.28) 

with the derivative of 𝐻𝜀(𝑡) given as 

 𝑑

𝑑𝑡
𝐻𝜖(𝑡) ∶=  𝛿𝜖(𝑡)  =  

𝜖

(𝜖2 + 𝑡2)
 

(2.29) 

Minimizing 𝐹(𝐶, 𝑐1, 𝑐2) with respect to  𝜙 yields the follow gradient descent flow: 
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𝜕𝜑

𝜕𝑡
=  𝛿𝜀(𝜑) [𝜇∇ (

∇𝜑

|∇𝜑|
) − 𝜐 − 𝜆1( 𝐼(𝑥, 𝑦) − 𝑐1)

2 + 𝜆2( 𝐼(𝑥, 𝑦) − 𝑐2)
2  ]  (2.30) 

where the averaging of the grey values, 𝑐1 and 𝑐2, are assessed as  

and 𝛿𝜀(𝜑) is the Dirac function. The level set function is periodically re-initialized to a signed 

distance function during evolution so that geometric features such as the curvature or the 

normal to the contour are estimated accurately for curve stability. 

  

 

𝑐1 = 
∫ 𝐼(𝑥, 𝑦)𝐻𝜖(𝜑(𝑥, 𝑦))𝑑𝑥𝑑𝑦Ω

∫ 𝐻𝜖(𝜑(𝑥, 𝑦))𝑑𝑥𝑑𝑦Ω

 

(2.31) 

 

𝑐2 = 
∫ 𝐼(𝑥, 𝑦)  1 − 𝐻𝜖(𝜑(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦Ω

∫  1 − 𝐻𝜖(𝜑(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦Ω

 

(2.32) 
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2.6.2 Narrow band concept of curve evolution in the level set method 

In the level set method computation is restricted to a narrow band of pixels surrounding the 

(interface) zero level set contour between the bounded regions 𝜖 and −𝜖 to reduce the 

computational time. Numerical implementation is carried out on a discrete grid (Figure2.6).  

          

          

          

          

          

          

          

          

 

 

2.7  Active contours with selective local or global segmentation model [34] 

The signed pressure force function [35] is derived from the means of regions inside and outside 

the contour to control the direction in which the curve evolves, the contour shrinks when it is 

outside the object and expands when it is inside an object. It has values in the range [−1,1] and 

is defined as: 

 𝜖 

- 𝜖

C(t) 

Figure 2.6. Illustration of the narrow band concept in curve evolution  
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 𝑠𝑝𝑓(𝐼(𝑥, 𝑦)) =  
𝐼(𝑥, 𝑦) −

𝑐1 + 𝑐2
2

max   |𝐼(𝑥, 𝑦) −
𝑐1 + 𝑐2

2 | 
,    𝑥, 𝑦 𝜖 Ω𝑝 (2.33) 

where c1 and c2 are defined in Eq. 2.31 and Eq. 2.32 respectively. The active contour with 

selective local or global segmentation model utilizes the geodesic active contour to formulate 

the level set equation as:  

 

𝜕𝜙

𝜕𝑡
=  𝑠𝑝𝑓(𝐼(𝑥, 𝑦)). (𝑑𝑖𝑣 (

∇ϕ

|∇ϕ|
) + 𝛼) |∇ϕ|

+ ∇𝑠𝑝𝑓(𝐼(𝑥, 𝑦)). ∇ϕ,                           x, y ϵ Ω𝑝 

(2.34) 

Using the Gaussian filtering process to regularize the level set function, the above equation can 

be written as follows: 

 
𝜕𝜙

𝜕𝑡
=  𝑠𝑝𝑓(𝐼(𝑥, 𝑦)). 𝛼|∇ϕ|    𝑥, 𝑦 𝜖 Ω𝑝 (2.35) 

where 𝛼 is a tuneable parameter. 

Generally, the level set contour is periodically, regularize with a Gaussian function  𝐺𝜎. The 

Gaussian filtering process smooths the level set function and regularises the moving interface 

so that it more stable and does not shift into undesirable positions. 

2.8  Problems encountered during segmentation of mammographic masses 

with active contour segmentation methods` 

Most mammographic masses are presented with intensity inhomogeneity, therefore for a given 

mass of interest and there are regions within and at the margins of the mass, with low grey 

scale values (local minima). Regions of low grey scale values within a mass can entrap a 

moving curve while weak and ill-defined boundaries can cause contour leakage and thus 

provide variations in shape-based descriptors which are vital for classification of regions of 
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interest in medical images especially in mammograms. where the shape of a breast mass is 

indicative of its clinical pathology. These changes in shape-based descriptors have not been 

investigated nor quantified in segmentation of mammographic masses. Hence the next chapter 

deals with the investigation and quantification of changes in shape-based descriptors due to 

changes in the location of the initial level set contour in region based active contour models in 

segmentation of digital mammographic masses. 
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CHAPTER 3.  VARIATIONS IN SHAPE BASED DESCRIPTORS AND MASS 

SEGMENTATION AREAS DUE TO INITIAL LEVEL SET CONTOUR 

PLACEMENT 

 

An extract from the work published by the author – Appendix I (S. N. Acho and W. I. D. Rae) 

3.1 Introduction  

The image acquisition system in direct digital mammography consists of a flat panel detector 

with a wide dynamic range which is separated from the image processing and display system 

[1]. Usually raw image data can be processed with a varietry of image processing algorithms 

for soft copy display on high-resolution monitors and in most cases the source codes of these 

algorithms are not available to the operator. Operators are also allowed to adjust image contrast 

and magnification.  The wide dynamic range of the flat panel detector system records small 

differences between the attenuation coefficients of structures or regions present in any present 

mass lesion and these are clearly displayed over a wide range of densities, whereas in film 

screen mammography, the exposure latitude of the film limits the dynamic range of 

information captured on the film. Hence masses which may have appeared as dense structures 

without significant topographical relief features on film- screen mammograms will emerge as 

regions with varying densities on soft copy display. Enhancement of these variations by the 

processing algorithms of the manufacturers cannot be ruled out.  Differences in density may 

sometimes appear as low signal areas which can act as local minima for contour entrapment 

each time an evolving curve determines its path within the lesion and in most cases, these areas 

also render deformable contours susceptible to inital contour placement in mass segmentation. 

The margins of some of these masses are often occluded or hidden in the lobular and duct 

structures of the breast parenchyma tissue and these present pathways for contour leakage as 

an evolving contour approaches the boundary of the mass and thus produces an unsuitable 

segmentation outcome or an outcome which depends on the location of the initial level set 

contour. 
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3.2 Aim 

We investigate changes in one dimensional shape-based descriptors and the segmented areas 

of masses in direct digital mammograms due to changes in the location of the initial level set 

contours with the implementation of two region-based active contour models: Chan-Vese and 

active contours with selective local or global segmentation models. 

3.3 Methods 

3.3.1 Digital mass database  

A mammogram database designed to store the images of the masses, patient history, category 

of mass and the biopsy report if performed, was utilized in this study. The design of the 

database is described elsewhere [2] and furthermore, Meyer et al [3] assessed the diagnostic 

accuracy of mammograms (that is, the accuracy in breast cancer detection on these 

mammograms by the radiologists)in this database with different soft-copy display algorithms. 

The database has ninety mammograms of which forty of these mammograms have masses with 

low signal areas within the mass and margins described as obscured, or ill-defined, while the 

others have masses with well-defined or distinct margins. In this study, the region of interest 

containing the mass lesion was cropped and then resized to a 208 x 208 matrix to create a sub-

image of the mammogram.  

3.3.2 Locations of the initial level set contours 

3.3.2.1 Traditional method to establish the initial level set contour 

Enclosing the mass lesion with a manually drawn contour representing the initial level set 

contour and the initial contour deforms to towards the boundary of the mass 
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3.3.2.2 A semi – automatic method which derives the initial level set contour from the iso-

level contour map of the mass 

A semi-automatic method derives a user-independent initial contour as a curve connecting 

points with maximum gradient in the radial direction. This curve represents an optimum curve 

characterizing the intrinsic shape of the mass lesion. The image is smoothed with the weighted 

total variation (TV) algorithm [4] and thresholded to locate pixel positions with maximum 

gradients in radial directions. 

3.3.3 Weighted total variation scale-space smoothing technique 

This section describes the weighted-total variation scale-space algorithm.  Suppose 𝐼: Ω →  ℝ 

denotes an image and Ω ⊂ ℝ2 the image domain. The variational approach for image de-

noising for this model involves the minimization of the following energy functional: 

 𝐸𝑇𝑉(𝐼, 𝜆) =  ∫ (|∇𝐼|
Ω

+ 𝜆(𝐼 − 𝐼0)
2)𝑑𝑥𝑑𝑦   (3.1) 

Where 𝐼0 is the noisy input image and 𝐼 its regularized approximation. 𝜆 is the Lagrange 

multiplier indicating the scale of detail desired in the smoothed image.  Using the approach of 

Bresson et al. [4], the L2 –norm square in equation (3.1) is replaced with an L1-norm to preserve 

image contrast and in addition, the TV norm of 𝐼 is multiplied with a function, 𝑔, which is an 

edge indicator function. This represents the weighted TV model with an L1- norm as a data 

fidelity measure. The energy functional for minimization is given as: 

 
𝐸𝑔𝑇𝑉(𝐼, 𝜆) =  ∫ (𝑔|∇𝐼|

Ω

+ 𝜆|𝐼 − 𝐼0|) 𝑑𝑥𝑑𝑦   
(3.2) 

with 
𝑔 = 

1

1 +  Υ|∇𝐺𝜃 ∗ 𝐼0|2
 

(3.3) 

Υ is a constant > 0 and 𝐺𝜃 is a Gaussian kernel with standard deviation, 𝜃. The minimization 

of 𝐸𝑔𝑇𝑉(𝐼, 𝜆) results in the following weighted TV flow equation: 
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𝐼𝑡 = 𝑑𝑖𝑣 (𝑔

∇𝐼

|∇𝐼|
) +  𝜆 (

𝐼 − 𝐼0
|𝐼 − 𝐼0|

)  (3.4) 

Weighted TV flow filtering technique preserves edges. The smoothed image provides the 

global boundary information which is modelled as the initial contour for the gradient descent 

flow equation of the level set function. This contour depends on the boundary properties of a 

given mass lesion and it is independent of the input of the operator. Figure 3.1 shows a 

mammographic mass and its weighted TV flow smoothed image  

 

 

 

 

 

 

 

 

3.3.4 A thresholding method to locate search space on mass margin for a user-

independent initial level set contour 

Let I: Ω →ℝ  denote the smoothed image and Ω ⊂ ℝ2  the image domain. The image domain 

Ω is thresholded into multiple regions with an ordered set of equally spaced gray level 

threshold values within the intensity range of the image domain [5] [6]. Suppose 𝐼𝑚𝑎𝑥 =  the 

maximum gray level intensity in the image domain, 𝐼𝑚𝑖𝑛 = minimum gray level intensity, 𝑊 =

 {𝑤1, 𝑤2, 𝑤3, …… ,𝑤𝑁} a finite sequence of equally spaced partition weights in ascending order, 

                    

(a)                                                                                      (b) 

Figure 3.1 (a) Original mass-lesion   (b) The weighted TV flow de-noised image  
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𝑁 = number of threshold values and 𝑇 =  {𝑡1, 𝑡2, 𝑡3, …… , 𝑡𝑁}  the ordered set of equally spaced 

gray level threshold values, then: 

 𝑇 =  𝐼𝑚𝑎𝑥 ∗ 𝑊              with          𝑡𝑁 ≤ 𝐼𝑚𝑎𝑥 𝑎𝑛𝑑 𝑡1  ≥ 𝐼𝑚𝑖𝑛 (3.5) 

The sub-regions in the image domain with gray level intensities greater than or equal to the 

threshold value, 𝑡𝑖, are given as: 

 𝑅(𝑡𝑖) =  {(𝑥, 𝑦)|𝐼(𝑥, 𝑦) ≥  𝑡𝑖},            ∀(𝑥, 𝑦)   ∈ Ω         (3.6) 

and the iso- level contours 𝐶(𝑡𝑖) of these regions are boundaries of 𝑅(𝑡𝑖).  The iso level contour 

map of the image domain represents the set of all 𝐶(𝑡𝑖) for 𝑖 = 1:𝑁. In our implementation, 

the boundary region of the breast mass is the region around the base contour with the dense 

nested pattern of iso-level contours, indicating the search space for the actual boundary of the 

mass and the placement of the initial level set contour. The dense nested pattern of iso-level 

contours is extracted and superimposed on the gradient map of the smoothed image as shown 

in Figure 3.2c  

 

 

 

 

 

 

 

     

(a)                                          (b)                                                  (c)  

Figure 3.2.  (a) mass lesion (b) 1so-level contour map of the smoothed mass lesion (c) nested pattern 

iso-level contours superimposed on the gradient map of the smoothed mass 
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3.3.5 Initial level set contour as a curve connecting pixel positions with maximum gradient 

along each radial line 

A set of uniformly spaced radial lines, 𝐿 =  {𝑙1, 𝑙2 , ……… . 𝑙𝑚} are generated at a point close to 

the centre of the edge map of the mass in the image, as shown in figure 3.3a. Let this point be 

noted as the point of reference. The gradient strength is noted at every point of intersection of 

the nested iso-level contours and radial lines. Along each radial line, 𝑙𝑖, 𝑖 = 1,2, … . . , 𝑚, the 

coordinates of the point of intersection with the greatest gradient strength is noted and the 

radial distance from this point to the point of reference is calculated and noted as 𝑟𝑖.  

Let 𝑟𝑎𝑣𝑒 = 
1

𝑚
 ∑ 𝑟𝑖

𝑚
𝑖=1 , then the radial description of the initial level set contour is given by:  

𝑟𝑖 = {
𝑟𝑖 ,    𝑟𝑖 < 𝑟𝑎𝑣𝑒
𝑟𝑎𝑣𝑒 , 𝑟𝑖 ≥ 𝑟𝑎𝑣𝑒

                                              𝑖 = 1,2 , ………𝑚                       (3.7)                 

The spatial coordinates of the points of intersection of 𝑟𝑖′𝑠 and the iso-level contours are the 

coordinates of the initial level set contour (Figure 3.3b). 

 

 

 

 

 

 

 

  

                                               

(a)                                                                                  (b) 

Figure 3.3. Search space for localizing the initial contour. (a) radial distances from a 

reference point to the iso-level contours, (b) initial level set contour, representing points 

with maximum gradient in the radial direction within a predefined radius. 
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Each mass is segmented, or delineated, with the Chan-Vese and the active contour with 

selective local or global (SLG) segmentation methods. In the first instance the initial level set 

contour is drawn manually (as in figure 3.4a) and propagated with the above mentioned 

methods to obtain the final level set contour for each segmentation method and in the second 

instance, the initial level set contour for curve evolution is derived from the proposed method 

(as in figure 3.4b),  

3.3.6 Implementation of the Chan-Vese equation on a grid 

Suppose an image is sampled on a grid,   Ω =  {0,1,2,3 , … 𝑖 ……… . .𝑀}  ×

{0,1,2,3 , …… 𝑗 …… . .𝑀} and h is the space step,  Δ𝑡, the time step and (𝑥𝑖𝑦𝑗 ) =  (𝑖ℎ, 𝑗ℎ) are 

points on the M x M grid, then the Chan-Vese equation can be implemented on a grid.  

                                                   

                                                                          

(a)                                                                                      (b) 

Figure 3.4. Examples of the dual locations of the initial level set contours of some masses (a) 

Manually drawn contour surrounding the mass (b) initial level set contour from the proposed 

semi-automatic method  
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The gradient descend flow of the Chan Vese equation is  

 𝜕𝜑

𝜕𝑡
=  𝛿𝜀(𝜑) [𝜇∇ (

∇𝜑

|∇𝜑|
) − 𝜐 − 𝜆1( 𝐼(𝑥, 𝑦) − 𝑐1)

2

+ 𝜆2( 𝐼(𝑥, 𝑦) − 𝑐2)
2  ]  

(3.8) 

where   𝑑𝑖𝑣  
∇𝜑

|∇𝜑|
 =  ∇  

∇𝜑

|∇𝜑|
  (3.9) 

let 𝜑(𝑥, 𝑦, 𝑡) = 𝜑𝑖,𝑗
𝑛 ≅ 𝜑(𝑛∆𝑡, 𝑥𝑖 , 𝑦𝑗) (3.10) 

 ∆±
𝑥𝜑𝑖,𝑗 = ±(𝜑𝑖±1,𝑗 − 𝜑𝑖,𝑗) (3.11) 

 ∆±
𝑦
𝜑𝑖,𝑗 = ±(𝜑𝑖,𝑗±1 − 𝜑𝑖,𝑗) (3.12) 

 

𝐿 =  
𝜇

ℎ
Δ−
𝑥

(

 
∆+
𝑥𝜑𝑖,𝑗

𝑛

√(∆+
𝑥𝜑𝑖,𝑗

𝑛 )
2
+ (∆+

𝑦
𝜑𝑖,𝑗

𝑛 )
2

)

 +
𝜇

ℎ
Δ−
𝑦

(

 
∆+
𝑦
𝜑𝑖,𝑗

𝑛

√(∆+
𝑥𝜑𝑖,𝑗

𝑛 )
2
+ (∆+

𝑦
 𝜑𝑖,𝑗

𝑛 )
2

)

  

(3.13) 

 
𝑅 =  −𝜐 − 𝜆1  𝐼𝑖,𝑗 − 𝑐1(𝜑𝑖,𝑗

𝑛 ) 
2

+ 𝜆2   𝐼𝑖,𝑗 − 𝑐2(𝜑𝑖,𝑗
𝑛 ) 

2

 
(3.14) 

Then the Chan-Vese iterative equation is carried out as: 

 𝜑𝑖,𝑗
𝑛+1 − 𝜑𝑖,𝑗

𝑛

∆𝑡
=   𝛿𝜀(𝜑𝑖,𝑗

𝑛 )[𝐿 + 𝑅] 
(3.15) 

The iterative process is implemented as follows: 

1. Keep 𝜑 fixed, 

2. Calculate the average gray values of regions 𝑐1 and 𝑐2 using equation 2.31 and equation 

2.32 respectively  

3. Evolve the level set contour according to equation 3.15.  
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4. Check whether a numerical stopping criterion ( the maximum number of iterations 

defined by the user) on 𝜑 is reached, if it is reached then stop iterations, if not continue. 

In our implementation of this method, we set 𝜇 = 0.2, 𝜆1 = 2.5 and 𝜆2 = 1. We chose 𝜆1 >

𝜆2 to give a greater weight to the variance of pixels in the foreground so as to achieve 

measurable segmentation differences between the proposed locations for the initial level set 

contours. Furthermore, we assigned 𝜆1 = 𝜆2 = 1, to investigate changes in the final 

segmentation results due to differences in tunable parameters. The average time for curve 

evolution for these images was 15 ± 10 s .  Algorithms were performed with Matlab R2013a 

(The MathWorks, Inc., Natick, MA, USA), 

3. 3.7 Implementation of the active contours with selective local or global segmentation 

model on a grid 

The gradient descent flow of the active contours with selective local or global segmentation 

equation (see equation 2.33) is  

 
𝜕𝜙

𝜕𝑡
=  [

𝐼(𝑥, 𝑦) −
𝑐1 + 𝑐2

2

max   |𝐼(𝑥, 𝑦) −
𝑐1 + 𝑐2

2 | 
] . 𝛼|∇ϕ|    𝑥, 𝑦 𝜖 Ω𝑝 

(3.16) 

Let  𝜑(𝑥, 𝑦, 𝑡) = 𝜑𝑖,𝑗
𝑛 ≅ 𝜑(𝑛∆𝑡, 𝑥𝑖 , 𝑦𝑗) (3.17) 

 ∆±
𝑥𝜑𝑖,𝑗 = ±(𝜑𝑖±1,𝑗 − 𝜑𝑖,𝑗) (3.18) 

 ∆±
𝑦
𝜑𝑖,𝑗 = ±(𝜑𝑖,𝑗±1 − 𝜑𝑖,𝑗) (3.19) 

 

𝐿1 =  
𝛼

ℎ

{
 
 

 
 

𝐼𝑖,𝑗 −
𝑐1(𝜑𝑖,𝑗

𝑛 ) + 𝑐2(𝜑𝑖,𝑗
𝑛 ) 

2

𝑚𝑎𝑥 (|𝐼𝑖,𝑗 −
𝑐1(𝜑𝑖,𝑗

𝑛 ) + 𝑐2(𝜑𝑖,𝑗
𝑛 ) 

2 |)
}
 
 

 
 

 

(3.20) 

 
𝑅1 = √(∆+

𝑥𝜑𝑖,𝑗
𝑛 )

2
+ (∆+

𝑦
𝜑𝑖,𝑗

𝑛 )
2
 

(3.21 
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Then the iterative equation of this segmentation model is carried out as 

 𝜑𝑖,𝑗
𝑛+1 − 𝜑𝑖,𝑗

𝑛

∆𝑡
=  [𝐿1 + 𝑅1] 

(3.22) 

Equations 3.13 and 3.14 are not the same as 3.20 and 3.21 because the speed functions are 

formulated differently. 

The iterative process is implemented as follows: 

1. Keep 𝜑 fixed, 

2. Calculate the average gray values of regions 𝑐1 and 𝑐2 using equation 2.31 and 

equation 2.32 respectively  

3. Evolve the level set contour according to equation 3.22 

4. Let 𝜑 = 1 if 𝜑 > 0; otherwise,  𝜑 = −1 

5. Set =  𝜑 ∗ 𝐺𝜎 , where 𝐺𝜎 is a Gaussian function with standard deviation 𝜎  

6. Check whether a numerical stopping criterial on 𝜑 is reached, if it is reached then stop 

iterations, if not continue. 

Experimentally, we set 𝛼 = 5 for our database of masses, so that masses with ill-defined 

boundaries could be accurately segmented. The segmentation performances of this algorithm 

were poor with values of 𝛼 > 5 for masses with ill-defined boundaries. The average time for 

curve evolution for these images was 15 ± 10 s for the segmentation methods 

 

3. 3.8 Morphological shape description and comparison of the final level set contours 

which describe the periphery of mass-lesions  

The shape representation and description techniques of mammographic masses can be 

categorized into 2 groups: Contour–based methods which exploit only the global boundary 
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information of the region occupied by the mass and region-based methods which considers all 

the pixels within the area occupied by the mass to obtain a shape representation metric. 

3. 3.8.1 Contour–based shape representation and comparison metrics  

Boundary moments 

A boundary-based shape signature of the segmented mass lesion from a given initial contour 

model is represented as the centroid distance function (figure 3.5), which is a one dimensional 

function representing the Euclidean distance,  𝑟(𝑛) , between an ordered set of boundary 

coordinates  (𝑥(𝑛), 𝑦(𝑛)), for 𝑛 = 0,2,3, … . . , 𝑁 − 1   and the centroid (𝑥𝑐, 𝑦𝑐) signifying 

the centre of mass of the binary image generated from the contour: 

 
𝑟(𝑛) =  √((𝑥(𝑛) − 𝑥𝑐)2  +  (𝑦(𝑛) − 𝑦𝑐)2) 

(3.23) 

where 𝑁 is the total number of points on the contour. 

 

 

 

 

 

 

The centroid distance function captures the local and global characteristics of the final shape 

of the segmented mass lesion. Its statistical characteristics are assessed as shape features 

derived from the contour sequence moments 𝑚𝑝 and 𝜇𝑝  where the pth contour sequence 

moment is estimated as, 

 

r (n) 

(𝒙𝒄, 𝒚𝒄) 

Figure 3.5.  Centroid distance function  
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 𝑚𝑝 = 
1

𝑁
∑ [𝑟(𝑛)]𝑝

𝑁−1

𝑛=0
 

(3.24) 

and the pth central moment: 

 𝜇𝑝 =
1

𝑁
∑ [𝑟(𝑛) − 𝑚1]

𝑝
𝑁−1

𝑛=0
 

(3.25) 

These shape features are normalized low–order boundary moments [7] [8] described as: 

 
𝐹1 = 

(𝜇2)
1
2

𝑚1
𝑑𝑥𝑑𝑦    ,   𝐹2 = 

(𝜇4)
1
4

𝑚1
  and 𝐹3 = 𝐹1 − 𝐹2 

(3.26) 

where 𝐹1 is the normalized amplitude variation, 𝐹2  and 𝐹3  are indicators of shape roughness.  

Highly spiculated masses will exhibit large variations in the radial distances and this will be 

expressed in the boundary moments 𝐹1, 𝐹2 and 𝐹3. The evaluation metric,  𝐹𝑆𝑖(𝑖𝑚𝑋, 𝑖𝑚𝑌), for 

the change in the degree of spiculation between the 𝑖𝑚𝑋 and 𝑖𝑚𝑌  is the percentage change in 

the boundary moments, 𝐹𝑖  s; 

 % 𝐹𝑆𝑖(𝑖𝑚𝑋, 𝑖𝑚𝑌) =  |
𝐹𝑖(𝑖𝑚𝑌) − 𝐹𝑖(𝑖𝑚𝑋)

𝐹𝑖(𝑖𝑚𝑌)
|  × 100 

(3.27) 

Fourier descriptors  

The centroid distance function can be analysed in the frequency domain to obtain spectral 

descriptors of its characteristics.  Its spectral representation is expressed as the coefficients of 

its discrete Fourier transform, yielding: 

  𝑎𝑖 = 
1

𝑁
∑ 𝑟(𝑛)

𝑁−1

𝑛=0
𝑒𝑥𝑝 (

−𝑗2𝜋𝑖𝑛

𝑁
) , 𝑖 = 0,1,2, ……… . , 𝑁 − 1      

(3.28) 

Feature vectors which are invariant to translation, scale and rotation are extracted from these 

coefficients and are known as the Fourier descriptors (𝐹𝐷𝑖) for shape representation: 
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 𝐹𝐷𝑖 = [
|𝑎𝑖|

|𝑎0|
] , 𝑖 = 1,2, …… .𝑁/2 

(3.29) 

Sixty 𝐹𝐷𝑖𝑠 were used for shape indexing. We define the evaluation metric of the initial level 

set contours yielding, 𝑖𝑚𝑋 and 𝑖𝑚𝑌 based on the boundary signatures of the final contours 

delineating 𝑖𝑚𝑋 and 𝑖𝑚𝑌 in the frequency domain as the Euclidean distance between the 

Fourier descriptors: 

 
 𝐷𝐹(𝑖𝑚𝑌, 𝑖𝑚𝑋) =  √∑|𝐹𝐷𝑖 (𝑖𝑚𝑌) − 𝐹𝐷𝑖(𝑖𝑚𝑋)|2

60

𝑖=1

 
(3.30) 

where 𝐹𝐷𝑖 (𝑖𝑚𝑋) and 𝐹𝐷𝑖 (𝑖𝑚𝑌) are the ith Fourier descriptors of the final contours 

delineating 𝑖𝑚𝑋 and 𝑖𝑚𝑌.   

3. 3.8.2 Region–based shape representation and comparison metrics 

Area metric of relative size of the segmented mass lesion 

Let 𝑖𝑚𝑌 represent the binary image obtained by evolving the initial contour from our proposed 

method and 𝑖𝑚𝑋 from the manually drawn initial level set contour, then; the measure of the 

area of overlap, which is the Jaccard similarity coefficient between the binary 

images, 𝑖𝑚𝑋 and 𝑖𝑚𝑌 is given as: 

 
𝐽𝑆𝐶(𝑖𝑚𝑋, 𝑖𝑚𝑌) =  

𝑖𝑚𝑌 ∩ 𝑖𝑚𝑋

𝑖𝑚𝑌 ∪ 𝑖𝑚𝑋
      

(3.31) 

 𝐽𝑆𝐶(𝑖𝑚𝑋, 𝑖𝑚𝑌)   lies between 0 and 1. A perfect matched between 𝑖𝑚𝑋 and 𝑖𝑚𝑌 is achieved 

as 𝐽𝑆𝐶(𝑖𝑚𝑋, 𝑖𝑚𝑌) → 1, consequently, the same segmentation outcome for both initial level 

set contours. 

 

Shape convexity 
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The shape convexity of a binary image is defined as the ratio of the area of the binary image 

to the area of its convex hull [9]. Let 𝐶𝑖𝑚𝑋 and 𝐶𝑖𝑚𝑌 be the convexity of binary images 

𝑖𝑚𝑋 and 𝑖𝑚𝑌 respectively, the evaluation metric of the differences between the shape 

convexities of images 𝑖𝑚𝑋 and 𝑖𝑚𝑌 is defined as:  

 %𝑆𝐶(𝑖𝑚𝑋, 𝑖𝑚𝑌) =  |
𝐶𝑖𝑚𝑌 − 𝐶𝑖𝑚𝑋

𝐶𝑖𝑚𝑌
|  × 100     

(3.32) 

Shape rectangularity 

Shape rectangularity [10] is defined as the ratio of the area of the binary image to the area of 

its minimal bounding rectangle. Let 𝑅𝑖𝑚𝑋 and 𝑅𝑖𝑚𝑌 be the rectangularity of binary images 

𝑖𝑚𝑋 and 𝑖𝑚𝑌 respectively, the evaluation metric of the difference between the shape 

rectangularities of images 𝑖𝑚𝑋 and 𝑖𝑚𝑌 is defined as:  

 

  %∆𝑆𝑅(𝑖𝑚𝑋, 𝑖𝑚𝑌) =  |
𝑅𝑖𝑚𝑌 − 𝑅𝑖𝑚𝑋

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑖𝑚𝑌, 𝑅𝑖𝑚𝑋)
|  × 100   (3.33) 

  



72 

 

3.4  Experimental Results and Discussion 

Boundary information represents sharp changes in image properties. Figure.3.6 shows that as 

the degree of smoothing (λ) increases the radial distance functions of the initial level set 

contours form a dense nested pattern of curves. Programming was implemented in Matlab 7.0 

on an Intel Core 2 Duo 3.0 GHz 

 

 

 

 

 

 

 

 

 

 

The differences between these curves are very small because edge is preserved through 

different values of 𝜆s in weighted TV scale-space smoothing technique (equation 3.4), 

consequently segmentation results with the initial level set contours generated from these 

curves are expected to be similar. Segmentation results for some masses with low signal areas 

and having obscured, or ill-defined, margins are shown in figure 3.7. The proposed method 

defines the initial level set contour as the curve connecting points with maximum gradients in 

the radial direction as shown in column 3. Each curve characterizes the intrinsic shape of its 

mass lesion and its evolution is guided by the statistics of pixels surrounding the region. For 

this group of masses, the mean area overlap measure between segmented areas generated from 

 

Figure 3.6. Variation of the radial distance function of the initial level set contours sampled 

at an angle of 1° with different λs for the mass lesion in Figure 3.4a. 
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the final contours of our proposed method and that of the manually drawn initial level set 

contours was 0.81 ± 0.07. This is almost comparable to the mean area overlap measures 

between expert radiologists [11]  and expert radiologists against segmentation methods [12], 

[13], [14], [15] as shown in Table 3.1. Therefore, changes in shape-based descriptors as 

expressed in our setup will be suggestive of changes in shape-based descriptors encountered 

by the abovementioned publications. 
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A                            

B                            

C                         

D                             

E                           

F                            

G                

Figure 3.7. Comparisons of segmentation results with different locations for the initial level 

set contours for masses with low signal areas having obscured, or ill-defined, margins. The 

first column presents the original mass lesions; the second column shows the corresponding 

weighted TV flow images and the search space for locating the initial contour. The third 

column shows the initial contours as curves connecting points with maximum gradients in 

the radial direction. The fourth column shows the manually drawn initial level set contours. 

The fifth column presents the segmentation outcomes with manually drawn initial level set 

and the last column presents the final segmentation results of the proposed method evolved 

with the same tuning parameters. 
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Table 3.1. Comparison of mean area overlap measures of masses with characterized margins due 

to changes in the location of the initial level set contour with cited inter-observer variability 

amongst radiologists and with mean area overlap measures between radiologists and other 

segmentation methods in boundary delineation. 

 Characteristics of 

mass-lesion 

margins 

Mean area overlap 

measures due to 

inter-observer 

variability amongst 

radiologists 

Mean area overlap 

measures between 

radiologists and 

segmentation 

methods 

Mean area overlap 

measures due to 

placement of the initial 

level set contours 

Sahiner et al [11] - 0.76 ± 0.13 0.74 ± 0.13  

Tao et al. [12] Ill-defined and 

spiculated 

 0.69 ± 0.16  

Xu et al. [13]  -  0.72 ± 0.13  

Rahmati et al. [14]  -  0.87 ± 0.05  

Pereira et al [15]   0.79±0.08  

This study (𝝀𝟏 =

𝟐. 𝟓, 𝝀𝟐 = 𝟏) 

Obscured/ill- 

defined with Low 

signal areas within 

  0.81 ± 0.07 

This study (𝝀𝟏 =

𝟐. 𝟓, 𝝀𝟐 = 𝟏) 

Distinct/well- 

defined 

  0.97 ± 0.02 

This study (𝝀𝟏 =

𝟏, 𝝀𝟐 = 𝟏) 

Obscured/ill- 

defined with low 

signal areas within 

  0.93± 0.07 

This study (𝝀𝟏 =

𝟏, 𝝀𝟐 = 𝟏) 

Distinct/well 

defined 

  0.96± 0.04 
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Table 3.2 illustrates an example of seven masses out of a database of ninety masses. It shows 

the variation in the area overlap measures with percentage differences in boundary 

moments 𝐹1, 𝐹2 and 𝐹3 when masses in Figure 3.7 were evolved with tuneable parameters 𝜆1 =

2.5, 𝜆2 = 1 The area overlap measure of mass D is greater than 0.8, however the percentage 

difference in boundary moments were above 50%, with %∆𝐹1 being 87.0%. The mean values 

of  %∆𝐹1, %∆𝐹2 and %∆𝐹3   for this group were 20.2% (range 1.7-87.0%), 18.9% (range 2.7-

86.8%) and 29.6% (range 3.4-86.0%) respectively, as shown in Table 3.6. The mean values 

are large with wide range. For 𝜆1 = 1, 𝜆2 = 1 the mean values of the percentage change of 

each boundary moment was less than 20.7%. These large ranges and mean values show that, 

boundary moments are sensitive to the location of the initial level set contour for masses with 

obscured or ill-defined margins and the degree of sensitivity depends on the choice of tuneable 

parameters.  %∆𝐹1, %∆𝐹2 and %∆𝐹3   are .estimated from the final level set contour and not 

from the initial level set contour such as in Figure 3.2 
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Table 3.2. Evaluation metrics for differences in segmented areas (𝑱𝑺𝑪) and boundary 

moments(%∆𝐅𝟏, %∆𝐅𝟐, %∆𝐅𝟑) , due to changes in the location of the initial level set contours 

evolved with tuneable parameters 𝛌𝟏 = 𝟐. 𝟓, 𝛌𝟐 = 𝟏 for masses in Figure 3.7 

Masses JSC  

(eqn 3.31) 

F1 

(Eqn3.26) 

F2 

(Eqn3.26) 

F3 

(Eqn3.26) 

Method %∆F1 %∆F2 

A 0.83 0.32 0.37 0.05 Manual 68.4 67.1 

  0.16 0.18 0.03 Proposed 

B 0.77 0.34 0.43 0.08 Manual 8.1 7.2 

  0.32 0.39 0.08 Proposed 

C 0.78 0.27 0.33 0.06 Manual 9.7 3.1 

  0.24 0.32 0.07 Proposed 

D 0.84 0.25 0.31 0.06 Manual 87.0 86.8 

  0.09 0.12 0.02 Proposed 

E 0.71 0.27 0.33 0.06 Manual 6.0 8.1 

  0.29 0.36 0.07 Proposed 

F 0.89 0.29 0.38 0.09 Manual 8.2 7.4 

  0.32 0.41 0.09 Proposed 

G 0.87 0.18 0.22 0.03 Manual 1.7 9.9 

  0.1866 0.2394 0.0528 Proposed 
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In Table 3.3, the variation in Euclidean distances of the Fourier descriptors and the percentage 

differences in shape convexity and rectangularity for the masses in Fig.3.7 are illustrated. In 

Table 3.6, for 𝜆1 = 2.5, 𝜆2 = 1 the mean Euclidean distance between the Fourier descriptors 

of the segmented areas was 0.1 ± 0.05 while the mean values of percentage changes in shape 

convexity and rectangularity were 10.8% (range 0.3-28.1%) and 14.1% (range 0.5- 42.0%) 

respectively, and more than 50% reduction in the mean values with tuneable parameters 𝜆1 =

1, 𝜆2 = 1. The values for the mean percentage difference in shape convexity and 

rectangularity, and their range was less than those from boundary moments.  

Figure 3.8 illustrates the segmentation results with different locations for the initial level set 

contours for some masses with distinct, or well-defined, margins. The initial level set contour 

from the proposed method is shown in column 3. Fewer points defining the maximum gradients 

in the radial direction are found within the mass lesion, as compared with the previous group. 

Most points defining the maximum gradients in the radial direction are found on the mass 

boundary; consequently, the statistics of the pixels surrounding the initial level set contour will 

be similar to those of the manually drawn contour when it arrives at the edge of the mass lesion. 
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Table 3.3. Variation in Euclidean distances between Fourier descriptors (DF), 

percentage differences in shape convexity (%∆𝑺𝑪) and shape 

rectangularity (%∆𝐒𝐑) due to changes in the location of the initial level set contours 

evolved with tuneable parameters 𝝀𝟏 = 𝟐. 𝟓 𝝀𝟐 = 𝟏 for masses in Figure 3.8. 

Masses 

DF 

eqn(3.3) 

SC 

(eqn3.32) 

SR 

(eqn3.33) Method 

 

%∆ SC %∆ SR 

A 0.16 0.72 0.49 Manual 16.50 

 

31.50 

     0.84 0.67 Proposed 

B 0.10 0.54 0.38 Manual  22.40 

 

9.60 

     0.67 0.41 Proposed 

C 0.08 0.56 0.38 Manual  28.20 

 

21.60 

     0.75 0.48 Proposed 

D 0.13 0.81 0.63 Manual  12.50 

 

16.60 

     0.91 0.74 Proposed 

E 0.06 0.77 0.50 Manual  16.70 

 

3.80 

     0.91 0.48 Proposed 

F 0.05 0.59 0.42 Manual  10.10 

 

10.90 

     0.54 0.37 Proposed 

G 0.03 0.7899 0.53 Manual  1.70 

 

8.80 

     0.8036 0.58 Proposed 
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A                             

B                                        

C                                      

D                               

E                               

F                         

G                 

Figure 3.8. Comparisons of segmentation results with different locations for the initial level 

set contours for masses with distinct, or well-defined, margins. The first column presents 

the original mass lesions; the second column shows the corresponding weighted TV flow 

images and the search space for locating the initial contour. The third column shows the 

initial contours as curves connecting points with maximum gradients in the radial direction. 

The fourth column shows the manually drawn initial level set contours. The fifth column 

presents the segmentation outcomes with manually drawn initial level set contours and the 

last column presents the final segmentation results of the proposed method evolved with the 

same tuning parameters. 
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Table 3.4, shows the variation in the area overlap measures and the percentage differences in 

boundary moments 𝐹1, 𝐹2 and 𝐹3  while Table 3.5 illustrates the variation in Euclidean 

distances between the Fourier descriptors (DF), percentage differences in shape 

convexity (%∆𝑆𝐶) and shape rectangularity (%∆𝑆𝑅) when the masses in Fig. 3.8 were 

evolved with tuneable parameters 𝜆1 = 2.5, 𝜆2 = 1. The area overlap measure of mass B was 

greater than 0.95, however the percentage differences in boundary moments were above 18%. 

For masses with distinct or well-defined margins, similar segmentation results are expected, 

and this is confirmed with a mean area overlap measure of 0.97 ± 0.02 as shown in Table 3.6. 

For this category of masses, the mean value of %∆𝐹1 was 10.2% (range 0.3-22.0%), %∆𝐹2 , 

9.6% (range 2.1-31.2%) and %∆𝐹3 14.9% (range 0.9-53.0%). The mean Euclidean distance 

between the Fourier descriptors of the segmented areas was 0.04 ± 0.02 and the mean values 

of percentage changes of shape convexity and rectangularity were 5.0% (range 0.5-17.2%) and 

5.1% (range 0.1-14.9%) respectively. The values for the mean percentage differences in shape 

convexity and rectangularity were almost 50% less than those from boundary moments. This 

group presented a small percentage change in shape convexity, shape rectangularity, and also 

a smaller mean Euclidean distance of the Fourier descriptors as compared to the previous group 

due to segmentation results having relatively similar shapes. For these groups of masses, shape-

based descriptors derived from final contours of tuneable parameters  𝜆1 = 1, 𝜆2 = 1 were less 

sensitive to changes in the location of the initial level set contours.  
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Table 3.4. Evaluation metrics for differences in segmented areas (𝐽𝑆𝐶) and boundary moments 

(%∆𝐹1,%∆𝐹2, %∆𝐹3) , due to changes in the location of the initial level set contours evolved with 

tuneable parameters 𝜆1 = 2.5, 𝜆2 = 1 for masses in Figure 3.8. 

Masses JSC F1 F2 F3 Method 

%∆ 

F1 

%∆ 

F2 

%∆ 

F3 

A 0.98 0.08 0.11 0.02 Manual 29.00 

 

31.20 

 

39.4 

     0.11 0.14 0.03 Proposed 

B 0.97 0.21 0.28 0.07 Manual 21.90 

 

21.10 

 

18.7 

     0.26 0.34 0.08 Proposed 

C 0.99 0.15 0.18 0.03 Manual 6.10 

 

2.60 

 

13.6 

     0.14 0.17 0.03 Proposed 

D 0.98 0.21 0.26 0.04 Manual 12.00 

 

9.00 

 

6.6 

     0.24 0.28 0.04 Proposed 

E 0.98 0.11 0.14 0.03 Manual 2.20 

 

2.90 

 

5.9 

     0.11 0.13 0.03 Proposed 

F 0.94 0.19 0.22 0.03 Manual 2.00 

 

1.30 

 

19.3 

     0.19 0.22 0.04 Proposed 

G 0.94 0.29 0.37 0.07 Manual 18.70 

 

12.40 

 

10.9 

     0.25 0.32 0.08 Proposed 
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Table 3.5. Variation in Euclidean distances between the Fourier descriptors (DF), 

percentage differences in shape convexity (%∆𝑆𝐶) and shape 

rectangularity (%∆𝑆𝑅) due to changes in the location of the initial level set contours 

evolved with tuneable parameters 𝜆1 = 2.5, 𝜆2 = 1 for masses in figure 3.8 

 Masses 

DF 

(eqn3.30) 

SC 

(eqn 3.32) 

SR 

(eqn3.33) Method %∆ SC %∆ SR 

A 0.04 0.66 0.46 Manual 17.1 

 

14.5 

     0.78 0.53 Proposed 

B 0.062 0.66 0.46 Manual 7.0 

 

14.4 

     0.71 0.53 Proposed 

C 0.04 0.89 0.61 Manual 1.1 

 

1.2 

     0.89 0.62 Proposed 

D 0.08 0.85 0.61 Manual 0.0 

 

0.0 

     0.85 0.61 Proposed 

E 0.02 0.93 0.65 Manual 0.3 

 

1.1 

     0.93 0.65 Proposed 

F 0.03 0.86 0.60 Manual 2.9 

 

5.2 

     0.84 0.57 Proposed 

G 0.07 0.66 0.46 Manual 17.1 

 

14.5 

     0.79 0.53 Proposed 
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Table 3.6. Mean values for the Jaccard similarity coefficient (JSC) and the Euclidean distances of 

the masses. The mean values and ranges of percentage differences in boundary moments (%∆ F1, 

%∆ F2 , %∆ F3), percentage differences in shape convexity (%∆ SC) and percentage differences in 

shape rectangularity (%∆ SC) for the masses , labelled as groups with pre-defined margin 

characteristics and also a  group with arbitrary margin characteristics, due to changes in the 

location of the initial level set contours evolved with tuneable parameters 𝝀𝟏 = 𝟐. 𝟓, 𝝀𝟐 = 𝟏 and 

𝛌𝟏 = 𝟏, 𝛌𝟐 = 𝟏. 

Margin 

Characteristics 

Obscured/ill-defined 

Margins 

Distinct/well-defined 

Margins 

Unlabelled Margins 

Tuneable 

parameters 

λ1=2.5,λ2 =1 λ1 =1,λ2 =1 λ1 =2.5,λ2 =1 λ1 =1, λ2 =1 λ1=2.5,λ2 =1 λ1 =1, λ2 =1 

Average JSC 0.81 ± 0.07 0.93 ± 0.07 0.97 ± 0.02 0.96± 0.04 0.89 ± 0.09 0.95 ± 0.06 

Average DF 0.10 ± 0.05 0.04 ± 0.04 0.04 ± 0.02 0.03 ± 0.02 0.06 ± 0.05 0.03 ± 0.03 

Mean of %∆ F1 20.2 % 15.6 % 10.2 % 8.6 % 15.1 % 11.6%  

Range of  %∆ F1 1.7-87.0% 0-57.8% 0.3-22.0% 0-20.8% 0.3-87.0% 0-57% 

Mean of  %∆ F2 18.6 % 15.8 % 9.6%  14.7 % 13.4 % 15.1 % 

Range of  %∆ F2 2.7-86.8% 0-59.1% 2.1-31.2% 0-46.0% 2.1-86.8% 0-59.1% 

Mean of  %∆ F3 29.6% 20.7%  14.9 % 14.6 % 21.2 % 17.2 % 

Range of  %∆ F3 3.4 -86.0% 0-80.9% 0.9-53.0% 0-54.0% 0-86.0% 0-54.0% 

Mean of  %∆ SC 10.8 % 3.4 % 5.0%  2.9 % 7.5 % 3.1 % 

Range of %∆ SC 0.3-28.1% 0-21.0% 0.5-17.2% 0.2-13.9% 0.3-28.1% 0-21.0% 

Mean of  %∆ SR 14.1 % 6.4 % 5.1 % 3.8 % 8.9%  4.9%  

Range of  %∆ SR 0.5-42.0% 0-38.9% 0.1-14.9% 0-21.9% 0.1-42.0% 0-38.9% 

 



85 

 

The evaluation metrics of shape-based descriptors of both groups of masses were combined 

and assessed with Bland-Altman [16] plots to investigate the inter-method agreement between 

placements of the initial level set contours. These plots represent a graphical method to 

compare two segmentation algorithms and each Bland-Altman plot was evaluated within a 

95% confidence interval as the limits of agreement. 

Figures 3.9 and 3.10 illustrate the linear regression plots of boundary moments, shape 

rectangularity and shape convexity with their associated Bland-Altman plots. The Pearson 

correlation analysis indicated good correlations between the shaped-based descriptors: shape 

rectangularity (r = 0.81) and shape convexity (r=0.82) resulting from the final contours of the 

proposed and manual methods as compared to boundary moments 𝐹1 (r = 0.70), 𝐹2 (r =

0.70)and 𝐹3 (r = 0.68) . Table 3.7 shows the summary results of the linear regression analysis 

of shape-based descriptors for these masses and their variation with tuneable parameters. The 

p-values indicated that the correlations of shape-based descriptors derived from these methods 

were statistically significant (p <0.0001). The strength of the linear relationship (r) between 

the descriptors derived from these methods depends on the values of tuneable parameters, 

 𝜆1 and 𝜆2. For this set of masses the correlation coefficients of descriptors obtained with 

tuneable parameters  𝜆1 = 1 and 𝜆2 = 1 were higher than those with parameters  𝜆1 =

2.5 and 𝜆2 = 1, however, this does not imply that, tuneable parameters  𝜆1 = 1 and 𝜆2 = 1 

will provide higher values of similarity measures when segmentation results are compared with 

segmentation outcomes of expert radiologists. 
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Figure 3.9. Linear regression plots, a, c and e along with Bland-Altman plots, b, d and f 

of boundary moments F1, F2 F3 respectively for tuneable parameters 𝜆1 = 2.5, 𝜆2 = 1 
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Figure 3.10. Linear regression plots, a and c with associated Bland-Altman plots, b and d 

of shape rectangularity (𝑆𝑅) and shape convexity (𝑆𝐶) respectively, for tuneable 

parameters 𝜆1 = 2.5, 𝜆2 = 1 
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The difference plots in Figures 3.9 and 3.10, show that differences in shape-based features for 

masses with distinct or well-defined masses are scattered very close to the central bias line as 

compared to masses with obscured, or ill-defined, margins thus indicating that, the magnitude 

of differences in shape-based descriptors due to changes in the placement of the initial level 

set contours depends on the mass margin characteristics. The correlations between differences 

in shape-based descriptors due to changes in the placement of the initial level set contours and 

the average magnitude of descriptors from both algorithms were very poor and they were not 

significantly different from zero. The intercept doesn’t play any role in the analysis between 

the two methods because the goal is to find out if the shape characteristics of the masses 

delineated with the two methods correlates  

 

Table 3.7.  Summary results of linear regression analysis for tuneable parameters λ1 =2.5, 

λ2 =1 and λ1 =1, λ2 =1. 

Tuneable 

parameters 

λ1 =2.5, λ2 =1 

 

λ1 =1, λ2 =1 

 

 slope r p-value slope r p-value 

F1 0.68 0.70 <0.0001 0.78 0.82 <0.0001 

F2 0.66 0.70 <0.0001 0.72 0.75 <0.0001 

F3 0.70 0.68 <0.0001 0.75 0.79 <0.0001 

SC 0.69 0.82 <0.0001 0.93 0.93 <0.0001 

SR 0.76 0.81 <0.0001 0.82 0.88 <0.0001 
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In general, the mean area overlap measure of the combined categories (manual and proposed 

methods) was 0.89 ± 0.09, the mean Euclidean distance between the Fourier descriptors was 

0.06 ± 0.05 and moreover in the Bland-Altman plots, the differences in shape-based descriptors 

of 90% of these masses are within the limits of agreement, therefore the inter-placement 

agreement of the initial level set contours based on these descriptors is acceptable.  

Nevertheless, boundary moments should be utilized with caution because they exhibit large 

percentage differences. 

3.5  Conclusion 

The results show that the magnitude of the changes in shape –based descriptors expressed as 

area overlap measures and percentage differences in shape-based features depend on the 

characteristics of the mass margins and the choice of tuneable parameters. For masses with 

distinct or well-defined margins, percentage differences are reduced as compared to those with 

ill-defined, or obscured, margins. The mean percentage differences in boundary moments and 

their ranges were large as compared to those of shape convexity and shape rectangularity, even 

though the area overlap measures were within acceptable values. Finally, we concluded that 

boundary moments are sensitive to the placement of initial level set contours while Fourier 

descriptors, shape convexity and shape rectangularity exhibit a certain degree of robustness to 

changes in the location of the initial level set contours. The ultimate goal in active contour 

segmentation of mass lesion is deriving a segmentation algorithm whose final level set contour 

is independent of the position of the initial level set contour. In chapter 4 we propose a 

segmentation method which combines an artificial intelligence algorithm with a region based 

active contour model (chapter 3) to derive the desired segmentation method. 
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CHAPTER 4: MASS-SPECIFIC THRESHOLD VALUES OF GLOBAL MINIMA 

FOR CONVEX ENERGY FUNCTIONALS WITH AN INTERACTIVE 

SEGMENTATION MODEL 

An extract from the work published by the author – Appendix II (S. N. Acho and W. I. D. Rae) 

4.1 Introduction 

The results of the previous chapter show that the position of the final level set contour delineating 

the boundary of a mammographic mass is dependent on the placement of the initial level set 

contour in region based active contour models such as the Chan-Vese (CV) [1] segmentation 

method and the active contour with selective local or global (GS) iterative method [2]. 

Consequently, the task of delineating the boundary of a mammographic mass with an active 

contour segmentation model is challenging and in some cases, can produce unsuitable solutions.  

Bresson et al [3] have proposed a fast global minimization model which unifies the geodesics 

model, Mumford-Shan segmentation model [4] and the Rudin-Osher-Fatemi denoising model [5] 

and they have extended this approach to link the snake model to the Chan-Vese`s active contour 

model via the weighted total variation (TV) norm. Bresson et al [3] is relevant because it gives a 

grief explanation of the origin of the fast global minimization model which is one of the core 

methods in this chapter. The energy functional of the fast-global minimization model is convex; 

hence segmentation results are independent of the placements of the initial contours and the curve 

evolution process does not require the implementation of the contour re-initialization procedures 

because deformable contours are not expressed as zero level sets of higher dimensional functions. 

In this chapter the energy functional will be modified in the propose method. 

Nguyen et al [6] have combined the probabilistic matrix from the random walker segmentation 

method with a convex energy functional to derive a robust interactive segmentation model. They 

modelled the convex energy functional as a linear mixture of Gaussian distributions and expressed 

the probability matrix as a binary classifier to propagate the contour whenever the statistical 

models of the foreground and the background are similar. However, in their implementation, the 
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user fixes the threshold value of the global minimum for the convex energy functional. In mass 

lesion segmentation, a fixed threshold value for the global minima of a database of mass lesions is 

not feasible because the grey level intensity distributions of the background tissues surrounding 

most masses are heterogeneous. A fixed threshold value may underestimate or overestimated the 

optimum threshold values of these masses and consequently lead to unsuitable segmentation 

outcomes. Furthermore, hand tuning each threshold value for an optimum mass boundary 

delineation is time consuming. As a result, we propose an automatic parameter tuning process that 

embraces the morphological characteristics of each mass lesion, and provides a reliable threshold 

value. This ensures that, final segmentation outcomes are not only independent of the placement 

of the initial level set contour, but also are highly reproducible because the optimum threshold 

value of each mass lesion is independent of the user’s input. Our algorithm models the convex 

energy functional with empirical intensity means and variances of the foreground and the 

background.  

The main contribution of this section lies in extracting reliable information from the probability 

matrix to provide a reliable mass-dependent estimate of the threshold value for each global 

minimizer symbolising the intrinsic nature of the mass lesion. It utilises the particle swarm 

optimization algorithm to provide a mass-specific threshold value of the global minimum for the 

convex energy functional of each mass in the database of section 3.3.1.  

.  

4.2 Methods 

4.2.1 Active contour model with prior probabilities for binary segmentation 

The binary partitioning of the image domain 𝛺, into 𝛺1 and 𝛺2 by an evolving curve, C, can be 

achieved by maximizing the posterior partitioning probability. Assuming that all pixel intensities 

are independently distributed, and all prior probabilities are equally likely, then the binary partition 

can be formulated as the minimization of the following energy functional: 
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𝐸(𝛺1, 𝛺2, 𝑝1, 𝑝2) =  −∑∫ 𝑙𝑜𝑔  𝑝𝑖((𝐼(𝑥, 𝑦)|𝛺𝑖)) 

𝛺𝑖

2

𝑖=1

𝑑𝑥𝑑𝑦 +  𝜇𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) (4.1) 

 

where, 𝐼(𝑥 , 𝑦) is the value of the grey intensity value at pixel position (𝑥 , 𝑦) in region 𝛺𝑖, 

𝑝𝑖((𝐼(𝑥, 𝑦)|𝛺𝑖)) is the likelihood of a pixel (𝑥 , 𝑦) in 𝛺𝑖 having the value 𝐼(𝑥, 𝑦) and 𝜇 > 0.  

Supposed the grey level pixel values, 𝐼(𝑥, 𝑦), are drawn from a Gaussian distribution and the curve, 

C, is embedded in the level set function, 𝜙(𝑥, 𝑦), such that the regularized Heaviside function, 𝐻𝜖, 

is the characteristic function separating the foreground and background. Then the optimum 

partition [7] [8] is obtained by solving the following gradient descent flow   

 

𝜕𝜙

𝜕𝑡
= 𝐻𝜖

′(𝜙) [𝑑𝑖𝑣 (
∇ϕ

|∇ϕ|
) + 𝑙𝑜𝑔(𝜎2) − 𝑙𝑜𝑔(𝜎1) + (

(𝐼(𝑥, 𝑦) − 𝜇2)
2

2𝜎2
2 ) − (

(𝐼(𝑥, 𝑦) − 𝜇1)
2

2𝜎1
2 )] 

 

(4.2) 

With 𝜎𝑖
2and 𝜇𝑖 the variance and mean of 𝛺𝑖 respectively. 

 

4.2.2 Convex active contour model with prior probabilities for binary segmentation 

With the same approach as in [9], the steady state solution of (2) is given as: 

 

 
𝜕𝜙

𝜕𝑡
=  𝑑𝑖𝑣 (

∇ϕ

|∇ϕ|
)

+ 𝜆(𝑙𝑜𝑔(𝜎2) − 𝑙𝑜𝑔(𝜎1) + (
(𝐼(𝑥, 𝑦) − 𝜇

2
)
2

2𝜎2
2

) − (
(𝐼(𝑥, 𝑦) − 𝜇

1
)
2

2𝜎1
2

)) 

 

(4.3) 

which is the gradient descent flow of the energy functional 
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𝐸(𝜙, 𝜎1, 𝜎2, 𝜇1, 𝜇2) =  ∫ |∇𝜙|𝑑𝑥𝑑𝑦 + 𝜆∫ 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2)

𝛺𝛺

𝜙𝑑𝑥𝑑𝑦, 

 

(4.4) 

with (𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2) =  𝑙𝑜𝑔(𝜎2) − 𝑙𝑜𝑔(𝜎1) +  
(𝐼(𝑥,𝑦)−𝜇2)

2

2𝜎2
2  −  

(𝐼(𝑥,𝑦)−𝜇1)
2

2𝜎1
2    . 

𝐸(𝜙, 𝜎1, 𝜎2, 𝜇1, 𝜇2) has a global minimizer [10] when the minimization of Φ is restricted to the 

interval [0, 1]. Suppose u is a characteristic function of a set, 𝛺𝑐, with boundary denoted by C. As 

in Bression et al [3] , we propose an expression for the energy functional in (4) as  

 

  𝐸(𝑢, 𝜎1, 𝜎2, 𝜇1
, 𝜇

2
) = 𝑇𝑉𝑔(𝑢) +  𝜆∫ 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1

, 𝜇
2
)

𝛺

𝑢 𝑑𝑥𝑑𝑦, 

    

 

(4.5) 

where 𝑇𝑉𝑔(𝑢) is the weighted total variation energy and expressed as follows: 

 
𝑇𝑉𝑔(𝑢) = ∫ 𝑔(𝑥, 𝑦)|∇𝑢|𝑑𝑥𝑑𝑦

Ω

  

 

(4.6) 

with 𝑔(𝑥, 𝑦) as an edge indication function 

The relaxed minimization problem for the binary segmentation with the energy functional 

𝐸(𝑢, 𝜎1, 𝜎2, 𝜇1, 𝜇2) is expressed as: 

 min
0≤u≤1

{TVg(u) + ∫ λr(x, y,σ1,σ2μ1
,μ2)

Ω

u +αυ(u)dxdy, }  (4.7) 

Where  𝛼 >
𝜆

2
‖𝑟‖𝐿∞(Ω), 𝜐(𝜉) = 𝑚𝑎𝑥{0,2|𝜉 − 0.5| − 1}  and  𝜆 is a constant. A fast algorithm to 

solve the relaxed minimization problem with the Chambolle`s dual formulation of the total 
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variation regularization function [3], [11], is implemented by redefining the unconstrained 

minimization problem as  

 
min
𝑢,𝜈

{𝑇𝑉𝑔(𝑢) +
1

2𝜃
‖𝑢 − 𝜈‖𝐿2

2 + ∫ 𝜆𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2)
Ω

𝜈 + 𝛼𝜐(𝜈) 𝑑𝑥𝑑𝑦} 

 

(4.8) 

with 𝜃 > 0  and 𝜈  a new variable. 𝑇𝑉𝑔(𝑢) is the boundary term and 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2𝜇1, 𝜇2) the global 

term representing the statistical competition between the regions inside and outside the contour. 

The dual formulation of the unconstrained minimization problem is solved by iterating 𝑢 and  𝜈 

separately. This approach splits the relaxed minimization problem into two problems:  

1. Fix 𝜈 and solve for 𝑢  in the following minimization equation: 

 
min
𝑢

{∫ 𝑇𝑉𝑔(𝑢)𝑑𝑥𝑑𝑦 +
1

2𝜃
‖𝑢 − 𝜈‖𝐿2

2 } (4.9) 

The gradient descent flow is given by: 

 
   𝑢𝑡 = 𝑑𝑖𝑣 (

𝛻𝑢

|𝛻𝑢|
)  −  

𝑢 − 𝑣

𝜃
 

 

(4.10) 

and it is solved as: 

 
𝑢 = 𝑣 −  𝜃. 𝑑𝑖𝑣(𝑝)      

 

(4.11) 

with a fixed point method, the update scheme for  𝑝⃗ is: 

 
𝑝 𝑛+1 = 

𝑝 𝑛 + ∆𝑡(∇(𝑑𝑖𝑣(𝑝 𝑛)) − 𝑣/𝜃)

1 + ∆𝑡|∇(𝑑𝑖𝑣(𝑝 𝑛)) − 𝑣/𝜃|
    

 

(4.12) 
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while setting 𝑝⃗ 0 = (0,0) and  ∆𝑡 ≤1/8 for convergence (Chambolle). 

2. Fix 𝑢 and solve for 𝜈 in the following minimization equation: 

 
 min

𝑣
{ ∫  

1

2𝜃
‖𝑢 − 𝜈‖𝐿2

2   + 𝜆𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2)
Ω

𝜈 + 𝛼𝜐(𝜈) 𝑑𝑥𝑑𝑦}      

 

(4.13) 

The minimization solution is expressed as: 

 
𝑣𝑡  = 𝑚𝑖𝑛{𝑚𝑎𝑥(𝑢 − 𝜃𝜆(𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2), 0), 1)}  

 

(4.14) 

Generally, 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2) is updated after a few iterations and when the algorithm converges 

the final segmentation solution is obtained by thresholding u.  The threshold value is an arbitrary 

constant restricted to the interval [0, 1] and typically 0.5 as cited by some researchers [12] [3] [6]  

4.2.3  Random walk probability matrices 

An image is considered as a weighted graph consisting of nodes and edges. Image pixels are 

denoted as nodes and the similarity between neighbouring nodes associated with an edge is 

expressed as a Gaussian weighting function representing changes in the grey levels of the pixels 

which symbolizes the likelihood of a random walker crossing the edge. 

Supposed sets of nodes are labelled as belonging to the mass region and non-mass region; then the 

probability that a random walker starting from an unlabelled node first reaches a labelled node is 

equivalent to the solution of a Dirichlet problem formulated on a combinatorial graph with 

boundary constraints provided by the labelled image pixels. Generally, this solution is the random 

walk probability matrix generated by the random walker as he starts moving from each unlabelled 

node and first reaches a labelled node of the mass region. This probability matrix is taken as the 

mass- specific probabilistic map for segmentation tasks. In our implementation, the mass-specific 

probabilistic map was derived from a smoothed model of the original mass.  The weighted TV 
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scale-space smoothing method [3] [13] was utilized because it removes fine details and preserves 

important dominant mass boundary characteristics through different degrees of smoothing. 

 

 

 

4.2.4 Proposed model of convex active contour driven by global probability distributions and 

mass- specific probabilistic maps 

We define the global term representing the statistical competition between the regions inside and 

outside the contour as: 

 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽) = 𝛽 ∗  𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2)  + (1 − 𝛽) ∗ (1 − 2 ∗ 𝑃(𝑥, 𝑦))  (4.15) 

Where P(x, y) is the mass-specific probabilistic map of the mass, with values within the interval 

[0 1]. The term (1 − 2 ∗ 𝑃(𝑥, 𝑦)) acts as a classifier which influences the direction of propagation 

of (𝑥, 𝑦). In regions where P(x, y) equal to 0.5, 𝑢(𝑥, 𝑦) is propagated with the global probability 

distribution and the contribution of the classifier to the global term is zero. While for regions with 

P(x, y) > 0.5, 𝑢(𝑥, 𝑦) expands and favours classification of these regions as mass regions and vice 

versa. The classifier propagates 𝑢(𝑥, 𝑦) whenever  𝑟(𝑥, 𝑦, 𝜎1, 𝜎2𝜇1, 𝜇2) = 0 whereas 𝛽 is a positive 

constant (0 ≤ 𝛽 ≤ 1)  which controls the influence of the classifier on the global term.  The 

proposed unconstrained minimization problem for binary segmentation with the Chambolle`s dual 

formulation of the total variation regularization function is expressed as: 

 

      

min
𝑢,𝑣

{𝑇𝑉𝑔(𝑢) +
1

2𝜃
‖𝑢 − 𝜈‖𝐿2

2 + ∫ 𝜆𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽)
Ω

𝜈 + 𝛼𝜐(𝜈) 𝑑𝑥𝑑𝑦}             

(4.16) 

 



100 

 

4.2.5 Mass-specific threshold value for the global minimizer of the proposed relaxed 

minimization problem 

We define an optimal threshold level (T1), as the value of P(x, y) that divides the mass-specific 

probabilistic map, P(x, y) into mass region and non-mass region. The optimal threshold value for 

the global minimizer (T2) of each mass is expressed as the mean grey level of pixels whose 

probability of belonging to the mass region is greater than T1.  

Suppose the confidence map, P(x,y) is rescaled to an interval of [0 255] and its histogram is 

partitioned into two categories with a fitness function (𝑓(𝑡)) such as the sum of the variances of 

the grey level distributions of the foreground and background. The Otsu’s nonparametric method 

[14] of the between-class variance function for a bi-level thresholding is given by: 

 𝑓(𝑡) = ∑𝜕𝑖

2

𝑖=1

  (4.17) 

Where 𝜕𝑖 is the variance of level i, t is a threshold value and  0 ≤ 𝑡 ≤ 255. The optimal threshold 

value (T1) is obtained by maximizing 𝑓(𝑡), that is: 

 𝑇1 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑡)) (4.18) 

We implemented the particle swarm optimization method to solve for T1. It is a nature inspired 

global optimization algorithm which uses equations representing the velocities and positions of a 

group of birds flocking and mimics this social behaviour as a means to search for a global 

minimum of an objective function [15].  Each particle is a potential solution for the fitness function 

in the problem space. The particle keeps track of its coordinates in the problem space and updates 

its solution after iteration with its historical personal best solution and the best solution of the group 

until particles in the group surround the coordinates with the most optimal solution. This solution 

represents the best value for the fitness function hence the global minimum. The flow chart 

proposed method is illustrated in figure 4.1. 
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Original image = I(x, y)  

De-noise I(x,y) with  weighted TV scale-space smoothing 

User assigns foreground (mass region) and background labels (non- mass region). 

Implement the random walker segmentation algorithm to obtain P(x,y).  

Rescale P(x, y) to the interval [0 255] and find T1 using equation 17.  

Let Z = all I(x, y) whose pixel positions x and y have P(x, 

𝑇2 =
𝑚𝑒𝑎𝑛 (𝑍)

255
 

Figure 4.1. The proposed framework for a mass-specific threshold value of a global minimum for 

a convex energy functional in digital mammography. 
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4.2.6  Iterative step to implement the proposed segmentation method 

The proposed iterative procedure can be summarized as follows: 

Step 1: Compute P(x, y) and T2. 

Step 2: Minimize equation 15 using the dual formulation as shown in equation 4.12 and 4.14. 

Step 3: Update 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽) after a few iterations until convergence. 

Step 4:  Segmentation outcome = 𝑢 > 𝑇2 

4.3  Results and Discussion 

The performance of the proposed iterative procedure was evaluated on fifty mammograms with 

mass lesions with default parameters set to θ = 1/1.5, λ =1 , β =0.5 and the time step parameter for 

the fixed point iteration method was 1/8. The proposed method is compared to segmentation 

methods of breast mass currently found in literature. These methods have been compared with 

ground truths hence comparing the proposed method with these cited methods is sufficient    

Figure 4.2 shows the differences in global minima with a typical threshold value of 0.5 and the 

mass-specific threshold values from the proposed iterative method. The highlighted focal region 

of the mass lesion is represented with higher probability values of being classified as a mass region 

than other regions in the image domain. Therefore, the threshold value for binary segmentation of 

the probability matrix of a mass lesion can be considered as a realistic estimate of the mass-specific 

threshold value for the global minimizer of its convex energy functional.  
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I         

II        

III        

IV         

                        (a)                                         (b)                                        (c)                                        (d) 

Figure 4.2.  Differences in global minimizers with the typical threshold value of 0.5 and mass-specific 

threshold values from the proposed iterative method. (a) Original mass lesions (b) confidence maps 

from the random walk method (c) the global minimizer with threshold values 0.5 and (d) global 

minimizers from the proposed iterative method. 
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Figure 4.3. Variation of the global term (𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽) with the number of 

iterations for mass lesions in Fig2 for a typical threshold value of 0.5 and for threshold 

values derived from the proposed method. 
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Figure 4.5. Comparison of the proposed method with other segmentation schemes. (a) 

original images (b)segmentation results with the GS model (c) segmentation results with 

the CV model (d)segmentation result with the proposed method  
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               (a)                  (b)                      (c)                     (d)                      (e)                           (f)      

Figure.4.4. Sensitivity of segmentation results to the threshold value, 𝑇2 (a)  Original mass (b) 

Probability map of the mass (c) segmentation result with 𝑇2 = 0.5 (d) segmentation result with 𝑇2 = 0.6 

(e) segmentation result with our proposed method (𝑇2 = 0.67) (f) segmentation result with 𝑇2 = 0.8 
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The global term,  𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽) converges with near zero values as illustrated in Figure 

4.3. When 𝑇2 is a good estimate for the global minimum, 𝑟(𝑥, 𝑦, 𝜎1, 𝜎2, 𝜇1, 𝜇2, 𝑃, 𝛽) decreases 

rapidly as the number of iterations increases and finally remains stable on a near zero value. As 

shown in Figure 4.4, 𝑇2 may not be the only threshold value for a reliable segmentation outcome 

for a given mass, but in most instances our proposed method provides the required minimum 

threshold value for the global minimizer. For this database, the mean value for 𝑇2 was 0.67 ± 0.09 

with a minimum value of 0.4 and a maximum value of 0.8. 

Figure 4.5 compares the segmentation performance of the proposed method (PM), the classical 

Chan-Vese model (CV) and the active contour with selective local or global segmentation model 

(GS) on direct digital mammograms. Figures 4.5 (i) and (iii) show that the proposed method 

achieved similar segmentation performance as the CV and GS models except in regions with 

slowly varying pixel intensity values, whereas the proposed method slightly under - segments.  We 

quantified the differences between segmented areas with the Jaccard index (JI) and estimate, the 

agreement between the shape-based descriptors of segmented areas with the Euclidean distance 

(EDFD) between their Fourier descriptors, given that, they have been cited as the best performing 

shape-based descriptor for binary classification of mammographic masses. The shape of each 

segmented area was indexed with sixty Fourier descriptors.   

 

 

 

 

 

 

  

Table 4.1.  Quantitative evaluation of the performance of proposed method with different 

segmentation models 

 Mean values of the JIs Mean values of the EDFDs 

PM/CV 0.89 ±  0.07 0.05 ±0.03 

PM/GS 0.88 ± 0.06 0.06 ±0.04 

CV/GS 0.95 ± 0.04 0.04 ± 0.03 
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The mean value of JIs and EDFDs for the database of masses in this study are listed in Table 4.1. 

The proposed method achieved similar segmentation results as the CV and GS model on the size 

and shape of the segmented areas. Rahmati et al [16] reported a mean value for Jaccard indices of 

0.87 between their segmentation algorithm and expert radiologists, while Hao et al [17] reported 

mean values less than 0.85 for their proposed method and other segmentation methods. The mean 

values for the proposed method are higher than the values reported by these researchers, but it 

should be noted that their database of masses was larger than the database for this study. The 

distributions of the JIs and EDFDs for each pair of segmentation models were investigated with 

boxplots, as shown in Figures 4.6 and 4.7 respectively. Less than 7% of the Jaccard indices and 

EDFDs were classified as outliers for each pair of segmentation schemes. The EDFDs show that 

shapes of the segmented areas from the proposed method are similar to those of the CV and GS 

model, although the GS model presented more outliers than the others. These segmentation 

algorithms were implemented in Matlab R2013a on an Intel Core 2 Duo 3.0 GHz processor. The 

average processing time for the proposed method was 14 ± 2.5s as compared to the CV and GS 

models, which were 10± 1.5 s and 8± 2.1s respectively  
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The proposed method combines the random walker algorithm and particle swarm optimization to 

search for a reliable estimate of a mass-specific threshold value for the global minimum, therefore 

factors influencing any of the above-mentioned algorithms may compromise the segmentation 

accuracy of the proposed method. The particle swarm optimization method is prone to premature 

 

Figure 4.6..Boxplots illustrating the 

distribution of JIs with paired 

segmentation schemes. The central lines 

and the circles are the median and mean 

values of the JIs respectively. The edges  

of the box represent the 25th and 75th 

percentile, the end of the whiskers 

extreme values and the crosses are the 

outliers. 
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Figure 4.7. Boxplots illustrating the 

distribution of EDFDs with paired 

segmentation schemes. The central lines 

and the circles are the median and mean 

values of the EDFDs respectively. The  

edges of the box represent the 25th and 

75th  percentile, the end of the whiskers 

extreme values and the crosses are the 

outliers.   
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convergence to a local minimum. Consequently, this step can be avoided if T1, is set to a value 

representing the mean pixels in the focal region of the probability map. We set T1 = 0.7 for our 

database and more than 80% of the masses produced reasonable segmentation results with the 

derived T2 values. 

4.4 Conclusion  

The proposed approach searches a mass-specific threshold value for the global minimization of 

the convex energy functional that is representative of the mean pixel values of the highlighted 

focal region of the mass. This method is efficient in producing segmentation results that are similar 

to other segmentation methods and more importantly; it avoids the problems encountered by most 

active contour segmentation models (Figure 4.5) which are the placement of the initial contours, 

contour re-initialization and contour leakage due to a weak boundary. A minimum level of 

intervention by the user is required; therefore, this method can improve the statistical significance 

of the variability associated with delineation of the mass boundary. The placement of the initial 

level set contour is not influence by the user.   
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CHAPTER 5: MAMMOGRAPHIC MASS CHARACTERIZATION FOR TUMOUR 

MODELLING AND TUMOUR GRADING 

5.1.  Introduction 

Texture has been defined as ‘the pattern of spatial distribution of grey tone’ [1] and major texture 

regions in an image can be delineated with segmentation algorithms. In mammography, the texture 

composition of a mammographic mass differs from that of the surrounding breast tissue. For this 

reason, the segmentation procedure of a mammographic mass involves the process of extracting 

the boundary between two major texture regions of the mammogram; the mammographic mass 

region and the surrounding breast tissue. Texture analysis represents a set of mathematical models 

and procedures developed to characterise the variation of spatial distribution of grey levels (signal 

strength related to object density) for feature extraction. Feature extraction methods therefore 

consist of a set of mathematical algorithms to compute the characteristics (features) of an image 

which numerically describes its texture properties. These features are usually grouped as feature 

vectors for segmentation and classification purposes in image analysis, depending on the similarity 

criterion which specifies the quantitative measure of a certain texture feature.  

Radiologists can detect abnormal regions in mammograms because these regions exhibit obvious 

or subtle changes in appearance (grey tone) from surrounding tissues, which consequently translate 

to changes in texture. The BIRADS (Breast Imaging Reporting and Data System) [2] lexicon 

describing the appearance of a mammographic mass uses density, shape and margin. These 

features provide 80-85% of the diagnostic information relating to the degree of malignancy of a 

mammographic mass. Therefore, mathematical models utilising texture and shape analysis 

techniques can be implemented effectively in mammographic mass analysis. Numerous methods 

have been proposed in the literature for quantification and classification of texture in 

mammographic masses [3], [4], [5], [6]. However, since these methods are many and varied, but 

are still effective, one can conclude that a particular choice of method or combination of methods 
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will greatly depend on the following: understanding the mathematical basis of the method, ease of 

implementation and use, reported performance and possibly popularity in the literature (which 

would indicate widespread acceptance of the method). Texture analysis is the core of any 

Computer Aided Diagnosis (CAD) system in mammography [7], [8]. These systems utilize 

mathematically based texture features characterizing mammographic masses as input feature 

vectors to distinguish between benign and malignant lesions in a machine learning classifier 

algorithm. In contrast to all previous works in CAD systems in mammography, our approach 

characterizes and investigates the differences in statistical patterns of the intensity distribution of 

the pixels (texture features) from the surrounding tissue to the core of the mass as the clinical traits 

of the mass develop. In clinical projection mammography the mass overlaps surrounding normal 

tissues, so it is anticipated that there is a gradual transition from the centre of the mass in the 

mammographic image where the mass predominates, to the periphery of the mass in the 

mammographic image, where the normal tissue will dominate.  

A mammographic mass or tumour can be benign or malignant. If a tumour is suspected to be 

malignant  [9] all or part of it is removed. The cells and tissues are examined under a microscope 

by a pathologist to determine the tumour’s grade and other characteristics. The tumour is graded 

as (a) Grade 1: tumour cells are well-differentiated, that is, the tumour cells look like normal tissue 

and are slow growing. (b) Grade 2: moderately –differentiated that is they fall between grade 1 

and grade 3. (c) Grade 3; poorly –differentiated, that is, the tumour cells look very abnormal and 

are fast growing. The organization of these tumour cells within the mass maybe reflected in the 

computed texture features and may also depend on the grade of the tumour. To the best of our 

knowledge, tumour grading [9] has not been incorporated in the mammography CAD systems. 

Hence, the aim of this section of the thesis is to assess the texture features of mammographic 

masses in relationship to tumour modelling which is a new concept in texture analysis and tumour 

grading. Wherein, tumour modelling characterises the variation of texture features from the cores 

of biopsy-proven malignant mammographic masses to their peripheries while tumour grading 

verifies the existence of texture features that can differentiate biopsy-proven grade 2 from grade 3 

masses. 
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5.2. Statistical methods for texture analysis  

Statistical methods for quantification and classification of texture in mammography are based on 

the random spatial distribution of the grey values in mammograms with or without taking into 

consideration spatial information of the pixels in relation to other pixels. In some cases, each pixel 

is assigned a value corresponding to a specific local feature which is often derived from the spatial 

distribution of grey values within a local window, centred on the pixel of interest. Some of these 

methods are described in the following sections. 

5.2.1. First order statistical features from the histogram of image intensities [10], [11]. 

Suppose a random variable, 𝑖, represents the grey level intensity of a region of interest (ROI) of an 

image,  𝐼, such that 𝐼(𝑥, 𝑦) = 𝑖, where (𝑥, 𝑦) represents the pixel position. Then, the probability 

density of occurrence of grey level intensity, i, within the ROI is given as: 

 
ℎ(𝑖) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙, 𝑖, 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑅𝑂𝐼

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒  𝑅𝑂𝐼(𝑁)
 

 

 

(5.1) 

Let 𝐺 be the total number of intensity levels in the image, then, the descriptive metrics of the 

spatial distribution of the grey values in the ROI are defined as: 

 
𝑚𝑒𝑎𝑛 = 𝜇 =  ∑ 𝑖ℎ(𝑖)

𝐺−1

𝑖=0

 

 

 

 (5.2) 

 

 

 

 

 

 

 

 

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎2 = ∑(𝑖 − 𝜇)2ℎ(𝑖)

𝐺−1

𝑖=0

 

 

(5.3) 

 
𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝜇3 = 𝜎−3 ∑(𝑖 − 𝜇)3

𝐺−1

𝑖=0

ℎ(𝑖) 

 

(5.4) 

 

(5.4) 
 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝜇4 = 𝜎−4 ∑[(𝑖 − 𝜇)4ℎ(𝑖)] − 3

𝐺−1

𝑖=0

 
(5.5) 

(5.5) 
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𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = 𝐸 = ∑[ℎ(𝑖)]2
𝐺−1

𝑖=0

 

 

(5.6) 

 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐻 = −∑ℎ(𝑖)

𝐺−1

𝑖=0

log2[ℎ(𝑖)] 
 

(5.7) 

The sliding window algorithm is implemented for the assessment of these features. These 

statistical features are independent of the relative positions of the various grey level intensities 

within the region. The variance is a measure of deviation of the grey level intensity from the mean 

value, the skewness is a measure of the degree of the histogram asymmetry about the mean, the 

kurtosis is a measure of how peaked the histogram of the distribution is (or the flatness of the 

histogram of ROI) and the entropy measures the uniformity of the histogram.  

5.2.2. Second order statistical features  

Second order statistical features [12], [13], [14] are derived from the probability of observing a 

specific pair of pixel values, or grey level intensities (𝑖, 𝑗), in an image, separated by a distance, d, 

along a given direction, θ. The co-occurrence matrix is a measure of the probability of co-

occurrence of pairs of pixel values. It becomes the probability distribution function for the 

derivation of second order statistical features with parameters,  𝑑 and 𝜃. Generally, the orientation, 

𝜃, is quantized into four directions of angular degree, 00, 450, 900 and 1350, however when 𝑑 =

0, the second order statistics become first order statistics. For a given image, 𝐼, where 𝐼(𝑥1, 𝑦1) is 

the grey value of pixel position  (𝑥1, 𝑦1); 𝐼(𝑥2, 𝑦2) is the grey value of another pixel at a distance 

d from pixel position(𝑥1, 𝑦1) with direction 𝜃, such that 𝑥2 − 𝑥1 = 𝑑|𝑐𝑜𝑠𝜃| and 𝑦2 − 𝑦1 =

𝑑|𝑠𝑖𝑛𝜃|, then the co-occurrence matrix, 𝑃(𝑖, 𝑗) =  {|(𝑥1, 𝑦1), (𝑥2, 𝑦2)| 𝐼(𝑥1, 𝑦1) = 𝑖 , 𝐼(𝑥2, 𝑦2) =

𝑗 }. 

From the co-occurrence matrix, 𝑃(𝑖, 𝑗), the following second order statistical features [15] are 

computed: 
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𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑𝑃(𝑖, 𝑗)2
𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

5.8 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ ∑𝑃(𝑖, 𝑗) log2 𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

5.9 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
1

(𝐺 − 1)2
∑ ∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

5.10 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
1

𝜎𝑥𝜎𝑦
∑ ∑𝑖𝑗𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

5.11 

where, 

 

𝜇𝑥 = ∑ 𝑖

𝐺−1

𝑖=0

∑𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

 

 

 

5.12 

 

𝜇𝑦 = ∑ 𝑗

𝐺−1

𝑗=0

∑𝑃(𝑖, 𝑗)

𝐺−1

𝑖=0

 

 

 

5.13 

 

𝜎𝑥 = ∑(𝑖 − 𝜇𝑥)
2

𝐺−1

𝑖=0

∑𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

 

 

 

5.14 

 

𝜎𝑦 = ∑(𝑗 − 𝜇𝑥)
2

𝐺−1

𝑗=0

∑𝑃(𝑖, 𝑗)

𝐺−1

𝑖=0

 

 

5.15 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑ ∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

5.16 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

5.17 
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𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  

1

2
∑ ∑(𝑖 − 𝜇𝑥)

2𝑃(𝑖, 𝑗) + (𝑖 − 𝜇𝑦)
2
𝑃(𝑖, 𝑗) 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

      5.18 

 
 

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

2
∑ ∑ 𝑖𝑃(𝑖, 𝑗) + 𝑗 𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

       5.19 

 

 

5.19 

Suppose 

 

𝑃𝑥(𝑖) = ∑𝑃(𝑖, 𝑗)

𝐺−1

𝑗=0

 

       5.20 

 

𝑃𝑦 (𝑗) = ∑𝑃(𝑖, 𝑗)

𝐺−1

𝑖=0

 

 

5.21 

 

𝑃𝑥+𝑦(𝑘) =  ∑ ∑𝑃(𝑖, 𝑗)                                   ,          𝑖 + 𝑗 = 𝑘

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

5.22 

 for k =  0, 1, 2 ………2(G − 1), 

 

5.23 

 

𝑃𝑥−𝑦(𝑘) = ∑ ∑𝑃(𝑖, 𝑗)                                   ,          |𝑖 − 𝑗| = 𝑘

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

5.24 

 for  k = 0,1, ………………G − 1,  

 

then 
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𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃𝑥+𝑦(𝑖) log 𝑃𝑥+𝑦(𝑖)

2𝐺−2

𝑖=0
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𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑃𝑥−𝑦(𝑖) log 𝑃𝑥−𝑦(𝑖)

𝐺−1

𝑖=0
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𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ [(𝑖 − ∑[𝑖𝑃𝑥−𝑦(𝑖)]

𝐺−1

𝑖=0

)

2

𝑃𝑥−𝑦(𝑖)]

𝐺−1

𝑖=0

 

 

5.27 

Table 5.1 gives a brief description of some of these local texture features. 

Table 5.1: A selection of some second order statistical texture features and their meaning 

Texture features Meaning 

Energy Measures the smoothness of the image. 

Entropy Measures the amount of randomness of the entries in the co-

occurrence matrix, generally homogenous images have low entropy 

Correlation Measures the linear dependency of grey levels on those of 

neighbouring pixels 

Contrast Measures the similarity of pixel pairs 

Variance Measures the spread in pixel intensities 

Sum average Average of pixel intensities 

Homogeneity Measures the uniformity of the image 

Dissimilarity Dissimilarity feature is highly correlated to the variance of the 

entries in the co-occurrence matrix. 
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5.2.3.  Run length grey–level statistics [16] 

Texture features representing continuous patterns of image intensity in specific directions can be 

extracted from the run-length matrix of an image. The run length defined as the number of pixels 

of a given grey value in a sequence in a given direction, hence, the (𝑖, 𝑗)𝑡ℎ entry of the run-length 

matrix 𝑝(𝑖, 𝑗) for a specific direction is defined as the number of runs with pixels grey level, i, and 

run length, j. Suppose 𝑁𝑟 is the number of different run lengths and 𝑃 is the total number of pixels 

in the image, then the following texture features can be derived from the run-length statistics: 

 
𝑠ℎ𝑜𝑟𝑡 𝑟𝑢𝑛 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠(𝑆𝑅𝐸) =  

∑ ∑ 𝑝(𝑖, 𝑗)/𝑗2
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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𝑙𝑜𝑛𝑔 𝑟𝑢𝑛𝑠 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠(𝐿𝑅𝐸) =  

∑ ∑ 𝑗2𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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𝑔𝑟𝑒𝑦 𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 (𝐺𝐿𝑁) =  
∑ [∑ 𝑝(𝑖, 𝑗)

𝑁𝑟
𝑗=1 ]

2𝐺−1
𝑖=0

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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𝑅𝑢𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦(𝑅𝐿𝑁) =  
∑ [∑ 𝑝(𝑖, 𝑗)𝐺−1

𝑖=0 ]
2𝑁𝑟

𝑗=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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𝑅𝑢𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑅𝑃) =  

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0

𝑃
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𝑙𝑜𝑤 𝐺𝑟𝑒𝑦 − 𝑙𝑒𝑣𝑒𝑙 𝑅𝑢𝑛 𝐸𝑚𝑝ℎ𝑎𝑠𝑖𝑠(𝐿𝐺𝑅𝐸) =  

∑ ∑ 𝑝(𝑖, 𝑗)/𝑖2
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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ℎ𝑖𝑔ℎ 𝐺𝑟𝑒𝑦 − 𝐿𝑒𝑣𝑒𝑙 𝑅𝑢𝑛 𝐸𝑚𝑝𝑎𝑠𝑖𝑠(𝐻𝐺𝑅𝐸) =  

∑ ∑ 𝑖2𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝐺−1
𝑖=0
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Standard mammography is plagued by overlapping tissues whereby breast structures will project 

on each other on a mammogram, creating the appearance of random variation in pixel values or 
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texture primitive within the mass region and surrounding breast tissue. As a result, texture features 

are non- directional, hence each run length feature is expressed as the average value evaluated in 

the directions; 00, 450, 900 and 1350. These features capture the coarseness, homogeneity and 

uniformity of a region of interest. For example, homogeneous images exhibit high long-run 

emphasis, low grey-level non-uniformity and low run percentage. The run length histogram will 

be considered as a texture feature for tumour modelling. Table 5.2 gives a brief description of the 

features captured by the different run length variables. 
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Table 5.2: Run length texture features and description. 

Texture feature Description 

Short Run emphasis  Measures the occurrence of short runs 

Long Run Emphasis Measures the occurrence of long runs 

Low Grey Level Run Emphasis Measures the distribution of pixels weighted towards 

low intensity 

High Grey level Run emphasis Measures the distribution of pixels weighted towards 

high intensity 

Short Run Low Grey level emphasis  Measures the occurrence of short runs weighted 

towards low intensity 

Long Run Low Grey level emphasis Measures the occurrence of long runs weighted 

towards low intensity 

Short run  high Grey level emphasis Measures the occurrence of short runs weighted 

towards high intensity 

Long run  high Grey level emphasis Measures the occurrence of long runs weighted 

towards high intensity 

Run Grey level non-uniformity Measures the similarity of pixel intensities 

Run length non- uniformity Measures the similarity of lengths of pixel  

Run percentage  Measures the overall homogeneity of the histogram. 

This value is maximal, when all runs are of unity 

length irrespective of the gray level 
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5.3. Structure and characteristics of mammographic masses in standard 

mammography 

Mammographic masses have highlighted focal regions [17] also known as cores, with dimmer 

concentric layers radiating outwards with diversified clinical indicators. These masses present 

varying statistical patterns from the core to the periphery as the clinical traits of the mass develops. 

Malignant masses normally infiltrate the surrounding breast tissue [2] hence they exhibit ill-

defined boundaries with rough contour, spiculations, concavities and micro-lobulations while 

benign masses are homogenous with well-defined edges and in most cases they possess smooth, 

round or oval shapes with macro-lobulations as shown in Figure 5.1 and Table 5.3 respectively. In 

two dimensional standard mammography some of these features are intertwined with features from 

normal tissues which surround the masses because projection imaging gives rise to partial overlap 

of different tissues and structures of the breast anatomy.  

Summary of typical mass characteristics 

 

 

 

 

 

 

 

 

 

 

 

  

Benign                                                                                                              Malignant 

                                                    

 

 

 

Figure 5.1: Morphological Shape type description of mammographic masses [20] 

Round  Lobulated Micro-lobulated Stellate  
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Table 5.3: Margin descriptive features [20] 

Margin Likely Benign Suspicious Highly Suspicious 

of  

Malignancy 

Well-defined X   

Obscured/75% hidden 

or more 

 X  

Micro-lobulated  X  

Indistinct and ill-

defined 

 X X 

Spiculated   X 

 

Local features are encoded in the statistical patterns of sub-regions of a mass and the spatial 

pattern distribution of these local features reveal clues on the clinical diagnosis of a mass. For 

this reason, the problem of classifying or determining the characteristics of a mass can be 

expressed as a problem of natural scene classification in which cues from different contextual 

regions of interest, are integrated to build a holistic global representation of the mass region to 

improve classification performance [18]. Many approaches have been considered, such as a 

pair of contextual regions of interest, namely: the core region and the margin. Peripheral 

diagnostic information of the mass is extracted from the margin [19] and it is generally 

represented as a narrow band or a ribbon of pixels surrounding the edge of the mass. The ribbon 

of pixels is obtained by morphological dilation of the contour depicting the edge of the mass 

with a circular structuring element of a specified number of pixels. 
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5.3.1. Mathematical expression of the binary contextual regions of interest 

model[18] 

Consider a mass of mean radius,  𝑅. Suppose 𝐿0 is a binary mask of the mass and 𝐷 is a disk 

structuring element with radius 𝛼𝑅, where 𝛼 < 1.  Let the dilation of L0 be given as 𝐿1 = 𝐿0 ⊕

𝐷 and the erosion as  𝐿2 = 𝐿0 ⊖  𝐷, then the margin is expressed as, 𝑀 = (𝐿1 − 𝐿2)x 𝑀𝑎𝑠𝑠. 

The rest of the mass = 𝐿2 ∗ 𝑚𝑎𝑠𝑠. Figure 5.2 gives an example of a binary contextual region 

of mass.  
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(a)                           (b)                           (c)                             (d)                            (e) 

Figure: 5.2.  Example of a binary contextual ROI. (a) Original mass (b) Delineated mass with 

boundary (c) boundary with the dilation and erosion shown in red, (d) Mass margin (M), (e) The rest 

of the mass 
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5.4 Aim 

The aim of this chapter is to assess the variation of texture features from the cores of biopsy-

proven malignant mammographic masses to their peripheries and to verify the existence of 

texture features that can differentiate biopsy-proven grade 2 from grade 3 masses.  

5.5.  Methods 

The database is described and the set procedures required for tumour modelling and tumour 

grading is outlined.  

5.5.1 DATABASE 

Digital mammograms were acquired from a dedicated digital mammography unit, Selenia 

DIMENSIONS (Hologic, Bedford, MA), in two standard projections (MLO and CC). The 

digital image receptor is a 24x29 cm amorphous selenium detector with a pixel size of 70 µm. 

Each digital mammogram is displayed on a high luminance, high spatial resolution monitor at 

14 bit gray scale. The data set for tumour modelling consisted of 15 biopsy-proven malignant 

masses from 15 mammograms of which six are grade 3 masses and nine grade 2 masses. The 

region of interest containing each mass lesion was cropped and the matrix size ranges from 

1500x1500 to 900x800 pixels for the malignant masses. Each mass was delineated with the 

three layer concentric ring model as shown below in Fig 5.3. An ethics approval number of 

72/02c (2015) which was an extension of study 72/07A (2010) was given for the study 

5.5.2. Three layers concentric ring model: outer region boundary, margin and the core 

Outer region boundary (𝑅𝑒𝑔𝑖𝑜𝑛 1) =  (𝐿1 − 𝐿2)X𝑀𝑎𝑠𝑠 

 

5.45 

Margins region (𝑅𝑒𝑔𝑖𝑜𝑛2) = (𝐿2 − 𝐿3)X𝑀𝑎𝑠𝑠 5.46 

Core of the mass (𝑅𝑒𝑔𝑖𝑜𝑛 3) = 𝐿3X𝑀𝑎𝑠𝑠 

 

5.47 

where 𝐿3 is the erosion of 𝐿2, that is 𝐿3 = 𝐿2 ⊖𝐷. 
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5.6  Data collection and texture feature vector computation 

Region 1, Region 2 and Region 3 denote the outer region boundary, margin and the core of the 

mass respectively and they constitute the three layers concentric ring model. For each mass in 

the database, the first order statistics [10, 11], second order statistics [12, 13] and the run length 

grey statistics [16] where computed for each region (region 1, region 2 and region 3) with 

different sizes of the sampling window. The mean and standard deviation of each texture 

feature was calculated for Region 1, Region 2 and Region 3 for each window size to represent 

the texture feature vector for the corresponding region and window size. Graphs and bar charts 

were plotted to provide a visual representation of the differences in texture feature vectors 

between regions and mass grade. On a mammogram there are different groups of pixels which 

are mutually related by a specific texture pattern. These groups have random sizes (areas), 

hence a varying sampling widow size is needed to capture the content of these texture 

primitives effectively. In this thesis, the sampling window sizes were 7X7, 9X9, 11X11 and 

13X13 pixels representing square patches of 490 X 490 µm, 630 X 630 µm, 770 X 770 µm 

and 910 X 910 µm respectively. 

      

(a)                         (b)                          (c)                           (d)                           (e)      

Fig. 5.3. Example of three layers concentric ring model (a) Original mass, (b) Delineated 

regions of interest, (c) Region 1, (d) Region 2, (e) Region 3. 
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5.7  Results 

The bit-depth of an image is the number of different tones that can be assigned to each pixel 

in the image, hence each pixel in the mammograms is assigned a grey value between 0-255 

representing a bit-depth of 8 bits. Generally, the more grey tones an image has the more detail 

can be represented in the image. The sampling window defines the sub -region within the 

mammogram within which the textural characteristics is assessed and a single value is assigned 

to the central pixel of the sampling window to represent the content or the texture feature vector 

of the window. As the size of the sampling window increases more data points are added to 

the data set for texture feature assessment. Hence the magnitude of the calculated texture 

feature will vary with the bit-depth of the image and the sampling window size. In this thesis, 

the bit-depth for all images was set at 8 bits to avoid loss of micro-texture features since a bit-

depth less than 255 will effectively smooth the image.  
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5.7.1 Variation in first order statistical texture features   

Variation in first order statistical texture features in regions 1, 2 and 3. The sampling window 

size (winsize) were 7, 9, 11 and 13 while the bit-depth of each image was 8 bits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

(a)                                                                                            (b) 

Figure 5.4. Variation of first order texture features with winsize in regions 1, 2 and 3. (a) Variation 

of variance with winsize (b) variation of skewness with winsize 

    

                      (a)                                                                           (b) 

Fig. 5.5. Variation of first order texture features with winsize in regions 1, 2 and 3. (a) Variation 

of kurtosis with winsize (b) Variation of uniformity with winsize 
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(a)                                                                                              (b) 

Fig. 5.6 Variation of entropy with winsize in regions 1,2and 3 for grade 3 and grade 2 masses 
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                                         (a)                                                                                  (b) 

    

                           (c)                                                                                          (d) 

Fig. 5.7. Variation of mean pixel values, variance, skewness and kurtosis in grade 3 and grade 2 

masses 
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                                                                            (b) 

Fig.5.8. Variation of uniformity (a) and entropy (b) in grade 2 and grade 3 masses 
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Both the anova test and the t-test can be used to determine if the difference between the means 

of two population groups is significant. Hence it was appropriate to use the t-test to compare 

paired regions.  

 

 

 

 

 

 

 

 

  

TEXTURE 

FEATURE 

Comparing Region 1 And 

Region 2 

Comparing Region 2 

And Region 3 

Comparing Region 3 And 

Region 1 

P value of 

MeanR1  > 

MeanR2 

P value of 

MeanR1  < 

MeanR2    

P value of 

MeanR2  > 

MeanR3 

P value of 

MeanR2  < 

MeanR3    

P value of 

MeanR3  > 

MeanR1 

P value of 

MeanR3  < 

MeanR1    

MEAN 0.0282     0.0023 0.0087   

VARIANCE 0.0153     *  * * 

SKWENESS   0.0187   0.0056 0.0102   

KURTOSIS   0.0350 * *  *  * 

UNIFORMITY 3.892E-17     0.0029 *  * 

ENTROPY 0.0174    * * * *  

Table 5.4: Statistical analysis of first order texture features in tumour modelling with the two sample 

t-test for difference of means. 

H0 (Null hypothesis): The mean of region i (MeanRi) is equal to the mean of region j (MeanRj) 

H1 (Alternative): The mean of region i (MeanRi) is greater than the mean of region j (MeanRj) Or 

that the mean of region i (MeanRi) is less than the mean of region j (MeanRj). The significant level 

is 5% hence if a p-value is less than 0.05, the null hypothesis of equal means is rejected and the 

alternative is accepted 

 

 

*  P-values are greater than 0.05, hence the null hypothesis is accepted. 
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TEXTURE 

FEATURES mean 

 

variance 

 

skewness kurtosis  uniformity  entropy 

P-VALUES 0.850697  0.019144  0.04576 0.084231 0.090016 0.022137 

 

5.7.2 Variation in run length statistical texture features.  

Variation in run length statistical texture features in regions 1, 2 and 3 .The sampling window 

sizes (winsize) were 7, 9, 11 and 13 while the bit-depth of each image was 8 bits 

 

 

 

 

 

 

 

 

 

  

(a)                                                                          (b) 

Fig.5.9. Variation of grey level non-uniformity [GLN] in grade 3 (a) and grade 2 (b) masses 
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Table 5.5: Statistical analysis of Frist order texture features in tumour grading with the two sample 

t-test assuming unequal variance. 

H0 (Null hypothesis): There is no statistical difference between the mean of the texture feature of 

grade 2 and grade 3 masses. The significant level is 5% hence if a p-value is less than 0.05, the null 

hypothesis of equal means is rejected 
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(a)                                                                    (b) 

Fig.5.10. Variation of Run percentage [RP] in grade 3(a) and grade 2(b) masses 

  

(a)                                                                 (b) 

Fig.5.11. Variation of Long run emphasis [LRE] in grade 3(a) and grade 2(b) masses 
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(a)                                                                        (b) 

Fig.5.12. Variation of short run emphasis [SRE] in grade 3(a) and grade 2(b) masses 

  

(a)                                                                  (b) 

Fig.5.13. Variation of high grey level run emphasis[HGRE] in grade 3(a) and grade 2(b) masses 
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(a)                                                                     (b) 

Fig.5.14. Variation of run length non-uniformity [RLN] in grade 3(a) and grade 2(b) masses 

   

(a)                                                                 (b) 

Fig.5.15. Variation of low grey level run emphasis [LGRE] in grade 3(a) and grade 2(b) masses 
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(a)                                                                           (b) 

Fig.5.16. Variation of grey level non-uniformity [GLN] (a) and run percentage [RP] (b) in 

grade 2 and grade 3 masses 

 

Fig.5.17. Variation high grey level run emphasis [HGRE] in grade 2 and grade 3 masses 
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(a)                                                                            (b) 

Fig.5.18. Variation long run emphasis [LRE] (a) and short run emphasis [SRE] (b) in grade 2 and 

grade 3 masses 

 

     

(a)                                                                       (b) 

Fig. 5.19. Variation run length non-uniformity [RLN] (a) and low grey level run emphasis [LGRE] 

(b) in grade 2 and grade 3 masses 
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RUN 

LENGTHS 

Comparing Region 1 And 

Region 2 

Comparing Region 2 

And Region 3 

Comparing Region 3 

And Region 1 

TEXTURE 

FEATURES 

P values of 

MeanR1  > 

MeanR2 

P values of 

MeanR1.< 

MeanR2    

P values of 

MeanR2  > 

MeanR3 

P values of 

MeanR2  < 

MeanR3    

P Value of 

MeanR3  > 

MeanR1 

P values of 

MeanR3  < 

MeanR1    

SRE   0.0021   6.14E-07 6.21E-06   

LRE 0.0115   0.0001     9.121E-06 

GLN   0.0076   7.303E-07 3.01E-06   

RP 2.282E-05     0.0001 * *  

RLN   0.0275   0.0651 0.0093   

LGRE   7.188E-07 3.08E-05     0.0455 

HGRE *  * 0.0006     0.0009 

Table 5.6: Statistical analysis of runlengths texture features in tumour modelling with the two 

sample t-test for difference of means 

H0 (Null hypothesis): The mean of region i (MeanRi) is equal to the mean of region j (MeanRj) H1 

(Alternative): The mean of region i (MeanRi) is greater than the mean of region j (MeanRj) Or that 

the mean of region i (MeanRi) is less than the mean of region j (MeanRj). The significant level is 

5% hence if a p-value is less than 0.05, the null hypothesis of equal means is rejected, and the 

alternative is accepted 

 

 

 

 

 

 

 

 

*  P-values are greater than 0.05, hence the null hypothesis is accepted. 
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TEXTURE 

FEATURES SRE LRE GLN RP RLN LGRE HGRE 

P-VALUES 0.1780 0.0914 0.0614 0.6857 0.0001 0.4298 0.1233 

Table 5.7: Statistical analysis of runlength texture features in tumour grading with the two 

sample t-test assuming unequal variance. 

H0 (Null hypothesis): There is no statistical difference between the mean of the texture feature 

of grade 2 and grade 3 masses. The significant level is 5% hence if a p-value is less than 0.05, 

the null hypothesis of equal means is rejected 
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5.7.3 Variation in second order statistical texture features.  

Variation in second order statistical texture features in regions 1, 2 and 3 .The sampling 

window sizes (winsize) were 7, 9, 11 and 13 while the bit-depth of each image was 8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

(a)                                                                          (b) 

Fig. 5.20 Variation of contrast grade 3(a) and grade 2 masses (b) 

   

(a)                                                                      (b) 

Fig. 5.21.Variation of correlation grade 3(a) and grade 2 masses (b) 
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(a)                                                                        (b) 

Fig.5.22 Variation of energy grade 3(a) and grade 2 masses (b) 

   

(a)                                                (b) 

Fig.5.23 Variation of homogeneity grade 3(a) and grade 2 masses (b) 
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(a)                                                                     (b) 

Fig.5.24 Variation of contrast (a) and correlation (b) grade 3 and grade 2 masses  

   

(a)                                                                        (b) 

Fig. 5.25. Variation of energy (a) and homogeneity (b) grade 3 and grade 2 masses  
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(a)                                                              (b) 

Fig.5.26. Variation of sum of variance in grade 3 (a) and grade 2 (b) masses 

   

(a)                                                                       (b) 

Fig.5.27. Variation of difference variance in grade 3 (a) and grade 2(b) masses 
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(a)                                                               (b) 

Fig. 5.28. Variation of sum average in grade 3 (a) and grade 2 (b) masses 

 

  

(a)                                                        (b) 

Fig.5.29. Variation of sum entropy in grade 3 (a) and grade 2 (b) masses 
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(a)                                                             (b) 

Fig.5.30. Variation of difference entropy in grade 3 (a) and grade 2 (b) masses 

 

(a)                                                     (b) 

Fig5.31. Variation of entropy in grade 3 (a) and grade 2 (b) masses. 
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(a)                                                               (b) 

Fig.5.32. Variation of entropy (a) and sumentropy (b) in grade 2 and grade 3 masses 

 

   

(a)                                                                   (b) 

Fig.5.33. Variation of sum variance (a) and sum of variance (b) with grade 2 and grade 3 

masses 
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Fig.5.34. Variation of sum average (a) and difference variance (b) with grade 2 and grade 3 masses 

 

 

Fig.5.35. Variation of difference entropy with grade 2 and grade 3 masses 
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SECOND 

ORDER 

TEXTURE 

FEATURES  

Comparing Region 1 

And Region 2 

Comparing Region 2 

And Region 3 

Comparing Region 3 And 

Region 1 

P value of 

MeanR1  > 

MeanR2 

P value of 

MeanR1  < 

MeanR2    

P value of 

MeanR2  > 

MeanR3 

P value of 

MeanR2  < 

MeanR3    

P value of 

MeanR3  > 

MeanR1 

P value of 

MeanR3  < 

MeanR1    

Contrast   2.502E-05   0.0284   1.083E-05 

Correlation 0.0002   0.00072   4.731E-06   

Energy *  * 0.0009    0.0003 

Homogeneity * *  0.0004   1.619E-05   

Entropy * *    0.0005   0.0001 

Sum of 

variance   0.0215  0.0002   0.0021 

Sum average   6.418E-07   *  7.703E-05 

Sum variance   5.604E-07   0.0004  * * 

Sum entropy 0.0298     0.0011   0.0159 

Difference 

variance   1.047E-07   0.0102   2.322E-08 

Difference 

entropy   0.0007   0.0003   1.448E-05 

Table 5.8 : Statistical analysis of second order texture features in tumour modelling with the two 

sample t-test for difference of means. H0 (Null hypothesis): The mean of region i (MeanRi) is equal 

to the mean of region j (MeanRj) H1 (Alternative): The mean of region i (MeanRi) is greater than 

the mean of region j (MeanRj) Or that the mean of region i (MeanRi) is less than the mean of region 

j (MeanRj). The significant level is 5% hence if a p-value is less than 0.05, the null hypothesis of 

equal means is rejected, and the alternative is accepted 
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TEXTURE FEATURES P-VALUES 

Contrast 0.864 

Correlation 0.722 

Energy 0.202 

Homogeneity 0.343 

Entropy 0.072 

Sum of variance 0.074 

Sum average 0.297 

Sum variance 0.693 

Sum entropy 0.722 

Difference variance 0.285 

Difference entropy 0.718 

Table 5.9: Statistical analysis of runlength texture features in tumour grading with the student 

t-test of two samples assuming unequal variance. 

H0 (Null hypothesis): There is no statistical difference between the means of the texture feature 

of grade 2 and grade 3 masses. The significant level is 5% hence if a p-value is less than 0.05, 

the null hypothesis of equal means is rejected. 
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5.8  Summary of Results and Discussion  

Some clinical traits of mammographic masses are reflected in their shapes and textural 

composition. Fig5.4 and Fig. 5.5 shows the variation of first order texture features with winsize 

in regions 1, 2 and 3. The variance and uniformity for regions 1, 2 and 3 decrease as the size 

of the sampling window increases, as shown in Fig. 5.4a and 5.5b respectively. While Fig.5.5.a 

and Fig.5.6 shows that the kurtosis and the entropy of the region of interest increases with the 

size of the sampling window in regions 1, 2 and 3. The skewness behaves differently; in region 

1 the skewness decreases with increase in winsize, in region 3 it increases with winsize and in 

region 2 it varies very slowly with winsize as shown in Fig.5.4b. The relationship between the 

kurtosis (Fig 5.5a) and the sampling size indicates that as the sampling size increases the 

histogram of the region is heavy-tailed relative to a normal distribution, hence the data set of 

the histogram tends to have many outliers. Skewness is a measure of the symmetry of a 

distribution. From Fig. 5.4 (b), it illustrates that the distribution of the pixel values in region 2 

is close to that of a normal distribution as compared to that of region 1 and region 3. Region 1 

has a mean negative skewness while region 3 has a mean positive skewness, hence a good 

candidate illustrating the difference in texture from the core of the mass to the periphery with 

the three layers concentric ring model, moreover, these signs are independent of winsize. The 

distance between the skewness of region 1 and region 2, region 2 and region 3 increases with 

winsize, hence winsize 13 provides the best separation for this texture measure. The first order 

statistical texture features were evaluated with the two tailed two sample t-test for difference 

of means, to find out if there were statistical differences between the means of the texture 

features of the different regions for winsize 13. The significant level was set at 0.05. Those 

regions with p values less than 0.05 were further investigated with the one tailed two sample 

t-test to find out which mean texture values were greater. Table 5.4 shows that there was no 

difference in the mean texture features of variance, kurtosis, uniformity and entropy between 

region 3 and region 1while there were statistical differences in the mean texture features of 

region 1 and region 2 However skewness is consistent in its performance because region 1 is 

less than region 2 and region 2 is less than region 3. Fig.5.7 and Fig. 5.8 shows a 3-dimensional 

graph of the first order texture measures for region 1, region 2 and region 3 for all the masses 

in this study (grade 2 and grade 3). From these graphs there is no distinct first order texture 
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feature that can be used to distinguish between grade 2 and grade 3 masses, because visually, 

there is no distinct margin separating these texture features into grade 2 and grade 3, however 

this may not be the case with the application of a clustering algorithm. Further evaluation of 

these features with the two sample t-test for difference of means, revealed that there were 

significant differences between the means of texture features of variance, skewness and 

entropy for grade 2 and grade 3 masses as shown in Table 5.5   

Fig. 5.9 to Fig. 5.15 show the comparison between the run length texture features of grade 3 

and grade 2 masses. They are similar in magnitude and show similar trend as the winsize 

increases. The GLN feature increase with increase in winsize with region 3 having the highest 

value with each winsize as illustrated in Fig.5.9a and Fig.5.9b. As the winsize increases the 

distances between the GLN feature of region 1 and 2, region 2 and 3 increase. Fig. 5.10 shows 

that the RP texture is maximum for all regions when the winsize is 9, however region 2 has the 

minimum value for all winsizes. The region 3 has the minimum value for the LRE texture 

feature for both grade 3 and grade 2 masses with winsize 13 having the highest values for all 

regions as shown in Fig.5.11. The SRE feature was maximum for region 3 and minimum for 

region 1 for all winsizes while SRE and HGRE had minimum values with winsize13 as shown 

in Fig. 5.12 and Fig. 5.13 respectively. Thus, SRE can be used to monitor the change in texture 

from the core to the periphery of a grade 2 or grade 3 mass. The LGRE feature was minimum 

for region 3 and maximum for region 2 in grade 2 and grade 3 masses for all winsizes. 

However, for winsize 13 the LGRE and the RLN were maximum as illustrated in Fig. 5.14 and 

Fig. 5.15 respectively. The two tailed two sample t-test for difference of means was used to 

determine if the difference between the means of any two regions was statistically significant. 

These results are shown in Table 5.6. There was no statistical difference between the means of 

texture feature HGRE for region 1 and region 2, and for texture feature RP for region 1 and 

region 3. Further analysis with the one tailed two sample t-test for difference of means on the 

same data, shows that the mean of texture feature LRE of region 1 was greater than that of 

region 2 and that of region 2 is greater than that of region 3. For texture features SRE, GLN 

and RLN, the mean of region 1 was less than that of region 2 and that of region 2 was less than 

that of region 3. Hence LRE, SRE, GLN and RLN showed consistency in their performance. 

Thus SRE, GLN, RLN and LRE can be used to monitor the change in texture from the core to 
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the periphery of grade 2 and grade 3 masses. Fig. 5.16 to Fig5.19 illustrate scatter plots for the 

run length statistical features for grade 2 and grade 3 masses. From visual inspection, the run 

length texture features RLN and LGRE can separate grade 2 and grade 3 masses because there 

exists a margin of separation between the two grades as shown in Fig.5.19. In Fig 5.19a, the 

margin of separation for the RLN texture feature is located in the region 1 plane while in 

Fig.5.19b, the margin of separation for the LGRE texture feature is situated in the region 3 

plane. Fig.5.16 , Fig5.17and Fig.5.18 show that SRE,GLN, RP and HGRE do not exhibit a 

distinct margin separation between grade 2 and grade 3 masses , however with the application 

of a clustering algorithm the presence of such margin can be discovered. Further investigation 

with the two tailed two sample t-test assuming unequal variance, indicated that only texture 

feature RLN rejected the null hypothesis with p-value = 0.0001, as shown in table 5.7 

Fig. 5.20 to Fig. 5.23 illustrate the variation of some second order statistical texture feature of 

region 1, region 2 and region 3 with winsize. The contrast decreases with an increase in winsize 

and region 1 had minimum values for all winsizes while region 3 had maximum values. Both 

correlation, energy and homogeneity increase with an increase in winsize with region 3 having 

minimum values while region 1 exhibited maximum values for correlation texture feature. Fig. 

5.24 to 5.25 illustrates the scatter plots for the second order texture features for the grade 3 and 

grade 2 masses. From visual inspection there is no margin of separation between the two grades 

of masses, hence these features cannot be used for tumour grading in mammography. However, 

the presence of hidden margins of separation can be revealed with clustering algorithms.  

Fig.5.26 shows the variation of the sum of variance with winsize for the different masses. As 

the winsize increases the sum of variance decreases but the overall distances between the sum 

of variance of the regions increases, hence winsize 13 represents measurable distances of 

separation between the sum of variance of region 1 and region 2 and also region 2 and region 

3. The distances of separation of sum entropy and entropy between region 1 and region 2, 

region 2 and region 3 are very small as shown in Fig.5.29 and Fig.5.31 respectively while the 

texture feature, difference entropy gives measurable distance of separations for these regions. 

The two tailed two sample test was applied to the data to verify if there were statistical 

differences between the mean texture features of these regions. It revealed that there were no 
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statistical differences between the means of texture features, energy, homogeneity and entropy 

of region 1 and region 2. Further analysis with the one tailed two sample t-test for difference 

of means, showed that the mean contrast of region 1 is greater than that of region 2 and that of 

region 2 is greater than that of region 3. For, sum variance, difference variance and difference 

entropy, the means of region 1 were less than that of region 2 and that of region 2 were less 

than that of region 3 as shown in Table 5.8. Table 5.9 shows that there were no statistical 

differences between means of grade 2 and grade 3 second order texture features. Hence second 

order texture features cannot be used for tumour grading. 

Statistical analysis had shown that means of skewness, SRE, GLN, RLN, contrast, sum 

variance, difference variance and difference entropy decrease in the following order region 1, 

region 2 and region 3 while for correlation and LRE the reverse is true. Statistically the result 

shows that there is a difference between the mean values of grade 2 and grade 3 masses for the 

following texture features, entropy, skewness, variance and RLN 

 

5.9  Conclusion 

This study shows that there exists a statistical measurable change in the magnitude of some 

texture features from the core to the periphery of grade 2 and grade 3 masses. Skewness, SRE, 

GLN, RLN, contrast, sum variance, difference variance, LRE and difference entropy texture 

features present measurable statistical changes between these regions (p-values <0.05) for 

winsize 13. The magnitudes of these changes might depend on the winsize. These features can 

be used for tumour modelling, where, tumour growth is related to the change in texture features 

for these masses. 

This study also illustrates the existence of statistical difference in mean values between grade 

2 and grade 3 for, entropy, skewness, variance and RLN as shown in Table 5.5 and Table 5.7. 

Thus, these texture features can be used for tumour grading. 
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However, the number of masses assessed in this study was limited and further study would be 

useful to better understand this phenomenon and to extend it to include tomographic and tomo-

synthetic type breast imaging so that the problem of overlying tissue is overcome. 

  

 

  



156 

 

5.10 References 

 

[1]  R. M. Haralick and . S. Karthikeyan , "Textural features for image classification," 

IEEE Transactions on systems, man, and cybernetics, vol. 6, pp. 610-621, 1973.  

[2]  E. A. Sickles, C. J. D’Orsi, L. W. Bassett, C. M. Appleton, W. A. Berg and . E. S. 

Burnside, Acr bi-rads® mammography. ACR BI-RADS® atlas, breast imaging 

reporting and data system, vol. 5, American College of Radiology (ACR), 2013.  

[3]  S. Berkman, C. Heang‐Ping, P. Nicholas, A. H. Mark and M. G. Mitchell, 

"Computerized characterization of masses on mammograms: The rubber band 

straightening transform and texture analysis," Medical Physics, vol. 26, no. 4, pp. 

516-526, 1998.  

[4]  M. E Mavroforakis, H. V. Georgiou, N. Dimitropoulos, D. Cavouras and S. 

Theodoridis, "Mammographic masses characterization based on localized texture and 

dataset fractal analysis using linear, neural and support vector machine classifiers," 

Artificial Intelligence in Medicine, vol. 37, no. 2, pp. 145-162, 2006.  

[5]  S. V. da Rocha, G. B. Junior, C. A. Silva, A. C. de Paiva and M. Gattass, "Texture 

analysis of masses malignant in mammograms images using a combined approach of 

diversity index and local binary patterns distribution."," Expert Systems with 

Applications, vol. 66, pp. 7-19, 2016.  

[6]  A. Kamra, V. K. Jain, S. Singh and S. Mittal, "Characterization of Architectural 

Distortion in Mammograms Based on Texture Analysis Using Support Vector 

Machine Classifier with Clinical Evaluation," Journal of digital imaging, Vols. 104-

114, no. 1, p. 29, 2016.  



157 

 

[7]  J. Dheeba, A. Singh and S. T. Selvi, "Computer-aided detection of breast cancer on 

mammograms: A swarm intelligence optimized wavelet neural network approach," 

Journal of biomedical informatics, vol. 49, pp. 45-52, 2014.  

[8]  M. L. Giger, H. Chan and J. Boone, "Anniversary paper: History and status of CAD 

and quantitative image analysis: the role of Medical Physics and AAPM," Medical 

physics, vol. 35, no. 12, pp. 5799-5820, 2008.  

[9]  E. A. Rakha, J. S. Reis-Filho, F. Baehner, D. J. Dabbs, T. Decker, V. E. Eusebi, . S. 

B. Fox, S. Ichihara, J. Jacquemier, S. R. Lakhani and J. Palacios, " Breast cancer 

prognostic classification in the molecular era: the role of histological grade," Breast 

Cancer Research, vol. 12, no. 4, p. 207, 2010.  

[10]  C. Varela, S. Timp and N. Karssemeijer, "Use of border information in the 

classification of mammographic masses."," Physics in Medicine and Biology, vol. 51, 

no. 2, p. 425, 2006.  

[11]  W. Xie, Y. Li and Y. Ma, "Breast mass classification in digital mammography based 

on extreme learning machine.," Neurocomputing, vol. 173, pp. 930-941, 2016.  

[12]  I. Zyout, J. Czajkowska and M. Grzegorzek, "Multi-scale textural feature extraction 

and particle swarm optimization based model selection for false positive reduction in 

mammography," Computerized Medical Imaging and Graphics, vol. 46, pp. 95-107, 

2015.  

[13]  R. M. Rangayyan, T. M. Nguyen, F. J. Ayres and A. K. Nandi, "Effect of Pixel 

Resolution on Texture Features of Breast Masses in Mammograms," Journal of 

digital imaging, vol. 23, no. 5, pp. 547-553, 2010.  

[14]  J. Y. Choi,, D. H. Kim, K. N. Plataniotis and Y. . M. Ro, ""Classifier ensemble 

generation and selection with multiple feature representations for classification 



158 

 

applications in computer-aided detection and diagnosis on mammography," Expert 

Systems with Applications, vol. 46, pp. 106-121, 2016.  

[15]  A. Fritz, "Statistical texture measures computed from gray level coocurrence 

matrices," Image Processing Laboratory, Department of Informatics, University of 

Oslo, vol. 20, pp. 1-14, 1995.  

[16]  A. K. Mohanty, R. M. Manas, S. Beberta and K. S. Lenka, "Texture-based features 

for classification of mammograms using decision tree," Neural Computing and 

Applications, vol. 23, no. 3-4, pp. 1011-1017, 2013.  

[17]  N. H. Eltonsy, G. D. Tourassi and A. S. Elmaghraby, "A concentric morphology 

model for the detection of masses in mammography," IEEE transactions on medical 

imaging, vol. 26, no. 6, pp. 880-889, 2007.  

[18]  Y. Wang, J. Li and X. Gao, "Latent feature mining of spatial and marginal 

characteristics for mammographic mass classification," Neurocomputing, pp. 107-

118, 2014.  

[19]  N. R. Mudigonda, R. Rangayyan and J. L. Desautels, "Gradient and texture analysis 

for the classification of mammographic masses.," IEEE transactions on medical 

imaging, vol. 19, no. 10, pp. 1032-1043, 2000.  

[20]     American College of Radiology, Breast Imaging Reporting and Data System (BI-

RADS), 2nd ed., Reston, VA: American College of Radiology, 2003. 

 

 

 

 

 



159 

 

 

CHAPTER 6:  CONCLUSION AND FUTURE WORK 

6.1  Conclusion 

Segmentation algorithms and texture analysis are useful tools to analyze mammograms. 

Segmentation methods partition mammograms into a smaller number of meaningful regions 

while texture analysis derives texture features from these regions. When attempting to 

quantitatively compare and categorize these regions of clinical mammography images, for 

purposes of screening, diagnosis, prognostication or follow up, these texture features are 

fundamental in assessing the image derived traits of these regions. 

The first section of the thesis focused on some of the segmentation algorithms currently used 

for the delineation of mammographic masses. A segmentation method partitions the mass 

region from the surrounding breast tissues so that the contour delineating the mammographic 

mass can be clearly identified. These contours provide shape-based descriptors which are an 

important part of the assessment of the clinical pathology of these masses. Active contour 

segmentation algorithms are commonly used for delineation of mammographic masses. 

However, in digital mammography, these segmentation algorithms are often presented with 

masses having variable signal intensity (often including relative low signal regions within the 

mass), and masses with weak and ill-defined boundaries. This makes contouring of the masses 

more challenging. Low signal regions within a mass can result in the entrapment of an evolving 

contour, while weak boundaries can provide a pathway for contour leakage, and these can give 

rise to segmentation outcomes that are not reproducible and may not be reliably representative 

of the shape of the masses. As a result, the placement of the initial contour (or starting point 

(seed point) for deriving a contour) for curve evolution can influence the outcome of the 

segmentation process and this is undesirable. 

This study has quantified changes in shaped-based descriptors due to changes in the location 

of the initial contour for curve evolution in mammographic mass delineation. It has shown that 
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boundary moments are sensitive to the placement of initial level set contours while Fourier 

descriptors, shape convexity and shape rectangularity exhibit a certain degree of robustness to 

changes in the location of these contours. [1] 

This study proposes an active contour segmentation method for digital mammographic masses 

whose final level set contours are independent of the positions of the initial contours. This 

approach utilizes the fast global minimization model, whose energy functional is convex, 

hence the curve evolution process does not require the implementation of the contour re-

initialization procedures because deformable contours are not expressed as zero level sets of 

higher dimensional functions. However, a fast global minimization model requires a fixed 

threshold value of the global minimum for the convex energy functional. This presents a 

problem in segmenting a database of mammographic masses. A fixed threshold value for the 

global minima of a database of mass lesions is not feasible because the grey level intensity 

distributions of the background tissues surrounding most masses are heterogeneous. A fixed 

threshold value may underestimate or overestimated the optimum threshold values of these 

masses and consequently lead to unsuitable segmentation. Furthermore, hand tuning each 

threshold value for an optimum mass boundary delineation of each mass in the database is time 

consuming.  

This study proposes an automatic parameter tuning process that embraces the morphological 

characteristics of each mass lesion, and provides a reliable threshold value. This novel 

approach makes use of reliable information from the random walk probability matrix of each 

digital mass to provide a reliable mass-dependent estimate of the threshold value for each 

global minimizer symbolising the intrinsic nature of the mass lesion [2]. It utilises the particle 

swarm optimization algorithm to provide a mass-specific threshold value of the global 

minimum for the convex energy functional of each mass in the database.  

 

The second section of the thesis focuses on tumour modelling and tumour grading in 

mammography as proof of concepts. Generally mammographic masses have highlighted the 

focal core region surrounded with successively dimmer concentric layers radiating outwards 
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with diverse clinical indicators. This suggests a change in texture from the core of the mass to 

its periphery hence evidence of the concept of tumour modelling in mammography. We have 

implemented a concentric morphology model to investigate the above concept in biopsy-

proven grade 2 and 3 masses. 

This study shows that there exists a statistical measurable change in some texture features from 

the core to the periphery of grade 2 and grade 3 masses. Skewness, SRE, GLN, RLN, contrast, 

sum variance, difference variance, LRE and difference entropy texture features present 

measurable statistical changes between region 1 and region 2, region 2 and region 3 (p-values 

<0.05) for winsize 13. The magnitudes of these changes may depend on the size of the sampling 

window,  

In mammography the grade of a mammographic mass is an indication of the degree of its 

abnormality. This study shows the existence of a visual margin of separation of the RLN and 

LGRE run length texture features between grade 2 and grade 3 masses, hence the feasibility of 

using texture analysis as a tool in tumour grading. However, the two tailed two sample t-test 

reveals that, there are statistical differences between the means of grade 2 and grade 3 for, 

entropy, skewness, variance and RLN texture features for winsize13. The margins of 

separations may also depend on the concentric region of interest, that is, region 1 (outer 

boundary region of the mass) or region 3 (core of the mass). Application of clustering 

algorithms on all these texture features might also reveal hidden margins of separations 

between these grades of masses. 

Computer aided detection (CAD) systems are currently used as prompting systems in breast 

imaging centers. The core of these systems are segmentation and texture analysis algorithms. 

The above findings can be incorporated into these systems to improve the segmentation 

algorithms and also to explore the concept of texture analysis in tumour modelling and tumour 

grading and their relationship to the different tumour growth models presented in literature.  
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6.2 Limitation of the Study  

Some limitations were experienced during the course of this study. The mammography unit 

used for acquisition of the original images was replaced during the study and the Picture 

Archiving and Communication System (PACS) was unavailable for a protracted period and 

the archives were not made readily available on the new PACS. Thus, the number of images 

available for analysis was limited to those originally available. As this study was done to 

develop the theory and methods for the analysis of mammographic masses it was felt that the 

15 biopsy proven mammograms included would be sufficient, but that a larger study should be 

done in future to be able to establish the technique and apply it to a wider range of 

mammographic images.  

 

6.3 Future work 

Mammography, although debated and contentious in current literature, is widely accepted as 

being a very useful tool in the armamentarium available to the clinician in assessing and 

treating breast pathology. There is still a large amount of work to be done to fully understand 

the imaging of the breast and the effects of the many and varied modalities available for the 

acquisition and analysis of breast images. This work is a small contribution to progress in this 

field.  

There is a need to do more detailed analysis of the transition zone which moves from the area 

which is predominantly over the tumour to the area which surrounds the tumour. This should 

also be done on images acquired using breast tomosynthesis or breast computed tomography 

so that the transition largely excludes overlying tissues. This should allow more accurate 

understanding of the image characteristics of tumours as represented by their texture and 

morphologic measures. This field of study is still in a developmental stage and much other 

work also can be proposed and needs to be done before automated diagnosis and detection 
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could be achieved with accuracies approaching (or even exceeding) those achieved by expert 

readers.   

The extension of breast image analysis to images acquired and analysed by an increasingly 

diverse and complex set of tomographic algorithms is also needed. This should also include 

some standardisation of metrics so that understanding of the range of measures produced is 

possible. 

Only when all this has been done can the application of many of these methods of breast image 

analysis and quantification be meaningfully used as a tool for the modelling and staging of 

breast tumours.  
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Variation in signal intensitywithinmass lesions andmissing boundary information are intensity inhomogeneities inherent in digital
mammograms. These inhomogeneities render the performance of a deformable contour susceptible to the location of its initial
position andmay lead to poor segmentation results for these images.We investigate the dependence of shape-based descriptors and
mass segmentation areas on initial contour placement with the Chan-Vese segmentation method and compare these results to the
active contours with selective local or global segmentationmodel. For eachmass lesion, final contours were obtained by propagation
of a proposed initial level set contour and by propagation of a manually drawn contour enclosing the region of interest. Differences
in shape-based descriptors were quantified using absolute percentage differences, Euclidean distances, and Bland-Altman analysis.
Segmented areas were evaluated with the area overlap measure. Differences were dependent upon the characteristics of the mass
margins. Boundary moments presented large percentage differences. Pearson correlation analysis showed statistically significant
correlations between shape-based descriptors from both initial locations. In conclusion, boundary moments of digital mass lesions
are sensitive to the placement of initial level set contours while shape-based descriptors such as Fourier descriptors, shape convexity,
and shape rectangularity exhibit a certain degree of robustness to changes in the location of the initial level set contours for both
segmentation algorithms.

1. Introduction

Breast masses are one of the most common indications of
breast cancer. They are frequently identified on mammo-
grams, due to their saliency relative to the surrounding
regions and also to comparable regions on the mammograms
with the same projection of the opposite breast [1]. Computer
Aided Detection algorithms for breast mass classification
exploit suitable shape-based descriptors derived from the
mass boundary which are powerful enough to differentiate
between benign and malignant masses. Segmentation algo-
rithms are necessary for mass contouring in direct digital
mammography. However, in this imaging modality, mass
margins are embedded in complex backgrounds of overlying
and underlying tissueswhich createsmissing boundary infor-
mation and local minima where a deforming contour can

be entrapped and as a consequence produces an undesirable
segmentation outcome. Moreover, the wide dynamic range
of flat panel detector systems of direct digital mammography
units records small differences between the attenuation coef-
ficients of structures or regions present in a mass lesion and
they are clearly distinguishable over a wide range of densities,
whereas in film screen mammography the exposure latitude
of the film limits the dynamic range of information captured
on the film.Hence,masses whichmay have appeared as dense
structures without significant topographical relief features on
film screenmammograms can emerge following digital imag-
ing, as regions with varying densities on soft copy display.
Enhancement of these variations, following postprocessing
by the processing algorithms of the manufacturer, may
also be present. Usually, small differences in densities may
sometimes appear as low signal areas which can act as local
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minima for contour entrapment each time an evolving curve
determines its path within the mass lesion. Consequently,
local minima and missing boundary information render
deformable contours susceptible to their initial locations.

A geometric active contour is a deformable contour based
approach for image segmentation. In breast mass segmenta-
tion, an initial contour is deformed anddriven by a partial dif-
ferential equation (PDE) towards the boundary of the candi-
date mass. It is categorized into two groups: edge based mod-
els [2–4] and region based models [5–13]. Both models make
use of a stopping termwhich reduces the speed of the evolving
contour as it approaches the boundary of the object andfinally
reaches a steady state at the boundary. In edge based models,
the stopping term utilizes an edge indicator function mod-
elled on the image gradient; consequently, objects with weak
and noisy boundaries may present some difficulties to this
segmentation model [14, 15].

The Chan-Vese region based algorithm models energy
functionals as a competition of regional statistical informa-
tion [16]. They defined the stopping term as a competition
of the first moments of the local intensity distribution of the
foreground and the background within a narrowband, which
takes into consideration only pixels which will influence
the propagation of the interface (zero level set function)
between these two regions. The energy functionals drive the
initial contour from its initial location toward a desirable
local minimum, which in principle should correspond to the
delineated boundary of an expert radiologist. However, these
are determined by localized statistics; hence, the evolution
of the curve becomes sensitive to the location of the initial
level set contour and segmentation results will depend on the
placement of this contour, especially when tuning parameters
for an arbitrary collection of masses are fixed. This becomes
evident during segmentation of direct digital masses with
obscured or ill-defined margins and low signal areas within.

The active contours with selective local or global seg-
mentation model [9] are a region based energy functional
formulated as a signed pressure force function which prop-
agates the initial contour by modulating the signs of the
pressure forces inside and outside the region of interest.
These pressure forces are derived from the means of the local
intensity distributions of the foreground and the background.
The algorithm penalizes the level set function to be binary
and regularizes it with a Gaussian smoothing kernel. It
can effectively handle images with weak edges and interior
intensity inhomogeneity.

In most segmentation problems, the initial contour is
either drawn by the operator or estimated from other seg-
mentation algorithms [17, 22–25] and this may place the
initial level set contour on different locations within themass.
Any variation in segmentation outcomes will cause changes
in shape-based descriptors and the area occupied by the
segmentedmass. Variations in segmentation outcomeswhich
are due to the placement of the initial level set contours in
complicated images have been mentioned [11]. Mass lesions
on mammograms are complicated image domains for curve
evolution and variations in mass lesion segmented areas
and their influences on shape-based feature vectors due to

changes in the placement of the initial level set contours are
not found in the literature.

Understanding these inconsistencies can improve the
choice of tuneable parameters and initial contour locations
for curve evolution either for a data set of mass lesions
with labelled margin characteristics or unlabelled margin
characteristics. Shape-based descriptors [26–28] are feature
vectors in training sets for binary classification ofmass lesions
in mammography and changes in these descriptors can play
a role in determining the interclass separability measures, the
choice of margin hyperplanes, and hence the classification
efficiencies of these algorithms.

In this study, we investigate changes in one-dimensional
shape-based descriptors and the segmented areas of masses
in direct digital mammograms due to changes in the location
of the initial level set contours with the implementation of
the Chan-Vese segmentation method and the active contours
with selective local or global segmentation model. Two
groups of masses are considered in this study, one with
obscured or ill-defined margins and low signal areas within
and the other with well-defined and distinct margins. We
consider a contour which encloses the mass lesion and is
propagated towards the margin of the lesion. We propose a
semiautomatic method which derives the initial contour as a
curve connecting pointswithmaximumgradient in the radial
direction, representing an optimum curve characterizing
the intrinsic shape of the mass lesion, and then assess the
differences in the segmentation results.

2. Background to Mathematical Methods

In mammography, smoothed images present topological
surfaces that can be thresholded intomultiple layers to obtain
topographical relief maps of dominant structures found on
the images. Mammograms are filtered with edge-preserving
denoising methods such as weighted total variation (TV)
scale-space smoothing technique [29, 30] to remove noise
and fine details while preserving dominant edge character-
istics through different degrees of smoothing.

2.1. Weighted Total Variation Scale-Space Smoothing Tech-
nique. Suppose 𝐼 : Ω → R denotes an image and Ω ⊂ R2

the image domain.The variational approach for image denois-
ing for this model involves the minimization of the following
energy functional:

𝐸TV (𝐼, 𝜆) = ∫
Ω

(|∇𝐼| + 𝜆 (𝐼 − 𝐼
0
)
2

) 𝑑𝑥 𝑑𝑦, (1)

where 𝐼
0
is the noisy input image and 𝐼 its regularized

approximation. 𝜆 is the Lagrange multiplier indicating the
scale of detail desired in the smoothed image. Bresson et al.
proposed a modified model [30] in which the 𝐿

2-norm
square of Rudin et al.’s model is replaced with an 𝐿

1-norm to
preserve image contrast [31] and in addition the TV norm of
𝐼 is multiplied with a function, 𝑔, which is an edge indicator
function. This represents the weighted TV model with
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an 𝐿
1-norm as a data fidelity measure. The energy functional

for minimization is given as

𝐸
𝑔TV (𝐼, 𝜆) = ∫

Ω

(𝑔 |∇𝐼| + 𝜆
󵄨󵄨󵄨󵄨𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨) 𝑑𝑥 𝑑𝑦 (2)

with

𝑔 =
1

1 + Υ
󵄨󵄨󵄨󵄨∇𝐺𝜃 ∗ 𝐼

0

󵄨󵄨󵄨󵄨

2
, (3)

where Υ is a constant >0 and 𝐺
𝜃
is a Gaussian kernel with

standard deviation, 𝜃. The minimization of 𝐸
𝑔TV(𝐼, 𝜆) results

in the following weighted TV flow equation:

𝐼
𝑡
= div(𝑔 ∇𝐼

|∇𝐼|
) + 𝜆(

𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨𝐼 − 𝐼
0

󵄨󵄨󵄨󵄨

) . (4)

For small values of 𝜆, the degree of image smoothing
increases and edge is preserved; therefore, the global
boundary information which is essential for segmentation
algorithms can be modelled as the initial contour for the gra-
dient descent flow equation of the level set. This contour will
depend on the boundary properties of a given mass lesion.

2.2. Chan-Vese’s Piecewise Constant Model for Binary Segmen-
tation. Suppose 𝐶 is an evolving curve that partitions the
image domain into the foreground, Ω

1
, and the background,

Ω
2
. The Chan-Vese model [16] seeks an optimal contour,

representing the boundary of an object by minimizing the
following energy functional:
𝐹 (𝐶, 𝑐

1
, 𝑐
2
) = 𝜇length (𝐶) + 𝜐Area (inside (𝐶)) + 𝐹data, (5)

where 𝐹data represents the regional term guiding the contour
in the image domain and is given by

𝐹data = 𝜆
1
𝐹
1
(𝐶) + 𝜆

2
𝐹
2
(𝐶) (6)

in which

𝐹
1
(𝐶) = ∫

inside(𝐶)

󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦,

𝐹
2
(𝐶) = ∫

outside(𝐶)

󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − 𝑐
2

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦.

(7)

𝜇 ≥ 0, ] ≥ 0, and 𝜆
1
and 𝜆

2
are positive constants while

the average image intensities of regions inside and outside the
contour are 𝑐

1
and 𝑐
2
, respectively. In level set formulation, the

interface of the foreground and background is embedded as
the zero level set of a Lipschitz function, 𝜙(𝑥, 𝑦): Ω → R

with 𝜙(𝑥, 𝑦) > 0 for pixel positions in Ω
1
and 𝜙(𝑥, 𝑦) < 0

for pixel positions in Ω
2
whilst 𝜙(𝑥, 𝑦) = 0 on the curve 𝐶.

Using the Heaviside step function, 𝐻
𝜀
(𝜙), 𝐹(𝐶, 𝑐

1
, 𝑐
2
) can be

expressed as

𝐹 (𝐶, 𝑐
1
, 𝑐
2
)

= 𝜇∫
Ω

󵄨󵄨󵄨󵄨∇𝐻𝜀 (𝜙)
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

+ 𝜆
1
∫
Ω

(𝐼 (𝑥, 𝑦) − 𝑐
1
)
2

𝐻
𝜀
(𝜙) 𝑑𝑥 𝑑𝑦

+ 𝜆
2
∫
Ω

(𝐼 (𝑥, 𝑦) − 𝑐
2
)
2

(1 − 𝐻
𝜀
(𝜙)) 𝑑𝑥 𝑑𝑦.

(8)

Minimizing 𝐹(𝐶, 𝑐
1
, 𝑐
2
) with respect to 𝜙 yields the following

gradient descent flow:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [𝜇∇(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − 𝜐 − 𝜆
1
(𝐼 (𝑥, 𝑦) − 𝑐

1
)
2

+ 𝜆
2
(𝐼 (𝑥, 𝑦) − 𝑐

2
)
2

] ,

(9)

where 𝛿
𝜀
(𝜙) is the Dirac function.

2.3. Active Contours with Selective Local or Global Segmenta-
tion Model. The signed pressure force function [9] is derived
from themeans of regions inside and outside the contour and
it is defined as

spf (𝐼 (𝑥, 𝑦)) =
𝐼 (𝑥, 𝑦) − (𝑐

1
+ 𝑐
2
) /2

max (󵄨󵄨󵄨󵄨𝐼 (𝑥, 𝑦) − (𝑐
1
+ 𝑐
2
) /2

󵄨󵄨󵄨󵄨)
,

𝑥, 𝑦 ∈ Ω
𝑝
,

(10)

where 𝑐
1
and 𝑐
2
are defined in (8). The active contour with

selective local or global segmentation model utilizes the
geodesic active contour to formulate the level set equation as

𝜕𝜙

𝜕𝑡
= spf (𝐼 (𝑥, 𝑦)) ⋅ (div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) + 𝛼)
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

+ ∇spf (𝐼 (𝑥, 𝑦)) ⋅ ∇𝜙, 𝑥, 𝑦 ∈ Ω
𝑝
.

(11)

Using the Gaussian filtering process to regularize the level set
function, the above equation can be written as follows:

𝜕𝜙

𝜕𝑡
= spf (𝐼 (𝑥, 𝑦)) ⋅ 𝛼 󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨 , 𝑥, 𝑦 ∈ Ω
𝑝
, (12)

where 𝛼 is a tuneable parameter.

3. Method

3.1. Data Set Description. Direct digital mammograms were
acquired from a Hologic Selenia Dimensions system with an
image receptor consisting of a 70 𝜇m pixel pitch selenium
direct-capture detector. Ninety mammograms with mass
lesions were selected for this study. Forty mammograms had
masses with low signal areas within the mass and margins
described as obscured, or ill-defined, while the others had
masses with well-defined or distinct margins. On each mam-
mogram, the region of interest containing themass lesionwas
cropped and then resized to a 208 × 208 matrix to create a
submammogram. Each submammogram was denoised and
thresholded to localize the initial level set contour.

3.2. Search Space for Localizing the Initial Level Set Contour.
The weighted total variation scale-space smoothed breast
mass region is represented as a topological surface in which
the grey level value of each pixel is the height of the surface.
Let 𝐼𝑆 : Ω → R denote a smoothed image and Ω ⊂ R2

the image domain. The image domain Ω is thresholded into
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(a) (b) (c) (d) (e)

Figure 1: Search space for localizing the initial contour. (a)The original mass lesion, (b) the weighted TV flow denoised image with 𝜆 = 0.05,
(c) dense nested patterns of iso-level contours representing the search space for localizing the initial contour on the gradient map, (d) radial
distances from a reference point to the iso-level contours, and (e) initial level set contour, representing points with maximum gradient in the
radial direction within a predefined radius.

multiple regions with an ordered set of equally spaced grey
level threshold values within the intensity range of the image
domain [32–34]. Suppose 𝐼max = the maximum grey level
intensity in the image domain; 𝐼min = minimum grey level
intensity; 𝑊 = {𝑤

1
, 𝑤
2
, 𝑤
3
, . . . , 𝑤

𝑁
}, a finite sequence of

equally spaced partition weights in ascending order; 𝑁 =
number of threshold values; and 𝑇 = {𝑡

1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑁
}, an

ordered set of equally spaced grey level threshold values; then,

𝑇 = 𝐼max ∗𝑊 (13)

with 𝑡
𝑁
≤ 𝐼max and 𝑡

1
≥ 𝐼min.

The subregions in the image domainwith grey level inten-
sities less than or equal to the threshold value, 𝑡

𝑖
, are given as

𝑅 (𝑡
𝑖
) = {(𝑥, 𝑦) | 𝐼𝑆 (𝑥, 𝑦) ≤ 𝑡

𝑖
} , ∀ (𝑥, 𝑦) ∈ Ω, (14)

and the iso-level contours 𝐶(𝑡
𝑖
)’s of these regions are

boundaries of 𝑅(𝑡
𝑖
). The iso-level contour map of the image

domain represents the set of all 𝐶(𝑡
𝑖
) for 𝑖 = 1 : 𝑁. A

graph-based representation of the iso-level contour map
evaluates the enclosure relationship between an iso-level
contour and its nearest neighbour, to identify the path to the
base contour that delineates the mass. Details of this method
can be found in the literature [32, 33]. In our implementation,
the boundary region of the breast mass is the region around
the base contour with a dense nested pattern of iso-level
contours, indicating the search space for the actual boundary
of the mass and the placement of the initial level set contour.
Thedense nested pattern of iso-level contours is extracted and
superimposed on the gradient map of the smoothed image.

3.3. Placement of the Initial Level Set Contour. A set of uni-
formly spaced radial lines, 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚
}, are generated

from a point close to the centre of mass of the innermost
iso-level contour, defining the search space on the gradient
map of the mass as shown in Figure 1(d). Let this point be
the reference point. The gradient strength is noted at every
point of intersection of the nested iso-level contours and
radial lines. Along each radial line, 𝑙

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚,

the coordinates of the point of intersection with the greatest
gradient strength are noted and the radial distance from this
point to the reference point is calculated and noted as 𝑟

𝑖
.
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Figure 2: Variation of the radial distance function of the initial level
set contours sampled at an angle of 1∘ with different 𝜆’s for the mass
lesion in Figure 1.

Let 𝑟ave = (1/𝑚)∑
𝑚

𝑖=1
𝑟
𝑖

and 𝑟std =

√∑
𝑚

𝑖=1
(𝑟
𝑖
− 𝑟ave)

2/(𝑚 − 1); then radial description of the
initial level set contour is given by

𝑟
𝑖
=

{

{

{

𝑟
𝑖
, 𝑟

𝑖
< 𝑟ave + 𝑛𝑟std

𝑟ave, 𝑟
𝑖
≥ 𝑟ave + 𝑛𝑟std,

𝑖 = 1, 2, . . . , 𝑚, 𝑛 = 1 or 2.

(15)

The spatial coordinates of the points of intersection of 𝑟
𝑖
’s

and the iso-level contours are the coordinates of the initial
level set contour. Figure 1 illustrates the summary of the
methodology in acquiring the initial level set contour and
Figure 2 shows the variation of the radial distance function,
𝑟
𝑖
, for 𝑖 = 1 : 𝑚, with the scale of observation, 𝜆, in weighted

total variation scale-space smoothing technique. The radial
distance function of the initial level set contour corresponds
to the radial distance from each point on the initial contour
to the reference point with a sampling angle of 1∘.

3.4. Evaluation Metrics of Segmentation Results. Manually
drawn initial contours and those obtained from our proposed
method were propagated with the Chan-Vese algorithm and
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the active contourswith selective local or global segmentation
model. Feature vectors representing boundary-based shape
signatures and the areas occupied by the segmented mass
lesions were assessed to provide relative measures of the
differences between the segmented mass lesions.

3.4.1. Area Metric of Relative Size of Segmented Mass Lesion.
Let im𝑌 represent the binary image obtained by evolving the
initial level set contour from our proposed method and im𝑋

from the manually drawn initial level set contour; then, the
area overlap measure, which is the Jaccard similarity coeffi-
cient between the binary images, im𝑋 and im𝑌, is given as

JSC (im𝑋, im𝑌) =
im𝑌 ∩ im𝑋

im𝑌 ∪ im𝑋
. (16)

JSC(im𝑋, im𝑌) lies between 0 and 1. A perfect match
between im𝑋 and im𝑌 is achieved as JSC(im𝑋, im𝑌) → 1,
consequently, the same segmentation outcome for both
initial level set contours.

3.4.2. Evaluation Metrics of Shape-Based Descriptors

Boundary Moments. A boundary-based shape signature of
the segmented mass lesion from each initial contour model
is represented as the centroid distance function, which
is a one-dimensional function representing the Euclidean
distance 𝑟(𝑛) between an ordered set of boundary coordinates
((𝑥(𝑛), 𝑦(𝑛)), for 𝑛 = 0, 2, 3, . . . , 𝑁 − 1) and the centroid
(𝑥𝑐, 𝑦𝑐) signifying the centre of mass of the binary image
generated from the contour:

𝑟 (𝑛) = √((𝑥 (𝑛) − 𝑥𝑐)
2
+ (𝑦 (𝑛) − 𝑦𝑐)

2

), (17)

where𝑁 is the total number of points on the contour.
The centroid distance function captures the local and

global characteristics of the final shape of the segmentedmass
lesion. Its statistical characteristics are assessed as shape fea-
tures derived from the contour sequencemoments𝑚

𝑝
and 𝜇
𝑝

[35] where the 𝑝th contour sequence moment is estimated as

𝑚
𝑝
=

1

𝑁

𝑁−1

∑

𝑛=0

[𝑟 (𝑛)]
𝑝 (18)

and the 𝑝th central moment is estimated as

𝜇
𝑝
=

1

𝑁

𝑁−1

∑

𝑛=0

[𝑟 (𝑛) − 𝑚
1
]
𝑝

. (19)

These shape features are normalized low-order boundary
moments [36, 37] described as

𝐹
1
=

(𝜇
2
)
1/2

𝑚
1

,

𝐹
2
=

(𝜇
4
)
1/4

𝑚
1

,

𝐹
3
= 𝐹
1
− 𝐹
2
,

(20)

where 𝐹
1
is the normalized amplitude variation and 𝐹

2
and

𝐹
3
are indicators of shape roughness.
Spicules are fine extensions radiating from the margin of

a mass lesion. The presence of these boundary features gen-
erates variations in the radial distances, which are indicative
of contour roughness along the boundary of a mass lesion.
The evaluation metric %Δ𝐹

𝑖
(im𝑋, im𝑌) is the percentage

change in the degree of spiculation between im𝑋 and im𝑌

and is expressed as the percentage difference in the boundary
moments, 𝐹

𝑖
’s:

%Δ𝐹
𝑖
(im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝑖
(im𝑌) − 𝐹

𝑖
(im𝑋)

average (𝐹
𝑖
(im𝑌) , 𝐹

𝑖
(im𝑋))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100.

(21)

Fourier Descriptors. The centroid distance function can
be analysed in the frequency domain to obtain spectral
descriptors of its characteristics. Its spectral representation is
expressed as the coefficients of its discrete Fourier transform,
yielding

𝑎
𝑖
=

1

𝑁

𝑁−1

∑

𝑛=0

𝑟 (𝑛) exp (
−𝑗2𝜋𝑖𝑛

𝑁
) ,

𝑖 = 0, 1, 2, . . . , 𝑁 − 1.

(22)

Feature vectors which are invariant to translation, scale, and
rotation are extracted from these coefficients and are known
as the Fourier descriptors (FD

𝑖
) for shape representation:

FD
𝑖
= [

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎0
󵄨󵄨󵄨󵄨

] , 𝑖 = 1, 2, . . . ,
𝑁

2
. (23)

Zhang and Lu [38] have shown that FD
𝑖
derived from the

centroid distance function outperforms FD
𝑖
’s derived from

using complex coordinates, cumulative angles, and curva-
ture function as boundary signatures in shape-based image
retrieval system, and furthermore, in Zhang and Lu [39], they
mentioned that 60 FD

𝑖
’s are sufficient for shape indexing.

We define the evaluation metric of the initial level set
contours yielding im𝑋 and im𝑌 based on the boundary sig-
natures of the final contours delineating im𝑋 and im𝑌 in the
frequency domain as the Euclidean distance (DF(im𝑌, im𝑋))

between the Fourier descriptors of the images:

DF (im𝑌, im𝑋) = √

60

∑

𝑖=1

󵄨󵄨󵄨󵄨FD𝑖 (im𝑌) − FD
𝑖
(im𝑋)

󵄨󵄨󵄨󵄨

2

, (24)

where FD
𝑖
(im𝑋) and FD

𝑖
(im𝑌) are the 𝑖th Fourier descrip-

tors of the final contours delineating im𝑋 and im𝑌.

Shape Convexity. Shape convexity measures the degree of
spiculation in masses. The shape convexity of a binary image
is defined as the ratio of the area of the binary image to
the area of its convex hull [26]. Let 𝐶im𝑋 and 𝐶im𝑌 be
the convexity of binary images im𝑋 and im𝑌, respectively;
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the evaluation metric of the difference between the shape
convexities of images im𝑋 and im𝑌 is defined as

%ΔSC (im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶im𝑌 − 𝐶im𝑋

average (𝐶im𝑌, 𝐶im𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100.

(25)

Shape Rectangularity. Shape rectangularity [40] is defined as
the ratio of the area of the binary image to the area of its min-
imal bounding rectangle. Let 𝑅im𝑋 and 𝑅im𝑌 be the shape
rectangularity of binary images im𝑋 and im𝑌, respectively;
the evaluation metric of the difference between the shape
rectangularities of images im𝑋 and im𝑌 is defined as

%ΔSR (im𝑋, im𝑌) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅im𝑌 − 𝑅im𝑋

average (𝑅im𝑌, 𝑅im𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100. (26)

Differences in shape-based descriptors of the final contours
were further evaluated with Bland-Altman analysis to explore
the agreement and trends between placements of the initial
level set contours in digital mass lesions segmentation while
Pearson correlation analysis assessed the correlation between
these descriptors.

4. Experimental Results and Discussion

In our implementation of the Chan-Vese method, we set 𝜇 =

0.2, 𝜆
1

= 2.5, and 𝜆
2

= 1. We chose 𝜆
1

> 𝜆
2
to give a

greater weight to the variance of pixels in the foreground so
as to achieve measurable segmentation differences between
the proposed locations for the initial level set contours.
Furthermore, we assigned 𝜆

1
= 𝜆
2
= 1 to investigate changes

in the final segmentation results due to differences in tuneable
parameters. In practice, for a given database of masses, the
values assigned to 𝜆

1
and 𝜆

2
depend on the similarity indices

between segmentation results of a proposed algorithm and
the gold standard of a training set of masses, which in some
cases is a subset of the database. For the active contour with
selective local or global segmentation model, we set 𝛼 = 5

for this database so that masses with ill-defined boundaries
should be accurately segmented. The segmentation perfor-
mances of this algorithm were poor with values of 𝛼 > 5 for
this group ofmasses.The average time for curve evolution for
these images was 15 ± 10 s for the segmentation methods.

Boundary information represents sharp changes in image
properties. Figure 2 shows that as the degree of smoothing
increases the radial distance functions of the initial level
set contours form a dense nested pattern of curves. The
differences between these curves are very small because edge
is preserved through different values of 𝜆’s in weighted TV
scale-space smoothing technique; consequently, segmenta-
tion results with the initial level set contours generated from
these curves are expected to be similar.

Segmentation results for some masses with low signal
areas and having obscured, or ill-defined, margins are shown
in Figure 3. The proposed method defines the initial level
set contour as the curve connecting points with maximum
gradients in the radial direction as shown in column 3. Each
curve characterizes the intrinsic shape of its mass lesion and

its evolution is guided by the statistics of pixels surrounding
the region. For this group of masses, the mean area overlap
measure between segmented areas generated from the final
contours of our proposed method and that of the manually
drawn initial level set contours were 0.81 ± 0.01 for the
Chan-Vese model and 0.86 ± 0.09 with the selective local
or global segmentation model. This is almost comparable to
the mean area overlap measures between expert radiologists
[17] and expert radiologists against segmentation methods
[17–21] as shown in Table 1. Therefore, changes in shape-
based descriptors as expressed in our setup will be suggestive
of changes in shape-based descriptors encountered by the
abovementioned publications.

Table 2 shows the variation in the area overlap measures
with percentage differences in boundary moments 𝐹

1
, 𝐹
2
,

and 𝐹
3
when masses in Figure 3 were evolved with tuneable

parameters 𝜆
1
= 2.5, 𝜆

2
= 1. The area overlap measure of

mass D is greater than 0.8; however, the percentage difference
in boundary moments was above 50%, with %Δ𝐹

1
being

87.0%. The mean values of %Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
for

this group were 23.9% (range 1.0–87.0%), 24.5% (range 1.7–
86.8%), and 32% (range 1.4–86.0%), respectively, as shown in
Table 6. The mean values are large with wide range. For 𝜆

1
=

1, 𝜆
2
= 1, the mean values of the percentage change of each

boundary moment were less than 20.2%. These large ranges
and mean values show that boundary moments are sensitive
to the location of the initial level set contour for masses with
obscured or ill-defined margins and the degree of sensitivity
depends on the choice of tuneable parameters. As shown in
Table 7, the mean values of boundary moments %Δ𝐹

1
, %Δ𝐹

2
,

and %Δ𝐹
3
were obtained as 15.1% (range 0–74%), 15.4%

(range 0–67.5%), and 23.5% (range 0–52%), respectively, by
using the selective local or global segmentation model. These
values are comparable to values obtained by implementing
the Chan-Vese model for 𝜆

1
= 1, 𝜆

2
= 1.

In Table 3, the variation in Euclidean distances of the
Fourier descriptors and the percentage differences in shape
convexity and rectangularity for the masses in Figure 3 are
illustrated. In Table 6, for 𝜆

1
= 2.5, 𝜆

2
= 1, the mean

Euclidean distance between the Fourier descriptors of the
segmented areas was 0.09 ± 0.05 while the mean values of
percentage changes in shape convexity and rectangularity
were 8.3% (range 0.0–28.1%) and 11.7% (range 0.1–42.0%),
respectively, with more than 50% reduction in the mean
values with tuneable parameters 𝜆

1
= 1, 𝜆

2
= 1. The

values for the mean percentage difference in shape convexity
and rectangularity and their range were less than those
fromboundarymoments for bothChan-Vese algorithms.The
selective local or global segmentation model presented sim-
ilar results for the percentage differences in shape convexity
and shape rectangularity as shown in Table 7.

Figure 4 illustrates the segmentation results with different
locations for the initial level set contours for some masses
with distinct, or well-defined, margins. The initial level set
contour from the proposed method is shown in column 3.
Fewer points defining the maximum gradients in the radial
direction are found within the mass lesion, as compared with
the previous group. Most points defining the maximum gra-
dients in the radial direction are found on themass boundary;
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3: Comparisons of segmentation results with different locations for the initial level set contours for masses with low signal areas
having obscured, or ill-defined, margins with the Chan-Vese model. The first column presents the original mass lesions; the second column
shows the corresponding weighted TV flow images and the search space for locating the initial contour. The third column shows the initial
contours as curves connecting points with maximum gradients in the radial direction. The fourth column shows the manually drawn initial
level set contours. The fifth column presents the segmentation outcomes with manually drawn initial level set and the last column presents
the final segmentation results of the proposed method evolved with the same tuning parameters.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4: Comparisons of segmentation results with different locations for the initial level set contours for masses with distinct, or well-
defined, margins by implementing the Chan-Vese model. The first column presents the original mass lesions; the second column shows the
corresponding weighted TV flow images and the search space for locating the initial contour. The third column shows the initial contours
as curves connecting points with maximum gradients in the radial direction. The fourth column shows the manually drawn initial level set
contours. The fifth column presents the segmentation outcomes with manually drawn initial level set contours and the last column presents
the final segmentation results of the proposed method evolved with the same tuning parameters.
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Table 1: Comparison of mean area overlap measures of masses with characterized margins due to changes in the location of the initial level
set contour with cited interobserver variability amongst radiologists and with mean area overlap measures between radiologists and other
segmentation methods in boundary delineation.

Characteristics of mass
lesion margins

Mean area overlap
measures due to

interobserver variability
amongst radiologists

Mean area overlap
measures between

radiologists and other
segmentation methods

Mean area overlap measures
due to the placement of the
initial level set contours in

this study
Sahiner et al. [17] — 0.76 ± 0.13 0.74 ± 0.13
Tao et al. [18] Ill-defined and spiculated 0.69 ± 0.16
Xu et al. [19] — 0.72 ± 0.13
Rahmati et al. [20] — 0.87 ± 0.05
Pereira et al. [21] — 0.79 ± 0.08
This study
(𝜆
1
= 2.5, 𝜆

2
= 1)

Obscured/ill-defined with
low signal areas within 0.81 ± 0.01

This study
(𝜆
1
= 2.5, 𝜆

2
= 1) Distinct/well-defined 0.96 ± 0.03

This study
(𝜆
1
= 1, 𝜆

2
= 1)

Obscured/ill-defined with
low signal areas within 0.87 ± 0.13

This study
(𝜆
1
= 1, 𝜆

2
= 1) Distinct/well-defined 0.95 ± 0.06

This study
(𝛼 = 5)

Obscured/ill-defined with
low signal areas within 0.86 ± 0.09

This study
(𝛼 = 5) Distinct/well-defined 0.91 ± 0.04

Table 2: Evaluation metrics for differences in segmented areas (JSC) and boundary moments (%Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
), due to changes in

the location of the initial level set contours evolved with tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 for masses in Figure 3.

Masses JSC 𝐹
1

𝐹
2

𝐹
3

Method %Δ𝐹
1

%Δ𝐹
2

%Δ𝐹
3

A 0.83 0.3186 0.3715 0.0530 Manual 68.4 67.1 59.8
0.1563 0.1848 0.0286 Proposed

B 0.77 0.3417 0.4264 0.0846 Manual 8.1 7.2 3.5
0.3152 0.3969 0.0817 Proposed

C 0.78 0.2691 0.3269 0.0578 Manual 9.7 3.1 23.0
0.2442 0.3170 0.0728 Proposed

D 0.84 0.2505 0.3120 0.0615 Manual 87.0 86.8 86.0
0.0986 0.1231 0.0245 Proposed

E 0.71 0.2715 0.3300 0.0585 Manual 6.0 8.1 17.6
0.2882 0.3580 0.0698 Proposed

F 0.89 0.2969 0.3826 0.0857 Manual 8.2 7.4 4.8
0.3224 0.4122 0.0899 Proposed

G 0.87 0.1835 0.2168 0.0333 Manual 1.7 9.9 45.3
0.1866 0.2394 0.0528 Proposed

consequently, the statistics of the pixels surrounding the
initial level set contourwill be similar to those of themanually
drawn contour when it arrives at the edge of the mass lesion.

Table 4 shows the variation in the area overlap measures
and the percentage differences in boundary moments 𝐹

1
, 𝐹
2
,

and 𝐹
3
while Table 5 illustrates the variation in Euclidean

distances between the Fourier descriptors (DF), percentage
differences in shape convexity (%ΔSC), and shape rectan-
gularity (%ΔSR) when the masses in Figure 4 were evolved
with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1. The area

overlap measure of mass B was greater than 0.95; however,
the percentage differences in boundary moments were above
18%. Formasseswith distinct orwell-definedmargins, similar
segmentation results are expected and this is confirmed with
a mean area overlap measure of 0.96 ± 0.03 as shown in
Table 6. For this category of masses, the mean value of
%Δ𝐹
1
was 8.9% (range 0.3–25.0%); of %Δ𝐹

2
, 8.6% (range

2.1–33%); and of %Δ𝐹
3
, 14.1% (range 0.9–53.0%). The mean

Euclidean distance between the Fourier descriptors of the
segmented areas was 0.05 ± 0.02 and the mean values of
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Table 3: Variation in Euclidean distances between Fourier descriptors (DF), percentage differences in shape convexity (%ΔSC), and shape
rectangularity (%ΔSR) due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 for

masses in Figure 3.

Masses DF SC SR Method %ΔSC %ΔSR

A 0.16 0.7152 0.4861 Manual 16.5 31.5
0.8439 0.6681 Proposed

B 0.10 0.5373 0.3762 Manual 22.4 9.6
0.6731 0.4143 Proposed

C 0.08 0.5610 0.3845 Manual 28.2 21.6
0.7450 0.4774 Proposed

D 0.13 0.8071 0.6301 Manual 12.5 16.6
0.9143 0.7440 Proposed

E 0.06 0.7737 0.5017 Manual 16.7 3.8
0.9143 0.4830 Proposed

F 0.05 0.5955 0.4188 Manual 10.1 10.9
0.5383 0.3755 Proposed

G 0.03 0.7899 0.5297 Manual 1.7 8.8
0.8036 0.5786 Proposed

Table 4: Evaluation metrics for differences in segmented areas (JSC) and boundary moments (%Δ𝐹
1
, %Δ𝐹

2
, and %Δ𝐹

3
), due to changes in

the location of the initial level set contours evolved with tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 for masses in Figure 4.

Masses JSC 𝐹
1

𝐹
2

𝐹
3

Method %Δ𝐹
1

%Δ𝐹
2

%Δ𝐹
3

A 0.98 0.0827 0.1051 0.0224 Manual 29.0 31.2 39.4
0.1107 0.1440 0.0334 Proposed

B 0.97 0.2084 0.2783 0.0699 Manual 21.9 21.1 18.7
0.2597 0.3440 0.0843 Proposed

C 0.99 0.1489 0.1785 0.0295 Manual 6.1 2.6 13.6
0.1401 0.1739 0.0338 Proposed

D 0.98 0.2130 0.2568 0.0437 Manual 12.0 9.0 6.6
0.2402 0.2811 0.0409 Proposed

E 0.98 0.1080 0.1376 0.0296 Manual 2.2 2.9 5.9
0.1057 0.1336 0.0279 Proposed

F 0.94 0.1888 0.2192 0.0304 Manual 2.0 1.3 19.3
0.1851 0.2220 0.0369 Proposed

G 0.94 0.2971 0.3676 0.0705 Manual 18.7 12.4 10.9
0.2463 0.3248 0.0786 Proposed

percentage changes of shape convexity and rectangularity
were 4.5% (range 0.07–17.2%) and 5.7% (range 0.04−14.9%),
respectively. The values for the mean percentage differences
in shape convexity and rectangularity were almost 50% less
than those from boundary moments. This group presented
a small percentage change in shape convexity and shape
rectangularity and also a small mean Euclidean distance of
the Fourier descriptors as compared to the previous group
due to segmentation results having relatively similar shapes.
For these groups of masses, shape-based descriptors derived
from final contours of tuneable parameters 𝜆

1
= 1, 𝜆

2
= 1

were less sensitive to changes in the location of the initial
level set contours. Table 6 shows that the mean percentage
differences of the shape convexity and shape rectangularity
are less than the values for the boundary moments. Table 7

illustrates similar trends with the selective local or global
segmentation model; however, the Jaccard similarity indices
of the Chan-Vese segmentation model for this group of
masses were greater than values obtained by using the
selective local or global segmentation model.

The evaluation metrics of shape-based descriptors of
both groups of masses were combined and assessed with
Bland-Altman plots to investigate the intermethod agreement
between placements of the initial level set contours. Each
Bland-Altman plot was evaluated within a 95% confidence
interval as the limits of agreement.

Figures 5 and 6 illustrate the linear regression plots of
boundary moments, shape rectangularity, and shape con-
vexity with their associated Bland-Altman plots with the
Chan-Vese segmentation method. The Pearson correlation
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Figure 5: Linear regression plots ((a), (c), and (e)), along with Bland-Altman plots ((b), (d), and (f)), of boundary moments 𝐹
1
, 𝐹
2
, and 𝐹

3
,

respectively, for tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1.
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Table 5: Variation in Euclidean distances between the Fourier descriptors (DF), percentage differences in shape convexity (%ΔSC), and shape
rectangularity (%ΔSR) due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 for

masses in Figure 4.

Masses DF SC SR Method %ΔSC %ΔSR

A 0.0368 0.6612 0.4619 Manual 17.1 14.5
0.7852 0.5339 Proposed

B 0.0624 0.6637 0.4596 Manual 7.0 14.4
0.7116 0.5307 Proposed

C 0.0377 0.8894 0.6148 Manual 1.1 1.2
0.8995 0.6224 Proposed

D 0.0762 0.8508 0.6093 Manual 0.0 0.0
0.8508 0.6093 Proposed

E 0.0216 0.9267 0.6544 Manual 0.3 1.1
0.9295 0.6472 Proposed

F 0.0298 0.8606 0.6024 Manual 2.9 5.2
0.8360 0.5716 Proposed

G 0.0717 0.6612 0.4619 Manual 17.1 14.5
0.7852 0.5339 Proposed

Table 6: Mean values for the Jaccard similarity coefficient (JSC) and the Euclidean distances of the masses. The mean values and ranges of
percentage differences in boundary moments (%Δ𝐹

1
, %Δ𝐹

2
, and %Δ𝐹

3
), percentage differences in shape convexity (%ΔSC), and percentage

differences in shape rectangularity (%ΔSC) for the masses, labelled as groups with predefined margin characteristics and also a group with
arbitrary margin characteristics, due to changes in the location of the initial level set contours evolved with tuneable parameters 𝜆

1
= 2.5,

𝜆
2
= 1 and 𝜆

1
= 1, 𝜆

2
= 1.

Margin characteristics Obscured/ill-defined margins Distinct/well-defined margins Unlabelled margins
Tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝜆

1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1

Average JSC 0.81 ± 0.01 0.87 ± 0.13 0.96 ± 0.03 0.95 ± 0.06 0.89 ± 0.02 0.92 ± 0.09
Average DF 0.09 ± 0.05 0.05 ± 0.04 0.05 ± 0.02 0.04 ± 0.02 0.07 ± 0.05 0.05 ± 0.03
Mean of %Δ𝐹

1
23.9% 17.5% 8.9% 11.4% 16.4% 14.5%

Range of %Δ𝐹
1

1.0–87.0% 0–62.6% 0.3–25.0% 0–24.4% 1.0–87.0% 0–62.6%
Mean of %Δ𝐹

2
24.5% 17.2% 8.6% 9.6% 16.6% 13.4%

Range of %Δ𝐹
2

1.7–86.8% 0–59.1% 2.1–33% 0–46.0% 1.7–86.8% 0–59.1%
Mean of %Δ𝐹

3
32% 20.1% 14.1% 13.4% 23.1% 16.8%

Range of %Δ𝐹
3

1.4–86.0% 0–80.9% 0.9–53.0% 0–54.0% 0–86.0% 0–80.9%
Mean of %ΔSC 8.3% 2.4% 4.5% 2.9% 6.4% 2.7%
Range of %ΔSC 0.0–28.1% 0–21.0% 0.07–17.2% 0.2–13.9% 0.3–28.1% 0–21.0%
Mean of %ΔSR 11.7% 7.6% 5.7% 4.3% 8.7% 5.9%
Range of %ΔSR 0.1–42.0% 0–38.9% 0.04–14.9% 0–21.9% 0.1–42.0% 0–38.9%

analysis indicated good correlations between the shape-based
descriptors: shape rectangularity (𝑟 = 0.82) and shape
convexity (𝑟 = 0.82) resulting from the final contours of
the proposed andmanual methods as compared to boundary
moments 𝐹

1
(𝑟 = 0.76), 𝐹

2
(𝑟 = 0.77), and 𝐹

3
(𝑟 = 0.68). The

selective local or global segmentation method gave higher
correlation coefficients for these shape descriptors. Table 8
shows the summary results of the linear regression analysis of
shape-based descriptors for these masses and their variation
with tuneable parameters. 𝑝 values indicated that the correla-
tions of shape-based descriptors derived from these methods

were statistically significant (𝑝 < 0.0001). The strength of the
linear relationship (𝑟) between the descriptors derived from
these methods depends on the values of tuneable parameters,
𝜆
1
and 𝜆

2
, for the Chan-Vese model. For this database of

masses, the correlation coefficients of descriptors obtained
with tuneable parameters 𝜆

1
= 1 and 𝜆

2
= 1 were higher

than those with parameters 𝜆
1
= 2.5 and 𝜆

2
= 1; however,

this does not imply that tuneable parameters 𝜆
1

= 1 and
𝜆
2

= 1 will provide higher values of similarity measures
when segmentation results are compared with segmentation
outcomes of expert radiologists. Overall, the performance of
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Table 7: Mean values for the Jaccard similarity coefficient (JSC) and the Euclidean distances of the masses. The mean values and ranges of
percentage differences in boundary moments (%Δ𝐹

1
, %Δ𝐹

2
, and %Δ𝐹

3
), percentage differences in shape convexity (%ΔSC), and percentage

differences in shape rectangularity (%ΔSC) for the masses, labelled as groups with predefined margin characteristics and also a group with
arbitrary margin characteristics, due to changes in the location of the initial level set contours evolved with the selective local or global
segmentation model with tuneable parameter 𝛼 = 5.

Margin characteristics Obscured/ill-defined margins Distinct/well-defined margins Unlabelled margins
Average JSC 0.86 ± 0.09 0.91 ± 0.04 0.89 ± 0.07
Average DF 0.05 ± 0.04 0.04 ± 0.03 0.05 ± 0.04
Mean of %Δ𝐹

1
15.1% 11.1% 13.1%

Range of %Δ𝐹
1

0–74% 0–38% 0–74%
Mean of %Δ𝐹

2
15.4% 13.4% 14.4%

Range of %Δ𝐹
2

0–67.5% 0–44.2% 0–67.5%
Mean of %Δ𝐹

3
23.5% 15.1% 19.3%

Range of %Δ𝐹
3

0–52% 0–41.1% 0–52%
Mean of %ΔSC 10.2% 8.7% 9.5%
Range of %ΔSC 0–30% 0–25.1% 0–30%
Mean of %ΔSR 11.7% 9.2% 10.5%
Range of %ΔSR 0–30% 0–28% 0–30%

Table 8: Summary results of linear regression analysis for tuneable parameters 𝜆
1
= 2.5, 𝜆

2
= 1 and 𝜆

1
= 1, 𝜆

2
= 1 and the selective local or

global segmentation method.

Tuneable parameters Selective local or global segmentation method
𝜆
1
= 2.5, 𝜆

2
= 1 𝜆

1
= 1, 𝜆

2
= 1 𝛼 = 5

Slope 𝑟 𝑝 value Slope 𝑟 𝑝 value Slope 𝑟 𝑝 value
𝐹
1

0.76 0.76 <0.0001 0.83 0.81 <0.0001 0.69 0.81 <0.0001
𝐹
2

0.79 0.77 <0.0001 0.72 0.80 <0.0001 0.75 0.86 <0.0001
𝐹
3

0.62 0.68 <0.0001 0.75 0.74 <0.0001 0.7 0.74 <0.0001
SC 0.85 0.82 <0.0001 0.93 0.88 <0.0001 0.88 0.83 <0.0001
SR 0.92 0.82 <0.0001 0.82 0.88 <0.0001 0.85 0.94 <0.0001

the selective local or global segmentation model was similar
to the performance of the Chan-Vese segmentationmodel for
this database of direct digital mammographic masses.

The difference plots in Figures 5 and 6 show that dif-
ferences in shape-based features for masses with distinct or
well-defined margins are scattered very close to the central
bias line as compared to masses with obscured, or ill-defined,
margins, thus indicating that the magnitude of differences
in shape-based descriptors due to changes in the placement
of the initial level set contours depends on the mass margin
characteristics. Other researches have reported the variation
of segmentation accuracy with the characteristic of the
mass margins for a given segmentation algorithm [41]. The
correlations (𝑟s < 0.06, 𝑝 > 0.05) between differences in
shape-based descriptors due to changes in the placement of
the initial level set contours and the average magnitude of
descriptors from both algorithms were very poor and they
were not significantly different from zero.

In general, the mean area overlap measure of the com-
bined categories was 0.89±0.02, the mean Euclidean distance
between the Fourier descriptors was 0.07 ± 0.05, and more-
over, in the Bland-Altman plots, the differences in shape-
based descriptors of 90% of thesemasses are within the limits

of agreement; therefore the interplacement agreement of the
initial level set contours based on these descriptors is accept-
able. However, both segmentation methods illustrated large
variation in boundary moments as compared to shape-based
descriptors such as shape convexity, shape rectangularity,
and Euclidean distance of the Fourier descriptors. Hence,
boundary moments should be utilized with caution because
they exhibit large percentage differences.

Interobserver variability amongst radiologists and inter-
method variability in delineating masses in mammography
translate to differences in shape-based feature vectors. The
magnitude of these differences should however not be so
large as to compromise the interclass separability measures
and hence the classification accuracies of shape-based binary
classifiers. This can be achieved if these feature vectors
show a certain degree of robustness to interobserver and
intermethod variability in segmented masses.

5. Conclusion

We have investigated and quantified the variations in shape-
based features in segmentation outcomes due to differences
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Figure 6: Linear regression plots ((a) and (c)) along with associated Bland-Altman plots ((b) and (d)) of shape rectangularity (SR) and shape
convexity (SC), respectively, for tuneable parameters 𝜆

1
= 2.5, 𝜆

2
= 1.

in the location of the initial level set contour for mass
lesion segmentation in direct digital mammography. The
Chan-Vese segmentation method and the active contours
with selective local or global segmentation model presented
similar results. The results show that the magnitude of
these variations expressed as area overlap measures and
percentage differences in shape-based features depend on the
characteristics of themassmargins and the choice of tuneable
parameters. Formasses with distinct or well-definedmargins,
percentage differences are reduced as compared to those

with ill-defined or obscured margins for both segmentation
algorithms. The mean percentage differences in boundary
moments and their ranges were large as compared to those
of shape convexity and shape rectangularity, even though the
area overlaps measures were within acceptable values. The
influences of these variations on the classification accuracy of
shape-based binary classifiers will depend on the magnitude
of the interclass separability measures; however, large fluc-
tuations in these values for the same mass are undesirable.
Finally, we concluded that boundary moments are sensitive
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to the placement of initial level set contours while Fourier
descriptors, shape convexity, and shape rectangularity exhibit
a certain degree of robustness to changes in the location of the
initial level set contours.
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Introduction: A convex active contour model requires a predefined threshold value to determine the
global solution for the best contour to use when doing mass segmentation. Fixed thresholds or manual
tuning of threshold values for optimum mass boundary delineation are impracticable.
Introduction: A proposed method is presented to determine an optimized mass-specific threshold value

for the convex active contour derived from the probability matrix of the mass with the particle swarm
optimization method. We compared our results with the Chan–Vese segmentation and a published global
segmentation model on masses detected on direct digital mammograms.
Methods and materials: The regional term of the convex active contour model maximizes the posterior
partitioning probability for binary segmentation. Suppose the probability matrix is binary thresholded
using the particle swarm optimization to obtain a value T1, we define the optimal threshold value for
the global minimizer of the convex active contour as the mean intensity of all pixels whose probabilities
are greater than T1.
Results: The mean Jaccard similarity indices were 0.89 ± 0.07 for the proposed/Chan–Vese method and
0.88 ± 0.06 for the proposed/published segmentation model. The mean Euclidean distance between
Fourier descriptors of the segmented areas was 0.05 ± 0.03 for the proposed/Chan–Vese method and
0.06 ± 0.04 for the proposed/published segmentation model.
Conclusions: This efficient method avoids problems of initial level set contour placement and contour re-
initialization. Moreover, optimum segmentation results are realized for all masses improving on the fixed
threshold value of 0.5 proposed elsewhere.

� 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Projection X-ray images of the breast are routinely used to diag-
nose breast diseases, including those presenting with masses.
These mammographic masses are often superimposed on anatom-
ical structures which create local minima within the mass regions,
and can result in mass margins having incomplete or missing
boundary information. This has led to reported significant inter-
observer variability in manual delineation of mass boundaries
amongst experts [1,2], and in choosing lexicon for describing mass
margin, density and shape of mammographic masses amongst res-
ident radiologists [3]. Consequently, the task of mass boundary
delineation is still challenging and in some cases can produce
unsuitable segmentation solutions.
In recent years, interactive segmentation algorithms have been
proposed to assist radiologists in delineating mass boundaries,
hopefully, to achieve realistic segmentation solutions which accu-
rately represent the physical attributes of these masses and thus,
decrease the statistical significance of the variability associated
with manual delineation. The initialization of these algorithms
requires some user-specified seeds to indicate the search area for
the mass boundary. Some of these methods seek to partition an
image into meaningful regions with information both from the
entire image and from the anatomical information provided by
the user, while adhering to certain pre-defined criteria.

The geometric active contour model [4] is one such interactive
segmentation algorithm widely employed in boundary delineation
of anatomical structures in medical image analysis. It minimizes
energy functionals, derived from the statistical distribution of the
gray level intensities or image gradients, of the image to produce
closed and smoothed contours depicting the boundaries of these
structures.
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Region-based models utilize statistical information obtained
from regions inside and outside an initial contour to evolve the con-
tour towards the desired boundary. The Chan–Vese region-based
active contourmodel [5] is oneof themethodswidelyused for image
segmentation. To deal with topological changes, the initial contour
is embedded in the level set of a function in higher dimensions. Its
energy functional is non-convex, and it is derived from the local sta-
tistical distribution of the gray level intensities within a narrow
band of pixels. Hence, the energy functional is minimized with the
gradient descent method which is susceptible to local minima
within the search path. Zhang et al. [6] proposed a region-based
active contour model to delineate objects with weak or blurred
edges. Their model is known as the ‘active contours with selective
local or global segmentationmodel’. Zhang et al. formulated the sta-
tistical information, inside and outside the initial contour, as a
signed pressure force function for curve propagation while regular-
izing the level set functionwith a Gaussian smoothing kernel. Direct
digital mammograms exhibit intensity inhomogeneity, conse-
quently, masses with ill-defined margins and local minima within
themass region. Delineationof direct digitalmass lesionswith these
algorithms, produces segmentation results which are dependent on
the placement of the initial level set contours [7].

Bresson et al. [8] proposed a region-based active contour model
whose energy functional is convex. It is derived from the global
statistical distribution of the gray level intensities of the image.
This model allows for the implementation of a global minimization
algorithm, based on the dual formulation of the total variation
(TV), to search for a global minimum of the active contour rather
than using the gradient descent method. The segmentation results
are independent of the placements of the initial level set contours,
and do not require the implementation of the contour re-
initialization process as level sets are not involved in their method
of curve evolution.

Medical image analysis methods have exploited spatial prior
probabilistic atlases as guides or confidencemaps, to segmentmag-
netic resonance images of the brain [9] and prostate [10] with the
active contour segmentation model. In mammography, such a map
is difficult to establish because breast tissues vary greatly in texture,
shape and size. Nonetheless, algorithms such as the randomwalker
method can provide mass-specific confidence maps which can be
incorporated into other segmentation algorithms to improve their
competence in delineating ill-defined mass boundaries [11].

Nguyen et al. [12] combined the probabilistic matrix from the
random walker segmentation method with a convex energy func-
tional to derive a robust interactive segmentation model. They
modeled the convex energy functional as a linear mixture of Gaus-
sian distributions, and expressed the probability matrix as a binary
classifier to propagate the contour whenever the statistical models
of the foreground and the background are similar. However, in
their implementation, the user fixes the threshold value of the glo-
bal minimum for the convex energy functional. In mass lesion seg-
mentation, a fixed threshold value for the global minima of a
database of direct digital mass lesions is not feasible because the
gray level intensity distributions of the background tissues sur-
rounding most masses are heterogeneous. This approach may
underestimate or overestimate the optimum threshold values of
these masses and, consequently, lead to unsuitable segmentation
outcomes. Furthermore, hand tuning each threshold value for opti-
mum mass boundary delineation is impractically time consuming.
The concentric morphology model of a mass describes a mass
lesion as possessing a highlighted focal region surrounded with
successively less intense concentric layers.

This study proposes an interactive segmentation model to
derive a reliable estimate of the mass-specific threshold value from
the morphological characteristics of the mass lesion for the global
minimizer of its convex energy functional. Our method assumes
that the statistical properties of the highlighted focal region repre-
sent the statistical model of the ground truth label. Subsequently,
the mass-specific threshold value for the global minimizer can be
derived from the threshold value that maximizes the between-
class variance of the highlighted focal region and the non-mass
region of the probability matrix of the mass lesion. Our approach
defines the mass-specific value as the mean pixel gray level of all
pixels whose probability of belonging to the highlighted focal
region is greater than the threshold value. The main contribution
of this paper lies in extracting reliable information from the prob-
ability matrix to provide a mass-dependent reliable estimate of the
threshold value for each global minimizer.
2. Mathematical background

2.1. Maximum likelihood active contour model for binary
segmentation

The binary partition of the image domain X into X1 and X2 by
an evolving curve, C, can be achieved by maximizing the posterior
partitioning probability for binary segmentation. Assuming that all
pixel intensities are independently distributed and all prior proba-
bilities are equally likely, the binary partition can be formulated as
the minimization of the following energy functional:

EðX1;X2; p1; p2Þ ¼ �
X2
i¼1

Z
Xi

logðpiððIðx; yÞjXiÞÞÞdxdyþ llengthðCÞ ð1Þ

where Iðx; yÞ is the value of the gray intensity value at pixel position
ðx; yÞ in region Xi;piððIðx; yÞjXiÞÞ the likelihood of a pixel ðx; yÞ in Xi

having the value Iðx; yÞ, and l > 0 is a constant.
Assuming that the gray level pixel values, Iðx; yÞ, are drawn from

a Gaussian distribution, then:

piððIðx; yÞjXiÞÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
ri

exp�ðIðx; yÞ � liÞ2
2ri

ð2Þ

where r2
i and li are the variance and mean of Xi, respectively.

Suppose the curve, C, is embedded in the level set function,
/ðx; yÞ, such that the regularized Heaviside function, H�, is the
characteristic function separating the foreground and background.
Then, optimum partition is obtained by solving the following gra-
dient descent flow:

@/
@t

¼ H0
�ð/Þ div r/

jr/j
� �

þ logðr2Þ � logðr1Þ þ ðIðx; yÞ � l2Þ2
2r2

2

 !"

� ðIðx; yÞ � l1Þ2
2r2

1

 !#
ð3Þ
2.2. Convex energy functional modeled with the posterior partitioning
probability for binary segmentation

The steady state solution of Eq. (3) is given as:

@/
@t

¼ div r/
jr/j
� �

þ k logðr2Þ � logðr1Þ þ ðIðx; yÞ � l2Þ2
2r2

2

 ! 

� ðIðx; yÞ � l1Þ2
2r2

1

 !!
ð4Þ

This is the gradient descent flow of the energy functional:

Eð/;r1;r2;l1;l2Þ ¼
Z
X
jr/jdxdyþ k

Z
X
rðx; y;r1;r2;l1;l2Þ/dxdy

ð5Þ
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in which rðx; y;r1;r2;l1;l2Þ ¼ logðr2Þ � logðr1Þ þ ðIðx;yÞ�l2Þ2
2r2

2

� �
�

ðIðx;yÞ�l1Þ2
2r2

1

� �
Eð/;r1;r2;l1;l2Þ has a global minimizer [8] when the mini-

mization of / is restricted to the interval [0,1]. Using the same
approach as Bresson et al. [8], we propose an expression for the
energy functional in Eq. (5) as:

Eðu;r1;r2;l1;l2Þ ¼ TVgðuÞ þ k
Z
X
rðx; y;r1;r2;l1;l2Þudxdy ð6Þ

where TVgðuÞ is the weighted TV energy, and it is given as:

TVgðuÞ ¼
Z
X
gðx; yÞjrujdxdy ð7Þ

with gðx; yÞ as an edge indication function.
The constrained convex minimization problem for the binary

segmentation with the energy functional, Eðu;r1;r2;l1;l2Þ, is
expressed as:

min
06u61

TVgðuÞ þ
Z
X
krðx; y;r1;r2;l1;l2Þudxdy

� �
ð8Þ

The unconstrained minimization expression of Eq. (8) is
expressed as follows:

min
u;u

TVgðuÞþ 1
2h

ku�uk2L2þ
Z
X
ðkrðx;y;r1;r2;l1;l2ÞuþatðuÞÞdxdy

� �
ð9Þ

where a > k
2 krkL1ðXÞ; tðuÞ ¼ maxf0;2j � 0:5j � 1g; k and h are con-

stants, TVgðuÞ is the boundary term, and rðx; y;r1;r2;l1;l2Þ is the
global term representing the statistical competition between the
regions inside and outside the contour.

The Chambolle’s dual formulation [13] of the TV regularization
function is implemented to solve the relaxed minimization prob-
lem by iterating u and u, separately. This approach splits the
relaxed minimization problem into two problems:

1. Fix u and solve for u in the following minimization problem:

min
u

TVgðuÞ þ 1
2h

ku�uk2L2
� �

ð10Þ

where the gradient descent flow is given by:

ut ¼ div ru
jruj
� �

� u�u
h

ð11Þ

and it is solved [8] as:

u ¼ u� h:divðpÞ ð12Þ
with a fixed point method and with the update scheme for p as:

pnþ1 ¼ pn þ DtrðdivðpnÞ �u=hÞ
1þ Dt=gðx; yÞjrðdivðpnÞ �u=hÞj ð13Þ

while setting p0 ¼ ð0; 0Þ and Dt 6 1=8 for convergence.
2. Fix u and solve for / in the following minimization problem:

min
u

1
2h

ku�uk2L2 þ
Z
X
ðrðx; y;r1;r2;l1;l2Þuþ atðuÞÞdxdy

� �
ð14Þ

The minimization solution can be written as:

ut ¼ minfmaxðu� hkðrðx; y;r1;r2;l1;l2Þ;0Þ;1Þg ð15Þ
Generally, rðx; y;r1;r2;l1;l2Þ is updated after a few iterations,

and upon convergence the final segmentation solution is obtained
by thresholding uðx; yÞ. The threshold value is an arbitrary constant
restricted to the interval [0,1] and is typically 0.5, as cited by some
researchers [12,14].
2.3. Random walk probability matrices

The probability matrices are derived from the random walk
algorithm by minimizing a combinatorial Dirichlet problem [15].
This algorithm models an image as a weighted graph consisting
of nodes and edges. Image pixels are denoted as nodes, and two
neighboring nodes are connected with an edge. The weight
assigned to an edge is determined by the distance between the
pixel values of the nodes, and is generally expressed as the likeli-
hood of a random walker crossing the edge.

The algorithm requires pre-defined labeled pixels. Sets of pixels
are labeled as belonging to the highlighted focal region of the mass
and non-mass regions. The probability matrix generated by the
random walker, starting from each unlabeled pixel and first reach-
ing the labeled pixel of the highlighted focal region, is the mass-
specific probabilistic map for the segmentation tasks. In our imple-
mentation, the mass-specific probabilistic map was derived from
the weighted TV scale-space smoothed model of the original mass.
This approach preserves edges in the image through different
degrees of smoothing.

3. Methods

3.1. Proposed convex energy functional modeled with global
probability distributions and mass-specific probabilistic maps

The global term representing the statistical competition
between the regions inside and outside the contour is modeled as:

rðx; y;r1;r2;l1;l2; P;bÞ ¼ b � rðx; y;r1;r2;l1;l2Þ
þ ð1� bÞ � ð1� 2 � Pðx; yÞÞ ð16Þ

where Pðx; yÞ is the mass-specific probabilistic map of the mass with
values within the interval [0,1]. The term ð1� 2 � Pðx; yÞÞ acts as a
classifier [12] which influences the direction of propagation of every
pixel position ðx; yÞ. In regions where Pðx; yÞ ¼ 0:5, uðx; yÞ is propa-
gated with the global probability distribution and the contribution
of the classifier to the global term is zero. While for regions with
Pðx; yÞ > 0:5, uðx; yÞ expands and favors classification of these
regions as the highlighted focal regions and vice versa. The classifier
propagates uðx; yÞ, whenever rðx; y;r1;r2;l1;l2Þ ¼ 0: b is a positive
constant, (0 6 b 6 1Þ, which controls the influence of the classifier
on the global term.

The proposed unconstrained minimization problem for binary
segmentation of the TV regularization function is expressed as:

min
u;u

TVgðuÞ þ 1
2h

ku�uk2L2
�

þ
Z
X
krðx; y;r1;r2;l1;l2; P;bÞuþ atðuÞdxdy

�
ð17Þ
3.2. Mass-specific threshold value for the global minimizer of the
proposed relaxed minimization problem

We define a confidence threshold level, T1, as the value of Pðx; yÞ
that partitions the mass-specific probabilistic map, Pðx; yÞ, into the
highlighted focal region of the mass and the non-mass region by
maximizing an objective function with a heuristic optimization
procedure. The optimal threshold value for the global minimizer,
T2, of each mass is expressed as the mean gray level of pixels
whose probability of belonging to the highlighted focal region is
greater than T1.

Suppose the confidence map, Pðx; yÞ, is rescaled to an interval
[0,255] and its histogram can be partitioned into two categories
(C1 and C2) with an objective function, ðf ðtÞÞ, where the pixel val-
ues of C1 range from 0 to t � 1 and those of C2 from t to 255. Based



Figure 1. The proposed framework for a mass-specific threshold value (TV) of a
global minimum for a convex energy functional in digital mammography.

Table 1
Qualitative evaluation of the performance of proposed method with the ground truths
(expert) for masses in Figs. 2, 4 and 5, where: Jaccard Index (JI), Euclidian Distance
between Fourier Descriptors (EDFD) are the parameters compared.

Masses JI EDFD

Fig. 2 (I) 0.80 0.02
Fig. 2 (II) 0.83 0.06
Fig. 2 (III) 0.90 0.01
Fig. 2 (IV) 0.86 0.03
Fig. 4 0.79 0.11
Fig. 5 (I) 0.80 0.01
Fig. 5 (II) 0.72 0.12
Fig. 5 (III) 0.87 0.02
Fig. 5 (IV) 0.81 0.09
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on the Otsu’s nonparametric method [16] for bi-level thresholding,
the optimal threshold value (T1) is obtained by maximizing ðf ðtÞÞ,
that is:

T1 ¼ argmaxðf ðtÞÞ ð18Þ
Figure 2. Differences in global minimizers with the typical threshold value of 0.5 and m
truths. (a) Original mass lesions. (b) Confidence maps from the random walk method.
threshold values from proposed iterative method, and (e) the ground truths.
where f ðtÞ is the between-class variance and it is expressed as:

f ðtÞ ¼ w1ðl1 � lTÞ2 þw2ðl2 � lTÞ2 ð19Þ

l1 is the mean intensity of C1, l2 the mean intensity of C2, lT the
mean intensity of the original whole image, w1 is the cumulative
probability of C1, and w2 is the cumulative probability of C2.

We implemented the particle swarm optimization method to
solve for T1. This method uses equations, representing the veloci-
ties and positions of a group of birds to simulate their social behav-
ior as a means to search for a global minimum of an objective
function [17]. Each particle position describes a potential solution
for minimizing the objective function ðf ðtÞÞ. The particle keeps a
ass-specific threshold values from the proposed iterative method and the ground
(c) The global minimizer with threshold values of 0.5. (d) Global minimizer with



1356 S.N. Acho, W.I.D. Rae / Physica Medica 32 (2016) 1352–1359
record of its coordinates in the problem space, and iteratively
updates its solution with its historical personal best solution
ðpbestÞ and the best solution of the group ðgbestÞ until particles
in the group surround the one with the most optimal solution. This
solution represents the best value for the objective function, hence,
the global minimum. The updating equations for each particle, i,
are mathematically modeled as follows:

ttþ1
i ¼wtti þ r1� rand�ðpbesti�xti Þþ r2� rand�ðgbest�xti Þ ð20Þ

and

xtþ1
i ¼ xti þ ttþ1

i ð21Þ

where w is the inertia weight, tti is the velocity of the particle at
iteration t, r1 and r2 are the personal and social learning rates,
respectively, rand is a random variable generated from a uniform
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Figure 3. Variation of the global term, rðx; y;r1;r2;l1;l2; P; bÞ, with the number of itera
values derived from the proposed method (PM).
distribution in the range [0, 1], pbesti is the personal best solution
of the particle, and xti is the current position of the particle.

The proposed framework for a mass-specific threshold value of
a global minimum for a convex energy functional in digital mam-
mography is illustrated in Fig. 1.

3.3. Segmentation procedure

The proposed iterative procedure can be summarized as
follows:

Step 1: Compute Pðx; yÞ and T2.
Step 2: Minimize Eq. (17) using the dual formulation as shown

in Eqs. (13) and (15).
Step 3: Update rðx; y;r1;r2;l1;l2; P; bÞ after a few iterations

until convergence.
Step 4: Segmentation outcome ¼ uðx; yÞ > T2.
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tions for mass lesions in Fig. 2 for a typical threshold value of 0.5 and for threshold



Figure 4. Sensitivity of segmentation results to the threshold value, T2: (a) original mass, (b) probability map of the mass, (c) segmentation result with T2 ¼ 0:5, (d)
segmentation result with T2 ¼ 0:6, (e) segmentation result with our PM (T2 ¼ 0:67), (f) segmentation result with T2 ¼ 0:8, and (g) the ground truth.
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4. Results

The performance of the proposed iterative procedure was eval-
uated on 50 mammograms with mass lesions acquired from a
Hologic SeleniaTM DimensionsTM system with an image receptor con-
sisting of a 70 lm pixel pitch, selenium direct-capture detector. It
was implemented in Matlab 7.0 on an Intel Core 2 Duo 3.0 GHz
processor with default parameters set to / ¼ 1=1:5; k ¼ 1; b ¼ 0:5.
Figure 5. Comparison of the proposed method (PM) with other segmentation schemes
local or global segmentation model, (c) segmentation results with the Chan–Vese mode
Fig. 2 shows the differences in the performance of a global min-
imizer with a typical threshold value of 0.5 and the mass-specific
threshold values from the proposed iterative method, with ground
truths from the experienced expert. The highlighted focal region of
the mass lesion is represented with higher probability values of
being classified as a mass region than other regions in the image
domain. Therefore, the threshold value for binary segmentation
of the probability matrix of a mass lesion can be considered as a
and the ground truth: (a) original images, (b) segmentation results with the select
l, (d) segmentation result with the PM, and (e) the ground truths.



Table 2
Qualitative evaluation of the performance of proposed method (PM) with different
segmentation models, where: proposed method, Chan–Vese model (CV), global
segmentation model (GS), Jaccard Index (JI), Euclidian Distance between Fourier
Descriptors (EDFD) are the parameters compared.

Paired segmentation models Mean values of JIs Mean values of EDFDs

PM/CV 0.89 ± 0.07 0.05 ± 0.03
PM/GS 0.88 ± 0.06 0.06 ± 0.04
CV/GS 0.95 ± 0.04 0.04 ± 0.03

PM/CV PM/GS CV/GS
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Figure 6. Box plots illustrating the distribution of JIs with paired segmentation
schemes. The central lines and the circles are the median and mean values of the JIs,
respectively. The edges of the box represents the 25th and 75th percentile, the end
of the whiskers extreme values and the crosses are the values that are more than
1.5 times the interquartile range away from the top or bottom of the box, also
known as outliers.
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Figure 7. Box plots illustrating the distribution of EDFDs with paired segmentation
schemes. The central lines and the circles are the median and mean values of the
EDFDs, respectively. The edges of the box represent the 25th and 75th percentile,
the end of the whiskers extreme values and the crosses are the values that are more
than 1.5 times the interquartile range away from the top or bottom of the box, also
known as outliers.
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realistic estimate of the mass-specific threshold value for the glo-
bal minimizer of its convex energy functional. Fig. 2(e) shows that
these threshold values give rise to segmentation results that are
similar to manually delineated masses by an experienced expert
(ground truths). Quantitative results are shown in Table 1.

When T2 is a good estimate for the global minimum, the global
term, rðx; y;r1;r2;l1;l2; P; bÞ converges to a low value as illus-
trated in Fig. 3. Moreover, rðx; y;r1;r2;l1;l2; P; bÞ decreases
rapidly as the number of iterations increases and finally remains
stable on this value. Fig. 4 shows that T2 may not be the only
threshold value for a reliable segmentation outcome for a given
mass, but in most instances, our PM provides the required mini-
mum threshold value for the global minimizer. For this database,
the mean value for T2 was 0.67 ± 0.09 with a minimum value of
0.4 and a maximum value of 0.8.

Fig. 5 compares the segmentation performance of the PM, the
classical Chan–Vese (CV) model, the active contour with selective
local or global segmentation (GS) model and the manually delin-
eated boundaries of masses on direct digital mammograms. Fig. 5
(I) and (III) show that the PM achieved similar segmentation per-
formance as the CV and GS models, except in regions with slowly
varying pixel intensity values wherein the PM slightly under-
segments. We quantified the differences between segmented areas
with the Jaccard similarity index (JI) also expressed as the relative
overlap [18].

Fourier descriptors are the best performing shape-based
descriptor for binary classification of mammographic masses, and
some researchers have estimated that 60 Fourier descriptors are
sufficient for shape indexing [19]. Consequentially, the shape of
each segmented mass lesion was indexed with 60 Fourier descrip-
tors and we estimated the agreement between the shape-based
descriptors of the segmented areas with the Euclidean Distance
between Fourier descriptors (EDFD) [20].

Table 1 shows the evaluation of the differences between the
segmentation results of some of the masses with the proposed
method and the ground truths from the expert. From the JIs, both
methods give similar results, but lower JIs for masses with spicula-
tions such as masses in Figs. 4 and 5 (II). This is expected because
mass margins are usually obscured and embedded in surrounding
tissue, and hence delineation of the mass boundary becomes sub-
jective. Zheng et al. [21] have cited the variation in the classifica-
tion of spiculation levels in mass margins between their
computer scheme and observer’s rating as 49.2% (kappa = 0.218)
and between paired observers from 41.3% to 58.8%
(kappa = 0.136–0.309). Furthermore, other researchers have
reported that manual delineation of mass boundaries amongst
experts is subjective [1,2].
5. Discussion

The mean value of the JIs and the mean value of the EDFDs for
the database of masses in this study are listed in Table 2. The PM
achieved similar segmentation results as the CV and GS models
on the size and shape of the segmented areas. Rahmati et al.
[22], reported a value of 0.87 for JIs between their segmentation
algorithm and expert radiologists, while Hao et al. [11] reported
JIs less than 0.85 for their PM and other segmentation methods.
The mean values for the PM are higher than the values reported
by these researchers, and moreover their masses were not from
direct digital mammograms.

The distributions of the JIs and EDFDs for each paired segmen-
tation models were investigated with box plots, as shown in Figs. 6
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and 7, respectively. Less than 7% of the JIs and EDFDs were classi-
fied as outliers for each paired segmentation scheme. The EDFDs
show that the shapes of the segmented areas from the PM are sim-
ilar to those of the CV and GS models, although the GS model pre-
sented more outliers than the others. The average processing time
for the PM was 14 ± 2.5 s as compared to the CV and GS models,
which were 10 ± 1.5 s and 8 ± 2.1 s, respectively.

The PM combines the random walker algorithm and particle
swarm optimization to search for a reliable estimate of a mass-
specific threshold value for the global minimum, therefore, factors
influencing any of the above-mentioned algorithms may compro-
mise the segmentation accuracy of the PM. The particle swarm
optimization method is prone to premature convergence to a local
minimum. Consequently, this step can be avoided if T1 is set to a
value representing the mean pixels in the focal region of the prob-
ability map. We set T1 ¼ 0:7 for our database, and more than 80%
of the masses produced reasonable segmentation results with the
derived T2 values, but could not successfully segment masses
whose gray intensity distributions were similar to surrounding
background tissues.

6. Conclusions

The proposed approach successfully searches for a mass-
specific threshold value for the global minimization of the convex
energy functional that is representative of the mean pixel values of
the highlighted focal region of the mass to derive segmentation
results which are independent of the placement of the initial con-
tours. The segmentation results of this method are comparable to
other classical segmentation methods and manually delineated
boundaries from the expert.

In the future, we hope to evaluate the PM on a larger database
of direct digital mammograms and also investigate the effects of
the position of the foreground/background seed on the segmenta-
tion accuracy. And, furthermore, evaluate the differences between
the proposed method and the ground truths for the entire
database.
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