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ABSTRACT 

Modelling flow in the unsaturated zone has caught interest recently in many fields of science 

such as geohydrology; agriculture; and soil physics. Unsaturated zone flow has a significant 

effect on the quality and quantity of groundwater resources; thus, it is essential to understand 

it. This thesis aimed to model water flow in the unsaturated zone. There are many studies in 

literature that aimed at understanding flow in this zone by means of mathematical models. 

Richards’ equation is commonly used in such studies and its performance has shown great 

success in reproducing the unsaturated flow system. However, complexities in the unsaturated 

zone and soil hydraulic properties make Richards’ equation to be highly non-linear which 

makes it impossible to solve analytically. As a result, it is mostly solved numerically using 

computer codes to obtain numerical solutions. However, linearized Richards’ equation can be 

solved analytically and reliable results can be obtained. The methodological approach of this 

thesis entails application of Brooks & Corey and Mualem non-linear hydraulic conductivity 

models to Richards’ equation. The resultant models were solved numerically and numerical 

solutions were obtained. Following that a linearized Richards’ equation was proposed and 

solved to obtain an exact solution. An exact solution was obtained using Laplace and inverse 

Laplace transform and Green’s function. For numerical analysis, both models were discretized 

using Crank-Nicolson and the Laplace Adam-Bashforth numerical approximation methods. 

The stability analysis was provided for the linear model for both methods. From the stability 

analysis, it was found that both numerical approximation methods yield stable solutions 

provided the required conditions are met. For the considered unsaturated flow system, it is 

concluded that the proposed linear model showed good performance in expressing water flow. 

Models proposed by Brooks & Corey and Mualem seemed to overestimate hydraulic 

conductivity resulting in an overestimation of soil moisture. These models were revised and 

the resultant models were able to yield results that correspond to results obtained using the 

proposed linear model. 

Key words: Unsaturated zone, unsaturated flow system, unsaturated hydraulic 

conductivity, non-linear model, linear model, Richards’ equation, exact solution, numerical 

simulations 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Water on earth is always in motion which sometimes involves phase change. This motion and 

phase change are clearly described in the hydrological cycle (Zhang, 1991). When precipitation 

occurs in the form of rain some water becomes surface runoff (Neitsch et al., 2011) and drains 

to the closest drainage basin. Depending on the vegetation cover; soil and rock type; nature of 

precipitation and other controlling factors, instead of flowing on the surface water can seep into 

the subsurface. Water that seeps into the subsurface continues to move as unsaturated or 

saturated flow. The unsaturated flow is a multi-phase flow that occurs when pore spaces 

between soil particles are occupied by both water and air (Boulding and Ginn, 2013). The zone 

at which this type of flow occurs is called the unsaturated zone, vadose zone or aeration zone 

(Nimmo, 2005). The term unsaturated zone will be used in this study when referring to this 

zone. The unsaturated zone is the subsurface water zone between the earth’s surface and the 

water table. The focus of this study is on the flow of water in this zone. To add, the unsaturated 

zone includes the capillary fringe where water is pulled up from groundwater resources by the 

capillary forces (Nimmo, 2005). Water in the unsaturated zone is mostly referred to as soil 

moisture. During extremely wet conditions surface water seepage can be very high in such a 

way that this zone becomes saturated with water for a short period until the normal conditions 

are retrieved. To expand, during or after a storm infiltration may be high enough to fill all 

available pores between soil particles with water leaving the soil being fully saturated. The 

saturation state is temporal and once drainage starts some water is replaced by air and 

unsaturated conditions retrieve. During extremely high temperatures this zone can become dry 

(Zhu et al., 2016). 

The unsaturated zone plays a significant role in the hydrological cycle. It controls the 

partitioning of precipitation and irrigation water into runoff, infiltration or evaporation. It also 

controls the quantity of groundwater recharge through water fluxes such as evapotranspiration, 

interflow and vertical water drainage (Twarakavi et al., 2008). Furthermore, the unsaturated 

zone stores and transfers water to the saturated zone, it also aids in solute dilution and 

transportation. Most importantly, it filters and absorbs contaminants in soil water before water 

joins the groundwater resources. To expand, the unsaturated zone plays a significant role in the 

quality of groundwater. This is mainly controlled by the soil type and its organic content as 
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well as the chemistry of mineral constituents in soil (Nimmo, 2005). Moreover, This zone 

connects the surface water resources and groundwater resources (Nimmo, 2005; Wong et al., 

2017). 

Soil moisture can be lost through plants evapotranspiration, and or evaporation (Wong et al., 

2017). Since the Earth’s gravitational force tends to pull all masses toward its centre (Nimmo, 

2005), the remaining soil moisture is pulled down towards the saturated zone. As water flows 

in the vertical direction, some water is retained due to capillary forces acting against the pull 

of gravity. Water that escapes flow resistance due to capillary forces percolates to the water 

table as groundwater recharge (Nimmo, 2005; Zhang, 1991). At this point, soil moisture joins 

groundwater resources and continue to flow as part of the saturated flow. The zone at which 

groundwater occurs is called the saturated zone. It is found underneath the unsaturated zone. 

This is where all the pore spaces are filled with water. Groundwater flows through permeable 

geological formations called aquifers following the interconnected pore spaces towards the 

discharge areas.  

Subsurface water flow is mainly gravity controlled especially in the unsaturated zone. Soil 

moisture flow is highly governed by the soil type and available soil moisture content. 

Groundwater flows down the hydraulic gradient through porous matrix towards the discharge 

areas or points of low hydraulic pressure (Eddebbarh et al., 2003). Sometimes flow can be 

through preferential pathways such as fractures in igneous rocks and bedding plane fractures 

in sedimentary rocks (Nimmo, 2005). In unconfined aquifers, groundwater tends to follow the 

surface topography and flow from a higher topographic elevation to a lower elevation (Zhang, 

1991). On the other hand, in confined aquifers water does not necessarily follow the topography 

instead it flows from a region of high hydraulic head towards a region of a lower head. In 

general, the rate at which subsurface water flow can be a few feet per hour, day, or a week 

depending on the permeability of the media. For example, in primary porous media the flow is 

matrix flow which is mainly by diffusion, therefore the flow is considered slow. In contrast, in 

fractured systems conduction dominates and the water flows faster (Zhang, 1991).  

The subsurface water flow is controlled by various factors in various media. Therefore, each 

subsurface water system is associated with a unique level of complexities. Understanding 

groundwater flow seems to be less complicated since aquifers’ hydraulic properties do not vary 

randomly in space. This is not the case for soil moisture, soil hydraulic properties are not fixed 

throughout the soil. Regardless of complexities associated with the unsaturated zone, there are 
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mathematical formulations that were developed to describe flow in this zone. The unsaturated 

flow in porous media was mathematically formulated by Henry Darcy in 1856 (Whitaker, 

1986; Zhang, 1991). Darcy explained subsurface flow in a porous media by means of a law, 

Darcy’s law (Soulaine, 2015).  Darcy’s law expresses the relationship between specific 

discharge, water discharge per unit area, and the hydraulic gradient with Darcy’s permeability 

as the proportionality constant. This law assumes a steady state flow in porous media  (Gordon, 

1989). Therefore, it does not cater for transient flows. There is another equation developed to 

model water flow in the unsaturated zone, the well-known Richards’ equation (Ojha et al., 

2017; Zhang, 1991). Richards’ equation has been a better mathematical way of expressing the 

unsaturated flow processes in the unsaturated zone. However, the effectiveness of Richards’ 

equation seems to decrease with an increase in complexities and heterogeneities of the system. 

Spatial heterogeneities of water content in soils result in non-linear parametric functions to 

Richards’ equation which makes it impossible to solve analytically. This led to the 

development of a Finite water-content method (Zhu et al., 2016) to accommodate complex 

problems that Richards’ equation cannot solve. Despite the weaknesses associated with 

Richards’ equation, it remains the governing equation to express soil water flow processes 

occurring in the unsaturated zone. Generally speaking, modelling flow in the unsaturated zone 

is complicated and requires knowledge of parameters that are most of the times impossible to 

obtain in the field. As a result, researchers proposed ways of reproducing the unsaturated 

system theoretically (e.g. Assouline et al., 1998; Burdine, 1953; Childs and Collis-George, 

1950; van Genuchten, 1980) by utilizing soil hydraulic parameters that are easy to obtain. 

These parametric models are highly non-linear, therefore they can only be solved numerically. 

This study attempts to solve Richards’ equation both numerically and analytically to obtain an 

exact solution and numerical solutions expressing the unsaturated zone flow system. 

1.2 Problem statement 

Groundwater resources have become a primary freshwater resource. The unsaturated zone 

system has a huge impact on subsurface water resources. Unsaturated zone flow processes 

control the quantity and quality of water entering the groundwater system. Depending on 

processes acting on soil water, the amount and chemistry of infiltration water may change as 

water migrates downwards. This poses a need to understand the movement of water through 

porous soil towards the water table. For years the unsaturated zone flow modelling has been a 

complicated issue due to the spatial evolution of soil hydraulic parameters. Regardless of 

complexities associated with this zone, researchers utilize Richards’ equation to model flow in 
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this zone. Richards’ equation is associated with many problems because it is highly non-linear. 

Therefore, I see a need to develop a linear parametric model that will result in a linearized 

Richards’ equation. I believe that the resultant equation will be free of problems associated 

with Richards’ equation. Exact solutions can be obtained which allows the unsaturated zone 

flow problems to be solved without a computer code. 

1.3 Aim and objectives 

The main purpose of this study is to model the flow of water in the unsaturated zone. The 

following study objectives will assist in achieving this purpose: 

1.3.1 To review existing models for estimating unsaturated hydraulic conductivity; 

1.3.2 To perform numerical analysis of Richards’ equation; 

1.3.3 To develop a theoretical linear expression for estimating unsaturated hydraulic 

conductivity; 

1.3.4 To develop a linear model for unsaturated flow in porous soils; 

1.3.5 To obtain an exact solution of linearized Richards’ equation;  

1.3.6 To evaluate the stability of the proposed linear model using two different numerical 

approximation methods and 

1.3.7 To produce numerical simulations for both non-linear and linear models representing 

subsurface water flow in the unsaturated zone. 
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1.4 Research framework 

The framework of this thesis is presented in Figure 1.1 below. 

 

Figure 1: Framework of the study 

1.5 Research outline  

This thesis is divided into 7 chapters and they are outlined as follows: Chapter 1 introduces the 

unsaturated flow system and the governing flow equation as well as the associated problem 

that will be addressed in this study. Chapter 2 gives a literature review of unsaturated zone 

hydrology. Chapter 3 provides a review of the literature on characteristic functions required for 

parameterizing the governing flow equation. Chapter 3 also addresses objective 1.3.1. Chapter 

4 provides the application of pre-existing mathematical models to the governing flow equation 

and numerical analysis using two distinct numerical approximating methods. The work on 

chapter 4 covers some part of objective 1.3.2. Chapter 5 covers developing a linear model for 

expressing water flow in the unsaturated zone followed by obtaining its exact solution. 

Towards the end of the chapter, a numerical analysis of the proposed model is covered. Part of 

objective 1.3.2 is addressed in this chapter as well. Objectives 1.3.3-1.3.6 are also addressed in 

chapter 5. Chapter 6 addresses the last objective of this thesis. It presents results for both non-

linear and linear models for the unsaturated flow system and discussion of the results; new non-

linear models are also proposed in this chapter. Chapter 7 provides a conclusion for the thesis. 
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1.6 Richards’ equation 

Modelling flow in the unsaturated zone is essential for understanding the subsurface water 

system. As a result of the complex nature of the subsurface water system, the modelling 

procedure is more sophisticated. Unlike unsaturated flows, modelling saturated flows is less 

sophisticated since the hydraulic conductivity is assumed to be constant throughout the media. 

For unsaturated flow, the story is different and more complex (Nimmo, 2005; Ojha et al., 2017) 

because unsaturated hydraulic conductivity varies randomly in space. There are mathematical 

formulations found in the literature that were suggested to describe unsaturated flow systems. 

There has been a great success achieved by these formulations in describing the unsaturated 

flow processes. The most common formulation of the unsaturated system that researchers have 

been using for decades to describe flow in unsaturated zone is Richards equation (Barari et al., 

2009; Vereecken et al., 2008) which was introduced by Richards (1931) after conducting his 

studies in capillary tubes to mimic water movement in unsaturated porous media. To describe 

moisture flow in soils Richards (1931) adopted the concept of water conductivity in porous 

media which was suggested by Buckingham (1907) who also suggested that in unsaturated 

flows conductivity is highly affected by moisture content (Barari et al., 2009).  

Richards’ equation is a generalised equation for describing flow in unsaturated porous media; 

it assumes a general non-steady one-dimensional flow in the unsaturated zone. It is expected 

that water content varies throughout the medium. As a result, the hydraulic conductivity, as 

well as forces governing the water flux, are also not fixed throughout the medium. This is the 

cause of the highly non-linear nature of Richards’ equation. The spatial variation in 

conductivity also leads to complexities in the field of modelling of unsaturated flow since it is 

quite difficult to measure non-uniform hydraulic conductivities throughout the medium. 

Richards (1931) formulated a non-linear Partial differential equation to describe one-dimension 

vertical flow in unsaturated non-swelling porous soils by combining mass conservation 

equation  

𝜕𝜃

𝜕𝑡
= −

𝜕𝑞

𝜕𝑧
 

 (1.1) 

with Darcy’s law  

𝑞 = −𝐾(𝜃)
𝜕ℎ

𝜕𝑧
 

 (1.2) 

to obtain 
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𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕𝐻

𝜕𝑧
) 

(1.3) 

Where 𝐻 = ℎ + 𝑧. By substituting 𝐻 into equation (1.3) the following is obtained 

𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑧
+
𝜕𝑧

𝜕𝑧
)] 

(1.4) 

which is simplified into 

𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑧
+ 1)] 

 (1.5) 

Where 𝑞 is the water flux; 𝜃 is the dimensionless volumetric water content or moisture content; 

𝑡 is the time; 𝑧 is the vertical distance; ℎ is the pore water pressure head, also referred to as 

capillary pressure; and 𝐾(𝜃) is the unsaturated hydraulic conductivity. 

Equation (1.5) above is the well-known mixed-form Richards’ equation used in modelling 

unsaturated flows; it is commonly used to describe flows in unsaturated soils. Given its mixed 

form state, it is more expensive and time-consuming to obtain all the required data for this 

equation because it has two independent variables, namely soil volumetric moisture content 𝜃 

and soil pore water pressure head ℎ. Moreover, the mixed-form Richards equation does not 

cater for all circumstances in unsaturated flow such as conditions with wetting fronts and where 

the flow is not stable. This is due to the non-linear nature of Richards’ equation which is caused 

by the strong dependence of the unsaturated hydraulic conductivity on capillary pressure head 

ℎ  and volumetric water content 𝜃. Alternatively, there are two formulations of Richards’ 

equation that consist of only one independent variable each. These formulations are soil 

moisture content based form, 𝜃-based form; and pore water pressure head based form, ℎ-based 

form. To obtain a head base form 𝜃 needs to be eliminated from equation (1.5) above to yield 

an equation that has only capillary pressure as an independent variable. 𝜃 is eliminated by 

introducing the derivative of the soil water retention curve, the specific water capacity concept, 

into equation (1.5) which yields 

𝐶(ℎ)
𝜕ℎ

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕ℎ

𝜕𝑧
) +

𝜕𝐾(𝜃)

𝜕𝑧
 

(1.6) 

Where 

𝐶(ℎ) =
𝑑𝜃

𝑑ℎ
 

(1.7) 

is the rate of change of water content or saturation in relation to the matric pressure head. 
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A  𝜃-based form Richards’ equation is formulated by incorporating soil pore water diffusivity 

𝐷 term into the mixed-form Richards’ equation to produce a transient unsaturated flow 

equation with only one independent variable 𝜃. This is achieved by assuming that the flow is 

governed by water content only and neglecting the effect of soil matrix potential ℎ. By 

incorporating pore-water diffusivity term 

𝐷 =
𝐾(𝜃)

𝐶(ℎ)
= 𝐾(𝜃)

𝑑ℎ

𝑑𝜃
 

 (1.8) 

into equation (1.5), the following is obtained 

𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐷

𝜕𝜃

𝜕𝑧
) +

𝜕𝐾(𝜃)

𝜕𝑧
 

  (1.9) 

Equation (1.9) above is a 𝜃-based form of Richards’ equation. Both forms are effective in 

mimicking flows in unsaturated systems and a choice on which one to use depends on the 

available data. 

Both 𝐷 and 𝐾(𝜃) highly depend on 𝜃, but during data collection 𝐷 is much easier to measure 

compared to 𝐾(𝜃) and ℎ. In equation (1.9) a decrease in 𝐾(𝜃) due to a decrease in 𝜃 is 

compensated for by a typical increase of  
𝑑ℎ

𝑑𝜃
 with a decline in 𝜃. Therefore, 𝐷 varies less than 

𝐾(𝜃) in the field. It seems to be much easier to conduct  𝜃 measurements compared to ℎ 

measurements in the field. Moreover, 𝜃 measurements are more reliable than ℎ measurements 

because they cover the water content of the entire range whereas ℎ measurements do not cover 

the entire media but only that part of the water retention curve that is wet. In this study, only a 

𝜃-based form of Richard’s equation will be analyzed. 

Despite the success of Richards’ equation, its application is problematic since it requires 

knowledge of many soil hydraulic parameters (Ojha et al., 2017) that are sometimes impossible 

to obtain. Unlike groundwater flow, unsaturated zone flow is characterised by parameters that 

require spatial and temporal characterisation since they differ randomly in space as a result of 

system heterogeneity. To add, parameterizing functions required to solve Richards’ equation 

are highly non-linear. This is because the soil hydraulic parameters extremely depend on 

volumetric water content which evolves randomly throughout a soil volume. As a result, 

Richards’ equation is highly non-linear and difficult to solve. Obtaining analytical solutions 

requires oversimplification of the natural unsaturated system which may lead to 

underestimation or overestimation of flow parameters. For example, unsaturated hydraulic 
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conductivity is commonly miss-predicted in models where the effect of capillarity is over-

emphasized. Numerical solutions, on the other hand, are the most reliable ones. However, they 

are sometimes associated with convergence problems because of the highly non-linear nature 

of this equation. Moreover, computational procedures are complicated, time-consuming and 

expensive. 
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CHAPTER 2: LITERATURE REVIEW OF UNSATURATED 

ZONE HYDROLOGY 

2.1 Introduction  

The unsaturated zone flow processes control water transfer processes between the land surface 

and the groundwater table. Understanding processes occurring in the unsaturated zone is the 

key to understanding the geohydrological processes occurring in a groundwater system 

(Twarakavi et al., 2008). Basic unsaturated zone hydrology helps to understand hydraulic 

parameters influencing processes that water in the unsaturated zone undergoes starting from 

input to output processes. This chapter provides a review of the unsaturated zone hydrology 

including water flow processes. 

2.2 Basic unsaturated zone hydrology 

Soil hydrology can be simple and straight forward or complicated. Knowledge of hydrological 

characteristics of the unsaturated zone is the base of understanding soil moisture flow. The soil 

hydraulic parameters play a significant role in parameterizing the governing equation for 

modelling soil moisture movement. Some important parameters are covered in this section. 

2.2.1 Soil hydraulic characterization 

Soil hydraulic parameters are introductory components to unsaturated flow studies. Some 

important parameters are; porosity and effective porosity; volumetric water content and degree 

of saturation; density; soil water retention curve which will be covered in section 2.3.4; and 

one of the most important ones, unsaturated hydraulic conductivity. This section will cover a 

few hydraulic parameters and soil hydraulic characteristics namely: soil water potentials; soil 

moisture conditions; and types of soil water.  

2.2.1.1Porosity  

Porosity 𝑛 describes a fraction of a medium that is occupied by pore spaces. In terms of soil, 

porosity is that fraction of soil volume that is occupied by empty spaces that can be filled with 

water or air (Tarboton, 2003). It is mathematically expressed as 

𝑛 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
 

(2.1) 

Its values range from 0 to 1. For soil, it usually ranges from 0.3 to 0.7 (Nimmo, 2004) and is 

controlled by many factors. Porosity is an important parameter in hydrology, to be specific 
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effective porosity which is referred to as the fraction of a soil volume that is occupied by pores 

that are actually connected to allow conduction of flow. The size of these pores plays a 

significant role in understanding fluid conductivity through them which brings interest to the 

concept of pore size distribution. Pore size distribution describes the spread of pore sizes across 

the soil volume. For decades this concept has caught the interests of many researchers who 

aimed to study unsaturated hydraulic conductivity (Brooks and Corey, 1964; Burdine, 1953; 

Mualem, 1976; van Genuchten, 1980). 

2.2.1.2 Unsaturated hydraulic conductivity 

Unsaturated hydraulic conductivity describes an ease at which water can move through soils 

when both water and air occupy the pore spaces (Tarboton, 2003). It is known to be highly 

dependent on the water content and the pressure head. A decline in unsaturated hydraulic 

conductivity is the result of a decline in volumetric water content during redistribution or 

internal drainage. This leads to a decline in flow cross-sectional area leading to a more tortuous 

path and an increase in drag forces. Different soils conduct water differently and for this reason 

change in unsaturated hydraulic conductivity is different for different soils since it depends on 

individual soil properties (Childs and Collis-George, 1950). Figure 2, for example, presents 

how clay and sand conduct water flow. Sand tends to permit flow more compared to clay; this 

means that water moves fast in sands than in clays (Boulding and Ginn, 2013). Figure 2 also 

presents the strong dependence of hydraulic conductivity 𝐾 on water content 𝜃 and matric 

pressure ℎ 𝑚, 𝐾 tends to decrease with 𝜃 and ℎ 𝑚 in both soil types. 

 

Figure 2: A schematic illustration of hydraulic conductivity for sand and clay in relation 

to soil matric head and volumetric water content (“Chapter 4 - Water flow in 

unsaturated soils,” 2000) 
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Moreover, the relationship is highly nonlinear hence 𝐾 varies randomly throughout the flow 

media. When modelling flow in the unsaturated zone unsaturated hydraulic conductivity is an 

important hydraulic parameter, it must be determined before carrying on with the modelling 

procedure. It can be determined using direct measurements or by utilizing theoretical models 

that are found in the literature. Direct measurements of unsaturated hydraulic conductivity can 

be conducted in the field or in the laboratory (McCartney et al., 2007). Field measurements 

require lots of manpower and relevant equipment to perform direct measurements. To add, 

sometimes it is highly impossible to conduct a field experiment given the complicated nature 

of the unsaturated zone. 

 

Figure 3: Schematic example of permeameter used in the laboratory to measure 

unsaturated hydraulic conductivity (Gallage et al., 2013).  

In the laboratory a permeameter is used, see Figure 3, to measure unsaturated hydraulic 

conductivity; the results are correct and reliable. The disadvantage of using a permeameter in 

the laboratory is that it requires highly trained personnel (Gallage et al., 2013) to operate it and 

it takes time to conduct the whole experiment. Moreover, laboratory measurements are 

expensive. Because of the disadvantages associated with direct measurements, researchers 

have shown a great interest in predicting unsaturated hydraulic conductivity using theoretical 
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models. A review of theoretical models for predicting unsaturated hydraulic conductivity is 

given in the next chapter of this thesis. 

2.2.1.3 Soil water potentials  

Gravitational potential (+ value) 

Gravitational potential is energy due to the pull of force of gravity towards the centre of the 

Earth. It is associated with the depth of soil water from a reference point. It influences water 

flow in soils; water drains down to deeper parts of the unsaturated zone under the influence of 

gravity (Boulding and Ginn, 2013). 

Matric potential (- value)  

Matric potential is referred to as the relationship between the air in pore spaces and the pressure 

head (Mawer et al., 2015). It is associated with water attraction strength to the soil particles, 

thus it is commonly referred to as potential due to soil particles. It plays a major role in water 

flow in unsaturated soils. Water tends to flow from regions with relatively high moisture 

content to regions with relatively low moisture content (Hillel, 2004). This is from a less 

negative matric potential to a more negative matric potential. 

Solute/Osmotic potential (-value) 

This is a water potential that is determined by the concentration of solutes in the soil water. It 

is higher for high solute concentrations and lowers for low concentrations. In terms of soil 

water movement, water tends to move from regions with relatively high concentration to 

regions with relatively low concentration. 

Pressure potential (+ or – value) 

It is associated with the amount of pressure that soil water is exposed to. In most cases, it is 

equal to 0 for unsaturated soils.  

The total potential energy in soils is given by the sum of all potentials acting on soil water. The 

direction at which water moves in the soil is determined by how the total potential energy is 

distributed across the soil. The direction can be vertical, downwards if the potential is greater 

at the top or upwards in cases such as that of capillary rise, or horizontal, left when right 

experiences high potential and right if higher potentials are at left. 
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2.2.1.4 Soil moisture conditions 

Soil moisture content/volumetric water content 

This is the amount of water that is present in the soil. In unsaturated flows, the water content 

is known to vary randomly across time and space. It is a function of physical and hydraulic soil 

properties and the rate of change is unique for different soils (Tarboton, 2003). 

Saturation 

The soil is fully saturated when all pore spaces are filled with liquid water, see Figure 4(a). It 

is common for the soil to be fully saturated from the top to a certain depth depending on 

hydraulic properties of the soil. This is only for a limited period of time after rain or irrigation; 

coarse sands will be saturated for a few hours because they drain quickly and fine sands can be 

saturated for a few hours to a few days due to their low permeability (Boulding and Ginn, 

2013). At this stage, the air is totally absent and all pores are filled with water. This stage lasts 

until water is drained down by gravity reducing the moisture content. Large pores drain first 

(Gallage et al., 2013; Swartzendruber, 1954) and air fills the emptied pores. Therefore, both 

water and air will be present in the system and the unsaturated state will be retrieved. 

Field capacity or storage 

This is a condition that occurs after drainage; here larger pores are empty or contain both air 

and water, smaller pores are still filled with water, see Figure 4 (b). This is the unsaturated zone 

water storage, it describes all the water that is retained during drainage  (Chanasyk and 

Verschuren, 1983). This water is available for roots uptake and sustains shallow subsurface 

life. 

Permanent wilting point 

The quantity of water that is put to storage decreases continuously due to evaporative processes 

and uptake by plants and bacteria. Soil moisture content declines and if there is no water input 

into the unsaturated system the moisture content declines until there is only a little water 

accessible by plants roots (Brouwer et al., 1985). Plants suffer from water deficiency condition 

and their growth is hindered, their leaves turn yellow. Moisture content continues to decline 

until a very small amount of water, see Figure 4 (c),  is left in the soil and cannot be accessed 

by plants (Chanasyk and Verschuren, 1983). Consequently plants dry out and die. This 

moisture condition that results in the death of plants is known as the permanent wilting point. 
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Figure 4: An illustration of soil moisture conditions: (a) soil water at saturation, (b) soil 

water at field capacity and (c) soil water at wilting point (Brouwer et al., 1985)  

2.2.1.5 Types of water 

After infiltration water is stored between pore spaces in the unsaturated zone as soil moisture 

which is then redistributed in the subsurface as either gravitational water, capillary water or 

hygroscopic water. Gravitational water is that part of soil moisture that is drained downwards 

into deeper parts of the unsaturated zone by the gravitational force (Boulding and Ginn, 2013). 

Water that resists gravitational force is held back in pore spaces by capillary forces, namely 

adhesion and cohesion, is called capillary water. This water is available for plants uptake, it 

sustains shallow subsurface life. Lastly, the water that is held back by adhesion and is not found 

in pore spaces but on the particle surface is the hygroscopic water. This water contributes to 

film flow and is dominant in very dry areas. 

 2.3. Unsaturated zone flow processes 

The fate of water that infiltrates into the soil is broad, before joining groundwater flow 

precipitation or irrigation water goes through a number of processes, see Figure 5. These 
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processes play a significant role in the quantity of recharge. The following section covers 

processes occurring in the unsaturated zone starting from infiltration to groundwater recharge. 

 

Figure 5: Paths followed by water in the unsaturated zone (Heinse and Link, 2013) 

2.3.1 Input fluxes 

2.3.2.1 Infiltration 

This is a process whereby throughfall, part of precipitation that reaches the soil or ground 

surface, or irrigation water is absorbed into the soil (Nimmo, 2005). During absorption one of 

the two conditions occurs. The intensity of precipitation may be high in such a way that local 

infiltration capacity, the maximum amount of water that soil can hold or absorb, is lower than 

the throughfall rate. Precipitation intensity may be lower than infiltration rate and the local soil 

surface gets saturated, water will start flowing on the earth’s surface as surface runoff in 

response to topographic gradients (Wetzel et al., 1996). Runoff can be defined as all liquid 

water that flows over the soil surface. At the beginning infiltration rate is usually high 
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especially if the soil surface is relatively dry; this is when the soil water intake capacity is still 

high. As infiltration proceeds, the soil moisture content increases and the capillary pores 

become filled with water hindering the further intake of water into the soil. Thus, infiltration 

rate declines rapidly until saturation is reached and no infiltration occurs (Nimmo, 2005). 

Various soil types have various infiltration capacity. Even though a certain soil type 

characterizes a flow medium the infiltration capacity is still not fixed, it varies as a function of 

water content. Infiltration occurs until a state of pseudo-saturation is reached on the topsoil 

layer. If percolation does not distribute water from the topsoil to other dry parts of the soil to 

reduce the moisture content at the surface, infiltration stops until drainage occurs making a 

room for new incoming water in the soil. This explains the common trend of infiltration graphs. 

Figure 6 provides a graphical representation of a trend where infiltration if high at the beginning 

of the storm followed by a rapid decline in infiltration rate and an extended period of relatively 

low rates before infiltration ceases. Researchers believe that this trend is not only caused by 

local surface saturation but also by physical changes that occur on the soil as infiltration 

proceeds. Raindrops or water drops from irrigation practices alter soil structure (Boulding and 

Ginn, 2013) and affect the infiltration rate. To expand, raindrops can cause alteration of pore 

spaces; closing of some cracks and preferential pathways and swelling in cases where clays are 

present. 

 The measure of how fast the water can go into the soil is governed by many factors. Soil that 

has been exposed to dry atmospheric conditions has little moisture content and is considered 

to be relatively dry and has high water intake capacity (Boulding and Ginn, 2013). This is 

because there is more room for incoming water than in relatively wet soils. Because of that, 

when precipitation or irrigation occurs water is absorbed instantaneously into the soil. 

However, prolonged dry conditions can make the soil surface to be hard and soil can respond 

to precipitation the same way that pavements do. Nature of precipitation is important especially 

the intensity. In terms of rain heavy showers give no time for water on the soil surface to 

actually seep into the ground. Once water drops reach the ground they accumulate and start 

flowing as surface runoff. In contrast, soft showers promote infiltration and more water is 

absorbed into the soil. The state at the ground surface plays a significant role in the partitioning 

of rainwater into either infiltration or surface runoff. Pavements and other impervious 

structures on the soil surface act as an umbrella during storms. No water goes through 

impervious structures thus more water will flow on the surface. Vegetation cover adds 

resistance to water flow and assists in infiltration. Moreover, Plants are rooted in the soil which 
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increases the permeability of the soil and allows water to go into the soil. Soil permeability is 

referred to as the ability of soil to permit water flow; is also known as the ability of soil to 

conduct liquid flow. Soil that allows water to flow easily has a high infiltration rate than soil 

that is less permeable. This is because water that has already seeped into the soil requires to be 

redistributed to other parts where there is less moisture content. In cases where soil permits fast 

redistribution of water, the topsoil will have more room for surface water to infiltrate into.  

Depending on the aforementioned factors infiltration rate can be considered fast or slow. To 

add, Boulding and Ginn (2013) pointed out that factors such as topography; the quantity of air 

present in soils; thermodynamic conditions; as well as microstructures that open pores in soils 

also affect infiltration rate. 

Since the infiltration process is one of the key processes to the occurrence of subsurface water 

and most importantly groundwater, it is important to understand it. Some researchers use 

Richards’ equation to model infiltration. The effectiveness of Richards’ equation seems to be 

highly affected by the heterogeneity in water content; pressures; and randomly changing fluxes 

with time. This limits it from yielding results that mimic the physical unsaturated system. 

Alternatively, other studies make use of models that incorporate numerous assumptions that 

oversimplify the physical system. One of them is an infiltration model by Green and Ampt 

(1911) which is based on the assumptions that a porous media has homogeneous and isotropic 

properties. The mathematical expression of the Green and Ampt (1911) model is given by 

𝑓𝑝 =
𝐾𝑠(𝐿 + 𝑆)

𝐿
 

 

(2.2) 

Where 𝐾𝑠 is hydraulic conductivity when the soil is saturated; 𝐿 is the depth of infiltration, 

and 𝑆 is capillary suction. Green and Ampt model is based on oversimplified assumptions that 

do not really exist in a real natural system but its application has produced useful results. 

Another popular model for expressing infiltration is the one proposed by Horton (1940). Horton 

described infiltration based on the theory that the infiltration rate is less than the rainfall 

intensity. He also assumed that water ponds form on the soil surface and that infiltration rate 

declines continuously with time. Horton’s function is commonly used to describe infiltration; 

it is mathematically expressed as 

𝑓(𝑡) = 𝑓𝑐 + (𝑓0 − 𝑓𝑐)𝑒
−𝑘𝑡 (2.3) 

  0 ≤ t ≤ td  
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Where  

𝑘  is the decay constant 

𝑓𝑐  is the final equilibrium infiltration capacity 

𝑓0  is the initial capacity at 𝑡 = 0 

𝑓(𝑡) is the infiltration capacity at any time as from the beginning of the rainfall 

𝑡𝑑  is the rainfall duration 

 

Figure 6: Horton’s model for infiltration (MIDUSS version 2 Reference manual, 2004). 

Figure 6 above is a typical graph for expressing the infiltration capacity of soils obtained using 

Horton’s model. At any time interval, it is possible to obtain the depth of infiltration by 

calculating the area under the infiltration capacity curve. Assumptions made by Horton  (1940) 

are not always valid. Sometimes rainfall intensity is less than infiltration rate. For this reason, 

many studies consider infiltration capacity to vary with cumulative infiltration volume than 

with time. This leaves Horton’s equation to be valid only when storm intensity exceeds soil 

infiltration capacity, usually during heavy storms. Since there is no perfect model for 

infiltration, researchers make use of these models with the aid of some modifications and 

extensions of assumptions. The choice on which model to use depends on the nature of a 

problem and whether the model is based on realistic assumptions for a given natural situation. 
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2.3.2 Drainage and redistribution 

Infiltration process introduces water to the soil to wet the soil from the surface to a certain 

depth, sometimes the entire soil profile gets saturated. After some time when precipitation or 

irrigation has stopped ponding water on the surface disappears and infiltration stops. However, 

the migration of water in the subsurface does not stop immediately (Wetzel et al., 1996). Water 

continues to move (Youngs and Poulovassilis, 1976) to regions with lower total potential 

energy by sucking water from the wetted top layer. In cases where the soil was fully saturated 

during infiltration, water movement occurs by means of internal drainage. This usually occurs 

in the presence of a shallow groundwater table, eventually soil water gets discharged to 

groundwater as groundwater recharge. In cases where the soil was partially saturated during 

infiltration water movement occurs by means of redistribution (Hillel, 2004). In most cases 

redistribution occurs where the groundwater table is deep and does not pose a significant role 

in soil water percolation processes. The movement of water can be in either vertical or 

horizontal direction or both depending on the potential gradients. Gravity plays a major role 

combined with the matric pressure gradients and soil hydraulic conductivity in continuously 

draining the water to deeper parts of the unsaturated zone until the saturated flow is reached.  

2.3.2.1 Internal drainage  

In a soil volume that was fully saturated when infiltration stopped gravitational potential 

becomes the only active energy. Under the influence of gravity, water tends to flow towards 

the groundwater table (Gallage et al., 2013). The vertical movement of water towards the 

groundwater table draws water from the top layer resuming unsaturated flow conditions. If 

another infiltration episode does not occur pores get emptied. Larger pores are emptied first 

and moisture content declines continuously leaving the flow narrowed to small pores 

(Tarboton, 2003). Therefore, the rate for internal drainage highly depends on pore sizes. 

2.3.2.2 Soil water redistribution 

As water is absorbed into the top parts of the unsaturated zone through infiltration moisture 

content in soil rises. Depending on the amount of water that has been absorbed the wet portion 

extends to a certain depth below the earth’s surface. The forces that influence water movement 

during infiltration continue to act and water continues moving in the subsurface (Peck, 1971). 

For water to move from the wet upper parts of the unsaturated to other parts drainage of 

moisture from wet parts occurs due to the influence of gravity and matric potential. The pores 

are drained and water is replaced by air; as mentioned above larger pores are drained first and 
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filled with air leaving only small pores filled with water. Water content tends to decline with 

depth and time (Youngs and Poulovassilis, 1976). Figure 7 clearly elaborates how moisture 

declines with depth after some time when a storm has passed. When water moves from a wetted 

soil layer at the top to dry deeper soil the rate of movement declines (Hillel, 2004). This is 

because the capillary forces in soil tend to hold back some moisture resulting in a decrease in 

residual flow. The amount of water that is held back depends on the soil texture; fine sands 

tend to retain more water compared to coarse sands. To add, coarse-grained soils lose water 

quickly and a lot of water at once and a typical graph of water content decline is expected to 

be much steeper compared to a typical graph for fine grained-sands. 

 

Figure 7: A schematic illustration of how soil moisture is redistributed across space and 

time (Peck, 1971). 

The decline in moisture content leaves a small volume of pores with water and flow path 

becomes more tortuous and complex. Moisture content declines continuously which increases 

the tortuosity of the flow path (Gallage et al., 2013).  
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2.3.2.3 Lateral flow 

Lateral flow occurs in unsaturated soils (Neitsch et al., 2011). Even though the vertical flow is 

most common and tends to grab most of the attention in moisture flow modelling, it is important 

to look at lateral flow as well. The condition for lateral flow is that the soil horizon must be at 

a slope so that gravity can pull water down the slope. Results from a laboratory experiment 

conducted by Singh and O’Callaghan (1978) proved that horizontal moisture flow in soils 

occurs especially in stratified soils with layers characterised by significantly different hydraulic 

conductivities. Moreover, in cases where the groundwater table is shallow lateral flow is 

common. 

2.3.3 Output fluxes in the unsaturated zone 

After sometime soil moisture leaves the unsaturated zone to groundwater through percolation 

as groundwater recharge; atmosphere through evapotranspiration, and surface water bodies 

through interflow. This section provides a review of those processes that flash out water from 

the unsaturated zone. 

2.3.3.1 Evapotranspiration 

Some researchers use the term exfiltration to describe the process that is the exact opposite of 

infiltration. This is all water fluxes that remove water from the soil surface. The main 

exfiltration process in tropical and hot climates is evapotranspiration which consists of two 

processes namely evaporation and transpiration (Rosas-Anderson et al., 2018; Tesfuhuney et 

al., 2015). Transpiration is a loss of water that is drawn from the soil by plants and leaves plants 

bodies through evaporation on the surface of plants leaves. In short, transpiration is evaporation 

of water through plants leaves and stems. It is common in tropical climates where intense 

vegetation cover is present (Neitsch et al., 2011). Evaporation of soil water directly from the 

soil surface is the most important one of the two evapotranspiration processes in arid climates 

with soil surfaces characterized by little or no vegetation cover. When there is enough moisture 

on the soil surface and atmospheric conditions favour evaporation water will leave the soil back 

to the atmosphere. Evaporation occurs in two ways, one way is where there is high moisture 

content at the soil surface and enough radiation energy to extract water from the soil. Another 

way is when the soil surface is relatively dry and atmospheric conditions are less effective but 

soil properties (Klocke, 2002). The amount of moisture that leaves the soil through evaporation 

depends on how exposed the soil is relative to the sun. A study by Gava et al (2013) showed 

that evaporation is high in bare soil and less where the soil surface is concealed. To add, 
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evapotranspiration is one of the most significant fluxes in the unsaturated zone because it 

governs energy transfers between the subsurface and the atmosphere (Kang et al., 2009). 

2.3.3.2 Interflow 

This is a process where water flows laterally in the unsaturated zone and gets discharged from 

a soil layer before joining groundwater flow (Wetzel et al., 1996). Usually, it occurs where a 

soil horizon contains soil layers with various hydraulic conductivities. The basic condition is 

that the layers must be at a slope (Minshall and Jamison, 1965). The main driving force of 

interflow is the soil layer hydraulic conductivity. If a soil horizon has various types of soil their 

hydraulic conductivity will also vary and water flow in that specific soil horizon will be 

affected. If the hydraulic conductivity of the layer on top is significantly greater than that of 

the layer below (Singh and O’Callaghan, 1978), water will drain fast in the top layer. When it 

reaches the boundary where it intercepts with the layer having significantly low conductivity 

the flow will be slow. Water will start to accumulate along the boundary between two soil 

layers forming a thin layer of wet soil. Continuous accumulation of moisture will feed the thin 

wet layer until saturation is reached at the boundary and water holding capacity will be 

exceeded. Where there is a steep slope enough for horizontal flow, the horizontal flow of water 

will dominate at the boundary of these layers and vertical flow into the less conductive layer 

will be slow. Continuous horizontal flow of water will result in interflow where it intercepts 

the earth’s surface (Chanasyk and Verschuren, 1983). Interflow is common in watersheds 

characterized by steep slopes and has an impact on drainage. Minshall and Jamison (1965) 

studied the impact of interflow on soil water drainage and found that interflow reduces soil 

moisture. According to Wetzel et al (1996), a sink term for interflow should be included when 

modelling flow in the unsaturated zone to account for moisture loss to avoid overestimation of 

soil moisture at certain depths. 

2.3.3.3 Groundwater recharge 

If there is still access free soil water that is still migrating even after evapotranspiration and 

interflow, groundwater recharge occurs. By definition, groundwater recharge is a 

geohydrological process whereby access soil moisture in continuous vertical motion reaches 

the groundwater table and join saturated flow as new input water to groundwater resources. 

Recharge occurs both naturally and artificially. In this case, attention is given to natural 

recharge that is influenced by unsaturated flow processes. All unsaturated flow processes affect 

groundwater recharge and thus the existence of groundwater resources. Infiltration introduces 

water to the subsurface which then escapes through evapotranspiration to the atmosphere; get 
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redistributed to other parts of soil with lower total potential energy; discharged on the earth’s 

surface as interflow through lateral flow on hilly slopes; and lastly get discharged to the 

saturated groundwater zone (“C hapter 6 Groundwater Recharge,” 2014). Therefore, all input, 

redistribution; and output fluxes are essential in understanding the quantity of recharge. In most 

cases, groundwater recharge is a very slow process and occurs in very small quantities 

especially in areas with deep groundwater tables. To add, groundwater recharge is divided into 

direct and indirect recharge (Condesso de Melo, 2015). Direct recharge refers to water that 

joins saturated flow directly from infiltration water that percolates into groundwater resources. 

Indirect recharge, on the other hand, refers to recharge through connected streams and surface 

flow channels. 

2.3.4 Other important unsaturated flow processes 

2.3.4.1 Capillarity  

Capillarity is the process whereby water opposes the pull of gravity and resist flow resulting in 

unsaturated zone storage. It is controlled by adhesion and cohesion.  Water molecules tend to 

be attracted to the boundaries of particles and remain behind when some water is drained by 

gravity; this process is known as adhesion. Water molecules are also attracted to one another 

rising surface tension; this process is defined as cohesion. Mostly capillarity in soils is 

conceptualised using a bundle of capillary tubes (Childs and Collis-George, 1950; Richards, 

1931). Water in capillary tubes rise to a certain level depending on the width of the tube; water 

rises to higher heights in thin tubes compared to thick tubes. Pores between soil particles are 

commonly considered as capillary tubes. Since capillary rise is high at thin tubes soils with 

small pores are expected to hold more water than larger pores. This is the reason why sands 

drain quickly (Brooks and Corey, 1964) and clays have high water holding capacities. 

Capillarity is the governing force for soil water retention. Moreover, capillarity also causes 

upward and horizontal movement of water in soils given a sublayer with high moisture content, 

high enough to be shared to upper parts. For example, a thin saturated layer just above the water 

table is saturated from groundwater under capillary pull. 

2.3.4.2 Water retention 

This is where some water is trapped around or between soil particles and becomes disconnected 

from the flow which reduces the residual flow quantity. After infiltration percolation occurs in 

response to gravity to distribute water into deeper parts of soil. As already mentioned water in 

larger pores is drained first while water in small pores is held back by capillary forces. Some 
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of the water that is draining downward is also sucked into capillary pores and separated from 

the downward migrating moisture. It is through this process that moisture content in the 

unsaturated zone decreases through space and time. As mentioned in the previous section, this 

process is achieved with the aid of capillary forces, adhesive and cohesive forces. 

Soil-water retention curve 

Understanding water retention process is significant for parameterizing Richards’ equation 

used in modelling flow in the unsaturated zone. Information about water retention is provided 

in the form of water retention curves. These are curves representing the relationship between 

the volumetric soil water content and matric head (Boulding and Ginn, 2013)The knowledge 

of water retention assist in describing pore-size distribution parameters that are used in many 

models that predict unsaturated hydraulic conductivity (e.g. Burdine, 1953). In a rigid 

homogeneous soil horizon with only water as a wetting phase and air as a drying phase the air-

water system is formed. The typical changes in volumetric water content with a further decline 

in matric pressure is presented in Figure 8 below. 

 

Figure 8: A schematic representation of a typical water retention curve for porous soils 

(Kosugi et al., 2002) 

The main parameters in a water retention curve are: volumetric water content 𝜃; water content 

at saturation 𝜃𝑠 ; and residual water content 𝜃𝑟. At saturation, the matric head is zero and 
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volumetric content equals to water content at saturation. Depending on soil hydraulic 

properties 𝜃 remains at  𝜃𝑠 for some time after a storm as long as  ℎ𝑚 is approximately zero. At 

some point ℎ𝑚  goes below zero, with a continuous decline in ℎ𝑚 an air-entry point is reached 

where the matric head is ℎ𝑚,𝑎. At an air entry point soil moisture content starts to decline and 

air start to replace water in pores, therefore the system becomes unsaturated. ℎ𝑚 becomes more 

negative when there are many connected large pores forming paths for water to flow through 

as it drains down a soil volume. When  ℎ𝑚 declines to values less than ℎ𝑚,𝑎, volumetric soil 

water content also declines. The decline in 𝜃 follows a path similar to a shape, s-shape, of WRC 

presented in Figure 8 above. The s-shape curve is characterised by an inflection point. Matric 

head at this point is ℎ𝑚𝑖. If there is no additional moisture that joins the flow system 𝜃 continues 

to decline with  ℎ𝑚 towards the lowest water content of the system, residual water content 𝜃𝑟 

(Mawer et al., 2015). The water retention curve becomes more flattened towards 𝜃𝑟 (Kosugi et 

al., 2002). Many models consider  𝜃𝑠 and 𝜃𝑟 as the most wet and dry water contents a system 

can have respectively. Thus their models fall within the  𝜃𝑟 ≤ 𝜃 ≤ 𝜃𝑠 range. Based on this 

range the definition of effective saturation is 

𝑆𝑒 = (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

) 
 

(2.4) 

and it can only be 0 ≤ 𝑆𝑒 ≤ 1. Direct prediction of WRC data is time-consuming and 

expensive. Alternatively, there are many reliable theoretical models for estimating the water 

retention function in the literature (Assouline et al., 1998; Brooks and Corey, 1964; van 

Genuchten, 1980). 
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CHAPTER 3: REVIEW OF MODELS PREDICTING 

UNSATURATED HYDRAULIC CONDUCTIVITY 

3.1 Introduction 

Unsaturated hydraulic conductivity is one of the key parameters for understanding water flow 

in porous unsaturated soils. Modelling flow in unsaturated soils starts with understanding this 

parameter and ways to estimate it. As mentioned in section 2.2.1 there are direct methods, field 

and laboratory experiments, and indirect methods, theoretical models, for obtaining this 

parameter. Direct methods are mostly more accurate. However, they are more sophisticated 

and too demanding (McCartney et al., 2007). Alternatively, theoretical methods are the most 

preferred. Although theoretical methods are the most preferred they come with a challenge due 

to the extreme dependence of hydraulic conductivity on water content and pressure which 

makes it highly non-linear. Researchers have utilized a number of soil properties that are easier 

to obtain (Burdine, 1953; Childs and Collis-George, 1950; Mualem, 1976; van Genuchten, 

1980; Vereecken, 1995) to develop models predicting conductivity. In literature, there are 

several existing theories and analytical expressions that were developed to estimate unsaturated 

hydraulic conductivity. Most models require knowledge of water retention functions. This 

section provides a short review of water retention models followed by a review of some 

common models for estimating conductivity in unsaturated flows.  

3.2 Water retention models 

The soil water retention function relates the energy state of the soil water to its water content. 

If the soil pores are represented by an equivalent bundle of capillaries with identical retention 

properties as the real soil, a retention function provides the soil’s pore-size distribution from 

which the unsaturated hydraulic conductivity can be predicted. In literature, there is quite a 

number of models to fit soil water retention data that can be combined with retention curves to 

obtain unsaturated hydraulic conductivity. The choice on which water retention model to use 

depend on whether assumptions made to develop a model are suitable for a given natural 

problem. This involves soil type; how accurate the results are supposed to be; and of cause 

personal preference in cases where more than one models are suitable to serve the purpose. 

This section presents two water retention models that are combined with relative hydraulic 

conductivity models to predict unsaturated hydraulic conductivity functions. 
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3.2.1 Brooks and Corey (1964) model 

In 1964 Brooks and Corey suggested the existence of a power law relationship between 

effective saturation and soil water energy state. This relationship is mathematically expressed 

as 

𝑆𝑒 = (
ℎ𝑚,𝑎
ℎ𝑚

)
𝜆

 

For ℎ𝑚 < ℎ𝑚,𝑎 

 

(3.1) 

and 

𝑆𝑒 = 1 

For ℎ𝑚 ≥ ℎ𝑚,𝑎 

(3.2) 

As mention in section 2. ℎ𝑚,𝑎 is the air-entry head value, see Figure 2.7, 𝜆 is a dimensionless 

parameter associated with pore-size distribution, it is referred to as the pore-size distribution 

index. It ranges from zero to infinity, with an infinite value for a perfect uniform soil pore-size 

distribution and zero for highly non-uniform pore-size distribution. 

3.2.2 van Genuchten (1980) model 

van Genuchten (1980) suggested a continuous empirical model for describing a soil water 

retention curve by utilizing soil parameters.  

𝑆𝑒 = (1 + (
ℎ𝑚,𝑎
ℎ𝑚

)
𝛼

)

−𝛽

 
 

(3.3) 

Where 𝛼 and 𝛽 are fitting parameters. This model, as well as the aforementioned model, are 

popular; they are used in conjunction with relative conductivity models to parameterize 

Richards’ equation presented in section 1.6 covered in the first chapter. Despite their success, 

they are also associated with some accuracy problems due to the nature of given unsaturated 

flow situation. For example, Brooks and Corey model does not have an inflection point which 

makes its accuracy dissipates in situations where the soil is wetted close to saturation and when 

the soil moisture content is very low. On the other hand, van Genuchten model has a point of 

inflection which makes it capable of handling highly wetted soils but it shows unsatisfactory 

performance when dealing with very low soil moisture contents. Therefore, deviations of 

assumed functions from the true water retention curves are critical at near saturation and at the 

dry end of the curve. Accuracy of the predictive unsaturated hydraulic conductivity equations 

is controlled by the adequacy of the soil water retention model over the water content range of 
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interest. A common assumption made in both above models is that water content never goes 

below residual water content irrespective of how small the pressure head becomes. This is not 

always true in real soils; it is possible and common in arid climates for water content to be less 

than residual water content and sometimes it can be zero. For this reason, Zhang (2010) 

suggested a model for soil water retention by extending the lower limit of capillary-based 

models to zero. This was done in order to accommodate conditions where water content is less 

than residual water content. The proposed model covers water retention for full-range 

saturation and is accurate for soils with very low water contents, see Figure 9. The model 

accounts for both capillary flow and flow due to absorptive forces in the soil, film flow. The 

resultant water retention curve comprises of two parts, I and II representing capillary and film 

flow respectively. Part I and part II are separated by a critical point which is a point where 

relatively dry conditions start. 

 

Figure 9: A schematic representation of a typical Water Retention Curve based on (a) 

Capillary flow and (b) both Capillary and Film flow (Zhang, 2010).  

3.3 Models for predicting hydraulic conductivity in unsaturated flows 

The models that will be reviewed are Child and Collis-George (1950) model; Burdine (1953) 

model; Brooks and Corey (1964) model; Mualem model (1976) model; and van Genuchten 

(1980) model. Hydraulic conductivity of unsaturated soils is a product of saturated hydraulic 

conductivity (𝐾𝑠) and relative conductivity (𝐾𝑟).  

𝐾(𝜃) = 𝐾𝑟 ∗ 𝐾𝑠 (3.5) 

To estimate hydraulic conductivity many approaches start with models for estimating relative 

hydraulic conductivity. 
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𝐾𝑟 =
𝐾𝑠
𝐾
= 𝑆𝑒𝑥 

(3.6) 

and substitute the resultant expression into equation 3.5 to obtain an expression describing 

conductivity. 𝐾 is absolute conductivity; 𝑆𝑒 is effective saturation, and the power on 𝑆𝑒 mostly 

describe parameters associated with soil properties. 

3.3.1 Theoretical basis of some popular models 

3.3.1.1 Child and Collis-George (1950) model 

A Kozeny-type model was revised to come up with a model for estimating conductivity. Unlike 

Kozeny-type that use soil particle sizes to estimate hydraulic conductivity Child and Collis-

George (1950) used pore-size distribution. To achieve that, they used a bundle of capillary 

tubes to reproduce a natural unsaturated flow system. They conducted an experiment on a 

fraction of a sand volume to describe the distribution of pore sizes. The fraction has a cross-

sectional area described by 𝑓(𝑟)𝛿𝑟 ; where 𝑓(𝑟) represents pore space distribution of pores 

with 𝑟 to 𝑟 + 𝛿𝑟 radius. The sand is split into two identical planes. If one plane is considered 

to have an area of 𝑎𝜎 and a radius ranging from 𝜎 to 𝜎 + 𝛿𝜎 and the other one has the area of 

𝑎𝜌 and a radius ranging from 𝜌 to 𝜌 + 𝛿𝜌 the following equation describes the area in both 

planes  

𝑎𝜌 = 𝑓(𝜌)𝛿𝑟,    𝑎𝜎 = 𝑓(𝜎)𝛿𝑟 (3.7) 

The pore sequence 𝜌 → 𝜎 will have an area of 

𝑎𝜌→𝜎 = 𝑓(𝜌)𝛿𝑟𝑓(𝜎)𝛿𝑟 (3.8) 

Child and Collis-George (1950) model is based on the assumption that as drainage occurs in 

unsaturated flows larger pores lose their moisture first and small pores have a tendency of 

resisting flow thus water is retained in small pores. Another assumption is that contribution to 

flow permeability is only by connected pores. If 𝜎 represents the radius of the small pores, then 

the number of small pores is proportional to 𝜎−2. By applying the Poisseailles’ equation the 

rate of flow in each pore becomes proportional to 𝜎4 per unit potential gradient. The 

contribution of small pores to the total permeability is 

𝛿𝐾 = 𝜎2𝑀𝑓(𝜌)𝛿𝑟𝑓(𝜎)𝛿𝑟 (3.9) 

and the total permeability is 



  

31 
 

𝐾 = 𝑀∑∑𝜎2𝑓(𝜌)

𝜎=𝑅

𝜎=0

𝜌=𝑅

𝜌=0

𝛿𝑟𝑓(𝜎)𝛿𝑟 

 

(3.10) 

This equation emphasizes the effect of cross-sectional area and neglects the fact that some cells 

may have different sizes which result in different lengths. 

3.3.1.2 Burdine (1953) model 

Burdine (1953) conducted a study to formulate relative permeability functions of unsaturated 

flows. The model is an extension of models that are based on capillary columns to mimic pores 

in soils. Burdine (1953) incorporated the flow tortuosity term in the equation and developed 

equations predicting relative permeability for both wetting and non-wetting phases. It was 

pointed out that tortuosity is directly related to volumetric water content and the relationship is 

linear. The model for relative hydraulic conductivity during wetting is given by 

𝐾𝑟𝑤 = (
𝑆 − 𝑆𝑟
1 − 𝑆𝑟

)
2

∫
𝑑𝑠

𝑃𝑐
2

𝑆

0

∫
𝑑𝑠

𝑃𝑐
2

1

0

⁄  
 

(3.11) 

Burdine’s theory has been adopted by many researchers to develop theoretical expressions for 

predicting unsaturated hydraulic conductivity (e.g. Brooks and Corey, 1964; Mualem, 1976; 

van Genuchten, 1980) which are essential for modelling unsaturated flow processes. 

3.3.1.3 Brooks and Corey (1964) model  

This model utilizes bubbling pressure and pore-size distribution index to predict hydraulic 

conductivity in a system with two non-mixing fluid phases namely the non-wetting phase and 

wetting phase. In most cases, it is only the wetting phase that is expressed using Darcy’s law. 

Brooks and Corey (1964) made an assumption that as long as there are connected pores in a 

system to allow flow Darcy’s law may be applicable in expressing both wetting and drying 

phases. Darcy’s law is given by  

𝑞𝑥 = −
𝐾𝑥
𝜇
(
∆𝑃

𝐿𝑥
+
𝛾∆ℎ

𝐿𝑥
) 

(3.12) 

Where 𝑞 is the flux and 𝑥 is the flow direction; 𝐾 is flow conductivity; 𝜇 is the fluid viscosity; 

𝐿 is the flow distance; 𝛾 is the term for specific yield; ∆𝑃 and ∆ℎ are changes in pressure and 

elevation respectively. 

The governing assumption of this model is that the two phases are immiscible and separated 

by curved interfaces. Another assumption is that saturation conditions are relatively high in a 

flow system with pores that are large enough to permit flow. Therefore, model validity is highly 
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dependent on the presence of large pores and moisture content. It is not accurate for cases 

where the system is relatively dry with saturation less than field capacity and porous media 

with extremely small pores such as clays. 

Capillary pressure 𝑃𝐶  exists at the interface of wetting and drying phase. In most cases, 

capillary pressure is greater in the drying phase and less in the wetting phase 

𝑃𝐶 = 𝑃𝑔𝑎𝑠 − 𝑃𝐿𝑖𝑞𝑢𝑖𝑑 (3.13) 

For a given saturation small pore tend to have high capillary pressure compared to larger pores. 

To come up with a model, Burdine theory was adopted for relative hydraulic conductivity 

𝐾𝑟𝑤 = (
𝑆 − 𝑆𝑟
1 − 𝑆𝑟

)
2

∫
𝑑𝑠

𝑃𝑐
2

𝑆

0

∫
𝑑𝑠

𝑃𝑐
2

1

0

⁄  
(3.14) 

which by placing an effective saturation term becomes 

𝐾𝑟𝑤 = (𝑆𝑒)2∫
𝑑𝑆𝑒

𝑃𝑐
2

𝑆𝑒

0

∫
𝑑𝑆𝑒

𝑃𝑐
2

1

0

⁄  
(3.15) 

An expression defining the relationship between effective saturation and capillary pressure was 

proposed after close observations of experimental data in the petroleum industry 

𝑆𝑒 = (
𝑃𝑏
𝑃𝑐
)
𝜆

 

        For 𝑃𝑐 ≥ 𝑃𝑏 

 

(3.16) 

Where 𝑃𝑏 is pressure due to the largest pores forming a continuous network and 𝜆 is pore-size 

distribution index. The famous Brooks and Corey model was then developed by combining 

equations 𝑛 and 𝑚 to yield 

𝐾𝑟𝑤 = (𝑆𝑒)
2+3𝜆
𝜆 = (𝑆𝑒)𝜀 

(3.17) 

This model is associated with some limitations. As the bubbling pressure becomes more 

negative it affects results from numerical simulations. The slope of both unsaturated 

conductivity curve and water-retention curve becomes discontinuous; it can result in delayed 

convergence in numerical simulations of coupled unsaturated-saturated systems. This is not a 

universal model since it was developed for sands and is limited to relatively dry and moderately 

wet soils. In soils with very high moisture content this model is not accurate. To add, the model 

cannot be used for very fine soils such as clays because they are associated with extremely high 

capillary pressures which hinder flow. Moreover, it is assumed that the geometry of the porous 
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media is fixed throughout the whole range of applicable saturation which is extremely rare in 

soils. 

3.3.1.4 Mualem (1976) model 

Mualem suggested a model for approximating unsaturated hydraulic conductivity from water 

retention curves. He made use of the moisture content-capillary head curve and the saturated 

hydraulic conductivity as parameters for determining unsaturated hydraulic conductivity. 

Mualem’s theory is similar to the one of Childs and Collis-George discussed above with 

modification on the contribution of large pores to the total permeability. In this case, it is 

assumed that there is a significant contribution to permeability by large pores. Like other pre-

existing expressions of relative hydraulic conductivity, Mualem used a power law relationship 

to express the relationship between relative conductivity and effective saturation 

𝐾𝑟 = 𝐾 𝐾𝑠𝑎𝑡 = 𝑆𝑒𝛼⁄  (3.18) 

Soil water conductivity was approximated with the aid of capillary head-water content curves. 

Same procedure as that performed by Childs and Collis-George was followed using a 

homogeneous soil profile. Considering two similar portions of soil taken out from the same 

profile; one with pore radius r and another one with pore radius 𝑝 where the contribution of 

connected pores with radius 𝑟 to 𝑟 + 𝑑𝑟 to the moisture content 𝜃 is 

𝐹(𝑟) 𝑑𝑟 = 𝑑𝜃 (3.19) 

 Equation (3.10b) is also 

∫ 𝑓(𝑟) 𝑑𝑟 = 𝜃(𝑅)
𝑅

𝑅𝑚𝑖𝑛

 
 

(3.20) 

To be particular 

∫ 𝑓(𝑟) 𝑑𝑟 = 𝜃𝑠𝑎𝑡

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 
 

(3.21) 

𝑓(𝑟) 𝑑𝑟 is also the ratio of area covered by pores with radius ranging from 𝑟 to 𝑟 + 𝑑𝑟 to the 

total area. The probability of pores at different slabs to be in contact is expressed as 

𝑎(𝑟, 𝜌) = 𝑓(𝑟)𝑓(𝜌 ) 𝑑𝑟 𝑑𝜌 (3.22) 

This means that there is no direct connection between pores in different slabs. One of Mualem’s 

objectives was to find the effect of pores having different sizes on the conductivity of a porous 

media under unsaturated conditions. When slab consisting of pores with a radius ranging from 

𝜌 to 𝜌 + 𝑑𝜌 have the length equal to the pore radii the probability becomes 
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𝑎(𝑟, 𝜌) = 𝐺(𝑅, 𝑟, 𝜌)𝑓(𝑟)𝑓(𝜌) 𝑑𝑟 𝑑𝜌 (3.23) 

In the above equation 𝐺(𝑅, 𝑟, 𝜌) accounts for the partial correlation that exists between pores 

with radius 𝑟 and 𝜌 for a given water content. It was assumed that the bypass flow between the 

pores in two slabs is absent; and that the pore configuration may be replaced by a pair of 

capillary elements whose lengths are proportional to their radii 

𝑙1 𝑙2⁄ = 𝑟 𝜌⁄  (3.24) 

This means that large pores really have a significant contribution to unsaturated conductivity 

than it is usually assumed. It was found that conductivity varies with pore size distribution and 

tortuosity. To account for tortuosity a correction factor 𝑇(𝑅, 𝑟, 𝜌) < 1 was introduced. The 

factor also accounts for the contribution of the 𝑟 → 𝜌 element to the relative conductivity and 

equation below was obtained 

𝑑𝐾𝑟(𝑟, 𝑝) =
𝑇(𝑅, 𝑟, 𝜌)𝐺(𝑅, 𝑟, 𝜌)𝑟𝜌𝑓(𝑟)𝑓(𝜌) 𝑑𝑟 𝑑𝜌

∫ ∫ 𝑇(𝑅𝑚𝑎𝑥, 𝑟, 𝜌)𝐺
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛 

𝑅𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 
(𝑅𝑚𝑎𝑥 , 𝑟, 𝜌)𝑟𝜌𝑓(𝑟)𝑓(𝜌) 𝑑𝑟 𝑑𝜌

 
 

(3.25) 

For a given 𝜃(𝑅) the equation above is written as 

𝐾𝑟(𝜃) =
∫ ∫ 𝑇(𝑅, 𝑟, 𝜌)𝐺(𝑅, 𝑟, 𝜌)𝑟𝜌𝑓(𝑟)𝑓(𝜌) 𝑑𝑟 𝑑𝜌

𝑅

𝑅𝑚𝑖𝑛

𝑅

𝑅𝑚𝑖𝑛

∫ ∫ 𝑇(𝑅, 𝑟, 𝜌)𝐺(𝑅, 𝑟, 𝜌)𝑟𝜌𝑓(𝑟)𝑓(𝜌) 𝑑𝑟 𝑑𝜌
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 

 

(3.26) 

The values of correction factors seem to be highly dependent on R. Hence 

𝐾𝑟(𝜃) = 𝑆𝑒𝑛
∫ 𝑟𝑓(𝑟)
𝑅

𝑅𝑚𝑖𝑛
 𝑑𝑟 ∫ 𝜌𝑓(𝜌) 𝑑𝜌

𝑅

𝑅𝑚𝑖𝑛

∫ 𝑟𝑓(𝑟) 𝑑𝑟
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
∫ 𝜌𝑓(𝜌) 𝑑𝜌
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

= 𝑆𝑒𝑛 [
∫ 𝑟𝑓(𝑟) 𝑑𝑟
𝑅

𝑅𝑚𝑖𝑛

∫ 𝑟𝑓(𝑟)
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
 𝑑𝑟
]

2

 

 

(3.27) 

 A much simpler equation that is easy to apply is obtained by applying capillary law and 

substituting equation (3.21) on the above equation 

𝐾𝑟(𝜃) = 𝑆𝑒
𝑛 [∫

𝑑𝜃

𝜓

𝜃

0

∫
𝑑𝜃

𝜓

𝜃𝑠𝑎𝑡

0

⁄ ]

2

 
 

(3.28) 

Where 𝑛 may be positive or negative. By substituting analytical expressions for 𝜑(𝜃) to the 

above equation, 𝐾𝑟(𝜃) can be easily derived. For example, the expression by Brooks and Corey 

(1964)  

𝑆𝑒 = (𝜑 𝜔𝑐𝑟⁄ )−𝜆 (3.29) 

yields 
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𝐾𝑟(𝑆𝑒) = 𝑆𝑒
𝑛+2+

2
𝜆 

(3.30) 

This expression has been useful and produced reliable results that are close to natural 

unsaturated systems. 𝑛 has a significant impact on how close the results physical mimic 

experimental data. Some literature include it (Burdine, 1953) and some exclude it (Brooks and 

Corey, 1964).  

3.3.1.5 van Genuchten (1980) model  

Van Genuchten (1980) used Mualem (1976) capillary theory to derive a closed-form analytical 

expression using a continuous soil water retention curve with a continuous slope. The derived 

expression for unsaturated hydraulic conductivity has three independent parameters which are 

obtained by matching the soil-water retention curve to empirical data. Mualem (1976) used 

saturated hydraulic conductivity and soil-water retention curve to formulate a model of 

approximating unsaturated hydraulic conductivity. Using the same theory van Genuchten 

(1980) came up with a reliable expression for conductivity. The definition of relative hydraulic 

conductivity by Mualem (1976) is given as 

𝐾𝑟 = 𝑆𝑒
1
2 [∫

1

ℎ(𝑥)

𝑆𝑒

1

𝑑𝑥 ∫
1

ℎ(𝑥)

1

0

𝑑𝑥⁄ ]

2

 
 

(3.31) 

Where 𝑆𝑒 is effective saturation and ℎ is the pressure head which is given as a function of 𝑆𝑒. 

The relationship between 𝑆𝑒 and ℎ is expressed as 

𝑆𝑒 = [
1

1 + (𝛼ℎ)𝑛
]
𝑚

 
(3.32) 

Where 𝛼,𝑚, 𝑛 are fitting parameters that are determined empirically. To derive an expression 

for conductivity van Genuchten (1980) imposed certain restrictions on the values of 𝑚 and 𝑛 

in equation (3.32) and solved it to obtain an expression that was then substituted into equation 

(3.31).  The following was obtained 

𝐾𝑟(𝑆𝑒) = 𝑆𝑒
1
2 [
𝑓(𝑆𝑒)

𝑓(1)
]

𝑚

 
(3.33) 

Where 

𝑓(𝑆𝑒) = ∫ [
𝑥
1
𝑚

1 − 𝑥
1
𝑚

]

1
𝑛

𝑆𝑒

0

𝑑𝑥 

 

(3.34) 
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𝑦 is considered as an auxiliary variable, substituting 𝑥 = 𝑦𝑚 into equation (3.34) to obtain a 

general particular form of Beta-function 

𝑓(𝑆𝑒) = 𝑚∫ 𝑦𝑚−1+
1
𝑛(1 − 𝑦)−

1
𝑛

𝑆𝑒
1
𝑚

0

𝑑𝑦 

 

(3.35) 

This is not a closed form equation; to obtain a closed form all integer values of 𝐾 = 𝑚 − 1 +
1

𝑛
 

integration becomes easy. When  𝐾 = 0 then 𝑚 = 1 −
1

𝑛
  and 

𝑓(𝑆𝑒) = 1 − (1 − 𝑆𝑒
1
𝑚)

𝑚

 
(3.36) 

Since 𝑓(1) = 1, equation (3.33) becomes 

𝐾𝑟(𝑆𝑒) = [1 − (1 − 𝑆𝑒
1
𝑚)

𝑚

]
2

 
(3.37) 

van Genuchten (1980) also derived an expression based on Burdine’s model (1953). He used 

the same procedure explained above and substituted expression that was obtained from solving 

equation (3.32) into equation (3.33) to obtain 

𝐾𝑟(𝑆𝑒) = 𝑆𝑒
2 (
𝑓(𝑆𝑒)

𝑓(1)
) 

(3.38) 

Where 

𝑓(𝑆𝑒) = ∫ [
𝑥
1
𝑚

1 − 𝑥
1
𝑚

]

2
𝑛

𝑆𝑒

0

𝑑𝑥 

 

(3.39) 

Substituting 𝑥 = 𝑦𝑚 into equation (3.39) to yield 

𝑓(𝑆𝑒) = 𝑚∫ 𝑦𝑚−1+
2
𝑛(11 − 𝑦)−

2
𝑛

𝑆𝑒
1
𝑚

0

𝑑𝑦 

 

(3.40) 

To reduce equation (3.40) it was assumed that the power of 𝑦, 𝑚 = 1 −
2

𝑛
 , vanishes and 

equation (3.39) becomes 

𝑓(𝑆𝑒) = 1 − (1 − 𝑆𝑒
1
𝑚)

𝑚

 
(3.41) 

Therefore an expression for relative hydraulic conductivity is given by 
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𝐾𝑟(𝑆𝑒) = 𝑆𝑒
2 [1 − (1 − 𝑆𝑒

1
𝑚)

𝑚

] 

𝑚 = 1 −
2

𝑛
; 0 < 𝑚 < 1; 𝑛 > 2 

 (3.42) 

 

The above expression is equivalent to the one that was obtained using Mualem (1976) theory. 

Models by Childs and Collis-George; Burdine; and Mualem are all based on the use of capillary 

bundles to represent the pore spaces in a homogeneous porous media. The common governing 

theory in these models is that water in soils flows through interconnected pores and that the 

size distribution of these pores is characterized by the shape of the water retention curve of a 

specific soil. They all utilize pore-size distribution to predict unsaturated hydraulic 

conductivity. They go separate ways when it comes to relating 𝑟𝑒  to 𝑟, 𝜌 and 𝑅𝑓 . Childs and 

Collis-George considered flow effective radius to be equivalent to the radius of pores with 

small radius assuming that only pores with small radius contribute to the hydraulic 

conductivity. Burdine used 𝑟𝑒 = 𝑟 (𝜃(𝑅𝑓))

1

2
 to describe the relationship between 𝑟𝑒 and 𝑟, 𝜌 

and 𝑅𝑓. Mualem, on the other hand, proposed that the effective radius is equal to the product 

of radius of both pores with small a radius and pores with a large radius. In this case, it is 

assumed that pores with a large radius also contribute to hydraulic conductivity. All three 

theories yield 

𝐾(𝜃)

𝐾𝑠
= (

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
𝑏

[∫
𝑑𝑥

𝜓(𝑥)

𝑆𝑒

0

∫
𝑑𝑥

𝜓2−𝑟(𝑥)

1

0

⁄ ]

𝑚

 
(3.43) 

Where constants 𝑏, 𝑟, and 𝑚 are associated with pore-size distribution. The values of these 

constants tend to vary for each model. For example, according to Mualem (1976), the constants 

are: 𝑏 = 0.5;  𝑟 = 1; and 𝑚 = 2; Burdine, on the other hand, suggested that 𝑏 = 2; 𝑟 = 0; and 

𝑚 = 1.  

These theories provide a basis for estimating unsaturated hydraulic conductivity. Analytical 

models describing 𝜃 − 𝜓 relationship such as those proposed by Brooks and Corey (1964) and 

van Genuchten (1980) may then be used to obtain a hydraulic conductivity function. Assouline 

et al (1998) suggested a model for soil water retention function based on the concept of particle 

size distribution, by assuming that fragmentation processes change the soil structure. The 

resultant soil water retention function is applicable to both high and low moisture conditions 

and consists of two fitting parameters. 
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𝑆𝑒(𝜓) = 1 − 𝑒𝑥𝑝(−𝜉(|𝜓|−1 − |𝜓𝐿|
−1))

𝜇
 

For 0 ≤ |𝜓| ≤ |𝜓𝐿| 

(3.44) 

Where 𝜉 and 𝜇 are fitting parameters,  𝜓𝐿  represents capillary head at relatively low moisture 

conditions.  Assouline and Tartakovsky (2001) proposed a model based on soil structure and 

texture  

𝐾𝑟(𝑆𝑒) = [∫
𝑑𝑠

𝜓

𝑆𝑒

0

∫
𝑑𝑠

𝜓

1

0

⁄ ]

𝜂

 
(3.45) 

𝜂 is a parameter associated with soil structure and texture. Combining the above equation with 

the WRC model proposed by Brooks and Corey yields 

𝐾𝑟(𝑆𝑒) = 𝑆𝑒
(𝜂+𝜂𝜆)

𝜆  
(3.46) 

Assouline (2005) conducted a study to relate the pore-size distribution index and 𝜂 a soil 

structure and texture describing parameter  

𝜂 = 1.4𝜆0.717 (3.47) 

and found that 𝜆 can be used to obtain 𝜂 which can be substituted in Assouline and Tartakovsky 

(2001) model to obtain another model describing relative hydraulic conductivity 

𝐾𝑟(𝑆𝑒) = 𝑆𝑒𝛼 (3.48) 

Where  

𝛼 = 𝑎(𝜆𝑏+𝜆(𝑏−1)) (3.49) 

𝑎 and 𝑏 are empirical parameters. The use these models have produced great success in 

literature. With recent technologies and scientific inputs on soil hydrological sciences 

modifications have been made and new models have been developed based ancient theories. 

For example, Neto (2013) developed a model by combining Burdine (1953) and Mualem 

(1976) relative conductivity predicting models with the water retention curve model by van 

Genuchten (1980). His focus was on getting rid of restricting factors associated with these 

theories to produce more a flexible analytical solution that is applicable to a wide range of soil 

type. A less restricted model proposed by Neto (2013) based on Mualem (1976) model is given 

by 
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𝐾𝑟(𝑆𝑒) = [
𝑆𝑒

𝜆
2
+
1
𝑚.𝑛

+1 (1 + 𝜂1𝑆𝑒
1
𝑚 + 𝜂2𝑆𝑒

2
𝑚 + 𝜂3𝑆𝑒

3
𝑚 + 𝜂4𝑆𝑒

4
𝑚)

1 + 𝛽
]

2

 

 

(3.50) 

Where 

𝛽 =
(𝑚𝑛 + 1)

𝑛4
[

𝑛3

(𝑚𝑛 + 𝑛 + 1)
+

(𝑛 + 1)𝑛2

2(𝑚𝑛 + 2𝑛 + 1)
+
(𝑛 + 1)(2𝑛 + 1)𝑛

6(𝑚𝑛 + 3𝑛 + 1)

+
(𝑛 + 1)(2𝑛 + 1)(3𝑛 + 1)

24(𝑚𝑛 + 4𝑛 + 1)
] 

 

(3.51) 

and 

𝜂1 =
(𝑚𝑛 + 1)

𝑛(𝑚𝑛 + 𝑛 + 1)
 

𝜂2 =
(𝑚𝑛 + 1)(𝑛 + 1)

2𝑛2(𝑚𝑛 + 2𝑛 + 1)
 

𝜂3 =
(𝑚𝑛 + 1)(𝑛 + 1)(2𝑛 + 1)

6𝑛3(𝑚𝑛 + 3𝑛 + 1)
 

𝜂4 =
(𝑚𝑛 + 1)(𝑛 + 1)(2𝑛 + 1)(3𝑛 + 1)

24𝑛4(𝑚𝑛 + 4𝑛 + 1)
 

(3.52) 

 

(3.54) 

 

(3.55) 

 

(3.56) 

Apart from the afore-reviewed capillary models, there are other approaches that have provided 

great success in predicting hydraulic conductivity for unsaturated flows. There are those that 

are based on percolation theory  (Ghanbarian-Alavijeh and Hunt, 2012). It has been proven that 

compared to capillary tube models these models yield best results for soils with high moisture 

contents. However, at very low moisture contents like capillary models, they underestimate 

hydraulic conductivity. 

3.4 Accuracy tests 

Two comparison procedures, Root of the Mean Squared Error (RMSE) and Akaike’s 

information criterion (AIC) are used to evaluate the performance of the theoretical models for 

predicting unsaturated hydraulic conductivity. 

The Root of the Mean Squared Error (RMSE) 

RMSE is a tool for evaluating the performance of theoretical models on reproducing the natural 

unsaturated system. It demonstrates how predicted values deviate from observed data. 

Mathematically RMSE is expressed as 
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𝑅𝑀𝑆𝐸 = √
∑ ((𝐾𝑚𝑒𝑎𝑠)𝑖 − (𝐾𝑒𝑠𝑡)𝑖)2
𝑛
𝑖=1

𝑁
 

 

(3.57) 

Where 𝐾𝑚𝑒𝑎𝑠 and 𝐾𝑒𝑠𝑡 represent measured and estimated hydraulic conductivity respectively 

and 𝑁 is the sample size. It has been used by many researchers to test models which are best 

fit for observed experimental data. For example, Neto (2013) and Assouline (2005) used RMSE  

to evaluate the performance of models that they proposed compared to the performance of pre-

existing popular models. 

The Akaike’s information criterion (AIC) 

AIC is another way of evaluating the performance of conductivity models and is expressed 

mathematically as 

𝐴𝐼𝐶 = 𝑁 ln (
𝑅𝑆𝑆

𝑁
) + 2𝑞 

(3.58) 

Where 𝑁 is the sample size; 𝑅𝑆𝑆 is the likelihood and 𝑞 is a number of parameters in a model. 

This is a statistical tool that is used to select models sustainable for a given problem (Akaike, 

1973). It provides the relative performance of models. 
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CHAPTER 4: THE NON-LINEAR UNSATURATED FLOW 

MODELS  

4.1 Introduction 

Richards’ equation is the tool for modelling non-steady vertical movement of moisture in the 

unsaturated zone. Finding solutions to this governing equation requires knowledge on soil 

water retention function and unsaturated hydraulic function such as those presented in the 

previous chapter. This chapter presents solutions to Richards’ equation with unsaturated 

hydraulic conductivity described by Mualem (1976) and Brooks and Corey (1964) theoretical 

models. The models are combined with a soil water retention function suggested by Brooks 

and Corey (1964). Because of the non-linear nature of these models, the resultant Richards’ 

equation is highly non-linear; therefore solving it requires numerical analysis with appropriate 

numerical approximation schemes. In this thesis, solutions will be obtained using the well-

known Crank-Nicolson Scheme and a recently proposed Laplace Adam-Bashforth Scheme. 

4.2 Theory 

Understanding non-steady vertical soil moisture flow is challenging but Richards’ equation has 

been utilized for decades and showed great success. As mentioned in section 1.6 mixed-form 

Richards’ equation can be split into a water content based form or a head based form. In this 

study, unsaturated water movement will be expressed using a water content based form of 

Richards’ equation. To recall,  

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕𝐾(𝜃)

𝜕𝑧
 

 

(4.1) 

Where 𝜃  is volumetric water content; 𝐾(𝜃) is unsaturated hydraulic conductivity, 𝐷 is the term 

for pore water diffusivity; 𝑡 is the time elapsed and 𝑧 is the vertical distance in a soil column.  

Solving equation (4.1), as already mentioned, requires the knowledge on unsaturated hydraulic 

function. Obtaining unsaturated hydraulic function requires knowledge on soil water retention 

characteristic which is a unique signature for every soil volume. Therefore, a procedure for 

understanding unsaturated flow starts with identifying a soil moisture retention curve that is 

based on assumptions that reflects water retentions of a natural system. Secondly, finding a 

model that will be combined with a retention function to estimate hydraulic conductivity. Then 

incorporating hydraulic conductivity function into Richards’ equation to find solutions that 

represent the unsaturated flow system. Existing models for predicting retention curves and 
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conductivity functions are highly non-linear but they based on assumptions that simplify a 

complex system to a more understandable system.  

Consider a homogeneous soil volume with pores equivalent to cylindrical capillary tubes. 

Assuming that pore-size distribution is equivalent to the shape of soil water retention curve 

proposed by Brooks and Corey (1964) given by 

𝑆𝑒(𝜃) = (𝜑 𝜔𝑐𝑟⁄ )−𝜆 (4.2) 

Then the definition of effective saturation becomes 

𝑆𝑒(𝜃) = (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

) 
 

(4.3) 

Assuming a pore-size distribution index of 2 for the soil, two parametric theoretical models are 

used to predict unsaturated hydraulic conductivity 

𝐾(𝜃) = 𝐾𝑠 ∗ 𝐾𝑟 (4.4) 

Saturated hydraulic conductivity is easy to obtain.  Using equation (4.4) above unsaturated 

hydraulic conductivity can be estimated as long as knowledge on relative hydraulic 

conductivity is available. The following two subsections present models for estimating relative 

hydraulic conductivity based on basic soil properties. 

4.2.1 Application of Brooks and Corey (1964) model to Richards’ equation 

A model by Brooks and Corey relating relative hydraulic conductivity to effective saturation 

will be used to obtain unsaturated hydraulic conductivity. This model utilizes an empirical 

parameter, pore-size distribution index 𝜆, and saturated hydraulic conductivity  𝐾𝑠 to describe 

the relationship between 𝐾𝑟 and 𝑆𝑒. Mathematically the relationship is presented as  

𝐾𝑟(𝜃) = 𝑆𝑒
𝑛 [∫

𝑑𝜃

𝜓

𝜃

0

∫
𝑑𝜃

𝜓

𝜃𝑠𝑎𝑡

0

⁄ ]

2

 
 

(4.5) 

Combination of equations (4.2) and (4.5) gives 

𝐾𝑟(𝑆𝑒) = 𝑆𝑒𝜀 (4.6) 

Where 𝜀 is Brooks and Corey exponent. In this study pore-size distribution index is given the 

value of 2, therefore 𝜀 is expressed as 

𝜀 = 3 +
2𝜆

𝜆
= 5 

(4.7) 
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Substituting for 𝜀 in equation (4.6) and combining equation (4.6) with equation (4.4) gives the 

following unsaturated hydraulic conductivity model 

𝐾(𝜃) = 𝐾𝑠 ∗ (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
5

 
(4.8) 

Which is substituted into equation (4.1) to get rid of the term for unsaturated hydraulic 

conductivity resulting in the following equation 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕

𝜕𝑧
[𝐾𝑠 (

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
5

] 
 

(4.9) 

This is the unsaturated flow equation with both soil retention characteristic and hydraulic 

conductivity function described by Brooks and Corey Models. 

4.2.2 Application of Mualem (1976) model to Richards’ equation 

Relative hydraulic conductivity model proposed by Mualem (1976) will be used to obtain 

results that will be compared with those from the Brooks and Corey model. The mathematical 

expression below was suggested to relate relative hydraulic conductivity to effective saturation. 

𝐾𝑟(𝜃) = 𝑆𝑒
𝑛 [∫

𝑑𝜃

𝜓

𝜃

0

∫
𝑑𝜃

𝜓

𝜃𝑠𝑎𝑡

0

⁄ ]

2

 
 

(4.10) 

Substituting an analytical 𝜑(𝜃) expression by Brooks and Corey (1964) 

𝑆𝑒 = (𝜑 𝜔𝑐𝑟⁄ )−𝜆 (4.11) 

into equation (4.10) yields  

𝐾𝑟(𝑆𝑒) = 𝑆𝑒
𝑛+2+

2
𝜆 

(4.12) 

Where 𝑛 is a parameter describing flow tortuosity and 𝜆 is pore-size distribution index which 

is given a value of 2 in this study. Mualem defined 𝑛 as 0.5, substituting these values and 

remembering that 𝑆𝑒 = (𝜃 − 𝜃𝑟) (𝜃𝑠 − 𝜃𝑟)⁄  yields 

𝐾𝑟(𝑆𝑒) = (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
3.5

 

Which is substituted into equation (4.4) to obtain  

 

(4.13) 

𝐾(𝜃) = 𝐾𝑠 ∗ (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
3.5

 
(4.14) 
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which is the unsaturated hydraulic conductivity model. This equation is substituted into the 

governing Richards’ equation in equation (4.1) to obtain 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕

𝜕𝑧
[𝐾𝑠 (

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
3.5

] 
(4.15) 

Equation (4.15) is the unsaturated flow equation with soil retention characteristic and hydraulic 

conductivity function described by Brooks and Corey model and Mualem model respectively. 

Both governing equations, equations (4.9) and (4.15) are highly non-linear as due to the 

unsaturated hydraulic conductivity models used. Thus analytical solutions cannot be obtained. 

Finding solutions to these equations requires the use of computer code. For discretisation 

purposes equations (4.9) and (4.15) are presented by one non-linear equation 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕

𝜕𝑧
[𝐾𝑠 (

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

)
𝜔

] 
(4.16) 

Where 𝜔 represents the exponent of effective saturation for both equations, 𝜔 = 𝜀 for equation 

(4.9) and 𝜔 = 3.5 for equation (4.15). The next section will cover the numerical analysis of 

non-linear governing equations. 

4.3 Numerical analysis 

Obtaining computer simulations of physical systems described by time-dependent differential 

and partial differential equations requires numerical analysis of equations by means of 

numerical approximation methods. In this case, the numerical approximation methods of 

choice must be able to give adequate representations of soil moisture flow.  The flow is 

described by means of a non-linear partial differential equation. There are many schemes that 

can be used to solve this equation thus a close consideration need to be made when choosing 

schemes that will give the most appropriate results. For the best choice an overview of different 

schemes is done, the schemes include: explicit; implicit; Crank-Nicolson; and a recently 

suggested scheme by Gnitchogna and Atangana (2018), the Laplace Adam-Bashforth method. 

An explicit method is one that is based on the computation of dependent variables by means of 

known quantities. It requires less computational effort and computation is easy. However, it is 

not stable for large size time steps thus conditionally stable. In contrast, the implicit method 

uses unknown quantities to evaluate the dependent variables. It is stable throughout all sizes of 

time step although its accuracy decreases with an increase in the size of the time step. Thus for 

very large size time step, the formulation has to be carefully constructed; this is the reason it 

requires high computational effort and complicated computation process thus time-consuming. 

If the computation goal is accuracy an explicit method is best, and if the goal is stability an 
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implicit method is best. On the other hand, Crank-Nicolson scheme is a finite difference 

scheme that is based on approximating first order derivatives by means of central difference 

and second order derivatives by means of averages at (𝑖, 𝑗)𝑡ℎ and (𝑖, 𝑗 + 1)𝑡ℎ . This scheme is 

stable and convergent. It is commonly used in many studies since it conquers convergence and 

stability issues that the explicit scheme has. It is an implicit scheme; therefore it is associated 

with disadvantages similar to those of the implicit scheme. At every time step, it requires the 

equation to be solved simultaneously thus time-consuming. The two-step Laplace Adam-

Bashforth scheme is the combination of Adam-Bashforth scheme and Laplace transform 

(Gnitchogna and Atangana, 2018). Since the ordinary Adam-Bashforth scheme has some 

limitations when solving partial differential equations, the partial differential equations are 

transformed to ordinary differential equations using Laplace transform. The equations are 

analyzed in Laplace space to obtain a numerical solution in time variables; the solution is then 

taken back to its original space by applying the inverse Laplace Transform. This scheme is 

considered to be highly accurate and stable; the computational procedure is also simple and not 

time-consuming. In this case both stability and accuracy are of significant importance. 

Therefore, the Crank-Nicolson scheme and Laplace Adam-Bashforth scheme serve the purpose 

better than the explicit and implicit schemes because they are both unconditionally stable and 

convergent. The following subsections will give numerical discretization of equation (4.16) 

using Crank-Nicolson scheme and Laplace Adam-Bashforth scheme. 

 Equation (4.16) can be simplified into 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜕

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔 
(4.17) 

 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1 
(4.18) 

4.4.1 Crank-Nicolson scheme 

The Crank-Nicolson scheme is defined as 

𝜕𝜃

𝜕𝑡
→
𝜃𝑖
𝑗+1

− 𝜃𝑖
𝑗

Δ𝑡
 

(4.19) 

The Crank-Nicolson scheme for a first-order derivative is defined as 
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𝜕𝜃

𝜕𝑡
→
1

2
((
𝜃𝑖+1
𝑗+1

− 𝜃𝑖−1
𝑗+1

2Δ𝑧
) + (

𝜃𝑖+1
𝑗
− 𝜃𝑖−1

𝑗

2Δ𝑧
)) 

(4.20) 

The Crank-Nicolson scheme for a second order derivative is defined as 

𝜕2𝜃

𝜕𝑡2
→

1

2(Δ𝑧)2
((𝜃1+1

𝑗+1
− 𝜃𝑖

𝑗+1
+ 𝜃𝑖−1

𝑗+1
) + (𝜃𝑖+1

𝑗
− 𝜃𝑖

𝑗
+ 𝜃𝑖−1

𝑗
)) 

(4.21) 

The Crank-Nicolson scheme is at a particular time defined as 

𝜃 →
1

2
(𝜃𝑖

𝑗+1
− 𝜃𝑖

𝑗
) 

(4.22) 

The Crank-Nicolson scheme for the previous channel is defined as 

𝜃𝑁 →
1

2
(𝜃𝑁𝑖

𝑗+1
− 𝜃𝑁𝑖

𝑗
) 

(4.23) 

The Crank-Nicolson scheme for the next channel is defined as 

𝜃𝑀 →
1

2
(𝜃𝑀𝑖

𝑗+1
− 𝜃𝑀𝑖

𝑗
) 

(4.24) 

Just to recall the non-linear transient soil moisture flow equation 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1 
(4.25) 

The Crank-Nicolson finite-difference approximation to the above equation is given by 

𝜃𝑖
𝑗+1

− 𝜃𝑖
𝑗

𝛥𝑡
= [

1

2(Δ𝑧)2
𝐷 ((𝜃𝑖+1

𝑗+1
− 2𝜃𝑖

𝑗+1
+ 𝜃𝑖−1

𝑗+1
) + (𝜃𝑖+1

𝑗
− 2𝜃𝑖

𝑗
+ 𝜃𝑖−1

𝑗
))]

+ [
1

2
. (

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

. 𝜔)((
𝜃𝑖+1
𝑗+1

− 𝜃𝑖−1
𝑗+1

2Δ𝑧

+
𝜃𝑖+1
𝑗
− 𝜃𝑖−1

𝑗

2Δ𝑧
)(
𝜃𝑖
𝑗+1

+ 𝜃𝑖
𝑗

2
− 𝜃𝑟)

𝜔−1

)] 

 

 

 

(4.26) 

4.4.2 Laplace Adams-Bashforth scheme  

The governing partial differential equation 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1 
(4.27) 
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is solved by applying Laplace transform on both sides of the equation in order to transform the 

equation from a partial differential equation to a differential equation 

ℒ (
𝜕𝜃

𝜕𝑡
) = ℒ (𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1) 
(4.28) 

Where ℒ is the Laplace transform operator. The resultant equation is given by 

𝑑𝜃(𝑠, 𝑡)

𝑑𝑡
= ℒ (𝐷

𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1) 
(4.29) 

𝑠 can be silenced by 

𝑑𝜃(𝑠, 𝑡)

𝑑𝑡
= 𝐹(𝜃, 𝑡) 

𝜃(𝑡) = 𝜃(𝑠, 𝑡) 

(4.30) 

(4.31) 

and equation (4.29) can be written as 

𝐹(𝜃, 𝑡) = ℒ (𝐷
𝜕2𝜃

𝜕𝑧2
+

𝐾𝑠
(𝜃𝑠 − 𝜃𝑟)𝜔

𝜔
𝜕𝜃

𝜕𝑧
(𝜃 − 𝜃𝑟)

𝜔−1) 
(4.32) 

Applying the fundamental theorem of calculus on the equation above yields 

𝜃(𝑡) = 𝜃(𝑡0) + ∫ 𝐹(𝜃, 𝜏)
𝑡

0

𝑑𝜏 
(4.33) 

Which is also 

𝜃(𝑡) = 𝜃0 +∫ 𝐹(𝜃, 𝜏)
𝑡

0

𝑑𝜏 
(4.34) 

When 𝑡 = 𝑡𝑛+1 ,  the equation becomes 

𝜃𝑛+1 = 𝜃(𝑡𝑛+1) = 𝜃0∫ 𝐹(𝜃, 𝜏)𝑑𝜏
𝑡𝑛+1

0

 
(4.35) 

When 𝑡 = 𝑡𝑛, the equation becomes 

𝜃𝑛 = 𝜃(𝑡𝑛) = 𝜃0∫ 𝐹(𝜃, 𝜏)𝑑𝜏
𝑡𝑛

0

 
(4.36) 

and 
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𝜃𝑛+1 − 𝜃𝑛 = ∫ 𝐹(𝜃, 𝜏)𝑑𝜏 − ∫ 𝐹(𝜃, 𝜏)𝑑𝜏
𝑡𝑛

0

𝑡𝑛+1

0

 

𝜃𝑛+1 − 𝜃𝑛 = ∫ 𝐹(𝜃, 𝜏)𝑑𝜏
𝑡𝑛+1

𝑛

 

(4.37) 

 

(4.39) 

The Langrange polynomial is used for the approximation of 𝐹(𝜃, 𝑡)  to obtain 

𝑃(𝑡)(≈ 𝐹(𝜃, 𝑡)) =
𝑡 − 𝑡𝑛−1
𝑡𝑛 − 𝑡𝑛−1

𝐹(𝜃, 𝑡𝑛) +
𝑡 − 𝑡𝑛

𝑡𝑛−1 − 𝑡𝑛
𝐹(𝜃, 𝑡𝑛−1) 

𝑃(𝑡) =
𝑡 − 𝑡𝑛−1
𝑡𝑛 − 𝑡𝑛−1

𝐹𝑛 +
𝑡 − 𝑡𝑛

𝑡𝑛−1 − 𝑡𝑛
𝐹𝑛−1 

(4.40) 

 

(4.41) 

Therefore,  

𝜃𝑛+1 − 𝜃𝑛 = ∫ 𝐹(𝜃, 𝜏)𝑑𝜏
𝑡𝑛+1

𝑛

 

𝜃𝑛+1 − 𝜃𝑛 = ∫ (
𝑡 − 𝑡𝑛−1
𝑡𝑛 − 𝑡𝑛−1

𝐹𝑛 +
𝑡 − 𝑡𝑛

𝑡𝑛−1 − 𝑡𝑛
𝐹𝑛−1) 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

 

𝜃𝑛+1 − 𝜃𝑛 =
𝐹𝑛

𝑡𝑛 − 𝑡𝑛−1
∫ (𝑡 − 𝑡𝑛−1)𝑑𝑡 +

𝐹𝑛−1
𝑡𝑛−1 − 𝑡𝑛

∫ (𝑡 − 𝑡𝑛)𝑑𝑡
𝑡𝑛+1

𝑛

𝑡𝑛+1

𝑡𝑛

 

𝜃𝑛+1 − 𝜃𝑛 =
𝐹𝑛

𝑡𝑛 − 𝑡𝑛−1
[
1

2
𝑡2 − 𝑡𝑡𝑛−1]

𝑡𝑛

𝑡𝑛+1

+
𝐹𝑛−1

𝑡𝑛−1 − 𝑡𝑛
[
1

2
𝑡2 − 𝑡𝑡𝑛]

𝑡𝑛

𝑡𝑛+1

 

(4.42) 

 

(4.43) 

 

(4.44) 

 

(4.45) 

If ℎ = 𝑡𝑛 − 𝑡𝑛−1, then the following is obtained 

𝜃𝑛+1 − 𝜃𝑛 =
𝐹𝑛
ℎ
(
1

2
𝑡2𝑛+1 − 𝑡𝑛+1𝑡𝑛−1 −

1

2
𝑡2𝑛 + 𝑡𝑛𝑡𝑛−1)

−
𝐹𝑛−1
ℎ

(
1

2
𝑡2𝑛+1 − 𝑡𝑛+1𝑡𝑛 −

1

2
𝑡2𝑛 + 𝑡

2
𝑛) 

 

(4.46) 

Further simplification gives 

𝜃𝑛+1 − 𝜃𝑛 =
𝐹𝑛
ℎ
(
1

2
(𝑡𝑛+1 − 𝑡𝑛)(𝑡𝑛+1 + 𝑡𝑛) − 𝑡𝑛−1(𝑡𝑛+1 − 𝑡𝑛))

−
𝐹𝑛−1
ℎ

(
1

2
(𝑡𝑛+1 − 𝑡𝑛)(𝑡𝑛+1 + 𝑡𝑛) − 𝑡𝑛(𝑡𝑛+1 − 𝑡𝑛)) 

 

(4.47) 
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𝜃𝑛+1 − 𝜃𝑛 =
𝐹𝑛
ℎ
(
1

2
ℎ(𝑡𝑛+1 + 𝑡𝑛) − ℎ𝑡𝑛−1) −

𝐹𝑛−1
ℎ

(
1

2
ℎ(𝑡𝑛+1 + 𝑡𝑛) − ℎ𝑡𝑛) 

(4.48) 

 

𝜃𝑛+1 − 𝜃𝑛 = 𝐹𝑛 (
1

2
(𝑡𝑛+1 + 𝑡𝑛) − 𝑡𝑛−1) − 𝐹𝑛−1 (

1

2
(𝑡𝑛+1 + 𝑡𝑛) − 𝑡𝑛) 

(4.49) 

 

𝜃𝑛+1 − 𝜃𝑛 = 𝐹𝑛 (
1

2
((𝑛 + 1)ℎ + 𝑛ℎ) − (𝑛 − 1)ℎ)

− 𝐹𝑛−1 (
1

2
((𝑛 + 1)ℎ + 𝑛ℎ) − 𝑛ℎ) 

 

(4.50) 

 

𝜃𝑛+1 − 𝜃𝑛 = 𝐹𝑛 (𝑛ℎ +
1

2
ℎ − 𝑛ℎ + ℎ) − 𝐹𝑛−1 (𝑛ℎ +

1

2
ℎ − 𝑛ℎ) 

(4.51) 

 

𝜃𝑛+1 = 𝜃𝑛 + ℎ (
3

2
𝐹𝑛 −

1

2
𝐹𝑛−1) 

(4.52) 

Applications of inverse Laplace transform to take back the equation to its real space is given 

by 

ℒ−1[𝜃𝑛+1] = ℒ−1 [𝜃𝑛 + ℎ (
3

2
𝐹𝑛 −

1

2
𝐹𝑛−1)] 

𝜃(z, 𝑡𝑛+1) = 𝜃(z, 𝑡𝑛)

+ ℎ
3

2
(𝐷

𝜕2𝜃(z, 𝑡𝑛)

𝜕𝑧2

+
𝐾𝑠

(𝜃𝑠 − 𝜃𝑟)𝜔
𝜔
𝜕𝜃(z, 𝑡𝑛)

𝜕𝑧
(𝜃(z, 𝑡𝑛) − 𝜃𝑟)

𝜔−1)

− ℎ
1

2
(𝐷

𝜕2𝜃(z, 𝑡𝑛−1)

𝜕𝑧2

+
𝐾𝑠

(𝜃𝑠 − 𝜃𝑟)𝜔
𝜔
𝜕𝜃(z, 𝑡𝑛−1)

𝜕𝑧
(𝜃(z, 𝑡𝑛−1) − 𝜃𝑟)

𝜔−1) 

 

(4.53) 

 

 

 

(4.54) 

The equation above is discretised forward and backward in space to yields 
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𝜃(𝑧𝑖, 𝑡𝑛+1) = 𝜃(𝑧𝑖, 𝑡𝑛)

+ ℎ
3

2
(𝐷

𝜕2𝜃(𝑧𝑖, 𝑡𝑛)

𝜕𝑧2

+
𝐾𝑠

(𝜃𝑠 − 𝜃𝑟)𝜔
𝜔
𝜕𝜃(𝑧𝑖, 𝑡𝑛)

𝜕𝑧
(𝜃(𝑧𝑖, 𝑡𝑛−1) − 𝜃𝑟)

𝜔−1)

− ℎ
1

2
(𝐷

𝜕2𝜃(𝑧𝑖, 𝑡𝑛−1)

𝜕𝑧2

+
𝐾𝑠

(𝜃𝑠 − 𝜃𝑟)𝜔
𝜔
𝜕𝜃(𝑧𝑖, 𝑡𝑛−1)

𝜕𝑧
(𝜃(𝑧𝑖, 𝑡𝑛−1) − 𝜃𝑟)

𝜔−1) 

 

 

(4.55) 

Let 𝜃(𝑧𝑖, 𝑡𝑛) = 𝜃𝑖
𝑛 and Δ𝑧 = 𝑙 , then the above equation becomes 

𝜃𝑖
𝑛+1 =  𝜃(𝑧𝑖 , 𝑡𝑛)

+ ℎ
3

2
[𝐷 (

𝜃𝑖+1
𝑛 −2𝜃𝑖

𝑛+𝜃𝑖−1
𝑛

(Δ𝑙)2
)

+
𝐾𝑠

(𝜃𝑠−𝜃𝑟)𝜔
𝜔(

𝜃𝑖
𝑛−𝜃𝑖−1

𝑛

Δ𝑙
) (𝜃𝑖

𝑛−𝜃𝑟)
𝜔−1]

− ℎ
1

2
[𝐷 (

𝜃𝑖+1
𝑛−1 − 𝜃𝑖

𝑛−1+𝜃𝑖−1
𝑛−1

(Δ𝑙)2
)

+
𝐾𝑠

(𝜃𝑠−𝜃𝑟)𝜔
𝜔(

𝜃𝑖
𝑛−1−𝜃𝑖−1

𝑛−1

Δ𝑙
) (𝜃𝑖

𝑛−1−𝜃𝑟)
𝜀−1] 

 

 

 

 

(4.56) 

The above is the numerical solution to Richards’ equation obtained using Laplace Adam-

Bashforth numerical approximation scheme. 
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CHAPTER 5: THE LINEAR UNSATURATED FLOW MODEL 

5.1 Introduction 

The only thing that makes Richards’ equation impossible to solve analytically is its highly non-

linear nature associated with spatial variation of the unsaturated hydraulic conductivity. Since 

the analytical approach is not an option computer codes are used to find solutions. However, 

numerical approximation methods show convergence issues when it comes to Richards’ 

equation. If it is linearized analytical solutions may be obtained and convergence issues 

associated with non-linear Richards’ equation will be solved as well. There are few analytical 

solutions available in the literature. In this chapter conditions where the unsaturated hydraulic 

conductivity model by Mualem (1976) may be linear are suggested and an analytical solution 

to Richards’ equation is obtained. Numerical analysis of the proposed analytical solution is 

also covered and two numerical approximation methods are used namely: the popular Crank-

Nicolson method; and a recently proposed Laplace Adam-Bashfoth method. Stability analysis 

for both methods is provided as well. 

5.2 Theoretical basis 

The unsaturated flow system is complex (Ojha et al., 2017) because moisture content evolves 

as water moves through a soil volume. It has been proven that hydraulic conductivity strongly 

depends on evolving water content (van Genuchten, 1980). As water migrates in the downward 

direction pores are emptied in upper parts of the unsaturated zone and water is replaced with 

air. Water content tends to decrease with depth. This is due to water that is retained in 

disconnected pores as residual water content, refer to section 2.3.4 for more details in soil water 

retention. Eventually, a number of pores conducting water flow declines. As a result, the flow 

becomes more tortuous since there are only a few connected pores that are filled with water 

and flow has to follow those pores. The decline in water content and number of connected 

pores with water is the reason for the spatial variation of the unsaturated hydraulic conductivity. 

Unsaturated hydraulic conductivity is a function of effective saturation and pressure, it is highly 

variable in space and requires spatial characterization. As mentioned in chapter 3 the function 

of unsaturated hydraulic conductivity is given by the product of relative hydraulic conductivity 

and saturated hydraulic conductivity 

𝐾(𝜃) = 𝐾𝑠 ∗ 𝑘𝑟 (5.1) 
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Estimation of unsaturated hydraulic conductivity requires the substitution of a relative 

hydraulic conductivity estimation model into equation (5.1) such as substitutions in section 4.2 

where relative hydraulic conductivity models by Brooks and Corey and Mualem were used. In 

this chapter, a relative conductivity model that will be used is based on the basis of theories 

proposed by Childs and Collis-George, Burdine, and Mualem. 

𝐾(𝜃)

𝐾𝑠
= (𝑆𝑒)𝑏 [∫

𝑑𝑥

𝜓(𝑥)

𝑆𝑒

0

∫
𝑑𝑥

𝜓2−𝑟(𝑥)

1

0

⁄ ]

𝑚

 
 

(5.2) 

Childs and Collis-George, Burdine, and Mualem proposed different values for model 

parameter 𝑏, 𝑟 and 𝑚. For example, Mualem suggested that 𝑏 = 0.5;  𝑟 = 1; and 𝑚 = 2; 

Burdine, on the other hand, suggested that 𝑏 = 2; 𝑟 = 0; and 𝑚 = 1 

When Mualem parameter values are adopted equation (5.2) becomes 

𝐾𝑟(𝜃) = 𝑆𝑒0.5 [∫
𝑑𝜃

𝜓

𝜃

0

∫
𝑑𝜃

𝜓

𝜃𝑠𝑎𝑡

0

⁄ ]

2

 
 

(5.3) 

Where  

𝑆𝑒 =
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

 
(5.4) 

0.5 in equation (5.3) is a value representing an empirical term for the pore-size interaction term. 

The values of this term have been carefully selected by researchers; the most common ones are 

0.5 as indicated in the equation above; 2 which is associated with Burdine model. Brooks and 

Corey suggested that pore-size interaction term is not necessary when the pore-size distribution 

index is used and considered it to be 0. Pore-size interaction term adds flexibility to relative 

hydraulic conductivity models. Leij et al (1994) proved that the pore-size interaction term is 

not confined to these values only, however it can have any value including negative values. 

Therefore, the wide range for values of this term, referred to as 𝑛 from now on, allows both 

linear and non-linear relationship between effective saturation and relative hydraulic 

conductivity. Assuming that 𝑛 = −2 and adopting other soil physical parameters proposed by 

Mualem equation (5.3) becomes 

𝐾𝑟(𝜃) = 𝑆𝑒−2 [∫
𝑑𝜃

𝜓

𝜃

0

∫
𝑑𝜃

𝜓

𝜃𝑠𝑎𝑡

0

⁄ ]

2

 
 

(5.5) 

Incorporating a water retention characteristic described by Brooks and Corey  
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𝑆𝑒 = (𝜑 𝜔𝑐𝑟⁄ )−𝜆 (5.6) 

into equation (5.5) yields 

𝐾𝑟 = 𝑆𝑒𝜔 = 𝑆𝑒−2+2+
2
𝜆 

(5.7) 

Where 𝜆 is an empirical parameter representing the pore-size distribution index. The same 

completely homogeneous soil volume with pore-size distribution index of 2 considered in the 

previous chapter will be used in this chapter as well. 𝜔 = 1 when the value of 𝜆 is substituted 

in the equation (5.7). Therefore, the relative permeability of the soil is assumed to be equivalent 

to effective saturation and unsaturated hydraulic conductivity varies linearly across space. The 

soil profile is assumed to be completely homogeneous. Mathematically, the above assumptions 

can be expressed as 

𝐾𝑟 = 𝑆𝑒 =
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

 
(5.8) 

and the resultant unsaturated hydraulic conductivity function is given by 

𝐾(𝜃) = 𝐾𝑟 ∗ 𝐾𝑠 = 𝐾𝑠 (
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

) 
(5.9) 

Therefore, 𝐾(𝜃) can be eliminated from the equation (1.9) by combining it with equation (5.9) 

to obtain 

(𝐷
𝜕𝜃

𝜕𝑧
) +

𝜕

𝜕𝑧
(𝐾𝑠 (

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

))
𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
 

 

(5.10) 

Equation (5.10) is a linearized Richards’ equation and it can be simplified to obtain 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕

𝜕𝑧
(𝐾𝑠

𝜃

𝜃𝑠 − 𝜃𝑟
) 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕𝜃

𝜕𝑧
(𝐾𝑠

1

𝜃𝑠 − 𝜃𝑟
) 

 

(5.11) 

 

(5.12) 

If 𝐾𝑠
1

𝜃𝑠−𝜃𝑟
= 𝛽 then equation (5.12) can be written as 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+ 𝛽

𝜕𝜃

𝜕𝑧
 

 

(5.13) 

The above equation is a one-dimension partial differential equation for unsaturated flow in a 

vertical direction which will be solved in the following section to obtain an exact solution using 

Laplace Transform and Green’s Function. 
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5.3 The exact solution to Richards’ equation 

In this section, the partial differential equation (5.13) obtained in the previous section is solved 

using Laplace transform to obtain the exact solution. The transform is applied to equation 

(5.13) with an assumption that variable 𝑡 meets the following condition: 0 < 𝑡 < ∞, 𝑡 is 

transformed from being a variable to a parameter so that equation (5.13) becomes an algebraic 

equation which is easy to solve compared to differential equations. The Laplace transform of a 

function is given by 

ℒ(𝑓(𝑡)) = 𝑓(𝑠) (5.14) 

Where ℒ is a Laplace transform operator, 𝑓(𝑠) is a function in Laplace space, 𝑓(𝑡) is a function 

in its original space where 0 < 𝑡 < ∞, and 𝑠 is a parameter representing 𝑡 in Laplace space. 

Application of Laplace transform on both sides of equation (5.13)  

ℒ (
∂θ

∂t
) = Dℒ (

∂2θ

∂z2
) + βℒ (

∂θ

∂z
) 

yields 

sθ̃ − θ(0) = D(
∂2θ̃

∂z2
) + β(

∂θ̃

∂z
) 

 

(5.15) 

 

 

(5.16) 

by rearranging the equation above  

D
∂2θ̃

∂z2
+ β

∂θ̃

∂z
− sθ̃ = θ(0) 

 

(5.17) 

is obtained. Where 𝜃(0) represents the initial soil water content, and sθ̃ is an expression of 

Laplace transform of function 
𝜕𝜃

𝜕𝑧
  involving parameter s and which corresponds to 𝑡 in the 

original space. The above equation is non-homogeneous because θ(0) is not equal to zero. Just 

for the purpose of obtaining a particular solution of the above equation soil water content θ(0) 

is considered to be 0. If 𝜃(0) is zero, equation (5.17) becomes a homogeneous equation and is 

written as 

D
∂2θ̃

∂z2
+ β

∂θ̃

∂z
− sθ̃ = 0 

 

(5.18) 

The above equation is in the form of a quadratic equation, if θ̃ = Aerz, then equations  

∂θ̃

∂z
= rAerz  

(5.19) 
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and 

∂2θ̃

∂z
=  r2Aerz 

 

 (5.20) 

are obtained and substituted into the Laplacian quadratic equation in equation (5.18) to obtain  

Dr2Aerz + βrAerz − sAerz = 0    (5.21) 

which is a particular equation for equation (5.13). Equation (5.21) is further simplified into  

𝐷𝑟2 + 𝑟𝛽 − 𝑠 = 0 (5.22) 

A quadratic formula is used to solve the above equation for 𝑟 values and the following values 

are obtained 

𝑟− =
−𝛽 − √𝛽2 + 4𝐷𝑠

2𝐷
 

and 

𝑟+ =
−𝛽 + √𝛽2 + 4𝐷𝑠

2𝐷
 

 

 

 

(5.23) 

Since soil water content cannot increase to infinity, 𝑟− is used  and 𝜃̃(𝑧, 𝑠) can be expressed as 

𝜃̃(𝑧, 𝑠) = 𝐴𝑒
𝑧(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)
 

 

(5.24) 

The inverse Laplace Transform of equation (5.22) yields a particular solution to equation (5.13) 

in its original space. The inverse Laplace transform of equation (5.22) is given by 

ℒ−1 (𝜃̃(𝑧, 𝑠)) = 𝐴ℒ−1(𝑒
𝑧(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)
) = 𝜃̃(𝑧, 𝑡) 

𝜃1(𝑧, 𝑡) = 𝐴.

(

 
𝑧𝑒

(
−(−𝛽𝑡+𝑧)−𝑡

4𝐷𝑡
)

2√
𝜋
𝐷 𝑡

3
2

)

  

 

(5.25) 

 

 

 

(5.26) 

Since equation (5.17) is non-homogeneous with 𝜃(0) ≠ 0 finding the exact solution will 

require the use of Green’s function. Green’s function gives a solution to non-homogenous 

linear differential equations defined on a domain with boundary problems. In Green terms 

equation (5.17) can be expressed as  
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𝐷
𝜕2𝐺

𝜕𝑧2
+ 𝛽

𝜕𝐺

𝜕𝑧
− 𝑠𝐺 = 𝛿(𝑧) 

 

(5.27) 

The above Green’s function is solved by applying Laplace transform both sides to obtain 

ℒ (𝐷
𝜕2𝐺

𝜕𝑧2
+ 𝛽

𝜕𝐺

𝜕𝑧
− 𝑠𝐺) = ℒ(𝛿(𝑧!)) 

𝐷(𝑝2𝐺̃ − 𝑝𝐺′ − 𝐺(0)) + 𝛽 (𝑝𝐺̃ − 𝐺(0)) − 𝑠𝐺̃ = 1 

 

(5.28) 

(5.29) 

Where 𝑝 a parameter in the second Laplace is space and 𝑝𝐺̃ is a function 𝑠𝐺 in the second 

Laplace space. Grouping and rearranging of equation (5.29) yields 

(𝐷𝑝2 + 𝛽𝑝 − 𝑠)𝐺̃ = 1 

𝐺̃ =
1

(𝐷𝑝2 + 𝛽𝑝 − 𝑠)
 

(5.30) 

 

(5.31) 

Using the quadratic formula equation (5.31) can be written as 

𝐺̃ =
1

(
−𝛽 − √𝛽2 + 4𝐷𝑠

2𝐷 )

 

or 

𝐺̃ =
1

(
−𝛽 + √𝛽2 + 4𝐷𝑠

2𝐷 )

 

 

 

 

 

 

 

(5.32) 

From the above equation the values of ∆; 𝑝+; 𝑎𝑛𝑑 𝑝− are obtained and given as follows 

∆= 𝛽2 + 4𝑠𝐷 

𝑝− =
−𝛽 − √∆

2𝐷
= 𝑎1 

𝑝+ =
−𝛽 + √∆

2𝐷
= 𝑎2 

(5.33) 

 

(5.34) 

 

(5.35) 

Using the above values equation (5.31) can be written as 

𝐺̃ =
1

(𝑝 − 𝑎1)(𝑝 − 𝑎2)
 

 

(5.36) 

𝐺̃ is a convolution of two functions and it can be expressed in the form of  

ℒ(𝑓(𝑧) ∗ ℎ(𝑧)) = ℒ(𝑓(𝑧))ℒ(ℎ(𝑧)) = 𝐺̃ (5.37) 
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where 𝑓(𝑝) and ℎ̃(𝑝) are chosen as 

1

(𝑝 − 𝑎1)
= 𝑓 

and 

1

(𝑝 − 𝑎2)
= ℎ̃ 

 

Equation (5.36) can be written in the form of equation (5.37) as 

𝐺̃ =
1

𝑝 − 𝑎1
.

1

𝑝 − 𝑎2
 , 

 

(5.38) 

 The inverse Laplace transform of a convolution is given by the product of the inverse of the 

individual functions. In this case the inverse of 𝐺̃ will be a product inverse of 𝑓(𝑝) and ℎ̃(𝑝) 

and is given by 

ℒ−1(𝑓). ℒ−1(ℎ̃) = 𝑒𝑎1𝑧 . 𝑒𝑎2𝑧 (5.39) 

The inverse Laplace transform of equation (5.38) can be obtained using the convolution 

theorem given by the following integrals 

ℒ−1(𝐺̃) = ∫ 𝑓(𝜏) ℎ(𝑧 − 𝜏)𝑑𝜏
𝑧

0

 
 

(5.40) 

Using the above equation and equation (5.39) 𝐺 becomes 

𝐺 = ∫ 𝑒𝑎1𝜏𝑒𝑎2(𝑧−𝜏). 𝑑𝜏
𝑧

0

 

𝐺 = 𝑒𝑎2𝑧∫ 𝑒(𝑎1𝜏−𝑎2𝜏). 𝑑𝜏
𝑧

0

 

𝐺 = 𝑒𝑎2𝑧∫ 𝑒𝜏(𝑎1−𝑎2). 𝑑𝜏
𝑧

0

 

 

(5.41) 

 

(5.42) 

 

(5.43) 

After the integration 

𝐺 = 𝑒𝑎2𝑧
1

𝑎1 − 𝑎2
𝑒𝜏(𝑎1−𝑎2)|0

𝑧 

𝐺 = 𝑒𝑎2𝑧 (
1

𝑎1 − 𝑎2
𝑒𝑧(𝑎1−𝑎2) −

1

𝑎1 − 𝑎2
) = 𝐺(𝑧, 𝑠) 

 

(5.44) 

 

(5.45) 

Substituting equations (5.34) and (5.35) into the above equation yields  
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𝐺(𝑧, 𝑠) = [𝑒
𝑧(
−𝛽−√𝑠
2𝐷

)
] .

[
 
 
 
 

1

(
−𝛽 + √𝑠
2𝐷 ) − (

−𝛽 + √𝑠
2𝐷 )

𝑒
𝑧(
−𝛽+√𝑠
2𝐷

 − 
−𝛽−√𝑠
2𝐷

)

−
1

(
−𝛽 + √𝑠
2𝐷 ) − (

−𝛽 + √𝑠
2𝐷 )

]
 
 
 
 

 

 

 

 

 

 

 

(5.46) 

The above equation is simplified into 

𝐺(𝑧, 𝑠) = [𝑒
𝑧(
−𝛽−√𝑠
2𝐷

)
]

[
 
 
 
 

1

(
−𝛽 + √𝑠
2𝐷 ) − (

−𝛽 + √𝑠
2𝐷 )

]
 
 
 
 

[𝑒
𝑧(
−𝛽+√𝑠
2𝐷

 − 
−𝛽−√𝑠
2𝐷

)
− 1] 

 

 

(5.47) 

Substituting equation (5.33) into the above equation yields  

𝐺(𝑧, 𝑠) = [𝑒
𝑧(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)
]

[
 
 
 
 

1

(
−𝛽 + √𝛽2 + 4𝐷𝑠

2𝐷 ) − (
−𝛽 + √𝛽2 + 4𝐷𝑠

2𝐷 )
]
 
 
 
 

 

[𝑒
𝑧(
−𝛽+√𝛽𝑜+4𝐷𝑠

2𝐷
 − 
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)
− 1] 

 

 

 

 

 

(5.48) 

The exact solution in Laplace space is given by 

𝜃(𝑧, 𝑠) = 𝜃1(𝑧, 𝑠) + ∫ 𝜃(0, 𝑠) 𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0

𝑑𝜏 
(5.49) 

Where 𝜃(𝑧, 𝑠) is the term for the exact solution; 𝜃1(𝑧, 𝑠) is the particular solution given by 

equation (5.25); 𝜃(0, 𝑠) is the term for initial soil pore-water content; and ∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0
𝑑𝜏 is 

the integral of equation (5.48) in 𝜏 direction.  

To obtain the exact solution each term must be substituted into the above equation; and 

substitution of the particular solution, equation (5.25) yields 

𝜃(𝑧, 𝑠) = 𝐴. 𝑒
𝑧(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)
+ 𝜃(0, 𝑠) ∫  𝐺(𝑧 − 𝜏, 𝑠)

𝑧

0

𝑑𝜏 
 

(5.50) 

To find ∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0
𝑑𝜏 equation (5.48) is again expressed as equation (5.45) and by 

simplifying it can be expressed as 
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𝐺(𝑧, 𝑠) = 𝑒𝑎2𝑧 (
1

𝑎1 − 𝑎2
) (𝑒𝑧(𝑎1−𝑎2) − 1) 

 

(5.51) 

and its integral is expressed as 

∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0

𝑑𝜏 =
1

𝑎1 − 𝑎2
∫ 𝑒𝑎2𝑧 . (𝑒𝑧(𝑎1−𝑎2) − 1). 𝑑
𝑧

0

𝜏 

∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0

𝑑𝜏 =
1

𝑎1 − 𝑎2
∫ 𝑒𝑎2(𝑧−𝜏). 𝑒(𝑧−𝜏)(𝑎1−𝑎2)
𝑧

0

− 𝑒𝑎2(𝑧−𝜏). 𝑑𝜏

=
1

𝑎1 − 𝑎2
∫ (𝑒𝑎1(𝑧−𝜏) − 𝑒𝑎2(𝑧−𝜏))
𝑧

0

. 𝑑𝜏 

 

(5.52) 

 

 

(5.53) 

 

Let (z − τ) be y; when τ = 0, y = z and when z = 0, y = 0; thus dy = −dτ 

Thus 

∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0

𝑑𝜏 =
1

𝑎1 − 𝑎2
∫ (𝑒𝑎2𝑦 − 𝑒𝑎2𝑦)
0

𝑧

(−𝑑𝑦)

=
1

𝑎1 − 𝑎2
∫ (𝑒𝑎1𝑦 − 𝑒𝑎2𝑦). 𝑑𝑦
0

𝑧

 

 

 

(5.54) 

 

and after integration, the following is obtained 

∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0

𝑑𝜏 =
1

𝑎1 − 𝑎2
(
1

𝑎1
𝑒𝑎1𝑦 −

1

𝑎2
𝑒𝑎2𝑦) |0

𝑧 
 

(5.55) 

By substituting equations (5.33), (5.34) and (5.35) into the above equation, the following 

equation is obtained 

∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0
𝑑𝜏 =

(

 
 1

(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)−(

−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

)

 
 

(

 
 1

(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

𝑒
𝑧(

−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

−

1

(
−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

𝑒
𝑧(

−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

−
1

(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

+
1

(
−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

)

 
 

     (5.56) 

Now ∫  𝐺(𝑧 − 𝜏, 𝑠)
𝑧

0
𝑑𝜏 in equation (5.50) can be replaced by equation (5.56) to give 
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𝜃(𝑧, 𝑠) = 𝐴. 𝑒
𝑧(

−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

+ [𝜃(0, 𝑠)]

[
 
 
 
 

(−
𝐷

√𝛽2+4𝐷𝑠
)

(

 
 1

(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

𝑒
𝑧(

−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

−

1

(
−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

𝑒
𝑧(

−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)

−
1

√𝛽2+4𝐷𝑠

)

 
 

]
 
 
 
 

           (5.57) 

The equation above is an expression of the exact solution of linearized Richards’ equation. The 

equation above is still in Laplace space; to remove the solution from Laplace space to its 

original space inverse Laplace transform is applied as follows 

𝜃(𝑧, 𝑡) = ℒ−1(𝜃(𝑧, 𝑠))

= 𝐴

(

 
𝑧𝑒

(
−(−𝛽𝑡+𝑧)−𝑡

4𝐷𝑡
)

2√
𝜋
𝐷 𝑡

3
2

)

 

+ ℒ−1

{
 
 

 
 

+[𝜃(0, 𝑠)]

[
 
 
 
 

(−
𝐷

√𝛽2 + 4𝐷𝑠
)

(

 
 1

(
−𝛽 − √𝛽2 + 4𝐷𝑠

2𝐷 )

𝑒
𝑧(
−𝛽−√𝛽2+4𝐷𝑠

2𝐷
)

−
1

(
−𝛽 + √𝛽2 + 4𝐷𝑠

2𝐷
)

𝑒
𝑧(
−𝛽+√𝛽2+4𝐷𝑠

2𝐷
)
−

1

√𝛽2 + 4𝐷𝑠

)

 
 

]
 
 
 
 

}
 
 

 
 

 

                  (5.58) 

 

𝜃(𝑧, 𝑡) = 𝜃0∑𝑒−𝜆𝑛𝑡
(𝐴𝑒

−𝑧(√𝛽2−4𝐷𝜆2)
+𝐵𝑒

𝑧(√𝛽2−4𝐷𝜆2)
)∞

𝑗=0

 

𝜃(𝑧, 0) = 𝜃𝐿 

𝜃(𝑧, 0) = 𝜃0∑𝑒−𝜆𝑛𝑡(𝐴𝑒−𝑟𝑧)

∞

𝑗=0

 

 

(5.59) 

 

(5.60) 

 

(5.61) 

Where 
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𝑟 = −√𝛽2 − 4𝐷𝜆2   (5.62) 

and 

𝛽 = 𝐾𝑠
1

𝜃𝑠 − 𝜃𝑟
 

  (5.63) 

The term  

𝐵𝑒𝑧(
√𝛽2−4𝐷𝜆2)

 

in equation (5.59) was dropped off because water cannot increase up to infinity. 

5.4 Numerical analysis 

5.4.1 Crank-Nicolson finite-difference approximation scheme 

This sub section will provide a numerical approximation of the linearized Richards’ equation 

using Crank-Nicolson finite-difference approximation method. Numerical approximation of 

equation (5.13) is given by 

𝜃𝑖
𝑗+1

− 𝜃𝑖
𝑗

𝛥𝑡
= 0.5 (𝐷

𝜃𝑖+1
𝑗+1

− 2𝜃𝑖
𝑗+1

+ 𝜃𝑖−1
𝑗+1

(Δ𝑧)2
+ 𝛽

𝜃𝑖+1
𝑗+1

− 𝜃𝑖−1
𝑗+1

2Δ𝑧
)

+ 0.5 (𝐷
𝜃𝑖+1
𝑗
− 2𝜃𝑖

𝑗
+ 𝜃𝑖−1

𝑗

(Δ𝑧)2
+ 𝛽

𝜃𝑖+1
𝑗
− 𝜃𝑖−1

𝑗

2Δ𝑧
) 

 

 

(5.64) 

Expanding and rearranging give 

2 (
𝐷

(Δ𝑧)2
+
1

𝛥𝑡
) 𝜃𝑖

𝑗+1

= 2 (
1

𝛥𝑡
−

𝐷

(Δ𝑧)2
)𝜃𝑖

𝑗
+ (

𝐷

(Δ𝑧)2
+

𝛽

2𝛥𝑦
) 𝜃𝑖+1

𝑗+1

+ (
𝐷

(Δ𝑧)2
−

𝛽

2𝛥𝑦
) 𝜃𝑖−1

𝑗+1
+ (

𝐷

(Δ𝑧)2
+

𝛽

2𝛥𝑦
) 𝜃𝑖+1

𝑗

+ (
𝐷

(Δ𝑧)2
−

𝛽

2𝛥𝑦
) 𝜃𝑖−1

𝑗
 

 

 

(5.65) 

If the following constants are used 

𝑎 = 2 (
𝐷

(Δ𝑧)2
+
1

𝛥𝑡
) 

𝑏 = 2 (
1

𝛥𝑡
−

𝐷

(Δ𝑧)2
) 
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𝑐 = (
𝐷

(Δ𝑧)2
+

𝛽

2𝛥𝑦
) 

𝑑 = (
𝐷

(Δ𝑧)2
−

𝛽

2𝛥𝑦
) 

Then equation (5.4.2) becomes 

𝑎𝜃𝑖
𝑗+1

= 𝑏𝜃𝑖
𝑗
+ 𝑐𝜃𝑖+1

𝑗+1
+ 𝑑𝜃𝑖−1

𝑗+1
+ 𝑐𝜃𝑖+1

𝑗
+ 𝑑𝜃𝑖−1

𝑗
 (5.66) 

5.4.2 Laplace Adam-Bashforth Scheme 

This subsection provides a numerical approximation method of the linearized Richards’ 

equation using Laplace Adam-Bashforth method. Application of Laplace transform on both 

sides of equation (5.13) transforms the equation from a partial differential equation to a 

differential equation 

ℒ (
𝜕𝜃

𝜕𝑡
) = ℒ (𝐷

𝜕2𝜃

𝜕𝑧2
+ 𝛽

𝜕𝜃

𝜕𝑧
) 

 

(5.67) 

The resultant equation is given by 

𝑑𝜃

𝑑𝑡
= ℒ (𝐷

𝜕2𝜃

𝜕𝑧2
+ 𝛽

𝜕𝜃

𝜕𝑧
) 

 

(5.68) 

 

𝑠 can be silenced by 

𝑑𝜃(𝑠, 𝑡)

𝑑𝑡
= 𝐹(𝜃, 𝑡) 

𝜃(𝑡) = 𝜃(𝑠, 𝑡) 

𝐹(𝜃, 𝑡) = ℒ (𝐷
𝜕2𝜃

𝜕𝑧2
+ 𝛽

𝜕𝜃

𝜕𝑧
) 

The same procedure that was followed in section 4.4.2 is followed here to obtain 

𝜃𝑛+1 = 𝜃𝑛 + ℎ (
3

2
𝐹𝑛 −

1

2
𝐹𝑛−1) 

 

(5.69) 

 

Applications of inverse Laplace transform to take back the equation to its real space is given 

by 
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ℒ−1[𝜃𝑛+1] = ℒ−1 [𝜃𝑛 + ℎ (
3

2
𝐹𝑛 −

1

2
𝐹𝑛−1)] 

 

(5.70) 

which result in 

 

𝜃(z, 𝑡𝑛+1) = 𝜃(z, 𝑡𝑛) + ℎ
3

2
(𝐷

𝜕2𝜃(z, 𝑡𝑛)

𝜕𝑧2
+ β

𝜕𝜃(z, 𝑡𝑛)

𝜕𝑧
)

− ℎ
1

2
(𝐷

𝜕2𝜃(z, 𝑡𝑛−1)

𝜕𝑧2
+ β

𝜕𝜃(z, 𝑡𝑛−1)

𝜕𝑧
) 

 

(5.71) 

Forward and backward discretization in space variable yields 

𝜃𝑖
𝑛+1 =  𝜃𝑖

𝑛 + ℎ
3

2
[𝐷 (

𝜃𝑖+1
𝑛 −2𝜃𝑖

𝑛+𝜃𝑖−1
𝑛

(Δ𝑧)2
) + 𝛽 (

𝜃𝑖+1
𝑛 −𝜃𝑖

𝑛

Δ𝑧
)]

− ℎ
1

2
[𝐷 (

𝜃𝑖+1
𝑛−1 − 2𝜃𝑖

𝑛−1+𝜃𝑖−1
𝑛−1

(Δ𝑧)2
) + 𝛽 (

𝜃𝑖+1
𝑛−1−𝜃𝑖

𝑛−1

Δ𝑧
)] 

 

 

(5.72) 

 

Where 𝜃(𝑧𝑖, 𝑡𝑛) = 𝜃𝑖
𝑛. If Δ𝑧 = 𝑙 then equation above becomes 

𝜃𝑖
𝑛+1 =  𝜃𝑖

𝑛 + ℎ
3

2
[𝐷 (

𝜃𝑖+1
𝑛 −2𝜃𝑖

𝑛+𝜃𝑖−1
𝑛

(𝑙)2
) + 𝛽 (

𝜃𝑖+1
𝑛 −𝜃𝑖

𝑛

𝑙
)]

− ℎ
1

2
[𝐷 (

𝜃𝑖+1
𝑛−1 − 2𝜃𝑖

𝑛−1+𝜃𝑖−1
𝑛−1

(𝑙)2
) + 𝛽 (

𝜃𝑖+1
𝑛−1−𝜃𝑖

𝑛−1

𝑙
)] 

 

(5.73) 

Expanding  

𝜃𝑖
𝑛+1 =  𝜃𝑖

𝑛 +
3ℎ𝐷

2(𝑙)2
(𝜃𝑖+1

𝑛 −2𝜃𝑖
𝑛+𝜃𝑖−1

𝑛 ) +
3ℎ𝛽

2𝑙
(𝜃𝑖+1

𝑛 −𝜃𝑖
𝑛)

−
ℎ𝐷

2(𝑙)2
(𝜃𝑖+1

𝑛−1 − 2𝜃𝑖
𝑛−1+𝜃𝑖−1

𝑛−1) −
ℎ𝛽

2𝑙
(𝜃𝑖+1

𝑛−1−𝜃𝑖
𝑛−1) 

 

(5.74) 

 If the following constants are substituted into equation (5.74) above 

𝑎 =
3ℎ𝐷

2(𝑙)2
 

𝑏 =
3ℎ𝛽

2𝑙
 

𝑐 =
ℎ𝐷

2(𝑙)2
 

𝑑 =  
ℎ𝛽

2𝑙
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then the following equation is obtained 

𝜃𝑖
𝑛+1 =  𝜃𝑖

𝑛 + 𝑎(𝜃𝑖+1
𝑛 −2𝜃𝑖

𝑛+𝜃𝑖−1
𝑛 ) + 𝑏(𝜃𝑖+1

𝑛 −𝜃𝑖
𝑛) − 𝑐(𝜃𝑖+1

𝑛−1 − 2𝜃𝑖
𝑛−1+𝜃𝑖−1

𝑛−1)

− 𝑑(𝜃𝑖+1
𝑛−1−𝜃𝑖

𝑛−1) 

 

(5.75) 

which is simplified into 

𝜃𝑖
𝑛+1 = (1 − 2𝑎 − 𝑏)𝜃𝑖

𝑛 + (𝑎 + 𝑏)𝜃𝑖+1
𝑛 + 𝑎𝜃𝑖−1

𝑛 + (2𝑐 + 𝑑)𝜃𝑖
𝑛−1 − (𝑐 + 𝑑)𝜃𝑖+1

𝑛−1

− 𝑐𝜃𝑖−1
𝑛−1 

 

(5.76) 

5.5 Numerical Stability Analysis 

Stability analysis is conducted to evaluate the performance of numerical approximation 

methods. It is essential for ensuring that discrete errors do not spread to the entire simulation 

(Allwright and Atangana, 2018). In this study, the Fourier expansion in space variables will be 

used. 

𝜃(𝑧, 𝑡) =∑𝜃(𝑡)

𝑓

𝑒𝑥𝑝(𝑗𝑓𝑙) (5.77) 

5.5.1 Crank-Nicolson Finite-difference Approximation scheme 

The stability analysis of the solution obtained using the Crank-Nicolson method is provided in 

this subsection. Using the Fourier expansion equation (5.66) becomes  

𝑎𝜃𝑛+1𝑒
𝑗𝑖𝑓𝑙 = 𝑏𝜃𝑛𝑒

𝑗𝑖𝑓𝑙 + 𝑐𝜃𝑛𝑒
𝑗(𝑖+1)𝑓𝑙 + 𝑑𝜃𝑛𝑒

𝑗(𝑖−1)𝑓𝑙 + 𝑐𝜃𝑛+1𝑒
𝑗(𝑖+1)𝑓𝑙

+ 𝑑𝜃𝑛+1𝑒
𝑗(𝑖−1)𝑓𝑙 

 

(5.78) 

Where 

𝜃𝑖
𝑗+1

= 𝜃𝑛+1𝑒
𝑗𝑖𝑓𝑙 

𝜃𝑖
𝑗
= 𝜃𝑛𝑒

𝑗𝑖𝑓𝑙 

𝜃𝑖+1
𝑗+1

= 𝜃𝑛+1𝑒
𝑗(𝑖+1)𝑓𝑙 

𝜃𝑖−1
𝑗+1

= 𝜃𝑛+1𝑒
𝑗(𝑖−1)𝑓𝑙 

(5.79) 

(5.80) 

(5.81) 

 

(5.82) 

Dividing equation (5.78) by 𝑒𝑗𝑖𝑓𝑙 yields 

𝑎𝜃𝑛+1 = 𝑏𝜃𝑛 + 𝑐𝜃𝑛𝑒
𝑗𝑓𝑙 + 𝑑𝜃𝑛𝑒

−𝑗𝑓𝑙 + 𝑐𝜃𝑛+1𝑒
𝑗𝑓𝑙 + 𝑑𝜃𝑛+1𝑒

−𝑗𝑓𝑙 (5.83) 

At 𝑛 = 0 

Equation becomes 
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𝑎𝜃1 = 𝑏𝜃0 + 𝑐𝜃0𝑒
𝑗𝑓𝑙 + 𝑑𝜃0𝑒

−𝑗𝑓𝑙 + 𝑐𝜃1𝑒
𝑗𝑓𝑙 + 𝑑𝜃1𝑒

−𝑗𝑓𝑙 (5.84) 

Rearranging  

𝑎𝜃1 − 𝑐𝜃1𝑒
𝑗𝑓𝑙 − 𝑑𝜃1𝑒

−𝑗𝑓𝑙 = 𝑏𝜃0 + 𝑐𝜃0𝑒
𝑗𝑓𝑙 + 𝑑𝜃0𝑒

−𝑗𝑓𝑙 (5.85) 

Simplifying  

𝜃1(𝑎 − 𝑐𝑒
𝑗𝑓𝑙 − 𝑑𝑒−𝑗𝑓𝑙) = 𝜃0(𝑏 + 𝑐𝑒

𝑗𝑓𝑙 + 𝑑𝑒−𝑗𝑓𝑙) (5.86) 

Rearranging  

𝜃1

𝜃0
=
𝑏 + 𝑐𝑒𝑗𝑓𝑙 + 𝑑𝑒−𝑗𝑓𝑙

𝑎 − 𝑐𝑒𝑗𝑓𝑙 − 𝑑𝑒−𝑗𝑓𝑙
 

 

(5.87) 

If 

𝑒𝑗𝑓𝑙 = cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 

𝑒−𝑗𝑓𝑙 = cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙) 

Then equation (5.87) 

𝜃1

𝜃0
=
𝑏 + 𝑐(cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙)) + 𝑑(cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙))

𝑎 − 𝑐(cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙)) − 𝑑(cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙))
 

 

(5.88) 

Expanding and rearranging 

𝜃1

𝜃0
=

𝑏 + 𝑐 cos(𝑓𝑙) + 𝑑 cos(𝑓𝑙) + 𝑗 𝑐 sin(𝑓𝑙) − 𝑗 𝑑 sin(𝑓𝑙)

𝑎 − 𝑐 cos(𝑓𝑙) − 𝑑 cos(𝑓𝑙) + 𝑗 dsin(𝑓𝑙) − 𝑗 𝑐 sin(𝑓𝑙) (𝑑)
 

 

(5.89) 

Simplifying 

𝜃1

𝜃0
=
𝑏 + cos(𝑓𝑙) (𝑐 + 𝑑) + 𝑗 dsin(𝑓𝑙) (𝑐 − 𝑑)

𝑎 − cos(𝑓𝑙) (𝑐 + 𝑑) + 𝑗 dsin(𝑓𝑙) (𝑐 − 𝑑)
 

 

(5.90) 

The solution will be obtained when 

(𝑏 + (𝑐 + 𝑑) cos(𝑓𝑙))2 + (𝑐 − 𝑑)2sin2(𝑓𝑙)

(𝑎 − (𝑐 + 𝑑) cos(𝑓𝑙))2 + (𝑐 − 𝑑)2sin2(𝑓𝑙)
< 1 

 

(5.91) 

 

(𝑏 + (𝑐 + 𝑑) cos(𝑓𝑙))2 < (𝑎 − (𝑐 + 𝑑) cos(𝑓𝑙))2 (5.92) 
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𝑏2 + 2 cos(𝑓𝑙) (𝑐 + 𝑑) + cos2(𝑓𝑙) (𝑐 + 𝑑)2 < 𝑎2 − 2 cos(𝑓𝑙) (𝑐 + 𝑑)

+ cos2(𝑓𝑙) (𝑐 + 𝑑)2 

 

(5.92) 

The assumed condition for stability is true when 

𝑏2 − 𝑎2 < −4 cos(𝑓𝑙)(𝑐 + 𝑑) (5.94) 

Substituting for the constants 𝑎 = 2 (
𝐷

(Δ𝑧)2
+

1

𝛥𝑡
); 𝑏 = 2 (

1

𝛥𝑡
−

𝐷

(Δ𝑧)2
); 𝑐 = (

𝐷

(Δ𝑧)2
+

𝛽

2𝛥𝑦
); and 

𝑑 = (
𝐷

(Δ𝑧)2
−

𝛽

2𝛥𝑦
) into equation (5.94) yields 

(
2

𝛥𝑡
−

2𝐷

(Δ𝑧)2
)
2

− (
2

𝛥𝑡
+

2𝐷

(Δ𝑧)2
)
2

< −4cos(𝑓𝑙) (
𝐷

(Δ𝑧)2
+

𝛽

2𝛥𝑦
+

𝐷

(Δ𝑧)2
−

𝛽

2𝛥𝑦
) 

 

(5.95) 

By simplifying the following is obtained 

(
2

𝛥𝑡
−

2𝐷

(Δ𝑧)2
)
2

− (
2

𝛥𝑡
+

2𝐷

(Δ𝑧)2
)
2

< −8 cos(𝑓𝑙)
𝐷

(Δ𝑧)2
 

 

(5.96) 

It is concluded that the present solution is stable for ∀𝑛 ≤ 0 when this condition is met and can 

be used to obtain reliable numerical simulations. 

5.5.2 The Laplace Adam-Bashforth scheme 

For stability analysis of equation (121) the term   𝜃𝑖
𝑛 will be replaced by  𝜃𝑖

𝑗
. 

The stability analysis of the solution obtained using Laplace Adam-Bashforth method is 

provided in this subsection. Using the Fourier expansion equation (5.76) becomes 

𝜃𝑛+1𝑒
𝑗𝑖𝑓𝑙 = (1 − 2𝑎 − 𝑏)𝜃𝑛𝑒

𝑗𝑖𝑓𝑙 + (𝑎 + 𝑏)𝜃𝑛𝑒
𝑗(𝑖+1)𝑓𝑙 + 𝑎𝜃𝑛𝑒

𝑗(𝑖−1)𝑓𝑙

+ (2𝑐 + 𝑑)𝜃𝑛−1𝑒
𝑗𝑖𝑓𝑙 − (𝑐 + 𝑑)𝜃𝑛−1𝑒

𝑗(𝑖+1)𝑓𝑙 − 𝑐𝜃𝑛−1𝑒
𝑗(𝑖−1)𝑓𝑙 

 

(5.97) 

By dividing equation (5.97) above by 𝑒𝑗𝑖𝑓𝑙 the following is obtained 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏)𝜃𝑛 + (𝑎 + 𝑏)𝜃𝑛𝑒
𝑗𝑓𝑙 + 𝑎𝜃𝑛𝑒

−𝑗𝑓𝑙 + (2𝑐 + 𝑑)𝜃𝑛−1

− (𝑐 + 𝑑)𝜃𝑛−1𝑒
𝑗𝑓𝑙 − 𝑐𝜃𝑛−1𝑒

−𝑗𝑓𝑙 

 

(5.98) 

And by grouping  𝜃𝑛 and 𝜃𝑛−1 terms together equation (5.98) becomes 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏 + (𝑎 + 𝑏)𝑒
𝑗𝑓𝑙 + 𝑎𝑒−𝑗𝑓𝑙)𝜃𝑛

+ (2𝑐 + 𝑑 − (𝑐 + 𝑑)𝑒𝑗𝑓𝑙 − 𝑐𝑒−𝑗𝑓𝑙)𝜃𝑛−1 

 

(5.99) 

And by expanding and rearranging it becomes 
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𝜃𝑛+1 = (1 − 2𝑎 − 𝑏)𝜃𝑛 + (𝑎 + 𝑏)𝜃𝑛𝑒
𝑗𝑓𝑙 + 𝑎𝜃𝑛𝑒

−𝑗𝑓𝑙 + 2𝑐𝜃𝑛−1 + 𝑑𝜃𝑛−1

− (𝑐 + 𝑑)𝑒𝑗𝑓𝑙𝜃𝑛−1 − 𝑐𝑒
−𝑗𝑓𝑙𝜃𝑛−1 

 

(5.100) 

If 

𝑒𝑗𝑓𝑙 = cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 

𝑒−𝑗𝑓𝑙 = cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙) 

Then equation (5.100) becomes 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏)𝜃𝑛 + (𝑎 + 𝑏)(cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙))𝜃𝑛

+ 𝑎(cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙))𝜃𝑛 + 2𝑐𝜃𝑛−1 + 𝑑𝜃𝑛−1

− (𝑐 + 𝑑)(cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙))𝜃𝑛−1

− 𝑐(cos(𝑓𝑙) − 𝑗 sin(𝑓𝑙))𝜃𝑛−1 

 

(5.101) 

Expanding equation (5.101) gives 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏)𝜃𝑛 + (𝑎 + 𝑏) cos(𝑓𝑙)𝜃𝑛 + (𝑎 + 𝑏)𝑗 sin(𝑓𝑙) 𝜃𝑛

+ 𝑎 cos(𝑓𝑙) 𝜃𝑛 − 𝑎𝑗 sin(𝑓𝑙) 𝜃𝑛 + 2𝑐𝜃𝑛−1 + 𝑑𝜃𝑛−1

− (𝑐 + 𝑑) cos(𝑓𝑙) 𝜃𝑛−1 − (𝑐 + 𝑑)𝑗 sin(𝑓𝑙)𝜃𝑛−1 − 𝑐 cos(𝑓𝑙) 𝜃𝑛−1

+ 𝑐𝑗 sin(𝑓𝑙)𝜃̂𝑛−1 

 

(5.102) 

By Grouping and simplifying the following is obtained 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙))𝜃̂𝑛 + (2𝑐 + 𝑑)(1 − cos(𝑓𝑙))𝜃̂𝑛−1

+ 𝑗 sin(𝑓𝑙) (𝑏𝜃𝑛 − 𝑑𝜃𝑛−1) 

𝜃𝑛+1 = (1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 𝑏)𝜃𝑛

+ ((2𝑐 + 𝑑)(1 − cos(𝑓𝑙)) − 𝑗 sin(𝑓𝑙) 𝑑)𝜃𝑛−1 

 

(5.103) 

 

(5.104) 

Equation (5.104) above can be written as 

𝜃𝑛+1 = 𝜃𝑛𝐴 + 𝜃𝑛−1𝐵 (5.105) 

Where  

𝐴 = 1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 𝑏 

𝐵 = (2𝑐 + 𝑑)(1 − cos(𝑓𝑙)) − 𝑗 sin(𝑓𝑙) 𝑑 

At 𝑛 = 0, equation (5.105) becomes  
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𝜃1 = 𝜃0𝐴 + 𝜃−1𝐵 (5.106) 

The condition required for the solution to be stable is |
𝜃1

𝜃0
| < 1 

If equation (5.106) is considered to be 

𝜃1 = 𝐴𝜃0 (5.107) 

Then 

|
𝜃1

𝜃0
| = 𝐴 

(5.108) 

The condition above is assumed to be true if  

|𝐴| = √𝑥2 + 𝑦2 < 1 (5.109) 

Where 𝑥 and 𝑦 obtained by splitting  

𝐴 = 1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 𝑏 (5.110) 

into 

𝑥 = 1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙) (5.111) 

and 

𝑦 = 𝑗 sin(𝑓𝑙) 𝑏 (5.112) 

Substituting the 𝑥 and 𝑦 into equation (5.109) yields 

|𝐴| = √(1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙))2 + (𝑗 sin(𝑓𝑙) 𝑏)2 (5.113) 

 

|(1 −
3ℎ𝐷

(𝑙)2
−
3ℎ𝛽

2𝑙
+ (

3ℎ𝐷

(𝑙)2
+
3ℎ𝛽

2𝑙
) cos(𝑓𝑙))

2

+ (𝑗 sin(𝑓𝑙)
3ℎ𝛽

2𝑙
)
2

|

= √(1 −
3ℎ𝐷

(𝑙)2
−
3ℎ𝛽

2𝑙
+ (

3ℎ𝐷

(𝑙)2
+
3ℎ𝛽

2𝑙
) cos(𝑓𝑙))

2

+ (𝑗 sin(𝑓𝑙)
3ℎ𝛽

2𝑙
)
2

 

 

(5.114) 

 

√(1 −
3ℎ𝐷

(𝑙)2
−
3ℎ𝛽

2𝑙
+ (

3ℎ𝐷

(𝑙)2
+
3ℎ𝛽

2𝑙
) cos(𝑓𝑙))

2

+ (𝑗 sin(𝑓𝑙)
3ℎ𝛽

2𝑙
)
2

< 1 

 

(5.115) 
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It is concluded that the solution is stable for ∀𝑛 = 0. To prove that the solution is stable for 

 ∀𝑛 ≤ 0 the following condition is assumed |
𝜃̂𝑛+1

𝜃̂0
| < 1, then 

𝜃𝑛+1 = 𝜃𝑛𝐴 + 𝜃𝑛−1𝐵 (5.116) 

 

|𝜃𝑛+1| = |𝜃𝑛𝐴 + 𝜃𝑛−1𝐵| (5.117) 

 

|𝜃𝑛+1| = |𝜃𝑛𝐴 + 𝜃𝑛−1𝐵| ≤ |𝜃𝑛||𝐴| + |𝜃𝑛−1||𝐵| (5.118) 

According to the induction theory the solution is stable when 

|𝜃𝑛||𝐴| + |𝜃𝑛−1||𝐵| < |𝜃0||𝐴| + |𝜃0||𝐵| (5.119) 

 

|𝜃𝑛+1|

|𝜃𝑛|
< |𝐴| + |𝐵| < 1 

(5.120) 

Expanding by substituting for 𝐴 and 𝐵  

|𝜃𝑛+1|

|𝜃𝑛|
< |1 − 2𝑎 − 𝑏 + (2𝑎 + 𝑏) cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙) 𝑏|

+ |(2𝑐 + 𝑑)(1 − cos(𝑓𝑙)) − 𝑗 sin(𝑓𝑙) 𝑑| < 1 

 

(5.121) 

Which is also 

|𝜃𝑛+1|

|𝜃𝑛|
< |1 −

3ℎ𝐷

(𝑙)2
−
3ℎ𝛽

2𝑙
+ (

3ℎ𝐷

(𝑙)2
+
3ℎ𝛽

2𝑙
) cos(𝑓𝑙) + 𝑗 sin(𝑓𝑙)

3ℎ𝛽

2𝑙
|

+ |(
ℎ𝐷

(𝑙)2
+
ℎ𝛽

2𝑙
) (1 − cos(𝑓𝑙)) − 𝑗 sin(𝑓𝑙)

ℎ𝛽

2𝑙
| < 1 

 

 

(5.122) 

It can be concluded that solution obtained using Laplace Adam-Bashforth numerical method 

is stable. 
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CHAPTER 6: NUMERICAL SIMULATIONS 

A computer program called MATHEMATICA was used to produce numerical simulations of 

water movement in the unsaturated zone. The program was used to solve both highly non-linear 

Richards’ equation for vertical flow, equation (4.16) and the linearized Richards’ equation 

based on system oversimplifying assumptions, equation (5.13). The following initial and 

boundary conditions were considered: 

𝜃(𝑧, 0) > 𝜃𝑟  

𝜃(𝑧, 𝑙) = 𝜃𝐿  

𝜃(0, 𝑡) > 𝜃𝑟  

Flow in a homogeneous volume of soil was simulated for three different models; Brooks and 

Corey (1964) model; Mualem (1976) model; and the proposed linear model. The following soil 

hydraulic parameters are considered in this study for numerical simulations: 𝐷 = 0.05, 𝜃𝑟 =

0.043, 𝜃𝑠 = 0.44, 𝜃𝐿 = 0.3, 𝐾𝑠 = 6.935, and 𝜃𝐼 = 0.43 

6.1 Results and discussion  

To reproduce the unsaturated flow system three unsaturated hydraulic conductivity models 

were combined with Richards’ equation. The first one is Brooks and Corey (1964) model; the 

second one is Mualem (1976) model; and the last one is the linear proposed in this study. 

Simulation results obtained when Richards’ equation was combined with Brooks and Corey 

model showed that soil water content evolves across space and time. However, the evolution 

presented by this model is non-realistic, because for the simulated time water is less than initial 

water content during early and mid-simulation time. Moreover, water content seems to be 

constant at shallow depth and there is a sudden increase in water content. The numerical 

solution presented in Figure 10 shows a rapid increase in water content near the lower flow 

boundary; this is questionable because water content rises above initial values.  

 

Figure 11 presents a ContourPlot of water content. Similarly, there is one characteristic contour 

from the surface extending towards the lower boundary. Then, a sudden change in contours’ 

slope is present; there are steep contours close to the boundary. To add, this model is implying 

that for this particular soil volume almost all soil moisture is located near the lower boundary. 
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Figure 10: Numerical solution of Brooks and Corey (1964) model combined with 

Richards’ equation 

 

 

Figure 11: ContourPlot of Brooks and Corey (1964) model combined with Richards’ 

equation 

Space 

𝜃
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Mualem model also yielded results with water content evolution trend that is similar to the one 

explained above. This is expected provided that the models theories are not entirely different.  

It was found necessary to revise these models to see if it will be possible to obtain realistic 

results. In order to revise Muleam and Brooks & Corey models, equation (4.13) and equation 

(4.8) respectively, close attention has to be paid on how the model parameters are related. The 

relationship between relative hydraulic conductivity and effective saturation suggested by these 

models is highly non-linear. Therefore, realistic results can be obtained if the relationship is 

made to be less non-linear. In this case, it is suggested that the exponent in equation (4.8) and 

equation (4.13) is given to 𝜃 − 𝜃𝑟 only. The exclusion of 𝜃𝑠 − 𝜃𝑟  from the base of exponent 

makes the resultant model to be less non-linear. The proposed non-linear model for estimating 

unsaturated hydraulic conductivity is given by 

𝐾𝑟 = 𝐾𝑠
(𝜃 − 𝜃𝑟)

𝜔

𝜃𝑠 − 𝜃𝑟
 

(6.1) 

 Combining the above unsaturated hydraulic conductivity model with Richards’ equation 

yields 

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
+
𝜕

𝜕𝑧
[𝐾𝑠

(𝜃 − 𝜃𝑟)
𝜔

𝜃𝑠 − 𝜃𝑟
] 

(6.2) 

Where 𝜔 is 5 for the revised Books and Corey model and 3.5 for the revised Mualem model. 

Simulation runs using these revised models yielded results that are totally different from those 

obtained using original models. The water content evolution trend is the opposite of the one 

explained above. Here, water is distributed across the soil volume; there is high water content 

at the beginning. As time passes, water content declines with depth towards the lower 

boundary. This trend is seen in both revised models. However, revised Brooks and Corey model 

show some oscillations of high and lower water contents towards the lower boundary. In 

general, the revised models seem to be more realistic compared to original models for the 

considered soil volume. To expand, it is expected for water content to decline with time and 

depth because some water becomes disconnected from flow resulting in a decline in the 

residual flow. The results for revised models are presented in Figure 4, Figure 5, Figure 7, 

Figure 8, Figure 10, and Figure 11 below.  
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Figure 12: Numerical solution of the proposed linear model 

 

Figure 13: Numerical solution of the proposed non-linear model obtained from revising 

Mualem model 
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Figure 14: Numerical solution of the proposed non-linear model obtained from revising 

Brooks and Corey model 

 

Figure 15: ContourPlot of the proposed linear model 

Space 

𝜃
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Figure 16: ContourPlot of the proposed non-linear model obtained from revising 

Mualem model 

 

Figure 17: ContourPlot of the proposed non-linear model obtained from revising 

Brooks and Corey model 

Space 

Space 

𝜃
 

𝜃
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Figure 18: Density Plot of the proposed linear model 

 

Figure 19: Density Plot of the proposed non-linear model obtained from revising 

Mualem model 
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Space 

𝜃
 

𝜃
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Figure 20: Density Plot of the proposed non-linear model obtained from revising Brooks 

and Corey model 

Simulation runs using the proposed unsaturated hydraulic conductivity model combined with 

Richards’ equation yielded results that are presented in Figure 12, Figure 15, and Figure 18 

above. The numerical solution shows an evolution of water content with depth into the soil 

volume. Water content is decreasing as expected, the ContourPlot and Density plot show how 

the water content decreases in time and space. Water content is high close to the surface and 

low towards the lower boundary. Therefore the results are realistic for the considered soil 

volume. 

The proposed linear and non-linear models performed similarly. Although there is a slight 

difference in solutions, models were able to produce valid results. The performance of the 

revised Mualem model and the proposed models is very close. Revised Brooks and Corey 

model also show same performance at early to mid-simulation time, however at late simulation 

time water is distributed in a wave-like form.   

Space 

𝜃
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CONCLUSION 

The purpose of this thesis was to model subsurface water flow in the unsaturated zone using 

selected pre-existing non-linear models and a proposed linear model. A volume of unsaturated 

soil with characteristic soil hydraulic properties was considered to address the afore-mentioned 

purpose. Incorporation of pre-existing unsaturated hydraulic conductivity models in Richards’ 

equation yielded highly non-linear models that required numerical analysis. Application of the 

proposed linear unsaturated hydraulic conductivity model to Richards’ equation resulted in a 

linearized Richards’ equation which is easy to solve both numerically and analytically. The 

exact solution of linearized Richards’ equation obtained using Laplace transform and Green’s 

function is valid. Therefore, if parametric soil hydraulic properties are available a system can 

be solved without a computer program. 

Numerical analysis was performed for all models using two numerical approximation methods 

for more reliable results. The stability of resultant solutions of linearized Richards’ equation 

tested using the Fourier expansion stability analysis method, the equation is stable for both 

approximation methods provided the required conditions are met. 

Numerical simulations were obtained for all models and the results showed that for a vertical 

water flow soil water content evolves with depth. Non-linear showed poor performance and 

the resultant numerical solutions were not realistic. To expand, simulations showed that there 

is an increase in water content with depth which is not realistic. Water content is expected to 

decline with depth due to the concept of water retention. Revision of these models yielded 

results that were found to be more realistic. The results corresponded with the results obtained 

using a linear model. It can be concluded that the linear model is valid provided the assumptions 

are met. Therefore, this model can be used for modelling flow in local soils as long as the 

required conditions are met. Moreover, this is not a universal model and applying it in soils 

with hydraulic parameters that do not correspond with the ones assumed may yield unreliable 

results. 
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