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SUMMARY 

There are ongoing concerns about educational institutions not empowering learners 

with the knowledge, skills, and dispositions needed for school achievement, lifelong 

learning, and the workplace of the new millennium. In particular, South African 

learners have performed poorly in recent national and international assessments of 

mathematical proficiency. As a result, the Department of Basic Education has 

asserted the importance of enhancing the quality of Mathematics teaching and 

learning. Enhancing the ability to teach Mathematics has the potential to improve 

educational outcomes, as well as increase future employment and higher education 

opportunities for young South Africans. 

The poor Mathematics results point to the need to enhance, among other things, 

learners’ metacognitive awareness. Metacognitive awareness entails the knowledge 

and regulation of one’s cognitive processes. Enhancing metacognition could not only 

support learners in solving mathematical problems, and so improve mathematical 

achievement, but could also enhance productive and lifelong learning in learners. 

Fostering metacognitive awareness within Mathematics learners involves first 

fostering metacognitive awareness in Mathematics teachers, who are responsible for 

facilitating quality Mathematics teaching and learning. However, research suggests 

that teachers generally do not teach or model metacognitive awareness to their 

learners, or display metacognitive adaptive competence in their own teaching 

practice.  

The purpose of the study was to determine the level of metacognitive awareness  

of Mathematics pre-service teachers at a Higher Education Institution. Framed within 

a post-positivist/interpretivist paradigm, a mainly quantitative research approach with 

a minor qualitative enquiry informed the study. The Metacognitive Awareness 

Inventory (MAI) was distributed to fourth-year Mathematics pre-service teachers  

at a South African Higher Education Institution in order to determine their 

metacognitive awareness regarding Knowledge of cognition (comprising  

of Declarative knowledge, Procedural knowledge, and Conditional knowledge) and 

Regulation of cognition (comprising of Planning, Information management, 

Monitoring, Debugging, and Evaluation). 
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To enrich the findings of the quantitative analysis, the qualitative data generated 

from a think-aloud problem-solving session—where the pre-service teachers 

recorded their thought processes whilst solving a problem—was analysed to 

determine the extent to which their reported metacognitive awareness translated into 

successfully solving a Mathematics problem. In the quantitative findings on  

the MAI, the pre-service teachers reported a moderately high level of  

metacognitive awareness; in addition, they reported a higher level of metacognitive 

knowledge (Knowledge of cognition) than of metacognitive skills (Regulation of 

cognition). Findings from the think-aloud problem-solving session, meanwhile, point 

to an inadequate level of metacognitive awareness, indicating a gap between what 

the pre-service teachers report to do in the learning and problem solving of 

Mathematics and what they can actually do in a problem-solving context. There is 

historical precedent for this gap, as noted in the scholarship. 

The close of the study highlights the need to enhance the metacognitive awareness 

and reflective practice of these Mathematics pre-service teachers by enhancing their 

metacognitive skills—Monitoring, Debugging, and Evaluation—and enhancing their 

problem-solving skills. It is further recommended that reflective problem-solving 

opportunities built around complex, novel problems be incorporated into 

Mathematics modules in teacher training, to facilitate prolonged and deliberate 

reflection. More broadly, it recommends that metacognitive reflective and problem-

solving opportunities are provided for novice and underqualified teachers. 

Such opportunities will aid prospective and current Mathematics teachers to become 

mathematically proficient and metacognitively aware themselves, to deal with novel 

scenarios in Mathematics and their teaching practice and to translate this 

metacognitive adaptive competence for their learners. 

Key words: metacognitive awareness, mathematical proficiency, productive learning, Mathematics 

achievement, Knowledge of cognition, Regulation of cognition, Metacognitive Awareness Inventory, 

mathematical achievement, adaptive competence 
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OPSOMMING  
 

Kommer bestaan dat opvoedkundige instellings nie daarin slaag om leerders te 

bemagtig met die kennis, vaardighede en gesindhede wat nodig is vir skoolprestasie, 

lewenslange leer, en die werksomgewing van die nuwe millennium.   

In die besonder, Suid-Afrikaanse leerders het swak presteer in onlangse nasionale en 

internasionale assessering van wiskundige vaardigheid. As gevolg hiervan, het die 

Departement van Basiese Onderwys die belangrikheid van die verbetering van die 

gehalte van wiskunde onderrig en leer daar gestel. Die verbetering van die vermoë om 

wiskunde te onderrig, het die potensiaal om opvoedkundige uitkomste te verbeter, sowel 

as om toekomstige werks en Hoër Onderwysgeleenthede vir jong Suid-Afrikaners te 

verhoog. 

Hierdie swak wiskunde resultate dui op die nodigheid om, onder andere, metakognitiewe 

bewustheid by leerders te verbeter. Metakognitiewe bewustheid behels die kennis en 

regulering van ‘n persoon se denkprosesse. Die verbetering van metakognisie kan nie 

net leerders in die oplossing van wiskundeprobleme ondersteun, en so wiskunde 

prestasie te verbeter nie, maar kan ook produktiewe en lewenslange leer by leerders 

bevorder. Bevordering van metakognitiewe bewustheid in wiskundeleerders behels 

eerstens die bevordering van metakognitiewe bewustheid in wiskundeonderwysers, wat 

verantwoordelik is vir die fasilitering van gehalte wiskundeonderrig en leer. Navorsing 

dui egter daarop dat onderwysers oor die algemeen nie metakognitiewe bewustheid 

onderrig of modelleer aan hul leerders nie, of metakognitiewe aanpasbare  bevoegdheid 

toon in hul eie onderrigpraktyk nie. 

Die doel van die studie was om die vlak van metakognitiewe bewustheid van 

voornemende wiskundeonderwysers by 'n hoëronderwysinstelling te bepaal. Geraam 

binne 'n post-positivistiese/interpretivistiese paradigm, ‘n hoofsaaklik kwantitatiewe 

navorsingsbenadering met 'n mindere kwalitatiewe ondersoek het die studie 

toegelig. Die Metakognitiewe Bewustheidheidsvraelys (MAI) is toegedien aan die 

voornemende vierdejaar-wiskundeonderwysers by 'n Suid-Afrikaanse Hoër 

Onderwysinstelling om hul metakognitiewe bewustheid met betrekking tot Kennis van 

Kognisie (bestaande uit Verklarende kennis, Prosedurele kennis, en Voorwaardelike 

kennis) en Regulering van Kognisie (bestaande uit Beplanning, 

Inligtingverwerkingsbestuur, Monitering, Remediëring, en Evaluering) te bepaal. 
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Om die bevindinge van hierdie kwantitatiewe analise te verryk, is kwalitatiewe data, 

gegenereer uit 'n ‘Think Aloud’’ probleemoplossingssessie, ontleed—waar voornemende 

onderwysers hul denkprosesse aanteken tydens die oplossing van 'n probleem—om vas 

te stel in watter mate die voornemende wiskundeonderwysers se gerapporteerde 

metakognitiewe bewustheid neerslag vind in die suksesvolle oplossing van 'n 

wiskundeprobleem. 

In die kwantitatiewe bevindinge op die MAI, rapporteer die voornemende onderwysers 'n 

matig hoë vlak van metakognitiewe bewustheid en, bykomend, hoër metakognitiewe 

selfkennis (Kennis van Kognisie) as metakognitiewe vaardighede (Regulering van 

Kognisie). Bevindinge van die ‘’Think Aloud’’ probleemoplossingssessie, egter, wys na 'n 

onvoldoende vlak van metakognitiewe bewustheid, wat dui op 'n gaping tussen wat die 

voornemende wiskundeonderwysers rapporteer om te doen in die leer en 

probleemoplossing van Wiskunde en wat hulle in werklikheid kan doen in ‘n 

probleemoplossingskonteks. Daar is historiese presedent vir hierdie gaping, soos 

aangedui in die literatuur.  

Die samevatting van die studie beklemtoon die noodsaaklikheid om die metakognitiewe 

bewustheid en reflektiewe praktyk van hierdie voornemende wiskundeonderwysers te 

verbeter deur die verbetering van hul metakognitiewe vaardighede, Monitering, 

Remediëring en Evaluering, en die verbetering van hul probleemoplossingsvaardighede.  

Vervolglik word aanbeveel dat daar in Wiskunde modules in onderwysopleiding, 

reflektiewe probleemoplossingsgeleenthede met komplekse, outentieke probleme 

ingebou word, wat die geleentheid bied vir langdurige en doelbewuste reflektering.  

‘n Verder algemene aanbeveling is dat metakognitiewe reflektiewe en 

probleemoplossingsgeleenthede vir beginner en ondergekwalifiseerde onderwysers 

daargestel word. Sulke geleenthede sal bydra om voornemende en huidige 

wiskundeonderwysers wiskundigvaardig en metakognitief bewus te maak, om dus nuwe 

scenario's in Wiskunde en hul onderwyspraktyk te kan hanteer, en om sodoende hierdie 

metakognitiewe aanpasbare bevoegdheid aan hul leerders oor te dra.  
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  CHAPTER 1 

INTRODUCTION 

1.1 ORIENTATION    

Due to globalisation, technological advances, the information explosion, and the socio-

economic challenges of the new millennium, lifelong learning skills and an adaptive 

approach to situations are necessary for dealing with the novel, complex problems of 

this information-rich world (Cornford, 2000: 1; Timperley, 2011: 3). To adapt and 

succeed in the new millennium, it is vital that learners1 and future leaders in politics, 

technology, business, and education can solve real-life problems effectively and 

efficiently. Solving these real-life problems requires a higher level of skills and 

knowledge. Consequently, there is a call for adaptive skills to enable the transfer of 

knowledge and skills to novel situations (Bransford, Brown & Cocking, 2000: 18, 19; 

Hartman, 2001a: 34; Lin, Schwartz & Hatano, 2005: 245–255). In the South African 

context, these generic skills for learners are mentioned in various documents: the 

Curriculum and Assessment Policy Statement (CAPS) (Department of Basic 

Education [DBE], 2010b: 8–9), the Minimum Requirements for Teacher Education 

Qualifications (MRTEQ) (Department of Higher Education and  

Training [DHET], 2015: 64), and the South African Qualifications Authority (SAQA) 

documents (South African Qualifications Authority [SAQA], 2012: 10) (see  

Section 1.2). 

However, concerns are raised by politicians and educators that institutions are failing 

to adequately empower and support learners in acquiring the knowledge, skills, and 

disposition crucial for life beyond schooling and in the workplace (Centre for 

Development and Enterprise [CDE], 2013: 7–12; Cornford, 2000: 1–4;  

2002: 357–358). The challenge, therefore, lies in making learning more authentic, 

useful, and contextualised to equip learners to solve the problems they are confronted 

with, both in and beyond schooling. Adaptive competence must be nurtured for dealing 

with this fast-evolving world and for applying existing knowledge to new scenarios and 

problems. In Education, the goal is to develop learners into lifelong metacognitive 

                                                           
1 Throughout the study, the term ‘learners’ is used to describe school learners and learners generally, while 
the term ‘student’ is used to describe those in higher education. 
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learners (Cornford, 2000: 5, 10; De Corte, 2010: 46; Desoete, 2007: 22;  

Hartman, 2001a: 34; Organisation for Economic Co-operation and  

Development [OECD], 2016a: 3; see Section 2.3.4.2).  

Teachers are the ones expected to empower their learners with the disposition, 

knowledge and skills to succeed at school and in the workplace. Metacognitive 

reflective teachers possess adaptive competence to adapt and improve their 

performance in the classroom and within their profession. It is, therefore, important to 

cultivate reflective practices and adaptive skills in higher education, in addition to 

supporting the continuous professional development of teachers (Cornford, 2000: 7; 

Jindal-Snape & Holmes, 2009: 219; Larrivee, 2008: 341). Metacognition underpins the 

development of adaptive competence (Duffy, 2005: 300; Duffy, Miller, Parsons & 

Meloth, 2009: 241–242; Lin et al., 2005: 245; Timperley, 2011: 18) and  

facilitates the transfer of knowledge into skills to deal with novel scenarios (see 

Sections 1.3; 2.1; 2.3.1.2; 2.3.4.2). 

Teachers are envisaged to be metacognitive reflective professionals who translate 

their knowledge and skills for their learners by modelling an awareness of cognitive 

processes and how to regulate these. Teachers, by deliberately, consciously, and 

habitually reflecting on their own feelings, thoughts, and actions in novel and problem-

solving situations, empower learners to develop lifelong adaptive metacognitive skills. 

Consequently, teachers’ metacognitive awareness—as adaptive competence and a 

key component in quality teaching and learning—is the focus of the study.  

1.2 BACKGROUND 

The 2013 Organisation for Economic Co-operation and Development (OECD) Country 

Report on South Africa states that poor educational outcomes remain a critical 

problem, contributing to the high unemployment rate of 51% in the last quarter of 2012 

among South African youth (OECD, 2013: 20). Moreover, in 2016, one third of young 

South Africans between ages 15 and 29 were identified as “Neither Employed nor in 

Education or Training” (NEET) whilst the population-wide unemployment figure  

was 26.5% (OECD, 2016b: 1).   

This crisis in poor educational outcomes is additionally reflected in the continuing poor 

performance by South African learners in English, Mathematics, and Science in 
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international and national tests. The quality of basic and vocational education must be 

improved to produce skills which are required in the labour market (CDE, 2013: 10; 

OECD, 2013: 2). Mathematics teaching and learning especially is a key locus for 

concern, as Mathematics provides access to study and employment in scientific, 

medical, engineering, technological, and business professions, whilst basic numeracy 

skills are a requirement in most vocations and informal enterprises (CDE, 2013: 12; 

DBE, 2010a: 17).  

Internationally, the Trends in International Mathematics and Science Study (TIMSS) 

—an indicator of achievement in Mathematics and Science—ranked South Africa the 

lowest of the participating countries in their 2003 survey, with its score of 264 points 

for Grade 8 Mathematics well below the international average of 466 (National Centre 

for Education Statistics [NCES], 2004: 5, 7). Subsequently, in the 2011 TIMSS, South 

Africa obtained a score of 352, below the centre-point score of 500 (Mullis, Martin,  

Foy & Arora, 2011: 42–43, 470) and worse than any other middle-income country  

(CDE, 2013: 3). Finally, the 2015 TIMSS indicated an increase to a score of 372 

(Trends in International Mathematics and Science Study South Africa  

[TIMSSSA], 2015: 6). It is worth noting that in 2011 and 2015, Grade 9 learners in 

South Africa, Botswana, and Honduras competed in the TIMSS against Grade 8 

learners in the other countries (CDE, 2013: 4).  

In 2014, the South African benchmarked results of Grade 9 Mathematics learners were 

well below expectations (DBE, 2015: 3). The Annual National Assessments (ANA) 

revealed less than 5 per cent of South African learners achieving 40 per cent or more 

in Mathematics in 2012 (CDE, 2013: 6). In her address following the release of  

the 2014 ANA results, the Minister of Basic Education, Ms Angie Motshekga, stated 

that South African learners in Grades 4, 6, and 9 displayed poor problem-solving skills 

in English, Mathematics, and Science and suggested that logic skills were not being 

engaged or taught sufficiently in these core subjects (Motshekga, 2014: 2). This point 

is raised in the 2011 CAPS document, which stipulated that the aims of teaching 

should not be limited to addressing the “how” of a matter, but should also cover the 

“when” and “why” in solving problems to help develop problem-solving and cognitive 

skills. This will help facilitate understanding and deeper learning, consequently 

equipping learners to use their learning in education and work-life (DBE, 2011a: 8). 
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Ultimately, this observation translates to the teaching of metacognition, which involves 

reflection on the how, when, and why of strategy use (see Section 2.2.4.1). 

Further evidence of challenges facing Mathematics teaching and learning, and thus 

further justification for nurturing metacognition, can be found in South African learners’ 

Grade 12 results. The low pass rate of Grade 12 Mathematics learners is alarming, as 

Mathematics is a prerequisite to university study in many core professions  

(CDE, 2013: 6). The National Senior Certificate (NSC) Examination Report 2016 

indicates a slow improvement in Mathematics marks and the NSC pass rate  

from 2015–2016 (DBE, 2016b: 51–53). However, the overall declining trend from 2013 

to 2016 is a concern.  

 

Figure 1.1: NSC Mathematics performance trends 2013–16 (DBE, 2016a: 151). 

The percentage of those candidates who passed Mathematics at 40 per cent has 

decreased from 40.5 % in 2013 to 33.5 % in 2016 (DBE, 2016a: 151). Importantly, the 

diagnostic report highlighted poor higher-order thinking skills among learners. 

Learners had trouble answering questions requiring higher-order thinking (i.e. 

analytical, evaluative, and problem-solving questions). This suggests a deficit of 

learning opportunities in problem-solving and extension exercises, presupposing a 

sound comprehension of basic concepts (DBE, 2016a: 5). 
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In the South African NSC examinations, expectations are set that learners should be 

able to answer questions on the higher-order thinking level, which in the Mathematics 

examination paper is proposed to include 15% problem solving and 30% complex 

procedures (DBE, 2011a: 53). Based on the low level of achievement among NSC 

Mathematics candidates from 2013–2016 and the ANA results in 2014 for Grade 9 

Mathematics learners, it appears there is a general inability among South African 

learners to make effective use of these desired higher-order thinking skills, particularly 

in Mathematics. It can be argued, therefore, that in South Africa these higher-order 

skills are not being taught or developed sufficiently in lower grades, nor built upon in 

secondary school. Higher-order thinking skills—good problem-solving skills in 

particular—are a significant contributor to good performance in Mathematics (see 

Sections 1.3; 2.2.2; 2.3.2; 2.3.3; 2.3.4.2). Because successful problem solving is 

central to mathematical proficiency, the aim of Mathematics education is to develop 

competent problem solvers (see Section 2.3.4).  

Moreover, this low level of achievement of Mathematics candidates at secondary 

school indicates South African education is not producing the skills needed for the 

current job market (OECD, 2013: 2). This suggests that South Africa will struggle to 

satisfy the workplace demands for employees with skills related to Mathematics and 

Science in future, particularly in scientific, technological, and business professions 

(OECD, 2013: 8, 9). Consequently, raising achievement in Mathematics by improving 

the pass rate in lower grades, as well as increasing the number of Grade 12 learners 

achieving high marks in Mathematics among other key subjects, is a key concern  

and goal emphasised by various stakeholders, including the government  

(DBE, 2015: 2, 31; OECD, 2013: 2, 8–9).   

In 2010, the Department of Basic Education (DBE) identified enhancing Mathematics 

results as a major priority in their draft education document—Action Plan to 2014: 

Towards the Realisation of Schooling 2025—to improve the quality of education and 

learning (DBE, 2010a: 5–6). Six of the eight goals focused on improving Mathematics 

competency and achievement (Goals 1, 2, 3, 5, 8, and 9), indicating concern about 

the standard of Mathematics learning. Unfortunately, the targets set for the senior 

phase by the DBE in 2010 were not met, with Mathematics in Grade 9 specifically not 

showing any improvement (DBE, 2014: 10). 
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Consequently, in the DBE’s latest education document, Action Plan to 2019: Towards 

the Realisation of Schooling 2030 (DBE, 2015: 3), these goals were reinstated, with 

Goal 9 a key priority and the focus shifted towards improving the performance of  

Grade 9 Mathematics learners. There is also a renewed focus on teaching and 

professional development, as one of the five priority goals is to enhance teachers’ 

practice by improving “the professionalism, teaching skills, subject knowledge  

and computer literacy of teachers throughout their entire careers” (Goal 16)  

(DBE, 2015: 3).  

Quality learning and teaching, especially in Mathematics, is therefore a key 

educational goal in South Africa. However, it has been perceived that teachers of 

Mathematics in South African schools have a low standing within the global context 

(CDE, 2013: 3). Underperforming teachers in South Africa have shown a tendency to 

overestimate their own mathematical proficiency and their learners’ performance 

relative to the curriculum, as well as underestimating their own learning and curricular 

deficits (Spaull, 2013: 21). As highlighted by Spaull (2013: 21), 89% of Grade 9 

teachers in South Africa indicated in the 2011 TIMSS that they felt “very confident” 

teaching Mathematics, a sentiment undermined by the poor 2014 ANA results, whilst 

paradoxically, teachers in the best-performing countries were more moderate when 

estimating their own proficiency: for instance, in Finland just 69% felt very confident 

and in Singapore only 59% expressed this sentiment (Mullis et al., 2011: 314–315).  

While such findings paint a challenging picture of overall national performance in 

Mathematics, it is important to emphasise that there are very capable and gifted 

Mathematics teachers and learners throughout South Africa, which is exemplified  

by a number of schools achieving 100% pass rates in recent years  

(DBE, 2016c: 2, 5–10). Nonetheless, Mathematics teachers in general are expected 

to raise the standard of Mathematics teaching and learning. This necessitates 

enhancing teachers’ skills in numeracy and Mathematics (CDE, 2013: 11) and their 

abilities to deal with practical problems in the classroom relating to subject matter and 

classroom management. In addition, using practical real-life problems makes learning 

more authentic for learners and better prepares them for the demands of the 

workplace. Moreover, teachers are expected to manage classrooms, make decisions, 

and solve problems daily: all activities which entail metacognitive adaptive 

competence (Duffy, 2005: 300; Duffy et al., 2009: 241–242; Lin et al., 2005: 245). The 
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extent to which teachers are metacognitively aware of their own teaching abilities and 

learning deficits—and, moreover, can teach with and for metacognition—remains 

questionable (Duffy et al., 2009: 244; Kohen & Kramarski, 2012: 2; see Section 2.3.5). 

Consequently, this carries significant implications for the training of pre-service and in-

service teachers, who must consciously and deliberately foster and develop these 

adaptive skills in their learners’ learning and problem solving (Azevedo, 2009: 93; 

Cornford, 2002: 366; Duffy et al., 2009: 241–242; Kohen & Kramarski, 2012: 7; Van 

Der Walt & Maree, 2007: 238).  

The Minimum Requirements for Teacher Education Qualifications (MRTEQ), which 

are the national standards used for graduate teachers, set expectations for teachers 

to be knowledgeable about their subject, possess good problem-solving skills, and be 

metacognitive reflective in their practice (DHET, 2015: 64; see Section 1.3). The basic 

competencies required of newly qualified teachers include knowing how to teach their 

subject, knowing what effective learning is and how to mediate it, identifying learning 

or social problems, and managing and creating a conducive classroom environment. 

In addition, beginner teachers should be able to reflect critically “on their own practice 

to constantly improve it and adapt it to evolving circumstances” (DHET, 2015: 64). This 

expectation for teachers to be adaptive and reflective informs good teaching practice 

(see Section 2.3.5). Furthermore, it is expected that pre-service teachers should be 

able to act on a certain level requiring them to solve problems and manage their 

learning successfully (SAQA, 2012: 10). Teachers are therefore expected to be 

metacognitively aware themselves and to teach these skills to their learners, as 

learners can hardly acquire knowledge or skills at school that their teachers do not 

already possess (Barber & Mourshed, 2007: 16). This requires metacognition as an 

adaptive competence—enabling teachers to reflect on their personal abilities and take 

appropriate action—to be fostered in pre-service and in-service programs (see 

Sections 2.3.5; 2.3.5.1). However, it is worth noting that half of the Council of Higher 

Education’s evaluated in-service training programmes, primarily in Mathematics, were 

deemed inadequate in developing teachers’ abilities to solve practical problems in the 

classroom (DBE, 2015: 35).  

Continuing professional development—and hence lifelong learning—should enhance 

and develop teachers’ skills to reflect and improve upon their practice. It should serve 

to develop awareness and willingness in teachers to reflect upon their own strengths 
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and weaknesses; in short, to be metacognitively aware (see Section 2.3.5). Teachers’ 

evaluations of themselves, i.e. their metacognitive awareness, are important for 

generating improvement and change. Self-assessment of one’s abilities, however 

minimally performed, may inform policy and actions (DBE, 2015: 34). Such self-

assessment demonstrates a personal willingness to improve on practice as a 

professional, as the individual takes control of their own learning and fosters  

greater autonomy, which is essential to developing adaptive competence  

(Bransford et al., 2000: 18; Timperley, 2011: 8). However, as noted above, the extent 

to which teachers are metacognitively aware and able to teach with  

and for metacognition remains questionable both internationally and nationally  

(Duffy et al., 2009: 244; Grossman, 2009: 17; see Section 2.3.5) and will consequently 

be explored in the study. 

The 2007 McKinsey educational report states that “the only way to improve the level 

of the outcomes that must be demonstrated is to improve instruction;  

therefore, teachers should be skilled to become effective instructors”  

(Barber & Mourshed, 2007: 26). The content knowledge possessed by teachers is a 

necessity, but alone is not a sufficient basis for successful teaching and learning 

(Spaull, 2013: 16). Adaptive experts are knowledgeable about their subject content 

and how best to teach and adapt this content, marking them as lifelong adaptive 

learners (Timperley, 2011: 6–7). Teachers must be effective facilitators of knowledge 

acquisition through an array of methods and approaches. However, the meeting of 

targets to improve learner achievement and teacher skills, as stated in the priority 

goals of the latest Action Plan, can only be envisaged within the larger context of 

education in South Africa.   

The broader national education context and outcomes are impacted by numerous 

socio-economic factors and challenges, including poverty (OECD, 2013: 2;  

Spaull, 2015: 51). Such factors lie beyond the scope of the investigation. The study 

focuses on another vital aspect of enhancing teaching quality in Mathematics, which 

is the enhancement of teachers’ metacognitive awareness.  

In my experience as a teacher across both secondary and higher education contexts, 

I observed a number of trends in Mathematics teaching and learning firsthand.  Pre-

service teachers find it difficult to reflect on their teaching practicums, and also find it 
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challenging to explain or elaborate upon how they would solve mathematical 

problems; instead, they prefer to teach solving routine problems in a lecture style. 

Additionally, as a presenter of in-service teacher training sessions, I noticed teachers 

were unskilled in using different problem-solving methods and strategies. In my own 

classroom teaching and that of my colleagues, emphasis on reaching performance 

targets and completing a time-demanding, difficult school Mathematics syllabus often 

lead us to opt for step-by-step algorithmic routine problems, rather than spending time 

teaching learners how to think about solving problems. These observations led to 

questions about the teaching and learning of Mathematics, and whether pre-service 

teachers are able to reflect adaptively on how they learn and teach Mathematics.  

In the South African context, research on metacognition in Mathematics teaching and 

learning is not well-published, as noted by Van Der Walt, Maree and Ellis (2008: 231). 

To the best of my knowledge, no previous study in a South African context has 

investigated the metacognitive awareness of Mathematics didactics students (fourth-

year pre-service teachers) and additionally their metacognitive awareness in a 

problem-solving context. The study, therefore, contributes to addressing this lack in 

national research and provides recommendations to the educational community to 

enhance the metacognitive awareness of teachers and by inference learners. 

Before describing the problem statement, research questions, and research design of 

the study, it is important to first establish the role of metacognition in teaching and 

learning.  

1.3 METACOGNITION IN TEACHING AND LEARNING 

Metacognition has been widely researched and defined in various ways by Sperling, 

Howard, Staley and DuBois (2004: 118) among others (see Section 2.2.3). 

Metacognition generally refers to the ability to reflect upon, understand, and regulate 

one’s thinking and learning processes, an understanding of the term dating back to 

Flavell’s earliest definition (Flavell, 1976: 232).  

Metacognition is operationalised by Flavell (1979: 909) into four categories: 

metacognitive knowledge, metacognitive experience, metacognitive skills and 

strategies, and metacognitive goals. Metacognition, in this study, distinguishes 

between two components, namely Knowledge of cognition and Regulation of cognition 
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(see Section 2.2.4). It is also important to differentiate between metacognitive 

knowledge (which refers to the what, how, when, and why of strategy use in learning 

and problem solving) and metacognitive skills (which refers to regulating strategy use 

in learning and problem solving) (see Sections 2.2.4.1; 2.2.4.3).   

Metacognition is considered significant in improving learners’ learning processes and 

consequently in demonstrating learning outcomes and expectations. The  

aim of education is to transform learners into lifelong metacognitive learners  

(Cornford, 2000: 10; De Corte, 2007: 22; Hartman, 2001a: 34). Productive learning is 

facilitated by metacognition as an adaptive competence, which enables people to 

transfer and use their learning, knowledge, and skills in novel scenarios across 

different domains and contexts (Bransford et al., 2000: 18, 19; Hartman, 2001a: 34; 

Lin et al., 2005: 244–245; see Sections 2.3.1.2; 2.3.4.2). 

Educational researchers and educators accept metacognition as a key element of 

higher-order thinking and assert the importance of acquiring and teaching higher-order 

thinking skills (i.e. metacognitive, critical, and problem-solving skills) (Akyol & 

Garrison, 2011: 184; Anderson & Krathwohl, 2001: 57; Desoete, 2007: 718;  

Pugalee, 2001: 237; Schoenfeld, 2007: 60; Van Der Stel, Veenman, Deelen & 

Haenen, 2010: 219; Van Der Walt & Maree, 2007: 237; see Section 2.2.2). Research 

has indicated that enhancing learner metacognition results in successful learning and 

academic achievement in various domains, including Mathematics (Sperling, 

Richmond, Ramsay & Klapp, 2012: 1; see Sections 2.3.2; 2.3.3). Internationally, the 

National Research Council report, How People Learn: Brain, Mind, Experience and 

School, states that metacognition supports active learning, especially when individuals 

take control of their learning through reflection, setting goals, and monitoring progress 

to achieve their goals (Bransford et al., 2000: 18). 

In Mathematics, good problem-solving abilities are a significant contributor  

to good performance in Mathematics (DBE, 2010b: 8–9; 2011a: 8, 53;  

Schoenfeld, 1992: 338; 2007: 60; see Section 2.3.4.1). The importance of teaching 

learners how to solve problems successfully finds ample support in scholarly literature, 

the South African policy documents, and reports on in the poor results obtained by 

South African learners in Mathematics. These all point to the need for teaching 

problem solving. Metacognition is key in successful problem solving, along with other 
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attributes of mathematical proficiency such as affect, heuristics, and content 

knowledge (see Section 2.3.4.2), and facilitates the transfer from one phase to another 

in the four-phase problem-solving framework (Carlson & Bloom, 2005: 62–69; 

Pugalee, 2001: 239–243; see Section 2.3.4.4). Metacognition is also a key aspect of 

productive learning in Mathematics (see Section 2.3.4.3), with De Corte (2007: 22) 

asserting that metacognition as adaptive competence is the ultimate goal of 

Mathematics education.  

It therefore follows that an individual’s metacognitive awareness of his or her own 

thinking processes enhances productive learning and improves achievement 

(Schellings, Van Hout-Wolters, Veenman & Meijer, 2013: 980; White, Frederiksen & 

Collins, 2009: 178). Performance is enhanced by metacognitive knowledge  

(Pintrich, 2002: 225) and metacognitive skills (Van Der Stel & Veenman, 2010: 224; 

Van Der Stel et al., 2010: 228), and consequently the enhancement of metacognition 

in learners could improve academic achievement (Larkin, 2009: 149). This indicates 

that learners’ metacognitive knowledge (see Section 2.2.4.1) and metacognitive skills 

(see Section 2.2.4.3) could and should be enhanced (see Sections 2.4.1–2.4.3). 

Because metacognition can be enhanced, the premise is that metacognition should 

be taught (Desoete, 2008: 436; Hartman, 2001b: 150; White et al., 2009: 178) as the 

learning of metacognitive and cognitive skills enables individuals to process 

information effectively, apply knowledge and skills to new situations, and  

become lifelong learners (Cornford, 2000: 5; 2002: 357–358; Schraw, Crippen & 

Hartley, 2006: 116–117). 

In teaching, metacognition is well-recognised as a means of improving  

teachers’ skills and reflective practices, thereby improving their teaching  

practice (Duffy, 2005: 300–305; Jindal-Snape & Holmes, 2009: 219; Kohen &  

Kramarski, 2012: 7; see Section 2.3.5). Metacognition is therefore a key element in 

pedagogy, particularly the effective teaching of Mathematics. Moreover,  

Mathematics teachers should promote metacognition and self-regulation  

(Van Der Walt et al., 2008: 231). The third major finding of the National Research 

Council (Bransford et al., 2000: 21) stressed the development of metacognition and 

self-regulated learning as a means for teaching professionals to be effective and 

autonomous in their teaching practice and learning (Timperley, 2011: 8). 
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This research pertains primarily to the metacognition of school learners. Whilst  

South African research on the metacognitive awareness of undergraduate 

Mathematics teachers, as noted above, is scarce, a noteworthy study by  

Van Der Walt (2014: 1–22) investigated the level of metacognitive awareness and  

self-directedness in the Mathematics learning of prospective second- and third-year 

intermediate and senior phase Mathematics teachers. Although these undergraduate 

teachers reported a high level of metacognitive awareness in the study, it  

did not correlate with their learning achievement. It is suggested by  

Van Der Walt (2014: 1–22) that undergraduate Mathematics teachers, when 

assessing their own learning behaviour, might under- or over-estimate their level of 

metacognitive awareness or self-directedness. 

Similarly, college students may be metacognitively aware of monitoring their learning 

and problem solving, but may not seem as successful in regulating learning and 

problem solving (Bjork, Dunlosky & Kornell, 2013: 417; Koriat, 2012: 297). These pre-

service teachers might have knowledge of effective learning behaviour, yet fail to 

implement this knowledge in learning or problem solving (see Section 5.4.1). 

Additional research has indicated that undergraduate students do not easily reflect 

(Grossman, 2009: 17; Jindal-Snape & Holmes, 2009: 219). Metacognitive reflection is 

difficult for pre-service and in-service teachers in particular because of situational 

factors (Duffy et al., 2009: 244; Kohen & Kramarski, 2012: 2, 6). Adaptive 

metacognition is key in dealing with these unique challenges of classroom variability 

(Lin et al., 2005: 245). Unfortunately, metacognition is not generally associated with 

teachers’ professional development or pre-service teacher education (Duffy, 2005: 

300, 308; see Sections 2.3.5; 2.3.5.1). 

The abovementioned carries implications for teacher training and professional 

development, as metacognition is acquired with intentional, deliberate instruction and 

modelling over a prolonged period of practice and through conscious implementation 

(see Section 2.3.5.1). The premise for enhancing teachers’ metacognition is that 

teachers will translate their own metacognitive knowledge and skills to their learners. 

The question of whether the development of metacognition takes place during a 

teaching and learning situation must be asked. This raises yet another question: Are 
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pre-service Mathematics teachers aware of metacognition, and more specifically, what 

is their awareness thereof in a problem-solving context? 

1.4 PROBLEM STATEMENT AND PURPOSE  

As indicated in Section 1.2, it is evident from the poor performance of South African 

Mathematics learners that there is incongruence between the expectations set for 

learners and the performance of those learners. As a result, there is cause for concern. 

The DBE has identified the enhancement of Mathematics results as a key priority in 

their draft Action Plan to improve the quality of teaching and learning in South Africa 

(DBE, 2010a: 5–6). In the latest Action Plan, the improvement of teachers’ skills is 

deemed integral to this undertaking, particularly on how to better teach Mathematics 

and solve problems (DBE, 2015: 3). 

Teacher competence in teaching Mathematics is a key factor in addressing poor 

learner performance. Metacognition is one of the four attributes of mathematical 

proficiency and productive learning in Mathematics and thus impacts achievement 

(see Section 1.3). Teachers are expected to demonstrate metacognitive awareness 

as adaptive competence in solving Mathematics problems, as part of reflection  

on their teaching practice and in managing their own learning (DHET 2015: 64;  

SAQA, 2012: 10; see Section 1.2). As such, teachers are expected to be 

metacognitively aware themselves and, moreover, to teach for metacognition and 

enhance learners’ metacognition, which in turn may lead to better academic 

achievement.  

Therefore, the question was posed whether the development of metacognition takes 

place during the teaching and learning situation. Ensuing from the notion that teachers 

have the potential to translate their metacognitive knowledge and metacognitive skills 

for their learners—consequently enhancing the Mathematics performance of South 

African learners—the purpose of the study was to investigate the level of 

metacognitive awareness of pre-service Mathematics teachers.   
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1.5 RESEARCH QUESTIONS  

Guided by the purpose statement provided above, the study investigated the following 

primary research question: What is the level of metacognitive awareness of pre-

service Mathematics teachers?  

To explore the primary research question, the following secondary research questions 

needed to be answered: 

Secondary research question 1: How is metacognitive awareness conceptualised?  

Secondary research question 2: What is the role of metacognitive awareness in 

Mathematics teaching and learning?   

Secondary research question 3: What is the level of metacognitive awareness of 

pre-service Mathematics teachers on the Metacognitive Awareness Inventory (MAI)? 

Secondary research question 4: What is the level of metacognitive awareness of 

pre-service Mathematics teachers in a problem-solving context? 

The research questions are operationalised as follows:  

• To review existing literature on the conceptualisation of metacognitive 

awareness; 

 

• To review existing literature on metacognitive awareness in Mathematics 

teaching and learning; 

 

• To measure and evaluate the level of metacognitive awareness of fourth-year 

pre-service Mathematics teachers quantitatively by using the MAI; 

 

• To explore qualitatively the level of metacognitive awareness of pre-service 

teachers in a mathematical problem-solving context; and 

 

• To provide recommendations based upon this research to the Mathematics 

Education community aimed at enhancing the level of metacognitive 

awareness of teachers. 
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Secondary research questions 1 and 2 entailed a literature review of existing 

scholarship. Aspects that needed to be explored were the conceptualisation of 

metacognition, the association between metacognition and learner achievement in 

Mathematics, the nature of Mathematics, aspects relating to the competent teaching 

and learning of Mathematics, the role of teachers’ metacognition in their teaching 

practice, and teaching to enhance metacognition.  

The quantitative secondary research question 3 employed a questionnaire,  

the Metacognitive Awareness Inventory (MAI) developed by Schraw and  

Dennison (1994), which was administered to pre-service Mathematics teachers to 

determine their level of metacognitive awareness. 

The qualitative secondary research question 4 involved an investigation into pre-

service Mathematics teachers’ metacognitive awareness during a think-aloud, 

problem-solving session in relation to a four-phase problem-solving framework. 

1.6 RESEARCH DESIGN 

As indicated above, a mainly quantitative approach was employed to explore 

secondary research question 3, whereas a qualitative approach was adopted for 

secondary research question 4, to enrich the findings of the third (see Section 3.3.2). 

In educational research, human behaviour is complex and context-bound.  

Creswell (2014: 2) asserts the usefulness of using both quantitative and qualitative 

methodologies in describing human behaviour. As metacognitive awareness is  

difficult to measure, multiple methods (on-line and off-line) are advocated  

(Desoete & Roeyers, 2006: 13; see Section 3.4.1), although a primarily quantitative 

approach is well-used in various studies (Schellings et al., 2013: 966), as was the case 

in the study. 

1.6.1 Population and sample 

The population included all fourth-year pre-service Mathematics teachers enrolled at 

higher education institutions in South Africa. A convenience purposive non-probability 

sample of pre-service Mathematics teachers at a specific higher education institution 

was selected. The sample was convenient since I was their lecturer at that stage. It 

was purposive as the specific sample consisted of participants with the relevant 
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attributes for the study, and it was a non-probability sample as no choice regarding 

individual participants was made; rather, the whole fourth-year pre-service 

Mathematics teacher cohort was invited to participate in the study (n = 41). 

1.6.2 Data collection methods and procedures 

As indicated above, data was collected using both quantitative and qualitative 

methodologies.  

In the quantitative part of the study, the MAI developed by Schraw and  

Dennison (1994) was administered to determine the level of metacognitive awareness 

of the pre-service teachers. It is a standardised questionnaire which measures  

the metacognitive awareness of adults and adolescents, and has been  

employed subsequently in various studies (Mevarech & Fridkin, 2006: 85–97;  

Sperling et al., 2004: 117–139; Van Der Walt, 2014: 9; Young & Fry, 2008: 1–10).  

The supporting qualitative study employed a think-aloud method, with the aim to 

assess and describe the pre-service teachers’ metacognitive awareness in a 

Mathematics problem-solving context (see Section 3.4.3.2). Think-aloud methods  

are a commonly accepted method of assessing a person’s thinking processes 

(Pugalee, 2004: 29) and have been effectively used to assess metacognition in various 

studies (Desoete, 2007: 705–718; Desoete & Roeyers, 2006: 13; Meijer, Veenman & 

Van Hout-Wolters, 2012: 600; Schellings et al., 2013: 967–968).  

During the data collection phase, the following steps were followed: 

A literature review was conducted using national and international sources to answer 

secondary research questions 1 and 2 on the conceptualisation of metacognitive 

awareness and its role in Mathematics teaching and learning, as well as to identify a 

standardised measuring instrument that could be employed for collecting the 

quantitative data (Leedy & Ormrod, 2013: 92). The identified MAI, adapted to a South 

African mathematical educational context, was translated into Afrikaans, as the  

study was conducted at a parallel-medium higher education institution (see  

Section 3.4.3.1.3). 

A pilot study was carried out using a convenient purposive sample of second-year pre-

service teachers (n = 57) at the same higher education institution where the main study 
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was conducted (see Sections 4.2.3.1). The pilot was undertaken to determine the 

validity and reliability of the adapted questionnaire translated into Afrikaans. The pilot 

group was representative of the sample in the main study, as both groups had been 

exposed to Mathematics Education instruction in their first year of study (see  

Section 3.4.3.1.3). 

Qualitative data for the main study was obtained from the fourth-year pre-service 

teachers’ (n = 41) written comments about their thinking processes during a 

Mathematics problem-solving session, prior to administering the MAI. Quantitative 

data for the main study was obtained by administering the MAI to the same purposive 

sample of fourth-year pre-service teachers (n = 41).  

1.6.3 Quality criteria 

Reliability in quantitative research refers to the consistency and dependability  

of an instrument to measure the same construct or concept over time  

(Leedy & Ormrod, 2013: 92; Tavakol & Dennick, 2011: 53). The degree of  

reliability in a measure depends on the employment of the results (Ary, Jacobs & 

Sorenson, 2010: 248). Cronbach’s alpha was used to determine the internal 

consistency of the questionnaire (see Section 3.4.3.3). The translated and piloted MAI 

was found to be highly reliable (α = 0.94) (see Section 4.2.3.1; Table 4.1). 

In the main study, a high degree of internal consistency (α = 0.89) was found for the 

MAI as instrument (see Section 4.2.3.2). Moreover, the two-factor model, Knowledge 

of cognition and Regulation of cognition, was strongly supported (r = 0.54, p < 0.05) 

(see Sections 3.4.3.1.3; 4.3.1). This corroborated with the findings on the MAI in 

Schraw and Dennison’s study (1994: 460–464) as well as in subsequent studies 

(Sperling et al., 2004: 124; see Sections 4.2.1; 4.2.2). 

Reliability is a necessary but not sufficient condition for validity. Validity refers  

to the extent to which the instrument measures what it is intended to measure  

(Leedy & Ormrod, 2013: 89) and the degree to which meaningful and useful 

interpretations are supported by evidence and theory. These inferences  

are drawn from a specific instrument measuring particular concepts and  

constructs for a particular purpose in a particular situation (Ary et al., 2010: 225, 235; 

Creswell, 2009: 149). The original MAI was developed and standardised to measure 
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the metacognitive awareness of adolescents and adults, and may be useful in  

planning metacognitive awareness training and identifying low monitoring skills 

(Schraw & Dennison, 1994: 472; Young & Fry, 2008: 8). In this study, the purpose of 

the MAI was to measure the level of metacognitive awareness of pre-service 

Mathematics teachers. Inferences drawn from this instrument’s quantitative scores 

afford limited possibilities for generalisation due to the small purposive sample  

(n < 100) and non-parametric data (see Section 3.4.5). 

Furthermore, generalisability is not the aim in qualitative research; rather, its value lies 

in the contribution of rich, thick descriptions and themes, especially those developed 

in a specific setting (Creswell, 2009: 193; 2014: 203–204). Data from the think-aloud 

session—the pre-service teachers’ written statements on their mental processes in a 

problem-solving context—contributed to an understanding of their level of 

metacognitive awareness. 

Qualitative validity means that the researcher reviews their findings for accuracy using 

certain procedures (Creswell, 2014: 201). Strategies employed to enhance the validity 

of the findings include the use of rich, thick descriptions to convey the findings by 

offering many perspectives about every theme (i.e. the 8 subscales on the MAI and 

the four phases of the problem-solving framework); clarifying the bias of the 

researcher; and employing a peer who reviewed and asked questions about the study 

(Creswell, 2014: 202).  

Qualitative reliability (trustworthiness) indicates that the approach of the researcher is 

stable and consistent across different attempts to collect and analyse data  

(Creswell, 2014: 201). Quality reliability procedures were followed in the think-aloud 

problem-solving session by documenting all procedural steps. During the  

process of methodical coding, data were carefully related to the definition of the 

subscales and an audit trail of the data was maintained (Ary et al., 2010: 502–503; 

Creswell, 2014: 203).  

1.6.4 Role of the researcher 

From a post-positivist stance in the quantitative research, I aimed to be  

objective and impartial by focusing on facts when organising and analysing the  

data (Ary et al., 2010: 13–14). As the study has a qualitative component as well, from 
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an interpretivist stance, my role in data collection and analysis had to be identified to 

ensure credibility. My assumptions based on literature, experience, and perceptions 

of higher education shaped my personal experience and understanding of the 

educational context, which lead to enhanced awareness and knowledge which were 

valuable to the study. Previous experience gained while working with pre-service and 

in-service teachers, plus awareness of the issues and challenges they face, brought 

bias to the study which may have shaped my view and interpretation of the data. 

However, effort was made to ensure objectivity and trustworthiness throughout 

(Creswell, 2014: 206; see Section 3.4.3.3). 

1.6.5 Data analysis and interpretation  

Descriptive statistics were used to organise and analyse the quantitative data collected 

from 41 pre-service teachers (Pietersen & Maree, 2010a: 239). Due to the small 

number of respondents and the use of non-random sampling on an ordinal scale, a 

non-parametric test, the Spearman Rho Coefficient, was used to determine the 

relationship between the two factors (Knowledge of cognition and Regulation of 

cognition) of the MAI (Pietersen & Maree, 2010a: 237; see Section 4.3.1). In the study, 

the correlation coefficient corroborated with that of the original MAI and the adapted 

MAI (see Sections 4.2.1; 4.2.2). Furthermore, individual tendencies were identified and 

interpreted by integrating the findings from the quantitative data with related  

theory, e.g. attributes of mathematical proficiency and aspects of productive learning 

(see Sections 2.3.4.2; 2.3.4.3).  

A detailed analysis using a methodical coding process organised the qualitative data 

into meaningful categories. Data were coded according to items on the MAI 

representing metacognitive behaviours. Frequencies of metacognitive behaviours 

were calculated and presented in tabular form for the purpose of interpretation 

(Creswell, 2009: 189; Meijer, Veenman & Van Hout-Wolters, 2006: 209;  

see Appendix 6). In the analysis, items were further grouped under the subscales  

of the MAI as well as according to the four-phase problem-solving framework. 

Interpretations were made by integrating the findings from the qualitative data with 

related theory, as found in the literature (see Sections 4.4.2–4.4.4). 
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I aimed to provide a rich description of the written statements as these indicate the 

metacognitive knowledge and metacognitive skills of the pre-service teachers in 

relation to problem solving (Ary et al., 2010: 425–426). These descriptions offered a 

greater understanding of the pre-service teachers’ roles in the problem-solving 

process and, consequently, enriched the quantitative findings of the MAI (see  

Sections 4.4; 4.4.1–4.4.4).  

The qualitative think-aloud problem-solving session could not be correlated with the 

quantitative questionnaire as a whole, with metacognitive skills more overt in the 

practical solving of the Mathematics problem, whereas metacognitive knowledge was 

mostly implicit and referred mainly to the general learning of Mathematics as 

measured by the MAI. It should be noted, therefore, that inferences and comparisons 

between the quantitative data from the MAI and the qualitative data obtained from the 

problem-solving session in which the pre-service teachers participated are limited. In 

the study, the qualitative findings serve to enrich the quantitative findings by 

highlighting metacognitive problem-solving behaviours (see Section 4.5).  

1.7 DELINEATING THE FIELD OF STUDY 

The context of this research is Higher Education. The field of Mathematics teaching 

and learning, particularly Higher Education teacher training in Mathematics, delineates 

the field of study. This viewpoint is considered in terms of how metacognitive 

awareness relates to higher achievement in Mathematics learning and problem 

solving. The role of metacognitive awareness as adaptive competence in teaching, as 

well as in mathematical proficiency and productive learning, takes a primary position 

in the study. In summary, the study’s focus is the metacognitive awareness of pre-

service teachers in Mathematics learning and problem solving. 

1.8 DISSERTATION LAYOUT AND PRESENTATION 

Following this chapter, Chapter 2 provides the literature review for the study, 

conceptualising metacognitive awareness, the role it plays in teaching and learning 

Mathematics, and ways for teaching and enhancing metacognitive awareness in both 

teachers and learners. Chapter 3 is the methodology chapter, describing the empirical 

research approach, philosophical worldview, and research methods behind the study. 
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Chapter 4 analyses, interprets, and summarises the primary quantitative data to 

determine the level of metacognitive awareness of the pre-service teachers, as well 

as the qualitative data to enrich the findings of the quantitative data. Finally,  

Chapter 5 concludes by reiterating the key points and findings of the study, reinforcing 

the value of metacognitive awareness in the teaching and learning of Mathematics to 

both individual and national interests. 

1.9 SUMMARY OF CHAPTER 

The purpose of this chapter was to focus attention on metacognitive awareness as a 

key component in teaching and learning to improve the overall outcomes of learners 

in teaching and learning. The importance and necessity of improving the quality of 

teacher education in South Africa was illustrated. In addition, the chapter established 

that metacognition is one of the four attributes of mathematical proficiency, whilst 

metacognitive adaptive competence improves teacher practice, which could improve 

learner outcomes, particularly in Mathematics. 

An overview of the research process that underpins the study was provided. The 

purpose of the study, namely to determine the level of metacognitive awareness of 

pre-service Mathematics teachers, was outlined; research questions were stated; and 

the philosophical worldview, research approach, and research methodology which 

informed the study were discussed.  

In Chapter 2, three main themes are explored in the literature. The origin and definition 

of metacognitive awareness, the role of metacognitive awareness in the teaching and 

learning of Mathematics, and teaching for metacognition are discussed, with the 

intention to explore and establish the need for metacognitive awareness in pedagogy 

and teacher training.  
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CHAPTER 2 

METACOGNITION AS A CONCEPTUAL BASIS AND ITS 

ROLE IN TEACHING AND LEARNING 

2.1 INTRODUCTION   

Novel situations—socially, economically, and technologically—demand innovative 

responses. In today’s society, it is necessary for individuals to develop a generally 

adaptive approach to deal effectively with new and challenging situations on a daily 

basis. Moreover, addressing the challenges posed by pervasive technological 

change, social demands, and the sheer volume of information in circulation—both 

individually and collectively—requires certain knowledge and skills. Adaptive 

‘learning-to-learn’ skills facilitate transferability of existing knowledge to deal with the 

demands of new situations (Cornford, 2000: 5; Lin et al., 2005: 245), and as these 

situations are typically beyond the individual’s usual experience, reflection is 

triggered (Rogers, 2001: 42). 

Lifelong learning has become a commonplace concept in professional and 

workplace environments. Citizens are expected to be responsibly engaged in socio-

economic and information technology issues. This entails a journey of learning about 

these issues and finding solutions for them. It also involves thinking in new ways 

about how to approach these issues, requiring a manner of thinking that utilises a 

repertoire of skills which can be adapted and applied to new scenarios. 

Therefore, in education, lifelong learning has become an important focus. Institutions 

are called upon to empower their learners with lifelong learning skills. A continual 

interest in education would consequently help learners to become more 

knowledgeable about cognition in general, and especially more aware of their own 

thinking (i.e. metacognitively aware), with the intention to further their  

learning at school and thereafter (Bransford, Brown & Cocking, 1999, cited in 

Pintrich, 2002: 119; Cornford, 2000: 6; Schraw et al., 2006: 130). 

In addition, the incredible tempo at which information changes and increases 

necessitates change in the goals and methods of education. The focus in learning 
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and instruction is shifting from absorbing large quantities of information and 

developing basic skills towards achieving deeper understanding and developing the 

types of reasoning skills that will aid learners in obtaining and utilising new 

knowledge (Zohar & David, 2008: 60). 

The ability to learn effectively implies that the learner needs skills which  

can be applied generally to new potential learning experiences; that is,  

‘learning-to-learn’ skills which comprise cognitive and metacognitive strategies 

(Cornford, 2000: 5; 2002: 357). Metacognition, as an adaptive skill, facilitates 

productive learning and successful problem solving (De Corte, 2010: 45;  

Lin et al., 2005: 244–245; see Sections 2.3.4.2; 2.3.4.3). Adaptive metacognition 

involves adapting one’s environment and oneself in response to novel situations. 

Furthermore, metacognitive awareness develops and enhances learners’ learning 

processes and, as a result, their learning outcomes (Thomas & Mee, 2005: 221). 

Metacognition influences academic achievement in learning and problem solving 

(Azevedo, 2009: 88, 93; Hartman, 2001a: 35; Schellings et al., 2013: 980) and 

particularly in Mathematics (Larkin, 2009: 149; Van Der Stel et al., 2010: 219;  

Van Der Walt, 2014: 8–9). Consequently, metacognitive skills, like critical thinking 

and problem-solving skills, are adaptive skills which are mandatory to be learnt and 

therefore taught to learners (see Sections 2.2.2; 2.4.3). 

Teachers are expected to manage classrooms, make decisions, and solve problems 

daily. This requires metacognitive adaptive expertise, namely the ability and skills to 

reflect and adapt thoughts, feelings, and actions accordingly (Duffy, 2005: 300;  

Duffy et al., 2009: 241–242; Lin et al., 2005: 245). This carries significant 

implications concerning the training of pre-service and in-service teachers, who must 

consciously foster and develop these adaptive skills in their learners’  

learning and problem solving (Azevedo, 2009: 93; Cornford, 2002: 366;  

Kohen & Kramarski, 2012: 7; Van Der Walt & Maree, 2007: 238). Teachers are 

therefore expected to be reflective practitioners (Jindal-Snape & Holmes, 2009: 219; 

Larrivee, 2008: 341; Rogers, 2001: 37), who along with having specialist content 

knowledge should model and scaffold metacognitive awareness for their learners 

and teach metacognition explicitly, thus translating these skills for their learners 
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(Cornford, 2002: 366; Pintrich, 2002: 223; Thomas & Mee, 2005: 222; see  

Section 2.3.5). 

2.2 THE CONSTRUCT METACOGNITION 

In Sections 2.2.1 to 2.2.7, secondary research question 1, “How is metacognitive 

awareness conceptualised?”, is expounded. The background and development of 

the term “metacognition” in the scholarship is discussed below. 

 

Figure 2.1: Conceptualisation of metacognition (see also Appendix 8) 

2.2.1 Past considerations of the term metacognition 

Metacognition was first mentioned in educational literature in the 1970s, when John 

Flavell (1976: 232) described metacognition as “knowledge concerning one’s own 

cognitive processes and products or anything related to them”. Subsequently, 

seminal works by Flavell (1976, 1979) and Brown (1987) laid foundations for the 

contemporary understanding of metacognition. 

Flavell (1976: 232) further described metacognition as “the active monitoring and 

consequent regulation and orchestration of those processes in relation to cognitive 

objects or data on which they bear, usually in the service of some concrete goal or 
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objective”. A theory proposed by Brown (1987) and used in subsequent studies 

(Larkin, 2009: 150; Schraw & Dennison, 1994: 461; Sperling et al., 2004: 118) would 

propound two components: Knowledge of cognition and Regulation of cognition. 

Schraw and Dennison (1994: 461) extended Regulation of cognition into 

subcomponents: Planning, Information management, Monitoring, Debugging, and 

Evaluation. Various other studies support this two-component view of the construct 

metacognition. 

Generally, therefore, metacognition is defined by its component parts. However, the 

term “metacognition” as a construct is not exactly defined (Sperling et al., 2004: 118; 

Sperling et al., 2012: 2) as researchers have not reached consensus about the 

nature of those components and their exact relationship to each other. Neither have 

they reached consensus about the relation of metacognition to constructs such as 

cognition, self-regulation, self-regulated learning, and meta-memory (Dinsmore, 

Alexander & Loughlin, 2008: 392; Sperling et al., 2004: 118; Veenman, Van Hout-

Wolters & Afflerbach, 2006: 4) and affective states like motivation and self-efficacy 

(Boekaerts,1999, cited in Dignath & Büttner, 2008: 235; Schraw et al., 2006: 112). 

Various terms are used to describe views of metacognition in literature. These 

include, among others, metacognitive reflection, adaptive meta-cognition, 

metacognitive awareness, self-reflection, transformative metacognition, and  

adaptive expertise (Brown, 1987; Cornford, 2000: 5; Flavell, 1976, 1979; 

Georghiades, 2004: 367; Jindal-Snape & Holmes, 2009: 21; Lin et al., 2005: 245; 

Pintrich, 2002: 219; Rogers, 2001: 37; Schraw & Dennison, 1994: 461;  

Veenman et al., 2006: 4). Metacognition as conceptualised and defined in 

literature—as well as metacognition in relation to the concepts of cognition, self-

regulation, self-regulated learning (SRL), meta-memory, and affective states—is 

discussed over the following sections. 

2.2.2 Cognition 

A brief discussion of cognition, higher-order thinking skills, and cognitive strategies 

will contribute to conceptualising metacognition. Literature is not clear on the nature 

of the interrelationship between cognition and metacognition. It is described as an 

interchangeable or circular process (Veenman et al., 2006: 6) and it is therefore 
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difficult to assess whether cognition or metacognition is taking place at a given 

moment. 

An early definition by Flavell (1976: 232) indicates the relationship between cognition 

and metacognition. Metacognition is viewed as the monitoring and regulating of 

cognition with an objective in mind (see Section 2.2.1). Later views of the interaction 

between cognition and metacognition commonly regard metacognition—awareness 

of and reflection upon one’s own thoughts, feelings, and actions—as higher-order 

cognition. 

According to Weinert (1987, cited in Georghiades, 2004: 371): 

On the surface, it seems easy to distinguish between cognition and 

metacognition. Metacognitions are second-order cognitions: thoughts about 

thoughts, knowledge about knowledge, or reflections about actions. However, 

problems arise when one attempts to apply this general definition to specific 

instances. These problems concern whether metacognitive knowledge must 

be utilised, whether it must be conscious and verbalisable, and whether it 

must be generalised across situations. 

Veenman et al. (2006: 5) support this view of a higher-order component factor 

overseeing and regulating the cognitive system whilst simultaneously being part of it. 

Cognition could therefore be regarded as the combination of lower and higher-order 

thinking skills and strategies. Lower-order thinking skills involve more routine 

procedures such as learning mnemonic or algorithmic procedures like solving a 

quadratic equation in Mathematics. Meanwhile, higher-order thinking skills are more 

complex cognitive skills such as problem-solving, decision-making, conceptualising, 

critical and creative thinking, and metacognitive skills like planning, monitoring, and 

evaluating. 

These higher-order thinking skills enable a learner to explain, generalise,  

synthesise, hypothesise, interpret, and construct new knowledge (Anderson & 

Krathwohl, 2001: 44; Killen, 2010: 23). Bloom’s Revised Taxonomy refers to 

metacognitive knowledge as a dimension of higher-order thinking (Anderson & 

Krathwohl, 2001: 44; Killen, 2010: 23). Meanwhile, higher-order thinking—for 
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example, problem-solving skills and critical thinking skills—is required for successful 

learning and solving problems in Mathematics (DBE, 2011a: 8–9).   

Challenging tasks engage learners in complex higher-order thinking  

(Killen, 2010: 23). In Mathematics, higher-order thinking is elicited particularly by 

novel, complex problem-solving tasks. Being able to solve problems is key in 

mathematical proficiency (see Section 2.3.4.2) and therefore key in mathematical 

achievement. The CAPS document for Grade 10–12 Mathematics states that  

Grade 12 learners are required to do 15% problem-solving tasks and 30% complex 

tasks in their final assessment (DBE, 2011a: 53), which means 45% of the tasks 

require higher-order processes. Learners should understand the how, when, and 

why of problem solving which equips them to use knowledge in lifelong learning and 

problem solving (DBE, 2011a: 8). This implies metacognitive knowledge as reflecting 

on thinking (see Section 2.2.4.1) and through this understanding of when and why to 

use appropriate problem-solving strategies, metacognitive skill is demonstrated 

(Hartman, 2001a: 33; see Section 2.2.4.3). Therefore, metacognition as higher-order 

thinking plays a key role in solving these complex and non-routine tasks, since 

metacognition is elicited by novel and challenging problem-solving situations  

(Meijer et al., 2006: 232; Sperling et al., 2004: 120). 

Furthermore, cognition encompasses different cognitive strategies employed in 

information processing such as problem solving or text studying (Weinstein &  

Mayer, 1986, cited in Dignath & Büttner, 2008: 232–233). These cognitive learning 

strategies are processed at a cognitive level (see Section 2.2.4.3).  

Flavell (1979: 907) refers to actions (or strategies) as the cognitions or behaviours 

utilised to reach a goal or cognitive enterprise. 

Lower-order thinking skills do not involve these cognitive activities and strategies. In 

Mathematics, lower-order thinking involves learning rules, definitions, algorithms, 

procedures, and formulae (see Section 2.3.4.2.1). Metacognitive and  

cognitive activities have a bearing on each other in a circular process  

(Veenman et al., 2006: 8; see Section 2.3.4.4). Consequently, they are not easy to 

distinguish from each other and metacognition often must be inferred from cognitive 

activities (Veenman et al., 2006: 6), as it is not verbalised or has become automated 

within the individual. Strategies, therefore, could be cognitive or metacognitive and 
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often could be inferred from and distinguished by the intent of the strategy.  

Flavell (1979: 909) states that cognitive strategies are elicited to make cognitive 

progress, whereas metacognitive strategies monitor cognitive progress. It follows 

that the mindful use of metacognition precedes effective use of cognitive learning 

strategies. 

In summary, it can be said that employment of metacognition and cognition is an 

interchangeable process (see Sections 2.2.4.2; 2.2.5). Moreover, there is an 

interplay between cognitive and metacognitive strategies (see Section 2.2.4.3). 

2.2.3 Definitions of metacognition 

There are various definitions of metacognition (Sperling et al., 2004: 118).  

Flavell (1976: 232) states: 

Metacognition refers to one’s knowledge concerning one’s own cognitive 

processes or anything related to them … Metacognition refers, among other 

things, to the active monitoring and consequent regulation and orchestration 

of those processes in relation to cognitive objects or data on which they bear, 

usually in the service of some concrete goal or objective. 

Intuitive conceptual understandings of metacognition as “thinking about thinking” and 

“knowing about knowing” derive from the original definition of metacognition by 

Flavell (1979). Flavell (1979: 906) operationalised metacognition into four key 

categories: metacognitive knowledge, metacognitive experience, metacognitive 

goals, and metacognitive activation of strategies (Dinsmore et al., 2008: 393). He 

further separated metacognitive knowledge into person, task, and strategy  

variables (see Section 2.2.4.1). A framework suggested by Brown (1987)  

and employed in later studies (Larkin, 2009: 150; Schraw & Dennison, 1994: 460; 

Sperling et al., 2004: 118) proposes two components: Knowledge of cognition and 

Regulation of cognition. 

Knowledge of cognition typically relates to what we know about our own cognition, or 

cognition generally. It comprises of three components of metacognitive awareness: 

Declarative knowledge, Procedural knowledge, and Conditional knowledge. 

Regulation of cognition includes five components: Planning, Information 
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management, Monitoring, Debugging, and Evaluation (Larkin, 2009: 150;  

Schraw & Dennison, 1994: 461; Schraw & Moshman, 1995: 352;  

Sperling et al., 2004: 118). Knowledge of cognition and Regulation of cognition  

are related and each makes a unique contribution to learning and problem solving 

(Schraw & Dennison, 1994: 466; Sperling, Howard, Miller & Murphy, 2002: 119;  

see Section 3.4.3.1.1). 

Veenman et al. (2006: 5) confirm that in the literature the most regular distinction in 

metacognition is made between metacognitive knowledge and metacognitive skills. 

They describe metacognitive knowledge as the interaction between person, task, 

and strategy variables (see Section 2.2.4.1), whereas metacognitive skills refer to 

the regulating of one’s problem solving and learning activities (see Section 2.2.4.3). 

Furthermore, Pintrich (2002: 219) mentions that this basic distinction between 

Knowledge of cognition (metacognitive knowledge) and Monitoring and Regulation of 

cognition (metacognitive control) parallels the two dimensions of the Revised 

Taxonomy Table of Bloom (see Section 2.2.2). 

In a more recent definition, Akyol and Garrison (2011: 184) emphasise 

metacognition as a reflective construct. They state that metacognition is the 

awareness, willingness, and readiness to reflect on the thinking and learning process 

(Akyol & Garrison, 2011: 184). Their definition corresponds with the basic definition 

of metacognition as Knowledge of cognition and Regulation of cognition, but it further 

separates the latter into two distinct reflective and activity-based dimensions: 

Monitoring of cognition and Regulation of cognition. Knowledge of cognition is a 

general aspect of metacognition which is observable any time, whereas Monitoring 

of cognition and Regulation of cognition are viewed as more reflective and activity-

based (Akyol & Garrison, 2011: 184). 

Therefore, Knowledge of cognition is considered as pre-task reflection upon one’s 

cognitive processes, i.e. an awareness of the self (knowledge about cognition, 

cognitive strategies, and affective states such as motivation and self-efficacy) and 

awareness of skills. Monitoring of cognition is reflection-on-action, i.e. awareness of 

thinking and learning processes and the willingness to reflect upon them. Regulation 

of cognition is the reflection-in-action dimension of the learning process: it is the use 

of strategies to reach goals (Akyol & Garrison, 2011: 184; see Section 2.2.4.3). 
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Consensus amongst researchers is that metacognition is generally defined by its 

component parts and consists of both Knowledge of cognition and Regulation of 

cognition. Knowledge of cognition (metacognitive knowledge) consists of three 

subcomponents—Declarative, Procedural, and Conditional metacognitive 

knowledge—whereas Regulation of cognition (metacognitive skills) consists of five 

components: Planning, Information management, Monitoring, Debugging, and 

Evaluation skills. This definition by Schraw and Dennison (1994), based on Flavell’s 

initial definition, will be used in the study. Similar is the definition of Akyol and 

Garrison (2011); however, it elaborates on metacognition as a reflective  

construct and, consequently, also has bearing on the teacher’s professional practice 

(see Section 2.3.5). 

2.2.4 The four categories of metacognition 

In this section, the four categories of metacognition—namely metacognitive 

knowledge, metacognitive experiences, metacognitive strategies and skills, and 

metacognitive goals—are discussed. 

2.2.4.1 Metacognitive knowledge 

Flavell (1979: 907) describes metacognitive knowledge as knowledge concerning 

cognitive matters. Many researchers expound this view of Flavell as the  

knowledge, awareness, and deeper understanding of one’s own cognitive processes 

(Desoete, 2009: 436), as well as the knowledge of having a large  

repertoire of cognitive strategies and knowing how, when, and why to use them 

(Zohar & David, 2008: 62). It also includes pre-task reflection on cognitive  

processes and affective states, such as motivation and self-efficacy (Akyol & 

Garrison, 2011: 185). 

Flavell (1979) refers to three categories: knowledge of person, task, and strategy. 

The person category comprises knowledge and beliefs about others and oneself as 

cognitive beings (Flavell, 1979: 907). An example is believing you are better in 

arithmetic than word problems, or that you are better than your friends in 

Mathematics. It also involves metacognitive knowledge and insight about your own 

understanding or memory. For example, it is the awareness that what you 
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understand at this present moment, you might not be able to remember later, or that 

what you do not remember now, you might be able to recall later. 

The task variable consists of knowledge concerning available information during a 

cognitive undertaking and how this information affects and constrains the way one 

deals with it, or knowledge about task demands and goals (Flavell, 1979: 907). For 

example, it may be knowledge that the available information in a problem statement 

is insufficient to find a solution to the problem. Metacognitive knowledge is therefore 

an understanding about how one could manage this lack of knowledge to reach the 

goal of finding a solution, and how likely one is to be successful. It also could be the 

knowledge that recalling the properties of a task is more demanding than a 

recognition task (Pintrich, 2002: 221) and therefore would require different strategies 

in approaching the task. 

Finally, the strategy category refers to metacognitive knowledge about cognitive 

strategies or procedures for achieving various goals (Flavell, 1979: 907). It involves 

knowledge about general strategies for learning, thinking, and problem solving, not 

their actual use. For example, it would refer to the knowledge about various learning 

strategies that exist to memorise material (Pintrich, 2002: 220), not the application of 

a specific strategy. It is the knowledge of the mnemonic ‘BODMAS’ for the order of 

operations in a problem, but it is not about using the mnemonic. 

Flavell’s person, task, and strategy categories of metacognitive knowledge 

correspond with the view of metacognitive knowledge consisting of three subscales: 

Declarative, Procedural, and Conditional knowledge, as per later definitions  

(Larkin, 2009: 150; Schraw & Dennison, 1994: 460; Schraw & Moshman, 1995: 353; 

Sperling et al., 2004: 118). Flavell’s operational definition includes Declarative 

knowledge (knowing that a person is good at Mathematics or knowing that a task is 

difficult) and Procedural knowledge (knowledge about how to use a strategy). 

Although Conditional knowledge is not explicitly mentioned by Flavell (1979), it is 

implied as knowing about when and why to use strategies.  

Declarative knowledge of oneself or self-knowledge, therefore, is awareness of one’s 

own individual knowledge, knowledge of one’s own strengths and weaknesses, and 

knowledge about various cognitive strategies. It also encompasses knowledge about 
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one’s beliefs about one’s motivation and self-efficacy relating to tasks—i.e. the 

interest and value a task holds for the individual—and goals for completing a  

task. It is, ultimately, awareness of one’s own knowledge base and expertise  

(Jacobs & Paris, 1987: 259; Schraw & Dennison, 1994: 460; Schraw &  

Moshman, 1995: 352; Pintrich, 2002: 220; Zohar & David, 2008: 61). 

Procedural knowledge is the awareness of knowledge about how to use  

these strategies and procedural skills effectively (Jacobs & Paris, 1987: 259;  

Schraw & Dennison, 1994: 460; Schraw & Moshman, 1995: 352; Zohar &  

David, 2008: 61), not the actual use of the strategies. For example, it includes 

knowing how to plan cognition by setting sub-goals; how to monitor cognition by 

asking oneself questions about a text, or checking an answer to a Mathematics 

problem; and how to regulate cognition by rereading a problem or text that  

one does not understand, or correcting a calculation error in a Mathematics problem 

(Pintrich, 2002: 220). 

Conditional knowledge is being aware of conditions which impact learning, such  

as why certain strategies are effective, when they are applicable, and when  

they are most appropriate (Jacobs & Paris, 1987: 259). It is knowledge about  

when and why strategies are used and the effectiveness of those strategies  

(Jacobs & Paris, 1987: 259; Schraw & Dennison, 1994: 460; Schraw &  

Moshman, 1995: 352; Zohar & David, 2008: 61). 

In short, Declarative knowledge relates to knowing about things: it is an awareness 

that knowledge and strategies exist. Procedural knowledge relates to knowing how 

to do things. Finally, Conditional knowledge relates to the why and when aspects of 

cognition (Brown, 1987; Jacobs & Paris, 1987: 259; Schraw & Dennison, 1994: 460; 

Thomas & Mee, 2005: 222; Zohar & David, 2008: 61). 

Metacognitive knowledge, therefore, is an awareness of one’s own cognition and a 

reflection on the conditions (namely how, when, and why) to implement knowledge, 

processes, and strategies. The subsequent actual implementation is regarded as 

metacognitive skilfulness (see Section 2.2.4.3) to achieve a specific goal or outcome 

(see Section 2.2.4.4). 
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2.2.4.2 Metacognitive experiences 

Flavell (1979: 908) distinguished metacognitive knowledge from metacognitive 

experiences, noting that “Metacognitive experiences are any conscious cognitive or 

affective experiences that accompany or pertain to any intellectual enterprise”. 

Thomas and Mee (2005: 222), meanwhile, confirm that metacognitive experiences 

are “conscious experiences associated with cognitive undertakings/actions and 

metacognitive knowledge”. 

As per an illustration by Flavell, during learning or problem solving you may suddenly 

feel that you are not understanding what you are reading, or sense that the problem 

you have just begun to solve will be simple. These feelings of difficulty or confidence 

are subjective experiences prompting awareness of one’s own thoughts and feelings 

(Flavell, 1979: 908). He also emphasised that metacognitive experiences are more 

likely to be elicited by situations requiring highly conscious thinking, and  

viewed metacognition as conscious and purposeful to achieve a specific goal 

(Editorial, 2012: 245). Meijer et al. (2006: 232) confirm that task difficulty should 

promote metacognition. For example, a situation which prompts metacognition is 

solving novel problems. A novel task may elicit feelings of inadequacy or difficulty, or 

alternatively elicit interest to attempt the task. Problem-solving scenarios thus elicit a 

conscious awareness of thoughts and feelings and the subsequent regulation of 

these thoughts and feelings. Consequently, this demands mindful planning and 

careful evaluation of the steps implemented to make progress and solve problems 

successfully. Efklides (2008, cited in Desoete, 2009: 436) confirms that 

metacognitive experiences make individuals aware of their own cognition and prompt 

control processes with the goal to self-regulate. 

Flavell (1979) introduced the term meta-memory as the ability of an individual to 

monitor and manage the content of their memory (Editorial, 2012: 246) with 

metacognitive experiences being the impetus for monitoring. These metacognitive 

experiences are subjective experiences: feelings of knowing, feelings of  

familiarity, feelings (or judgement) of learning, feelings of confidence or doubt  

about the correctness of the solution provided, and feelings of difficulty  

(Schwartz & Efklides, 2012: 146). Meta-memory experiences influence decisions 

about how to study and how to improve learning efficiency. 
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Meta-memory is initially seen as a subcomponent of metacognitive knowledge, as 

knowledge about memory capabilities and strategies affects memory processes. 

Later research by Nelson and Narens (1990, cited in Veenman, 2011b: 199) on 

metacognitive experiences, especially feelings of learning and judgment of  

learning, emphasises the monitoring or evaluating of memory contents.  

Veenman (2011b: 199) further states that by including monitoring, meta-memory 

research has crossed the border between the two subcomponents of metacognition, 

namely metacognitive knowledge and metacognitive skills. Schwartz and  

Efklides (2012: 145) add that meta-memory informs learning and studying on a 

micro-level as it prompts learners to focus more on certain items, and also on a 

macro-level as metacognitive knowledge guides the monitoring and regulation of 

learning. 

Therefore, when studying metacognition from a memory and learning perspective, 

Nelson and Narens’ (1990, 1994, cited in Editorial, 2012: 246) meta-memory 

framework explains metacognition as a flow of information from the object level 

(cognition) to the meta-level (cognition about cognition), which in turn informs the 

object to attain the goal state. Having metacognitive thoughts and feelings about 

cognition is described as monitoring, whereas the response to the environment or 

adapting of behaviour is referred to as control, or regulation. In reading a text, for 

example, the meta-level evaluates cognition. It could involve realising that a given 

text is not understood and acting on it to improve cognition by choosing a strategy, 

such as rereading a key section of the text to reach the goal state of comprehension. 

Regarding memory and learning efficiency, monitoring refers to the gathering and 

interpreting of information and the regulation thereof by any action, or intention to 

act, due to the monitoring (van Overschelde, 2008, cited in Editorial, 2012: 246). This 

corresponds with Akyol and Garrison’s (2011: 184) view of Monitoring of cognition as 

reflection-on-action and Regulation of cognition as the reflection-in-action dimension 

of the learning process (see Section 2.2.3). 

Ultimately, metacognitive experiences are elicited by the task and the progress one 

is likely to make towards reaching a goal. Metacognition is therefore associated  

with affective experiences like motivation, interest, and self-efficacy during  

learning and problem solving, and is the willingness and awareness to  
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reflect on these experiences (Akyol & Garrison, 2011: 184; Rogers, 2001: 42; 

Schraw et al., 2006: 112). Learners who evaluate their capability to learn or perform 

a task and expect to do well (self-efficacy) are more inclined to demonstrate a range 

of cognitive and self-regulatory strategies (Wolters & Pintrich, 1998: 43–44). 

Metacognitive experiences can therefore affect the three other categories, namely 

metacognitive knowledge, metacognitive goals, and metacognitive strategies and 

skills (Flavell, 1979: 908), as well as their associated affected states (see  

Section 2.2.5). 

2.2.4.3 Strategies and skills 

The effective use of (metacognitive) strategies and skills is discussed in this section. 

Strategies are actions or concrete activities designed to reach a learning goal more 

efficiently, and Flavell (1979: 907) holds that, depending on the goal, strategies can 

be either cognitive or metacognitive in nature. Strategies could also refer to heuristic 

strategies as used in problem solving (see Sections 2.3.4.2.2; 2.3.4.4) and to 

metacognitive strategies, cognitive strategies, or motivational strategies. 

Cognitive strategies refer to the individual’s cognitive processes during the encoding 

of information whilst performing problem solving or studying text, while metacognitive 

strategies refer to their knowledge of and control over their own cognitive  

processes (Weinstein & Mayer, 1986, cited in Dignath & Büttner, 2008: 233). 

Motivation strategies play an important part by motivating the leaner  

(Kohen & Kramarski, 2012: 2; McCombs & Marzano, 1990, cited in Dignath & 

Büttner, 2008: 233). 

This observation implies that metacognitive strategies monitor cognitive strategies; in 

other words, metacognition has a regulating or monitoring component overseeing 

cognition. For example, when planning which heuristics or steps to use during a 

problem-solving activity (metacognitive strategy), ordering the heuristics or steps in a 

certain sequence (cognitive strategy) is required. The intent of cognitive strategies is 

to make cognitive progress, while the intent of metacognitive strategies is to monitor 

the cognitive progress (see Section 2.2.2). 
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Skills refer to higher-order thinking skills, such as critical thinking skills, problem-

solving skills, and metacognitive skills. Skillfulness refers to an ability which can be 

demonstrated. Metacognitive skills can be viewed as the voluntary control that 

individuals exert over their own cognitive processes (Desoete, 2009: 436)  

and the purposeful application of cognitive behaviours at a particular moment  

(Van Der Stel & Veenman, 2014: 117), as per Regulation of cognition. Task analysis 

or information management, planning, monitoring, and evaluation are manifestations 

of metacognitive skillfulness (Van Der Stel & Veenman, 2014: 117). 

In summary, metacognitive skill is the ability to employ metacognitive strategies to 

achieve a metacognitive or cognitive goal. To illustrate metacognitive skilfulness in 

Mathematics, consider the following: a metacognitive strategy is operational when, 

for example, one evaluates an answer for reasonableness and consequently adjusts 

the answer (e.g. by changing the units) or decides to approach the problem from 

another perspective by using another heuristic (e.g. working backwards). In other 

words, through employing the metacognitive strategy Evaluation to reach the goal of 

solving the problem successfully, the ability to evaluate is demonstrated, which 

marks the demonstration of a metacognitive skill, Evaluation. 

Although metacognition develops over an individual’s lifetime (Kohen &  

Kramarski, 2012: 1; Veenman et al., 2006: 7) and most adults possess some  

level of metacognitive awareness (Kohen & Kramarski, 2012: 2), metacognitive 

skillfulness can be enhanced through training and consequently influence 

achievement (Akyol & Garrison, 2011: 189; Sperling et al., 2012: 1, 5; see  

Sections 2.3.3; 2.4.3). Children develop metacognitive awareness between the  

ages of 8 to 10 (Veenman et al., 2006: 8) and these skills may differ in quality and 

quantity (Van Der Stel et al., 2010: 221). Metacognitive strategies and  

skills are general or domain-specific in nature (Schellings et al., 2013: 986;  

Veenman et al., 2006: 8) and become more general following the age of 12 

(Veenman, 2011b: 202). Therefore, both general and domain-specific skills  

could be enhanced.   

As strategies become automated, a metacognitive skill—in the form of an ability to 

employ metacognitive strategies to achieve a metacognitive or cognitive goal—is 

developed. Monitoring skills develop before regulating skills. Moreover, young 
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children’s abilities to transform monitoring into effective regulation seem to depend 

heavily on task characteristics and specific instruction (Editorial, 2012: 249). 

2.2.4.3.1 Cognitive strategies 

Cognitive strategies improve learning, memorising, and understanding. They include 

rehearsing, elaborating, organising, problem-solving strategies or heuristics, and 

critical thinking strategies (Anderson & Krathwohl, 2001: 56; Bjork et al., 2013: 423; 

Mayer & Wittrock, 1996, cited in Dignath & Büttner, 2008: 232–233;  

Schraw et al., 2006: 114–115; Sperling et al., 2004: 120). 

General cognitive strategies are rehearsal strategies and refer to copying, 

underlining, or repeating information to oneself. Elaboration strategies involve 

paraphrasing or summarising and synthesising information. Organisational strategies 

entail constructing flow diagrams (Bjork et al., 2013: 423; Mayer & Wittrock, 1996, 

cited in Dignath & Büttner, 2008: 232–233; Sperling et al., 2004: 120). Cognitive 

strategies that support a deeper understanding include critical thinking and problem-

solving strategies. Problem-solving strategies, or heuristics, are more complex and 

help learners to obtain a deeper level of understanding, for example through 

generating questions or constructing graphs, diagrams, and tables (see  

Section 2.3.4.2.2), whereas critical thinking strategies entail questioning what one 

reads when studying (Bjork et al., 2013: 423; Schraw et al., 2006: 113).  

2.2.4.3.2 Metacognitive strategies 

Metacognitive strategies include Planning, Information management, Monitoring, 

Debugging, and Evaluation (Schraw & Dennison, 1994: 460).  

Planning refers to selecting metacognitive strategies and allocating resources 

appropriately (Schraw, 1998: 115). It includes setting goals, activating relevant prior 

knowledge, and allocating learning resources through practices such as time 

management (Kohen & Kramarski, 2012: 1; Schraw & Dennison, 1994: 474;  

Schraw et al., 2006: 114). 

Information management refers to the strategy sequences used in processing 

information more efficiently (e.g. organising, elaborating, summarising, selective 
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focusing) (Schraw & Dennison, 1994: 475–476). It therefore refers to managing 

information with optimal efficiency (Kohen & Kramarski, 2012: 1). Learners could 

enhance their understanding and memory efficiency, and consequently their 

learning, by using techniques such as drawing mind-maps, tables, or diagrams. 

Monitoring is assessing one’s learning or strategy use (Schraw & Dennison,  

1994: 475). By reflecting on one’s own thought processes (Akyol & Garrison,  

2011: 184; Carlson & Bloom, 2005: 54), current knowledge and skill levels are 

monitored (Kohen & Kramarski, 2012: 1). Monitoring strategies can therefore help to 

check one’s own comprehension and performance, through self-testing to name one 

example. Self-testing is a powerful metacognitive strategy to check comprehension. 

It is used by learners when they ask themselves questions while reading a text, or 

when they check their answers to Mathematics problems (Pintrich, 2002: 220). 

Learners might assess material to see how well they could remember it in the exam, 

or may decide to focus on and allocate more time to difficult sections, or might even 

learn easy sections first to ensure they know enough to pass the examination  

(Bjork, et al., 2013: 427). Learners’ judgments of learning and their consequent 

studying could be accurate or inaccurate (see Section 2.2.6). In Mathematics, 

problem-solvers reflect on how effective their strategies and plans are. They often 

ask questions like “Will this take me as far as I want to go?” and “How efficient will 

this approach be?” (Carlson & Bloom, 2005: 54). 

Debugging refers to strategies used for correcting comprehension and performance 

errors (Schraw & Dennison, 1994: 475). It entails learners remediating their  

work by improving their understanding and correcting their mistakes (Kohen & 

Kramarski, 2012: 1). In Mathematics, for example, learners might reread  

something that they do not understand, or correct their calculation errors  

(Schraw et al., 2006: 114). 

Evaluating entails analysing the effectiveness of a performance or strategy following 

a learning experience (Schraw & Dennison, 1994: 475). This means judging the 

progress and effectiveness of one’s learning—and, consequently, re-evaluating 

one’s goals and conclusions in response (Schraw, 1998: 115)—as well as  

reflecting upon performance against required standards and goals  

(Kohen & Kramarski, 2012: 1). Examples of this include re-evaluating goals and 
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conclusions and revising one’s predictions (Schraw, 1998: 115). In Mathematics, for 

example, learners might evaluate the appropriateness of a solution and decide to 

debug or find an alternate solution (see Section 2.3.4.4.4). 

2.2.4.4 Metacognitive goals 

Flavell (1979: 907) refers to goals (or tasks) as “the objectives of a cognitive 

enterprise”. Artz and Armour-Thomas (1998: 9) characterise goals as intellectual, 

social, and emotional outcomes that are expected to result from learning  

and teaching experiences. Metacognitive experiences can trigger  

cognitive or metacognitive strategies to attain cognitive or metacognitive goals 

(Flavell, 1979: 908). For instance, if a learner experiences disappointment 

(metacognitive experience) due to difficulty solving a problem, they can reread and 

hence rephrase the problem statement using their own words to understand it more 

clearly. 

Alternatively, by asking questions such as “What am I doing?”, “Why am I doing it?”, 

and “How does it help me?” (Schoenfeld, 1992: 63), the individual becomes aware of 

their own thinking: a metacognitive strategy aimed at the metacognitive goal of 

assessing and monitoring one’s own understanding, thoughts, and actions. This 

provokes another metacognitive experience, namely that the goal of problem solving 

is difficult to achieve. Consequently, this leads to knowledge about one’s own ability, 

which is metacognitive knowledge (see Section 2.2.4.1). 

As a result, cognitive strategies are elicited to make cognitive progress, whilst 

metacognitive strategies monitor cognitive progress (Flavell, 1979: 909). Meaningful 

and productive learning is facilitated by conscious awareness of and  

orientation towards a goal (De Corte, 1995: 71; 2000: 254). An orientation for 

mastery rather than performance encourages the employment of metacognition 

(Masui & De Corte, 2005: 366). Learners choose and set goals and consequently 

monitor and evaluate their progress to achieve those goals. Goal-setting, therefore, 

facilitates learning and problem solving. 
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2.2.5 Associations between related concepts: metacognition, meta-

memory, self-regulation, self-regulated learning, and affective states 

As stated previously, in education, self-regulation—like metacognition—is generally 

defined by its component parts. Like metacognition, there is a lack of clarity about 

the relationships among self-regulatory constructs (Sperling et al., 2004: 118, 120). 

Azevedo (2009: 87) describes metacognitive monitoring, metacognitive regulation, 

and reflection as self-regulatory processes in learning. De Corte (1995: 259) initially 

referred to metacognition and self-regulation interchangeably, but in later  

literature referred to meta-knowledge as metacognitive and meta-volitional 

knowledge, and self-regulatory skills as metacognitive skills or volitional skills  

(De Corte, 2007: 21–22), hence recognising the affective components interacting 

with metacognition and self-regulation. Efklides (2012: 294) asserts that the self-

regulation of learning is facilitated by both metacognitive monitoring and affect  

(see Section 2.3.4.2). 

Self-regulation, therefore, is a related construct to metacognition. Self-regulation or 

self-regulated learning (SRL) refers to an active process in which learners develop 

and set their own learning goals, then actively monitor and control their own 

cognitive processes, behaviour, and affect in pursuit of these goals within contextual 

constraints (Pintrich, 2000, cited in Azevedo, 2009: 87; Schunk, 2005b: 85;  

Schunk & Zimmerman, 2008: vii). Self-regulated learning, therefore, refers to the 

learner’s ability to understand and control their learning environments  

(Schraw et al., 2006: 116). Self-regulation and self-regulated learning are often used 

as interchangeable concepts, with self-regulated learning commonly used in 

educational terms. Metacognition is considered a subordinate or superordinate 

component of self-regulation. 

The component parts of self-regulated learning are described by  

Schraw et al. (2006: 112) as cognition, metacognition, and motivation.  

Sperling et al. (2004: 118–120) refer to three well-accepted constructs associated 

with self-regulated learning—namely metacognition, academic strategy use, and 

motivation—and consider academic strategy use as processed on a cognitive level. 

Both these views corroborate, therefore, to position metacognition as a subordinate 
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component of self-regulation, with motivation and cognitive strategy use as 

complementary components. Each of these components plays a necessary and 

interdependent role in self-regulation (Schraw et al., 2006: 112). Self-regulated 

learning can thus be viewed as metacognitive monitoring and control (Regulation of 

cognition) of cognitive, situational, and motivational factors. These explanations 

illustrate that these constructs are interrelated and intertwined and can be inferred 

from each other during the observation or verbalisation of actions. 

When metacognition is viewed as the superordinate construct to self-regulation, it is 

generally defined in terms of its two related component parts: Knowledge of 

cognition and Regulation of cognition (see Section 2.2.3). Regulation of cognition is 

generally viewed as the self-regulatory component of metacognition. It is further 

referred to as metacognitive skills, and seen as the self-monitoring and self-

regulation of metacognitive knowledge and cognition (see Section 2.2.4.3). 

From a cognitive point of view, the metacognitive theory of self-regulated learning 

makes a link between monitoring and control (Dunlosky & Rawson, 2012: 271).  

In educational terms, control is commonly referred to as regulation  

(Editorial, 2012: 246). Nelson and Narens’ (1990, 1994, cited in Veenman,  

2011b: 205) meta-memory model explains the link between monitoring and control 

when learners regulate their memory and learning; when task errors or poor 

performance are detected, a bottom-up process is activated where control  

processes (from the object level) inform monitoring (on the meta-level)  

(Dunlosky & Rawson, 2012: 272; Veenman, 2011b: 205). That is, information flows 

from the object level (e.g. when reading a problem statement) to the meta-level 

(which diagnoses comprehension problems and therefore monitors comprehension) 

and informs the object level on how to respond or adapt behaviour  

(regulate behaviour by rereading to improve comprehension). However, Veenman 

(2011b: 205), in extension of this model, proposes a top-down process which is 

triggered not by prior control processes—i.e. the detection of anomalies in the task—

but as a set of conscious self-instructions to regulate task-performance.  
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2.2.6 Research on metacognition and meta-memory  

Research on metacognition has been undertaken in different domains since  

the 1970s when Flavell (1976, 1979) introduced the terms metacognition and meta-

memory (Editorial, 2012: 246), with meta-memory as the first component of 

metacognition (Veenman, 2011b: 199). Subsequently, two main threads of research 

developed. The first was in developmental psychology—prompted by the work of 

Flavell (1979) and Brown (1987)—which has been of main concern for educational 

practitioners and researchers. The second was in cognitive psychology and 

investigated basic processes in metacognition—for example, meta-memory—as 

prompted by the work of Nelson and Narens (1990, 1994, cited in Koriat, 2012: 298; 

see Section 2.2.4.2). 

However, in recent years research into metacognition and meta-memory has 

developed shared interests (Koriat, 2012: 298). By including monitoring activities, 

meta-memory research has crossed the border between metacognitive knowledge 

and metacognitive skills, i.e. metacognition (Veenman, 2011b: 199). Insight from 

both research groups could benefit learners by improving memory and learning 

efficiency, as well as the relationship between monitoring, regulation, and 

performance (Koriat, 2012: 298). Consequently, this section provides a brief 

overview of meta-memory research to explain the association between meta-

memory and metacognition, and thus its influence on learning efficiency, which could 

indicate to teachers how to direct their learners and help them to better direct their 

studies autonomously. 

Research addresses the interplay between monitoring and regulation, the 

implications of monitoring accuracy for effective learning and memory, and the 

relationship between monitoring, regulation, and performance (Koriat, 2012: 296). 

There is plenty of research on the ability of learners to monitor their performance. 

However, less is known about the ability of learners to implement the output of their 

monitoring towards the regulation of their cognition and behaviour and  

how this benefits performance (Koriat, 2012: 297), as well as how to develop  

self-monitoring and self-regulation using instructional intervention in the classroom 

(Editorial, 2012: 245). 
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Research on improving memory and learning efficiency indicates that metacognitive 

experiences (Judgment of Learning, Feeling of Knowledge) influence consequent 

learning (see Section 2.2.4.2). Current findings on metacognitive judgments indicate 

that metacognitive experiences dictate which items are felt to be difficult or easy 

(Efklides, 2011, cited in Schwartz & Efklides, 2012: 150). This could result in learners 

adapting their consequent learning strategies by restudying difficult items, monitoring 

themselves via self-testing, or focusing on easier items to ensure success. 

In addition, metacognitive judgements by learners assessing their own learning could 

be accurate or inaccurate due to factors like overconfidence or stability bias 

(Schwartz & Efklides, 2012: 147). Overconfidence leads to underachievement in 

learning performance (Koriat, 2012: 296). According to research by Dunlosky and 

Rawson (2012: 277–278) in which undergraduate students studied key term 

definitions, it was found that overconfident students overestimated their own learning 

and retaining of content and hence stopped studying prematurely. Monitoring also 

impacts learning performance: when learners are overconfident, their test 

performance is weaker (Editorial, 2012: 247–249). Although monitoring is not always 

accurate and does not always translate to regulation (Koriat, 2012: 298), enhancing 

awareness about accurate monitoring could improve learners’ consequent regulation 

(Dunlosky & Rawson, 2012: 279). For example, learners should be made aware that 

extrinsic cues in the learning environment (e.g. underlined key words when revising) 

may not necessarily transfer to remembering those words under test conditions. 

Furthermore, faulty mental models and beliefs could influence learning  

(Bjork et al., 2013: 417). McCabe (2011, cited in Schwartz & Efklides, 2012: 145) 

investigated undergraduate students’ metacognitive knowledge and found that these 

students more often endorsed unproductive and inefficient learning strategies. 

Providing metacognitive knowledge about factors and strategies that affect memory 

and learning may improve learning efficiency, for instance through self-testing and 

spacing (Schwartz & Efklides, 2012: 145). 

Moreover, research on the contribution of metacognitive monitoring and regulation to 

effective learning and performance (Pieschl, Stahl, Murray & Bromme, 2012, cited in 

Koriat, 2012: 298) shows that these affect performance (see also Section 2.3.3). 

Monitoring is the prerequisite for regulation of learning (Editorial, 2012: 247) and 
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consequently better performance. However, monitoring is not necessarily adequate 

or conducive to regulation. In research with children, it was found that monitoring 

does not always translate into regulation and efficient behavioural strategies  

(Koriat, 2012: 298). Schraw et al. (2006: 114) state that even skilled adult learners 

might monitor themselves poorly under certain conditions. 

Finally, comments about meta-memory research on learning support the dissociation 

of monitoring from regulation (Koriat, 2012: 297). More research is invited on the 

conditions and relationships between monitoring, regulation, and performance 

(Koriat, 2012: 297). Furthermore, self-regulation of learning is complex and not fully 

understood, and there are many intertwining factors influencing real-world learning 

(Efklides, 2012: 294; Schwartz & Efklides, 2012: 150). 

2.2.7 Summary of the construct metacognition 

Metacognition as a multi-faceted construct has been defined in different ways (see 

Sections 2.2.1; 2.2.3). Flavell’s (1979) original definition operationalises meta-

cognition into four categories: metacognitive knowledge, metacognitive experiences, 

strategies and skills, and goals (see Section 2.2.4). It serves as a point of reference 

and is built upon by later researchers.  

Schraw and Dennison’s (1994) definition is widely accepted and conceptualises 

metacognition into two subcomponents: Knowledge of cognition and Regulation of 

cognition. The former refers to Declarative, Procedural, and Conditional knowledge, 

while the latter refers to the self-regulatory aspects of metacognition where the 

metacognitive skills of Planning, Monitoring, Evaluation, Debugging, and Information 

management inform the learning or problem-solving process. Knowledge of cognition 

(metacognitive knowledge) and Regulation of cognition (metacognitive skills) are 

related and each makes a unique contribution to learning and problem solving 

(Schraw & Dennison, 1994: 460).  

Akyol and Garrison (2011: 184) expound metacognition as a reflective construct. 

Their definition corroborates with the two-component view of metacognition, but 

further separates Regulation of cognition into reflective and activity-based 

dimensions, namely Monitoring of cognition and Regulation of cognition (see  
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Section 2.2.3). On a meta-memory level, monitoring and control (or regulation) are 

linked as a two-way flow of information (Dunlosky & Rawson, 2012: 271). 

Metacognition, therefore, operates interdependently in relation to other constructs 

like cognition, self-regulation, self-regulated learning, meta-memory, and affective 

states, to inform teaching, learning, and problem solving. The role of metacognition 

in teaching and learning is discussed in Section 2.3. 

2.3 METACOGNITION IN TEACHING AND LEARNING 

The application of metacognition and its implications for use in teaching and learning 

form the foundation of the study. Perspectives and research on learning and 

teaching are discussed in Sections 2.3.1 and 2.3.2. The role of metacognition in 

mathematical achievement and other factors pertaining to learning and problem 

solving in Mathematics are discussed in Sections 2.3.3 and 2.3.4. The role of the 

teacher in facilitating metacognition and Mathematics learning is discussed in 

Section 2.3.5. Finally, teaching for metacognition will be discussed across  

Sections 2.4.1 to 2.4.4. These sections contribute to exploring secondary research 

question 2: “What is the role of metacognitive awareness in Mathematics teaching 

and learning?” 

 

Figure 2.2: Metacognition in teaching and learning (see also Appendix 8) 
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2.3.1 Past and present considerations of learning  

Learning is complex and has evolved over the last century. A short overview of 

learning theories is provided in Section 2.3.1.1, followed by aspects of learning in 

Section 2.3.1.2 and perspectives on Mathematics learning in Section 2.3.1.3. 

Metacognition is a key aspect of these views. 

2.3.1.1 An overview of learning theories 

Major research theories that contribute to an understanding of learning include 

behaviourism, cognitive psychology, constructivism, socio-constructivism, and more 

recently neurocognitive research. A brief overview of these concepts follows, as it is 

beyond the scope of this discussion to provide a comprehensive survey. 

The behaviourist view of learning focuses on observable behaviour, where the 

setting of objectives and specific tasks facilitate the acquisition of knowledge and 

skills (Stavredes, 2011: 35). Behaviourism does not consider the functions of the 

mind. It contrasts with cognitive psychology, which focuses on information 

processing in understanding memory processes and the employment of cognitive 

strategies to effectively process information to ensure knowledge acquisition for 

long-term memory (Stavredes, 2011: 37, 49). 

Constructivism describes learning as constructing knowledge by activating prior 

knowledge, beliefs, and attitudes (Stavredes, 2011: 41). Among constructivist 

theories, Jean Piaget (1936) and Leo Vygotsky (1978) have heavily informed current 

views of learning and instruction. According to Piaget’s (1936) constructivist theory, 

developmental maturity must exist for learners to benefit from learning experiences, 

and the roles of context or language are not considered, whilst in Vygotsky’s (1978) 

socio-constructivist theory, knowledge is constructed through language and 

groups in cultural contexts (McInerney & McInerney, 2010: 57–58). Vygotsky (1978) 

also emphasised the need for guided discovery and scaffolding in the zone of 

proximal development (ZPD), where learners learn problem solving by adult 

guidance or from more capable peers to improve upon functions in the process of 

maturing (Hartman, 2001b: 158; McInerney & McInerney, 2010: 57–58). In addition, 

he emphasised writing as a method to make internal thoughts visible and to generate 
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meaning (Pugalee, 2004: 28). Regarding instruction—and in contrast with 

behaviourism—constructivism promotes active learning in authentic contexts, with 

the teacher as facilitator to model and scaffold critical thinking and reflective 

strategies (Stavredes, 2011: 39–41). 

Neurocognitive research on how the brain functions and cognitive processes is the 

latest development to shed light on productive learning. Neuroscience is beginning to 

provide evidence for learning principles that have emerged from laboratory research, 

indicating that learning alters the physical structure—and hence the functioning—of 

the brain (Bransford et al., 2000: 4). 

2.3.1.2 Aspects of learning 

Educational research on productive learning pertains to higher-order thinking (e.g. 

problem solving, metacognition, and critical thinking) and affect (e.g. motivation, self-

efficacy, affective self-regulation, and attributions) besides knowledge and skills 

(Hartman, 2001a: 34). Key principles and factors influencing learning are proposed 

in a report (How People Learn: Brain, Mind, Experience, and School) by the National 

Research Council (Bransford et al., 2000). Productive learning entails learning with 

understanding—namely making sense, being actively involved, and setting goals—

and is influenced by the prior knowledge, skills, beliefs, and concepts  

of the individual (Bransford et al., 2000: 8–12). Learning is further influenced by the 

learning and teaching context in which it transpires, where cooperation in problem 

solving and argumentation enhances cognitive development (Bransford et al., 

2000: 25). 

Metacognition supports active learning by learners when they take charge of their 

learning through setting goals and monitor their own progression to accomplish 

these goals (Bransford et al., 2000: 12, 18). Furthermore, as learning involves the 

acquisition of new information but also the updating and revision of previous 

information, metacognition and meta-memory are researched in this study (see 

Section 2.2.6). Koriat (2012: 297) holds that metacognitive monitoring and  

perhaps metacognitive regulation are involved in the revision of information.  

Hartman (2001a: 34) states that effective learning is active, meaningful, retained 

over time, and transferable to different domains and contexts. Transfer requires 
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adaptive competence, which is metacognition (Lin et al., 2005: 244–245). Well-

chosen, specific learning experiences facilitated by metacognition enable  

people to transfer and use their learning, knowledge, and skills in novel  

scenarios (Bransford et al., 2000: 4). 

Learning may, however, be inadequate or ineffective due to a poor knowledge base 

(Garner, 1990, cited in Hartman, 2001a: 34). Alternatively, learners might have the 

knowledge and skills to perform complex tasks, but do not successfully apply these. 

Reasons proposed for failing to implement—or inadequately implementing—

knowledge and skills include the following: learners may not recognise that the 

scenario demands certain knowledge or skills, i.e. they may possess Declarative 

(that) or Procedural knowledge (how) but lack Conditional knowledge of why and 

when to apply and transfer it (Hartman, 1993, cited in Hartman, 2001a: 34; see 

Section 2.2.4.1); learners may possess inadequate knowledge of the link between 

the task and the strategies or general strategies (Hartman, 2001a: 34); learners may 

display poor cognitive monitoring (Garner, 1990, cited in Hartman, 2001a: 34); 

monitoring does not necessarily translate into regulation and therefore change of 

feeling, thinking, and doing (Koriat, 2012: 298); and finally affective components 

such as a lack of motivation or confidence (Hartman, 2001a: 34). Misconceptions 

and false beliefs about learning (Bjork et al., 2013: 417) might also impact 

implementation. Furthermore, the learning and teaching environment may not 

facilitate the effortful application of strategies (Hartman, 2001a: 34) and routine tasks 

may not elicit higher-order thinking. Moreover, the teacher plays a pivotal role in 

facilitating productive learning and problem solving (see Section 2.3.5). 

In summary, productive learning is active and meaningful. It entails building 

knowledge (constructivism), considering the prior knowledge, skills, and beliefs of 

individuals and groups (the individual and situated nature of knowledge and 

learning), regulating learning by setting goals and monitoring progress individually 

(metacognition and self-regulation), and working collaboratively to make sense of 

scenarios (socio-constructive) (see Section 2.3.4.3). 
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2.3.1.3 Perspectives on Mathematics learning 

Regarding Mathematics learning, the focus has shifted from behaviourism—which 

prevailed in the first half of the twenty-first century—towards cognitive/constructivist 

and situated/socio-cultural perspectives, as influenced by developmental psychology 

and advances in information processing and cognitive psychology research 

(Edwards, Esmonde & Wagner, 2011: 57). Consequently, in Mathematics Education 

research, the focus shifted from the tension between acquiring routine computational 

skills (behaviourists) and the importance of meaningful Mathematics learning 

towards developing skills and sense-making in Mathematics 

(constructivist/cognitive). It was followed by the importance of language and the 

socio-cultural context of Mathematics (situated learning and situated cognition) 

(Edwards et al., 2011: 57). 

Cognitive/constructivist research studies Mathematics learning through information 

processing and constructivist approaches, which inform many Mathematics curricula 

(Schoenfeld, 2006, cited in Edwards et al., 2011: 60). Information processing/ 

cognitive research has illuminated important aspects of mathematical  

cognition, among which are knowledge acquisition and memory, higher-order 

thinking skills, complex problem-solving, sense-making, and metacognitive 

processes (Edwards et al., 2011: 57, 59). This research on information processing, 

however, focuses on cognitive factors only and does not include the impact of 

motivation and affect on effective learning (Pintrich, 2004: 306). In this respect, 

different aspects were identified that influence mathematical learning and 

achievement (Edwards et al., 2011: 59), including affective components (see  

Section 2.3.4.2.4). Acquiring the adaptive competence to apply knowledge and skills 

meaningfully and flexibly to open-ended, real-life problems—as opposed to routine 

expertise, i.e. solving problems routinely and without understanding—is a key goal 

(De Corte, 2010: 45). This is referred to as mathematical proficiency (see  

Section 2.3.4.2). 

Constructivism—with its emphasis on active learning, inquiry, and modelling 

activities—is considered a key cognitive paradigm in Mathematics learning during 

the last decades (Edwards et al., 2011: 57). However, a later socio-cultural 

perspective challenged the information-processing constructivist cognitive view, 
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describing it as information that is absorbed, processed, and stored in the mind 

whilst independent of social context and social interaction. In situated cognition and 

situated learning, mathematical knowledge is situated in context and culture, and 

refers to competence in life settings (De Corte, 2010: 40; Edwards et al., 2011: 59). 

Furthermore, research into the role played by discourse and language has provided 

insight into Mathematics learning, describing it as interactive, participatory, and 

situated/socio-cultural (Edwards et al., 2011: 65). De Corte (2010: 40) confirms a 

socio-constructivist view as a generally dominant view of learning, which considers 

the constructivist tenet of active and meaningful knowledge acquisition individually 

and in a social context. For Mathematics learning particularly, the CSSC approach 

describes four major characteristics of productive learning: Constructive, Self-

regulated, Situated, and Collaborative (see Section 2.3.4.3). 

In the South African educational context, the importance of metacognition  

in Mathematics teaching and learning—particularly the teacher’s own metacognition 

in facilitating Mathematics learning—is emphasised (Van Der Walt, 2014: 8–9;  

Van Der Walt & Maree, 2007: 237–238). The knowledge about cognitive and 

metacognitive strategies (Knowledge of cognition) for learning and remembering, 

and skills to adapt to fluid learning demands (Regulation of cognition), are the 

metacognitive aspects that facilitate learning (Hartman, 2001a: 34). Metacognition, 

as adaptive competence, is an important goal in lifelong learning and particularly  

in learning Mathematics (Cornford, 2000: 6; Schoenfeld, 2006, cited in  

De Corte, 2010: 44–45). 

The challenge remains for Mathematics Education researchers to study 

mathematical learning in its natural setting, namely the classroom, and to obtain a 

better comprehension of the deeper processes inherent in Mathematics knowledge 

itself (Edwards et al., 2011: 60–61). 

2.3.2 An introduction to metacognition in Mathematics and 

achievement 

A learner’s metacognitive awareness of their own thinking processes enhances 

productive learning and improves achievement (Schellings et al., 2013: 980;  

White et al., 2009: 178). Learner performance is enhanced by metacognitive 
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knowledge (Pintrich, 2002: 225) and metacognitive skills (Van Der Stel &  

Veenman, 2010: 224; Van Der Stel et al., 2010: 228); therefore, the enhancement of 

metacognition in learners could improve academic achievement (Larkin, 2009: 149). 

This indicates that learners’ metacognitive knowledge (see Section 2.2.4.1) and 

metacognitive skills (see Section 2.2.4.3) could and should be enhanced. 

Metacognition, as the awareness of one’s thoughts, helps learners to analyse and 

regulate their thinking and action by choosing applicable strategies (see  

Section 2.2.4.3). According to Schraw (2001: 13–14), metacognition plays a vital role 

in achieving learning success, enabling learners to manage and identify weaknesses 

in their cognition and learning and address these through the development  

of new cognitive skills. High-achieving learners have a higher level of  

metacognitive awareness than low-achieving learners (Hartman, 2001a: 35). 

Moreover, metacognition as adaptive competence (Bransford et al., 2000: 18;  

De Corte, 2007: 22; 2010: 46; Hartman, 2001a: 35; Lin et al., 2005: 245) is one of 

four attributes contributing to successful problem solving (see Section 2.3.4.2) and 

productive learning (see Section 2.3.4.3). 

As problem solving is central to mathematical proficiency, the goal of Mathematics 

education is to develop competent problem-solvers (Schoenfeld, 1992: 338). 

Furthermore, De Corte (2007: 22) asserts that adaptive competence is the ultimate 

goal of Mathematics education. In addition, the international and national policy 

documents see mathematical competence in problem solving at the core of 

Mathematics (see Section 2.3.4). Problem solving as a higher-order thinking skill is 

assessed in the Grade 12 Mathematics examination, as per the CAPS specification 

that 30% of questions must be on complex procedures and 15% on problem  

solving (DBE, 2011a: 53). The underachievement in Mathematics—as demonstrated 

in the national Grade 12 results, the TIMSS results, and the Grade 9 ANA results—

points to the necessity of developing efficient problem-solving skills in learners, and 

implicitly teachers, in South Africa (see Section 1.2). The importance of acquiring 

and teaching higher-order thinking skills—i.e. metacognitive, critical, and problem-

solving skills (see Section 2.2.2)—is substantiated by educational researchers  

like Akyol and Garrison (2011: 184), Anderson and Krathwohl (2001: 57),  
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Desoete (2007: 718), Pugalee (2001: 237), Schoenfeld (2007: 60),  

Van Der Stel et al. (2010: 219), and Van Der Walt and Maree (2007: 237). 

The scholarly literature, South African policy documents, and poor results obtained 

by South African learners in Mathematics point to the need for teaching problem 

solving. Moreover, Schoenfeld (2007: 64) asserts that, with respect to learning 

Mathematics, “students are not likely to learn what they are not taught”. Therefore, 

learners must be taught specifically how to solve problems successfully. Problem 

solving in Mathematics is complex and questions about metacognition’s effect on 

problem solving do come to the fore. These include “How can problem solving be 

enhanced through metacognition?” and “Can metacognition be taught?” It has been 

established, however, that metacognition has an influence on mathematical 

performance, and that both metacognitive knowledge and metacognitive skills can 

be enhanced (see Sections 2.4.2; 2.4.3). 

2.3.3 Mathematics and achievement research 

Internationally, research has established a link between metacognition and success 

in learning on the one hand and metacognition and problem solving on the other 

(Pugalee, 2001: 237; Van Der Walt et al., 2008: 231; see Section 2.3.2). In the  

South African context, research on metacognition in Mathematics teaching  

and learning is not well-published (Van Der Walt & Maree, 2007: 238; Van Der Walt 

et al., 2008: 231). Research about metacognition in Mathematics pertains primarily 

to the metacognition of school learners. Metacognition employed in the learning  

of Mathematics during the senior schooling phase was investigated by  

Van Der Walt et al. (2008: 205). They found that learners’ metacognitive strategies 

were inadequate for facilitating critical thinking (Van Der Walt et al., 2008: 205, 229) 

and problem solving. A possible explanation is that learners have difficulty 

understanding certain concepts in Mathematics, or do not have the skill to monitor 

and evaluate such problems (Van Der Walt et al., 2008: 229). 

To the best of my knowledge as a researcher, no previous study in a South African 

context has investigated the metacognitive awareness of Mathematics didactics 

students (fourth-year pre-service teachers) in a problem-solving situation. However, 

a noteworthy study by Van Der Walt (2014: 1–22) investigating the level of 



53 
 

metacognitive awareness and self-directedness in the Mathematics learning of 

prospective second and third-year intermediate and senior phase Mathematics 

teachers was found.  

This research study by Van Der Walt (2014: 1–22) found that the metacognitive 

awareness and self-directedness of prospective Mathematics teachers were at a 

high level. In contrast, no significant correlation was found between metacognitive 

awareness and learning achievement, or between self-directedness and learning 

achievement. This contrasted with the hypothesis and previous research indicating 

clear relationships between these concepts. A possible reason for this lack of 

correlation is offered by Van Der Walt (2014: 1–22), who suggests that pre-service 

Mathematics teachers, when assessing their own learning behaviour, might under- 

or over-estimate their level of metacognitive awareness or self-directedness. These 

pre-service teachers might have knowledge of effective metacognitive learning 

behaviour, yet fail to implement this knowledge in Mathematics learning or problem 

solving (see also Sections 2.3.5; 5.4.1). 

In the case of primary learners, Desoete (2007: 705–718) conducted a longitudinal 

study to research the mathematical learning and metacognitive skills of 32 learners 

in Grades 3 and 4. She found that metacognitive skills are teachable and confirmed 

the findings of previous studies stating that the explicit teaching of metacognitive 

skills helps to enhance these skills (Desoete, 2007: 718), especially when instructed 

over an extended period (Veenman, 2011b: 209–210). Desoete (2007: 718) 

recommends that instruction should explicitly focus on (meta)cognitive weaknesses 

and strengths. 

A study using 53 German eight-grade learners was conducted by Perels, Dignath 

and Schmitz (2009: 17–31) with the purpose of enhancing the learners’ 

mathematical self-regulation and problem-solving skills. The intervention aimed at 

improving self-regulation in a regular Mathematics class and took place over nine 

sessions. A self-regulation questionnaire was administered afterwards. This research 

found that self-regulation competencies and mathematical achievement could be 

supported by means of self-regulation interventions (Perels et al., 2009: 27). A 

limitation of the study, however, is that the items on the questionnaire only measured 

whether a learner reported to have applied strategies, while no conclusion  
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can be made as to whether the learners actually regulated their behaviour  

(Perels et al., 2009: 27). Another limitation is that the intervention occurred only for a 

short period of time, and greater effects on learning behaviour and mathematical 

achievement could be expected from extended training. 

While Perels, Gürtler and Schmitz (2005, cited in Schunk, 2005a: 175) report that 

benefits in self-regulation and problem-solving skills could result from relatively short 

interventions, a study by Veenman et al. (2006: 9) contends that metacognitive and 

self-regulation training are most effective over a prolonged period. Another important 

implication of the study by Perels et al. (2005, cited in Schunk, 2005a: 175) is the 

finding that self-regulation strategies were employed most effectively when combined 

with mathematical problem-solving strategy training that is embedded in the content 

domain (Schunk, 2005a: 175). This observation corresponds with literature on 

strategy training (Veenman et al., 2006: 9; see Section 2.4.3). 

In a subsequent study, Veenman and Van Cleef (2007, cited in Veenman,  

2011b: 208–209) reported a similar limitation to that found by Perels et al. (2009) 

regarding learners’ abilities to regulate their performance. Thirty secondary school 

learners were given two questionnaires—the MSLQ (Motivated Strategies for 

Learning) and ILS (Inventory Learning Style)—ahead of mathematical problem 

solving. No significant relationship was found on measures for metacognitive 

skilfulness (Veenman & Van Cleef, 2007, cited in Veenman, 2011b: 208–209). As 

the MSLQ and ILS are arguably better suited to text-studying tasks, a retrospective 

questionnaire was administered immediately after problem solving. Also in this 

instance, no significant relationship was found (Veenman & Van Cleef, 2007, cited in 

Veenman, 2011b: 208–209). A possible explanation provided is that learners will not 

necessarily do as they say, nor will they necessarily recall what they do with a great 

degree of accuracy (Veenman, 2011b: 209). 

Much research in metacognition has been done on the instruction and training of 

metacognitive skills to improve performance. Zohar and David (2008: 59–82) 

researched metacognitive knowledge. Meta-strategic knowledge, as part of 

metacognitive knowledge, is the awareness of the type of thinking strategies that are 

used in specific cases, i.e. Conditional and Procedural knowledge (how, why, and 

when to use strategies) (Veenman, 2011b: 197; see Section 2.2.4.1). Meta-strategic 
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knowledge refers specifically to the skill of transferring knowledge to novel problems 

(Zohar & David, 2008: 77). In this study, Zohar and David (2008: 59–82) investigated 

the explicit teaching of meta-strategic knowledge in authentic classroom situations 

using 119 Grade 8 learners across six classes. The findings show developments in 

learners’ strategic and meta-strategic knowledge after explicit teaching. This 

corresponds with Nelson and Narens’ (1990, 1994, cited in Editorial, 2012: 246) two-

level model of the object (cognitive strategic) and meta-level (meta-strategic), where 

information flows between the two levels through monitoring and control processes 

(see Section 2.2.4.2). 

In a study for post-secondary students, Mevarech and Fridkin (2006: 85–97) 

conducted a 50-hour intervention study for 81 pre-college students in Mathematics 

who did not pass the university entry examination in Mathematics. They employed 

IMPROVE—an acronym for teaching steps and a metacognitive training method—

using four types of metacognitive self-questions during mathematical  

problem solving: comprehension, strategy, connecting, and reflection  

(Mevarech & Fridkin, 2006: 87). Results showed that the pre-college  

students significantly outperformed the control group on metacognitive knowledge 

(domain-specific and general) and Regulation of cognition. In support,  

Schoenfeld (2007: 65) and Veenman et al. (2006: 10) confirm the use of 

metacognitive questions to facilitate metacognitive knowledge and metacognitive 

skills training (see Sections 2.3.4.2.2; 2.4.2; 2.4.3). 

In summary, these studies show that there is a correlation between metacognition 

and Mathematics achievement (see Sections 2.3.2; 2.3.3). Therefore, metacognitive 

knowledge can be enhanced (Zohar & David, 2008: 77; see Section 2.4.2)  

and metacognitive skills can be taught (Desoete, 2007: 717; Masui &  

De Corte, 2005: 366; see Section 2.4.3). Consequently, there are implications for the 

instruction of metacognitive knowledge and metacognitive skills. Instruction should 

be embedded in the content domain (De Corte, 1995: 39; Veenman et al., 2006: 9; 

see Section 2.4.3). Furthermore, although the study by Perels et al. (2005, cited in 

Schunk, 2005a: 175) showed that short interventions might improve self-regulation 

strategies and metacognitive skills, the consensus is that metacognitive  

skilfulness is developed over a prolonged period (Nietfeld & Schraw, 2002: 141; 
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Veenman et al., 2006: 9) and with mindful effortful application and explicit instruction 

(Desoete, 2007: 718). Moreover, monitoring does not necessarily imply nor always 

result in regulation (Koriat, 2012: 297–298). Bjork et al. (2013: 417, 424, 427) hold 

that college students may incorrectly assess and manage their learning due to faulty 

mental models (see Section 2.3.5). 

Research on metacognitive instruction shows that such instruction enhances 

metacognition and learning among learners (Veenman et al., 2006: 9) and that 

reflection and monitoring strategies were particularly effective in improving the 

performance of elementary students making poor academic progress  

(Pressley, Gaskins, Solic & Collins, 2006: 301–302; Veenman, 2011b: 212).  

White et al. (2009: 178) assert that metacognition makes learning more effective and 

learners should therefore be educated to develop various types of metacognitive 

knowledge and skills. Teachers should provide ample opportunity for learners to 

attempt real-life problems, as they elicit metacognition (Desoete, 2007: 717). 

2.3.4 Mathematics learning and teaching 

International and national documents for school Mathematics deliver very similar 

perspectives on the nature of Mathematics, describing what it is and  

what mathematical proficiency entails. Prominent educational researchers  

Bransford (2000), De Corte (2010), and Schoenfeld (2007) provide corroborative 

supportive views on mathematical proficiency. Perspectives on the nature of 

Mathematics and Mathematics teaching and learning are discussed from  

Sections 2.3.4.1 to 2.3.4.4. Metacognition figures as a key aspect of these views. 

2.3.4.1 National and international perspectives on the nature of 

Mathematics 

The National Research Council (NRC), a well-noted US-based international 

publication and educational body, published an important report on the learning of 

Mathematics (National Research Council [NRC], 2001). In this report, five kinds of 

mathematical competencies were indicated as necessary to be proficient in 

Mathematics (Hiebert, Morris & Glass, 2003: 203–204; NRC, 2001: 5). These five 

strands should be integrated and developed concurrently in the teaching and 
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learning context, as they are interdependent in obtaining proficiency in Mathematics 

learning and problem solving. 

These strands are conceptual understanding—a learner’s understanding of the 

concepts, operations, and relations in Mathematics; procedural fluency—a learner’s 

skill at performing mathematical processes correctly, effectively, and with flexibility; 

strategic competence—a learner’s skill at formulating, representing, and developing 

solutions for Mathematics problems; adaptive reasoning—a learner’s ability to think 

logically, reflect, and explain and justify choices; and productive disposition—a 

learner’s ability to view Mathematics as a meaningful and valuable presence in their 

lives, coupled with self-efficacy and persistence (Hiebert et al., 2003: 203–204;  

NRC, 2001: 5). 

This view of competence in Mathematics is also reflected in the South African policy 

document on Mathematics. The CAPS states the following about the nature of 

Mathematics: 

Mathematics is the study of quantity, structure, space and change. 

Mathematicians seek out patterns, formulate new conjectures, and establish 

axiomatic systems by rigorous deduction from appropriately chosen axioms 

and definitions. Mathematics is a distinctly human activity practiced by all 

cultures, for thousands of years. Mathematical problem solving enables us to 

understand the world (physical, social and economic) around us, and, most of 

all, to teach us to think creatively (DBE, 2010b: 7). 

Consequently, these two documents exhibit similar views on the nature of 

Mathematics and on being an effective mathematician. Those five strands of 

mathematical proficiency from an international perspective provided by the NRC—

which parallel with the definition of Mathematics from CAPS, South Africa’s national 

Mathematics document—will be discussed next.  

In the NRC, the first strand, conceptual understanding, indicates an understanding 

about concepts, operations, and relationships, whereas the CAPS refers to 

knowledge about concepts of quantity, structure, and space, as well as axioms and 

definitions (Hiebert et al., 2003: 204; DBE, 2010b: 7). Knowledge precedes 

understanding in Bloom’s Taxonomy of learning, and it can be surmised that both 
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documents presuppose the establishment of these lower-order skills before higher-

order thinking skills and problem solving are encountered. 

Second, Procedural knowledge—as competence to employ mathematical 

procedures skilfully—is reflected in the description of mathematical skilfulness  

in the CAPS as formulating conjectures and axioms (DBE, 2010b: 7;  

Hiebert et al., 2003: 204). Both conceptual understanding as knowledge and 

procedural fluency as skills are reflected in the CAPS. The CAPS and NRC both 

emphasise the importance of knowledge and skills, which serve as the foundation for 

problem solving as a higher-order thinking skill (see Section 2.3.2). 

Third, the NRC mentions strategic competence as posing and solving problems, 

while the CAPS perceives problem solving as enabling us to better comprehend the 

world. In this respect, the CAPS also places emphasis on the utility value of 

Mathematics, which is referred to in the last strand of the NRC, namely productive 

disposition, as learners viewing Mathematics as useful and applicable to their lives 

(Hiebert et al., 2003: 204; DBE, 2010b: 7). Problem solving is deemed central to 

Mathematics and mathematical proficiency in both documents. 

Fourth, both documents refer to the development of higher-order adaptive skills. The 

NRC’s view of adaptive reasoning as thinking logically, reflecting, explaining, and 

justifying corresponds with the view of the CAPS that problem solving develops 

creative thinking (Hiebert et al., 2003: 204; DBE, 2010b: 7). Moreover, this points to 

considering and reflecting on different ways to solve problems, or finding alternative 

solutions and applying them. Metacognition, as adaptive competence, is the ability to 

reflect, elaborate, and explain one’s thinking and actions. 

One difference is the CAPS’ overt reference to Mathematics as a distinctly human 

activity, which is not explicitly mentioned in the NRC. It is, however, implicitly referred 

to in learners’ disposition of self-efficacy and tenacity, as well as in seeing 

Mathematics as useful and meaningful. Both documents refer to the use of language 

in formulating conjectures and problems, with the NRC identifying reflection, 

explanation, and justification as typically human actions. There is, therefore, a strong 

recognition of the socio-constructive nature of Mathematics in both documents. 
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Mathematics is considered useful and applicable to lives (utility value) when it can be 

used to solve real-life problems, thus contributing to making meaning of the world. 

This refers to the socio-constructivist and situated nature of Mathematics (see 

Section 2.3.1.3). Problem solving is considered pivotal in mathematical proficiency 

(see Section 2.3.4.4). Furthermore, Mathematics builds thinking and reasoning skills, 

comprehension, and creativity (DBE, 2010b: 7). 

In summary, the dual nature of Mathematics is emphasised. Besides the abstract 

nature of Mathematics, which involves thinking and reasoning skills and processes in 

the mind (information processing), it is also a human activity grounded in reality  

(De Corte, 2007: 25) and situated in authentic contexts where knowledge is 

constructed individually and collaboratively (see Section 2.3.1.3) and where affective 

aspects such as motivation, persistence, and self-efficacy play a role (see  

Section 2.3.4.2.4). 

In the following section, mathematical proficiency as it relates to competent 

performance in Mathematics problem solving is discussed. 

2.3.4.2 Mathematical proficiency  

Researchers in Mathematics Education concur that becoming proficient in 

Mathematics is achieved by developing and acquiring a mathematical disposition 

(De Corte, 2007: 20; NRC, 2001: 5; Schoenfeld, 2007: 60). Mathematical proficiency 

is facilitated by four attributes of adaptive competence during learning and problem 

solving—resources, heuristics, metacognition, and affect—as well as four aspects of 

productive learning, which are the constructive, situated, and self-regulatory aspects 

of metacognition as well as collaboration. 

Mathematical proficiency involves more than knowing facts and procedures. A key 

focus in Mathematics is not only what a learner knows, but also what they can do 

with that knowledge and, more importantly, what they are disposed to do 

mathematically (Schoenfeld, 2007: 71). Schoenfeld (2007: 59) asserts that a 

mathematical disposition—a significant facet of mathematical proficiency—is, in the 

first instance, the ability to employ mathematical knowledge in appropriate contexts. 

This is the ability to transfer knowledge and skills to new contexts, which is tested via 
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novel problem-solving situations. Another important facet of mathematical proficiency 

is the tenacity to persist with a problem when trying to solve it. Mathematical 

proficiency, therefore, entails expertise in Mathematics. This competent performance 

is also adaptive to deal with increasing knowledge demands and problems in real 

life. De Corte (2007: 21–22) asserts that adaptive competence or expertise is the 

ultimate goal of Mathematics education. 

Competent problem-solvers—those who possess a mathematical disposition, apply 

knowledge appropriately, and display persistence in adapting knowledge and 

strategies to new problem-solving scenarios—behave differently from novices 

(Schoenfeld, 2007: 67). Experts reflect on their performance and adapt it 

accordingly. They evaluate and monitor their behavioural performance, cognition, 

affect, and environment. Therefore, a mathematically proficient or competent 

problem-solver can apply knowledge and skills effectively, take control of thinking 

processes and feelings, and adapt procedures and find alternatives to  

ensure progress is made if initial plans are unsuccessful. In short, metacognition is 

adaptive expertise, and this adaptive competence (De Corte, 2010: 46;  

Hatano & Inagaki, 1986, cited in Bransford et al., 2000: 18) is a key aspect of 

mathematical proficiency (De Corte, 1995: 39; 2007: 20; Schoenfeld, 2007: 60; see 

also Section 2.3.4.2.3). 

Unfortunately, knowledge and skills are often not readily accessible in the transfer of 

learning or solving of a novel problem (De Corte, 2007: 21; Hartman, 2001a: 34). 

Metacognition as adaptive competence is the ability to transfer these skills and inert 

knowledge to novel tasks and learning contexts, and is therefore pivotal in  

problem solving and lifelong learning (Bransford et al., 2000: 18; De Corte, 2010: 46; 

Lin et al., 2005: 244). 

Bransford et al. (2000: 16, 23) assert that competence is developed in an area of 

inquiry by teaching a basis of factual knowledge—starting from prior knowledge, 

concepts, and beliefs—to bring conceptual change and organise knowledge to aid 

memory retrieval and application. They further assert that a metacognitive approach 

to teaching enables learners in the regulation of their learning by establishing  

goals, monitoring progress, and employing metacognitive strategies and skills 

(Bransford et al., 2000: 18). These aspects that facilitate competence—namely a 
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sound knowledge base; strategies for learning, memory, and transfer; and 

metacognition, which includes monitoring, goal-setting, and managing information—

corroborate with De Corte (2007: 20) and Schoenfeld’s (2007: 60) views on 

mathematical proficiency as adaptive competence. 

Schoenfeld (2007) and De Corte (1995, 2007) proposed similar aspects that facilitate 

proficiency in Mathematics learning and problem solving. These are: a well-

connected knowledge domain and skills base; problem-solving skills and heuristic 

strategies applied in authentic contexts; affective components such as self-efficacy 

(i.e. a confident disposition towards Mathematics), beliefs, interest, and  

motivation; and lastly, metacognition as an adaptive higher-order thinking skill.  

De Corte (1995: 252–255) refers to resources as a domain-specific knowledge  

base and uses metacognition and self-regulated learning interchangeably. 

Schoenfeld (2007: 66) describes affect as beliefs and dispositions. In summary, 

mathematical proficiency involves resources, heuristics, metacognition, and affect. 

Importantly, the five strands of mathematical proficiency (see Section 2.3.4.1) 

endorsed by the NRC (2001: 5) are evident in these four aspects of mathematical 

proficiency as proposed by Bransford et al. (2000), De Corte (1995, 2007), and 

Schoenfeld (2007). These are discussed from Sections 2.3.4.2.1 to 2.3.4.2.4. 

2.3.4.2.1 Resources 

The first attribute required to build a mathematical disposition is a well-organised and 

accessible domain-specific knowledge base regarding the facts, symbols, 

algorithms, concepts, and rules specific to Mathematics (De Corte, 2007: 20; 

Schoenfeld, 2007: 60). These resources are the formal and informal knowledge 

about the content domain (Carlson & Bloom, 2005: 48). This knowledge is  

usually acquired in learning at school and via social and cultural situations (see 

Section 2.3.1.1). 

The first strand of mathematical proficiency referred to in the NRC’s standard 

document is conceptual understanding: learners’ understanding of the concepts, 

operations, and relations in Mathematics (NRC, 2001: 5). Possessing a rich and 

well-connected knowledge base is critically important, as misconceptions result from 

a poor knowledge base. Teaching should develop this conceptual understanding. 
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However, knowing Mathematics in producing facts and definitions (conceptual 

understanding) and the execution of procedures (procedural understanding) is not 

sufficient. Learners should be capable of using mathematical knowledge to solve 

problems (see Section 2.3.4.4). 

Schoenfeld (2007: 71) states that it is not what you know that matters, but what you 

can do with that knowledge. In studies of problem solving, it has been noted that 

although learners report to possess the knowledge, it does not appear to be readily 

accessible for use, and inadequate planning, monitoring, and evaluation skills hinder 

the probability of success (see Section 2.3.3), particularly in novel problem-solving 

situations (see Section 2.3.4.2; De Corte, 2007: 21; Hartman, 2001a: 34). 

Metacognition as an adaptive competence facilitates the ability to access the 

necessary knowledge and apply it successfully (see Sections 2.3.4.2; 2.3.4.2.3). 

2.3.4.2.2 Heuristics 

Heuristic methods are systematic cognitive search strategies for analysing  

problems and significantly increase the likelihood of finding the correct solution  

(De Corte, 2007: 20; see Section 2.2.4.3.1). Heuristics entail strategic competence: 

the ability of learners “to formulate, represent, and solve Mathematics problems” 

(NRC, 2001: 5; see Sections 2.2.4.3; 2.3.4.1). These problem-solving strategies 

could include, for example, making a sketch to represent the problem, restating the 

problem, working backwards from the problem statement, or finding an easier, 

related problem. An effective method is the employment of metacognitive self-

reflective questions, such as “What am I doing?”, “Why am I doing it?”, and “What 

can I do differently?” (De Corte, 2007: 20; Schoenfeld, 2007: 64). 

Mathematical proficiency also requires procedural fluency, which is skillfulness  

in performing mathematical procedures with efficiency, precision, and flexibility 

(NRC, 2001: 5; see Section 2.3.4.1). Mathematical proficiency, therefore, is 

competence in solving problems and using resources effectively, by adapting 

methods and applying strategies successfully until the problem is solved. These 

problem-solving skills can be acquired (Schoenfeld, 2007: 66) as the teacher 

scaffolds and coaches problem-solving heuristics and metacognitive strategies, 

guiding learners to reflect upon their progress during the problem-solving process 
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and adapt their methods accordingly. Problem-solving expertise is thus the adaptive 

expertise to solve a problem successfully (De Corte, 2010: 46). 

2.3.4.2.3 Metacognition 

De Corte (2007: 20) separated metacognition into two subcomponents, namely 

metacognitive knowledge and self-regulatory metacognitive skills, to elaborate on 

their importance in acquiring a mathematical disposition or adaptive expertise. 

Meta-knowledge is knowledge about cognitive functioning, motivations, and 

emotions (De Corte, 2007: 20). This means knowing one’s (or others’) strengths and 

weaknesses, developing cognitive potential through deliberate learning and 

application of oneself, and being aware of one’s motivation and emotions in learning 

and problem solving, such as interest in a task or fear of failure when facing a 

complex mathematical problem (De Corte, 2007: 20; see Sections 2.2.4.1; 2.2.4.2). 

Metacognitive skills are defined as the self-regulatory skills regarding cognitive and 

volitional activities and processes. This includes the Regulation of cognition on the 

one hand (e.g. planning and monitoring one’s problem-solving processes) and the 

skills for regulating one’s volitional processes on the other (De Corte, 2007: 20; see 

Sections 2.2.4.3; 2.2.4.4). 

Schoenfeld (2007: 66) emphasises the role of metacognition as “using what you 

know effectively” in mathematical problem solving. For example, when working under 

time constraints, learners might possess enough mathematical knowledge, but do 

not apply what they know as they run out of time. Furthermore, metacognitive 

reflection—as reflection-in-action (see Section 2.2.3) whilst engaging in a problem—

is difficult and takes time and prolonged effort to acquire (see Section 2.3.5). 

Mathematical proficiency, therefore, involves metacognition as adaptive reasoning 

(NRC, 2001: 5; see Section 2.3.4.1). This is a learner’s ability to think logically and 

explain and justify why certain solutions and strategies are chosen. Importantly, it is 

the ability to reflect on solutions and strategies and adjust them to reach the goal of 

solving problems. 
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2.3.4.2.4 Affect 

Affective variables such as beliefs, attitudes, and emotions significantly  

influence problem-solving performance and learning in Mathematics  

(Carlson & Bloom, 2005: 48; Schoenfeld, 2007: 71). Positive Mathematics-related 

beliefs are threefold: first, they include implicitly and explicitly held subjective 

conceptions about Mathematics education; second, beliefs about the self as a 

learner of Mathematics; and third, beliefs about the social context of the Mathematics 

classroom (De Corte, 2007: 20; Schoenfeld, 2007: 68). 

Mathematical proficient learners, therefore, have positive and correct beliefs about 

the learning of Mathematics, the nature of problem solving, and their own abilities to 

translate these into new tasks and contexts, which essentially is adaptive 

competence. The NRC (2001: 5) states that an aspect of mathematical proficiency is 

having a productive disposition, which is a learner’s inclination to view Mathematics 

as valuable, applicable, and meaningful in their lives, coupled with self-efficacy and 

persistence (see Section 2.3.4.1). 

However, negative beliefs and erroneous views of Mathematics could influence a 

learner’s initial interest in attempting a task as well as their continued engagement 

until a problem is solved. These erroneous beliefs could be, for example, that 

Mathematics does not have to make sense; that Mathematics is a solitary  

activity; that school Mathematics does not relate to the real world; and that  

good problem-solvers solve problems in five minutes (De Corte, 1995: 39; 

Schoenfeld, 1992: 359; 2007: 71). Negative beliefs could therefore influence 

learners’ willingness to look for and debug errors and persist with problem solving. 

Learners’ beliefs could consequently be an obstacle for the implementation of new 

learning approaches (De Corte, 2010: 56) such as CSSC (see Section 2.3.1.3). 

On the other hand, self-efficacy, as the belief in oneself and effective management of 

one’s own responses, supports persistence towards reaching a solution, debugging 

errors, and adapting new strategies. In support, Carlson and Bloom (2005: 60) affirm 

that positive beliefs about one’s ability to process information, being persistent, and 

being willing to deal with unsuccessful attempts are all vital in progressing to reach a 

solution. Schoenfeld (2007: 60) describes this inclination to persevere, believe in 
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one’s own ability, and possess knowledge of one’s own resources as a mathematical 

disposition. However, changing learners’ beliefs could pose a major challenge  

(De Corte, 2010: 56). These beliefs related to productive learning, and the utility and 

role of metacognition, could hinder the implementation of problem-solving strategies. 

Another affective component, motivation, plays a significant part in learning and 

problem solving. Motivational beliefs relate to goal-orientation (the purpose for doing 

the task), self-efficacy (as the competence to perform the task), and perceptions 

about the task (the value placed on the task and the learner’s interest level)  

(Kohen & Kramarski, 2012: 1; Pintrich, 2004: 394). Importantly, initial perceptions 

and feelings about a problem-solving task (its level of difficulty, relevance, personal 

interest, outcomes, feelings of boredom or interest, and what counts as success  

or failure) affect motivation to engage in the task (Boekaerts, 2010: 94–95;  

Pintrich, 2004: 394). The type of task is therefore pivotal in directing the willingness 

of learners to engage initially. It is, however, a certain mathematical disposition that 

keeps learners engaged in a task and helps them to persist during problem solving 

(Schoenfeld, 2007: 60). Success in a task could lead to motivation, interest, and 

satisfaction, whereas failure to solve a problem may lead to negative emotions like 

anxiety. 

Clearly, affective responses that occur during the problem-solving process are very 

complex (Carlson & Bloom, 2005: 49). Pintrich (2004: 394) found that college 

students attempt to control affect and emotions through coping strategies and self-

reflection. One such coping strategy is attribution theory, which is particularly 

relevant in the learning and problem solving of Mathematics. Novice learners tend to 

attribute failure to negative teacher behaviour, rather than their own lack of effort 

(Desoete, 2007: 706). 

Finally, the social context can foster positive attitudes towards Mathematics in 

teachers and their learners (De Corte, 2000: 260; Schoenfeld, 2007: 68). Wrong 

beliefs, naïve understandings, and misconceptions about Mathematics could be 

addressed by allowing learners to articulate and reflect collaboratively on  

strategies that can be used and by providing justifications for strategies  

(Bjork et al., 2013: 417, 427; De Corte, 2000: 261; Thomas & Mee, 2005: 221). This 

can raise awareness and stimulate thinking about learners’ thought processes and 
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feelings. As these feelings are shared in a safe space where learners can make 

mistakes and try their hand at problem solving—whether successful or not—learners 

develop more confidence to try again. 

In summary, in a conducive Mathematics teaching and learning environment,  

the roles of the teacher and their learners are negotiated and adjusted  

(De Corte, 2000: 260). The whole class (both teacher and learners) reflect on and 

discuss possible solutions by evaluating different strategies and judging their 

suitability, as well as discussing the applicability and extension of knowledge and 

solutions to subsequent problems. The discussion of what a good problem or 

solution is—and for some problems, more than one solution is applicable—allows 

learners to construct knowledge together and actively participate in the problem-

solving process (see Sections 2.3; 2.3.1.3). Importantly, learners should be allowed 

time and opportunity to monitor and evaluate the effectiveness and suitability of their 

problem solving (see Section 2.4.4). Teachers thus facilitate the active and 

meaningful knowledge construction of learners and, importantly, facilitate reflection 

on their thoughts and actions. In this respect, Van Der Walt and Maree (2007: 224) 

assert that teachers do not readily allow learners time to reflect or make 

metacognitive instruction explicit, which is an important aspect of successful problem 

solving in Mathematics. 

2.3.4.3 Productive learning in Mathematics 

Productive learning fosters adaptive competence in Mathematics (De Corte,  

2007: 23). As learning is complex, there are many views on what productive  

learning is and which aspects influence learning. Metacognition supports learning as 

learners set goals and regulate their progress in pursuit of these goals (see  

Sections 2.3.1.2–2.3.1.3). In Mathematics particularly, De Corte (2007: 23) focused 

on four aspects of productive learning which are relevant to facilitate the acquisition 

of adaptive mathematical competence (see Section 2.3.4.2). These four aspects—

described as Constructive, Self-regulated, Situated, and Collaborative, abbreviated 

as CSSC—are discussed over the next four sections. 
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2.3.4.3.1 Constructive 

The constructive aspect of productive learning relates to the learner making meaning 

and constructing knowledge about the concept, operation, or problem. It requires the 

learner to be actively involved in the learning process. De Corte (2007: 23) asserts 

that a key premise of the constructivist perspective on learning is the mindful and 

effortful participation of learners in the learning process, which alongside interaction 

with the environment facilitates and supports the acquisition of knowledge and skills. 

The learner makes sense of new knowledge by connecting it with existing 

knowledge. 

In Mathematics, prior knowledge regarding mathematical facts, formulae, 

procedures, and strategies is crucially important to facilitate sense-making and 

memory. The acquisition of knowledge is therefore also cumulative, as new 

knowledge is built upon and restructures prior knowledge. In this way, the learner’s 

conceptual understanding is enhanced by connecting knowledge about concepts, 

relationships, and patterns (see Section 2.3.4.2.1). 

It is confirmed by Van Grinsven and Tillema (2006: 80) that learning can be 

considered a construction of knowledge, rather than an assimilation of knowledge 

requiring learning-to-learn skills. The learner’s adaptive reasoning is the  

ability to reflect upon and explain and justify solutions and chosen strategies (see 

Sections 2.3.4.1–2.3.4.2). Metacognitive awareness of what one does or does not 

know enables the learner in filling in the knowledge gaps, for example by relearning 

concepts, formulae, operations, and procedures; by improving skills such as problem 

solving; and by revisiting strategies. 

2.3.4.3.2 Self-regulated metacognition 

In constructive learning, the emphasis is on the process of learning, which implies 

that it is self-regulated (De Corte, 2007: 24) Self-regulating learners set learning 

goals, and manage themselves and their learning environment to reach these goals 

(see Section 2.2.5). These learners engage motivationally and metacognitively,  

and are behaviourally active in the learning process (Zimmerman, 1994, cited in  

De Corte, 2007: 24). Metacognitive knowledge about available resources, affective 

components such as motivation and self-efficacy, and beliefs regarding the learning 
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of Mathematics and the how, when, and why of strategy use (see Section 2.3.4.1)—

as well as metacognitive regulation of cognition, motivation, and actions—facilitates 

Mathematics learning and problem solving. Therefore, metacognitive skills—as the 

self-regulatory aspect of metacognition—manage processes of knowledge-building 

and skill-acquisition (see Section 2.2.4.3).  

Furthermore, Van Grinsven and Tillema (2006: 79–80) assert that the aim for 

learners is to reach a degree of autonomy as self-regulated learners by setting goals, 

reflecting on their levels of competence, learning from mistakes, and selecting tasks. 

Self-regulating learning is, therefore, an active process whereby learners reflect on 

and regulate their learning environment (see Section 2.2.5). Motivation is enhanced 

by self-regulatory activities like goal-setting and task selection. In addition, goal-

orientated learners are more actively involved in learning and display positive 

feelings, higher interest, and better performance (Van Grinsven & Tillema, 2006: 80). 

If learners are given a degree of autonomy in their learning by choosing and setting 

their own goals, then learning is usually more meaningful and self-regulatory. It is 

metacognitive skills which then monitor and regulate this learning and problem-

solving processes (see Section 2.2.4.3). 

2.3.4.3.3 Situated  

Learning is situated in the context of the classroom, and in cultural and social 

environments (De Corte, 2007: 25). Because of the usefulness of Mathematics as 

well as its abstract nature (see Section 2.3.4.1), opportunities should be given to 

apply conceptual knowledge to practical problems (De Corte, 2007: 25). 

Competence in transferring knowledge and skills in real life is an important aspect of 

learning (De Corte, 2010: 40; Edwards et al., 2011: 59; see Section 2.3.4.2). 

Moreover, in Mathematics, learning and problem solving in authentic contexts 

stimulate interest and motivation (see Section 2.3.4.2.4). 

Socio-constructivist theories on discourse and language have illuminated  

the learning of Mathematics as interactive, participatory, and socio-cultural  

(Edwards et al., 2011: 65; see Section 2.3.1.3). The roles of both teacher and  

learner are continually reassessed as they contribute to the problem-solving  

process, by discussing and evaluating answers for ‘best’ or alternative solutions  
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(De Corte, 2000: 260–261). Teachers as facilitators should scaffold learning in this 

way, rather than simply being instructors (see Section 2.3.5). That implies that 

learning is both individual and co-operative (see Section 2.3.1.1). 

2.3.4.3.4 Collaborative  

The collaborative aspect of productive learning refers to the socio-constructive 

nature of learning (De Corte, 2007: 25, 26).  Social constructivism emphasises the 

important role of language and participative, collaborative learning in mathematics, 

where problems are discussed, solutions are justified, and mathematical language is 

built (Edwards et al. (2011: 65, see Section 2.3.1.1). This is opposed to previous 

beliefs or views of Mathematics as an individual activity only. 

According to Van Grinsven and Tillema (2006: 79), cooperative learning has been 

shown to positively affect self-regulating activities, motivation, self-efficacy, and 

skills. Interactions between teacher and learner, and learner and learner, promote 

awareness of thoughts and actions and therefore reflection on problem-solving 

processes (see Sections 2.3.4.2.3–2.3.4.2.4). The support and scaffolding of the 

teacher are needed for reaching learner autonomy. Furthermore, self-regulating 

behaviours are pivotal (Van Grinsven & Tillema, 2006: 79) in order for learners to 

develop adaptive competence, which will facilitate learning and successful problem 

solving in new contexts and situations (De Corte, 2007: 23; see Section 2.3.4.2). 

However, meaning is also formed individually. Learning is individual as learners 

differ in learning styles, strategies, motivation, and other related factors. Meaning is 

thus formed individually and collaboratively with peers, teachers, models, and the 

environment or social context (see Section 2.3.1.2). A criticism is that discovery 

learning provides minimal guidance from teachers, meaning misconceptions and 

wrong beliefs may not be challenged (De Corte, 2010: 53). The teacher, therefore, 

plays a pivotal role as mentor and coach and should balance guided discovery, 

instruction, and constructive feedback in an exceptional manner (see Section 2.3.5). 
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2.3.4.4 Metacognition and problem solving in Mathematics: An 

interplay 

Successful problem solving as a higher-order thinking process is a hallmark of 

mathematical proficiency. Metacognition supports the problem-solving process as an 

adaptive competence. Solving problems, therefore, is a complex activity involving 

cognitive actions which need to be managed and coordinated by metacognitive 

actions. Problem-solving skill in Mathematics involves interaction between cognition 

and metacognition (Carlson & Bloom, 2005: 47; Garofalo & Lester, 1985: 171–172; 

Pugalee, 2001: 236; see Sections 2.2.2; 2.3.1.2; 2.3.4.2). This begs the question as 

to what constitutes a problem and what good problem solving entails?  

A Mathematics question is an authentic problem when a routine or well-known 

approach is not obvious to the problem-solver at the outset (Schoenfeld, 1983, cited 

in Carlson & Bloom, 2005: 47). A good problem-solver would therefore demonstrate 

mathematical proficiency, as problem solving is key to competence in Mathematics 

(see Section 2.3.2). 

In his seminal work, How to Solve It (1945), George Polya described a Mathematics 

problem-solving model as a four-phase heuristic process. These phases are: (a) 

understanding the problem, (b) making a plan, (c) carrying out the plan, and (d) 

looking back, which includes reviewing results and evaluating solutions. Polya (1945) 

built upon the work of John Dewey (1910), who described a five-step process: a ‘felt’ 

difficulty, clarification of the problem, identification of possible solutions, testing the 

suggested solutions, and verifying the results. 

Garofalo and Lester’s (1985: 163–176) cognitive-metacognitive framework identifies 

four phases underpinning the performance of mathematical tasks: Orientation, 

Organisation, Execution, and Verifying. In addition, they identify metacognition  

as the bridge linking these four activities (Garofalo & Lester, 1985: 171). Carlson and 

Bloom (2005) built upon the work of Polya (1945) and Garofalo and Lester (1985), 

further proposing that these four phases are cyclical. In each of these phases 

metacognitive behaviours, which are related to problem solving, occur. Moving from 

one phase to another occurs when a metacognitive decision is the driving force for a 
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cognitive action (Carlson & Bloom, 2005: 62–69; Garofalo & Lester, 1985: 171; 

Pugalee, 2001: 239–243).  

A competent problem-solver would be envisaged to apply this four-phase cyclical 

model. Mathematical competence is further informed by having a good knowledge 

base, knowing and applying strategies effectively (heuristics), displaying a positive 

belief in learning and problem solving, monitoring the metacognitive problem-solving 

process, and demonstrating motivation, interest, and self-efficacy (affect) (see 

Section 2.3.4.2). The four-phase problem-solving model—Orientation, Organisation, 

Execution, and Verifying—is described over the next four sections in relation to 

cognitive and metacognitive activities. 

2.3.4.4.1 First Phase: Orientation 

In the first phase, competent problem-solvers attempt to make sense of the given 

information. Metacognitive behaviours during this phase comprise of comprehension 

strategies, analysing information and conditions, assessing the level of difficulty, 

determining the chance of success, considering methods of representing  

the information, and using reflective questioning (Carlson & Bloom, 2005: 72; 

Garofalo & Lester, 1985: 171; Pugalee, 2001: 237). 

Examples of reflective metacognitive behaviours during this phase include 

comprehension strategies like reading and rereading, analysing information and 

conditions by writing down what is given and what is asked, assessing the familiarity 

and difficulty of the task by thinking of similar problems or different ways to solve the 

problem, and recalling mathematical facts and procedures. It also includes the 

representation of information using heuristics, such as diagrams and  

tables. Reflective behaviour such as asking questions keeps problem-solvers 

focused on the task (Carlson & Bloom, 2005: 72; Garofalo & Lester, 1985: 171; 

Pugalee, 2001: 237). 

Besides metacognition, mathematical competence also includes affect, heuristics, 

and resources (see Section 2.3.4.2). Therefore, in the Orientation phase, competent 

problem-solvers would display affect by showing high interest, curiosity, and a sense 

of self-efficacy when assessing the difficulty of the problem and their chance of 

success (Carlson & Bloom, 2005: 68). Furthermore, they tap into their resource 
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knowledge base of mathematical concepts, facts, and algorithms in trying to make 

sense of the information and understanding the problem. Heuristic strategies are 

also considered, such as trying to improve, working backwards, and using diagrams 

and tables to initially represent and organise information. 

Consequently, the planning and allocation of resources—and the skills and 

strategies for processing information more efficiently (see Section 2.2.4.3)—relate to 

the metacognitive skills Planning and Information management respectively, which 

are present in the first phase of the problem-solving framework. Importantly, 

Declarative knowledge—knowledge of one’s strengths, weaknesses, affect, and 

intellectual resources, especially prior knowledge—plays a pivotal role in Orientation 

activities (see Section 2.2.4.1). 

2.3.4.4.2 Second Phase: Organisation 

During the second phase of the problem-solving framework, particular metacognitive 

behaviours move learners from initial attempts to make sense of the problem 

statement towards making a plan about how to proceed with solving the problem 

(Artz & Armour-Thomas, 1992: 161; Pugalee, 2001: 237). In this phase, 

metacognitive behaviours can include identifying goals, developing a global plan (a 

general goal), deciding on an approach to work towards the solution, reflecting  

on the effectiveness of strategies and plans, organising and summarising data,  

and considering the available resources (Carlson & Bloom, 2005: 72; Garofalo & 

Lester, 1985: 171; Pugalee, 2001: 237). 

Identifying goals in a hypothetical problem-solving scenario could include, for 

example, comparing the ratio of surface area to the volume of different objects, 

making a general plan by finding the volume and surface areas of different objects, 

working towards the goal of solving the problem by choosing a formula, reflecting on 

the effectiveness of strategies and plans by posing questions, organising and 

summarising the data through diagrams, and noting important information. 

Consequently, in this second phase of the problem-solving model, the selection of 

skills and strategies for processing information more efficiently—and for assessing 

learning and strategy use—provides evidence of the metacognitive skills Information 

management and Monitoring respectively (see Section 2.2.4.3). Metacognitive 
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knowledge is vital in this phase to develop a plan to solve the problem: Procedural 

knowledge as knowledge of how to use strategies effectively, as well as Conditional 

knowledge of when and why these strategies could be applied, is evident in this 

phase (see Section 2.2.4.1). 

Therefore, competent problem-solvers will reflect on their conceptual knowledge and 

the heuristic strategies that they want to access in this phase. Self-questioning—

such as “Will this strategy work?” and “Is there another method?”—aids in monitoring 

the strategies and approaches that they elect to utilise (Carlson & Bloom, 2005: 54). 

Moreover, not only would competent problem-solvers exhibit a mathematical 

disposition of applying knowledge correctly, but they would be able to reflect on their 

feelings to help them progress despite frustration (see Section 2.3.4.2.4). This 

approach will help them display the tenacity and willingness to continue solving the 

problem (Schoenfeld, 2007: 59; see Sections 2.3.4.1; 2.3.4.2). 

2.3.4.4.3 Third Phase: Execution 

The third phase includes carrying out the plan to reach a solution. It is accomplished 

by using formulae and making calculations and estimations; by monitoring goals, 

methods, and strategies; and by carrying out computations and redirecting efforts,  

as well as reflecting on conceptual knowledge (Carlson & Bloom, 2005: 68, 72; 

Garofalo & Lester, 1985: 171; Pugalee, 2001: 237). 

During this phase of the problem-solving model, metacognitive behaviours include 

reflection on progress in solving the problem and checking comprehension to 

consider different or alternative methods to correct conceptual or computational 

errors. It may also involve checking an initial understanding of the problem again by 

rereading the problem statement (Carlson & Bloom, 2005: 54). Therefore, the 

metacognitive skills Monitoring and Debugging can play a key role in this stage  

(see Section 2.2.4.3.2). Moreover, the regulation of the affective, heuristic,  

and resource components of mathematical proficiency is important in the  

Execution phase  
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2.3.4.4.4 Fourth Phase: Verifying 

During the fourth phase, metacognitive checking and decision-making behaviours 

are employed. Decisions and results are evaluated to check the validity of the 

solution and the accuracy of the computations. Evaluative strategies could  

also occur in other phases and the problem-solver could revisit other phases  

or progress based on self-reflective feedback (Carlson & Bloom, 2005: 69, 73; 

Garofalo & Lester, 1985: 171; Pugalee, 2001: 242). 

Based on reflective feedback regarding the effectiveness of the solution, the 

problem-solver could display metacognitive reflective behaviours such as rereading 

the problem statement, debugging calculation errors, finding easier or more elegant 

ways to solve the problem, or consequently using the solution or method in similar 

problems in future (Carlson & Bloom, 2005: 45). The metacognitive skills Evaluation 

and Debugging are prominent in this phase (see Section 2.2.4.3.2). Depending on 

the feedback, however, Planning and Information management skills could be 

employed again in search of a plausible solution, as the problem-solving process  

is cyclical.  

Therefore, in this final phase, besides the reflective component, the proficient 

problem-solver will access and reflect on a well-connected knowledge base that  

will inform his/her assessment of the reasonableness and correctness of the 

solution, as well as the effectiveness of the heuristics and algorithms employed 

(Carlson & Bloom, 2005: 70). Competent problem-solvers thus draw  

upon their Conceptual and Procedural knowledge to check the reasonableness  

of their answers. Moreover, the awareness and effective management of  

affective components may support the problem-solver to persevere (Carlson & 

Bloom, 2005: 70; Schoenfeld, 2007: 60). 

In summary, the four phases of the problem-solving process have been discussed 

with their constant interplay of cognitive and metacognitive behaviours, as well  

as the four components of mathematical proficiency. Furthermore, this model 

(Carlson & Bloom, 2005; Garofalo & Lester, 1985; Pugalee, 2001; 2004: 29) 

provides a useful context for analysing learners’ written comments whilst they solve 

mathematical problems (see Sections 4.4.2; 4.4.3). 
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2.3.5 Teachers as metacognitive reflective professionals 

Learners and teachers are faced with numerous decisions, new knowledge, and 

novel problems daily (see Sections 1.1; 1.2; 2.1). To adapt to these novel scenarios, 

learners need adaptive skills to help them learn how to learn (see Section 2.3.1.2) 

and solve problems (see Section 2.3.4.4) and to acquire these learning-to-learn skills 

for lifelong learning (Bjork et al., 2013: 418; Cornford, 2000: 9). 

Teachers, in turn, are expected to facilitate learning and problem solving. 

Metacognition facilitates this reflective learning process and mathematical 

proficiency (see Section 2.3.4.2). Hartman (2001b: 149) states that teachers should 

teach with and for metacognition, i.e. teachers should be metacognitively aware 

themselves and also model metacognition to their learners, teach metacognitive 

strategies, and think about how to develop metacognition in their learners  

(see Section 2.4). Furthermore, teachers are expected to manage classrooms, make 

decisions, and solve problems themselves daily. This requires adaptive expertise, 

which is the ability and skill to reflect and adapt thoughts, feelings, and actions 

accordingly. This ability is, essentially, metacognition: the awareness of one’s  

own thoughts, feelings, and actions, and the skills to regulate cognition (see  

Sections 2.2.4; 2.2.4.1). 

With regards to teaching, Lin et al. (2005: 245) assert that adaptive metacognition 

means adapting oneself and one’s environment in response to classroom variability. 

Therefore, metacognitive teachers display adaptive expertise in learning and 

problem solving. Furthermore, this expertise is metacognitively adaptive and requires 

reflection on the task (i.e. monitoring) and reflection during the task (i.e. regulation) 

(see Section 2.2.3). Consequently, there is a widely recognised expectation  

for teachers in higher education and professional development to develop and  

foster reflective practices and adaptive skills (Bowman, Galvez-Martin &  

Morrison, 2005: 336; Duffy, 2005: 300; Jindal-Snape & Holmes, 2009: 219;  

Kohen & Kramarski, 2012: 2; Larrivee, 2008: 341; Rogers, 2001: 49). These 

reflective practices enable teachers to adapt and improve upon their performance on 

the job (Larrivee, 2008: 342). This is especially valuable for the training of pre-

service teachers. Kohen and Kramarski (2012: 7) found that reflective discussions on 

self-regulatory aspects like metacognition and motivation support the learning and 
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teaching of pre-service teachers. They consequently state that metacognitive 

reflection is an essential component of pre-service education programs, a  

view supported by educational researchers Duffy (2005: 304–305) and Van Der Walt 

and Maree (2007:  238). 

The notion is that metacognitive reflective pre-service teachers will become 

metacognitive reflective teachers with adaptive skills who can reflect on their  

own practice and model these skills and reflections for their learners  

(Kohen & Kramarski, 2012: 2). Reflective practitioners link theory to practice by 

analysing their own practice based upon knowledge and evaluating alternatives for 

future practice (Bowman et al., 2005: 336). Furthermore, teachers need to learn how 

to guide the learning process by metacognitive training/instruction and modelling 

(Bowman et al., 2005: 336; Duffy, 2005: 304–305; Schraw et al., 2006: 121) as 

metacognition—comprising of metacognitive knowledge and skills—can be taught 

(Hartman, 2001b: 150; White et al., 2009: 178) and learnt, hence influencing 

achievement (see Section 2.3.3).  

Despite the emphasis on reflective practice as teaching for and with metacognition, it 

appears that teachers do not regularly implement metacognitive reflection in their 

practices (Duffy et al., 2009: 247, 249; Jindal-Snape & Holmes, 2009: 219;  

Kohen & Kramarski, 2012: 2; Larrivee, 2008: 341; Van Der Walt, 2014: 1–9). Novice 

teachers, in adapting to the situational demands of their new work, and expert 

teachers, as adaptive reflective professionals, would engage metacognitively  

(Duffy et al., 2009: 245-247). Teachers might not reflect metacognitively as they 

might lack awareness about the significance of metacognition in learning and 

problem solving (Veenman et al., 2006: 10), or lack understanding of the 

development of metacognitive skills that foster learning (Azevedo, 2009: 93), and 

therefore do not know how to instruct effectively. Bowman et al. (2005: 335) and 

Cornford (2000: 9) support this view that teachers seem to be ill-equipped to 

implement metacognitive strategies. Emphasis on learner performance may increase 

the likelihood of teachers opting to develop efficient teaching strategies rather than 

metacognitive reflection, which takes longer to acquire (Larrivee, 2008: 341). 

Furthermore, metacognition is not generally associated with teachers’ professional 

development (Duffy, 2005: 300) or pre-service teacher education (Duffy, 2005: 308). 
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Reflection in the micro-teaching environment for pre-service teachers is particularly 

difficult, as these teacher trainees have to reflect as teachers, peers, and learners at 

the same time during simulated lessons (Kohen & Kramarski, 2012: 2, 6). From the 

experience of Van Der Walt and Maree (2007: 224)—both prominent South African 

Mathematics educational researchers—teachers seldom model ‘learning-to-learn’ 

skills (Cornford, 2000: 5) as “thinking about one’s thinking”, i.e. metacognition  

(see Section 2.2.3). In my own experience as a teacher, the emphasis on 

performance and a time-demanding, difficult school Mathematics syllabus are often 

the driving forces behind opting for step-by-step algorithmic routine problems, rather 

than developing metacognition that facilitates the solving of ill-defined problems. 

A teacher’s beliefs about learning could be an obstacle for implementing effective 

learning practices (De Corte, 2010: 56). Similarly, Bjork et al. (2013: 417, 424, 427) 

cites studies of college students which reveal that faulty beliefs about their own 

learning and memory may lead a student to inaccurately assess and manage their 

learning. Another reason offered for lack of or inadequate employment of 

metacognition is that metacognitive reflection is not a spontaneous or easy process 

to acquire (Jindal-Snape & Holmes, 2009: 219). Grossman (2009: 15–22) found that 

college students could not easily and meaningfully report on their thoughts and 

emotions when asked. He further cites Kegan’s (1994, cited in Grossman, 2009: 17) 

research suggesting that reflection on one’s thoughts and feelings is a more 

challenging process than generally assumed. In a problem-solving scenario, 

students had to solve a Rubik’s cube and record their thoughts whilst solving the 

problem. In Kegan’s (1994, cited in Grossman, 2009: 17) view, it is only through 

gradual and scaffolded support and challenges that learners will organise their minds 

in such a way that they are capable of reporting accurately on their thoughts and the 

problem-solving process. 

Metacognitive reflection is especially problematic for in-service teachers.  

Lin et al. (2005: 245) state that adaptive metacognition is crucial in dealing with the 

unique challenges of classroom changeability. Duffy et al. (2009: 244) assert that 

teachers’ metacognition is complex due to varying situational factors such as 

classroom setting, the learners, and their own career level. As metacognition in 

teaching is situational, teachers may opt for routine experiences to manage 
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classrooms rather than novel or challenging problems that elicit metacognition. Pre-

service and novice teachers have more difficulty to reflect (Grossman, 2009: 17), but 

novices might be more willing to reflect upon their thoughts and actions to improve 

their practice. 

A study by Kohen and Kramarski (2012: 6) stated that pre-service teachers 

experienced difficulty reflecting on knowledge and action while teaching, i.e.  

during a real-time experience. This corresponds with Kegan (1994, cited in 

Grossman, 2009: 17) and Grossman’s (2009) view that reflection-in-action is difficult 

(see also Section 2.2.3). Teachers, therefore, prefer to reflect on their actions 

afterwards. Consequently, it is important to enhance and train for metacognitive 

reflection in the professional development of teachers. The question is whether and 

under what conditions teachers could be trained to become reflective practitioners, 

and hence translate metacognitive reflection to their learners in the teaching and 

learning environment. This will be discussed briefly in the following section.  

2.3.5.1 Training teachers as metacognitive reflective practitioners 

Several studies show improvement of metacognitive reflective skills in 

undergraduate students who received applicable training. In a study by  

Bowman et al. (2005: 336), flash cards with prompting questions as a reflective tool 

were used. In the study, teachers asked reflective questions (what happened and, 

importantly, why?), identified reasons, responded to students’ learning needs, and 

adapted their teaching accordingly, ultimately displaying metacognitive reflection. 

A study by Kohen and Kramarski (2012) investigated the conditions under which 97 

pre-service teachers in a micro-teaching environment could enhance their self-

regulated learning to the optimum level. Kohen and Kramarski (2012: 6) found that 

explicit reflective support and critically reflective discussions improved self-regulatory 

aspects, namely metacognitive skills and motivational aspects. The use of explicit 

directed prompts such as flashcards—which referenced metacognitive skills or 

motivational aspects—helped the teacher trainees to reflect and then display higher 

levels of metacognition and motivation.  
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Pugalee (2004: 27–47) used reflective journals as a tool for facilitating learners’ 

metacognition in Mathematics. The general intent was to facilitate the ability of 

learners to verbalise their thought processes out loud and in writing whilst solving 

Mathematics problems. Consequently, through a process of feedback and self-

reflection, learners were encouraged to expand on the quantity and quality of the 

descriptions of their mathematical thinking regarding the justification of steps and 

strategies used in problem-solving processes. Learners showed an increase in the 

quantity and quality of their descriptions. These think-aloud tools are generally used 

to assess the thought processes of an individual (Pugalee, 2004: 29). 

However, there is no consensus in the field about how to best develop these 

reflective practices. An environment that facilitates reflection needs to be  

established (Bowman et al., 2005: 341). This implies that in pre-service teacher 

programs, purposeful reflection should be established as an intentional practice 

(Bowman et al., 2005: 341; Veenman et al., 2006: 9). The higher education 

curriculum needs to provide opportunities in the field, in practice teaching, and in 

practice for such reflective opportunities. Multiple opportunities and prolonged 

practice are required (Bowman et al., 2005: 336; Veenman et al., 2006: 9). 

Furthermore, metacognitive reflection as an ongoing process needs to extend into 

the first years of teaching (Kohen & Kramarski, 2012: 7), as it requires time and effort 

to reflect (Jindal-Snape & Holmes, 2009: 219) and novice teachers engage  

in high levels of metacognitive thought in dealing with new situations daily  

(Duffy et al., 2009: 243). 

Tools are commonly used to prompt and foster metacognition. Prompting cues  

such as reflective questions or flashcards (Bowman et al., 2005: 336; Kohen & 

Kramarski, 2012: 7), keeping reflective journals (Bowman et al., 2005: 348;  

White et al., 2009: 186), and verbal or written protocols (Pugalee, 2004: 29) have 

been mentioned. Collaboration amongst peers (Schraw et al., 2006: 121, 128) 

facilitates, motivates, supports, and challenges teachers, making them aware of 

common difficulties and challenging them to think about their beliefs and to set, 

implement, and evaluate goals in reflection with peers (Duffy, 2005: 304). It also 

motivates them, as workload challenges are shared and positive experiences are 

reinforced and celebrated. Lin et al. (2005: 253) assert that teaching is situated in 
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socio-cultural contexts with diverse goals for teaching. Observing others in  

problem-solving experiences could therefore enhance adaptive metacognition  

by reflecting on different strategies to reach different goals. Finally, mentoring pre-

service teachers plays a critical role in developing reflection among  

pre-service teachers (Bowman et al., 2005: 346). It therefore takes active  

and concerted engagement with the help of an expert (Duffy, 2005: 304–305; 

Schraw et al., 2006: 121) to coach and scaffold this process in an ongoing manner 

as the pre-service teacher reflects and seeks feedback. 

In summary, the development of metacognition in pre-service and in-service 

teachers seems problematic and not widely implemented, despite a well-established 

call for reflective practices and for teachers to be metacognitive reflective 

professionals. Research on reflective practices is well-documented (Jindal-Snape & 

Holmes, 2009: 219; Rogers, 2001: 37). However, in South Africa there is a  

call for further research into teachers’ metacognition with the implication to  

extend this to professional development, especially pertaining to Mathematics  

(Van Der Walt et al., 2008: 231). In Section 2.4, teaching for the enhancement of 

learners’ metacognition is discussed. 

2.4 TEACHING FOR METACOGNITION 

Teaching for metacognition promotes metacognitive awareness in learners. 

Teachers should teach both with and for metacognition (Hartman, 2001b: 149; see 

Section 2.3.5). Metacognition is related to other constructs like cognition, self-

regulation, self-regulated learning, and affective components like motivation (see 

Section 2.2.5). These constructs influence productive learning and successful 

problem solving. Furthermore, the categories of metacognition (see Section 2.2.4) 

each play a distinct but complementary role in enhancing learning and  

problem solving. Metacognition develops spontaneously to some extent  

(Bruning, Schraw & Norby, 2011: 29; Van Der Stel et al., 2010: 227) and at different 

ages, but can also be developed and enhanced through instruction. It is not linked to 

intelligence, which means all learners can be trained. 

Hartman and Sternberg (1993, cited in Desoete, 2007: 717), Schraw (1998:  

113–125), and Schraw et al. (2006: 111–139) describe ways for teachers to enhance 
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the general metacognitive awareness of learners in classroom settings. Four key 

ways are promoting general metacognitive awareness, enhancing metacognitive 

knowledge, enhancing metacognitive skills, and fostering conducive learning 

environments. These will now be elaborated on briefly. 

2.4.1 Promoting general metacognitive awareness 

Teachers and learners may not be aware of the role played by metacognition in 

learning and problem solving. Promoting the value of metacognitive awareness to 

teachers (see Section 2.3.5) is an essential step in the learner’s development and 

employment of metacognition. Teachers can promote metacognitive awareness to 

their learners by extensively discussing the importance of reflection on one’s 

thinking, doing, and feeling. This awareness of the usefulness of metacognition—that 

is, when, how, and why to use metacognitive strategies—serves to motivate learners 

to attempt to employ these strategies (Veenman et al., 2006: 9). In Mathematics 

especially, writing in think-aloud protocols or reflective journals provides a level of 

reflection that promotes learners’ awareness of their own thinking about the 

mathematical problem-solving process (Pugalee, 2004: 28; White et al., 2009: 186). 

They reflect on their strengths and weaknesses and which resources they possess 

(content knowledge, strategies), but also on their skills, e.g. planning effectively, 

monitoring progress towards a goal, or evaluating the logic of a solution. 

Levels of metacognitive awareness can develop spontaneously to some extent 

(Bruning et al., 2011: 29; Van Der Stel et al., 2010: 227) or via teachers, peers, and 

parents (Veenman et al., 2006: 9). Reflection on daily activities with  

peers or parents, or the thinking-aloud modelling by teachers whilst problem  

solving, imparts this metacognitive awareness to learners (Pugalee, 2001: 237; 

Veenman et al., 2006: 9). Despite this level of metacognitive knowledge and skills 

being at their disposal, learners might not be successful—or they might fail to use 

metacognition—because of personal or task variables (Veenman et al., 2006: 10). 

Consequently, task difficulty or personal variables such as feelings of anxiety,  

lack of motivation, or being unaware or ill-informed about the usefulness of 

metacognition in a certain situation should be considered in metacognitive instruction 

(Veenman et al., 2006: 10). 
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2.4.2 Enhancing metacognitive knowledge 

Metacognitive knowledge (Knowledge of cognition) includes three subcomponents: 

Declarative, Procedural, and Conditional knowledge. These represent knowledge 

about oneself and knowledge of how, when, and why to use strategies (see  

Section 2.2.4.1). Learners’ knowledge and beliefs about themselves influence their 

learning and problem solving. Reflection before a task on how one learns best, what 

one knows or does not know about the subject matter, and how one feels about the 

task or their ability (Akyol & Garrison, 2011: 184) is, therefore, an important 

component of fostering metacognitive knowledge. Adequate metacognitive 

knowledge is related to domain-specific knowledge, such as concepts and  

difficulties within a domain (Veenman et al., 2006: 5), e.g. knowledge about  

when and why to use problem-solving strategies in Mathematics (see also  

Sections 2.3.4.2.1–2.3.4.2.4) 

Learners’ metacognitive self-knowledge could be correct or incorrect and might  

be resistant to change (Veenman et al., 2006: 4) as learners and teachers under-  

or over-estimate their ability and learning relative to the complexity of the  

task (Efklides, 2012: 298). Feedback from teachers could inform this self-knowledge 

and help learners to adapt it. Moreover, teachers’ metacognitive knowledge of  

their beliefs about teaching and their abilities informs their feedback. Training  

for metacognitive knowledge should be explicitly labelled and discussed  

(Pintrich, 2002: 223). Whole-group and peer discussion foster meta-knowledge by 

connecting strategies with content and developing a shared language to talk about 

cognition and learning (Pintrich, 2002: 223). Moreover, teachers should grant 

learners an opportunity to assess self-knowledge about strengths, weaknesses, and 

misconceptions, and hence their learning (Pintrich, 2002: 224), as well as challenge 

false beliefs (such as misconceptions or a lack of motivation) about the self or 

learning (see Section 2.3.4.2.4). Therefore, teachers’ beliefs about learning 

Mathematics and the role of metacognitive awareness influence the way they teach. 

Such reflections are enabled in whole-group or peer discussions, reflective writing 

opportunities like portfolios, or think-aloud methods and cueing strategies  

(Schraw, 1998: 119–120) and self-questioning. Self-questioning is a useful strategy 
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to facilitate metacognitive knowledge in the four-phase problem-solving framework 

(see Sections 2.2.4.1; 2.3.4.3.2). 

2.4.3 Enhancing metacognitive skills 

Regulation of cognition comprises of Information management, Planning, 

Debugging, Monitoring, and Evaluation (see Section 2.2.4.3). These metacognitive 

skills are self-regulatory and facilitate active and constructive learning, and 

consequently self-regulated learning (see Section 2.3.4.3.2) which impacts 

achievement. Studies have indicated that metacognitive strategies are trainable and 

should therefore be instructed, as they influence achievement and learning (see 

Sections 2.3.3; 2.2.4.3). When the employment of strategies becomes automated 

behaviour, a metacognitive skill has developed (see Section 2.2.4.3). Metacognitive 

skills (domain-specific and general) could therefore be enhanced through instruction 

(Schellings et al., 2013: 986). Azevedo (2009: 93) asserts that the successful 

instruction of skills should take into account the development of processes which 

enhance academic achievement for skills to develop, improve, or become automated 

with further practice. 

Although most people possess some level of metacognitive awareness  

(Bruning et al., 2011: 29; Van Der Stel et al., 2010: 227; Veenman et al., 2006: 9), 

the level of skills might be insufficient or ineffectively employed (see  

Sections 2.3.1.2; 2.4.1). It is important to note that using metacognitive  

skills more often does not necessarily imply a higher level of quality  

(Van Der Stel et al., 2010: 226) and consequently adequate or effective use. In 

Mathematics, Van Der Stel et al. (2010: 226) found that metacognitive skills 

generally increase in frequency (quantity) and also quality (adequate utilisation). It is 

especially the case in learners of 13–15 years of age that metacognitive skilfulness 

is related to better Mathematics performance (Van Der Stel et al., 2010: 227). 

Therefore, development of metacognitive skilfulness should be enhanced during  

this stage. 

Successful instruction of metacognition should be explicit (Desoete, 2007: 706; 

Pintrich, 2002: 223). Although there is little clarity regarding which skills develop first 

through maturation, studies have shown successful instruction of metacognitive skills 
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if a specific skill is trained at the appropriate time and situated effectively within the 

context of a task (Van Der Stel et al., 2010: 227; Veenman, 2011b: 211). In 

Mathematics problem solving, having the teacher model strategies by verbalising 

why and when a specific heuristic is used (see Sections 2.2.4.1; 2.2.4.4)  

is particularly successful (Hartman, 2001b: 158; Van Der Walt & Maree, 2007: 235), 

as is using questions as prompts to implement a step-by-step plan  

(Mevarech & Fridkin, 2006: 365–394; see Section 2.3.3). 

In collaborative sessions, learners model cognitive and metacognitive skills 

frequently better than teachers (Schunk, 1989, cited in Schraw, 1998: 118) as they 

discuss strategy use and evaluate progress towards learning goals within their peers’ 

zone of proximal development (Schraw et al., 2006: 120; see Section 2.3.1). 

Veenman et al. (2006: 9) assert that literature indicates three principles central to the 

successful instruction of metacognitive skills. First, it is important to embed strategies 

in the content domain tasks (see Sections 2.3.3; 2.3.5.1). Pintrich (2002: 223) and 

White et al. (2009: 177), on the other hand, assert that general strategies could be 

trained across domains: for example, knowing how to activate prior knowledge in 

understanding a problem or a text indicates a general metacognitive skill that can be 

applied in novel situations across domains (see also Section 2.2.4.3). 

Second, successful instruction of metacognitive skills requires informing learners 

about the usefulness of metacognition (see Section 2.4.1). This motivates learners to 

exert initial effort (Veenman et al., 2006: 9). In addition, the task chosen is crucial in 

eliciting metacognition and stimulating interest (see Sections 2.4.4; 2.2.4.2).  

This also presupposes the awareness of teachers about the role metacognition plays 

(see Section 2.3.5). Third, as skill adaptation and acquisition are neither  

easy nor quick processes, prolonged training is required (Veenman, 2011b: 203; 

Veenman et al., 2006: 9; see Section 2.3.5.1). Therefore, opportunities should be 

provided for learners to be trained explicitly to apply metacognitive strategies in 

specific domains over a prolonged period. 
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2.4.4 Promoting conducive learning environments 

In a conducive learning environment, productive learning is facilitated and 

independent lifelong learning is the goal (see Section 2.3.4.3). Teachers, learners, 

the curriculum, and the classroom setting interact in productive learning and problem 

solving. Metacognition is an essential component in such a powerful learning 

environment (Azevedo, 2009: 93; De Corte, 1995: 42; Editorial, 2012: 250–251; 

Pugalee, 2001: 237; Thomas & Mee, 2005: 220) to facilitate productive learning, 

competent problem solving, and higher-order thinking skills in interaction with other 

factors. Metacognitive awareness and self-regulated learning are consequently 

fostered by the learning environment, supportive teacher behaviour, learners’ 

independence, and the types of tasks provided (Van Grinsven & Tillema, 2006: 79; 

see Section 2.3.4.2.4). 

The learning environment should provide opportunities for learners to reflect 

metacognitively on their learning and to evaluate contextually appropriate adaptive 

learning and thinking strategies (Thomas & Mee, 2005: 221). This way, they will 

foster adaptive competence by enabling learners to transfer knowledge and skills to 

novel problems and real-life settings (Bransford et al., 2000: 4, 9, 18). In structuring 

learning opportunities, the type of task should be selected to stimulate higher-order 

thinking. Authentic, interesting, and challenging problems elicit metacognitive 

behaviour and cause increased use of strategies and motivation (Van Grinsven & 

Tillema, 2006: 79, 88; see Sections 2.2.2; 2.2.4.2). However, as teachers and 

learners often assume that they know how to learn, the instruction and employment 

of metacognition could be met with initial resistance (see Section 2.3.4.2.4). 

Therefore, providing open-ended challenging tasks might serve as catalyst for 

realising the need for skills to learn or problem-solve. 

Furthermore, tasks provided through computer programs and web-based resources 

such as Betty’s Brain (http://www.teachableagents.org/) can serve to scaffold 

metacognition (Vanderbilt University, 2013; Wagster, Tan, Biswas & Schwartz, 2007; 

Wagster, Tan, Wu, Biswas & Schwartz, 2007). These technologies prompt and cue 

learners to plan and set goals, provide reasons for strategies and plans, and monitor 

their effectiveness; consequently, the programs provide feedback to learners, who in 

turn can reflect upon their practice and apply this knowledge to debug or remediate 

http://www.teachableagents.org/
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(Schwartz et al., 2009: 342; White et al., 2009: 177). Thus metacognition, as thinking 

about thinking and actions, is facilitated. As thought processes are externalised, 

metacognitive knowledge and skills are made explicit to learners. 

A conducive learning environment fosters cognitive and metacognitive development 

and should nurture opportunities for acquiring general learning and thinking skills 

across different subject-matter domains (De Corte, 1995: 40, 42; Dunlosky, Rawson, 

Marsh, Nathan & Willingham, 2013: 46). These cognitive and metacognitive 

strategies can be explicitly taught and influence achievement and learning (see 

Section 2.3.3). However, skills take time to develop and the learning environment 

should provide instructional support to develop these skills (Azevedo, 2009: 93). 

Instruction focuses on informed strategy training (influencing metacognitive 

knowledge) and self-regulated training (influencing metacognitive skills) to foster 

metacognition in learning and problem solving (Desoete, 2007: 717) through the 

teacher modelling the why, when, and how of strategy use. A powerful Mathematics 

learning environment provides a safe and supportive space for learners to  

think aloud and defend their choice of metacognitive and problem-solving  

strategies. It affects motivation positively (Schraw et al., 2006: 130; Van Grinsven & 

Tillema, 2006: 78) and helps learners to attribute their success to the use of 

adequate strategies and self-regulation (Desoete, 2007: 706). Furthermore, it fosters 

positive attitudes towards Mathematics (De Corte, 2000: 260) and contributes 

towards a mathematical disposition (see Section 2.3.4.2). 

2.5 SUMMARY OF CHAPTER 

This chapter contributed to exploring the study’s first two secondary research 

questions, on the conceptualisation of metacognitive awareness and the role that it 

plays in Mathematics teaching and learning. 

Metacognitive awareness comprises of metacognitive knowledge (Knowledge of 

cognition) and metacognitive skills (Regulation of cognition). As an adaptive 

competence, metacognitive awareness influences learning and problem solving at 

school, university, and the workplace. As the reflective practice of a teacher, it plays 

a critical role in translating and facilitating mathematical problem solving in learning 
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and teaching, and consequently influences achievement. It is therefore critical that 

metacognitive awareness should be enhanced. 

The next chapter describes the methodological considerations underpinning the 

investigation into the perceptions and applications of metacognitive awareness by 

pre-service Mathematics teachers. 
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CHAPTER 3  

EMPIRICAL RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

Novel real-life scenarios and fast-changing information demand new ways of learning 

and problem solving on an ongoing basis. A metacognitive adaptive approach 

facilitates the transfer of skills and knowledge into novel situations at school and in 

professional life. In Chapter 2, the importance of metacognitive awareness in learning 

and problem-solving situations as illustrated in the literature was discussed. In this 

chapter, the research approach and methods that were used to determine the level of 

metacognitive awareness of Mathematics didactics students, and the transfer of 

metacognitive awareness into a Mathematics problem-solving situation, are 

discussed. The following components are described: 

 

Figure 3.1: Components of the empirical research methodology (see also Appendix 8) 

Research is a systematic process involving the collection, analysis, and interpretation 

of data to uncover underlying truths or to increase understanding of a phenomenon 

(Leedy & Ormrod, 2013: 2, 76). Three components must be addressed in planning a 

study: the researcher’s own philosophical assumptions, the research approach, and 

specific research methods. The research approach should be based upon the nature 

of the research problem (Creswell, 2014: 3, 5).   
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The philosophical worldview of the researcher informs the research approach, which 

presupposes specific research methods (see Section 3.4). Research methods involve 

the research design (see Section 3.4.1), the population and sample  

(see Section 3.4.2), data collection methods and instrumentation (see Section 3.4.3), 

and lastly data analysis and interpretation (Creswell, 2014: 5; see Section 3.4.5). 

3.2 PHILOSOPHICAL WORLDVIEW 

A researcher’s worldview is their general philosophical positioning about the world and 

nature of research (Creswell, 2014: 6). This worldview is a general orientation about 

the nature of reality and human behaviour (ontology). A researcher’s ontology and 

epistemology (their view of what knowledge is) can inform the purpose, type, and 

method of data collection (Maree & Van Der Westhuizen, 2010: 31–32).  

This orientation leads to a specific research approach: either qualitative, quantitative, 

or a mixed methods approach. 

Two worldviews informed the study: post-positivism and interpretivism. In the post-

positivist’s worldview, problems are studied that reflect the need to identify and assess 

the causes that affect outcomes (Creswell, 2014: 19). Truth is not viewed as absolute 

as per the scientific view, but instead is observed as a reality that exists “out there”. 

Knowledge is based upon observation and measurement of an objective reality. Post-

positivists contend that we cannot be certain about our claims of knowledge when 

observing the attitudes, behaviour, and actions of humans. Evidence is imperfect and 

fallible, open to refuting and revising (Creswell, 2014: 19). Knowledge, as small sets 

of discrete data, is obtained through observation and measurement by using numeric 

measures. This may inform further observation or testing as done in the experimental 

method. A quantitative methodological approach is usually followed. 

Interpretivism as a broad term holds that there are multiple participant meanings 

(Creswell, 2014: 6) or multiple perspectives, opinions, or beliefs as subjective  

states vary from one person to another (Phillips & Burbules, 2000, cited in  

Johnson & Onwuegbuzie, 2016: 16). Interpretivism holds that reality is not objectively 

determined but is socially constructed through text and symbols, consciousness, and 

shared meaning. Constructivism and social-constructivism are interpretive 

approaches and are well-associated with educational research, particularly with 

respect to Mathematics (see Sections 2.3.1.1; 2.3.1.3).  
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Interpretivism aims to provide a perspective on a situation and to analyse it, offering 

insight into how people make sense of their situation or the phenomena which they 

encounter. Context is important to uncover how meaning is constructed and so 

improve our understanding of the whole (Nieuwenhuis, 2010: 59). A qualitative 

methodological approach is usually followed in interpretivist research. 

As reality encompasses single and multiple aspects, researchers may  

test hypotheses and explain findings from different perspectives (Creswell &  

Plano-Clark, 2007: 24). In the study, a post-positivist/interpretivist worldview  

informs the epistemology and methodology. As a researcher, I was interested in 

assessing the level of metacognitive awareness of pre-service teachers about 

Mathematics didactics, thus a post-positivist worldview with a quantitative approach 

was adhered to in the main data collection phase. 

Assessing metacognition as a multi-faceted, interdependent construct in relation to 

other constructs (see Sections 2.2.5; 2.2.7) is difficult (Sperling et al., 2002: 54). 

Multiple methods, therefore, are promoted by researchers and have been used in 

previous studies to explain or elaborate on the findings. Metacognition comprises of 

two subcomponents, Knowledge of cognition and Regulation of cognition, each 

comprising of subscales (see Section 2.2.3). Consequently, in the quantitative phase, 

in observing and assessing levels of metacognitive awareness, data was collected via 

a questionnaire comprising of small subsets of the construct and translated into 

numeric measures. Additionally, as researcher I was interested in  

the pre-service teachers’ ability to translate their metacognitive awareness into 

practice, i.e. to do what they say they are doing and will do. Consequently, an 

interpretivist worldview with a qualitative approach was adhered to in the think-aloud 

problem-solving session. The findings from the questionnaire were expanded on and 

enriched by the findings from the think-aloud problem-solving session, where the 

metacognitive knowledge and metacognitive skills—transferred to solving a 

Mathematics problem—were assessed. This, therefore, provided the study with a 

complementary view. As Nieuwenhuis (2010: 60) notes, the strength of a qualitative 

approach is its richness and depth of exploration and description. 

On a supplementary note, educational research is viewed as increasingly complex, 

dynamic, and interdisciplinary; therefore, epistemological and methodological 
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pluralism promotes effective research and scholarly collaboration and could  

provide a more comprehensive answer to the research problem (Johnson & 

Onwuegbuzie, 2016: 15). Furthermore, the link between philosophical worldview  

and research approach is neither untouchable nor necessary (Howe, 1988, 1992, cited 

in Johnson & Onwuegbuzie, 2016: 15). Researchers, therefore, need to complement 

one method with another. Quantitative researchers should not  

be restricted from using qualitative methods and vice versa for  

corroboration, complementarities, or expansions (Green et al., 1989, cited in Johnson 

& Onwuegbuzie, 2016: 15). In the next section, the empirical research approach is 

described. 

3.3 EMPIRICAL RESEARCH APPROACH 

3.3.1 Purpose of empirical research 

The purpose of this empirical research is to determine the level of metacognitive 

awareness of pre-service Mathematics teachers. For this purpose, both quantitative 

and qualitative methods were used to obtain data, as both quantitative and qualitative 

researchers can utilise empirical observations to address a research problem 

(Johnson & Onwuegbuzie, 2016: 14).  

Secondary research question 3, “What is the level of metacognitive awareness of pre-

service Mathematics teachers on the Metacognitive Awareness Inventory (MAI)?”, 

was investigated using a quantitative approach in the form of a standardised 

questionnaire. Meanwhile, secondary research question 4, “What is the level of 

metacognitive awareness of pre-service Mathematics teachers in a problem-solving 

context?”, utilised a qualitative approach in which the pre-service teachers had to write 

down their thoughts and calculations during a problem-solving session.  

The aim for the supportive qualitative inquiry was to enrich the findings of the 

quantitative data. 

The research methodology employed to realise the purpose of the research is 

discussed in the next section. 
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3.3.2 Research approach 

A research methodology is the general approach that a researcher adopts in 

conducting their research and describes procedures for collecting, analysing, and 

interpreting data (Creswell, 2014: 3; Leedy & Ormrod, 2013: 7). The two research 

approaches—quantitative and qualitative methods—are not dichotomous but rather 

lie on a continuum; consequently, a study tends to be more quantitative than 

qualitative or vice versa (Creswell, 2014: 3). The research approach is ultimately 

based on the nature of the research problem (Creswell, 2014: 3). In the study,  

a quantitative approach is utilised with a qualitative approach adopted to enrich  

the findings. 

In the Human Sciences, the quantitative inquiry investigates the theory of a 

phenomenon, to refine or extend the theory with the goal to generalise to a larger 

population. The researcher, situated within a post-positivist philosophical worldview, 

aims to be as value-free as possible. In contrast, a qualitative inquiry assumes that 

human behaviour is context-bound and therefore seeks to understand and interpret 

human behaviour in a particular setting. The researcher’s bias is identified and 

monitored as a meaningful understanding of human behaviour in the interpretivist 

worldview and is unavoidably value-bound (Ary et al., 2010: 420–421). In this instance, 

my interpretation as researcher was conceivably informed by years  

of teaching experience, and as such influenced the validity of the study (see  

Section 3.4.3.3). 

 

3.4 RESEARCH METHODS   

In planning a study, the researcher’s philosophical worldview informs the research 

design, whereas the specific procedures of the research project translate the approach 

into practice (Creswell, 2014: 5). These strategies and techniques are discussed next. 
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3.4.1 Research design 

Quantitative research can employ experimental or non-experimental designs, such as 

surveys (Creswell, 2014: 12). The purpose of experimental research is to determine 

whether a specific treatment influences an outcome (Creswell, 2014: 12), whereas 

non-experimental designs seek to describe events without intervention and do not 

endeavour to intervene or change behaviour. Descriptive quantitative research 

examines a situation as it is (Leedy & Ormrod, 2013: 184) and seeks  

to quantify responses on one or more variables. Descriptive studies include  

surveys which ask questions such as “to what extent?” or “what is?” (Onwuegbuzie & 

Leech, 2006: 490). The goal of a descriptive survey is to learn about a population  

by surveying a sample of that population (Leedy & Ormrod, 2013: 189). 

Surveys provide a numeric or quantitative description of constructs, perceptions, 

trends, attitudes, attributes, or opinions of a population by studying a sample 

population. Studies could be cross-sectional or longitudinal, employing questionnaires 

or structured interviews with the intent of generalising findings from sample to 

population (Fowler, 2008, cited in Creswell, 2014: 13). However, since a non-

probability purposive sample was selected in the study, generalisation of the findings 

is not possible. 

In the study, I was interested in determining to what extent fourth-year Mathematics 

didactics students are metacognitively aware. A survey design was chosen which 

included using a questionnaire and a think-aloud session. Data was collected  

for both methods on the same day; this data collection process is described in Section 

3.4.3. A survey design was selected due to the economy of the design and the swift 

turnaround time of the collected data (Creswell, 2014: 157). Although findings 

determining the level of metacognitive awareness cannot be generalised  

to all Mathematics didactics pre-service teachers, recommendations could 

nonetheless be made for this specific cohort (see Section 5.5). A questionnaire,  

the Metacognitive Awareness Inventory (MAI), was selected as survey instrument (see 

Section 3.4.3.1). 

It is difficult to capture aspects related to metacognition accurately (Sperling  

et al., 2002: 54). However, a quantitative approach has been well-used in various 
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studies (Schellings et al., 2013: 966) and multiple methods to measure metacognition 

have been used more often in recent studies (Desoete &  

Roeyers, 2006: 13; see Section 2.3.3). Consequently, qualitative research helped to 

describe the multi-faceted nature of certain situations and to provide an understanding 

about particular concepts, attitudes, and situations in the study  

(Leedy & Ormrod, 2013: 140). As I was also interested in identifying the level  

of metacognition of pre-service teachers during a problem-solving situation, additional 

qualitative data was collected during an online think-aloud session (see Section 

3.4.3.2). 

3.4.2 Population and sample  

The population in question was pre-service Mathematics teachers enrolled at higher 

education institutions in South Africa. Because of time constraints and cost 

constraints, it was not possible to conduct research among all these students. 

Consequently, a sample of fourth-year Education students with Mathematics as a 

didactical subject was identified at a specific university. Purposive sampling occurs 

when participants are chosen for a specific purpose (Leedy & Ormrod, 2013: 215). 

Participants were chosen here based on their convenience and availability  

(Creswell, 2014: 158). A purposive convenience non-probability sample of fourth-year 

pre-service teachers was selected as including all the students in that cohort  

(n = 41). I worked with the students as a lecturer and realised the poor level of problem-

solving skills of the pre-service Mathematics teachers. This led to the undertaking of 

the study and provided an available and convenient sample.  

 

Bias is any influence, condition, or set of conditions that distorts the data, whether 

independently or in combination with others (Leedy & Ormrod, 2013: 217). This group 

of learners was heterogeneous in regards to the biographical variables of age, gender, 

and language. Age and gender were not considered in the analysis of the data. 

Regarding language, as the sample is from a dual medium university, the 

questionnaire was translated into Afrikaans (see Sections 3.4.3.1.3; 4.2.3.1). As 

researcher, I am aware that other variables, such as related constructs not controlled 

in the study, might have influenced the metacognitive awareness of the students. 

Conclusions are therefore made with these variables in mind. Furthermore, in non-

probability methods, as is the case with the study, limitations in generalising findings 
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and drawing important conclusions about the whole population should be kept in mind 

(Maree & Pietersen, 2010a: 177). 

 

There were some equalising factors. Both male and female pre-service teachers were 

included, as well as pre-service teachers receiving instruction in both English and 

Afrikaans. Everyone participated on a voluntary basis. 

3.4.3 Data collection methods  

In descriptive studies, when measuring phenomena (concepts, abilities, opinions, or 

attitudes) data collection methods include questionnaires, observations, interviews, 

checklists, and rating scales (Leedy & Ormrod, 2013: 191). The use of a questionnaire 

to address secondary research question 3, “What is the level of metacognitive 

awareness of pre-service Mathematics teachers on the MAI?”, will be explained in 

Section 3.4.3.1. The employment of a think-aloud problem-solving session to address 

secondary research question 4, “What is the level of metacognitive awareness of pre-

service Mathematics teachers in a problem-solving context?”, will be explained in 

Section 3.4.3.2.  

In researching the choice of instruments and methods to measure metacognition,  

the literature indicates the ongoing debate of online versus offline methods to measure 

metacognition. Online methods include think-aloud sessions and videos; offline 

methods include questionnaires. Researchers suggest a combination of methods 

(Schellings et al., 2013: 963). The study made use of both a questionnaire and a think-

aloud session. 

3.4.3.1 Questionnaire 
 
Although a number of questionnaires can be used to measure learning strategies in 

general, a smaller number of standardised questionnaires are aimed at measuring 

metacognition. Among these are the Metacognitive Awareness Inventory (MAI) 

developed by Schraw and Dennison (1994); the Metacognitive Awareness of Reading 

Strategies Inventory, Version 1.0 (MARSI) pertaining to academic reading, designed 

by Mokhatari and Richard (2002); and the Self-efficacy and Metacognition Learning 

Inventory–Science (SEMLI-S) of Thomas, Anderson, and Nashon (2008) pertaining to 

learning in Science. 
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In the study, the standardised MAI questionnaire was selected to assess the pre-

service teachers’ metacognitive awareness. Schraw and Dennison (1994) developed 

the MAI to measure adult learners’ metacognitive awareness (see Section 4.2.1). It 

has subsequently been used in various studies (e.g. Sperling et al., 2004: 124). 

The MAI questionnaire was adapted to measure metacognitive awareness in  

a mathematical as well as South African educational context by Du Toit (2013)  

(see Sections 3.4.3.1.2; 4.2.2). The adaptation corresponds with the educational 

practice to tailor questionnaires to context when measuring learning strategies. Validity 

issues may arise in administering “general” questionnaires and therefore instruments 

may be tailored to specific contexts (Schellings, 2011: 4), which is discussed in Section 

3.4.3.3. Furthermore, the adapted MAI was translated into Afrikaans (see Section 

3.4.3.1.3). 

Online methods are time-consuming and costly, whereas there are several 

advantages to using questionnaires: the response rate is optimal, it is cost-effective 

and time-effective, easy and quick to answer, and administrators can check  

the accuracy or clarify comprehension issues of the respondents (Maree & Pietersen, 

2010b: 157, 164). However, further possible limitations of questionnaires are that 

answers are simple with no detail (Maree & Pietersen, 2010b: 164) and that 

respondents do not always give truthful answers, but rather what they think would be 

more acceptable or what the researcher would be interested in. 

In the study, the adapted MAI (see Sections 3.4.3.1.2; 4.2.2) was administered to 41 

fourth-year Mathematics didactics students in a group setting after the think-aloud 

problem-solving session (see Section 3.4.3.2). The pre-service teachers were advised 

about the nature and purpose of the study and participation was voluntary. I 

administered the questionnaire and could therefore control the conditions to some 

extent and assist with clarity issues, which are two possible disadvantages of using 

questionnaires. As only one questionnaire was administered during one session only, 

I also had full control over all administrative issues. The questionnaire was completed 

during the last 20 minutes of a regularly scheduled class session. No pre-service 

teachers experienced problems with understanding or answering the questionnaire. 

The response rate was 100%.  



97 
 

3.4.3.1.1 The original MAI  

In the study, the standardised MAI was chosen to evaluate the pre-service teachers’ 

metacognition. Schraw and Dennison (1994: 461) developed the MAI to assess the 

metacognitive awareness of adolescents and adults, with the view of making it easier 

to collect the data than by using other measures such as time-consuming online 

assessments. Schraw and Dennison’s (1994: 460) inventory comprises of 52 items 

that are classified under eight subscales incorporated into two subcomponents: 

Knowledge of cognition and Regulation of cognition. Participants rated their 

metacognitive awareness on a bipolar rating scale; a continuous line with two 

opposing poles (0–100mm).  

Knowledge of cognition comprises of three subscales which refer to metacognitive 

knowledge, whereas Regulation of cognition comprises of five subscales that relate to 

the regulation of learning (that is, metacognitive skills) (see Section 2.2.4). The 

subscales comprising Knowledge of cognition are: 

• Declarative knowledge, which is the knowledge the individual possesses about 

themselves and their own strategies;  

• Procedural knowledge, which is knowledge about how to use those strategies 

successfully; and 

• Conditional knowledge, which is knowledge about when and why to use certain 

strategies, based upon factors such as effectiveness, relevance, and suitability 

(Schraw & Dennison, 1994: 460, 474).  

Meanwhile, Regulation of cognition comprises of the following: 

• Planning, which occurs prior to learning and involves setting goals and 

allocating time and resources towards achieving these goals; 

• Information management, which occurs during learning and involves using 

various skills and strategy sequences—such as organisation, elaboration, 

summary, and selective focus—to help efficiently process information; 

• Monitoring, which is the individual’s assessment of their own learning or 

strategy use through self-testing and reflection; 

• Debugging, namely the use of strategies such as remediation to help identify 

and address errors in comprehension and performance; and 
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• Evaluation, which occurs after a learning experience and entails analysing the 

effectiveness of performance and strategies, re-evaluating approaches where 

applicable (Schraw & Dennison, 1994: 474–475).    

The operational definitions of Schraw and Dennison (1994) of the eight subscales 

and their corresponding items on the MAI are shown in Appendix 3. 

As intimated above, the MAI assesses metacognitive awareness comprising of two 

subcomponents: metacognitive knowledge (Knowledge of cognition) and 

metacognitive skills (Regulation of cognition). Schraw and Dennison (1994) based 

their two-component view of metacognitive awareness on Brown (1987) and  

Flavell (1979) (see Section 2.2.1). Schraw and Dennison (1994: 461–462, 470) piloted 

a 120-item inventory—with at least eight items under each subscale—with 70 

undergraduate students. They eliminated items from the inventory until it  

contained 52 items and then examined three aspects: first, the validity of the 

conceptualisation of metacognition into two subcomponents, Knowledge of cognition 

and Regulation of cognition; second, the statistical relationship between the two 

subcomponents; and third, the probable relationship between Knowledge of cognition 

and achievement, and Regulation of cognition and achievement. 

The researchers’ findings were threefold. First, Schraw and Dennison (1994:  

470–472) confirmed the two-component view of metacognition. Second, a statistically 

positive relationship was established between the two factors, Knowledge of cognition 

and Regulation of cognition. In two subsequent experiments, they found that these 

components displayed an inter-correlation of r = 0.54 and r = 0.45, p < 0.05 

respectively and a high degree of internal consistency, i.e. α = 0.91 for both 

subcomponents on Experiment 1 and α = 0.88 for both subcomponents on Experiment 

2. The entire instrument was found to be highly reliable (α = 0.95 and  

α = 0.93) (Schraw & Dennison, 1994: 464, 468; see Section 4.2.1). These findings 

suggest that the subcomponents are related. Each subcomponent makes a unique 

contribution to cognitive performance and influences it in different ways (Schraw & 

Dennison, 1994: 471). In a later study, Sperling et al. (2004: 124) also investigated the 

relationship between metacognitive components and found a much  

higher correlation between Knowledge of cognition and Regulation of cognition  

(r = 0.75, p < 0.001). Finally, Schraw and Dennison (1994: 471) identified a significant 



99 
 

relationship between MAI achievement and test performance achievement. The MAI, 

therefore, provides useful information for predicting performance. 

However, Schraw and Dennison (1994) did not find significant relationships between 

the MAI score and monitoring accuracy, or between monitoring accuracy and pre-test 

judgments. A reason suggested is that reading skills are automated in adult learners 

and therefore not reported on the MAI. Ultimately, they concluded that the MAI 

provides a reliable initial test of metacognitive awareness among adult and college 

students (Schraw & Dennison, 1994: 472; see Section 4.2.1). They further stated that 

the MAI is a helpful measure to determine the metacognitive awareness of adult 

learners in particular, in view of planning follow-up training to enhance metacognitive 

awareness. Additionally, it may help to identify lower performing learners with 

inadequate comprehension monitoring skills. 

As a last observation, Schraw and Dennison (1994: 472) suggest that metacognitive 

awareness plays a bigger role in complex tasks such as problem solving. Later 

research indicates that metacognitive awareness is elicited by complex tasks (see 

Sections 2.2.2; 2.2.4.2) as the completion of these tasks requires higher-order thinking 

and, consequently, a higher level of metacognitive awareness. 

3.4.3.1.2 The adapted MAI  

The standardised instrument, the MAI developed by Schraw and Dennison (1994), 

was adapted to the South African Mathematics education context in two ways. First, it 

was altered to reflect learning and problem solving in Mathematics specifically (see 

Section 4.2.2 for a detailed discussion). Second, the 100mm bipolar rating scale of the 

original MAI of Schraw and Dennison (1994: 463) was changed to a five-point Likert 

scale reflecting the categories Strongly Disagree, Disagree, Neutral, Agree, and 

Strongly Agree (See Appendix 2).  

In adapting questionnaires, reliability and validity issues may appear (see  

Sections 4.2.1; 4.2.2). The reliability of the adapted MAI corresponded with that of 

Schraw and Dennison’s (1994) original MAI (see Section 4.2.1). A high degree of 

internal consistency was reported with Cronbach’s alpha values of 0.89 for the pre-

test and 0.93 for the post-test (Du Toit, 2013; see Section 4.2.2).  
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3.4.3.1.3 The translated MAI  

For the study, the adapted MAI was translated into Afrikaans. The pre-service teachers 

in the sample of the main study were studying a four-year Education degree at a 

parallel-medium higher education institution, with either English or Afrikaans as their 

language of instruction. The adapted MAI was translated  

from English into Afrikaans by an accredited translator and piloted with a  

convenient sample of 57 fourth-year pre-service teachers at the same parallel-medium 

higher education institution where the main study was conducted (see Sections 4.2.2; 

4.2.3.1). Appendix 1 contains the MAI translated in Afrikaans and piloted. The pre-

service teachers from the pilot group were a comparable group as they were also 

fourth-year Education students at the same institution. Although these pilot pre-service 

teachers did not have Mathematics as a didactical subject, they studied Senior Phase 

Mathematics as part of their undergraduate teaching degree in their first year. 

Consequently, they could respond to the questionnaire in terms of their learning and 

problem solving in Mathematics and therefore the mathematical terms and references 

were familiar to them (see Section 3.4.3.3). 

The translated MAI in the pilot study was found to be very highly reliable (α = 0.94) 

concerning the instrument overall. It was also found reliable in relation to the  

two subcomponents, Regulation of cognition (α = 0.91) and Knowledge of cognition  

(α = 0.86) (see Section 4.2.3.1).  

Finally, the MAI in the main study provided factors that were highly reliable  

(α = 0.89) and inter-correlated (r = 0.54, p < 0.05) (for a detailed discussion, see 

Sections 4.2.3.2; 4.3.1). These findings correspond with the findings in Schraw and 

Dennison’s (1994: 460, 468) two studies (see Sections 3.4.3.1.1; 4.2.1; 4.2.2).  

3.4.3.2 The Think-aloud session  

A think-aloud method was employed to address secondary research question 4: “What 

is the level of metacognitive awareness of pre-service Mathematics  

teachers in a problem-solving context?” In educational research, the think-aloud 

method is employed in various studies to assess metacognition as a valuable 

metacognitive research method, albeit with limitations (Desoete, 2007: 705–718; 

Desoete & Roeyers, 2006: 13; Schellings et al., 2013: 967–968). The method involves 
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respondents performing a specific task while thinking aloud and reporting  

on their thought processes pertaining to the steps in executing the task  

(Schellings et al., 2013: 968). 

A benefit of think-aloud methods is that metacognitive processes are not impacted by 

thinking aloud, because the participant is verbalising their thoughts in working memory 

and not interpreting or reflecting on thoughts as in self-report off-line measures. 

Moreover, the actual metacognitive activities are inferred by a researcher/interpreter, 

not the respondent. Think-aloud methods are therefore considered fairly reliable, as 

thinking aloud happens almost simultaneously alongside the thinking process 

(Schellings et al., 2013: 967). 

It is worth mentioning the limitations of the think-aloud method. In this study, for 

example, participants are asked to solve a novel problem which may elicit 

metacognitive awareness (see Section 2.2.2). As they think about their thinking and 

doing, they report on their thought processes and strategies used. However, some 

strategies have become automatised as the participants regularly use them, hence 

some observations may not be explicitly articulated or reported. Consequently, these 

covert thought processes cannot be observed, though some unspoken processes can 

still be inferred from comments made, and as such metacognition can be inferred from 

cognitive activities (Schellings et al., 2013: 968; Veenman et al., 2006: 6; see Section 

2.2.2). In addition, the method is more time-consuming and labour-intensive 

(Veenman, 2005, cited in Schellings et al., 2013: 968). 

In the study, the pre-service Mathematics teachers were given a mathematical 

problem to solve directly before completing the questionnaire (MAI). They were 

instructed to list their steps in solving the problem in one column and write down their 

thoughts about each mathematical step in another column (see Appendix 4). They 

could employ any problem-solving (heuristic) strategy (see Section 2.3.4.2.2) or 

problem-solving method (see Section 2.3.4.4). The analysis of the think-aloud session 

looked at problem-solving strategies as well as metacognitive behaviours (see Section 

4.4). 

The problem presented came from the CAPS document for the Further Education and 

Training phase (DBE, 2011a: 53). The non-routine problem demanded complex 

procedures and higher-order thinking, requiring students to break down the question 
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into various parts (DBE, 2011a: 53). Hence it was anticipated that metacognitive 

behaviour would be elicited (see Sections 2.2.2; 2.2.4.2). The problem read as follows: 

Suppose a piece of wire could be tied tightly around the earth at the equator. 

Imagine that this wire is then lengthened by exactly one meter and held so that 

it is still around the earth at the equator. Would a mouse be able to crawl 

between the wire and the earth? Why or why not? (DBE, 2011a: 53). 

This problem was chosen due to its relevance to the sample. As discussed in Chapter 

1, the low level of achievement of Mathematics learners in various exams highlighted 

poor higher-order thinking skills among South African learners, suggesting that these 

skills are not being taught or developed sufficiently in lower grades or secondary 

school (DBE, 2016a: 5; see Section 1.2). In addition, the basic competencies required 

of newly qualified teachers include knowing how to teach their subject, knowing what 

effective learning is, and how to mediate it (DHET, 2015: 64; Section 1.2). Teaching 

problem-solving as pre-service or in-service teachers should involve teaching how, 

when, and why problem-solving strategies are used (DBE, 2011a: 8); in other words, 

teaching metacognition.  

The problem, as a sample problem from the school syllabus, is representative of the 

types of mathematical problems that learners encounter in their studies. It is therefore 

also representative of the types of problems that pre-service Mathematics teachers 

should be able to solve and, more importantly, explain and thus demonstrate heuristic 

and metacognitive strategies for solving. The problem, as an authentic task, afforded 

an opportunity to measure the metacognitive knowledge and skills, as well as the 

problem-solving skills, of pre-service Mathematics teachers.  

The pre-service teachers all attempted to solve the problem. As expected, the quality 

and quantity of comments differed from respondent to respondent. Surprisingly, the 

majority did not manage to solve the problem (see Section 4.4.2). 

3.4.3.3 Reliability and validity  

A valid and reliable measuring instrument is of crucial importance in research. Both 

validity and reliability reflect the degree to which error is present in measurement 

(Leedy & Ormrod, 2013: 92). 
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Reliability refers to whether a measuring instrument consistently generates a 

particular, consistent result when the entity under measurement remains unchanged 

(Leedy & Ormrod, 2013: 91). Of interest to the study is the internal consistency 

reliability, defined as the extent to which all the items within a single instrument yield 

similar results (Leedy & Ormrod, 2013: 91) or the extent to which all items in a test 

measure the same concept or construct (Tavakol & Dennick, 2011: 53). Internal 

consistency reliability is widely measured by Cronbach’s alpha, displayed as a number 

between 0 and 1. Reliability shows the effect of measurement error on the score of a 

cohort rather than an individual learner (Tavakol & Dennick, 2011: 53). For example, 

if a test has a reliability of 0.70, it implies a 0.51 random error variance in the scores 

(0.7 x 0.7 = 0.49; 1.00 – 0.49 = 0.51) (Tavakol & Dennick, 2011: 53). The degree of 

reliability in a measure depends on the employment of the results. If the results are 

used for making decisions about a group or for research, scores with moderate 

reliability in range 0.5 to 0.6 may be acceptable (Ary et al., 2010: 248). 

Guidelines utilised to interpret Cronbach’s alpha values in the study were as follows: 

α > 0.90 as very highly reliable; α > 0.80 as highly reliable; α > 0.7 as reliable;  

and α > 0.6 as moderately reliable. Cronbach’s alpha as the internal consistency or 

inter-item correlation of the questionnaire, with respect to the MAI total score, yielded 

consistent results for the original MAI by Schraw and Dennison (1994) (α = 0.90), the 

adapted MAI (α = 0.91), the translated MAI (α = 0.94), and the MAI in the main  

study (α = 0.89) (see Sections 4.2.1–4.2.3.2; Tables 4.1; 4.2). 

Reliability is a necessary but insufficient condition for validity (Leedy &  

Ormrod, 2013: 92). The validity of a measuring instrument is the extent to which  

the instrument measures what it intends to measure (Leedy & Ormrod, 2013: 89) and 

whether one can draw meaningful and useful inferences from scores of a specific 

instrument (Creswell, 2009: 149). Importantly, validity is specific to the purpose for 

which an instrument is used and might not be valid in a different  

situation or for a different purpose (Ary et al., 2010: 235). The MAI of Schraw and 

Dennison (1994) has been developed to measure the metacognitive awareness of 

adolescents and adults; therefore, meaningful and useful interferences could be drawn 

from the scores of the pre-service teachers in the study.  
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In measuring the metacognitive awareness of pre-service teachers using the MAI, 

three traditional forms of validity are looked for in the MAI, as the validity of a 

measuring instrument can take different forms, each of which is important in different 

situations (Leedy & Ormrod, 2013: 89). These forms are content validity (do the items 

on the MAI measure the content they were designed to measure?), criterion validity 

(the extent to which the results of an assessment instrument correlate with the 

criterion: do scores predict a criterion measure, or do results correlate with  

other results?), and construct validity (do the items on the MAI measure the construct, 

namely metacognitive awareness, in the study?) (Creswell, 2009: 148; Leedy & 

Ormrod, 2013: 90). 

Construct validity is the extent to which an instrument measures a characteristic which 

is not directly observable, but is assumed to exist based upon patterns in people’s 

behaviour (Leedy & Ormrod, 2013: 90). That is, do items measure hypothetical 

constructs or concepts? Construct validity has become the overriding objective in 

validity (Creswell, 2014: 160). Metacognition, as “thinking about one’s thinking”, is 

such a construct. Therefore, good construct validity to measure the construct 

metacognition was of great importance to the study. 

One strategy to maximise the validity of an instrument is to conduct a literature search 

for a standardised instrument that other researchers have used  

(Leedy & Ormrod, 2013: 92). The MAI of Schraw and Dennison (1994) has been 

subsequently used in various studies (e.g. Mevarech & Fridkin, 2006: 85–97; Sperling 

et al., 2004: 117–139; Young & Fry, 2008: 1–10). Another strategy to minimise error 

and enhance the validity of an instrument is the use of pilot studies  

to test an instrument, identify possible weaknesses, and modify if required  

(Leedy & Ormrod, 2013: 92).  

In an experimental study investigating the effect of metacognitive intervention on 

learner metacognition and the Mathematics achievement of Grade 11 learners, Du 

Toit (2013) adapted the MAI to the South African educational context and to reflect a 

mathematical context. Hence, pilot studies were performed on the adapted MAI to 

enhance validity and reliability (see Section 4.2.2). The adapted MAI questionnaire 

was found to be highly reliable (α = 0.91) for the entire instrument, with reliabilities of  

α = 0.81 and α = 0.89 for Knowledge of cognition and Regulation of cognition 
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respectively. These are consistent with the findings in Schraw and Dennison’s  

(1994: 471) studies (see Section 4.2.1). 

For the study, the adapted MAI was translated into Afrikaans and piloted with a 

convenient sample of 57 fourth-year pre-service teachers to enhance the construct 

validity for the South African context (Pietersen & Maree, 2010b: 217). As these pre-

service teachers studied Senior Phase Mathematics in their first year, it was expected 

that the mathematical terms and references would be familiar. Consequently, with 

regards to determining construct validity, no words were identified by the pilot group 

as unfamiliar. The face validity of the adapted and translated MAI was verified by a 

professional translator and editor. The same questionnaire with subcomponents and 

subscales was employed as in the case of the original and adapted MAI, and therefore 

criterion validity remained.  

Cronbach’s alpha values were calculated to determine the internal consistency and 

reliability of the translated and piloted instrument. The adapted MAI (translated and 

piloted in Afrikaans) was found to be very highly reliable (α = 0.94) for the instrument 

as a whole, highly reliable (α = 0.86) for Knowledge of cognition, and very highly 

reliable (α = 0.91) for Regulation of cognition (see Section 4.2.3; Table 4.1). 

The reliability (trustworthiness) of the qualitative data was enhanced by implementing 

procedures to check transcripts and keep an audit trail of the think-aloud problem-

solving session (Ary et al., 2010: 502–503). In the study, strategies or comments were 

identified in the think-aloud session and coded where they corresponded with the 

questions on the MAI, and afterwards were grouped under  

the subscales (see Section 4.4.2). Reliability was enhanced by continually comparing 

the codes and the definitions of the subscales in analysing the data (Creswell, 2009: 

190). Additionally, sentences or strategies were identified according to the four-phase 

problem-solving model (see Sections 4.4.1; 4.4.3). 

Validity (credibility) is a strength of qualitative research, and Creswell (2009: 191) 

recommends employing multiple validity strategies. As only one document—namely 

the think-aloud session—was analysed, validity could not be enhanced by 

triangulating different documents. However, validity is enhanced by giving rich, thick 

descriptions to convey the findings, and as this provides many perspectives on the 
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theme the results become more realistic and richer (Creswell, 2009: 192). Moreover, 

additional aspects that were considered included correct mathematical procedures, 

comprehension errors, and heuristic problem-solving strategies as they relate to the 

comments (see Section 4.4.2). Pre-service teachers could freely record their thoughts, 

and therefore display possible contradictory information. However, discrepant or 

negative data was not looked for per se. 

Researcher bias in interpreting the findings could influence validity. As researcher, I 

was aware that some pre-service teachers might have wanted to impress me; 

therefore, it was explained that data would not influence their academic achievement 

and guaranteed anonymity. I was also aware that my own presumptions about the 

metacognitive awareness of students—based on my experience and knowledge of 

students in general and these respondents specifically, as well as my reading of 

literature—might influence the interpretation. To address this, a peer researcher 

participated in interpreting the data. 

In qualitative research, generalisability is not the aim. On the contrary, the value of 

qualitative research is in the contribution of rich, thick descriptions and themes, 

especially those developed in a specific context (Creswell, 2009: 193). In the study, 

the metacognitive awareness of pre-service teachers in a Mathematics problem-

solving session was explored to enrich the quantitative findings. However, these 

findings could not be generalised, as the pre-service teachers employed metacognitive 

strategies regarding this specific problem-solving session. The findings are therefore 

dependent on the context from which they came. Furthermore, these findings could 

not be generalised to the population due to it being a small sample (n < 100). 

3.4.4 Ethical considerations 

The aim of ethical procedures is to provide information to participants so that they can 

make informed decisions about participating in research (Cohen, Manion, & Morrison, 

2007: 55). The pre-service teachers were advised about the purpose of the research 

and its potential benefit to other cohorts was explained. They had the right to voluntary 

participation or withdrawal (Cohen et al., 2007: 55).  
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In the study, the pre-service teachers were not subject to discomfort, stressful 

situations, or invasion of privacy during the quantitative or qualitative inquiry. The 

venue where the data was collected was their usual lecture environment. The pre-

service teachers completed the MAI and think-aloud session at the end of a lecture 

period and could do so anonymously. Furthermore, the MAI is a well-used 

standardised questionnaire on learning and problem solving, and as pre-service 

Mathematics teachers the respondents were exposed to problem solving on a regular 

basis, as required in the think-aloud session (Cohen et al., 2007: 52). Finally, official 

permission to conduct the research was obtained from the ethics committee of the 

higher education institution where the pre-service teachers were  

studying (Cohen et al., 2007: 55). 

3.4.5 Data analysis and interpretation 

In order to organise and analyse quantitative data, generally in numerical format, 

descriptive and inferential statistics are used (Ary et al., 2010: 32). Descriptive 

statistics are used to organise and report statistical data.  Descriptive statistics  

use procedures like averages, frequencies, percentages, and standard deviations 

(Cohen et al., 2007: 503–504; Pietersen & Maree, 2010c: 183–196). In the study, 

means, medians, standard deviations, percentages, and frequencies were determined 

(see Section 4.3). Advanced inferential statistics could not be applied as the sample 

was too small (Creswell, 2014: 163) and therefore generalisations to the population 

could not be made. 

Statistical tests are performed based on whether data is parametric or non-parametric, 

the number of respondents, and the distribution of the data  

(Pietersen & Maree, 2010a: 225, 234, 237). Non-parametric data is often derived from 

questionnaires and surveys and no assumptions about population characteristics or 

the distribution of data are made, while parametric data is  

normally distributed and tends to be derived from experiments and tests  

(Cohen et al., 2007: 503). In the study, the quantitative data derived from the 5-point 

Likert scale on the MAI, which is frequently used in asking opinions or assessing 

attitudes and is ordinal and non-parametric.  

To determine the level of metacognitive awareness of pre-service teachers, the means 

of the data on the MAI were determined to describe and present the average response 
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of the pre-service teachers on the instrument as a whole, and also for each 

subcomponent and the eight subscales. The level of metacognitive awareness of pre-

service teachers is predominantly indicated by their mean score on the total MAI. The 

means on the subcomponents, Knowledge of cognition and Regulation of cognition, 

indicate whether the pre-service teachers report higher on metacognitive knowledge 

or on metacognitive skills. The median was also determined to account for the outlier 

effect. The median is useful for ordinal data if there are many  

scores (Cohen et al., 2007: 514) and overcome the problem of outliers in skewed 

results (see Table 4.3). A very small difference (less than 0.1) was found between the 

median and the mean.  

The standard deviation (SD) is a measure of the dispersal of the scores, calculated as 

the square root of the variance. The standard deviation indicates the distribution of 

variance around the mean (see Section 4.3.1) and describes the variation in the 

responses of the pre-service teachers on the whole scale, for each subcomponent, 

and for the eight subscales. 

The seven items with the highest and lowest means were identified. Individual items 

are not indicative of the respondents’ broader level of metacognitive awareness; 

however, these items could point to some individual tendencies in the pre-service 

teachers’ metacognitive learning and problem-solving strategies and skills  

(see Section 4.3.2). The frequency of responses (percentage) of all participants  

on these seven lowest and highest items was calculated for each of the categories on 

the rating scale (Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree) (see 

Tables 4.4; 4.5).   

Furthermore, an indication of overall disagreement and agreement was obtained.  

By adding the percentages in the two agreement categories (Agree and Strongly 

Agree) and the two disagreement categories (Disagree and Strongly Disagree),  

it could be ascertained whether there was more agreement or disagreement  

(Cohen et al., 2007: 510). For example, on the MAI, for Item 45 with the highest mean 

of 4.63—“I learn better when I am interested in a specific Mathematics topic”—all the 

pre-service teachers (100% in the combined Agree and Strongly Agree category) rated 

interest in a Mathematics topic as key for learning (see Table 4.4).   
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In addition, in the interpretation of the data, the employment of metacognitive 

knowledge and skills as an attribute of mathematical proficiency (see  

Section 2.3.4.2) and an aspect of productive learning pertaining to competent problem-

solvers in Mathematics (see Section 2.3.4.3) was also identified and discussed (see 

Section 4.3.2).  

The Spearman Rho correlation coefficient was utilised to determine the correlation 

between the two subcomponents—Knowledge of cognition and Regulation of 

cognition—of the MAI (see Section 4.3.1). Spearman Rho is used for non-parametric 

data on an ordinal scale (Ary et al., 2010: 354; Pietersen & Maree, 2010a: 237).  

The interpretation of the Spearman Rho and the Pearson Product Moment correlation 

coefficient (Pearson’s r) is similar. These correlation coefficients range from +1.00 

(perfect positive relationship) to –1.00 (perfect negative relationship)  

with a value of 0 indicating no relationship (Ary et al., 2010: 129, 354;  

Pietersen & Maree, 2010a: 236). 

When interpreting correlation coefficients, a statistically significant relationship does 

not imply causation. Changes in Knowledge of cognition, therefore, do not  

imply changes in Regulation of cognition. However, the correlation between 

Knowledge of cognition and Regulation of cognition in the study (see Section 4.3.1) 

indicates that both make a unique contribution to cognitive performance (Schraw & 

Dennison, 1994: 466). 

The variability in the distributions and different sample sizes or different operational 

definitions could influence the correlation coefficient value and consequently the 

interpretation of the correlation coefficient (Ary et al., 2010: 135, 356). In the study, the 

correlation coefficient corroborated with the findings of the original MAI and the 

adapted MAI (see Sections 4.2.1; 4.2.2). In the interpretation, it should be kept  

in mind that a correlation coefficient value of 0.70 indicates a 49% related variance 

between two variables, whereas a correlation coefficient value of 0.50 only  

indicates a 25% related variance (Cohen et al., 2007: 535–536). 

In the analysis of qualitative descriptive data, researchers generally attempt to  

arrive at a rich description from words, pictures, or occasional numeric data  

(Ary et al., 2010: 425–426). In the study, the qualitative data was the written words  

of the pre-service teachers in a mathematical think-aloud problem-solving session. 
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The aim was to provide a rich, thick description to enrich the quantitative findings of 

the MAI. Analysis of these statements of metacognitive knowledge and metacognitive 

skills provided a richer understanding of their employment in the problem-solving 

process (see Section 4.4). 

The 41 pre-service teachers’ thoughts, where each comment corresponded with a 

mathematical problem-solving step, were analysed. The pre-service teachers’ 

comments were grouped according to items on the MAI. These items represent 

metacognitive knowledge and metacognitive strategies for learning and problem 

solving. The grouping was done by allocating a colour code to specific items that were 

identified. These items (metacognitive skills or metacognitive knowledge) are 

represented in the subscales on the MAI (see Appendix 3 for subscales comprising of 

specific items). The broader definition of metacognitive skills and metacognitive 

knowledge (as subscales) is referred to in the analysis (see Section 2.2.4; Appendix 

3). 

The frequency of items was determined to find the metacognitive knowledge 

(Declarative knowledge, Procedural knowledge, Conditional knowledge) and 

metacognitive skills (Information management, Planning, Debugging, Monitoring, and 

Evaluation) that were employed most often by the pre-service teachers  

(see Section 4.4; Appendix 6). For example, Item 2 (“I first consider different ways of 

solving a problem before I start solving a problem in Mathematics”) is a metacognitive 

planning strategy under the subscale Planning. Other aspects that were noted in the 

interpretation of the qualitative data include correct and accurate mathematical 

procedures, comprehension errors, and thus the number of pre-service teachers who 

successfully solved the problem. Attributes of mathematical proficiency, which are 

heuristic problem-solving strategies, in combination with metacognition, resources, 

and affect were referred to as well (see Section 2.3.4.2). 

In the second part of the analysis, the metacognitive comments and thoughts identified 

were compared to the four-phase problem-solving model (see  

Section 4.4.3). In analysing the findings, I anticipated identifying metacognitive skills 

and knowledge as they generally feature in the four-step problem-solving model. 

Specific metacognitive behaviours (knowledge, strategies, and skills) are normally 

associated with the four phases: Orientation, Organisation, Execution, and Verifying 
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(see Section 2.3.4.4). Consequently, metacognitive strategies (items) were identified 

and grouped under the metacognitive skills (subscales) on the MAI and subsequently 

compared to the four phases to identify metacognitive behaviour in each phase of the 

problem-solving model. 

Literature indicates that correlations of questionnaires with think-aloud data are 

generally low (Schellings et al., 2013: 963). An explanation could be that the 

questionnaires and think-aloud sessions do not measure the same metacognitive 

activities (Schellings et al., 2013: 963). In addition, metacognitive activities are higher-

order (Schellings et al., 2013: 985) and therefore difficult to measure, hence are 

instead inferred from self-report statements (Schellings et al., 2013: 968; Veenman et 

al., 2006: 6; see Sections 2.2.2; 3.4.3.2). To increase validity, the coding system 

should correspond with the subscales on the questionnaire, or the questionnaire 

should be constructed to measure the same metacognitive activities as the think-aloud 

session (Schellings et al., 2013: 963). In most instances, items  

on the MAI could be identified directly from the pre-service teachers’ comments; 

however, in some cases these items were inferred from the comments (see  

Section 4.4). As metacognitive skills are utilised more overtly than metacognitive 

knowledge in solving problems, items generally relating to Regulation of cognition 

(metacognitive skills) were identified. 

In the study, the think-aloud session was not correlated with the whole questionnaire 

for several reasons. The MAI assessed the metacognitive awareness (metacognitive 

knowledge and metacognitive skills) of pre-service teachers during the learning and 

problem solving of Mathematics. In contrast, the metacognitive behaviours in the think-

aloud problem-solving session pertained primarily to problem solving, while learning 

behaviours remained largely covert. 

Furthermore, for the two subcomponents, metacognitive skills were more overt in the 

practical solving of the Mathematics problem, whereas metacognitive knowledge 

referred mainly to the broader learning of Mathematics. Consequently, the qualitative 

think-aloud session was not correlated with the questionnaire, nor used to elaborate 

or explain the findings as is typically the case in a mixed methods design, but rather 

used to enrich the findings (see Sections 4.4; 4.5). 
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A possible limitation of interpreting the qualitative data is that only the thoughts  

that were reported on could be analysed. Some processes might have  

become automatised and therefore are covert and not reported. According to Desoete 

(2007: 717), in selecting a complex problem which requires higher- 

order thinking skills, greater metacognitive awareness is elicited (see  

Sections 2.2.2; 2.2.4.2). Lastly, for the quantitative data, findings could not be 

generalised to the population because of the size of the sample (n < 100) and the type 

of data (non-parametric).  

3.5 SUMMARY OF CHAPTER 

In this chapter, a post-positivist/interpretivist worldview informed the primarily 

quantitative approach, with qualitative data utilised to enrich the findings. The research 

methods comprised of a questionnaire for secondary research question 3, “What is 

the level of metacognitive awareness of pre-service Mathematics teachers on the 

MAI?”, and a think-aloud method for secondary research question 4, “What is the level 

of metacognitive awareness of pre-service Mathematics teachers in a problem-solving 

context?” The chapter has provided an explanation of how the research questions 

were answered by applying the indicated instruments.  

In the next chapter, the data will be analysed and the findings discussed.  
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CHAPTER 4 

PRESENTATION, ANALYSIS, AND INTERPRETATION OF 

THE QUANTITATIVE AND QUALITATIVE RESEARCH 

DATA 

4.1 INTRODUCTION 

This chapter analyses and interprets the data gathered to determine the level of 

metacognitive awareness of pre-service teachers. The following aspects are addressed: 

the reliability of the questionnaire in the pilot and main study; quantitative data analysis; 

qualitative data analysis; and the interpretation and summary of the data. 

 

Figure 4.1: Presentation, analysis, and interpretation of qualitative and quantitative research data 

(see also Appendix 8) 
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The chapter contributes to exploring the primary research question of the study, “What 

is the level of metacognitive awareness of pre-service Mathematics teachers?”, 

by addressing secondary research questions 3 and 4:   

• What is the level of metacognitive awareness of pre-service Mathematics teachers 

on the Metacognitive Awareness Inventory (MAI)?  

• What is the level of metacognitive awareness of pre-service Mathematics teachers in 

a problem-solving context?  

The chapter addresses these questions by presenting, analysing, and interpreting the 

quantitative data collected by means of the MAI (see Section 4.3), and then the 

qualitative data obtained through a think-aloud qualitative problem-solving session  

(see Section 4.4). These research activities were completed by pre-service 

Mathematics teachers at a higher education institution. 

4.2 RELIABILITY OF THE QUESTIONNAIRE 

The standardised MAI developed by Schraw and Dennison (1994) was selected as the 

measuring instrument for the study (Leedy & Ormrod, 2013: 191). The reliability of this 

MAI, as used here and in previous research projects, will now be discussed.  

The inventory has been demonstrated to be a reliable measure of metacognition  

in relation to academic learning tasks (Schraw & Dennison, 1994: 470–472;  

Sperling et al., 2004: 124). For the MAI within the context of the study, Cronbach’s 

alpha was calculated to determine the internal consistency of the entire questionnaire, 

the two subcomponents, and the eight subscales. Cronbach’s alpha is the most widely 

used measure of reliability with a lower limit of 0.70. For Social Sciences, if the results 

are used for making decisions about a group or for research, some researchers suggest 

a lower limit of 0.50 (Ary et al., 2010: 248, see Section 3.4.3.3). 
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Guidelines used to interpret Cronbach’s alpha in the study were: 

• 0.90 as very highly reliable 

• 0.80 as highly reliable 

• 0.70 as reliable 

• 0.60 as moderately reliable 

• Less than 0.60 as low reliability. 

In the following sections, the reliability of the MAI in English (as used in previous 

studies) is explained. As both English and Afrikaans are languages used to teach at the 

participating higher education institution, questionnaires in both languages were used. 

The reliability of the pilot MAI in Afrikaans and the reliability of the questionnaire in the 

main study are discussed. 

4.2.1 The Metacognitive Awareness Inventory (MAI)  

As noted previously, the MAI of Schraw and Dennison (1994) measures adult learners’ 

metacognitive awareness. Schraw and Dennison’s (1994) questionnaire comprises  

of 52 items that are divided into two subcomponents: Knowledge of cognition and 

Regulation of cognition. Respondents rate their metacognitive awareness on a bipolar 

rating scale.  

The Knowledge of cognition component measures awareness of one’s abilities, 

knowledge about strategies, and the conditions under which those strategies are 

applicable; that is, how, when, and why to use these strategies. The Regulation of 

cognition component measures how one plans, implements, develops strategies, 

monitors, corrects comprehension, and evaluates one’s learning and strategy  

use (Schraw & Dennison, 1994: 466). 

Schraw and Dennison (1994: 472) found that the MAI offers a reliable initial test of 

metacognitive awareness among adults and college students. They further stated that 

the MAI is a helpful measure to determine the metacognitive awareness of adult 

learners in particular, in view of planning subsequent metacognitive training. In two 

experiments, Schraw and Dennison (1994: 464, 468) found that the reliability of the total 
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MAI is highly reliable, with Cronbach’s alpha reaching 0.95 and 0.93 respectively for the 

two consequent experiments. As initially proposed, they further reported a statistically 

significant relationship between the two subcomponents—Knowledge of cognition and 

Regulation of cognition—on the MAI. This supported the two-component view of 

metacognition as described in literature by Brown (1987) and Flavell (1979). 

Moreover, in Schraw and Dennison’s two studies (1994: 464, 467–468), Knowledge of 

cognition and Regulation of cognition displayed a strong correlation of r = 0.54 and  

r = 0.45, significant at the p < 0.05 level, respectively. The authors clarify their findings 

by suggesting that knowledge and regulation work together to help learners self-

regulate, and that both Knowledge of cognition and Regulation of cognition make a 

unique contribution to cognitive performance (Schraw & Dennison, 1994: 466, 471).  

The MAI, consequently, has been used in other research studies (Mevarech &  

Fridkin, 2006: 85–97; Sperling et al., 2004: 117–139; Van Der Walt, 2014: 9;  

Young & Fry, 2008: 1–10). In a subsequent study using the MAI,  

Sperling et al. (2004: 124) examined relationships among metacognitive components.  

Sperling et al. (2004) reported that Knowledge of cognition showed a strong correlation 

with Regulation of cognition (r = 0.75, p < 0.001). They found that this correlation 

between Knowledge of cognition and Regulation of cognition is much higher than that 

determined in Schraw and Dennison’s (1994) studies (i.e. r = 0.54 and r = 0.45). 

However, individually the eight subscales of the MAI were not found to be very reliable 

measures of metacognitive awareness (see Section 3.4.3.1.1). Consequently, the total 

MAI scores, as well as the Knowledge of cognition scores and the Regulation of 

cognition scores, are mainly used in the study. 

Over the next sections, the adapted MAI for the South African Mathematics education 

context (see Section 4.2.2), the translated MAI (i.e. the adapted MAI translated  

into Afrikaans and piloted; see Section 4.2.3), and the findings of the main MAI  

(see Section 4.3) within the study are discussed. 
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4.2.2 The adapted MAI 

The MAI of Schraw and Dennison (1994) was adapted to the South African educational 

context by Du Toit in 2013. In this project, Du Toit (2013) provided a twofold rationale 

for adapting the MAI. First, it was adapted to change unfamiliar words into more 

recognisable words for the South African education environment. Second, as the 

original MAI was a measure of general metacognitive awareness, the questionnaire was 

subsequently adapted to specifically reflect a mathematical context. 

This adapted MAI was further modified by incorporating the feedback from two 

university lecturers and two pilot groups from two different schools. The rating scale of 

the adapted MAI is a five-point Likert scale featuring the categories Strongly Disagree, 

Disagree, Neutral, Agree, and Strongly Agree. This is a modification from the 100mm, 

bipolar rating scale of the original MAI of Schraw and Dennison (1994: 463).  

The reliability of Du Toit’s (2013) adapted MAI was tested among two pilot groups of 

Mathematics learners in Grade 11 in two different schools. The adapted MAI pilot 

questionnaire was found to be highly reliable (α = 0.91) for the instrument overall and 

presented α = 0.81 and α = 0.89 for Knowledge of cognition and Regulation of cognition 

respectively (see Section 3.4.3.3). Consequently, in Du Toit’s (2013) main study, the 

reliability of the adapted MAI questionnaire used for the pre-test was computed for the 

MAI total score as α = 0.89, for Knowledge of cognition as α = 0.82, and for Regulation 

of cognition as α = 0.83. On Du Toit’s post-test, the MAI total score (α = 0.93) was  

found very highly reliable, with Knowledge of cognition as α = 0.82 and Regulation  

of cognition as α = 0.91. These values correspond with the reliability of Schraw  

and Dennison’s (1994) original MAI (see Sections 3.4.3.1.1; 3.4.3.1.2). 

4.2.3 Reliability of the MAI in the study 

In the study, the respondents were pre-service teachers at a parallel-medium higher 

education institution. The MAI as adapted by Du Toit (2013; see Section 4.2.2) was 

translated into Afrikaans and piloted among 57 fourth-year pre-service teachers  

(see Sections 3.4.3.1.3; 4.2.3.1). Appendix 2 shows the translated MAI.  
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4.2.3.1 Reliability of the translated and piloted MAI  

The reliability of the pilot MAI questionnaire in Afrikaans is shown in Table 4.1. 

Table 4.1: Cronbach’s alpha values for the pilot MAI 

 

 

Table 4.1 shows that the internal consistency of the questionnaire with respect to  

the MAI total score was very highly reliable, with the highest Cronbach alpha value  

of 0.94. The subcomponents Regulation of cognition (α = 0.91) and Knowledge  

of cognition (α = 0.86) were very highly reliable and highly reliable, with the second and 

third highest Cronbach alpha values respectively. The Cronbach alpha values of the 

eight subscales ranged from 0.53 (Evaluation) to 0.81 (Declarative knowledge),  

with Monitoring and Evaluation not very reliable measures of metacognitive awareness. 

This corresponds with findings in Schraw and Dennison’s (1994) experiments  

(see Section 3.4.3.1.1). 

4.2.3.2 Reliability of the MAI in the main study 

As mentioned in Section 3.4.2, for the main study data was collected from 41 pre-

service Mathematics teachers in their final year. The reliability of the MAI in the main 

study was computed and is displayed in Table 4.2.  

Metacognitive scale Number of items Pilot (N=57) 
 

MAI total 50 0.94 

Knowledge of cognition 17 0.86 

Declarative knowledge 8 0.81 

Procedural knowledge 4 0.72 

Conditional knowledge 5 0.70 

Regulation of cognition 33 0.91 

Planning 7 0.70 

Information management 9 0.80 

Monitoring 7 0.59 

Debugging 4 0.68 

Evaluation 6 0.53 
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Table 4.2: Cronbach’s alpha values for the MAI 

Metacognitive scale Number of items Main (N=41) 
 

MAI total 50 0.89 

Knowledge of cognition 17 0.83 

Declarative knowledge 8 0.78 

Procedural knowledge 4 0.63 

Conditional knowledge 5 0.24 

Regulation of cognition 33 0.85 

Planning 7 0.57 

Information management 9 0.79 

Monitoring 7 0.63 

Debugging 4 0.61 

Evaluation 6 0.33 

Table 4.2 presents Cronbach alpha values for the main study. A highly reliable score 

was obtained for the MAI as instrument with a Cronbach alpha value of 0.89. Regulation 

of cognition (α = 0.85) and Knowledge of cognition (α = 0.83) provided the second and 

third highest values respectively. These results confirm the results of Schraw and 

Dennison (1994) and other studies (see Section 4.2.1) which indicated that the MAI as 

an instrument is a highly reliable measure of metacognitive awareness. The high 

reliability is supported by the highly reliable subcomponents Regulation of cognition and 

Knowledge of cognition. 

The eight subscales were found to be less reliable measures of metacognitive 

awareness, in line with the findings of Schraw and Dennison (1994) and other studies 

(see Section 4.2.1). The Cronbach alpha values of the eight subscales ranged  

from 0.24 (Conditional knowledge) to 0.79 (Information management). Declarative 

knowledge (0.78) and Information management (0.79) were found to be reliable; 

Procedural knowledge (0.63), Debugging (0.61), and Monitoring (0.63) were moderately 

reliable; and Conditional knowledge (0.24), Planning (0.57), and Evaluation (0.33) 

displayed low reliability.  
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It must be noted that the reliability of constructs, as per the subscales, can be 

influenced by a low number of items in the constructs and the degree of inter-correlation 

between the items (see Section 3.4.3.3). Table 4.2 depicts a reliable value (that is, a 

Cronbach’s alpha greater than 0.70) for the subscales with more than seven items on 

the MAI. For results that are used to make decisions regarding a group, or for research 

purposes, scores with a reliability in the range of 0.50 to 0.60 might be acceptable, 

according to Ary et al. (2010: 248; see Section 3.4.3.3). Moreover, it must also be noted 

that the subscales were shown to be reliable in other research (see Van Der Walt, 2014: 

11–13).  

In conclusion, in the study a reliability of 0.89 was indicated for the instrument overall, 

which makes the data obtained highly reliable. Furthermore, the two main findings of 

Schraw and Dennison (1994: 461–466) substantiate the results of the pilot MAI and the 

main MAI in the study. These findings underline the high reliability of the MAI as an 

instrument for measuring overall metacognitive awareness, as well as of Knowledge of 

cognition and Regulation of cognition. However, the reliability for individually assessing 

the level of metacognitive awareness of the eight subscales is lower. 

When discussing research data, descriptive statistics are important in the analysis and 

interpretation of quantitative data. This is discussed in the following section. 

4.3 THE LEVEL OF METACOGNITIVE AWARENESS OF  

PRE-SERVICE TEACHERS ON THE MAI 

Descriptive statistics use methods like averages, frequencies, percentages, and 

standard deviations to organise and report statistical data (Cohen et al., 2007: 503–504; 

Leedy & Ormrod, 2013: 191; Pietersen & Maree, 2010a: 224–254; see Section 3.4.5). 

The means, median, standard deviation, and frequency of the data collected in the 

study are henceforth discussed.   
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4.3.1 Descriptive statistics: The means and medians    

The means of the data from the main investigation were collected through administering 

the MAI (see Appendix 2). The means are used to describe the average response on  

all the MAI items per subcomponent, per subscale, and per individual item.  

Table 4.3: Mean, Standard Deviation, and Median values for the MAI 

Metacognitive scale Mean Standard 
Deviation 

Median Difference 
between 

mean and 
median 

Number of 
Items 

MAI total 3.73 0.41 3.78 0.05 50 

Knowledge of cognition 3.82 0.52 3.88 0.06 17 

Declarative knowledge 3.80 0.62 3.75 0.05 8 

Procedural knowledge 3.78 0.68 4.00 0.22 4 

Conditional knowledge 3.89 0.48 3.80 0.09 5 

Regulation of cognition 3.64 0.41 3.67 0.03 33 

Planning 3.72 0.58 3.71 0.01 7 

Information management 3.75 0.59 3.78 0.03 9 

Monitoring 3.35 0.59 3.29 0.06 7 

Debugging 4.03 0.63 4.00 0.03 4 

Evaluation 3.33 0.51 3.33 0.00 6 

 

The statistical data in Table 4.3 indicates the level of metacognitive awareness of  

pre-service teachers in terms of the mean and median.  

The focus of the study was determining the level of metacognitive awareness of pre-

service teachers. The 41 pre-service teachers obtained a mean score of 3.73 on the 

total MAI (SD = 0.41). The Knowledge of cognition component has a mean of 3.82 

(SD = 0.52) and the Regulation of cognition component has a mean of 3.64 (SD = 0.41) 

(for comparison, see Section 4.2.1). The means on the subscales range from 3.33  

to 4.03, with Evaluation obtaining the lowest mean and Debugging the highest. 

It is worth mentioning that in determining the average response in small samples, as  

per the 41 pre-service teachers in the study, the median might be regarded as a more 
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suitable measure as it is not influenced by outliers, as is the mean in small samples. 

The difference between the mean and the median was therefore calculated in the study. 

Except in the case of Procedural knowledge, the difference between the mean and 

median values (of the metacognitive subcomponents and the subscales) is less than 0.1 

points. Procedural knowledge has a difference of 0.22. The medians of the total MAI, 

Knowledge of cognition, and Regulation of cognition are 3.78, 3.88, and 3.67 

respectively. These medians are all higher than their corresponding means, but with a 

difference of less than 0.1 points.  

The standard deviation, ranging from 0.41 to 0.68, indicates the distribution of the 

variance around the mean (see Section 3.4.5). The small standard deviation of the MAI 

components indicates that variations in the responses were small.  

The Spearman Rho correlation coefficient, used for non-parametric data on an ordinal 

scale, was used to determine the correlation between the two subcomponents of the 

MAI, namely Knowledge of cognition and Regulation of cognition (Ary et al., 2010: 354; 

Pietersen & Maree, 2010a: 237; see Section 3.4.5). Knowledge of cognition showed a 

strong correlation with Regulation of cognition (r = 0.54, p < 0.05). This correlation 

corroborates with the findings of Schraw and Dennison’s (1994) two studies  

(see Section 4.2.1). However, a statistically significant relationship does not imply 

causation (Ary et al., 2010: 354; see Section 3.4.5), as both factors make a unique 

contribution to cognitive performance (Schraw & Dennison, 1994: 466). In the study, 

Knowledge of cognition displayed a higher mean than Regulation of cognition, implying 

that the knowledge component of metacognitive awareness is more prominent among 

the pre-service teachers than the regulatory component. 

In summary, the level of metacognitive awareness of pre-service teachers is primarily 

indicated by the mean of the total MAI. This mean indicates that pre-service teachers 

are metacognitively aware to a certain extent: the pre-service teachers perceive their 

metacognitive awareness to be at a level of 74.6%. This finding was somewhat 

expected, as literature establishes that adults generally use metacognitive processes to 

some degree (see Section 2.2.4.3). The question arises, therefore, whether the level of 

these pre-service teachers’ metacognitive awareness is adequate to demonstrate 
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success during learning and problem solving. The level to which the pre-service 

teachers employ their metacognitive knowledge and metacognitive regulatory skills 

during a problem-solving session will be discussed in Section 4.4. Meanwhile, a 

discussion of the items with the lowest and highest response rates on the MAI will now 

be presented, highlighting individual tendencies in Mathematics learning and problem 

solving by the pre-service teachers.  

4.3.2 Items with the highest and lowest means 

The level of pre-service teachers’ metacognitive awareness is the focus of the study 

and is indicated by the results of their MAI total scores. Individual items on the MAI are 

not an indication of a person’s broader level of metacognitive awareness, as seen in the 

MAI total score. However, in identifying the respective items with the lowest and highest 

means on the MAI, individual tendencies in the level of metacognitive awareness can be 

discussed. This provides more detailed insight into the views of the pre-service teachers 

on their own learning and problem solving in Mathematics.  

The seven items with the highest and lowest means are discussed in relation to 

literature on productive learning and competent problem solving as indicators of 

mathematical proficiency (see Sections 2.3.4.2; 2.3.4.3; 2.3.4.4). Also discussed are 

other factors emerging that may contribute to the pre-service teachers agreeing  

or disagreeing on the Likert scale, as well as their possible impact on learning and 

problem solving. 

4.3.2.1 The seven items with the highest means   

Table 4.4 displays the seven items with the highest means in rank order. A discussion 

of each item follows thereafter.  

Note: f indicates the frequency of responses on the Likert scale for each of the 

categories and # indicates the number of pre-service Mathematics teachers represented 

by the responses in the combined Agree and Strongly Agree category. 

  



 
 
 

124 
 

Table 4.4: The seven items with the highest means in the MAI 
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45. I learn better when I am interested in a specific Mathematics topic. 

Declarative knowledge 4.63 0.49 0% 0% 0% 0% 37% 63% 100% 41 

15. I learn best when I already know something about the Mathematics topic I am studying. 

Conditional knowledge 4.51 0.60 0% 0% 0% 5% 39% 56% 95% 39 

41.I read the question carefully before I answer a Mathematics question. 

Planning  4.46 0.64 0% 0% 0%  7% 39% 54% 93% 38 

50. When I read a Mathematics question, I stop and reread any section of the question that is not clear. 

Debugging 4.46 0.92 8% 3% 5% 0% 29% 63% 92% 38 

3. When I solve a Mathematics problem, I try to use methods of solving a problem that have worked in the past. 

Procedural knowledge 4.44 0.92 6% 3% 3% 7% 24% 63% 87% 36 

9.  I read slower when I encounter important information in a Mathematics question 

Information management 4.34 0.79 5% 0% 5% 5% 41% 49% 90% 37 

26.   I can motivate myself to study for a Mathematics test or examination 

Conditional knowledge 4.29 0.90 6% 3% 3% 6% 39% 49% 88% 36 

 

Table 4.4 shows that Item 45 (Declarative knowledge) has the highest mean of 4.63 and 

Item 15 (Conditional knowledge) has the second highest mean of 4.51. Both Item 41 

(Planning) and Item 50 (Debugging) have means of 4.46. Item 41 is ranked third, above 

Item 50, as overall 93% of the pre-service teachers agreed or strongly agreed with the 

statement. The next three items are Item 3 (Procedural knowledge), Item 9 (Information 
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management), and Item 26 (Conditional knowledge), with means of 4.44, 4.34, and 4.29 

respectively. 

As noted above, Item 45 (Declarative knowledge) has the highest mean of 4.63. This 

item states “I learn better when I am interested in a specific Mathematics topic”. With 41 

pre-service teachers (100%) rating in the combined Agree and Strongly Agree category, 

all respondents clearly believe that it is important to be interested in a Mathematics topic 

to learn it well. Fewer indicated that they could motivate themselves to study for 

Mathematics (88% for Item 26). Affect is a key attribute in mathematical proficiency  

(see Section 2.3.4.2.4) and impacts on productive learning (see Section 2.3.4.3).  

Item 45, therefore, points to an awareness of strengths and weaknesses in learning and 

problem solving. The pre-service teachers were aware of the strength of being 

interested in a topic which provides the impetus for studying (see Section 2.3.4.2.4). On 

the other hand, when learners do not get involved in a task, do not display adequate 

effort, or lose interest in the task, it may be indicative of the unsuccessful 

implementation of regulatory metacognitive skills, as the managing and control  

aspect of metacognition. Additionally, the item with the seventh highest mean, Item 26 

(Conditional knowledge), supported this reflection by the pre-service teachers on the 

important aspect of affect. 

The item with the second highest mean of 4.51 is Item 15 (Conditional knowledge), 

where 95% of the pre-service teachers reported that their best learning occurs when 

they already know something about the Mathematics topic. Here 39 pre-service 

teachers featured in the combined Agree and Strongly Agree category. This observation 

points to the knowledge of the pre-service teachers regarding when and why they use 

learning procedures (Conditional knowledge). 

Item 15 indicates awareness that prior knowledge supports further learning and as such 

corroborates with the constructive aspect of productive learning in Mathematics (see 

Section 2.3.4.3.1). Moreover, prior knowledge as part of a sound and well-resourced 

knowledge base of facts, formulae, and procedures plays a significant role in 

mathematical proficiency (see Section 2.3.4.2.1). Knowledge of the topic may also refer 

to experience with mathematical concepts in the pre-service teacher’s environment 
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which relate to the situated aspect of productive learning (see Section 2.3.4.3.3). 

Hence, the utility value of Mathematics in real life may generate interest, which pre-

service teachers have indicated provides motivation for studying. 

Item 41 (Planning), with the third highest mean of 4.46, points to the pre-service 

teachers’ awareness of the importance of understanding a question before attempting to 

answer it. Here 93% reported that they “read the question carefully before they answer 

a Mathematics question”. That is, 38 pre-service teachers in the combined Agree and 

Strongly Agree category generally use focused reading as a strategy to understand a 

problem statement. The careful reading of a problem before answering the question 

also refers to the goal of gaining understanding of a problem before selecting strategies 

and methods to attempt to solve it. Making sense of a question is of the utmost 

importance in planning and orienting oneself to solve a problem (see Section 2.3.4.4.1) 

and in the subsequent selection of suitable strategies, i.e. the allocation of resources 

prior to learning or problem solving (see Section 2.3.4.2.1). Furthermore, the skilful 

selection of appropriate heuristic strategies is a hallmark of a competent problem-solver 

(see Section 2.3.4.2). Overall, Planning is a metacognitive skill that regulates cognition 

by setting local and global goals and selecting metacognitive strategies and problem-

solving strategies (heuristics) to attempt to solve a problem (see Section 2.2.4.3.2). 

Item 50 (Debugging) has the same mean as Item 41 and is similar to this item, as both 

refer to the initial discerned reading of a Mathematics question. Item 50 involves the 

rereading of a statement. For Item 50, 92% of the pre-service teachers stated that they 

pause and reread any part of the question which is unclear. This indicates their 

awareness of the importance of thoroughly understanding a Mathematics problem 

statement, which is achieved by reading it again for clarification before attempting to 

answer it. This Debugging strategy to correct comprehension was reported by 38 of the 

pre-service teachers in the combined Agree and Strongly Agree category. Moreover, 

the item with the sixth highest mean, Item 9 (Information management), further 

illustrates their awareness of the significance of understanding a question before 

attempting to answer it; that is, 90% of the pre-service teachers reported that they  
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read the question slower when encountering important information in a  

Mathematics question. 

These items point cumulatively to the reflection of the pre-service teachers on  

their reading and understanding of a problem statement. This metacognitive  

monitoring of one’s cognition is an attribute of mathematical proficiency (see  

Sections 2.3.4.2; 2.3.4.2.3). Correspondingly, it may point to their awareness that 

making sense of a question is important in planning how to solve a problem and 

selecting appropriate strategies, such as the allocation of resources prior to learning or 

problem solving (i.e. Planning; see Section 2.2.4.3.2). Moreover, they are aware that the 

rereading of an unclear section is an important metacognitive strategy to correct 

comprehension and performance errors in learning or problem solving (i.e. Debugging; 

see Section 2.2.4.3.2). Furthermore, it is argued that these responses may stem from 

the pre-service teachers’ misreading and misunderstanding of previous questions as 

well as their awareness of the assumed level of difficulty of Mathematics problem 

statements.  

Item 3 (Procedural knowledge) has the fifth highest mean of 4.44, with 87% of  

pre-service teachers featured in the combined Agree and Strongly Agree category.  

That is, 36 stated that when they solve a Mathematics problem, they attempt using 

methods of problem solving that have worked previously. This possible awareness of 

methods and strategies used previously during problem solving indicates knowledge of 

how to implement learning procedures, such as strategies and methods, as well as how 

to access factual knowledge. This reflection on previous methods is an important aspect 

in the final phase, Verifying, of the problem-solving model, namely evaluating the 

solution for reasonableness and accuracy, but also knowing how to apply the method 

utilised in later problems, and as such is an aspect of mathematical proficiency  

(see Sections 2.3.4.2.3; 2.3.4.4.4). 

In summary, the pre-service teachers were aware that relating topics to other topics 

(Item 15) or to contextual problems (Item 45) facilitates their learning. They were aware 

that the monitoring of one’s thinking to understand and interpret a question (as indicated 

in Items 41, 50, and 9) is very important as it precedes and facilitates the selection of 
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appropriate and effective strategies and methods (Item 3). On the other hand, if the 

problem statement is misinterpreted, or if there is no awareness of an adequate 

repertoire of strategies and methods, this may result in failure to solve the problem 

correctly or loss of interest.  

The adept use of methods that have worked previously, as well as the use of alternative 

methods, is an attribute of mathematical proficiency (see Section 2.3.4.2). Experts  

have a well-resourced knowledge base of heuristic strategies and procedures  

(see Sections 2.3.4.2.1; 2.3.4.2.2). Moreover, experts are not only aware of this 

knowledge base, but are also competent in accessing and applying these methods and 

strategies through metacognitive reflection (see Sections 2.3.4.2; 2.3.4.2.3). This 

awareness of knowledge (Knowledge of cognition) of strategies must be transferred into 

the actual implementation of relevant and appropriate strategies and methods 

(Regulation of cognition) during problem solving. Metacognitive reflection as adaptive 

competence involves this transferring of knowledge into action in new contexts  

(see Section 2.3.4.2). Metacognitive skills that regulate the effective use of  

strategies and methods are crucial to productive learning and problem solving  

(see Sections 2.3.4.2.3; 2.3.4.3.2). 

4.3.2.2 The seven items with the lowest means  

Table 4.5 displays the seven items with the lowest means in rank order. A discussion of 

each item follows. 

Note: Once again f indicates the frequency of responses on the Likert Scale for each of 

the categories and # indicates the number of Mathematics pre-service teachers 

represented by the responses in the combined Disagree and Strongly Disagree 

category. 
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Table 4.5: The seven items with the lowest means in the MAI 
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19. After I have solved a Mathematics problem, I ask myself if there was an easier way to solve the problem. 

Evaluation 2.76 1.18 58% 7% 51% 10% 22% 10% 32% 24 

38. After I have solved a Mathematics problem, I ask myself whether I have considered different ways to solve the problem. 

Evaluation 2.76 1.02 51% 5% 46% 22% 22% 5% 27% 21 

28. I ask myself how useful my learning strategies are while I study for a Mathematics test or examination. 

Monitoring 2.98 1.13 44% 5% 39%  19% 27% 10% 37% 18 

31. I create my own examples to make new information I receive in Mathematics more meaningful and understandable. 

Information management 3.02 1.17 39% 10% 29% 17% 37% 7% 44% 16 

7. I know how well I did once I have finished a Mathematics test or examination 

Evaluation 3.22 1.19 34% 7% 27% 15% 39% 12% 51% 14 

48. I ask myself questions about how well I am doing while solving a Mathematics question. 

Monitoring 3.24 1.09 32% 3% 29% 22% 34% 12% 46% 13 

11. I ask myself if I have considered different methods of solving a problem when solving a Mathematics problem. 

Monitoring 3.24 1.11 29% 5% 24% 25% 34% 12% 46% 12 

 

Table 4.5 shows that Item 19 (Evaluation) has the lowest mean of 2.76. This means  

that 58% of the pre-service teachers disagreed or strongly disagreed with the 

statement. Item 38 (Evaluation) has the same mean of 2.76 as Item 19, but is ranked 

second lowest as overall 51% of the pre-service teachers disagreed or strongly 

disagreed with the statement.  
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Item 28 (Monitoring) has the third lowest mean of 2.98 and Item 31 (Information 

management) the fourth lowest mean of 3.02. The next three items with the lowest 

means in rank order are Item 7 (Evaluation), Item 48 (Monitoring), and Item 11 

(Monitoring), with means of 3.22, 3.24, and 3.24 respectively. Item 48 and Item 11 

share the same mean, and overall 32% and 29% of the pre-service teachers 

respectively disagreed or strongly disagreed with the statement.  

The two lowest ranking items on the administered MAI are Items 38 and 19, both 

Evaluation items. Both display a mean of 2.76 and standard deviations of 1.02 and 1.18 

respectively. On analysing the number of pre-service teachers featured in the combined 

Disagree and Strongly Disagree category, 51% stated that after they have solved a 

problem they do not ask themselves whether they have considered different ways of 

solving it (Item 38), while 58% stated that after they have solved a problem, they do not 

ask themselves whether there was an easier way of solving it (Item 19). Thus, 

according to the frequency of responses, Item 19 should rank lowest and Item 38 

second lowest. As both items belong to the subscale Evaluation, and both relate to 

reflection on performance and strategy effectiveness after a learning experience, they 

are discussed together. 

Evaluation is an important metacognitive skill in analysing one’s performance and 

strategy effectiveness. The skilful use of a different (Item 38) or easier (Item 19)  

method is an attribute of mathematical proficiency (see Section 2.3.4.2). Competent 

problem-solvers who are mathematically proficient have a well-resourced knowledge 

base of heuristic strategies and problem-solving methods, which they are aware  

of and reflect upon before, during, and after the problem-solving process (see  

Sections 2.3.4.2; 2.3.4.2.1; 2.3.4.2.2). Pre-service teachers participating in the study 

ranked themselves low with regards to reflecting on different or easier methods  

(Items 38 and 19); therefore, the question arises whether they would monitor their 

progress and evaluate their final solutions during the problem-solving session. This 

suggests that the pre-service teachers may be unlikely to evaluate their answers for 

reasonableness, and unlikely to evaluate the problem-solving method for effectiveness 
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by finding easier (Item 19) or different (Item 38) ways to solve the problem, and hence 

apply them to other similar problems.  

The third lowest mean of 2.98 belongs to Item 28 (Monitoring), with 18 pre-service 

teachers in the combined Disagree and Strongly Disagree category. Monitoring is the 

assessment of one’s learning or strategy use. Here 44% of the pre-service teachers 

stated that while they study for a Mathematics test or examination, they do not ask 

themselves how useful their learning strategies are.  

As an attribute of mathematical proficiency, monitoring is reflecting upon and assessing 

one’s own learning or strategy use during the learning or problem-solving process  

(see Section 2.3.4.2.3). This also relates to the self-regulatory component of productive 

learning (see Section 2.3.4.3.2). Analysing one’s method of problem solving is crucially 

important for deciding upon subsequent action and whether to accept the solution as 

correct or not. Consequently, attempting different ways to correct performance or finding 

easier ways to use it in subsequent similar problems is an important strategy in problem 

solving.  

Item 31 (Information management) has the fourth lowest mean of 3.02, with 16 pre-

service teachers landing in the combined Disagree and Strongly Disagree category. 

Item 31 displays a lower frequency (39%) of pre-service teachers who do not create 

their own examples to make new Mathematics information that they receive more 

meaningful and understandable. Information management involves skills and strategies 

applied during the problem-solving process. Managing information by creating one’s 

own examples, relating it to similar problems, or rephrasing the problem statement is an 

important metacognitive skill. This skill aligns with the constructive and self-regulating 

aspects of productive learning (see Sections 2.3.4.3.1; 2.3.4.3.2) where new knowledge 

becomes more meaningful by constructing one’s own examples in relation to existing 

prior knowledge.   

Item 7 (Evaluation) has the fifth lowest mean (3.22), with 34% of pre-service teachers in 

the combined Disagree and Strongly Disagree category. This means that a third of pre-

service teachers did not know how well they performed once they finished their 
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examination. Consequently, the question arises (as it does in the items with the lowest 

ranks) whether the pre-service teachers are able to reflect on and evaluate the 

effectiveness of their strategies and correctness of their solution in this context.  

Lastly, Item 48 and Item 11 both have the same mean of 3.24, with 13 and 12 pre-

service teachers respectively in the combined Disagree and Strongly Disagree 

category. These items relate to Monitoring through self-questioning, with 32% of the 

pre-service teachers stating that they do not monitor how well they are doing, while 29% 

do not reflect on different problem-solving methods whilst solving a Mathematics 

problem.   

Judging one’s own performance after a learning or problem-solving experience is vitally 

important in deciding the next course of action. The analysis of one’s method of problem 

solving is a key metacognitive skill in deciding whether to accept a solution or attempt to 

find ways to correct the answer (see Section 2.3.4.4.4). It is therefore argued that, as 

per the two items with the lowest means (Items 19 and 38), a low awareness reported to 

judge one’s own performance or progress may result in inadequate metacognitive 

skilfulness in employing Evaluation skills. 

In summary, the low means may indicate that pre-service teachers are not likely to 

monitor their progress and their learning strategies effectively while studying for a 

Mathematics test or examination. As Items 38 and 19 indicate, more than half of the 

pre-service teachers disagreed that they reflect by means of self-questioning on the 

effectiveness of their strategies or methods for solving problems after a problem-solving 

session. Likewise, according to Item 7, a third of pre-service teachers reported not 

sufficiently evaluating their performance after they solved the problem. This implies a 

lack of awareness of the effectiveness of their strategies or methods for problem 

solving, as well as comprehension and calculation errors. In addition, for Item 28, 

almost half were unlikely to reflect on their strategy effectiveness while studying 

Mathematics.  
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4.3.2.3 Summary of an analysis of the quantitative data 

As demonstrated by the total MAI score, the pre-service teachers reported a high level 

of metacognitive awareness and a higher level of metacognitive knowledge than 

metacognitive skills (see Section 4.3.1). Comparing the means on the overall MAI with 

the means of the highest and lowest items reveals that the items with the highest means 

featured mainly in the subcomponent Metacognitive knowledge and related to the 

subscales Declarative, Procedural, and Conditional knowledge. For the subcomponent 

Metacognitive skills, items with the highest means related to the subscales Planning 

and Information management, primarily in relation to reading the problem statement. 

The items with the lowest means featured mainly in the subcomponent Metacognitive 

skills, especially on the subscales Monitoring and Evaluation. 

Regarding the items with the highest means, the pre-service teachers were  

primarily aware that their learning is facilitated by interest and prior knowledge of a  

topic (Items 45 and 15). In addition, they were aware that the focused and careful 

reading of a problem statement to facilitate successful problem solving as the first step 

(Items 41 and 50) preceded the successful selection of appropriate and proven effective 

heuristic strategies (Item 3). The pre-service teachers, therefore, demonstrated more 

metacognitive awareness regarding the importance of affect (Items 45, 15, and 26) and 

cognitive reading strategies while making sense of the problem statement.    

Regarding the items with the lowest means, the pre-service teachers were less aware of 

the importance of evaluating the solution to a problem (Items 38, 19, and 7) by reflecting 

on different or easier methods, or by considering the suitability of the solution. 

Furthermore, they gave little attention to monitoring their progress and to  

the effectiveness of strategies such as reflecting on easier or different approaches 

(Items 28, 48, 11, and 31) during problem solving.   

It is noteworthy to compare the item with the fifth highest mean (Item 3) with the two 

items with the lowest means (Items 38 and 19). While all these items refer to the use of 

strategies and methods, 87% of pre-service teachers reported attempting to use past 

strategies (Item 3) during problem solving. Meanwhile, an average of 55% of 
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respondents reported that they do not consider different ways (Item 38) or easier  

ways (Item 19) after problem solving, and do not know how to evaluate their 

performance (Item 7).   

A few observations in relation to mathematical proficiency, the nature of reflection, 

metacognitive knowledge, metacognitive skills, and past experiences with mathematical 

problems are made henceforth. The pre-service teachers’ emphasis on reading 

strategies to understand the problem statement might be indicative of their past 

experiences with the difficulty of Mathematics questions. Moreover, whilst on the one 

hand the pre-service teachers reported reflecting on past strategies at the outset of a 

problem-solving session, they did not reflect on the effectiveness of past strategies or 

methods during or after the problem-solving session. This might be indicative  

of the nature of reflection, i.e. difficult and acquired over a prolonged period,  

as individuals need to be taught how to reflect-in-action and reflect-on-action  

(see Section 2.3.5; 2.3.5.1).  

The pre-service teachers displayed some level of mathematical proficiency (see  

Section 2.3.4.2) in reporting the importance of affect and resources in successful 

learning and problem solving. However, they reported less reflection on a repertoire of 

strategies (heuristics and the regulation of these strategies, methods, and solutions). 

This also points towards an awareness of strengths and weaknesses (for example, 

Declarative knowledge, as the pre-service teachers were aware that interest and prior 

knowledge facilitate their learning) but inadequate awareness of their lack of knowledge 

concerning facts and strategies (see Section 2.2.4.1). This observation may point to 

pre-service teachers being unaware of the importance of evaluating and monitoring their 

thoughts and actions, or not having the know-how to monitor themselves during study or 

problem solving. That is, they might be unaware of effective monitoring strategies 

and/or unskilled in using these strategies. 

This reported lower level of regulatory skills, therefore, may influence successful 

performance in problem solving. It may cause pre-service teachers to not reflect 

adequately on progress and comprehension, and not question the usefulness of 

learning and problem-solving strategies while learning or problem solving. Similarly, 
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they may accept incorrect methods, strategies, and computations, and therefore not 

correct their comprehension or calculation errors. Moreover, they may find it difficult to 

set or meet time and problem-solving goals. As competent problem solving is cyclical, 

analysing the effectiveness of a method after problem solving is important for 

considering its usefulness in correcting the problem, as well as for solving other similar 

problems. Additionally, a mathematical disposition displays persistence to keep on 

working until the correct solution is achieved (see Section 2.3.4.2). 

Therefore, the question arises: can the participating pre-service teachers translate this 

reported awareness of their thoughts, feelings, and actions during learning and problem 

solving into successful learning and problem solving? This led to secondary research 

question 4: “What is the level of metacognitive awareness of pre-service Mathematics 

teachers in a problem-solving context?”   

4.4 THE LEVEL OF METACOGNITIVE AWARENESS OF  

PRE-SERVICE TEACHERS IN THE PROBLEM-SOLVING SESSION 

4.4.1  Introduction  

A think-aloud problem-solving session was conducted with pre-service teachers before 

administering the MAI. When examining the specific statements on metacognitive 

behaviors (knowledge and skills) during a problem-solving process, one reaches a 

better understanding of how these behaviours influence and enhance the problem-

solving process. The qualitative discussion that follows, therefore, serves to enrich the 

findings of the MAI. First, metacognitive behaviors during the problem-solving session 

were identified, namely Declarative, Procedural, and Conditional knowledge, as well as 

the metacognitive skills Planning, Evaluation, Debugging, Information management, and 

Monitoring (see Sections 2.2.4.1; 2.2.4.3.2). Literature supports the importance of 

metacognition during problem solving (see Sections 2.3.2; 2.3.3; 2.3.4.2). Second, 

these identified metacognitive behaviours corresponded with the four phases of the 

heuristic problem-solving framework in Mathematics: Orientation, Organisation, 

Execution, and Verifying (see Section 2.3.4.4). 
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Discussion was predicated on and revolved around the completion of a mathematical 

problem. The problem posed to the pre-service teachers was taken from the CAPS 

document for the FET Phase (DBE, 2011a: 53). It is one of the typical problem-solving 

questions in the document (see Section 3.4.3.2). As solving the problem requires 

complex procedures and higher-order thinking, it was envisaged that metacognitive 

behaviour would be elicited (see Section 2.2.2). Furthermore, the problem was  

selected because the route to obtaining the solution is not immediately clear or obvious 

(see Section 2.3.4.4). The problem read as follows: 

Suppose a piece of wire could be tied tightly around the earth at the equator. 

Imagine that this wire is then lengthened by exactly one meter and held so that it 

is still around the earth at the equator. Would a mouse be able to crawl between 

the wire and the earth? Why or why not? (DBE, 2011a: 53).  

The pre-service teachers had to write down their thoughts with corresponding 

calculations relating to the steps they would take in solving the problem (see  

Section 3.2.3.2). Several thoughts and processes associated with competent problem-

solving were anticipated (see Sections 2.3.4.4.1–2.3.4.4.4). First, in attempting to make 

sense of the problem scenario, it was anticipated that pre-service teachers would relate 

the equator and the wire to the circumference of a circle (Orientation). Second, in 

organising their thoughts around the problem, it was anticipated that many would 

identify the core of the problem and so identify the mathematical concept of the 

difference in radii of the equator and the wire that would allow space or prevent the 

mouse from passing under the wire (Organisation).  

Therefore, key information in the problem relates to the mathematical concept of the 

radii of circles; that is, the difference in radii between that of the circle and the extended 

wire. Knowledge about other concepts—such as changing units to work in comparable 

units and estimating the height of a mouse—was applicable in the computations 

(Execution). It was also anticipated that the pre-service teachers would attempt different 

strategies and methods while problem solving if they realised that a method or strategy 

was not useful (Execution).   
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Finally, checking the solution for reasonableness and accuracy (Verifying)—and 

consequently deciding whether the mouse could pass between the earth and the wire 

based on the computations—was expected. Moreover, if the solution did not make 

sense, it was expected that the pre-service teachers would re-evaluate their methods or 

calculations and troubleshoot for conceptual or computational errors.    

4.4.2  Discussion of the problem-solving session  

The pre-service teachers’ responses were grouped according to items on the MAI. The 

items on the subscales that featured most frequently in the qualitative problem-solving 

session were identified. During the problem-solving session, the pre-service teachers’ 

metacognitive awareness was primarily associated with the following items: Items 17 

(Declarative knowledge), 22 and 41 (Planning), 13 and 37 (Information management), 

and to a lesser extent Items 9 (Information management) and 50 (Debugging). 

The subscales on the MAI that featured most frequently were Planning and Information 

management, and to a lesser extent Declarative knowledge. Consequently, 

metacognitive skills are discussed first, followed by the metacognitive knowledge. The 

five metacognitive skills presented as follows. 

4.4.2.1 Planning 

With regards to Planning (i.e. planning, goal-setting, and allocating resources prior to 

learning), Items 22, 23, and 41 relate to considering strategies prior to the actual solving 

of the problem through calculations. Items 4, 6, 8, and 44 relate to goal-setting and 

allocating resources in the learning of Mathematics, and were not overtly evident in the 

pre-service teachers’ comments during the problem-solving session.   

Item 22 (“I ask myself questions about the problem before I begin to solve a 

Mathematics problem”) was displayed most frequently in the thoughts and calculations 

of pre-service teachers under the subscale Planning. Most pre-service teachers 

indicated questioning about the problem statement. Another metacognitive planning 

strategy, Item 41 (“I read the question carefully before I answer a problem”), could be 
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inferred from questions posed about the problem statement, writing down chunks of 

information, or writing down key phrases.   

An example of this effective questioning was demonstrated by Respondent 30, who, 

after asking three questions, arrived at the core of the problem quickly by noting down 

the circumference of the earth and the wire: 

Wat is die radius van die oorspronklike sirkel?  

Wat is die radius van die nuwe sirkel?  

Wat is die verskil tussen die twee radiusse? 

Respondent 11 asked similar questions: 

Hoeveel plek sal gelaat word? 

Wat is die radius van die aarde?  

Wat is die radius van die draad nadat dit verleng word?  

Wat is die radiusse van die twee omtrekke?  

Wat is die verskil tussen die twee radiusse? 

Several pre-service teachers who used the strategy of asking questions initially  

wrote down their thoughts on the information provided before arriving at the gist of  

the problem. See, for example, the thoughts and accompanying calculations of 

Respondent 37:  

Imagine earth & the wire tied around it!    Wire R = 
40 × 103𝑘𝑚

2𝜋
 

Equation of circumference    O = 2πr = 40 x 103 

How much is 1 m in kms?    1 m = 
1

1000
 km = 0.001 km = 1 x 1 

What is the result when I add this small number  + 140 x 103 + 1 x 10−3 km = 40 000.001 km 

to 40 km? 

The difference is so small, but is it significant?   

What’s the size of the mouse in question?  Well a mouse’s height is <<< 0.001 km  

So the mouse will pass!! 
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Another argument is ___ the two values for R!  R1 = 
40 ×103 𝑘𝑚

2𝜋
  ; R2 = 

40 000.001

2𝜋
 

       Are very close to each other (almost no  

       significance), but may still allow mouse to  

       pass.  

This pre-service teacher thought of two ways to solve the question, although not both 

effective and correct. These were finding the difference in circumferences and finding 

the difference in radii. It is notable that this is the only pre-service teacher, besides 

Respondent 5, who attempted alternative arguments. He displayed and demonstrated 

Item 23 (“When I start to solve a problem, I think of several ways to solve a problem and 

choose the best one”) and possibly Item 11 (“I ask myself if I have considered different 

methods of solving a problem when solving a mathematics problem”). Respondent 37 

thought of two different ways, but did not perform any exact calculations. His methods 

were based on getting an estimated answer which displayed good reasoning.  

4.4.2.2 Information management 

Information management comprises of items that relate to the awareness of learners 

about skills and strategies used to process information more efficiently before and 

during the learning and problem-solving process (Items 9, 13, 30, 31, 37, 39, 42, 46, 

and 47). Information management skills pertain to organising, elaborating, summarising, 

and selective focusing. During the problem-solving session, these strategies may 

involve facts and formulae, or a repertoire of different cognitive and problem-solving 

strategies or metacognitive questioning. Strategies could refer to the following: drawing 

pictures and diagrams (Item 37); translating Mathematics questions into one’s own 

words and restating or paraphrasing a question (Item 39); relating the topic to other 

topics (Item 47); selective focusing on important information (Item 13); adjusting a 

reading strategy (Item 9); and selective focusing on the meaning and significance of the 

question (Item 30). Items 31, 46, and 47 relate to the learning of Mathematics and were 

not evident in the pre-service teachers’ comments during the problem-solving session.   

Five items were applied frequently in varying degrees in managing the given information 

in the problem statement. They were mainly Items 13 and 37, as well as Items 30 and 9 
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by inference and, to a lesser extent, Item 39. The items read as follows: Item 13 (“I 

consciously focus my attention on important information in a Mathematics question”), 

Item 9 (“I read slower when I encounter important information in a Mathematics 

question”), Item 37 (“I draw pictures or diagrams to help me understand while I am 

learning Mathematics”), and Item 39 (“I try to put Mathematics questions into my own 

words”) (see Appendix 6). As Items 13 and 30 are very similar, references to focusing 

on information in the problem statement were grouped as belonging to Item 13. 

Therefore, writing down key phrases from the information is grouped under Item 13.  

The problem statement specified that a wire around the earth is lengthened by one 

meter. Respondent 12 remarked on the significance of this information in that “an 

increase in length means change in radius”. Respondent 24 also focussed on the key 

information, consequently displaying her understanding of the problem by referring to 

the concept of the changing radii (Item 13), although she made a mistake in not 

converting to the same units before adding the extra meter to the diameter. She 

recorded her thoughts as follows, accompanied by diagrams (Item 37) to organise and 

make sense of the information provided: 

Die omtrek van die aarde is 40 000 km.  As ek 1 m      40 001 km 

bysit sal die draad effens verslap.        40 000 km 

Ek moet die afstand tussen die twee sirkels bereken,    40 001 km --- (2) 

om te kyk of ‘n muis kan deur.       40 000 km --- (1) 

Ek moet eers die radius van altwee sirkels kry.    40 000  

Another example is Respondent 9, who verbalised her awareness that drawing 

diagrams (Item 37) is a strategy to aid understanding, illustrating that the use of 

diagrams or sketches is an effective strategy, particularly for developing an initial 

understanding of a problem. 

 

Draw the problem in pictures to understand    

the problem better.      
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Work out what will the distance be when a meter  40 000 km + 1 m 

is added.      = 40 000 000 m + 1 m 

       = 40 000.001 km 

Draw the wire around the earth with 1 m extra. 

 

In her reflective thoughts above, she also illustrated the use of Items 13 and 9, which 

are strategies to focus on and manage given information. However, she faltered in 

reaching a sensible answer because she could not arrive at the core of the problem; 

that is, the difference in radii between the earth’s circumference and that of the wire, 

which may allow enough room for the mouse to pass through.  

Five other pre-service teachers displayed similar thought patterns, analysing the 

scenario but being unaware of performance errors. They displayed a discrepancy in 

their work, on the one hand utilising metacognitive and cognitive strategies such as 

managing information by rephrasing and representing the problem through self-

questioning, drawing diagrams, or writing down key phrases of important information, 

but on the other hand making conceptual errors that prevented them from progressing 

effectively. It is possible they struggled to apply strategies like selective focusing on 

important information (Items13 and 30) and slower reading (Item 9).  

Another information management strategy is the rephrasing of a question. An example 

of applying Item 39 (“I try to put Mathematics questions into my own words”) is provided 

by Respondent 2, who rephrased the problem statement as follows:  

Wat wil ons uitwerk?  

Hoeveel speling daar tussen die draad en die aarde se bolaag sal wees as ‘n draad 1m langer in omtrek is 

as die aarde.   
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To reach the core of the problem, he restated it as follows: 

Bekendes: omtrek by ewenaar is 40 000 km. Formula: sirkel, want die aarde is rond.  0 = 2 πr ² 

Ons moet r bepaal vir 40 000 km en vir 40 000 km + 1 m 

As illustrated previously in Items 13 and 9, this strategy (Item 39) organises the 

thoughts of the problem-solver by identifying key information that is given and asked in 

the problem statement. Many pre-service teachers similarly restated the key information 

as above, including writing down the formula for the circumference of the circle. As 

noted later, only 14 out of 41 (34%) pre-service teachers identified the crux of the 

problem statement and proceeded to perform calculations to find the radii of both the 

earth and the wire. 

4.4.2.3 Monitoring 

In the Monitoring subscale, items relating to the problem-solving session were  

Items 11, 2, 34, and 48. References to different problem-solving methods at the  

outset of a problem-solving session were grouped together under Planning, as noted 

earlier. For example, Item 2 (“I first consider different ways of solving the problem 

before I start solving a problem in Mathematics”) is similar to Item 22 (“I ask myself 

questions about the problem before I begin to solve a Mathematics problem”) and is 

therefore grouped under Item 22 as a metacognitive planning skill.   

In contrast, Item 11 refers to an awareness of different problem-solving methods during 

problem solving. Item 11 (“I ask myself if I have considered different methods of solving 

a problem when solving a Mathematics problem”) was only seen in two pre-service 

teacher’s answers. In the given problem scenario, different ways or methods of solving 

the problem could refer to different ways of calculating the distance between the wire 

and the earth. 
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Respondent 16 employed Item 34 (“When I solve a Mathematics problem, or when I 

study for a Mathematics test or examination, I find myself pausing regularly to check my 

comprehension”) to monitor conversion between units. He remarked: 

First let us change the units to meter and recalculate for earth and tight rope. This is better: should have 

done this from the beginning but did not realise the calculator is set to four decimals. 

Respondent 24 reflected on her strategy use by writing down her thoughts and 

calculations as follows:  

Ek moet eers die radius van altwee sirkels kry.   40 000  

       2πr = 40 000 

       r = 
40 000

2𝜋
  = 6366.2 …(1) 

Die radius van:        40 001 

(1) 6366.197724 km    2πr = 40 001    

(2) 6366.356879 km    r = 
40 001

2𝜋
  = 6366.4 …(2) 

 

Bereken nou die afstand. = 0.159155 km    (2) – (1): 6366.356879 km –  

         6366.197724 = 0.159155 km 

Nou moet ek my data interpreteer.   Herlei na meter 

       Km 000 m 00 cm 0 mm 

       159.155 m 

 

Dit voel hoogs onwaarskynlik, maar dit lyk of ‘n  

muis wel onder die draad kan deurkruip. Omdat 

‘n muis ± 10 cm hoog is en daar ‘n 159 m verskil is…  

Ek weet nie of hierdie reg is nie. Ek kan nie dink dat 

1 m draad ‘n 150 m verskil kan maak nie. 

Respondent 24, therefore, reflected on her performance by monitoring the effectiveness 

of her strategy use. She employed Item 48 (“I ask myself questions about how well I am 

doing while I am solving a Mathematics problem”) which refers to assessing one’s 
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strategy use. Likewise, Item 34 (“When I solve a Mathematics problem, or when I study 

for a Mathematics test or examination, I find myself pausing regularly to check my 

comprehension”) and Item 48 (“I ask myself questions about how well I am doing while I 

am solving a Mathematics problem”) are similar in monitoring one’s own comprehension 

and performance (see Appendix 3). Respondent 24 demonstrated a good ‘feel’ for 

estimation. However, she made an error in the conversion of units and did not correct or 

confirm the answer by using a different method or strategy to double-check her solution.  

In fact, only a few pre-service teachers reflected on their methods while problem 

solving.  The conversion between units was a stumbling block for many of the pre-

service teachers. Respondent 16 was the only one who corrected his answer and so 

displayed a debugging strategy.   

4.4.2.4 Debugging 

In the Debugging subscale (strategies employed for correcting comprehension and 

performance errors) Items 40, 43, and 50 can be identified in reflective comments made 

during the problem-solving session. Rereading the problem statement to adapt 

comprehension and performance involved both Items 43 and 50. Item 50 (“When I  

read a Mathematics question, I stop and reread any section of the question that is not 

clear”) could be seen as a strategy at the outset of a problem-solving session; it may 

work hand-in-hand with Item 41 (“I read the question carefully before I answer a 

Mathematics question”) discussed previously, and may also be inferred from thoughts 

made and calculations written down about information given and asked. Consequently, 

Item 50 possibly was used frequently. Respondent 7 showed evidence with her 

thoughts on the length of the wire:  

Wire lengthened by 1 meter. Wire not tied, not bended.  

Item 43 (“If I do not make progress when I solve a Mathematics problem, I ask myself 

whether my first understanding of the problem was correct”) relates to awareness of 

one’s own understanding, and may entail rereading the problem statement or 

contemplating some alternative approaches. Consequently, Item 40 (“I change my 

problem-solving method when I fail to make progress”) corresponds to Item 43. It is 
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expected that the employment of debugging strategies as seen in Items 50, 40, and 43 

will result in pre-service teachers solving the problem successfully by attempting 

different ways, or at least considering alternative methods. The latter two items, 

furthermore, link with two items on the Evaluation subscale, as they relate to reflecting 

on the effectiveness of strategies and methods used during and after the problem-

solving process, namely Items 19 and 38, as discussed in the following section. 

4.4.2.5 Evaluation  

Items which refer to Evaluation—that is, analysing performance and strategy 

effectiveness after a learning experience—are Items 7, 19, 24, 36, 38 and 49.  

Items 24, 36 and 49 refer to the learning of Mathematics. Item 7 (“I know how well I  

did once I have finished a Mathematics test or examination”) reflects on the ability of  

the problem-solver to judge their own performance and efficacy. As only the minority  

of pre-service teachers were successful in solving the problem correctly, it may indicate 

that pre-service teachers were unaware of how well or poorly they performed, otherwise 

they may have attempted to improve their performance.  

Furthermore, Item 19 (“After I have solved a Mathematics problem, I ask myself if there 

was an easier way to solve the problem”) and Item 38 (“After I have solved a 

Mathematics problem, I ask myself whether I have considered different ways to solve 

the problem”) reflect on the overall effectiveness of the problem-solving techniques 

employed. It is notable that during the problem-solving session, scant evidence was 

found of these items. Only 8 of the 41 pre-service teachers managed to reach a 

sensible solution to the problem, which may be indicative of them not trying easier or 

different ways to improve their performance or solve the problem correctly.  

In summary and with regards to Regulation of cognition it was found that items on 

Debugging and to an even lesser extent on Monitoring and Evaluation, featured 

infrequently during the problem-solving session, whereas Planning and Information 

management were more evident. Concerning the Knowledge of cognition 

subcomponent, items on the subscales Declarative, Procedural, and Conditional 

knowledge refer mainly to the broader learning of Mathematics. Metacognitive 
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behaviours relating to Procedural knowledge (of how to implement problem-solving 

strategies), Conditional knowledge (of when and why to use learning procedures), and 

Declarative knowledge (about self-knowledge and learning resources and strategies) 

are therefore mostly inferred from statements made by the pre-service teachers. Hence, 

items on Declarative knowledge, such as Item 17 (“I am good at remembering 

mathematics facts and principles’’), and on Procedural knowledge, such as Item 3 

(“When I solve a Mathematics problem, I try to use methods of solving a problem that 

have worked in the past”), and Item 14 (“I have a specific purpose for each problem-

solving method I use when I solve a problem in mathematics”) might be implicitly 

evident in the problem-solving process. Conditional knowledge corresponds mainly to 

study habits rather than to problem-solving activities. An exception is Item 35, which 

refers to an awareness of when and why to use each problem-solving method (see 

Appendix 3). 

Regarding Declarative knowledge, Items 5, 12, 17, and 32 refer to an awareness of 

understanding and recalling Mathematics. Item 17 especially could be inferred from pre-

service teachers’ thoughts and calculations during the problem-solving session. Item 17 

refers in this problem-solving scenario to the knowledge of the correct formula for the 

circumference of a circle and the manipulation of the formula to determine the radius, as 

well as conversion between units. The formula for the circumference of a circle was 

recalled correctly by most of the pre-service teachers. The radii were calculated 

correctly by most of the pre-service teachers who applied the concept. Facts and 

principles consisted of the conversion of units and rules for the four operations. This 

was illustrated when Respondent 7 recorded her thoughts and calculations as follows: 

 

Wire around earth @ equator      equator  

         Tight wire  

Circumference @ equator =  40 000 km   C = 40 000 km 

Wire lengthened by 1 m     C + 
1

1000
 km converting to km from m 

Wire not tied, not bent   
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Mouse crawl between wire and earth?  

Calculations →      (1) C = 40 000 km 

       C = 2𝜋𝑟 

       40 000 = 2𝜋𝑟 

       
40 000

2𝜋
 = r 

       6366.198 ≈ r (r= 6366.197724…) 

       (2) 1 m added to circumference 

       
40 000

1
 + 

1

1000
 = 2𝜋𝑟 

       
40 000 000+1

1000
 = 2𝜋𝑟 

       
40 000 001

1000
×

1

2𝜋
 = r 

       
40 000.001

1
×

1

2𝜋
 = r 

       
40 000.001

2𝜋
 = r 

       6366.198 ≈ r (r = 6366.197883…) 

In conclusion, it was anticipated that pre-service teachers would relate the wire tied 

around the earth‘s equator to the circumference of a circle. The problem further states 

that the wire is extended with 1 meter. Only a minority of the pre-service teachers (14 

out of 41, or 34%) could further relate this fact to the radii of the circles formed by a wire 

on the earth’s equator, the earth, and the extended wire.  It was unexpected that so few 

pre-service teachers would correlate these facts. 

An illustration of not relating the wire tied around the earth‘s equator to the 

circumference of a circle was seen in the thoughts and work of Respondent 9, who 

applied Items 13, 37, and 42, but settled on a premature answer by not progressing to 

working out the radii, and therefore accepting an incorrect solution. 

Draw the problem in pictures to understand   40 000 km + 1 m 

the problem better.     40 000 km = 40 000 000 m 

Work out what the distance will be when a meter  40 000 000 m + 1 m 

is added.      = 40 000 001 m = 40 000.001 km        
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Draw the wire around the earth with 1 m extra. 

The circumference of the earth is smaller than  

the circumference of the wire around the earth. 

But it won’t be possible for the mouse to crawl           1 extra meter  

between the earth and wire because the size of  

the mouse will be too big. And the 1 m extra given  1 m ÷ 40 000 km 

will have to be spread over the 40 000 km thus the  1 m ÷ 40 000 000 m  

ratio of the mouse and the size between the wire  = 0.000 000 025 m 

and the earth will differ. 

For every meter that 1 meter needs to divide into will not be enough for the mouse to crawl under. 

Consequently, this demonstrates that by not employing Debugging and Evaluation 

skills, an incorrect solution can be accepted as correct. This specific comprehension 

error occurred among 9 of the 41 pre-service teachers (22%). It is noteworthy that only 

three pre-service teachers (Respondents 5, 37 and 39) attempted different ways or 

methods to solve the problem; that is, they progressed to another method after the initial 

method proved unsuccessful.   

The high percentage of pre-service teachers who erred in solving the problem  

correctly (80.5%)—almost 20% of whom, although understanding the problem, made 

calculation errors—indicates that Monitoring along with Debugging and Evaluation are 

the metacognitive skills which these pre-service teachers did not employ sufficiently. 

These skills might play a vital role in improving performance, as they regulate progress 

and performance during—and effectiveness of strategies after—the problem-solving 

session. Analysing the method used—as well as analysing the answer by relating it to 

the question or problem—is an important aspect in taking control of the problem-solving 

situation. Regulating one’s actions by reflecting on actions, as well as revisiting methods 

and strategies to look for simpler and easier solutions, is indicative of metacognitive 

awareness. It also demonstrates expertise as the self-regulatory attribute of 

mathematical proficiency, i.e. the metacognitive skills of Evaluation and Monitoring. 
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The unproductive and ineffective use of strategies to correct comprehension and 

analyse performance may therefore result in failure to reach a sensible solution. 

Ultimately, metacognitive skilfulness plays a significant part in successful problem 

solving and performance. 

4.4.3  Discussion of the four-step problem-solving framework 

The pre-service teachers’ level of metacognitive awareness, as displayed in specific 

metacognitive behaviours during the problem-solving session, was also compared to 

the four-step problem-solving framework, which provides a framework for metacognitive 

behaviours during problem solving (see Section 2.3.4.4). It consists of four phases: 

Orientation, Organisation, Execution, and Verifying. In each phase, specific 

metacognitive knowledge and skills are expected to be utilised by a competent problem-

solver. Metacognitive knowledge and skills could be employed in a cyclical or recursive 

manner; for example, to reattempt solving a problem if a viable solution is not reached.  

In the Orientation phase, grouped together as a metacognitive planning skill, Item 22 (“I 

ask myself questions about the problem before I begin to solve a Mathematics 

problem”) and Item 41 (“I read the question carefully before I answer a problem”), which 

can be inferred from self-questioning or writing down key phrases, were mainly evident.  

Most of the pre-service teachers used questioning as a planning strategy. 

In the Organisation phase, Items 13 and 37 were applied frequently in managing the 

information provided in the problem statement. The pre-service teachers processed this 

information by employing Item 13 (“I consciously focus my attention on important 

information in a Mathematics question”) and Item 37 (“I draw pictures or diagrams to 

help me understand while I am learning Mathematics”). As Items 13, 30, and 9 were 

very similar in their application, references to focusing on information in the problem 

statement were grouped as belonging to Item 13 (see Section 4.4.2).  

It is notable that most of the pre-service teachers who used questioning successfully 

(Item 22) also proceeded to perform calculations; that is, they succeeded in progressing 

from the Orientation and Organisation phases to the Execution phase. Metacognitive 

questioning occurs in each phase and aids the progression from one phase to another 
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(see Section 2.3.2.4). Furthermore, in the Orientation phase, Item 50 (Debugging) could 

have been inferred from writing down the given data, the unknown data, and the given 

conditions, which would show evidence of rereading the statement to select the required 

data. 

In the Execution phase where calculations occur, monitoring one’s strategy use, 

accuracy, and understanding is very important. Hence reflecting through self-

questioning on comprehension (Item 34), different methods (Items 11 and 2), and 

progress (Item 48) indicates mathematical proficiency (see Section 2.3.4.2). Evidently, 

very few pre-service teachers displayed metacognitive monitoring skills. Moreover,  

Item 17 (Declarative knowledge) was evident in this phase, as it relates to employing 

the formula for the circumference of a circle and other facts and principles.  

Furthermore, metacognitive Debugging and Evaluation skills are mainly associated with 

the Execution and Verifying phases of the problem-solving model, although they can be 

utilised cyclically in other phases to reattempt solving a problem. Therefore, these 

strategies employed for correcting comprehension and performance errors during 

problem solving—as well as for analysing performance and strategy effectiveness after 

problem solving—are crucial. A competent problem-solver is anticipated to employ 

strategies to correct errors and reflect on their progress and performance whilst they are 

working as well as after the final solution. Consequently, reflecting on whether the 

problem was understood correctly in the first place (Items 43 and 50) or recognising 

failure and subsequently changing methods (Item 40) are very likely to be utilised during 

the problem-solving process. Lastly, mathematical proficiency (see Section 2.3.4.2) 

requires reflection on easier (Item 19) or different ways (Item 38) to solve a problem.  

4.4.4 Summary of the qualitative data from the problem-solving session 

During this session, the pre-service teachers recorded their thoughts and calculations. 

They demonstrated a level of metacognitive awareness (by employing strategies in an 

attempt to understand the problem statement) through self-questioning, through 

managing information using reading strategies and diagrams, and through writing down 

key phrases with accompanying calculations to a greater or lesser extent. However, 
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they demonstrated difficulty in monitoring their progress and performance, as well  

as little awareness of comprehension and calculation errors or how to evaluate 

strategies and solutions for reasonableness and effectiveness. Importantly, a fifth of the 

pre-service teachers solved the novel higher-order problem successfully, and only a 

third could identify and perform calculations concerning the key information in the 

problem. 

In relation to the subscales, the pre-service teachers mainly employed the 

metacognitive skills Planning and Information management during the first phase 

(Orientation) of the problem-solving framework model, and to a lesser extent 

Debugging, particularly in relation to understanding the problem statement. This 

indicates their awareness of the importance of making sense of and understanding the 

problem statement. Inadequate understanding of the problem hampered the 

progression from the first to the second phase of the problem-solving model. 

Inadequate metacognitive skillfulness was demonstrated through the low achievement 

of the pre-service teachers in regulating progress and performance during (and 

effectiveness of strategies after) the problem-solving session. This was especially 

evident in the metacognitive skills Monitoring, Debugging, and Evaluation. 

It was surprising to find very little evidence of effective reflection before, during, and 

after the problem-solving session. This may be due to a lack of awareness of how 

(Procedural knowledge), when, and why (Conditional knowledge) to skilfully use and 

reflect on strategies (heuristics) to solve problems. A lack of effective reflection might 

also point towards inadequate Declarative knowledge as an awareness of self, i.e. 

inadequate awareness of a person’s own strengths and weaknesses, as well as 

inadequate knowledge of intellectual resources such as applicable facts and strategies.  

In addition, inadequate subject knowledge, as seen in the problem-solving session, 

seemed to have hindered progress. Moreover, as metacognitive reflection is learned 

over time and with practice through opportunities to solve novel problems, infrequent 

exposure to the solving of novel tasks means the inadequate practising of reflection 

during problem-solving processes. This might be a contributing factor to the low number 

of pre-service teachers who effectively solved the problem. Lastly, this inadequate 
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reflection may be explained by time constraints that potentially did not allow for 

adequate reflection during and after the problem-solving session. 

4.5 DISCUSSION OF THE QUESTIONNAIRE DATA AND  

COMPARISON TO THE THINK–ALOUD METHOD 

In relation to the MAI, the following observations can be made. The main findings 

indicate a moderately high level of metacognitive awareness among the pre-service 

teachers on the MAI. Furthermore, metacognitive knowledge featured more prominently 

than metacognitive skills. Additionally, the items with the highest and lowest means 

related generally to metacognitive knowledge and metacognitive skills respectively. The 

pre-service teachers demonstrated some awareness of what facilitates their learning  

in Mathematics, namely affect, interest, prior knowledge, and motivation (see  

Section 2.3.4.2.4). However, they demonstrated less awareness of the importance of 

monitoring and the evaluation of skills in executing and verifying mathematical 

problems.   

Findings from the problem-solving session were mostly similar to those of the MAI, with 

some discrepant findings. It should be noted that the think-aloud session could not be 

correlated with the entire questionnaire. The MAI assessed the metacognitive 

awareness (i.e. metacognitive knowledge and metacognitive skills) of pre-service 

teachers during the learning and problem solving of Mathematics, whilst in the problem-

solving session, mainly metacognitive behaviours relating to problem solving could be 

observed (see Section 3.4.5 for a more comprehensive explanation). In the problem-

solving session, therefore, metacognitive skills were more evident, whilst metacognitive 

knowledge referred mainly to the broader learning of Mathematics as measured by  

the MAI. Consequently, the qualitative think-aloud session enriched the findings of the 

MAI, rather than explaining or elaborating on those findings (see Sections 3.4.5; 4.4).  

Based on the limited comparison that could be made between the findings obtained 

from the MAI and the think-aloud problem-solving session (see Section 3.4.5), two 

observations are prominent. First, the higher level of metacognitive knowledge in 
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comparison to metacognitive skills, as reported on in the MAI, was mainly evident in the 

first phase of the problem-solving framework and to a lesser extent in the other three 

phases. Second, the reflections and calculations of the pre-service teachers during the 

problem-solving session related to the items with the highest and lowest means on  

the MAI, as discussed below. 

As reported on in the MAI, the items with the highest means related to making sense of 

the problem statement. Three of these items (41, 50, and 9) related to reading the 

problem statement. This awareness was demonstrated in the problem-solving session 

as self-questioning by carefully reading the problem statement, by asking questions 

about the problem itself, and by making diagrams. Pre-service teachers also showed 

interest in attempting to understand and solve the problem. This corresponds with the 

items with the highest means on the MAI, namely Items 45 and 26, which in turn relate 

to the affective attribute of mathematical proficiency (see Section 2.3.4.2.4). 

Furthermore, despite reporting awareness of the importance of prior knowledge  

(Item 15), about two-thirds of the pre-service teachers displayed a poor understanding 

of the problem statement. Possible reasons are insufficient opportunities to practice 

solving complex problems and/or inadequate subject knowledge. They therefore lacked 

possession of a good knowledge base and heuristics, and consequently did not 

demonstrate mathematical proficiency (see Section 2.3.4.2.1). 

Significantly, items with the lowest means on the MAI related mainly to Evaluation and 

Monitoring, and it was further evident in the problem-solving session that the 

metacognitive skills Monitoring, Debugging, and Evaluation were not well-employed. 

The lower level of metacognitive skills (Regulation of cognition) than metacognitive 

knowledge (Knowledge of cognition) reported on in the MAI—as well as the lower 

means of the subscales Evaluation and Monitoring—was evident in the poor regulating 

skills displayed during the problem-solving session.  

Although Debugging had the highest mean of the metacognitive skills on the MAI, the 

pre-service teachers displayed little success in correcting comprehension and 

conceptual errors during the problem-solving session. An explanation could be that the 

pre-service teachers were either unaware of their errors, did not know how to correct 
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these errors, or ran out of time to do so. On the other hand, this subscale is not reported 

to be very reliable because of the low number of items on the subscale for the 

instrument; therefore, it could not be compared.  

To conclude, mathematically proficient teachers are expected to display metacognitive 

adaptive expertise in novel situations, such as the one provided in this problem-solving 

scenario. However, although the MAI total scores indicated a moderately high level of 

metacognitive awareness, this was not evident in the qualitative data obtained during 

the problem-solving session, as only about a third of the pre-service teachers 

understood the problem statement entirely and could solve the problem successfully 

(not taking into account calculation errors). Therefore, the reported level of 

metacognitive awareness did not translate to high achievement in the problem-solving 

session. Successful performance was hampered by poor regulation skills, particularly in 

their reflection on the suitability of strategies and methods, and the debugging of 

conceptual and calculation errors. Besides inadequate reflection, insufficient 

opportunities to solve ill-defined problems, insufficient subject knowledge, and possible 

time constraints could account partially for the low achievement too.  

It must be emphasised, however, that inferences and comparisons that could be made 

between the MAI data and the think-aloud problem-solving session data were limited 

(see Section 3.4.5). Moreover, correlation between questionnaires and self-report 

measures was generally low (Schellings et al., 2013: 963). Nonetheless, these findings 

illustrate that the majority of pre-service teachers were unable to translate their reported 

level of metacognitive awareness—as a key component in the learning and problem 

solving of Mathematics, especially in competent problem solving—to the problem-

solving session. The implication for teaching and learning, therefore, is to build on this 

awareness of the gap that exists between what pre-service teachers say they can do 

and what they actually can do in a given problem-solving situation. Opportunities to 

enhance metacognitive skillfulness during problem solving and in everyday teacher 

practice should be given to pre-service teachers during teacher training. These 

recommendations are discussed in Chapter 5.  
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4.6 SUMMARY OF CHAPTER 

In summary, this chapter explored secondary research question 3, “What is the level of 

metacognitive awareness of pre-service Mathematics teachers on the MAI?”, using 

quantitative data gathered via questionnaire. The means on the total MAI and the two 

subcomponents of metacognition demonstrated that the pre-service teachers possess a 

level of metacognitive awareness to some extent. The pre-service teachers indicated a 

higher level of awareness with regards to two attributes: first, the importance of interest 

in learning Mathematics, and second, the importance of managing information in a 

problem statement to make meaning of it. The pre-service teachers reported a lower 

level of awareness in relation to the monitoring and evaluation of performance and 

strategy use in Mathematics learning and problem solving. 

In addition, through addressing secondary research question 4—“What is the level of 

metacognitive awareness of pre-service Mathematics teachers in a problem-solving 

context?”—qualitative data enriched the findings of the quantitative data and provided a 

broader perspective on the pre-service teachers’ level of metacognitive awareness in a 

problem-solving context. During this session, the pre-service teachers recorded their 

thoughts and calculations. They demonstrated a level of metacognitive awareness 

through the following: first, by employing strategies to try and understand the problem 

statement; second, by using self-questioning; third, by managing information using 

adjusted reading strategies and diagrams; and fourth, by recording key phrases with 

accompanying calculations to a greater or lesser extent. However, they demonstrated 

difficulty with monitoring their progress and performance. Low awareness of 

comprehension and calculation errors—and how to evaluate their process and solution 

for reasonableness and effectiveness—was also observed. 

These findings illustrate that most of the pre-service teachers inadequately translated 

their reported level of metacognitive awareness—a key component in learning and 

problem solving in Mathematics, especially in competent problem solving—to the 

problem-solving session. There is, therefore, a notable gap between what the pre-
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service teachers reported they could do, as measured in the MAI, and what they 

actually could do, as demonstrated in the problem-solving session.   
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CHAPTER 5 

CONCLUDING FINDINGS AND RECOMMENDATIONS 

5.1 INTRODUCTION 

The purpose of the study was to determine the level of metacognitive awareness of pre-

service Mathematics teachers, which was initiated based on concern about the 

underachievement of Mathematics learners in South Africa in both national and 

international tests and related concern about the quality of Mathematics teaching and 

teacher training (see Section 1.2). The purpose of the study is reviewed in this chapter 

in light of findings from the literature review and empirical study. The primary research 

question was explored through a literature review (see Chapter 2) and a qualitative and 

quantitative empirical investigation (see Chapter 4). In Chapter 3, the research 

methodology was discussed.  

The chapter reviews the findings of Chapter 4 and provides recommendations on how 

to encourage and enhance metacognitive awareness in pre-service teachers. It 

concludes by considering the significance of the study, as well as by acknowledging 

limitations of the research. 

5.2 RATIONALE FOR AND OVERVIEW OF THE CHAPTERS 

5.2.1 Overview of Chapter 1 

Concerns have been raised that educational institutions are not adequately empowering 

learners with knowledge, lifelong learning skills, and dispositions to succeed at and 

beyond schooling. The low achievement of South African learners in Mathematics 

nationally and internationally is a locus of concern for politicians and educators, as 

Mathematics is a gateway subject to core professions and features key skills demanded 

in the current job market. Hence there is a focus on enhancing the standard of 

Mathematics teaching and learning, as educators and educational researchers are 

concerned about the low achievement of Mathematics learners in Grade 12, in the 
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internationally benchmarked TIMSS, and in the national ANA tests (see Section 1.2). A 

possible cause could be the prevalence of inadequate higher-order thinking skills for 

solving problems, implying that these skills are not adequately developed or taught at 

school level at different ages (see Section 1.2). Good problem-solving skills, as higher-

order thinking skills, are central to mathematical proficiency (see Sections 1.2; 1.3). 

Moreover, metacognition—as a higher-order thinking skill and as adaptive 

competence—facilitates problem solving, mathematical proficiency, and productive 

learning, consequently influencing performance and raising achievement (Section 1.3).  

Further concerns were raised that the training of teachers at higher education 

institutions does not adequately prepare pre-service teachers for lifelong learning and 

problem solving and does not equip them to translate these knowledge and skills for 

their learners. Teachers are expected to manage their own lifelong learning 

successfully, facilitate productive learning and successful problem solving among their 

learners, and be metacognitive reflective practitioners and improve upon their practice 

(see Sections 1.1; 1.2).  

A key focus in South Africa is enhancing Mathematics teaching and learning to support 

learning outcomes and expectations set by government and educational institutions for 

both teachers and their learners (see Sections 1.2; 1.4). Metacognition is the adaptive 

competence which facilitates these expectations.  

The question, therefore, was posed whether the development of metacognition occurs 

during a teaching and learning situation. Consequently, the purpose of the study was to 

investigate the level of metacognitive awareness of pre-service Mathematics teachers.  

To explore the primary research question, “What is the level of metacognitive 

awareness of pre-service Mathematics teachers?”, the following secondary research 

questions were answered: 

Secondary research question 1: How is metacognitive awareness conceptualised?  

Secondary research question 2: What is the role of metacognitive awareness in 

Mathematics teaching and learning?   
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Secondary research question 3: What is the level of metacognitive awareness of pre-

service Mathematics teachers on the Metacognitive Awareness Inventory (MAI)? 

Secondary research question 4: What is the level of metacognitive awareness of pre-

service Mathematics teachers in a problem-solving context? 

5.2.2 Overview of Chapter 2 

In Chapter 2, a literature review was conducted. The conceptualisation of metacognition 

(see Sections 2.2.1–2.2.4), associations with related constructs (see Section 2.2.5), and 

research on metacognition and meta-memory (see Section 2.2.6) were discussed. 

In addition, Chapter 2 examined the importance of metacognition in teaching and 

learning—particularly pertaining to Mathematics learning and problem solving,  

and therefore mathematical achievement (see Sections 2.3.1–2.3.2)—as investigated  

in Mathematics curriculum documents and educational research literature (see  

Sections 2.3.3–2.3.4.1). Metacognition as adaptive competence along with other factors 

in mathematical proficiency and productive learning (see Sections 2.3.4.2; 2.3.4.3), as 

well as metacognition’s role in facilitating mathematical problem solving at the hands of 

a problem-solving framework, were also discussed (see Section 2.3.4.4). Moreover, 

teachers’ metacognitive reflective practices and training as metacognitive reflective 

practitioners were explored (see Sections 2.3.5–2.3.5.1). Finally, the chapter concluded 

with a discussion of how teachers teach for and with metacognition to enhance 

metacognitive awareness in learners (see Sections 2.3.4.1–2.3.4.4). 

5.2.3 Overview of Chapter 3 

In Chapter 3, the philosophical worldview, the research approach, and the research 

methods which informed the study were discussed. 

A descriptive survey design with purposive convenience sampling was employed, 

rendering non-parametric data on an ordinal scale. A quantitative approach was used to 

explore secondary research question 3, determining the level of metacognitive 

awareness of pre-service teachers on the MAI. Chapter 3 discussed the data collection 
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methods employed (see Section 3.4.3), along with the measuring instrument—the 

Metacognitive Awareness Inventory (MAI) developed by Schraw and Dennison (1994)—

used to measure the metacognitive awareness of adults (see Section 3.4.3.1; see  

also Sections 4.2.1–4.2.2).  

A qualitative approach was adhered to for secondary research question 4, exploring  

the level of metacognitive awareness of pre-service teachers in a problem-solving  

context (see Section 3.4.3.2). The findings of this think-aloud problem-solving session 

served to enrich the findings of the MAI. Quality criteria regarding the quantitative 

instrument, and regarding inferences that were made from the qualitative data, were 

also discussed in the chapter (see Section 3.4.3.3). Finally, methods of data analysis 

and interpretation were referred to (see Section 3.4.5). 

5.2.4 Overview of Chapter 4 

In Chapter 4, the empirical data was analysed and interpreted. The measuring 

instrument, the MAI, was found to be valid and reliable as an instrument, as well as 

according to the two factor conceptualisation of Knowledge of cognition and Regulation 

of cognition (see Section 4.2.3). 

Descriptive statistical procedures were employed when analysing the quantitative data. 

Inferential statistics, the Spearman Rho correlation value, determined the correlation 

between the two factors on the MAI (see Section 4.3.1). A discussion of individual 

tendencies, as illustrated by the seven items with the highest and lowest means 

respectively, enriched the findings of the MAI (see Section 4.3.2).  

The qualitative data was analysed by means of coding and comparing the comments of 

the pre-service teachers in the problem-solving session to the metacognitive strategies 

which related to items and subscales on the MAI. The quantitative and qualitative 

findings were consequently compared, with due consideration given to the limitations of 

the comparison (see Section 4.5; see also Section 3.4.5). While interpreting the data, 

the findings were correlated with the literature on the role of metacognition in 

Mathematics teaching and learning, specifically attributes of mathematical proficiency, 
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aspects of productive learning, and the four-step problem-solving framework (see 

Section 4.4).  

5.3 FINDINGS IN THE LITERATURE REVIEW 

The nature of the construct metacognitive awareness is not precisely defined; however, 

metacognitive awareness conceptualised as two subcomponents—metacognitive 

knowledge and metacognitive skills—is widely accepted (see Sections 2.2.1; 2.2.3). 

Metacognitive experiences elicit metacognitive knowledge, which prompts individuals to 

reflect on self—their feelings, thoughts, actions, knowledge, and skills—and hence 

employ metacognitive and cognitive strategies to regulate feelings, thoughts, actions,  

and goals (see Section 2.2.4). 

Metacognition contributes to learning in relation to other constructs like meta-memory, 

self-regulation, and motivation and affect (see Section 2.2.5). This interrelationship 

makes metacognition difficult to precisely define (see Section 2.2.3) and consequently 

difficult to measure (see Section 3.4.1). In the meta-memory framework, information  

is transferred from the cognitive to the metacognitive level and vice versa (see  

Section 2.2.4.2). As a higher-order thinking skill, metacognition is elicited during  

novel scenarios and challenging mathematical problem-solving tasks (see  

Sections 2.2.2; 2.2.4.2). Metacognition develops from childhood to adulthood and  

most adults possess some level of metacognitive awareness. Metacognitive  

skillfulness could be general or domain-specific (see Section 2.2.4.3). However, 

metacognitive monitoring skills do not necessarily translate into metacognitive 

regulation (see Sections 2.2.4.3; 2.2.6). 

I agree with the view that metacognition as adaptive competence facilitates learning  

and problem solving, as well as the ability to transfer and use knowledge and skills  

in novel scenarios and when solving ill-defined problems (Bransford et al., 2000: 18;  

see Sections 2.3.1.2; 2.3.4.2). Experts are recognised by their adaptive  

reflective practices. Metacognition enables individuals to deal with the demands of  

fast-changing knowledge and new situations at school, work, and in lifelong learning  

(see Sections 2.1; 2.3.1.2; 2.3.4.2). 
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Various studies on metacognition and metacognitive intervention found that 

metacognitive awareness, strategies, and skills can be acquired and therefore  

taught (see Sections 2.2.4.3; 2.4.3) and can enhance academic achievement (see  

Sections 1.3; 2.3.2; 2.3.3). It is not easy to reflect naturally and spontaneously  

(see Section 2.3.5), but metacognitive awareness develops with intent and  

deliberate training over a prolonged period and thus there are factors that enhance 

metacognitive awareness in individuals (see Section 2.4). The role of metacognition  

is therefore recognised in Mathematics teaching and learning internationally (see 

Sections 2.3.4.1; 2.3.4.2) and especially in the South African context (see  

Sections 1.2; 2.3.1.3). Metacognition is one of the four attributes of mathematical 

proficiency (see Section 2.3.4.2) and an aspect of productive learning in Mathematics 

(see Section 2.3.4.3). Moreover, it is key in mathematical problem solving and  

facilitates the transfer between the four-phase cyclical problem-solving framework (see 

Section 2.3.4.4). 

Metacognitive reflection as an adaptive competence facilitates the translation of 

knowledge into skills. Mathematically proficient learners have the disposition, 

knowledge, and skills to do what they say they can do (see Section 2.3.4.2). 

Mathematically proficient learners presuppose mathematically proficient teachers who 

model and scaffold learning and problem solving. Consequently, teachers’ 

metacognition in facilitating Mathematics learning and problem solving is important. 

Teaching for metacognition (see Section 2.4) requires teachers to be metacognitively 

aware and reflective practitioners themselves. Teachers who are not fully aware of the 

importance of metacognition in teaching and learning are not likely to facilitate 

metacognition in productive learning and successful problem solving; therefore, 

empowering teachers as metacognitive reflective practitioners should be an aim of 

teacher training (see Sections 2.3.2; 2.3.5.1). Furthermore, the metacognitive reflection 

of teachers is complex due to personal and situational factors. The need for reflective 

practices to be cultivated in pre-service and during service teacher training is therefore 

well-recognised (see Sections 2.3.5; 2.3.5.1). 
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In teacher training, it is reasonable to expect that pre-service Mathematics teachers 

would possess a level of metacognitive awareness. It is crucially important to encourage 

and enhance their level of metacognitive awareness so that they, in turn, can translate 

metacognition to their learners at an adequate level. Therefore, I considered it important 

to determine the level of metacognitive awareness of fourth-year pre-service 

Mathematics teachers, as well as whether their reported metacognitive awareness 

translated successfully into a problem-solving context.  

5.4 FINDINGS OF THE EMPIRICAL RESEARCH 

The purpose of the empirical research was to investigate the level of metacognitive 

awareness of pre-service Mathematics teachers and to make recommendations based 

on the data to encourage and facilitate metacognitive awareness among pre-service 

teachers (see Section 5.5).  

To achieve this, a primary research question and four secondary research questions 

were formulated. The findings for secondary research questions 3 and 4 are discussed 

below. 

Secondary research question 3: What is the level of metacognitive awareness of pre-

service Mathematics teachers on the MAI? 

The purpose of the research was primarily addressed using quantitative data by means 

of a questionnaire, the MAI. Although metacognition is defined and conceptualised in 

various ways, literature confirms the MAI as a reliable and valid instrument for adults 

and has consequently been used in various studies (see Sections 3.4.3.1.1; 4.2.1). It 

was also found reliable in the study to measure the metacognitive awareness of pre-

service teachers according to the factors Knowledge of cognition and Regulation  

of cognition (see Sections 4.2.3.1; 4.2.3.2), confirming the two-component 

conceptualisation of metacognition (see Section 2.2.3). 

Based on the mean of the total MAI and the mean of the two subcomponents of 

metacognition, the data from the questionnaire revealed that pre-service Mathematics 

teachers possess metacognitive awareness to some extent (see Section 4.3.1). As 
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indicated by the results of the pre-service teachers’ MAI total scores, they perceive their 

metacognitive awareness to be at a level of 74%. The higher mean of Knowledge of 

cognition (3.82) over Regulation of cognition (3.64) implies that metacognitive 

knowledge is more prominent among the pre-service teachers than metacognitive skills. 

In addition to assessing the overall metacognitive awareness of the pre-service 

teachers, individual tendencies in pre-service teachers’ learning and problem solving in 

Mathematics were highlighted by examining the seven items with the highest and lowest 

means. These tendencies served to enrich the findings and are not indicative of the 

broader level of metacognitive awareness as indicated by the MAI total scores. 

Regarding the seven items with the highest means, most of the pre-service teachers 

were aware that interest facilitates their learning and that reflection on prior knowledge 

of a topic or task is foremost in the productive learning of Mathematics. This indicates 

the role of affect in being mathematically proficient (see Section 2.3.4.2.4) and  

the constructive aspect of productive learning (see Section 2.3.4.3.1). Furthermore,  

they reported the importance of reading strategies to clarify an understanding  

of a Mathematics problem statement in three items (see Section 4.3.2.1). This 

corresponds with the first phase, Orientation, of the problem-solving framework (see 

Section 2.3.4.4.1). The pre-service teachers’ metacognitive awareness related mainly to 

Declarative Knowledge, and in regards to metacognitive skills (Planning, Information 

management, and Debugging) it related particularly to making sense of the problem 

statement. 

For the seven items with the lowest means, the pre-service teachers reported a low 

level of reflection in evaluating the solution to a problem and hence considering different 

or easier ways to solve the problem. Furthermore, they reported a lower level of 

awareness of monitoring the effectiveness of learning and of using problem-solving 

strategies in three items (see Section 4.3.2.2). They therefore did not report an 

awareness of accessing and building their knowledge base on the MAI, which implicitly 

relates to the constructive aspect of productive learning (see Section 2.3.4.3.1). 

Consequently, they did not display expertise in the problem-solving session, as effective 
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strategy use (heuristics) and tapping into a sound knowledge base are attributes of 

mathematical proficiency (see Sections 2.3.4.2.1; 2.3.4.2.2; 4.3.2.3).  

In relation to the four-phase problem-solving framework and according to the third 

phase, Execution, a lower level of metacognitive awareness was reported concerning 

the importance of reflection and monitoring thoughts and actions during learning and 

problem solving (see Section 2.3.4.4.3). In addition, a lack of reflection on solutions is  

indicated regarding the fourth phase of the problem-solving framework, Verifying  

(see Section 2.3.4.4.4). On the MAI, therefore, the seven lowest reported items related 

to the following two MAI subscales: Monitoring and Evaluation. 

In summary, these individual tendencies indicate a lack of awareness of (or skill in) 

applying effective evaluative and monitoring strategies. This observation highlights the 

difficulty that the pre-service teachers experienced with understanding and interpreting 

Mathematics questions, which on the one hand informed their reflection on effective 

reading strategies and motivated a careful reading of the problem statement, and on the 

other hand possibly influenced their interest and motivation. This could possibly have 

been informed by a reflection on their experiences at school level with solving 

mathematical problems. 

The question hence arose whether this reported metacognitive awareness in learning 

and solving problems in Mathematics was at an adequate level to demonstrate success 

in an actual problem-solving context. In other words, could pre-service teachers 

translate their reported metacognitive awareness in Mathematics learning and problem 

solving, as reported in the MAI findings, to solving a challenging mathematical problem 

successfully? These findings are discussed next. 

Secondary research question 4: What is the level of metacognitive awareness of pre-

service Mathematics teachers in a problem-solving context?  

Regarding this secondary research question, the qualitative data enriched the findings 

of the quantitative data and provided a broader perspective on the level of 

metacognitive awareness exhibited by the participants during the problem-solving 

session. The pre-service teachers recorded their thoughts and calculations while 
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problem solving (see Section 3.4.3.2; Appendices 4; 7). During the session, they mainly 

applied individual items relating to the following three MAI subscales: Planning, 

Information management, and to some extent Declarative knowledge. Additionally, their 

responses mostly related to the first two phases of the problem-solving framework, 

namely Organisation and Orientation. The strategies used most frequently were self-

questioning and the managing of information to make sense of the problem statement 

(see Sections 4.4.3; 4.4.4). Therefore, the pre-service teachers initially displayed a 

potentially high level of metacognitive awareness by reflecting on their thoughts to 

understand the problem statement. 

During and after the problem-solving session, in the Execution and Verifying phases, 

the pre-service teachers inadequately monitored errors and inadequately evaluated 

strategy effectiveness or the suitability of the solution. Consequently, the MAI subscales 

Monitoring, Evaluation, and Debugging did not feature significantly. The pre-service 

teachers thus demonstrated inadequate reflection on regulating progress and 

performance.  

The study provides some evidence that the pre-service teachers’ performances in the 

problem-solving session did not correspond with their own assessments of their 

metacognitive awareness on the MAI. This evidence indicates that the pre-service 

teachers might have overestimated their level of metacognitive awareness in learning 

and problem solving when they assessed themselves by means of the MAI. They might 

have been aware of what mathematical proficiency and productive learning entail, but 

failed to implement them successfully in the problem-solving scenario (see also Section 

5.4.1). 

In conclusion, the pre-service teachers did not display an adequate level of 

metacognitive awareness regarding reflection on aspects of Mathematics during the 

problem-solving session. Metacognitive skillfulness plays a significant role in successful 

performance (see Section 2.2.4.3). However, the ineffective use of strategies to correct 

comprehension and analyse and regulate performance during the problem-solving 

session resulted, for the majority of pre-service teachers, in overall failure to reach a 
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sensible solution (see Section 4.4.4). Additionally, a poor understanding of the problem 

statement also contributed to the low achievement.  

The findings of both the literature review and empirical studies contributed to answering 

the research questions underpinning the study, and are summarised below.  

5.4.1 Summary of findings 

Secondary research question 1: How is metacognition conceptualised? 

Although not precisely defined or conceptualised, the two-component view of 

metacognition consisting of Knowledge of cognition and Regulation of cognition is 

accepted and used in the study. Knowledge of cognition consists of Declarative 

knowledge, Procedural knowledge, and Conditional knowledge, whilst Regulation of 

cognition consists of Planning, Information management, Debugging, Monitoring, and 

Evaluation.  

Secondary research question 2: What is the role of metacognitive awareness in 

Mathematics teaching and learning?   

Metacognition as adaptive competence facilitates mathematical proficiency and 

productive learning and hence influences achievement in Mathematics (see  

Sections 2.3.3; 2.3.4.2; 2.3.4.3). Furthermore, metacognition facilitates the problem-

solving process in the four-phase problem-solving framework (see Section 2.3.4.4). 

Metacognitive adaptive competence could be taught and enhanced in teachers and 

learners (see Sections 2.3.5.1; 2.4). Metacognitive reflection improves pre-service and 

in-service teachers’ practices (see Sections 2.3.5–2.3.5.1). Finally, teaching with  

and for metacognition enhances metacognitive awareness in learners (see  

Sections 2.3.4.1–2.3.4.4). 

Secondary research question 3: What is the level of metacognitive awareness of pre-

service Mathematics teachers on the MAI? 

The study indicates that the pre-service teachers possess a moderately high level 

(74%) of metacognitive awareness, as indicated by the results of the pre-service 
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teachers’ MAI total scores. Metacognitive knowledge is more prominent than 

metacognitive skills and makes a unique contribution to performance.  

Secondary research question 4:  What is the level of metacognitive awareness of pre-

service Mathematics teachers in a problem-solving context? 

The qualitative inquiry illustrated that the majority of pre-service teachers were unable to 

translate their reported metacognitive awareness to the problem-solving session.  

While the level of metacognitive awareness of the pre-service teachers was reported as 

moderately high, it did not result in high achievement in the problem-solving session. 

Recall that only a fifth of the participants solved the problem successfully and two - 

thirds could not progress to phase 3 of the problem-solving framework. Metacognitive 

awareness was not demonstrated at the necessary level to achieve success throughout 

the problem-solving session, i.e. during all four phases of problem solving. 

Consequently, there was an observed gap between the pre-service teachers’ reported 

abilities as measured by the MAI and what they could actually do during the problem-

solving session. On the MAI and in the problem-solving session, the subscales 

Declarative knowledge, Planning and Information management were more prominent, 

whereas Evaluation and Monitoring featured to a lesser extent.  

Therefore, the data and the literature concur to offer possible explanations for the 

findings as follows:  

Knowledge of cognition and Regulation of cognition make unique contributions to 

learning and problem solving (see Sections 3.4.3.1.1; 4.3.1). The pre-service teachers 

reported a higher level of metacognitive knowledge than metacognitive skills in the 

quantitative inquiry. In the qualitative inquiry, metacognitive skills were clearly evident, 

as elicited by the complex novel problem, whereas metacognitive knowledge was more 

implicit and could be inferred from statements made (see Section 4.5). Support for the 

moderately high reported level of metacognitive awareness is found in another study 

with second and third-year undergraduate South African Mathematics teachers (Van 

Der Walt, 2014) which reported a high level of metacognitive awareness (see Section 
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2.3.3). Ultimately, most adults possess some level of metacognition (see Sections 

2.2.4.3; 2.4.3). 

Although correlation between the quantitative and qualitative data in the study is  

limited (see Section 3.4.5), there are a number of possible explanations for the gap  

that exists between the reported reflection on the MAI and the pre-service teachers’  

actual performance during the problem-solving session. Individuals might overestimate 

or underestimate their abilities, knowledge, and skills (see Section 2.2.6). In some 

instances, Mathematics teachers in South Africa have been found to overestimate  

their mathematical teaching abilities (Spaull, 2013: 21; see Sections 1.2; 2.3.3). 

Furthermore, a teacher’s beliefs about learning (De Corte, 2010: 56) and students’ 

inaccurate assessments and management of their learning due to faulty beliefs  

(Bjork et al., 2013: 417, 424, 427) can impact learning (see Section 2.3.5) and influence 

problem-solving (see Sections 2.3.4.2.4; 2.4.2). Reflection, especially during the 

problem-solving process, can be difficult (see Section 2.4.5). On the other hand, the 

pre-service teachers might possess the metacognitive knowledge and skills, but fail to 

apply these in the problem-solving situation, and monitoring does not necessarily result 

in regulation (see Section 2.3.1.2).   

In addition to inadequate regulating skills, achievement in the problem-solving session 

was hampered by not making sense of or understanding the problem statement.  

Possible explanations could be deficiencies in content knowledge, insufficient 

opportunities to practice the solving of novel problems, and time constraints during the 

problem-solving session. Literature confirms the importance of sufficient subject 

knowledge and developing higher-order thinking skills (see Section 2.2.2) through 

providing regular opportunities to solve complex and novel tasks (see Section 2.4.3). 

Also, this poor performance might relate back to school level, where low emphasis on 

developing higher-order thinking skills and problem-solving opportunities is a continuing 

concern raised by educational researchers and educators (see Section 1.3). 
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The pre-service teachers displayed the attributes of mathematical proficiency by 

reporting awareness of the importance of affect (interest and motivation) and a well-

resourced knowledge base (prior knowledge and subject knowledge) for successful 

problem solving. They displayed a lower level of reflection on metacognitive self-

regulating and heuristic attributes, by not reflecting on previous successful reading and 

problem-solving strategies (see Section 2.3.4.2). Both on the MAI and in the think-aloud 

problem-solving session, the metacognitive skills of monitoring and evaluation of pre-

service teachers presented at a lower level (see Section 4.5).  

Metacognition as reflection facilitates the problem-solving process and progression from 

one phase to another in the problem-solving framework (see Section 2.3.4.4). The pre-

service teachers reflected on the problem-solving statement by using the metacognitive 

strategies of asking themselves questions and making sense by drawing diagrams in 

the first phase, Orientation, and the second phase, Organisation, respectively. This 

helped a third of them to progress to phase 3, Execution. However, the lack of reflection 

on alternative and effective heuristic strategies or methods hindered progression from 

phases 2 to 3 and phases 3 to 4 and hence impacted progress towards solving the 

problem successfully (see Section 4.4.3).  

In conclusion, based upon the pre-service teachers’ reported lower level of awareness 

of metacognitive skills on the MAI and their poor performance in the problem-solving 

session, I argue that the training of pre-service Mathematics teachers potentially does 

not involve adequate metacognitive strategy training for problem solving. This suggests 

that the lecturers involved in teacher training might not teach for metacognition 

explicitly. Also, their knowledge about or experience in teaching with and for 

metacognition in problem solving might not be sufficiently developed. This group of 

respondents should be nurtured towards greater awareness of the role that 

metacognition plays within the academic context and Mathematics achievement. 

Additionally, metacognitive strategy training should be incorporated into all Mathematics 

teachers’ training.  
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5.5 RECOMMENDATIONS  

The study focused on the level of metacognitive awareness of pre-service Mathematics 

teachers. The pre-service teachers reported a level of metacognitive awareness to 

some extent; however, they could not translate their metacognitive knowledge and 

metacognitive skills into successful problem solving. Metacognitive awareness as 

adaptive competence is important in lifelong learning and problem solving, which are 

required in an information-rich world. Teachers should be metacognitively aware 

themselves and as reflective practitioners should translate, teach, and model these 

metacognitive behaviours for their learners. Enhanced metacognitive awareness in 

teachers and learners will lead to better learning and problem solving; therefore, 

developing metacognitive awareness should be explicitly integrated into teacher training 

and the teaching and learning of learners in general, and specifically in Mathematics, to 

enhance learning and problem solving and, consequently, influence achievement in 

Mathematics. Following on this argument, the following recommendations are made:   

1. In future studies assessing metacognition, the different definitions, related constructs, 

and conceptualisations of metacognition should be considered, applied, and utilised, 

together with the two factors Knowledge of cognition and Regulation of cognition  

(see Section 2.2.3). 

2. Regarding the measurement of metacognitive awareness, different methods should 

be borne in mind in selecting data collection procedures. The primary measuring 

instrument, the MAI, and the secondary supportive data collection method, a think-aloud 

problem-solving session, have been used in some previous studies on metacognition in 

school children and early adulthood (see Sections 3.4.3; 3.4.3.1; 3.4.3.2). 

3. Generalisation is not possible in the study (see Section 3.4.5; 5.7). However, for the 

pre-service teachers in the study, metacognitive skills did not feature as strongly as 

metacognitive knowledge and therefore should be enhanced (see Section 5.4). In 

particular, monitoring and evaluation skills should be enhanced as the two subscales 

Monitoring and Evaluation did not feature prominently on the MAI. This observation was 

indicated by the low means on the instrument. Furthermore, metacognitive skills did not 
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feature prominently during the problem-solving session, as seen during the last two 

phases of the problem-solving framework. I therefore recommend that the pre-service 

teachers’ metacognitive awareness could be enhanced by focusing on the subscales, 

making pre-service teachers aware of these metacognitive skills and hence scaffolding 

monitoring and evaluation strategies by modelling and facilitating how, when, and why 

(Procedural and Conditional knowledge) to employ these strategies in a Mathematics 

teaching and learning situation (see Sections 2.3.5.1; 2.4.1).   

4. The MAI could be employed as a self-survey tool to determine the level of 

metacognitive awareness of pre-service teachers. In this way, lecturers could informally 

assess the level of metacognitive awareness of their students and make them aware of 

their level of metacognitive awareness. Furthermore, the MAI could be employed as a 

diagnostic tool for metacognitive intervention and strategy training prior to the fourth 

year of Mathematics didactics education (see Section 3.4.3.1.1). 

5. Pre-service teachers should be made aware of the importance of metacognition  

as adaptive competence—and hence the role it plays in lifelong learning and  

their own metacognitive reflective practices—to improve their teaching practice  

(see Sections 2.3.5; 2.3.5.1).  

6. Pre-service teachers should also be made aware of the importance of metacognition 

in facilitating productive learning and mathematical proficiency, firstly for their own  

benefit and secondly for their learners, ultimately influencing performance (see  

Sections 2.3.3; 2.3.5).  

7. Metacognitive reflective practice as adaptive competence is developed as a  

deliberate and prolonged practice, as developing and implementing metacognitive 

reflection is not easy and this develops spontaneously to a certain extent only  

(see Sections 2.3.5.1; 2.4.1). Pre-service teachers, therefore, should be encouraged  

to cultivate metacognitive awareness through providing ongoing opportunities in  

teacher training for teachers to reflect on their practice of teaching Mathematics, as well 

as on how to model metacognitive awareness, productive learning, and competent 

problem solving to their learners.  
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8. The pre-service teachers’ interest in a topic is crucially important for Mathematics 

learning. Real-life problems are commonly more interesting and challenging. 

Opportunities in teacher training should therefore include assessment tasks which 

involve solving complex and novel problems situated in authentic contexts. These ill-

defined problems elicit interest and higher-order thinking, and as such prompt 

metacognitive awareness (see Sections 2.2.2; 2.2.4.2). Consequently, teachers will 

have an opportunity to reflect on and enhance their metacognitive and problem-solving 

skills.  

9. Pre-service Mathematics education modules should include metacognitive strategy 

training, as metacognitive skills are trainable. Modelling of metacognitive and problem-

solving strategies in teacher training enhances metacognition, and therefore pre-service 

teachers could more adequately facilitate metacognition in problem solving for their 

future learners (see Sections 2.2.4.3; 2.3.5; 2.4.3). 

10. Pre-service teachers’ metacognitive awareness and reflective practices should be 

enhanced across domains. Metacognitive skills are general as well as domain-specific; 

therefore, metacognitive adaptive competence could be enhanced by cross-curriculum 

metacognitive training. Pre-service training could involve the modelling of strategies and 

the scaffolding of reflective practices through tools such as metacognitive prompts, 

reflective journals, tick lists, self-questioning, and self-surveys (see Section 2.3.5.1).   

11. Opportunities for ongoing reflective professional development and metacognitive 

strategy training for in-service teachers should be provided, especially in the 

Mathematics teaching and learning context. Moreover, mentoring and feedback 

opportunities around reflective practices are important, particularly for first-year novice 

teachers, as these teachers are more willing to reflect and as such will be provided the 

opportunity for metacognitive reflection over time (see Section 2.3.5). 

12. Pre-service and in-service teachers should be made aware of a teaching 

environment conducive to developing higher-order thinking skills like metacognition and 

problem solving. Such a teaching and learning environment supports the development 

of metacognitive skills, as it encourages reflection on what one thinks, feels, and does in 
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learning and problem solving. A conducive Mathematics teaching and learning 

environment is characterised by a metacognitive reflective teacher who scaffolds and 

models metacognitive and problem-solving strategy training; a step-by-step problem-

solving framework where metacognition facilitates the progress between phases; tools 

that scaffold metacognition; authentic and challenging tasks that create interest  

and prompt metacognition; and learning opportunities that facilitate productive learning 

(see also Section 2.4.4). In summation, teachers should be made aware of factors that 

enhance metacognitive awareness in their learners and how to teach with and for 

metacognition. 

The above recommendations point towards the challenges that educators and 

educational institutions face. The first challenge is to make pre-service teachers aware 

of the importance of metacognition and its role in lifelong learning and problem solving. 

The second is equipping and empowering pre-service teachers with an adequate 

metacognitive awareness during training, to make them aware that effective teaching 

necessitates teaching learners how to learn and solve problems. This also has 

implications for the teaching and learning of Mathematics. Educators and lecturers 

involved in pre-service teacher training should be encouraged to incorporate 

metacognitive awareness into the modules for Education and Mathematics Education 

specifically. Furthermore, these educators and lecturers should be willing and 

encouraged to scaffold and model metacognitive awareness to their learners. 

Pre-service teachers should be empowered with metacognitive knowledge and skills 

and should develop metacognitive reflective behaviours. Moreover, they should be 

encouraged to create a learning environment conducive to reflection and be given 

numerous opportunities to put these skills into practice while problem solving with 

prompting questions, self-reflection, and monitoring and evaluating. It is therefore 

important that educators in teacher training emphasise the importance of metacognition 

and its possible effect on Mathematics achievement, so that prospective teachers 

become reflective practitioners and adequately metacognitively aware to transform 

metacognitive behaviours in their learners. 
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5.6 RECOMMENDATIONS FOR FURTHER STUDY  

To enhance and advance the findings of this dissertation and build upon the 

recommendations provided, further research relating to the following could be 

conducted:  

• Determining the possible enhancement of metacognitive awareness in problem-

solving scenarios for pre-service and in-service teachers;  

• Investigating the impact of metacognitive intervention on learning and problem 

solving for pre-service Mathematics teachers; 

• Determining the correlation of two quantitative measures of metacognition and 

another qualitative instrument (video recording and/or individual interviews and/or 

another think-aloud problem-solving session); 

• Investigating the effect that metacognition and related constructs (self-regulation 

and/or motivation) have on learning and problem solving; 

• Developing quantitative and qualitative measurements that assess corresponding 

metacognitive subscales and activities (see Section 3.4.5);  

• Exploring the feasibility of incorporating metacognition training into didactic 

modules or curriculum documents at the higher education and school levels of 

Mathematics Education;   

• An investigation to determine the level of metacognitive awareness of pre-service 

teachers in Mathematics practices; 

• A study to determine the effect of metacognitive training/intervention in pre-service 

teachers and those in their first year of Mathematics teaching;  

• Exploring the metacognitive awareness of pre-service teachers across higher 

education institutions; 

• Investigating and comparing metacognitive awareness training in different 

Education didactic modules; and  

• Exploring the possible relationship between metacognitive awareness and 

biographical variables like age, gender, language, and culture. 
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5.7 LIMITATIONS OF THE STUDY 

The qualitative data about pre-service teachers’ metacognitive awareness was obtained 

in a problem-solving session. This data represents a small section of the quantitative 

measurement obtained on the MAI; therefore, the extent to which comparisons could be 

made between the quantitative and qualitative data on the pre-service teachers’ level of 

metacognition was limited. 

The analysis of the think-aloud session in the problem-solving context in the qualitative 

study was based upon my interpretation of the material and the inferences interpreted 

therein. Another researcher could potentially interpret the metacognitive behaviours 

inferred by the statements differently. 

Correlations between online and offline measures are generally low, although many 

studies report to use both. Online self-report measures are not very accurate,  

as autonomous metacognitive strategies might remain covert and not be verbalised  

(see Section 3.4.5), as well as because of the difficult nature of reflection. As a result, to 

elicit metacognitive behaviours a higher-order novel complex problem was selected for 

the think-aloud session. 

The purposive convenience sample of the study was small (n < 100), being limited to 

one subject didactic and one higher education institution. The small sample and non-

parametric data and survey design restricted the extent to which inferences could be 

made, making generalisation of the results very limited. The employment of an 

additional questionnaire, another qualitative instrument like a video recording or 

interviews, or an additional think-aloud problem-solving session could also have 

provided another and richer perspective on the metacognitive awareness of pre-service 

teachers.   

Finally, biographical variables and the previous education of the participants were not 

considered in determining the level of metacognitive awareness. 
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5.8 SIGNIFICANCE OF THE STUDY 

In the South African context, little research about metacognition has been published and 

it mainly concerns school learners. Less is published about the metacognitive 

awareness of pre-service teachers. In my view, very few studies investigated the 

metacognitive awareness of teachers in a Mathematics context in South Africa. To my 

knowledge, no such study could be found for fourth-year pre-service Mathematics 

didactics teacher education students at a higher education institution in South Africa.  

The study contributes to the scholarship on enhancing the metacognitive awareness of 

pre-service teachers through the enhancement of reflective practice and the deliberate 

teaching of metacognition. Metacognition contributes to improving the mathematical 

proficiency and productive learning of pre-service teachers, who in turn could harness 

this knowledge, skill, and disposition to improve that of their learners, impacting 

mathematical achievement in a potentially positive way. In the long term, this may also 

mean meeting skills shortages in the job market and developing lifelong learning skills 

to satisfy the workplace demands of the new millennium. It is advisable that 

metacognitive reflective training through mentoring should continue, especially for first-

year in-service Mathematics teachers, as well as in the form of continuing professional 

development.    

My views on metacognitive awareness and reflective practices in Mathematics teaching 

and learning were also influenced. Relating the literature on the significance of 

metacognitive knowledge and skills in Mathematics achievement, teaching, and learning 

to the inadequate performance in the problem-solving session, and therefore reflecting 

on the gap presented between what the pre-service teachers said they do and what 

they actually (could) do, reinforced the importance of reflective practices in teaching, of 

metacognitive facilitation of problem solving, and the need for opportunities to practice 

and develop these attributes. 

A broader issue than simply encouraging a deeper understanding of the value of 

metacognitive awareness in learning and problem solving is encouraging a personal 
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awareness that metacognitive reflection is a lifelong, evolving competency which can be 

employed to address real-life situations adaptively.   

The study has significance for future studies on determining the level of metacognitive 

awareness of pre-service Mathematics teachers and potentially comparing the level of 

metacognitive awareness of these teachers across higher education institutions. These 

findings could inform guidelines for developing and enhancing metacognitive awareness 

of pre-service Mathematics teachers. From the findings of the study, it is suggested that 

metacognitive awareness is encouraged and should be deliberately instructed over 

time, especially in Mathematics didactics teacher training modules. A metacognitive 

intervention in didactics modules should include deliberate and ongoing metacognitive 

reflective experiences with ill-defined or complex problems, giving students 

opportunities to develop and demonstrate what they know and can do effectively, 

including acquiring the adaptive competence to apply knowledge and skills successfully 

to novel situations and Mathematics problems, thus influencing achievement (see  

Sections 2.3.1.2; 2.3.4.2).   

5.9 SUMMARY OF CHAPTER  

Metacognitive reflective teachers possess adaptive competence to adapt and improve 

their performance in the classroom and within their profession. Teachers could enhance 

the quality of Mathematics education if they are metacognitively aware of their own 

strengths and weaknesses and are able to apply their own knowledge and skills 

adaptively to novel scenarios, whether these pertain to classroom variability or 

Mathematics problem solving. 

In addition, teachers could enhance the quality of Mathematics education if they foster 

within their learners a similar capacity to use their metacognitive adaptive competence 

to solve novel, complex Mathematics problems and, as metacognitive aware lifelong 

learners, successfully negotiate modern information overload and future workplace 

demands.  
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To teach content effectively also necessitates teaching learners how to learn and solve 

problems by making them aware of what productive learning is and empowering them to 

regulate their learning and problem-solving processes. Successful problem solving as a 

hallmark of mathematical proficiency is a goal of Mathematics education. An inadequate 

level of metacognitive awareness, however, could influence problem solving and hence 

negatively impact achievement. 

Of course, other factors besides metacognitive awareness impact upon the teaching 

and learning of Mathematics. These include the dual nature of Mathematics, a 

conducive learning environment, the teacher’s worldview and beliefs of what 

Mathematics teaching and learning is, proficiency in subject content, the learner’s 

mathematical disposition and attitudes towards Mathematics (motivation, interest, affect, 

and beliefs), and the types of tasks used to elicit metacognition and create interest and 

engagement. Crucially important, all these factors are situated within a broader socio-

economic context which can impact upon a learner’s ability to complete school and 

pursue higher qualifications.  

Amidst the many opinions on enhancing Mathematics education, a few key insights 

were highlighted in the study. Foremost was the importance of not only possessing 

sound subject knowledge, but also the ability to transfer this knowledge into skills 

adaptively and the opportunity to practise these skills; in other words, the ability to do 

what we say and think we can do. Moreover, by considering different perspectives and 

alternative strategies and solutions, how and when to implement these, and the key role 

of affect in engaging with Mathematics, this contributes to the enhancement of higher-

order thinking, problem-solving skills, and metacognitive skills to adapt methods and 

strategies.    

The call for reflective practices and metacognitive awareness training in pre-service 

teacher education is therefore confirmed in the study. The challenge for higher 

education institutions is, first, to make pre-service teachers aware of the importance of 

metacognitive awareness in lifelong productive learning and mathematical proficiency; 

second, to make them aware of the development of metacognitive awareness and how 

to transform knowledge into skills and instruct these effectively in a conducive 
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environment; and third, to empower pre-service teachers by providing deliberate and 

prolonged metacognitive reflective opportunities, with a level of metacognitive 

awareness which develops proficiency in content, learning, and problem solving. In 

summary, it entails the enhancement of adaptive competencies to apply knowledge and 

skills effectively to novel scenarios. The notion is that metacognitive reflective pre-

service teachers will become metacognitive reflective in-service teachers who can 

transform this adaptive competence for their learners. 

Holistically, metacognition as adaptive competence not only informs and has value in 

reflective teaching practices, Mathematics problem solving, and learning, but also as a 

general life skill. Nurturing a reflective and metacognitively aware disposition will help 

individuals to deal with various life issues and challenges reflectively and adaptively, 

while helping to steer them through the complexities of contemporary life.  
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APPENDIX 1 

MAI QUESTIONNAIRE IN AFRIKAANS 

Hierdie vraelys bestaan uit twee afdelings:  

Afdeling A: Biografiese besonderhede 

Afdeling B: Metakognitiewe strategieë 

Algemene inligting: 

1. Hierdie vraelys neem rofweg 20 minute om te voltooi. 

2. U terugvoer sal waardevol wees vir navorsingsdoeleindes.   

3. Hierdie vraelyste gaan net deur die navorser hanteer word. 

4. U naam gaan nie gebruik word in die verslaggewing van die navorsingsbevindinge nie.  

AFDELING A:  BIOGRAFIESE BESONDERHEDE 

Voltooi asseblief die volgende en beantwoord dan die vrae: 

Naam en van: ……………………………………………………. 

INSTRUKSIES: 

Dui u antwoord met ‘n kruis (X) aan  : 

1. Onderrigtaal 

Afrikaans 1 

Engels 2 

 

2. Wat is u huidige ouderdom? 

19 jaar 1 

20 jaar 2 

21 jaar 3 

22 jaar 4 

Ander (skryf dit asseblief) 5 
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AFDELING B 

 

Die doel van die volgende vrae is om verskeie aspekte rondom leer en probleemoplossing in 

Wiskunde te ondersoek.  

INSTRUKSIES: 

Kies een van die volgende vyf moontlike antwoorde deur ‘n kruis te trek by die nommer wat 

ooreenstem met die volgende opsies: 
 

Stem glad nie 

saam nie 

Stem nie saam Neutraal (stem 

nie saam nie en 

verskil ook nie) 

Stem saam Stem heeltemal 

saam 

1 2 3 4 5 

 

  

 

 

 LEES ASSEBLIEF ELKE VRAAG NOUKEURIG  
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1. Ek vra myself van tyd tot tyd of ek al my doelwitte in 

Wiskunde bereik. 
1 2 3 4 5 

2. Ek oorweeg eers verskillende maniere om ŉ probleem op 

te los voordat ek begin om ŉ Wiskundeprobleem op te 

los. 

1 2 3 4 5 

3. Wanneer ek ŉ Wiskundige probleem oplos probeer ek 

metodes gebruik wat in die verlede gewerk het.  
1 2 3 4 5 

4. Ek pas my tempo aan wanneer ek studeer vir ŉ 

Wiskundetoets of –eksamen sodat ek betyds klaar 

studeer.  

1 2 3 4 5 

5. Ek is bewus van my intellektuele sterk- en swakpunte in 

Wiskunde. 
1 2 3 4 5 

6. Ek dink na oor wat ek regtig moet leer voordat ek vir ŉ 

Wiskundetoets of -eksamen begin studeer.  
1 2 3 4 5 



196 
 

7. Ek weet na afloop van ŉ Wiskundetoets of -eksamen hoe 

goed ek daarin gedoen het.  
1 2 3 4 5 

8. Ek stel spesifieke doelwitte voordat ek vir ŉ 

Wiskundetoets of -eksamen begin studeer.  
1 2 3 4 5 

9. Ek lees stadiger wanneer belangrike inligting in ŉ 

Wiskundevraag teëkom. 
1 2 3 4 5 

10. Ek weet wat die belangrikste inligting is wat in Wiskunde 

geleer moet word.  
1 2 3 4 5 

11. Ek vra myself of ek verskillende metodes oorweeg het 

wanneer ek ŉ Wiskundeprobleem oplos.  
1 2 3 4 5 

12. Ek is goed daarmee om inligting wat ek in Wiskunde 

ontvang te organiseer.  
1 2 3 4 5 

13. Ek fokus doelbewus my aandag op belangrike inligting in 

ŉ Wiskundevraag.  
1 2 3 4 5 

14. Ek het ŉ spesifieke doel vir elke 

probleemoplossingsmetode wat ek gebruik wanneer ek ŉ 

Wiskundeprobleem oplos.  

1 2 3 4 5 

15. Ek leer die beste wanneer ek reeds iets weet van die 

Wiskundeonderwerp wat ek bestudeer. 
1 2 3 4 5 

16. Ek weet wat die onderwyser verwag wat ek moet leer 

wanneer ek vir ŉ Wiskundetoets of –eksamen studeer.  
1 2 3 4 5 

17. Ek is goed daarmee om Wiskundefeite en –beginsels te 

onthou.  
1 2 3 4 5 

18. Ek gebruik verskillende leerstrategieë wanneer ek 

Wiskunde studeer.  
1 2 3 4 5 

19. Nadat ek ŉ Wiskundeprobleem opgelos het, vra ek 

myself of daar ŉ makliker manier was om die probleem 

op te los.  

1 2 3 4 5 

20. Ek kan beheer hoe goed ek in Wiskunde leer.  1 2 3 4 5 

21. Ek doen hersiening van tyd tot tyd om my te help om 

belangrike verhoudings in Wiskunde te verstaan.  
1 2 3 4 5 

22. Ek vra myself vrae oor die probleem voordat ek begin om 
ŉ Wiskundeprobleem op te los.  

1 2 3 4 5 
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23. Wanneer ek begin om ŉ Wiskundeprobleem op te los, 

dink ek aan verskeie maniere om die probleem op te los, 

en kies dan die beste manier.  

1 2 3 4 5 

24. Ek som op wat ek leer terwyl ek studeer. 1 2 3 4 5 

25. Ek vra ander leerders om te help as ek iets in Wiskunde 

nie verstaan nie.  
1 2 3 4 5 

26. Ek kan myself motiveer om te studeer vir ŉ 

Wiskundetoets of –eksamen.  
1 2 3 4 5 

27. Ek is bewus van watter leerstrategieë ek gebruik wanneer 

ek Wiskunde studeer.  
1 2 3 4 5 

28. Ek vra myself hoe bruikbaar my leerstrategieë is terwyl ek 

studeer vir ŉ Wiskundetoets of –eksamen.  
1 2 3 4 5 

29. Ek gebruik my sterkpunte in Wiskunde om te kompenseer 

vir my swakpunte in Wiskunde.  
1 2 3 4 5 

30. Wanneer ek nuwe inligting ontvang oor ŉ bekende of 

nuwe Wiskundeonderwerp, fokus ek op die betekenis en 

belangrikheid van die nuwe inligting.  

1 2 3 4 5 

31. Ek skep my eie voorbeelde om nuwe inligting wat ek in 

Wiskunde ontvang meer betekenisvol en verstaanbaar te 

maak.  

1 2 3 4 5 

32. Ek kan goed oordeel hoe goed ek iets in Wiskunde 

verstaan.  
1 2 3 4 5 

33. Ek vind dat ek outomaties (sonder om doelbewus daaroor 

te dink) nuttige leerstrategieë gebruik in Wiskunde. 
1 2 3 4 5 

34. Wanneer ek ŉ Wiskundeprobleem oplos of wanneer ek 

studeer vir ŉ Wiskundetoets of –eksamen, vind ek dat ek 

gereeld stop om my begrip te toets.  

1 2 3 4 5 

35. Ek weet in watter situasie elke 

probleemoplossingsmetode wat ek gebruik die 

doeltreffendste sal wees.  

1 2 3 4 5 

36. Sodra ek klaar studeer het vir ŉ Wiskundetoets of –

eksamen, vra ek myself hoe goed ek my doelwitte bereik 

het.  

1 2 3 4 5 
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37. Ek teken prente of diagramme om my te help verstaan 

terwyl ek Wiskunde leer.  
1 2 3 4 5 

38. Nadat ek ŉ Wiskundeprobleem opgelos het, vra ek 

myself of ek verskillende maniere oorweeg het om die 

probleem op te los.  

1 2 3 4 5 

39. Ek probeer om Wiskundevrae in my eie woorde om te sit.  1 2 3 4 5 

40. Ek verander my probleemoplossingsmetode wanneer ek 

nie vordering maak om ŉ Wiskundeprobleem op te los 

nie.  

1 2 3 4 5 

41. Ek lees die vraag noukeurig voordat ek ŉ Wiskundevraag 

beantwoord.  
1 2 3 4 5 

42. Wanneer ek ŉ Wiskundevraag lees, vra ek myself of dit 

wat ek lees, verband hou met dit wat ek reeds weet.  1 2 3 4 5 

43. Wanneer ek nie vordering maak terwyl ek ŉ 

Wiskundeprobleem oplos nie, vra ek myself of my 

aanvanklike begrip van die probleem korrek was.  

1 2 3 4 5 

44. Ek organiseer my tyd om die doelwitte wat ek stel in 

Wiskunde te bereik. 
1 2 3 4 5 

45. Ek leer beter wanneer ek geïnteresseerd is in ŉ 

spesifieke Wiskundeonderwerp.  
1 2 3 4 5 

46. Wanneer ek Wiskunde studeer probeer ek om die werk in 

kleiner afdelings op te breek.  
1 2 3 4 5 

47. Wanneer ek Wiskunde studeer, fokus ek op hoe die 

spesifieke onderwerp wat ek studeer, inpas by die ander 

Wiskundeonderwerpe.  

1 2 3 4 5 

48. Ek vra myself vrae oor hoe goed ek doen terwyl ek ŉ 

Wiskundeprobleem oplos.  
1 2 3 4 5 

49. Wanneer ek klaar geleer het, vra ek myself of ek soveel 

geleer het as wat ek kon.  
1 2 3 4 5 

50. Wanneer ek ŉ Wiskundevraag lees, lees ek enige 

afdeling van die vraag wat onduidelik is, weer ŉ keer.  
1 2 3 4 5 
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Maak asseblief seker dat u al die vrae beantwoord het en dat u naam en van op die 

vraelys geskryf het.  

Baie dankie vir u samewerking! 

 

 

Questionnaire from Du Toit (2013), adapted from Schraw and Dennison (1994), translated 

and piloted. 
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APPENDIX 2  

MAI QUESTIONNARE IN ENGLISH 

 

This questionnaire consists of two sections:  

Section A:  Biographical particulars. 

Section B:  Metacognitive strategies. 

General information 

1. This questionnaire will take roughly 20 minutes to complete. 

2. Your response will be valuable for research purposes.   

3. These questionnaires will only be handled by the researcher. 

4. Your name will not be used in the reporting of the research findings.  

SECTION A: BIOGRAPHICAL PARTICULARS 

Please complete the following and then answer the questions: 

Name and surname: ……………………………………………………. 

INSTRUCTIONS: 

Indicate the number of your answer with an X: 

1.. Language of instruction 

Afrikaans 1 

English 2 

 

2. What is your current age? 

19 years 
 

1 

20 years 
 

2 

21 years 
 

3 

22 years 
 

4 

Other (please write down) 5 
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SECTION B 

The purpose of the following questions is to investigate various aspects of learning in 

Mathematics. 

INSTRUCTIONS: 

Choose one of the five possible answers by crossing (X) the number that corresponds with your 

preferred options: 

Strongly 

disagree 

Disagree Neutral (Neither 

agree nor disagree) 

Agree Strongly agree 

1 2 3 4 5 

 

  

 

 

 PLEASE READ EACH QUESTION CAREFULLY  
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1. I ask myself periodically if I am meeting my goals in 

Mathematics. 
1 2 3 4 5 

2. I first consider different ways of solving the problem 

before I start solving a problem in Mathematics. 
1 2 3 4 5 

3. When I solve a Mathematics problem, I try to use 

methods of solving a problem that have worked in the 

past. 

1 2 3 4 5 

4. I pace myself when I study for a Mathematics test or 

examination in order to finish studying in time. 
1 2 3 4 5 

5. I understand my intellectual strengths and weaknesses in 

Mathematics. 
1 2 3 4 5 

6. I think about what I really need to learn before I begin 

studying for a Mathematics test or examination. 
1 2 3 4 5 

7. I know how well I did once I finish a Mathematics test or 

examination. 
1 2 3 4 5 
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8. I set specific goals before I begin to study for a 

Mathematics test or examination. 
1 2 3 4 5 

9. I read slower when I encounter important information in a 

Mathematics question. 
1 2 3 4 5 

10. I know what kind of information is most important to learn 

in Mathematics. 
1 2 3 4 5 

11. I ask myself if I have considered different methods of 

solving a problem when solving a Mathematics problem. 
1 2 3 4 5 

12. I am good at organising the information I receive in 

Mathematics. 
1 2 3 4 5 

13. I consciously focus my attention on important information 

in a Mathematics question. 
1 2 3 4 5 

14. I have a specific purpose for each problem-solving 

method I use when I solve a problem in Mathematics. 
1 2 3 4 5 

15. I learn best when I already know something about the 

Mathematics topic I am studying. 
1 2 3 4 5 

16. I know what the teacher expects me to learn when I study 

for a Mathematics test or examination. 
1 2 3 4 5 

17. I am good at remembering Mathematics facts and 

principles. 
1 2 3 4 5 

18. I use different learning strategies, depending on the 

situation, when I study Mathematics. 
1 2 3 4 5 

19. After I have solved a Mathematics problem, I ask myself if 

there was an easier way to solve the problem.  
1 2 3 4 5 

20. I can control how well I learn in Mathematics. 1 2 3 4 5 

21. I periodically do revision to help me understand important 

relationships in Mathematics. 
1 2 3 4 5 

22. I ask myself questions about the problem before I begin 

to solve a Mathematics problem. 
1 2 3 4 5 

23. When I start to solve a Mathematics problem, I think of 
several ways to solve the problem and choose the best 
one. 

1 2 3 4 5 
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24. I summarise what I learn when I study. 1 2 3 4 5 

25. I ask other learners for help when I do not understand 
something in Mathematics. 

1 2 3 4 5 

26. I can motivate myself to study for a Mathematics test or 
examination. 

1 2 3 4 5 

27. I am aware of what learning strategies I use when I study 
Mathematics. 

1 2 3 4 5 

28. I ask myself how useful my learning strategies are while I 
study for a Mathematics test or examination. 

1 2 3 4 5 

29. I use my strengths in Mathematics to compensate for my 
weaknesses in Mathematics. 

1 2 3 4 5 

30. When I receive new information about a familiar topic or a 
new topic in Mathematics, I focus on the meaning and 
significance of the new information. 

1 2 3 4 5 

31. I create my own examples to make new information I 
receive in Mathematics more meaningful and 
understandable.  

1 2 3 4 5 

32. I am a good judge of how well I understand something in 
Mathematics. 

1 2 3 4 5 

33. I find myself using helpful learning strategies in 
Mathematics automatically (without consciously thinking 
about it). 

1 2 3 4 5 

34. When I solve a Mathematics problem, or when I study for 
a Mathematics test or examination, I find myself pausing 
regularly to check my comprehension. 

1 2 3 4 5 

35. I know in which situation each problem-solving method I 
use will be most effective. 

1 2 3 4 5 

36. I ask myself how well I accomplished my goals once I am 
finished studying for a Mathematics test or an 
examination. 

1 2 3 4 5 

37. I draw pictures or diagrams to help me understand while I 

am learning Mathematics. 
1 2 3 4 5 

38. After I have solved a Mathematics problem, I ask myself 
whether I have considered different ways to solve the 
problem. 

1 2 3 4 5 

39. I try to put Mathematics questions into my own words. 1 2 3 4 5 
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40. I change my problem-solving method when I fail to make 
progress when I try to solve a Mathematics problem. 

1 2 3 4 5 

41. I read the question carefully before I answer a 
Mathematics question. 

1 2 3 4 5 

42. When I read a Mathematics question, I ask myself if what 
I am reading is related to what I already know. 1 2 3 4 5 

43. If I do not make progress when I solve a Mathematics 
problem, I ask myself whether my first understanding of 
the problem was correct. 

1 2 3 4 5 

44. I organise my time to best accomplish the goals I set in 
Mathematics. 

1 2 3 4 5 

45. I learn better when I am interested in a specific 
Mathematics topic. 

1 2 3 4 5 

46. When I study Mathematics, I try to break down the work 
into smaller sections. 

1 2 3 4 5 

47. When I study Mathematics, I focus on how the specific 
topic I study fits in with the other topics in Mathematics. 

1 2 3 4 5 

48. I ask myself questions about how well I am doing while I 
am solving a Mathematics problem. 

1 2 3 4 5 

49. I ask myself if I have learned as much as I could have 
once I finish studying. 

1 2 3 4 5 

50. When I read a Mathematics question, I stop and reread 
any section of the question that is not clear. 

1 2 3 4 5 

 

Please make sure that you have answered all questions, and that you have written down 

your name and surname. 

 

Thank you very much for your co-operation! 

 

 

Questionnaire from Du Toit (2013), adapted from Schraw and Dennison (1994).  
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APPENDIX 3 

THE SUBSCALES ON THE MAI 
 

KNOWLEDGE OF COGNITION 
 

Declarative knowledge (8 items)  

Knowledge the individual possesses about themselves and their own strategies: “knowledge about one’s 

skills, intellectual resources, and abilities as a learner” (Schraw & Dennison, 1994: 474) 

5. I understand my intellectual strengths and weaknesses in Mathematics. 

10. I know what kind of information is most important to learn in Mathematics. 

12. I am good at organising the information I receive in Mathematics. 

16. I know what the teacher expects me to learn when I study for a Mathematics test or 
examination. 

17. I am good at remembering Mathematics facts and principles. 

20. I can control how well I learn in Mathematics. 

32. I am a good judge of how well I understand something in Mathematics. 

45. I learn better when I am interested in a specific Mathematics topic. 

 

Procedural knowledge (4 items) 

Knowledge about how to use those strategies successfully: “knowledge about how to implement learning 

procedures (e.g. strategies)” (Schraw & Dennison, 1994: 474) 

3. When I solve a Mathematics problem, I try to use methods of solving a problem that 
have worked in the past. 

14. I have a specific purpose for each problem-solving method I use when I solve a 
problem in Mathematics. 

27. I am aware of what learning strategies I use when I study Mathematics. 

33. I find myself using helpful learning strategies in Mathematics automatically (without 
consciously thinking about it). 
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Conditional knowledge (5 items) 

Knowledge about when and why to use certain strategies, based upon factors such as effectiveness, 

relevance, and suitability: “knowledge about when and why to use learning procedures” (Schraw & 

Dennison, 1994: 474) 

15. I learn best when I already know something about the Mathematics topic I am 
studying. 

18. I use different learning strategies, depending on the situation, when I study 
Mathematics. 

26. I can motivate myself to study for a Mathematics test or examination. 

29. I use my strengths in mathematics to compensate for my weaknesses in Mathematics. 

35. I know in which situation each problem-solving method I use will be most effective. 

 

REGULATION OF COGNITION 

Planning (7 items) 

Occurs prior to learning and involves setting goals and allocating time and resources towards achieving 

these goals: “planning, goal setting, and allocating resources prior to learning” (Schraw & Dennison, 

1994: 474)  

4. I pace myself when I study for a Mathematics test or examination in order to finish 
studying in time. 

6. I think about what I really need to learn before I begin studying for a Mathematics test 
or examination. 

8. I set specific goals before I begin to study for a Mathematics test or examination. 

22. I ask myself questions about the problem before I begin to solve a Mathematics 
problem. 

23. When I start to solve a Mathematics problem, I think of several ways to solve the 
problem and choose the best one. 

41. I read the question carefully before I answer a Mathematics question. 

44. I organise my time to best accomplish the goals I set in Mathematics. 
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Information management (9 items) 

Occurs during learning and involves using various skills and strategy sequences—such as organisation, 

elaboration, summary, and selective focus—to help efficiently process information: “skills and strategy 

sequenced used on-line to process information more efficiently (e.g. organising, elaborating, 

summarising, selective focusing” (Schraw & Dennison, 1994: 474–475) 

9. I read slower when I encounter important information in a Mathematics question. 

13. I consciously focus my attention on important information in a Mathematics question. 

30. When I receive new information about a familiar topic or a new topic in Mathematics, I 
focus on the meaning and significance of the new information. 

31. I create my own examples to make new information I receive in Mathematics more 
meaningful and understandable.  

37. I draw pictures or diagrams to help me understand while I am learning Mathematics. 

39. I try to put Mathematics questions into my own words. 

42. When I read a Mathematics question, I ask myself if what I am reading is related to 
what I already know. 

46. When I study Mathematics, I try to break down the work into smaller sections. 

47. When I study Mathematics, I focus on how the specific topic I study fits in with the 
other topics in Mathematics. 

 

Monitoring (7 items) 

The individual’s assessment of their own learning or strategy use through self-testing and reflection: 

“assessment of one’s learning or strategy use” (Schraw & Dennison, 1994: 475) 

1. I ask myself periodically if I am meeting my goals in Mathematics. 

2. I first consider different ways of solving the problem before I start solving a problem in 
Mathematics. 

11. I ask myself if I have considered different methods of solving a problem when solving a 
Mathematics problem. 

21. I periodically do revision to help me understand important relationships in 
Mathematics. 

28. I ask myself how useful my learning strategies are while I study for a Mathematics test 
or examination. 
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34. When I solve a Mathematics problem, or when I study for a Mathematics test or 
examination, I find myself pausing regularly to check my comprehension. 

48. I ask myself questions about how well I am doing while I am solving a Mathematics 
problem. 

 

Debugging (4 items) 

The use of strategies such as remediation to help identify and address errors in comprehension and 

performance: “strategies used to correct comprehension and performance errors” (Schraw & Dennison, 

1994: 475) 

25. I ask other learners for help when I do not understand something in Mathematics. 

40. I change my problem-solving method when I fail to make progress when I try to solve a 
Mathematics problem. 

43. If I do not make progress when I solve a Mathematics problem, I ask myself whether 
my first understanding of the problem was correct. 

50. When I read a Mathematics question, I stop and reread any section of the question 
that is not clear. 

 

Evaluation (6 items) 

Occurs after a learning experience and entails analysing the effectiveness of performance and strategies, 

re-evaluating approaches where applicable: “analysis of performance and strategy effectiveness after a 

learning episode” (Schraw & Dennison, 1994: 475) 

7. I know how well I did once I finish a Mathematics test or examination. 

19. After I have solved a Mathematics problem, I ask myself if there was an easier way to 
solve the problem.  

24. I summarise what I learn when I study. 

36. I ask myself how well I accomplished my goals once I am finished studying for a 
Mathematics test or an examination. 

38. After I have solved a Mathematics problem, I ask myself whether I have considered 
different ways to solve the problem. 

49. I ask myself if I have learned as much as I could have once I finish studying. 

 

Adapted from Schraw and Dennison (1994) and Du Toit (2013). 
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APPENDIX 4 

THINK-ALOUD PROBLEM-SOLVING SESSION:  

PROBLEM STATEMENT 

 

Name and surname / Naam en van:        

Please solve the following problem by writing down your thoughts and 

corresponding calculations/ Los asseblief die volgende probleem op deur u 

denkprosesse en oorteenstemmende bewerkings neer te skryf.  

Suppose a piece of wire could be tied tightly around the earth at the equator. The 

earth’s circumference at the equator is approximately 40 000 km. Imagine that this wire 

is then lengthened by exactly one meter and held so that it is still around the earth at the 

equator. The wire cannot be bent to form a loop or the wire cannot be tied. Would a 

mouse be able to crawl between the wire and the earth after it has been lengthened?  

Why or why not? Support your answer with applicable calculations. 

Veronderstel dat ‘n stuk draad styf om die aarde by die ewenaar gespan kan word.  Die 

aarde se omtrek by die ewenaar is naastenby 40 000 km.  Verbeel u dat die draad 

verleng kan word met presies een meter en so gehou word dat dit nog steeds rondom 

die aarde by die ewenaar gespan is.  Die draad kan nie gebuig word om ‘n lus te vorm 

nie of die draad kan nie geknoop word nie.  Sal ‘n muis tussen die draad en die aarde 

kan deurkruip?  Hoekom of hoekom nie?  Ondersteun u antwoord met toepaslike 

berekeninge.     
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Write down your thinking processes 

Skryf u denkprosesse neer  

 

Write down the calculations that 

correspond with your thinking 

processes 

Skryf neer die bewerkings wat met u 

denkprosesse verband hou  
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APPENDIX 5 

SOLUTION TO THE PROBLEM-SOLVING SESSION 

Suppose a piece of wire could be tied tightly around the earth at the equator. The earth’s 
circumference at the equator is approximately 40 000 km. Imagine that this wire is then 
lengthened by exactly one meter and held so that it is still around the earth at the equator. The 
wire cannot be bent to form a loop or the wire cannot be tied. Would a mouse be able to crawl 
between the wire and the earth after it has been lengthened? Why or why not? Support your 
answer with applicable calculations.  
  
 

 
Distance around earth: 40 000 km 

Conversion of units: 40 000 km x 1000 = 40 000 000 m     

40 000 000 m + 1 m = 40 000 001 m 

Estimation of height of mouse: 10 cm 

Length of wire: 40 000 001 m 

Circumference of circle = 2𝜋𝑟 

 

Radius of earth:  r = 
40 000 000

2𝜋
 

 

Radius of earth and wire: r = 
40 000 001

2𝜋
 

 

Difference between radii: 
40 000 001

2𝜋
  −  

40 000 000

2𝜋
 

 

    = 0.15915495 m  

Conversion of units: 0.15915495 m x 100 = 15.915495 cm 

Conclusion: Yes; as there is a space of approximately 15 cm between the earth and the wire, a 

mouse of average height (10 cm) will be able to pass under the wire.  
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APPENDIX 6 

LEVEL OF PRE-SERVICE TEACHERS’ METACOGNITIVE 

AWARENESS IN THE PROBLEM-SOLVING SESSION 

KNOWLEDGE OF COGNITION 

Declarative knowledge 

Item Description Frequency 
of item  

5 I understand my intellectual strengths and weaknesses in 
Mathematics. 

0 

10 I know what kind of information is most important to learn in 
Mathematics. 

0 

12 I am good at organising the information I receive in 
Mathematics. 

0 

16 I know what the teacher expects me to learn when I study for a 
Mathematics test or examination. 

0 

17 I am good at remembering Mathematics facts and principles. 39 

20 I can control how well I learn in Mathematics. 0 

32 I am a good judge of how well I understand something in 
Mathematics. 

1 

45 I learn better when I am interested in a specific Mathematics 
topic. 

0 

 Total uses of Declarative knowledge items 40 

 

Procedural knowledge 

Item Description Frequency 
of item  

3 When I solve a Mathematics problem, I try to use methods of 
solving a problem that have worked in the past. 

0 

14 I have a specific purpose for each problem-solving method I 
use when I solve a problem in Mathematics. 

11 

27 I am aware of what learning strategies I use when I study 
Mathematics. 

0 

33 I find myself using helpful learning strategies in Mathematics 
automatically (without consciously thinking about it). 

0 

 Total uses of Procedural knowledge items 11 
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Conditional knowledge 

Item Description Frequency 
of item  

15 I learn best when I already know something about the 
Mathematics topic I am studying. 

0 

18 I use different learning strategies, depending on the situation, 
when I study Mathematics. 

0 

26 I can motivate myself to study for a Mathematics test or 
examination. 

0 

29 I use my strengths in Mathematics to compensate for my 
weaknesses in Mathematics. 

0 

35 I know in which situation each problem-solving method I use 
will be most effective. 

8 

 Total uses of Conditional knowledge items 8 

 

REGULATION OF COGNITION 

Planning  

Item Description Frequency 
of item  

4 I pace myself when I study for a Mathematics test or 
examination in order to finish studying in time. 

0 

6 I think about what I really need to learn before I begin studying 
for a Mathematics test or examination. 

0 

8 I set specific goals before I begin to study for a Mathematics 
test or examination. 

0 

22 I ask myself questions about the problem before I begin to 
solve a Mathematics problem. 

19 

23 When I start to solve a Mathematics problem, I think of several 
ways to solve the problem and choose the best one. 

1 

41 I read the question carefully before I answer a Mathematics 
question (e.g. by chunking information/writing down key 
phrases). 

32 

44 I organise my time to best accomplish the goals I set in 
Mathematics. 

0 

 Total uses of Planning items 52 
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Information management 

Item Description Frequency 
of item  

9 I read slower when I encounter important information in a 
Mathematics question. 

0 

13 I consciously focus my attention on important information in a 
Mathematics question (e.g. by writing down key facts). 

62 

30 When I receive new information about a familiar topic or a new 
topic in Mathematics, I focus on the meaning and significance 
of the new information. 

0 

31 I create my own examples to make new information I receive in 
Mathematics more meaningful and understandable.  

0  

37 I draw pictures or diagrams to help me understand while I am 
learning Mathematics. 

21 

39 I try to put Mathematics questions into my own words. 2 

42 When I read a Mathematics question, I ask myself if what I am 
reading is related to what I already know. 

1 

46 When I study Mathematics, I try to break down the work into 
smaller sections. 

0 

47 When I study Mathematics, I focus on how the specific topic I 
study fits in with the other topics in mathematics. 

0 

 Total uses of Information management items 86 
 

Monitoring 

Item Description Frequency 
of item  

1 I ask myself periodically if I am meeting my goals in 
Mathematics. 

0 

2 I first consider different ways of solving the problem before I 
start solving a problem in Mathematics. 

1 

11 I ask myself if I have considered different methods of solving a 
problem when solving a Mathematics problem. 

2 

21 I periodically do revision to help me understand important 
relationships in Mathematics. 

0 

28 I ask myself how useful my learning strategies are while I study 
for a Mathematics test or examination. 

0 

34 When I solve a Mathematics problem, or when I study for a 
Mathematics test or examination, I find myself pausing 
regularly to check my comprehension. 

9 

48 I ask myself questions about how well I am doing while I am 
solving a Mathematics problem. 

1 

 Total uses of Monitoring items 13 
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Debugging 

Item Description   
 

Frequency 
of item  

25 I ask other learners for help when I do not understand 
something in Mathematics. 

0 

40 I change my problem-solving method when I fail to make 
progress when I try to solve a Mathematics problem. 

1 

43 If I do not make progress when I solve a Mathematics problem, 
I ask myself whether my first understanding of the problem was 
correct. 

2 

50 When I read a Mathematics question, I stop and reread any 
section of the question that is not clear. 

22 

 Total uses of Debugging items 25 

 

Evaluation 

Item Description  Frequency 
of item  

7 I know how well I did once I finish a Mathematics test or 
examination. 

2 

19 After I have solved a Mathematics problem, I ask myself if 
there was an easier way to solve the problem.  

0 

24 I summarise what I learn when I study. 0 

36 I ask myself how well I accomplished my goals once I am 
finished studying for a Mathematics test or an examination. 

0 

38 After I have solved a Mathematics problem, I ask myself 
whether I have considered different ways to solve the problem. 

1 

49 I ask myself if I have learned as much as I could have once I 
finish studying. 

0 

 Total uses of Evaluation items 3 
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APPENDIX 7 

SAMPLE ANALYSIS: PRE-SERVICE TEACHERS’ SOLUTIONS  

IN THE PROBLEM-SOLVING SESSION 

 

Respondent 16 

Write down your thinking processes Write down the calculations that 

correspond with your thinking 

processes  

But let’s assume a smooth earth. The wire 

cannot be bent and the mouse must have 

enough space between the wire and the earth 

to crawl through. It can’t bend the wire.  

 

 
 

Respondent 16 rephrased/restated the question (Planning - Item 39) and drew a diagram 

(Information management - Item 37). 

Respondent 16 chunked the information, which is an indication of reading the question carefully 

(Information management - Item 41).  

Respondent 16 consciously focused attention on important information (Planning - Item 13). 

 

Earth circumference = 40 000 km. 

We need the radius of the lengthened rope to 

determine the space between surface and the 

lengthened wire. 

 

40 000 km = 2𝜋𝑟 

r = 
40 000 

2𝜋
 

= 6366.19772 km 

= radius of tight rope 

 

Respondent 16 identified the core of the problem (Planning - Item 13). He indicated that he has a 

specific purpose for using this problem-solving method (Procedural knowledge - Item 14). 

Respondent 16 recalled the formula correctly and made accurate calculations (Declarative 

knowledge - Item 17).   
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We now have the radius of the lengthened 

rope. 

 

 
 

Respondent 16 drew diagrams to help him understand (Information management - Item 37). 

 

Keeping in mind the conditions set,  

first let us change the units to meter and  

recalculate for earth and tight rope. 

 

 

r = 40 000 000 m ÷ 2π  

= 6366197.724 m 

 

Respondent 16’s conversion of the units and calculations was done correctly (Declarative 

knowledge - Item 17).   

Respondent 16 re-read the question (Debugging - Item 50); he also focused on important 

information regarding the conditions set again (Planning - Item 13). 

 

This is better: should have done this from the  

beginning but did not realise calculator is set 

to only four decimals.   

  

   

 

 

Respondent 16 re-evaluated his strategy and checked comprehension (Monitoring - Item 34) and 

adjusted his strategy when he monitored his answer (Debugging - Item 43).  

Respondent 16 also reflected on how well he is doing while solving a problem (Monitoring - Item 

48).  

 

Radius of lengthened rope 

 

Let’s change everything to mm 

 

 

What is the difference?  

 

r = 40 000 001 m ÷2π = 6366197.883 m   

 

R = 6366197724 mm  

r = 6366197883  

 

r – R = 158.83070 mm  
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Respondent 16 asked a question related to the core of the problem statement (Planning - Item 22). 

Conversion of units was performed correctly (Declarative knowledge - Item 17). 

 

 
Wow that’s a whole 15.8 cm. 

Unless it is a really fat mouse it can somersault  

under the rope while ____ through.    

 

  
 

 

Respondent 16 is confident about his answer (Evaluation - Item 7). He concluded correctly that the 

mouse would be able to pass under the wire.  

 

 

  



219 
 

APPENDIX 8 

CHAPTER MINDMAPS 

 

Figure 2.1 Conceptualisation of metacognition (Chapter 2) 
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Figure 2.2 Metacognition in teaching and learning (Chapter 2) 
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Figure 3.1 Components of the empirical research methodology (Chapter 3) 
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Figure 4.1 Presentation, analysis, and interpretation of qualitative and quantitative research data (Chapter 4) 
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