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Abstract 

Non-responses occur commonly in survey data. The performance of a 

regularised iterative multiple correspondence analysis (RIMCA) algorithm in 

multiple imputation (MI) is compared to results obtained from single imputation 

(SI). RIMCA as a SI method restricts applications to data missing at random 

(MAR) and missing completely at random (MCAR), whereas RIMCA in MI can be 

adjusted to allow for missing data from the missing not at random (MNAR) 

mechanism as well. The RIMCA algorithm expresses multiple correspondence 

analysis (MCA) as a weighted principal component analysis (PCA). The success 

of this algorithm derives from the fact that all eigenvalues are shrunk and the 

last components are omitted, thus a ‘double shrinkage’ occurs which reduces 

variance and stabilises predictions. RIMCA seems to overcome overfitting and 

underfitting problems with regard to categorical missing data in surveys. The 

results obtained from simulations as well as real data are presented. 

Key Terms: incomplete categorical data, missingness mechanisms, multiple 

imputation, multiple correspondence analysis, principal component analysis 
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Definitions and Notation 

Units / individuals / cases 

These terms refer to the respondents of the questionnaire. 

Variables 

Variables refer to the questions given in the questionnaire. 

Categories 

Nominal scaled categorical data consists of categories of equal importance, 

which means that the difference between the category values cannot be 

determined. For this research, categories are ordinal. This means that the 

categories are the likert scale options available for each question. Ordinal 

scaled data consists of categories of different intensities or importance; 

therefore differences between values provide information. The ordinal scaled 

data enables the researcher to understand the intensity of the respondent’s 

answer towards the specific questions.  

Notation 

Matrices are indicated by capital bold letters, vectors are indicated by lowercase 

bold letters and scalars are notated by italic letters. Notation is adapted from 

Rencher (2002). 

 



Chapter 1  

Introduction 

“Out of Sight, Not Out of Mind”  

(Buhi, Goodson & Neilands 2008) 

1.1 Rationale 

Incomplete data is a common occurrence in the analysis of data, in particular 

survey data. Missing data entries may result in a biased sample when the 

mechanism that causes data to become missing acts as a second round of 

sampling that results in a final sample that is not representative of the 

population in question. 

The method chosen to handle the missing values in a dataset will determine 

the validity of results and analysis; therefore it is of utmost importance to 

always have the sample data reflect the population that the sample is drawn 

from in order to obtain accurate inferences. A range of methods exists for the 

handling of missing values. The most popular method is deletion (listwise 

deletion (LD) and pairwise deletion (PD)) (cf. 3.4.1.1 & 3.4.1.2). Deletion 

methods are the default approach in most Software packages. The procedure 

involves the deletion of rows in the data matrix where missing entries occur. 

After deletion any complete-case analysis procedure may be applied. Since the 

dataset will be reduced in size and in most cases will not accurately represent 

the population, the results produced could be biased. Therefore, deletion is an 

old-fashioned and inappropriate method for dealing with incomplete data. 

Imputation methods are also popular, consisting of single- and multiple 

imputation methods. Single imputation (SI) replaces each missing value with 

one plausible value in order to fill the dataset to the original size (cf. 3.4.3.1). 

The most valuable imputation method is multiple imputation (MI); even with 30 

years of research done in this field, researchers still attempt to develop this 
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procedure to the fullest. The success of MI lies in the incorporation of the 

uncertainty that arises from imputing missing values, therefore achieving 

realistic variances, whilst maintaining relationships that may occur between 

variables. 

This study attempts to develop yet another branch of MI, investigating the 

applicability of a regularised iterative multiple correspondence analysis (RIMCA) 

algorithm to multiply impute missing values in categorical datasets. 

1.1.1 Incomplete data 

Missing data occurs for various reasons ranging from the capturing of data to 

the handling of data (cf. 3.3). Researchers believe that data entries become 

missing because of a random process, referred to as the distribution of 

missingness. Three missingness mechanisms can occur; missing at random 

(MAR), missing completely at random (MCAR) and missing not at random 

(MNAR). The MAR mechanism classifies missing values that are dependent on 

the observed values in the dataset and independent of the other missing values 

that occur. MCAR is an extension of the MAR mechanism, since in this case the 

missing values are independent of all variables in the dataset, observed and 

missing. Values that are missing because of the MNAR mechanism will at least 

be dependent on the missing values, which can also be described as the values 

(or questions) that were not captured by the survey (cf. 3.3.1). 

1.2 Problem statement 

This research project was inspired by an article by Josse, Chavent, Liquet and 

Husson (2012) on the handling of missing values by using regularised iterative 

multiple correspondence analysis (RIMCA) on MAR and MCAR values (Josse et 

al. 2012:93). 

Josse et al. (2012:99) propose a RIMCA algorithm, where multiple 

correspondence analysis (MCA) is expressed as a weighted principal component 

analysis (PCA). Non-responses are imputed in questionnaire data by means of 

this regularised iterative MCA algorithm. The algorithm consists of three steps: 

initialising step, where fuzzy initial values are allocated to missing values, 
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reconstruction step, for the reconstruction of the indicator matrix with fuzzy 

entries and finally the calculation of the column margins of the new indicator 

matrix. This iterative process is repeated until a predetermined threshold is 

reached. The term fuzzy is allocated to indicator matrices consisting of matrix 

entries of values between zero and one (Van der Heijden & Escofier 2003:162). 

Josse et al. (2012) experience two problems; uncertainty of what dimensions to 

choose, and the problem that the final fuzzy values actually have inherent 

uncertainties which are not modelled in the SI method. Both of these problems 

are solved in the adaptation of RIMCA SI to MI (cf. 5.5). The first problem is 

solved by multiply imputing over several dimensions, and the second problem 

by drawing multiply from the final fuzzy values when allocating categories to 

the imputed values. Therefore several multiple datasets are obtained for one 

dataset of final fuzzy values. 

Research done on a RIMCA algorithm in multiple imputation (MI) has not yet 

been published. The RIMCA algorithm has been used as a single imputation 

(SI) method and performed well especially in tending to overfitting problems 

experienced from non-regularised algorithms. Josse et al. (2012:108) state that 

the iterative multiple correspondence analysis (IMCA) algorithm experiences 

difficulties with convergence and frequently converges to overfitted solutions. It 

has also been established by Josse et al. (2012:106) that the IMCA algorithm 

would obtain better results when applied to a perfect dataset, meaning all 

variables have a perfect correlation, whereas the RIMCA algorithm would 

always outperform IMCA in real scenarios with low correlated variables and 

perhaps missing values. Therefore, in this dissertation, it was decided to omit 

the results of the IMCA algorithm and focus on the strength of the RIMCA 

algorithm in MI in comparison to the RIMCA performance in SI. 

As mentioned, the strength of MI lies in the fact that the uncertainty inherent in 

incomplete data can be incorporated into the final data analysis estimates. 

Rubin (2003a:620) categorises this uncertainty into three forms: firstly, 

uncertainty in the distribution of missingness; secondly, uncertainty in the 
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model and parameter values used for the imputation; and thirdly residual 

uncertainty in the drawing of the imputed values. 

 

The measures of uncertainty will be introduced in the following way: 

 Since the RIMCA algorithm is proposed for MAR and MCAR values, the 

missing values are considered as ignorable (cf. 3.3.1.4). Thus the 

ignorable non-responses allow the researcher to ignore the distribution 

of missingness (Garcίa-Laencina, Figueiras-Vidal & Sancho-Gómez 

2010:266–267; Buhi et al. 2008:84). Therefore the distribution of 

missingness is not accounted for (Rubin 1978:21). 

 The allocation of initial fuzzy values is done randomly in order to add 

additional uncertainty in the model. Another model uncertainty is 

introduced by not fixing the number of dimensions used in the 

reconstruction algorithm. The variety of dimensions will range from 

fuzziness (underfitting) to overfitting. All possible dimensions can be 

used to generate datasets; therefore the number of multiply imputed 

datasets will be determined by the number of dimension choices made 

in MI. Further, the researcher will draw multiply from the final fuzzy 

dataset obtained per dimension, which will result in multiple datasets of 

each dataset, incorporating additional model uncertainty. 

 The allocation of a category value to an imputed fuzzy value will be 

done randomly, which will incorporate the uncertainty that is needed 

from actually drawing imputations – essentially this acts as the 

uncertainty arising from the randomness of the sampled individuals.  

Thus, it is clear that all three measures of uncertainty can be met by the RIMCA 

algorithm, and therefore, it will be interesting to investigate the performance of 

this algorithm in MI. The strength of the RIMCA algorithm will be determined in 

the context of non-responses in questionnaire data.  
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1.3 Aim of the study 

The aim of this study is to investigate the success of RIMCA in MI. 

1.4 Objectives 

 To establish whether RIMCA in MI outperforms RIMCA in SI. 

 To investigate the accuracy of the predictions made by RIMCA in MI 

when applied to a simulated dataset. 

1.5 Methodology 

This quantitative research is an empirical study making use of both secondary 

and created data (von Maltitz 2010:15/15). 

A RIMCA algorithm proposed by Josse et al. (2012:99) as a SI method will be 

applied as a MI procedure in order to compare the results obtained from the 

singly imputed dataset and from the multiply imputed datasets. The real 

dataset to be used is obtained from a satisfaction survey completed by craft 

operators on a waterway between two oceans located in Southern France. The 

dataset is referred to as Canal des Deux Mers and is the original dataset used 

by Josse et al. (2012:111). 

A simulated dataset will be used to enable the researcher to compare a 

complete dataset with a multiply imputed version of the same dataset once 

missingness has been applied to it, in order to establish the accuracy and 

performance of the RIMCA algorithm in MI.  

Inserting missing values in the complete simulated dataset will be done by 

incorporating the protocol followed by Josse et al. (2012:107). Two 

mechanisms of missingness will be considered; MCAR and MAR. In both cases 

two datasets will be built using a random and non-random specified pattern to 

insert the missing values. Also, the allowance of missing values will be 

determined by specified percentages. The complete discussion of the protocol 

will follow in Chapter Five.  
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1.6 Chapter outline 

Chapter 1 – Introduction 

This chapter describes the background for this study. The chapter is 

constructed by the problem statement, aim of the study, objectives and 

overview of the methodology. It will direct the reader to the problem of missing 

data, focussing on categorical questionnaire data, the different processes of 

missingness and the vision of the researcher to provide useful results of a 

RIMCA algorithm in MI. 

 

Chapter 2 – Multivariate Techniques 

A literature review on multivariate statistical techniques related to MCA is given. 

Dimension-reducing techniques, principal component analysis and the 

relationship between these methods will be discussed. Further a review on 

correspondence analysis and multiple correspondence analysis will be given, 

followed by the links between multiple correspondence analysis and other 

multivariate techniques. This chapter will be concluded with a discussion on a 

regularised version of multiple correspondence analysis. 

 

Chapter 3 – Incomplete Data and Imputation 

This chapter provides a literature review on missing values: the reason for 

occurrence, the type of missingness and the different approaches for the 

handling of missing values. The background to SI and MI is given, as well as 

the similarities between these approaches and the advantages and 

disadvantages of these techniques. 

 

Chapter 4 – IMCA and RIMCA 

The protocol proposed by Josse et al. (2012:97–102) for IMCA and RIMCA in SI 

is discussed to provide literature and background on these algorithms. The 

three steps of the algorithms will be shown and discussed in detail. 
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Chapter 5 – Methodology 

This chapter will provide the background of the real data, as well as the 

protocol followed for the simulated data. Also, the adaptations of the 

algorithms discussed in the previous chapter for the implementation of the 

algorithms in MI will be provided. Finally, it will be shown that RIMCA satisfies 

the three uncertainties for MI given by Rubin (2003a:620). 

 

Chapter 6 – Simulation Study 

This chapter will argue why the use of a simulated dataset is necessary for this 

research project. The results obtained for the applicable objectives will be 

presented by means of tables and figures, which will then be discussed. 

Comparisons will be drawn between the results obtained from RIMCA in SI and 

RIMCA in MI. Further, the accuracy of the imputed values of the simulated data 

will be compared to the original data entries. This will enable the researcher to 

determine whether objective one and two of the study were achieved. 

Scatterplot matrices will be provided in order to establish whether the initial 

values allocated to missing values contribute to the final reconstructed imputed 

values. Further the bias, mean square errors and coverage obtained over a 

thousand simulations will be provided in order to compare RIMCA in SI with 

RIMCA in MI.  

 

Chapter 7 – Real Categorical Dataset Canal des Deux Mers 

The motivation for the choice of the specific dataset will be given, followed by 

the presentation of the results in the form of tables and figures. The chapter 

will be concluded by a discussion of the results. The performance of RIMCA in 

SI and RIMCA in MI will be compared, in order to determine whether objective 

one was achieved in the context of the real dataset. 
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Chapter 8 – Discussion and Conclusion 

This chapter will discuss the results obtained from the simulation study and the 

real dataset, followed by the conclusions, limitations of the study and the 

recommendations for further research. The chapter will be concluded by 

focusing on the obtained results and whether the objectives and the aim of the 

study were met. 

 

1.7 Summary 

This introductory chapter gave a brief overview of the handling of missing data. 

The problem statement, aim of the study, objectives and a short description of 

the methodology were presented. An outline of the chapters as part of this 

dissertation was given. 

In the following chapters the literature review of multivariate techniques and 

missing data approaches will be discussed, followed by a discussion on the 

IMCA and RIMCA algorithms. Furthermore, the methodology of the study, 

results obtained from an existing categorical dataset as well as a simulated 

dataset will be presented. This dissertation will be concluded in the discussion 

and conclusion chapters. 

 



Chapter 2  

Multivariate Techniques 

“Social reality is multidimensional.” – Pierre Bourdieu  

(Le Roux & Rouanet 2004:179) 

2.1 Introduction 

In this chapter a literature review will be presented on dimension-reducing 

methods and multivariate analysis techniques and their generalisations such as: 

principal component analysis (PCA), correspondence analysis (CA), and multiple 

correspondence analysis (MCA). 

2.2 Multivariate analysis 

The biological and behavioural sciences were responsible for the earliest 

applications of multivariate techniques (Izenman 2008:2; Rencher 2002:1). The 

rapid development of these techniques was driven by unanswered questions in 

numerous fields of science and contemporary research requiring complex 

analysis. Most of the methods were created in the era of small- to medium-

sized datasets, since analyses were constrained by the lack of powerful 

software programmes. Modern computers are responsible for the popularity of 

multivariate statistics, since they allow researchers to analyse intricate datasets 

(Izenman 2008:2; Rencher 2002:2; Tabachnick & Fidell 1989:1–2). An 

advantage of multivariate statistical analysis is to interpret the relationship 

between two or more related random variables, as statistical procedures are 

performed simultaneously on a set of random variables in order to obtain an 

overall result (Izenman 2008:1–2; Jackson 1991:4). According to Rencher 

(2002:1) the goal is to seek through the overlapping information of the 

correlated variables in order to obtain the underlying structure. Since 

simplification is the common goal of most multivariate procedures, dimension-

reducing techniques play an important role. 
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2.3 Dimension-reducing methods 

Geometrically, dimension is expressed as the rank of a matrix, which is the 

least amount of column and row vectors required to recreate the rows or 

columns of the considered matrix by means of linear combinations (Greenacre 

2010:51). The rank also refers to the number of linearly independent rows of a 

matrix, which corresponds to the number of non-singular values for the matrix 

(Madsen, Hansen & Winther 2004:1). Since it is difficult to visualise and 

interpret data in multidimensional space, it is often useful to attempt to 

summarise the data as well as possible in fewer dimensions. This leads to 

several dimension-reduction techniques, also referred to as decomposition 

techniques. The decomposition of a matrix is simply a way of dividing a matrix 

into a set of factors, which can be orthogonal or independent. This procedure is 

useful in cases where the rows or columns are found to be linearly dependent, 

implying that the matrix in question will not be of full rank (Ientilucci 2003:1). 

In order to understand these techniques, it will be useful to review the 

decomposition methods that follow (cf. 2.3.1; 2.3.2 & 2.3.3). 

2.3.1 Spectral decomposition 

Spectral decomposition and singular value decomposition (from this point 

forward, SVD) are closely related dimension-reducing methods (Rencher 

2002:36). Spectral decomposition expresses a real symmetric and square 

matrix in terms of eigenvalues and eigenvectors (Ientilucci 2003:2). The 

spectral decomposition of a real symmetric matrix   can be expressed by the 

following: 

        

where the columns of   represent the eigenvectors of the matrix   and the 

elements of the diagonal matrix   are the eigenvalues of matrix   (Madsen et 

al. 2004:2; Rencher 2002:35–36, 505). 
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2.3.2 Singular value decomposition 

The development of SVD dates back to the 1870’s and through the years has 

been referred to by various descriptive names: Eckart-Young decomposition, 

basic structure, canonical form, singular decomposition and tensor reduction. 

Researchers Eckart and Young were the first to apply SVD to low-rank matrix 

approximations in 1936, explaining the use of the Eckart-Young decomposition. 

Today, SVD is the common term used to refer to this dimension-reducing 

technique. SVD links various multivariate analysis techniques with regard to the 

algebra and geometry of this decomposition method. Multivariate techniques 

which share the relationship of SVD are: PCA, biplot analysis, CA, canonical 

correlation analysis and canonical variate analysis (Greenacre 1984:340–341). 

SVD carries great significance for dimension-reducing statistical techniques; in 

essence the technique breaks down a rectangular matrix into components in 

descending order of importance (Greenacre 2007:47). 

The technique of spectral decomposition for a symmetric matrix is extended to 

SVD, enabling the decomposition of rectangular matrices (Ientilucci 2003:3). 

Therefore these methods follow a similar approach in which the eigenvalues 

and eigenvectors of     (referred to as the Burt matrix) and     are used to 

express the decomposition of any real matrix   (Rencher 2002:36, 526). The 

solution of the SVD enables the researcher to approximate the optimal 

reduced-dimension of any real matrix (Greenacre 2010:51). 

The SVD of a real matrix   with size     and rank   can be expressed as: 

        

where   is    ,   is    , and   is    . 

The elements of the diagonal matrix   are the non-singular values of the 

positive square roots of the non-zero eigenvalues of     and    . These 

values are referred to as the singular values of matrix  . The normalised 

eigenvectors of     represent the   columns of   and the normalised 

eigenvectors of     are the elements of   columns of  . The matrices   and   

are mutually orthogonal, since their columns consist of normalised eigenvectors 
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of symmetric matrices. This results in          , where   is the identity 

matrix (Rencher 2002:36–37; Jolliffe 1986:37, 224; Greenacre 1984:341). 

According to Wall, Rechtsteiner and Rocha (2003:91), SVD techniques are 

useful in three instances: a visualisation in order to express the data, 

representing data making use of a smaller number of variables, and detecting 

and extracting patterns within noisy data. 

SVD is a valuable tool in the analysis of square and invertible matrices (Klema 

& Laub 1980:170) and is equivalent to the results obtained from diagonalisation 

(cf. 2.4.2), as well as the solution to the eigenvalue problem of the data matrix 

(Wall et al. 2003:93). Irrespective of these computational advantages, the true 

power of this procedure is showcased when applied to nonsquare and perhaps 

rank-deficient matrices (Klema & Laub 1980:170). 

2.3.3 Generalised singular value decomposition 

A generalisation of the definition of SVD (cf. 2.3.2) is given by decomposing a 

rectangular matrix considering constraints that may be imposed on the rows 

and columns of a matrix. In a standard SVD procedure a least square estimate 

of a given matrix by a matrix of lower rank with the same dimension will be 

provided, in the case of generalised singular value decomposition (GSVD) a 

weighted generalised least square estimate of a specific matrix will be provided. 

Thus in the presence of suitable constraints on the rows and columns of a 

matrix, the GSVD may be useful in linear multivariate techniques, such as 

canonical correlation and correspondence analysis (Abdi 2007:2). 

In order to define GSVD consider two positive-definite square matrices,   of 

size     and   of size    , respectively, to decompose any given matrix   of 

size     (Abdi 2007:6; Greenacre 1984:344). Suppose that   is the matrix 

which expresses constraints for the rows of the matrix   and   the constraints 

for the columns of the given matrix  . Now, the matrix   can be expressed by 

(Abdi 2007:6): 
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This establishes that the generalised singular vectors are only orthogonal under 

the limitations given by   and  .  

GSVD is obtained as a result of standard SVD in the following way by 

decomposing a given matrix  ̃: 

 ̃   
 
   

 
     

 
  ̃  

 
   ̃  

Standard SVD is then performed on  ̃: 

 ̃    ̃                     

Now, the matrices of the generalised eigenvectors are calculated by: 

    
 
           

 
    

The matrices of   and  ̃ containing the singular values on the diagonal are 

equal, thererfore: 

   ̃  

In order to verify       , substitution is used: 

    
 
  ̃  

 
  

   
 
       

 
  

       

2.4 Principal component analysis 

The origin of PCA dates back to the work of Karl Pearson circa 1901. 

Unfortunately, its application to real datasets was stalled due to the lack of 

computers. PCA is a one sample technique, (where ideally no groupings occur 

amongst the observations in the data) which reduces the number of correlated 

linear variables to a set of uncorrelated transformed variables, referred to as 

principal components (Izenman 2008:196; Rencher 2002:380; Jackson 1991:1; 

Jolliffe 1986:1). In essence PCA is concerned with the associations between 

variables (Le Roux & Rouanet 2004:129). After the discovery of PCA a similar 

method was developed, referred to as factor analysis. As with PCA, factor 

analysis is a dimension reducing method, but factor analysis aims to explain 
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sets of variables using a smaller number of underlying factors (Le Roux & 

Rouanet 2004:130). 

In PCA, the linear combinations (in the transformation) seek to account for a 

maximum proportion of the variance of the original variables (Rencher 

2002:380). After the transformation the principal components are ordered 

according to the amount of variance retained, an important measure 

representing the amount of information provided by a specific transformed 

variable (Izenman 2008:196; Jackson 1991:1; Jolliffe 1986:1). 

The principal component with the greatest variance is the linear combination 

explaining most of the data. The second principal component therefore explains 

second most of the data and will be geometrically illustrated in an orthogonal 

direction to the first principal component. Each consecutive component will be 

orthogonal to the prior component (Rencher 2002:380). According to Izenman 

(2008:196) the first principal components possessing most of the variance may 

be used to determine outliers, clusters of points and distributional anomalies. 

Izenman (2008:196) further states that principal components with a variance 

close to zero are considered as approximately constant, and therefore can be 

used to determine collinearity. 

In order to summarise data as effectively as possible, the number of principal 

components to be retained must be accurately determined (Rencher 2002:397). 

A popular method is to use a ‘scree plot’, which is a plot of the ordered 

eigenvalues against their order. A visual division between large and small 

eigenvalues is referred to as the ‘elbow’ of the ‘scree plot’. The order number 

corresponding to the component immediately before the first ‘elbow’ may be 

used as the number of principal components to be retained. The graphical 

technique is convenient, but lack of a definite ‘elbow’ may occur (Izenman 

2008:205–206). Rencher (2002:397) and Jolliffe (1986:93–97) discuss other 

techniques such as retaining components that account for a predetermined 

percentage of the variance, retaining the components with eigenvalues greater 

than the average of the eigenvalues and, lastly, performing significance tests 

on the principal components responsible for the least variation. 
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Generally principal components are extracted from the sample covariance 

matrix, but in cases where the variances of specific variables are dominant or 

when the measurement units are dissimilar the correlation matrix may deliver 

more satisfying and interpretable results (Rencher 2002:383–384,393; Quinn & 

Keough 2002:450–451; Jackson 1991:10). The eigenvalues and eigenvectors of 

the covariance matrix from the PCA procedure are not easily transformed, and 

do not produce equivalent eigenvalues and vectors of the corresponding 

correlation matrix. Consequently, the principal components obtained from the 

covariance and correlation matrix, respectively, will not produce the same 

results after transformation. Since principal components based on the 

correlation matrix are standardised measures, they are easily compared and 

used in analyses, whereas principal components obtained from the covariance 

matrix are sensitive to the measurements of the different variables used 

(Jolliffe 1986:17). When the measurements of units differ greatly, results 

obtained from the correlation matrix will be more informative and interpretable 

(Jolliffe 1986:19). The term standard PCA refers to the analysis of correlations, 

which is PCA performed on the correlation matrix (Le Roux & Rouanet 

2004:150–151, 153). Simple PCA is the analysis of covariance, which is PCA 

performed on the covariance matrix (Le Roux & Rouanet 2004:149–150). 

Even though PCA enables the decorrelation of initial variables, reduction of 

dimension, and the easy identification of clusters in the data, the technique is 

greatly influenced by the presence of outliers (Izenman 2008:215; Jolliffe 

1986:195). It must also be taken into consideration that PCA will be more 

effective in the presence of linear relationships between variables, since the 

technique makes use of association matrices (covariance or correlation 

matrices) (Quinn & Keough 2002:453). In order to accommodate fluctuating 

and nonlinear data, variations of PCA may be used and will be discussed in the 

following section of categorical PCA (Izenman 2008:215; Jolliffe 1986:195). 

2.4.1 Categorical principal component analysis 

In order to transform PCA to a nonlinear technique, researchers reformulate 

characteristics of the classical technique to fit the nonlinear case. This results in 
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a variation of categorical versions of PCA (Izenman 2008:598). As already 

discussed, PCA imposes linear constraints on data, consisting of assumptions 

that the categories of the data are ordered and constant distances between 

categories occur (Blasius & Greenacre 2006:30). Blasius and Greenacre’s 

(2006:30) version of Categorical PCA (CatPCA) solves the above-mentioned 

distance problem and allows the distances between categories to vary, as well 

as taking the ordering of the categories into account. The category values of 

the data matrix on each dimension are replaced with optimal scale values. 

These optimal scale values enable the ordered categorical variables to possess 

nondecreasing quantification in the lower dimensions, through allowing 

constraints on the ordering to be imposed. This variation of PCA can be 

grasped as a midway between the classical linear PCA and multiple 

correspondence analysis (MCA), but contrary to both these methods the 

number of dimensions to be retained must be specified before execution 

(Blasius & Greenacre 2006:30). 

2.4.2 Singular value decomposition in principal component 

analysis 

The SVD dimension reduction technique is commonly considered inseparable 

from the multivariate technique, PCA (Greenacre 2010:59). Since SVD provides 

a lower rank matrix containing the least square estimates of a given matrix, 

maintaining the same dimension, SVD is considered equivalent to PCA and 

metric dimensional scaling (Abdi 2007:1). It is also recommended as the best 

approach to determine the principal components in PCA (Jolliffe 1986:239). The 

solution of PCA is provided by the result obtained from SVD, another great 

advantage is the format of the results of SVD, which leads to the mapping of 

the equivalent biplot of PCA (Greenacre 2010:59). The eigenvectors obtained 

from SVD are referred to as the principal components of a PCA procedure 

(Madsen et al. 2004:4). Principal components obtained from a covariance 

matrix (simple PCA) are equivalent to the results obtained from SVD (Wall et al. 

2003:92–93). By centring the columns of a data matrix,  , meaning creating 

zero means, the Burt matrix     of the data matrix will be proportional to the 
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covariance matrix (notation cf. 2.3.2). The right and left singular vectors 

obtained from SVD are equivalent to the principal components of PCA. The 

singular vectors can be obtained by performing SVD,       , or alternatively 

by the diagonalisation of the Burt matrix,           and then calculating 

       . Also, the eigenvalues of the Burt matrix will be proportional to the 

principal components’ variances (Wall et al. 2003:93) 

Accroding to Jolliffe (1986:38) there are two main advantages of SVD for PCA: 

 SVD is an effective method for calculating the principal components 

and the standardised versions of the principal components are 

additionally obtained. 

 The SVD provides insight into what the procedure of PCA attempts to 

accomplish, as well as representing the results of PCA graphically and 

algebraically. 

2.5 Correspondence analysis 

The algebra within correspondence analysis (CA) can be traced back 

approximately 80 years, but the technique as it is known today, as the 

derivation of multidimensional ‘scores’ with a geometric interpretation, was 

developed around 50 years ago (Greenacre 1984:8, 11). Jean-Paul Benzécri 

and a small team of French data analysts studied large data tables using these 

methods during the early 1960’s (Greenacre 1984:9). Unfortunately, the 

mathematical notation and style used by the French were demanding and 

unfamiliar; and most of their research was not translated. The only article of 

Benzécri translated into English was published in 1969, but since his philosophy 

was to focus on the data and he regarded probabilistic and mathematical 

modelling as irrelevant, it lacks mathematical reasoning (Greenacre 1984:9–

10). After Benzécri, a series of analysts rediscovered and developed the 

technique (Le Roux & Rouanet 2004:23; Jackson 1991:222; Jolliffe 1986:85). A 

publication by Hill in 1974 which only focused on single dimensions was 

responsible for the popularity of CA (Greenacre 1984:11). However, Pearson 

would have been the founder of CA circa 1906 had the SVD technique been at 
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his disposal; this was proven by De Leeuw in a 1983 publication (Jackson 

1991:223). 

CA is a technique used to graphically illustrate the information in a two-way 

contingency table. A two-way contingency table contains the frequencies of 

items for a cross-classification of two categorical variables, which describes the 

observed association of these qualitative variables (Rencher 2002:514; 

Greenacre 1984:8). Points are projected onto a two-dimensional Euclidean 

space. The plot obtained from the two categorical variables depicts the 

interaction of the variables as well as the relationship between the rows and 

the relationship between the columns by means of a biplot (Rencher 

2002:514). 

A chi-square test or a log-linear model may be used to test for the significance 

of the associations between the categorical variables listed in the contingency 

table. Both these asymptotic approaches for the test of significant associations 

are acceptable, but the chi-square test is commonly associated with CA. In the 

case where insignificant associations between the two variables are found, 

categories in the contingency tables may be combined in order to increase 

specific cell frequencies. Therefore CA, is a useful tool to determine which 

categories should be combined, if any (Rencher 2002:515). 

2.5.1 Procedure of correspondence analysis 

The procedure of CA is to plot a specific point for each row and column in the 

contingency table, respectively. If a row point is close to a column point, this 

means that the combination frequency of a coordinate pair occurs more 

frequently. This scenario will not occur when the two variables from the 

contingency table were independent (Rencher 2002:515). It is expected that 

independent variables will produce similar row profiles, or equivalently, similar 

column profiles close to the origin (de Tibeiro & Murdoch 2010:519; Rencher 

2002:521). The procedure of CA correlates with the coefficient of determination 

in linear regression, where the predictors only represent a percentage of the 
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possible variance and the excluded percentage is explained in the variance of 

the residuals, or error terms (Blasius & Greenacre 2006:8–9). 

2.5.2 Objective of correspondence analysis 

The objective of CA is to contract multi-dimensional data in order to explain the 

maximum amount of possible variation in two dimensional space. There is only 

a small proportion of the data that is not represented in the CA map, but it is 

regarded as not significantly of interest (Blasius & Greenacre 2006:8–9). The 

output of CA is referred to as the inertia, explained as the amount of 

information given by the two dimensions in the plot (Rencher 2002:515). 

2.5.3 Relationship between principal component analysis and 

correspondence analysis 

It is common to think of CA as the categorical version of PCA, concerning the 

geometric definition of PCA (Blasius & Greenacre 2006:5, 19). According to 

researchers De Leeuw and van Rijckevorsel, CA is expressed as PCA for 

nominal data (Jolliffe 1986:202). Both PCA and CA make use of the fact that 

the points of a dataset, expressed as rows and columns of a data matrix, can 

be displayed in a higher dimensional Euclidean space. Further, these methods 

aim to reduce the number of dimensions and to display the maximum variance 

explained by the data on preferably a two- or three-dimensional scale (Blasius 

& Greenacre 2006:5, 19). Both PCA and CA are procedures which focus on two 

aims; variable reduction and the identification of patterns in the data. Variable 

reduction can simply be explained by the reduction of a large set of variables to 

a smaller set of derived variables, which adequately represents the information 

provided by the data. The new derived set of variables will enable ease of 

execution of further analysis to be done. The patterns in the data can be 

revealed by making use of plots in multidimensional space, such as biplots, with 

regard to the new derived set of variables (Quinn & Keough 2002:443). When 

making use of summary variables, group structures in the data are not 

considered, therefore after variable reduction subsequent analyses such as 

graphical displays must be performed in order to obtain feasible results. PCA 
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and CA are concerned with the extraction of eigenvalues and eigenvectors from 

either correlation or covariance matrices between objects or variables (Quinn & 

Keough 2002:443). 

2.6 Multiple correspondence analysis 

CA can be extended to multiple correspondence analysis (MCA), which enables 

the analysis of the relationships between several categorical dependent 

variables (Greenacre 2010:89; Abdi & Valentin 2007:1). As already discussed, 

CA can be used to analyse a two-way contingency table, whereas MCA is used 

when the contingency table is extended to a three-way or higher-order 

multiway table (Rencher 2002:514, 526). As discussed in Section 2.4, the 

interaction of the two categorical variables, as well as the relationship between 

the rows and the relationship between the columns are illustrated graphically 

by means of a biplot (Rencher 2002:514, 526), whereas the graphical 

representation of MCA displays the relationships between the categories of the 

variables (Takane & Hwang 2006:259). Another way of expressing the purpose 

of both CA and MCA is as follows: CA seeks the relationship between two 

variables, whereas MCA is concerned with the similarities and associations 

within a set of two or more variables (Greenacre 2006:75). 

MCA is commonly used in the visualisation of social survey data in the form of 

questionnaires (Blasius & Thiessen 2012:11; Josse & Husson 2012:96; 

Greenacre 2010:89) as a survey data screening method in which the two-

dimensional map is referred to as the respondents’ cognitive maps. The 

respondents’ responses consist of answers on a discrete scale of a set of 

questions: “yes/no” or “strongly agree/agree/undecided/disagree/strongly 

disagree” (Blasius & Thiessen 2012:11; Greenacre 2010:89). Screening consists 

of analysing the cognitive maps by focusing on the location of the responses 

and respondents in search of irregularities. The data is assumed to be of high 

quality if there are clear patterns of confirmation or rejection obtained from the 

dimension with the most variation (Blasius & Thiessen 2012:11–12). Similar 

results will be obtained from MCA, PCA and CatPCA techniques when applied to 

high quality data (Blasius & Thiessen 2012:14). PCA, however, assumes input 
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data to have metric properties; therefore not well adapted for the screening of 

lower quality data (Blasius & Thiessen 2012:33). 

MCA is beneficial to the analysis of multivariate categorical data (Takane & 

Hwang 2006:259). One MCA technique is applied by simply performing CA on a 

data matrix, referred to as an indicator matrix. The indicator matrix consists of 

a row for each subject and columns representing the response categories 

(Greenacre 2006:70; Takane & Hwang 2006:259; Rencher 2002:526). The 

number of rows is equivalent to the number of subjects and the number of 

columns is equivalent to the number of categories in all variables. The elements 

of the indicator matrix consist of ones and zeros; a one will be allocated to the 

corresponding category of the variable the subject has selected as a response, 

allocating zeros to the remaining unselected available categories in the specific 

row of the indicator matrix (Rencher 2002:526). The second approach in 

performing MCA is to perform CA on the Burt matrix (cf. 2.3.2) (Greenacre 

2006:51, 70; Rencher 2002:526). The Burt matrix is given by    , where   is 

any specific indicator matrix. Consider a dataset consisting of   individuals and 

a total of   categories, the Burt matrix can be expressed as follows: 

    

[
 
 
 
 
 
  

     
       

   

  
     

      
   
   

  
          

   ]
 
 
 
 
 

  

where the off-diagonal Burt matrix entries are two-way contingency tables 

which represents the associations between the sets of variables for all the 

individuals captured in the dataset (Greenacre 2006:50; Greenacre 1984:140). 

Greenacre (2006:42) defines MCA by means of two approaches: canonical 

correlation analysis, which is to determine the correlation between variables, 

following a theoretical approach; secondly, Pearson-style principal component 

analysis (cf. 2.4), which makes use of data visualisation following a geometric 

approach (Greenacre 2006:43). 
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2.6.1 Canonical correlation analysis as MCA 

Background 

Canonical correlation analysis is concerned with finding the linear combinations 

of two subsets of variables that have maximum correlation (Rencher 2002:380; 

Quinn & Keough 2002:463). Therefore the technique maximises the linear 

correlation between the linear combinations of variables. This is done by 

determining the optimal scales (difference in distance between consecutive 

categories) between categories (Izenman 2008:223; Rencher 2002:361). 

The geometry of canonical correlation analysis is responsible for the 

conceptualisation of the profile, mass and chi-square distance obtained in CA. 

Canonical correlations were therefore crucial in the theoretical development of 

CA. According to Greenacre (1984:108), Fisher was the first to discover the 

relationship in a contingency table among its optimal scaling analysis and 

canonical correlation analysis in 1940. 

The method of canonical correlations was introduced and defined by Hotelling 

in 1936. Data in which the variables divide themselves into two subsets are 

most suited for canonical correlation analysis (Greenacre 1984:108). 

Greenacre’s (2006) approach to defining MCA 

Firstly, two variables will be considered in order to explain the relationship 

between canonical correlation analysis and CA, the number of variables will 

then be expanded for the explanation of MCA. 

Two variables 

Two variables will be considered with indicator matrices given by    and     

respectively of the same size    , where   is the number of units and   the 

number of variables. The cross-product of the two indicator matrices is given 

by   
   , which represents the two-way contingency table of the two variables 

in question (cf. 2.6). At first an assumption is made that the scales between 

the categories are even, this will not be acceptable for nominal data. The scale 

values are contained in vectors, denoted by    and   , enabling the unit 
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quantified responses to be contained in the vectors      and     . Greenacre 

(2006:44) simplifies the notation by initial mean centring of the quantified 

responses                . The centred means allow for the 

covariance      between the two variables and their variances   
  and   

   to be 

expressed by (Greenacre 2006:44): 

    
 

 
  
   

        
       

  
  

 

 
  
   

        
       and   

  
 

 
  
   

        
     , 

where     
 

 
  

     contains the relative frequencies and is referred to as the 

correspondence matrix. The marginal relative frequencies, also known as the 

masses of the variables in question, are contained in the diagonal matrices 

   and    (Greenacre 2006:45). 

Now the correlation can be expressed by: 

  
   
    

 
  
      

√  
       

     
 

Until now the given information solely depends on the assumption made that 

the scale intervals of the categories are equal. Considering the definition of 

canonical correlation analysis, we are concerned with the highest correlation 

between the variables in question. Therefore, the scale values for    and 

   which achieve the highest correlation must be obtained (Greenacre 

2006:46). Identification conditions must be introduced that will fix the scale of 

the vectors    and    which will result in the highest correlation between the 

variables. It must be noted that the correlation will remain unchanged when 

any linear transformations of    and    are made. Common identification 

conditions are standardised variables with zero mean, 
 

 
       

 

 
        , 

and a variance of one,   
        

        (Greenacre 2006:46). Considering 

these conditions, the standard coordinates of a simple CA agree fully with the 

optimal solution of the canonical correlation analysis (Greenacre 2006:47). 

The SVD of a normalised matrix follows: 
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          where              

The singular values are contained in the diagonal matrix   and   is the matrix 

of left singular vectors as columns and   are the matrix containing the right 

singular vectors as columns. 

Using the orthogonality of the singular vectors, Greenacre (2006:47) expresses 

one pair of left and right vectors, corresponding to a singular value of say,  , 

by the following: 

    

 
 
      

 
 
      

The covariance formula is achieved by setting      

 
 

   and      

 
 

   , 

resulting in   
        . Since the identification conditions of the variance are 

met, the correlation is given by the singular value  . Since the condition for a 

centred mean is not satisfied at this stage a trivial maximal solution will be 

obtained with a singular value equal to 1, equivalent to the vectors    and 

   being equal to  . Therefore the second largest singular value of an 

uncentred matrix will be the maximum correlation, excluding the trivial largest 

singular value of 1. Centring the correspondence matrix can be easily executed 

as follows: 

  

 
 
           

    
    

 
 
        

Now the first largest singular value will portray the maximum correlation. The 

vectors of standard coordinates on the first principal axis in CA are obtained 

from the solutions of    and   . The largest singular value obtained     is also 

referred to as the first canonical correlation (Greenacre 2006:48). The square 

roots of the principal inertias found on the axes of the map are the canonical 

correlations (Greenacre 2006:49). In order to determine the scale values of 

different sets a stepwise approach may be followed by maximising the 

correlation among other pairs of which the subject scores are uncorrelated with 

the scores already obtained as well as subject scores with differing scale 

values. Transforming the set of singular vectors again to standard coordinates, 
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now the second singular value     will be the second canonical correlation. This 

process will continue until all canonical correlations are obtained (Greenacre 

2006:48–49). 

Several variables 

The difference between the case of two variables and that of multiple variables 

is introduced by focusing on the maximisation of the correlation between the 

average of the two variables in question as well as the two variables 

themselves, whereas for the case of two variables the goal was to maximise 

the correlation between the two variables (Greenacre 2006:49). 

In order to determine the average of two categorical variables we must first 

consider the indicator matrices, as specified in the two variable scenario, 

   and   . The average based on the scale vectors,    and   , of the 

quantifications of the variables are as follows (Greenacre 2006:49): 

 

 
            

 

 
[     ] [

  
  

] 

The combined indicator matrix of the two variables is referred to as a 

superindicator matrix given by   [     ]. The separate indicator matrices 

have the same number of units, say  , therefore the superindicator matrix 

consists of    units. The correspondence matrix is notated by [
 

  
]  , the matrix 

of row mass is 
 

 
  and the matrix of column mass is given by 

   
 

 
           . The diagonal matrices,    and   , of the two variables is 

combined to form the matrix  . Considering the uncentred form of  , the SVD 

of   is calculated to determine the CA solution in the following way (Greenacre 

2006:49): 

√ 
 

  
  

 

          where              
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Greenacre (2006:50) expresses one of the symmetric eigenvalue formulations 

as follows: 

(√  
 

  
  

 
 )

 

(√  
 

  
  

 
 )  

 

  
  

 
      

 
          

Since,      , the above equation can be simplified to: 

 

  
  

 

    
 

               where        and       

The matrix   is indeed the Burt matrix (cf. 2.3.2 & 2.6), which can be 

expressed in terms of the two categorical variables used: 

  [
  

     
   

  
     

   

]   [
     

     
]  

The squares of the singular values,   , (and with regard to CA also referred to 

as the principal inertias of  ) are contained on the diagonal of   . Since   

   , it is equivalent to the diagonal matrix entries of  , which is denoted by  . 

When attempting to express the single symmetric eigenvalue formulation for a 

single eigenvector  ,   will be partitioned into two subvectors,    and   , and 

the equation     
 

   must be defined. This will lead to the following 

eigenequation (Greenacre 2006:50): 
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]        

This results in: 

 

 
   

        
         

         
             

The maximum correlation is given by      
  , which is the largest nontrivial 

eigenvalue. This is in accordance with the results obtained from simple CA with 

a correspondence matrix    . The difference is that the maximum is now equal 

to 
 

 
            

 

 
      , where    is the canonical correlation in 

simple CA. The correlation between the average of the two categorical variables 

and either of these variables is obtained by the square of 
 

 
       (Greenacre 

2006:50). Further, the derived versions of    and    are exactly the same as the 
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scale vectors from simple CA, which is the standard coordinates of the columns 

of the indicator matrix  . It is also important to take note of the eigenvalue    , 

which is the singular value of the Burt matrix  . Geometrically speaking with 

regard to CA,    is the square root of the principal inertia of the Burt matrix   

(Greenacre 2006:51). 

For the multivariable case say   categorical variables, each with its own 

indicator matrix,            are considered. According to Greenacre (2006:51) 

finding a set of scale values,           , to maximise the overall correlation of 

the   categorical variables is one of the difficulties experienced with the 

multivariable case. The generalisation from the two-variable case is obtained by 

making use of the sum of squared correlations of the scores                 , 

with the concatenated   ’s and   ’s forming the summation of   . An overall 

identification constraint is introduced concerning the variance, but does not 

imply that the individual variances of the final solution will be equal to one. The 

constraint is given by,       , where the diagonal matrix is expressed by 

 

 
                 (Greenacre 2006:51). 

The procedure to follow for the solution is similar to that of the previous cases, 

either CA can be performed on the superindicator matrix   [          ] or 

alternatively on the Burt matrix  . In this case the Burt matrix is a block matrix 

with   blocks, row-wise as well as column wise. The     categorical variable 

consists of    categories and the total number of categories is denoted by   

    . The order of the superindicator matrix is     and the Burt matrix is of 

order    . Since the row sum of   is equal to a constant  , the marginal 

frequencies of each categorical variable results in the column sums and the 

total sum of   is    the following matrices can be specified: 
 

  
  portrays the 

correspondence matrix; 
 

 
  is the row mass matrix and   is the column mass 

matrix (Greenacre 2006:51–52). 
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Once again the SVD of the uncentred superindicator matrix can be shown by 

(Greenacre 2006:52): 

√ 
 

  
  

 

          where            . 

The trivial solutions can be removed by decomposing in the following manner: 

√ (
 

  
 

 

 
    )  

 
   

where the vector of row masses is represented by 
 

 
  and the vector of column 

masses by    .  

Now for the second approach, performing CA on the uncentred Burt matrix  , 

the SVD looks as follows (Greenacre 2006:52): 

  
 

 
 

   
  

 

              where        and      . 

The trivial solutions can be removed in a similar way by making use of the 

expected relative frequencies: 

  
 
 (

 

   
      )  

 
   

The scale values for the   variables are given by the right-hand singular 

vectors, which in both approaches provide identical results. The square of the 

first singular value of the centred analysis of the superindicator matrix   and 

the first singular value obtained from the centred analysis the Burt 

matrix   provides the maximum average squared correlation. Since the Burt 

matrix is positive definite symmetric the singular values are also the 

eigenvalues. The usual transformation of the singular vectors enables the 

calculation of the standard coordinates   which is partitioned into            

for the   number of variables (Greenacre 2006:52): 

    
 
    

In this case   is the first column of   , which is equivalent to the first right-hand 

singular vector. Since differences occur between the singular values, there is a 
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slight difference between the principal coordinates of the two approaches 

(Greenacre 2006:52). 

2.6.2 Pearson-style principal component analysis as multiple 

correspondence analysis 

According to Greenacre (2006:58) the geometric approach of CA to multiple 

variables is difficult. In an attempt to explain the link between PCA and MCA 

both the chi-square distance scaling and biplot approaches will be discussed. 

Background (cf. 2.5; 2.5.1; 2.5.2 & 2.5.3) 

The map of CA is produced by performing SVD on a standardised matrix of the 

residuals; thereafter the principal coordinates are to be calculated. The 

calculation of the principal coordinates representing the points on the map are 

easily performed by multiplying the standard coordinates by the individual 

singular values. Because of the standardisation of the residuals, the standard 

coordinates possess unit normalisation, consequently the weighted sum of 

squares of the principal coordinates are normalised to be equal to the individual 

squared singular values of the obtained solution (Greenacre 2006:58). The 

principal inertia refers to the squared singular value, which corresponds to a 

dimension or principal axis (Greenacre 2006:59). 

2.6.2.1 Chi-square distance scaling 

In CA the purpose of the chi-square distance is to measure the variation 

between the row profiles and column profiles of a particular two-way 

contingency table. Considering a CA map, the difference in distance between 

two row points will be an optimum estimate of the chi-square distance between 

row profiles, equivalently the distance between two column profiles will be an 

ideal estimate of the chi-square distance between column profiles. The use of 

the chi-square distance is well known for its application in CA. Complications 

arise when applying this distance to the rows and columns of either a 

superindicator matrix   or Burt matrix   for multivariable data. The weights 

used in the calculation of row profiles are obtained from the inverses of the 
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column masses of the correspondence matrix, the same principal applies when 

calculating column profiles; now making use of the row masses of the 

correspondence matrix as weights (Greenacre 2006:59). 

Two approaches are followed when calculating intercategory relationships for 

column profiles (Greenacre 2006:60): 

 The distances between two categories of the same variable; and 

 the distances between two categories of different variables. 

When using the superindicator matrix, the first approach is meaningless, since 

the interaction between two categories of the same variable is impossible and 

will result in a frequency of zero. Unfortunately both approaches for the column 

profile depend on marginal frequencies. Regardless of the dependency to the 

marginal frequencies; the second approach shows slight relevance, since the 

occurrence of association between two categories results in a decrease of the 

distance between the column points. The application of the chi-square distance 

on the Burt matrix performs better in comparison to the results obtained from 

the superindicator matrix. Calculations based on the Burt matrix are 

convenient, since either row or column profiles may be used, because of the 

Burt matrix’s symmetry (Greenacre 2006:60). Both the within-variable and 

between-variable squared differences tend to inflate the respective distances, 

because of unnecessary additional terms during calculation (Greenacre 

2006:60–61). Even though theoretical troubles are experienced, sufficient 

association patterns are allocated between variables. A contradictory result with 

regard to multidimensional scaling is that projections in lower dimension 

produce more valid results than full dimensional projections do. Also, the 

inflation of the total inertias of the Burt matrix and superindicator matrix leads 

to low percentages of inertia on the principal axes. The inflation of the 

distances can be explained by the dominating contribution of the diagonal 

matrices on the block diagonal of the Burt matrix. In conclusion, the results 

obtained for a two-variable dataset from both MCA and CA will produce the 



31 
 

same standard coordinates, but not the same principal inertias, and, 

consequently, not the same principal coordinates (Greenacre 2006:61). 

2.6.2.2 Biplot 

Background 

The syllable ‘bi’ in biplots refers to two sets of points; these sets are rows and 

columns of a certain data matrix (de Tibeiro & Murdoch 2010:519; Greenacre 

2010:15, 23, 24; Quinn & Keough 2002:456). The biplot is associated with data 

reconstruction rather than distance reconstruction (Greenacre 2006:61). A 

biplot is the visualisation of the rows and columns onto two- or three-

dimensional planes. This visualisation is portrayed as a generalisation of a 

scatterplot of typically two variables. Improvement in computer software has 

enabled researchers to use graphical representation up to three dimensions. 

Since biplots hold for multi-dimensionality, the use of dimension-reducing 

methods play an important role in the representation of data to be illustrated in 

two or three dimensions (Greenacre 2010:15, 23, 24). 

Fundamentally, a biplot is a point-vector plot which expresses the objects as 

points and the variables as lines (vectors) drawn from the origin of the plot 

(Quinn & Keough 2002:456). 

In order to ease the visual execution of the biplot, dimension-reducing 

techniques (cf. 2.3) must be used. SVD (cf. 2.3.2) of the data matrix into right 

and left matrices provides dimensional coordinates. In practice the 

dimensionality is determined by the rank of the data matrix, which can 

accumulate to high-dimensional situations (Greenacre 2010:23–24). The SVD of 

a data matrix provides eigenvectors from an association matrix between 

variables and objects, respectively. The most general approach to construct a 

biplot is to use the component scores of the objects as the points and the 

eigenvectors of each variable relating to each component will represent the 

variables (Quinn & Keough 2002:456). 

A great advantage of a biplot, specifically aimed at CA, is the ability to view the 

individuals and variables simultaneously (de Tibeiro & Murdoch 2010:519). The 
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biplot can be described as the optimal representation of a large number of 

variables which enables researchers to view the behaviour of the variables in 

question concurrently (Greenacre 2010:23). 

In the following two sub-sections the use of the superindicator- and Burt 

matrices will be discussed. In both cases, the analyses of high-dimensional 

matrices will result in a low percentage of inertia (Greenacre 2006:64). 

Superindicator matrix 

Since an indicator matrix consists of zeros and ones, it is pointless to anticipate 

useful estimates displayed in a two-dimensional map. Other interesting 

measures can be used in order to make use of the biplot of an indicator matrix; 

the number of correct predictions made could be verified with the responses of 

each case (row) which is most likely to occur (Greenacre 2006:64). 

Burt matrix 

A similar problem occurs with the use of the Burt matrix; estimations made on 

the diagonal matrices of the block diagonal of the Burt matrix does not agree 

with the estimates obtained from the relevant contingency tables (Greenacre 

2006:64). Fortunately the problem of low representation of inertia can be easily 

corrected by adjusting the scales of the obtained solution (Greenacre 2006:65). 

In order to fully grasp the technique of inertia adjustment (cf. 2.6.4), the 

procedure of joint CA will be discussed (cf. 2.6.3). 

2.6.3 Joint CA 

The problem stated is that the application of CA to the Burt matrix   results in 

the inflation of the chi-square distances as well as the total inertia being 

inflated by artificial amounts. These inflations occur because of the diagonal 

submatrices on the “diagonal” of the block Burt matrix  . Joint CA (from this 

point forward, JCA) attempts to generalise simple CA in such a manner that the 

block diagonal matrices are ignored and only the variation in the “off-diagonal” 

tables are considered of the Burt matrix  . JCA and simple CA procedures are 

exactly the same in the case of two-variables, which consists of one off-
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diagonal table. Again different principal inertias (cf. 2.6.2.1) will be obtained 

from CA and MCA of the superindicator matrix and Burt matrix, respectively, 

consequently the results will not be identical to the JCA of two variables 

(Greenacre 2006:65). 

Greenacre (2006:65–66) proposes a five step algorithm for the procedure of 

JCA which focuses on an alternating least-squares algorithm, treating the block 

diagonal matrices as missing values. The five steps follow: 

 CA is applied to the Burt matrix   as the MCA procedure, the 

dimensionality of the solution must be predetermined, typically a 

dimension of two is selected (Greenacre 2006:65). 

 In order to improve the approximation to the off-diagonal block 

matrices, an optional attempt is to apply adjustments to the solutions 

of each of the dimensions (Greenacre 2006:65). 

 A reconstruction formula is used (Nenadić & Greenacre 2006:531) in 

order to reconstruct the values in the diagonal blocks of the Burt matrix 

 . The original values in the diagonal blocks are replaced by the 

calculated estimates, now referring to the matrix as the modified Burt 

matrix    (Greenacre 2006:65). 

 CA is now performed on the modified Burt matrix    (Greenacre 

2006:66). 

 Steps 3 and 4 are repeated until the process converges. These are the 

steps concerned with the replacement of the block diagonals of the 

Burt matrix by making use of the reconstruction formula and 

performing CA on the current Burt matrix. Convergence in this 

algorithm is obtained when a maximum absolute difference is met 

between the estimated values on the diagonal block of the current 

iteration and the corresponding estimated values on the diagonal block 

of the previous iteration (Greenacre 2006:66). 
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According to Greenacre (2006:67) there are two factors to take into 

consideration when calculating the percentage of inertia represented by a map: 

 Firstly, since the dimensions are not nested in the procedure of JCA and 

need to be predetermined, the percentage of inertia of the two 

dimensions cannot be computed separately, but must be calculated 

together. 

 Secondly, the usual procedure followed to determine the proportion of 

inertia is concerned with the ratio between the sum of the first two 

principal inertias and the total inertia. In the case of the modified Burt 

matrix, the numerator and denominator of the ratio includes the sum of 

the modified diagonal block values. In order to determine the 

percentage of inertia explained by the off-diagonal, the included 

contribution of the diagonal block values need to be discounted from 

the numerator and denominator. Nenadić and Greenacre (2006:530–

533) advise on approaches to determine the additional amount 

obtained from the modified diagonal blocks. 

2.6.4 Inertia adjustment 

The main difference between MCA and JCA is a change in scale. The similarities 

between the two techniques enable simple scale readjustments of the MCA 

solution to approach the inflated percentage of inertia problem of regular MCA 

(Greenacre 2006:67). As discussed (cf. 2.6.3) the total inertia will be computed 

by making use of the JCA approach. This is done by removing the contributions 

of the diagonal blocks of the Burt matrix, which results in the adjustment of the 

total inertia. Another option is to calculate the average inertia of all the off-

diagonal blocks directly from the tables. The following equation is used to 

determine the adjusted total inertia of   (Greenacre 2006:67): 

                             
 

   
(           

   

  
) 

where   refers to the number of categorical variables and   the number of 

categories per categorical variable. 
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The principal inertias are used to calculate parts of the inertia, in the case of 

the superindicator matrix principal inertias are calculated by   , where   

represents the number of dimensions, and for the Burt matrix by   
 . The 

adjusted inertia for each    
 

 
 is calculated as follows (Greenacre 2006:68): 
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These principal inertias are then expressed as percentages of the average off-

diagonal inertia equations given above. The obtained percentages still 

underestimate the inertias, when comparing to the inertias calculated by JCA, 

but greatly improve the solutions given by regular MCA. Greenacre (2006:68) 

advises that this approach should be followed when applying MCA. 

2.7 Regularised MCA 

The regularisation of MCA is concerned with an alternative estimation 

procedure that on average provides estimates that are closer to the population 

parameters than the conventional MCA estimation procedure would have 

produced. The development of regularised MCA (RMCA) evolved from ridge 

regression, which is able to alleviate multi-collinearity problems experienced 

with multiple regression analysis (Takane & Hwang 2006:260). It is expected 

that results obtained from a regularised procedure will be associated with 

smaller variance and smaller mean squared error than results from a non-

regularised procedure. This shows that categories with smaller observed 

frequencies would perform better with the use of a regularisation parameter 

(Takane & Hwang 2006:277). 

Incorporating prior knowledge in data analysis forms the basis of regularisation. 

Considering the ridge regression type of regularisation, the regularisation 

parameter shrinks the estimates of the category points in MCA towards the 

origin (Takane & Hwang 2006:278). 
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2.8 Conclusion 

This concludes the literature review on multivariate analysis. In this chapter 

literature on dimension reducing techniques, PCA, as well as CA and MCA was 

covered. MCA was expressed by canonical correlation analysis and Pearson-

style PCA, as well regularisation of MCA. The groundwork in multivariate 

analysis has now been laid, on which the more recent advances in multivariate 

analysis can be reviewed. The following chapter will consist of a literature 

review on the handling of missing values and imputation techniques. 

 



Chapter 3  

Incomplete data and Imputation 

“The idea of imputation is both seductive and dangerous” - Dempster and Rubin 

(Tappen 2011:301) 

3.1 Introduction 

This chapter consists of a literature review on the quality of questionnaire data, 

incomplete data and the handling of missing values in data by making use of SI 

and MI methods. 

3.2 Quality of data with respect to questionnaires 

In order to determine the quality of data, three sources must be incorporated: 

 study architecture, 

 institutional agencies and 

 respondent behaviour. 

Study architecture refers to all elements concerning the survey design, 

including the question type and format of questionnaires. Institutional agencies 

are responsible for the distribution of questionnaires, the adequacy of 

interviewers and the validity of the study design. Since the data is obtained by 

the responses of respondents the quality of data is greatly influenced by the 

difficulty of the survey, the cognitive skills of the respondents as well as the 

interest (salience) of the topic (Blasius & Thiessen 2012:1–2, 4). 

The data collection of the social and behavioural sciences mostly utilises 

surveys (Wang & Fan 2004:332). Two features commonly arise in survey data, 

which complicate the modelling process: 
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 Imperative restrictions, which means that certain questions will only be 

applicable to a subsample of the sample and would appear missing for 

the subsample not considered for the specific question (Raghunathan, 

Lepkowski, Van Hoewyk & Solenberger 2001:86). 

 Certain consistency and logical bounds must be considered in the 

imputation process, which refers to questions with answers within 

specified ranges (Raghunathan et al. 2001:86). 

Survey data mostly consist of categorical data with an ordinal or nominal scale 

(Blasius & Greenacre 2006:5). This implies that data collected by means of 

questionnaires are well suited for MCA (Josse et al. 2012:92). 

3.3 Missing data in surveys 

Data are generated or collected daily in various fields of interest. A common 

problem is the presence of missing data (He & Raghunathan 2009:857; Van 

Buuren, Brand, Groothuis-Oudshoorn & Rubin 2006:1049; Rubin 1976:581). 

Missing values occur due to a number of reasons, for example: 

 Missing data in a social survey may arise because of negligence and 

loss of interest of respondents. Respondents may decide to skip 

questions and also refuse to provide answers to all given questions in 

the questionnaire (Garcίa-Laencina et al. 2010:264; Wang & Fan 

2004:333; Pigott 2001:353; Schafer & Olsen 1998:545). Missing data 

may also be the result of data being lost or not properly recorded 

(Pigott 2001:353). 

 Data collected on medical diagnoses may contain non-responses 

because of lack of medical equipment required for specific treatments 

at hospitals or treatment centres, test results might not be available 

immediately for preliminary analysis (Garcίa-Laencina et al. 2010:263–

264). 
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 Non-responses in industrial experiments may be caused by electronic or 

mechanical malfunctions during the collecting of data (Garcίa-Laencina 

et al. 2010:263). 

A common association made with surveys is the occurrence of non-responses 

(Wang & Fan 2004:332; Meng 1994:538; Rubin 1987:1), due to reasons 

discussed in the previous paragraph. Survey non-responses are defined by 

various situations; in the broadest sense non-responses include values that are 

missing from the processing of information given by units (individuals) rather 

than questions being disregarded by the respondents. An example of missing 

data occurring from the processing would be the occurrence of impossible 

values, such as weight of 700 kilograms or age exceeding 170 years. This 

means that values exceeding the allocated restrictions of a question are 

considered as missing values. Also, questions allocated for a certain subsample 

of the survey sample, such as income questions, will be answered by applicable 

respondents but not by all (Rubin 1987:1–2). The correct understanding and 

handling of missing data is fundamental in order to produce accurate results 

with smaller errors (Josse et al. 2012:92; von Maltitz & van der Merwe 

2012:77; Garcίa-Laencina et al. 2010:264). 

Surveys are considered as the procurement of information on a segment of a 

population, whereas a census of a population attempts to gain information on 

every unit in a population (Rubin 1987:1). The occurrences of non-responses 

implicate a number of concerns (Rubin 1987:1): 

 The size of the database contracts and consequently less efficient 

estimates are obtained. 

 Well known complete-case methods are not immediately viable. 

 Bias can occur, which is demanding to remove since the explanation for 

missing values are not apparent. 

Missing values are sometimes categorised with data entries that have been 

grouped, truncated, heaped, censored, aggregated, rounded, etc.; all situations 
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which are concerned with data losing partial information. These data editing 

methods are referred to as coarsened data (Schafer & Graham 2002:148; 

Heitjan & Rubin 1991:2244–2245). Another set of variables that are related to 

missing values are latent variables, which consist of unobservable or 

immeasurable quantities. These quantities can only be, so to say, improperly 

measured by questionnaires (Schafer & Graham 2002:148). 

Missing data are multivariate in most practical cases, as is the data used in this 

research. This means that non-responses occur in multiple observed variables 

(von Maltitz & van der Merwe 2012:77). 

‘Really missing’ and ‘not really missing’ values are the first distinction between 

non-responses. A value that is ‘not really missing’ represents a new category 

that conveys meaning and does not mask underlying values. Examples of such 

responses are: “don’t know”, “refuse to answer”, “no preference” or “not 

applicable”. When non-responses are categorised as ‘not really missing’ it is an 

indication that the provided questionnaire options are not sufficient for the 

respondent’s response. Values that are ‘really missing’ are considered as values 

that should have been indicated by the individuals, and now reported as 

missing. These missing values mask underlying values which could contribute 

to the analysis of the data. ‘Really missing’ data can be sub-categorised into 

three groups explaining the reason for incomplete values which will be 

discussed in the following section (cf. 3.3.1) (Josse et al. 2012:92; Little & 

Rubin 2002:3–4). 

3.3.1 Missingness mechanisms 

The concept of the missingness mechanism was developed by Rubin in 1976 

(Little & Rubin 2002:11). An assumption is made that values go missing 

because of a random process, referred to as the missingness mechanism 

(Kenward & Carpenter 2007:200; Little & Rubin 2002:11). The missingness 

mechanism is also referred to as the distribution of missingness or the response 

mechanism (Schafer & Graham 2002:150). The missingness of any dataset can 

be expressed by an indicator matrix,  , in which missing values are represented 
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by the value one and observed values are depicted by zero (von Maltitz & van 

der Merwe 2012:77; Schafer 2003:19; Zhang 2003:582). The distribution of   

is regarded as the missingness mechanism; the distribution is not specified, but 

expresses the patterns and rates of the occurring non-responses as well as 

illustrating the relationships between the missing values and the missingness in 

the data (Schafer & Graham 2002:150). Generally speaking, the missingness 

mechanism enables the researcher to determine whether there is a relationship 

between the variables and the missingness (Song & Shepperd 2007:54). The 

matrix   is treated as a set of random variables with a distribution of joint 

probability (Little & Rubin 2002:11; Schafer & Graham 2002:150). Before the 

actual handling of missing data is approached, it is important to understand the 

process in which the data went missing, namely the missingness mechanism 

(Buhi et al. 2008:84; Ali & Siddiqui 2000:166). 

A complete data matrix        consists of both observed values,       and 

missing values     . The missing values follow a distribution of positions, which 

are represented by the indicator matrix  . The dimension of the complete 

matrix       and missingness mechanism  , are equal (von Maltitz & van der 

Merwe 2012:77; Song & Shepperd 2007:54). 

The three groups of non-responses that mask underlying values in the data (cf. 

3.3) are regarded as the distributions of the missingness mechanism (Little & 

Rubin 2002:11-12; Rubin 1976:582, 584) and are expressed by the conditional 

distribution of   given the complete data matrix consisting of missing and 

observed values (Garcίa-Laencina et al. 2010:266). According to Buhi et al. 

(2008:84), the three mechanisms of missingness are the result of causes of 

missing data points, such as: bias, conditional or complete randomness and 

systematic explanations. 

  



42 
 

These three mechanisms are (Little & Rubin 2002:12; Schafer & Graham 

2002:151): 

 missing at random (MAR), 

 missing completely at random (MCAR) and 

 missing not at random (MNAR). 

3.3.1.1 Missing at random (MAR) 

MAR refers to missing values that are independent of the other missing values 

that occur, but may be dependent on the remaining observed variables (Little 

2011:166; Little & Rubin 2002:12; Rubin 1976:582). The MAR mechanism is 

assumed by most missing data techniques, but is not always viable (Buhi et al. 

2008:84; Song & Shepperd 2007:55). A simple  -test between groups with 

missing and complete data can be performed in order to determine whether the 

conditions for the MAR mechanism hold (Song & Shepperd 2007:55). MAR can 

be expressed by the following conditional distribution (Kenward & Carpenter 

2007:201; Schafer & Graham 2002:151): 

 ( |     )     |      

3.3.1.2 Missing completely at random (MCAR) 

An extension of the MAR mechanism is MCAR, which means that the missing 

values and missingness are independent of all variables in the dataset, missing 

or observed (von Maltitz & van der Merwe 2012:77; Buhi et al. 2008:84; 

Schafer & Graham 2002:151; Little 1988:1198). The MCAR assumption does 

not imply that the missingness pattern is random, only that missing values are 

not related to the observed values (Little & Rubin 2002:12). Also MCAR implies 

that each unit in the dataset has the same probability of missingness and 

occurs by chance (Abayomi, Gelman & Levy 2008:275; Kenward & Carpenter 

2007:201). The conditions for MCAR are not easily met, since this mechanism is 

more restrictive than MAR (Song & Shepperd 2007:55; Little & Rubin 2002:12). 

Since the MCAR mechanism excludes responsibilities to consider the reason for 

missingness, it is an ideal and extreme situation. To regulate whether MCAR is 
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applicable to a dataset, there should be no difference between the distributions 

of the observed cases and that of the missing cases. This technique is known 

as Little’s Multivariate test. Unfortunately, Type I errors are to be expected 

when the sample is small (Song & Shepperd 2007:55). According to King, 

Honaker, Joseph and Scheve (2001:51) MAR is favoured over MCAR in many 

empirical situations. 

The conditional distribution that expresses the MCAR mechanism is given by 

(Kenward & Carpenter 2007:201; Schafer & Graham 2002:151): 

 ( |     )       

 

3.3.1.3 Missing not at random (MNAR) 

MNAR values are dependent on the missing values in the dataset or related to 

values that have not been captured by the survey or data (von Maltitz & van 

der Merwe 2012:77-78; Abayomi et al. 2008:275; Little & Rubin 2002:12). The 

cause of missingness may be explained by systematic influences (Buhi et al. 

2008:85). This mechanism is the worst case of missing data, since no 

predictions can be made from the observed values in the dataset. The problem 

of MNAR values cannot be solved by imputation methods or case deletion 

(Garcίa-Laencina et al. 2010:266; Song & Shepperd 2007:55). Therefore 

popular mechanisms and frequently used for incomplete data are MAR and 

MCAR (Josse et al. 2012:93; Jamshidian & Jalal 2010:649). 

The MNAR mechanism can be expressed by the following conditional 

distribution (von Maltitz & van der Merwe 2012:78; Song & Shepperd 2007:55): 

 ( |     )     |       ( |     )                 
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The following figure 3.1 illustrates the three missingness mechanisms, adapted 

from Schafer and Graham (2002:152): 

 
Figure 3.1 Graphical display of the missingness mechanisms 

 

The variable   represents the causes for missing values excluding the causes 

of missing values in the dataset. 

3.3.1.4 Ignorable and non-ignorable non-responses 

The missingness mechanisms can be divided into two sub-categories (Garcίa-

Laencina et al. 2010:267): 

 Informative / non-ignorable 

 Non-informative / ignorable 

MAR and MCAR are classified as ignorable non-responses (Buhi et al. 2008:84; 

Schafer & Graham 2002:151; Ali & Siddiqui 2000:167) whereas MNAR is 

referred to as non-ignorable (Buhi et al. 2008:85; Song & Shepperd 2007:54; 

Schafer & Graham 2002:151). Ignorable non-responses enable the researcher 

to ignore the cause of missingness and therefore simplify the procedures for 

the analysis of missing data (Garcίa-Laencina et al. 2010:266–267; Buhi et al. 

2008:84). The distribution of non-responses is equivalent for all the classes of 

the values for non-informative missing values. In contrast, the informative non-

responses provide important information concerning the data (Garcίa-Laencina 

et al. 2010:266–267). 
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3.4 Handling of missing data 

Generally three classes can be distinguished when handling missing data (Buhi 

et al. 2008:85; Song & Shepperd 2007:52; Schafer & Graham 2002:155–161): 

 Deletion 

 Reweighting and Toleration techniques 

 Imputation 

A variety of non-responses occur, thus when choosing a technique to handle 

the missing data the following requirements should be met (Rubin 1987:11): 

 Standard complete-case methods may be used. 

 Valid inferences must be produced which yield estimates that regulate 

for observed differences between non-respondents and respondents. 

Also, standard errors must be generated that mirror the abridged 

sample size and standard errors of the regulated observed difference 

between non-respondents and respondents. 

 The technique must present the sensitivity of the inferences to a 

variety of probable models for non-responses. 

3.4.1 Deletion 

Deletion is the default solution for missing values in most software 

programmes. This outdated approach to the handling of missing data is sub-

divided into listwise deletion (LD) and pairwise deletion (PD) (Buhi et al. 

2008:85; Song & Shepperd 2007:52; Wayman 2003:3; Little & Rubin 2002:3; 

Schafer & Graham 2002:155). Deletion techniques are also referred to as 

ignoring techniques. The technique of case deletion is concerned with simply 

deleting cases with missing data entries (Song & Shepperd 2007:52). 

A great advantage in using deletion is the ease of execution, since complete-

case procedures can be applied immediately after the discarding of missing 

units (Buhi et al. 2008:85; Song & Shepperd 2007:52; Little & Rubin 2002:41; 
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Schafer & Graham 2002:156). According to Schafer and Graham (2002:156) 

however, it is a simplistic method because it performs inadequately for 

multivariate analyses. This is due to a number of observations that might be 

missing on each unit, which will result in a large fraction of the sample to be 

ignored (Schafer & Graham 2002:156; Schafer & Olsen 1998:546). 

A distorted representation of the data may occur if the deleted values vary 

immensely from the remaining observed values (Penn 2007:573; Wayman 

2003:2–3). Bias is to be expected when a large amount of observations are 

deleted (Penn 2007:576; Song & Shepperd 2007:52). Imprecise inference and 

bias is the result of neglecting units with missing values (Jamshidian & Jalal 

2010:649). Deletion will usually produce satisfactory results under the MCAR 

missingness mechanism (Song & Shepperd 2007:52; Little & Rubin 2002:41; 

Schafer & Graham 2002:155–157; King et al. 2001:51). Bias may occur in non-

MCAR situations, since the complete cases may not portray sufficient 

information on the entire population (Penn 2007:577; Little & Rubin 2002:41; 

Schafer & Graham 2002:157). In the presence of MAR and MNAR the observed 

values in general are less variable and higher than the values of the full 

population. This results in biases of the standard errors and the parameter 

estimates (Schafer & Graham 2002:157). 

3.4.1.1 Listwise deletion (LD) 

LD is also commonly referred to as case deletion and complete-case analysis 

(Buhi et al. 2008:85; Song & Shepperd 2007:52; Schafer & Graham 2002:155). 

The technique of LD is concerned with discarding each unit with at least one 

missing value per variable (Buhi et al. 2008:85–86; Schafer & Graham 

2002:155). 

Disadvantages of LD is the expected inflation of type II error and the loss of 

statistical power, since the deletion of cases leads to a smaller sample size 

resulting in insufficient analyses. Also, the exclusion of units from a survey 

causes bias, since the true population will not be represented in the data used 

for the analysis (Buhi et al. 2008:86). In the case where bias and lack of 

precision is small, the use of complete-case analysis will be acceptable. This will 
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be expected when the portion of missing data is small (Little & Rubin 2002:41–

42; King et al. 2001:51; Schafer 1999:7). 

3.4.1.2 Pairwise deletion (PD) 

Complete-case analysis is not useful for univariate analyses, since values for all 

observations of a unit will be discarded in the presence of missing values (Little 

& Rubin 2002:53–54). Available-case (AC) analysis enables the use of cases 

where the variable of interest is available. PD is an extension of AC analysis. 

(Buhi et al. 2008:86; Song & Shepperd 2007:52). Parameters are estimated by 

different sets of sample units (Schafer & Graham 2002:155). Each case is 

evaluated separately and only variables with missing values will be discarded, 

thus the sample size for each unit will differ (Song & Shepperd 2007:52). 

Consistent results will only be achieved if the variables are weakly correlated 

(Pigott 2001:365). Considering regression models, PD will outperform LD when 

variables are moderately correlated, whereas LD performs better than PD when 

variables are highly correlated (Pigott 2001:363). The greatest advantage of PD 

is the generally higher sample size per unit than would have been the case for 

LD, therefore the amount of missing values are restricted (Song & Shepperd 

2007:52). 

3.4.2 Reweighting and toleration techniques 

In the presence of non-MCAR missing data, the bias obtained from case 

deletion can be decreased by introducing the technique of reweighting (Little & 

Rubin 2002:53; Schafer & Graham 2002:157). After LD is completed the 

distributions of the remaining data entries are weighted in order to resemble 

distributions expected from a full sample. An advantage is that no models are 

required to determine the distribution of the population values, since weighting 

is a nonparametric technique (Schafer & Graham 2002:157). Reweighting is 

concerned with the problem of bias occurring and not with problems 

experienced with a fluctuating variance caused by case deletion. Therefore, this 

technique is most applicable in cases where the missing data is only a small 
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fraction of the sample size or when the sample size is large and the covariate 

information is restricted (Little & Rubin 2002:53). 

Toleration techniques do not predict missing values, but assign probabilities to 

each of the values before analysis is performed on the dataset. The dataset is 

therefore used with non-responses. The method of toleration is useful when 

trying to eliminate the occurrence of bias, but unfortunately most statistical 

techniques require a full dataset to produce interpretable results (Song & 

Shepperd 2007:52). 

3.4.3 Imputation 

Imputation is the procedure of completing datasets by filling in plausible values 

for non-responses (Zhang 2003:581; Little & Rubin 2002:59; Schafer & Graham 

2002:158). Imputing values will produce more reliable results than case 

deletion since no values will be forfeited (Schafer & Graham 2002:158). After 

imputation complete-case analyses may be performed on the now completed 

datasets (Schafer & Graham 2002:158; Raghunathan et al. 2001:85). 

The first occurrences of imputation were concerned with replacing the missing 

values in a dataset by the mean or mode of the non-missing observed 

variables. This approach, however easily executed, was inadequate. In order to 

provide sound results it is essential to incorporate a degree of randomness and 

uncertainty when calculating confidence intervals for parameters of interest as 

well as standard errors (Royston 2004:228). Imputation procedures must be 

applied correctly; each procedure consists of its own set of assumptions and 

must therefore be applied with great thought. The application of ad hoc 

methods may lead to biased and misleading results, as well as the 

misrepresentation of the distributions of the data (Schafer & Graham 2002:147, 

159; Pigott 2001:354). 

A great advantage of imputation procedures is that the information provided by 

the observed data may be useful in the prediction of the non-responses, which 

enables the researcher to maintain lower variance after imputation than after 

deletion (Schafer & Graham 2002:158). The procedure of imputation can be 



49 
 

viewed as draws or means from a predictive distribution of the non-responses, 

which implies that a predictive distribution on the observed data must be 

developed for the imputation. Imputation methods allow one value to be 

substituted for a missing value, referred to as single imputation (cf. 3.4.3.1), as 

well as multiple values to be substituted for each missing value, known as 

multiple imputation (cf. 3.4.3.2) (Little & Rubin 2002:59). 

3.4.3.1 Single imputation (SI) 

Easy and popular methods when dealing with missing data are concerned with 

making use of complete-case analysis once datasets are filled-in (Josse & 

Husson 2012:80; Rubin 2003b:3; Little & Rubin 2002:85; Pigott 2001:354; 

Rubin 1987:11). Unfortunately the efficacy and soundness of complete-case 

analysis for incomplete data is not certain (Zhang 2003:581). Even though SI is 

easily executed, provision for uncertainty is not made. The imputed values are 

considered known, causing bias and the underestimation of standard errors 

(Penn 2007:575; Rubin 2003b:3; Little & Rubin 2002:85; Schafer & Olsen 

1998:546; Rubin 1978:12–13). SI imputes a single plausible value for each 

missing observation in the dataset (Little & Rubin 2002:59; Pigott 2001:365). 

Replacing non-responses with a single value will lead to a decrease in the 

variance; consequently altering the distribution (Pigott 2001:365). Even if the 

results obtained from a single imputed dataset are accurate, it is almost certain 

that the amount of uncertainty from the imputer’s guesswork is not captured 

(Meng 1994:539). 

SI methods include: substitution, conditional and unconditional mean 

substitution, cold deck imputation, hot deck imputation or imputing from 

unconditional distributions and imputation from conditional distributions (von 

Maltitz & van der Merwe 2012:78; Little & Rubin 2002:60–62). 

Substitution 

Missing values are dealt with during the fieldwork stage of a survey. Units with 

missing values are simply replaced with units with complete responses which 

were not included in the sample. The dataset should however not be 
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considered as complete, since respondents and non-respondents may differ 

systematically. The substituted values must be considered as imputed values 

when attempting the analysis (Little & Rubin 2002:60). 

Mean/mode substitution 

When imputing missing values of data from a continuous distribution, the mean 

of the observed values will be used to replace the missing values. In the case 

of categorical data, the mode of the observed values will be used to replace the 

missing values (Ambler, Omar & Royston 2007:280). 

Mean substitution differs for continuous and categorical data; in the case of 

continuous data, missing data will be imputed with the mean of the observed 

values, whereas for categorical data the mean of the observed indicator 

variables will be used to impute the corresponding missing indicator variables. 

The variance is reduced (Ambler et al. 2007:280) and the relationship between 

variables is dampened with the use of simple mean substitution (Schafer & 

Olsen 1998:546), this is because of the same mean value that is used to 

impute all the missing data entries (Wayman 2003:3). 

Unconditional mean imputation 

This technique follows the simple approach of mean/mode imputation except 

when working with categorical data. Unconditional mean imputation for 

categorical data is concerned with making use of the mean of the observed 

indicator variables to replace the corresponding missing indicator variables. The 

variance is reduced with the use of mean imputation (Ambler et al. 2007:280). 

Conditional mean imputation 

Conditional mean substitution is an improvement of unconditional mean 

substitution, since conditional means given the observed values are imputed 

(Little & Rubin 2002:62). Conditional mean imputation is an extension of 

regression imputation (Song & Shepperd 2007:52; Little & Rubin 2002:60). 

Predicted values obtained from a regression model based on the observed 

values in a dataset, replaces the missing values. Disregarding underestimated 
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variance, this method has been noted to perform better than MI (Song & 

Shepperd 2007:52). 

Cold deck imputation 

This process substitutes missing values with a constant value from a separate 

dataset than the one in question, such as a previous recorded version of the 

same survey. Thus after cold-decking the dataset is treated as complete, 

consequently complete-case techniques may be applied (Little & Rubin 

2002:60–61). 

Hot deck imputation 

According to Little and Rubin (2002:60) this form of imputation is common in 

survey analyses. The method is concerned with replacing the occurring missing 

value of a unit with a value drawn from similar responding units in the survey 

(Buhi et al. 2008:86; Rubin 2002:60). Therefore missing values are replaced 

with values sampled from observed data with replacement (Ambler et al. 

2007:280). A downfall of this technique is the assumption that respondents and 

nonrespondents do not differ (Buhi et al. 2008:86). 

3.4.3.2 Multiple Imputation (MI) 

Multiple imputation (MI) imputes several plausible values for a single missing 

data entry. Thus, after the completion of imputation the researcher has several 

complete datasets to analyse (Little & Rubin 2002:85; Rubin 1987:2, 15). The 

number of imputations is not fixed, but will be most efficient for a modest value 

between two and ten (Rubin 1987:2, 15). The difference between the different 

imputations represents the variance obtained from predicting missing values 

from the available observed values (Josse & Husson 2012:80). In combining 

the estimates from the datasets, the uncertainty is then formed from the 

sample variation along with the variation in the imputed values themselves (von 

Maltitz & van der Merwe 2012:78; Little & Rubin 2002:85). When the imputed 

values are derived from different models, an extra source of uncertainty 

concerning the correct model is included through the variation in inferences 

associated with the chosen models (Little & Rubin 2002:85–86). Not only is MI 
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a flexible approach when dealing with missing data, but also convenient (Lu, 

Jiang & Tsiatis 2010:1202). This procedure is compared to flexible alternative 

likelihood methods (Schafer 2003:22–24). 

Advantages that SI and MI share are the ability to make use of complete-case 

methods after imputation as well as including the knowledge of the data 

collector (imputers’ guesswork). The second advantage is greater when making 

use of MI, since the uncertainty incorporated for the imputer’s guesswork is of 

two types: sampling variability given that the explanations for missing values 

are known and inflation in the variance due to the uncertainty about the 

reasons for missing values (Rubin 1978:15–16). Datasets obtained by SI 

techniques do not differentiate between observed and imputed values, which 

results in underestimated variances. MI overcomes this problem by generating 

distributions for the imputed and the observed values, respectively. Thus, the 

standard errors of the obtained estimates will incorporate the uncertainty 

caused by imputation (Ardington, Lam, Leibbrand & Welch 2006:826). MI 

enables the researcher to maintain the characteristics of the original data, such 

as variances and means. Imputed values should not be considered as ‘guesses’, 

but values that are allocated preserving the population variance as well as the 

relationships between variables (Wayman 2003:4). According to White, Wood 

and Royston (2007:195) another great advantage is the flexibility allowed by 

the method, offering analysis possibilities in the presence of missing values of 

all types of variables. MI has proven itself to be a robust procedure which even 

for small samples or large numbers of missing values can still provide 

satisfactory results (Wayman 2003:4). 

It is important to note the three advantages of MI over SI (Rubin 1978:16): 

 MI increases the accuracy of estimation, since imputations are 

randomly drawn when attempting to denote the distribution of the 

data. 
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 When combining the multiple datasets obtained from MI, valid 

inferences are attained from the repeated random draws which 

incorporate the additional variance caused by the non-responses in the 

data. 

 Since MI enables imputations that are repeatedly randomly drawn 

under a number of models, the sensitivity of inferences to a variety of 

models for missing values can be studied by simply repeatedly using 

complete-case methods. 

According to Rubin (1978:18), three disadvantages accompany MI: more work 

to impute multiple datasets, more storage space required for larger datasets 

and more analyses to be done. 

Fortunately, both computer hardware and statistical software are improving at 

a rapid pace, providing sufficient alternatives to ease execution of such 

procedures (Little & Rubin 2002:86). Therefore, these disadvantages are a 

modest price to pay for sound inference. According to Wayman (2003:4), MI 

maintains a balance between simplicity and satisfying results.  

MI was developed in the context of survey analyses being greatly influenced by 

non-responses (Reiter & Raghunathan 2007:1462; Rubin 1996:473). Even with 

30 years’ worth of research done in the handling of missing data, MI continues 

to be a growing topic with remaining unanswered questions (Cabras, 

Castellanos & Quirós 2011:429; Abayomi et al. 2008:273; Kenward & Carpenter 

2007:199; Reiter & Raghunathan 2007:1462; Song & Shepperd 2007:51; King 

et al. 2001:50; Rubin 1996:473). The procedure of MI has evolved beyond non-

response problems in large-sample surveys and now contributes to various 

settings with missing data (Reiter & Raghunathan 2007:1462; Little & Rubin 

2002:85; Rubin 1996:473). 

According to Rubin (1978:20), the need for MI has increased because of 

several factors: surveys experiencing more non-responses; the existing 

standard methods for missing data provide unsatisfactory results; and the 

handling of missing data is a growing field in statistical research. 
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MI is appropriate for the handling of all definitions of non-responses (cf. 3.3) 

(Rubin 1987:2). It is expedient to make use of MI, since it is a flexible method 

when handling missing values (Lu et al. 2010:1202). 

The uncertainties which accompany MI complement each other in such a sense 

that a balance is reached producing approximately satisfactory statistical 

inference (Rubin 2003a:620; Zhang 2003:581). Three levels of uncertainty are 

taken into consideration whilst determining the correct MI process (Rubin 

2003a:620; Zhang 2003:581): 

 Firstly, uncertainty arises in choosing the distribution of the missingness 

mechanism; 

 Secondly, uncertainty in the imputation model and the parameter 

values used to create the imputations; and 

 Thirdly, residual uncertainty occurs when drawing imputed values. 

MI accommodates the broadest definition of non-responses in surveys (Rubin 

1987:2). Even though MI may be used in non-survey problems, it is especially 

relevant for non-responses in survey situations: 

 Large amounts of data are collected in surveys, which results in a 

number of people tending to the data (Rubin 1996:473; Rubin 1987:3). 

MI is a popular approach when data is expected to be handled by a 

number of researchers with varying statistical skills (Raghunathan et al. 

2001:85; Rubin 1996:473). Imprecise substitutions of missing values 

may occur in order to keep the database updated (Rubin 1987:3). 

 As in all analyses the results obtained from surveys need to be accurate 

with specific estimators. It is found that complete-case methods will not 

provide efficient results, since the handling of missing values is done 

incorrectly. Also, procedures that are adapted for the presence of 

missing values might not be easily derived (Rubin 1987:3). 
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 Missing values will not commonly occur at random, as is the case for 

some experimental examples. An equitable assumption is that non-

respondents differ from respondents, thus it is important to investigate 

the differences between the non-respondents and respondents and not 

just for the explanation behind non-responses (Rubin 1987:3–4). 

 SI procedures are easily transformed and modified to enable MI (Rubin 

1987:4). 

MI relies on the assumption that the missingness mechanisms are ignorable (Ali 

& Siddiqui 2000:166). Inferences obtained from MI for MCAR and MAR are not 

biased (King et al. 2001:51). 

3.5 Rubin’s rules 

In combining the multiply imputed datasets, Rubin’s rules (1987:75–77) are 

followed. 

Firstly, a quantity of interest (e.g. mean, variance, regression coefficient, etc.) 

is calculated from the data in question and referred to as  . This will usually be 

in the form of a row vector, containing the quantity of interest for each variable 

in the corresponding column. In the case of complete data, inferences for   will 

be based on the following (Rubin 1987:75; Rubin & Schenker 1986:367): 

(   ̂)         

where  ̂ estimates   and   represents the variance of     ̂ . 

Now, the first step in combining the multiple datasets is to calculate the overall 

average of the quantity of interest. Therefore the average of the estimates 

(Rubin 1987:76), which is calculated using: 

 ̅  ∑
 ̂ 

 

 

   

  

Where   is the total number of imputations and   is the current imputation. 
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In order to incorporate the uncertainty in  ̅, two statistics are calculated: 

 ̅  ∑
 ̂ 

 

 

   

  

which calculates the average of the within-imputation variances. This can also 

be seen as the within-imputation variance (Schafer & Graham 2002:165). 

The between-imputation variance is calculated by (Rubin & Schenker 

1986:367): 

   ∑
( ̂   ̅ )

 

   

 

   

  

The total variance of     ̅   is calculated by: 

    ̅  (  
 

 
)    

Therefore the overall standard error will be equal to the square-root of   

(Schafer & Graham 2002:166). If no data are missing from the data the 

between-imputation variance,   , will be equal to zero, resulting in the total 

variance,   , being equal to  ̅  (Schafer 1999:5; Schafer & Olsen 1998:557). 

Rubin (1987:77) recommends the use of a Student’s  -distribution with   

degrees of freedom in order to determine confidence intervals and perform 

tests. When the degrees of freedom are large the  -distribution is 

approximately Normal. Both the between variance and average variance 

influence the degrees of freedom. When the between-imputation variance is 

larger than the average variance, the degrees of freedom will be near the 

value,    , where   is the number of imputations. When the average 

variance is larger than the between-imputation variance, very large degrees of 

freedom will be obtained, tending to infinity (Schafer & Olsen 1998:557). In the 

latter case an increase in the number of chosen imputations would not make a 

significant difference (Schafer & Graham 2002:166). The contrary is also true; a 

small  -measure indicates that an increase in the number of imputations will 

result in more efficient and accurate estimates with narrower confidence 

intervals (Schafer & Olsen 1998:557). 
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The degrees of freedom can be calculated by (Schafer & Graham 2002:166): 

            
     

If the missing values do not represent any information regarding the quantity 

of interest,  , the imputed-data estimates will be equal and the total variance, 

 , will reduce to the average of the variances,  ̅. Therefore the measure,   , 

calculates the relative increase in the variance that occurs due to the missing 

values (Schafer 1999:5), also explained by the amount of information given by 

the missing values relative to the information given by the observed values 

(Schafer & Olsen:1998:557). This measure is calculated by: 

   
(  

 
 )  

 ̅ 

 

The fraction of information about   missing due to non-responses (rate of 

missing information): 

   
    

           
 

This statistic allocates the amount of information that is missing because of the 

non-responses, since not all of the information will be contained in the missing 

values, but also in the observed values (Rubin 1987:77). Also, the measure    

enables the researcher to understand how much more precise the estimate 

would have been in the presence of completely observed data (Schafer & Olsen 

1998:548). Both    and    will enable the researcher to determine the effect of 

the missing data on the quantity of interest,   (Schafer & Olsen 1998:558). 

The efficiency of an estimate obtained from multiple imputations in comparison 

to one obtained from an infinite number of imputations can be determined by: 

(  
 

 
)
 

 

 
 (Rubin 1988:83) or 

(  
 

 
)
  

 (Schafer 1999:7; Schafer & Olsen 1998:548), 

The efficiency measure presented by Rubin (1988:83) is measured in units of 

standard errors, whereas Schafer (1999:7) and Schafer and Graham 
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(1998:548) measures in units of the variances. Rubin’s efficiency measure is 

used in this research. 

The inferences obtained from Rubin’s rules are referred to as repeated-

imputation inferences (Rubin 1987:75). 

3.6 Methods of handling missing values in MCA 

Various methods for handling missing values in MCA have been introduced and 

researched. In the review of Van der Heijden and Escofier (2003) the following 

methods are discussed and compared: missing passive, missing passive 

modified margin, missing single, missing multiple, missing insertion, missing 

fuzzy average and missing fuzzy subgroup. A popular method to use is the 

missing single method. This method introduces an extra category for all missing 

values before performing MCA on the new dataset. However convenient to use, 

in theory this method is appropriate when the missingness mechanism is 

unknown or particularly MNAR, since it assumes that missing values are related 

and have something in common (Van der Heijden & Escofier 2003:160, 166). 

The missing single method treats all missing values with regard to the same 

distribution of missingness, which is not suitable for values that may be missing 

independently of the other missing values in the dataset. Therefore missing 

single is not advised for MAR and MCAR values (Van der Heijden & Escofier 

2003:167–168). The missing single and missing multiple methods are 

appropriate for data with non-random missing values (MNAR), since these 

methods attempt to obtain as much information from the missing values as 

possible. As opposed to these methods the missing passive methods, missing 

insertion and missing fuzzy methods do not make use of the missing values in 

order to obtain information (Van der Heijden & Escofier 2003:163). 

The missing insertion method inserts two possibilities into the existing 

categories of the dataset; the most consistent responses or either the least 

consistent responses are inserted (Van der Heijden & Escofier 2003:161). After 

the insertion, a complete indicator matrix is obtained. It was found that this 
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method only provides adequate results for specific applications and is therefore 

not preferred for MCA (Van der Heijden & Escofier 2003:169). 

The missing passive modified margin method developed by Escofier performs 

well in the presence of missing values in MCA (Josse et al. 2012:93; Van der 

Heijden & Escofier 2003:159). This method does not use row margins that are 

equal to the number of variables, but rather a constant row margin of 
 

 
. This is 

done in order to attempt to satisfy some of the MCA properties (Van der 

Heijden & Escofier 2003:159). The missing passive and missing passive 

modified methods produce the most similar results between the various 

methods (Van der Heijden & Escofier 2003:164). 

According to Van der Heijden and Escofier (2003:169) the missing multiple and 

missing insertion methods are never advisable; outliers occur with the missing 

multiple method and the missing insertion method is only applicable in certain 

circumstances. When choosing an appropriate technique to handle the missing 

values, the MCA properties most important for the analysis need to be 

considered. 

3.7 Conclusion 

This concludes the literature review of the occurrence of missing data and its 

handling. The next chapter will present literature on the IMCA and RIMCA 

algorithms used in this research project. 



Chapter 4  

IMCA and RIMCA 

“Algorithm – …a sequence of computational steps that transform the input into 

the output.”  

(Cormen, Leiserson, Rivest & Stein 2001:5) 

4.1 Introduction 

This chapter consists of a literature review on the procedures followed by Josse 

et al. (2012) for the implementation of an iterative multiple correspondence 

analysis algorithm (IMCA) as well as a regularised iterative multiple 

correspondence analysis (RIMCA) algorithm in SI. 

4.2 Background 

The IMCA and RIMCA algorithms consist of three steps: 

The first step is concerned with the transformation of the data matrix into an 

indicator matrix, followed by the allocation of initial values to missing values in 

the indicator matrix. Josse et al. (2012:97) make use of a mean imputation for 

continuous variables referred to as the missing fuzzy average method (cf. 3.6) 

in which missing values are substituted by the proportion observed in each 

category (Van der Heijden & Escofier 2003:162). In the case of this single 

imputation method the allocated initial values do not contribute to the total 

inertia and consequently do not have an effect on the outcome of analyses. 

Josse et al. (2012:100) advise that the effect of different initial values should 

be explored. The only constraint when allocating initial values is the barycentric 

relations of the row margins per variable that should be equal to one. In CA 

barycentric relations are explained as the column points, also referred to as the 

principal coordinates, being the weighted averages of the row points, which are 

also referred to as the standard coordinates (Blasius & Greenacre 2006:32). 

Since the first step of the algorithm imputes values through the missing fuzzy 
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average method the relationships between individuals and variables are not 

taken into account. 

The second step reconstructs the data and imputes plausible values to the 

missing values, now fuzzy values in the indicator matrix. Again fuzzy values are 

imputed to the missing data entries. During this step the missing values are 

imputed with values that are produced based on the relationships between 

variables and the comparisons between individuals in the dataset. Therefore 

these imputed values are based on the MCA axes and components, providing 

plausible values with respect to the observed data. 

The third step involves repeating the second step until a pre-determined 

threshold is reached in the difference between the fuzzy values imputed from 

one repetition to the next, and consequently the algorithm converges. 

The imputed dataset will consist of observed categorical data and imputed 

continuous data. The imputed values are perceived as a degree of membership 

to a specific category. Hence, the category with the largest proportion will be 

selected as the chosen category in the original dataset. 

The IMCA algorithm is based on PCA, which is a continuous multivariate data 

technique; MCA is achieved by performing PCA on a particular triplet of 

variables. The discussion of the weighted PCA (cf. 4.2) and application of PCA 

on a triplet (cf. 4.3) will follow. 

4.3 MCA as weighted PCA  

There are two options when weighting any data matrix; weights may be 

allocated to the variables, as is the case when extracting principal components 

from the correlation matrix, or weights may be allocated to the observations. 

Weighting occurs to unify the measurements before performing analysis 

techniques, which may lead to interpretable and accurate results (Jackson 

1991:75). 

In order to illustrate MCA as a weighted PCA, a dataset with   individuals and   

categorical variables            with    categories, is considered. 
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An indicator matrix of dummy variables, commonly used in MCA, is used to 

depict the dataset. This indicator matrix is denoted by   of size     where, 

  ∑   
 
   . 

MCA is presented as the PCA of a triplet,          as follows (Josse et al. 

2012:93): 

(    
   

 

  
   

 

 
  )  

The first term of the triplet,  , represents the data, the second term,  , 

represents the metric and the third term,  , represents the row masses (Josse, 

Chavent, Liquet & Husson 2011:4/17). 

Greenacre (2010:79–80) explains the meaning of the information given in the 

triplet of a dataset. When referring to the PCA of a triplet, the first entry will 

refer to the objects/points in the multidimensional space, the second entry 

represents the weights and the third entry refers to the distances between 

them. In the case of CA or extended to MCA, the points, weights and distances 

are referred to as profiles, masses and chi-square distances, respectively. 

The diagonal matrix of the column margins of the indicator matrix,  , is given 

by        (           ). The matrix   
 

  
   is used to compute the 

distances between the rows. The diagonal matrix   
 

 
   corresponds to the 

row masses, where    is the identity matrix of size   (Josse et al. 2012:94). 

4.4 PCA of a triplet         

Suppose constraints are imposed on the rows and columns of given matrix; this 

will result in a non-symmetric distance matrix. In the case of MCA standard 

SVD will not suffice, therefore GSVD (cf. 2.3.3) should be applied. The 

following procedure is followed in order to perform PCA on the given triplet: 

         

where  

            . 
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The matrix   with size    , represents the eigenvectors of      , in 

descending order of the   largest eigenvalues. The matrix   with size    , 

represents the eigenvectors of      , also in descending order of the   largest 

eigenvalues. The rank of matrix   is   . The singular values associated with the 

eigenvectors of       and       are elements of the diagonal matrix,  , 

which is in weakly descending order (Josse et al. 2012:94). 

The rank of   is determined by      , which is at most the number of non-

zero eigenvalues obtained from MCA (Josse et al. 2012:94). 

The principal components are given by     , which represents the scores or 

the individual coordinates. This indicates that the columns of   correspond to 

the standardised principal components and the columns of   correspond to the 

axes, which automatically refers to the loadings. The first columns of the 

matrices   and   are equal to one and the corresponding first singular value is 

also equal to one, this agrees with the requirements of MCA (Josse et al. 

2012:94). 

4.5 IMCA in SI 

The iterative MCA (IMCA) method uses the fact that missing values mask 

underlying values and therefore considers missing values from both the MCAR 

and MAR missingness mechanisms. The objective of the IMCA algorithm is to 

obtain the MCA axes and components in the presence of missing values (Josse 

et al. 2012:96). 

Josse et al. (2012:96–97) introduces a weight matrix   which enables the 

minimisation of the reconstruction error over all non-missing values in a 

dataset, while ignoring the missing values. Missing values are indicated by a 

zero and non-missing values with a one in the proposed weight matrix,  . 

The least squares criterion is expressed as: 

                
   

with the Hadamard product, indicated by  . 
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In the presence of missing data this given criterion by Josse et al. (2012:97) 

can only be solved by iterative algorithms. The non-responses are set at initial 

values. When performing the analysis, the missing values are updated by 

repeating the procedure on the new matrix until the total change in the matrix 

falls below an empirically determined threshold. 

As already explained (cf. 4.3), MCA is presented as a weighted PCA. Thus, the 

procedures for dealing with missing values in PCA are extended to MCA. The 

PCA algorithm is used, but adapted for the metric,  , since the column margins 

are now dependent on the data table. This is to be expected since after the 

imputation of data, the column margins will change (Josse et al. 2012:97). 

The three steps of the iterative MCA algorithm proposed by Josse et al. 

(2012:97–98) are as follows: 

Take into consideration that an individual,  , has a missing value for an item,  . 

This will lead to a row of missing values in the indicator matrix   for the 

variable    

STEP 1 

The first step is the initialisation step (   ) in which the data matrix is 

transformed into an indicator matrix     of dummy variables consisting of zeros 

and ones. The missing values are substituted by proportioned initial values, 

using the missing fuzzy average method (cf. 3.6). The proportion of the 

category is determined by, 
  

 
. Following the procedure of Josse et al. 

(2012:97), real numbers may occur as entries of the indicator matrix satisfying 

the barycentric relations (Josse et al. 2012:99). This means that the sum of 

each category will be one (cf. 4.2). 

After the substitution of the missing values, the margins of the now completed 

indicator matrix must be calculated. The number of variables per row will be 

equal to the margin of the row in particular. This implies that the     column 

will have a margin equal to   
 , which is the sum of the column entries of 

column   (Josse et al. 2012:97). 
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The final part of STEP 1 is to calculate the diagonal matrix of the sum of the 

column margins given by,   
          

          . 

STEP 2 

The second step is three-fold; firstly, MCA is performed on the now completed 

data matrix,     ; this can also be seen as PCA performed on the weighted 

triplet (Josse et al. 2012:98): 

(     (  
   )

  
 
 

  
  

    
 

 
  )  

The estimates  ̂  and  ̂  are obtained from the singular value decomposition of 

(     (  
   )

  
     

 )  √
  

   

  
. 

Secondly, a pre-determined number of dimensions, indicated by  , are chosen 

to be retained and will be used in the reconstruction formulae (Josse et al. 

2011:5/17): 

  ̂      
  ( ̂ ̂ )

 
  

Then the associated values in the indicator matrix must be calculated using the 

margins of step     in order to obtain the imputed values: 

 ̂  
 

 
 ̂   

     

Therefore, the imputed values from STEP 1 will be replaced using the following 

update (Josse et al. 2011:5/17): 

              ̂   

In the third and final phase of STEP 2 the column margins,   
 , of the imputed 

data matrix,   , are calculated, resulting in the updated diagonal matrix of 

column margins,   
  (Josse et al. 2012:98). 

STEP 3 

The three phases of STEP 2 are repeated until the change in the imputed 

indicator matrix falls below a pre-determined threshold,  , fixed at     . The 

change is measured by ∑ ( ̂  
     ̂  

 )
 
     (Josse et al. 2012:98). The final 
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dataset is obtained by replacing the fuzzy imputed values with category values. 

This is done per variable for each observation; the category with the largest 

fuzzy value will be allocated the chosen category, therefore allocating the most 

plausible category values with respect to a degree of membership (Josse et al. 

2012:99). 

Discussion 

One disadvantage of this method is that the missing values are imputed in such 

a way that they do not contribute to the total inertia (variance) of the data. 

Therefore even with imputation the missing values are essentially ‘skipped’. 

This method is also referred to as the ‘reconstruction of order 0’ which is used 

in CA (Josse et al. 2012:98). 

Overfitting is the main problem experienced with IMCA (Josse et al. 2012:100). 

This happens when the value of the least squares criterion concerning the 

weight matrix of the iterative MCA is low. A low criterion value could represent 

good fit for the observed values, but not for the predicted values, which could 

occur because of poor estimation of the axes and components. In the MCA 

context overfitting results in points which represent individuals and categories 

located far from each other. The structure of the dataset, as well as the 

number of missing values and dimensions kept for the reconstruction may 

result in overfitting (Josse et al. 2012:101). 

Methods to reduce overfitting include the reduction of the number of 

dimensions for the imputation step, which however must be done selectively to 

secure the amount of information obtained from the dimensions. Another 

approach is to use shrinkage methods. Similar to the ridge estimator in 

regression, a regularised iterative MCA algorithm is introduced to overcome the 

high variance obtained from the prediction of missing values (Josse et al. 

2012:101). 

4.5.1 RIMCA in SI 

The regularised version of the IMCA algorithm discussed in the previous section 

(cf. 4.5) stabilises the predictions obtained from the IMCA algorithm that 
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according to Josse et al. (2012:101–102) obtained high variance for the 

estimation of the axes and components as well as the prediction of the non-

responses. 

The three steps of the regularised IMCA algorithm proposed by Josse et al. 

(2012:102) are as follows: 

Step 1 

In the context of SI, the IMCA and RIMCA algorithms follow the same 

procedure for the first step (cf. 4.5). 

Step 2 

During the second step of the RIMCA algorithm a regularisation of the 

reconstruction formulae is introduced which stabilises the variance. A 

‘shrinkage’ term is added to the IMCA reconstruction formulae. This ‘shrunk’-

variance reconstruction step is based on an algorithm to perform PCA on an 

incomplete dataset proposed by Josse in 2009 (Josse et al. 2012:102). 

The reconstruction formulae (cf. 4.5) can be rewritten with    representing the 

eigenvalue of rank  , which is also equal to the variance of each component   , 

as follows (Josse et al. 2011:9/17): 

 ̂  
    ∑

 ̂  
 

  ̂ 
  

(√  ) ̂  
  

 

   

  

Subsequently this step is replaced by: 

 ̂  
    ∑

 ̂  
 

  ̂ 
  

(√   
 ̂ 

√  

)  ̂  
  

 

   

  

where    is estimated by the mean of the last eigenvalues: 

 ̂  
 

     
∑   

   
     . 

The indicator matrix is updated following the same procedure as for the IMCA 

algorithm, firstly allocating the associated values and then replacing the fuzzy 

missing average method imputed values with the values obtained from the 

reconstruction steps (cf. 4.5). 
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Step 3 

The third step remains unchanged from the IMCA algorithm. 

Discussion 

The motivation of the RIMCA algorithm is to remove the error (noise) to 

consequently increase stability in prediction. The assumption is made that the 

last dimensions only contain noise, whereas both information and noise are 

contained in the first dimensions. This explains why the noise parameter is 

estimated by the mean of the last eigenvalues (or variances of the last principal 

components). In the extreme case where no overfitting occurs in the presence 

of missing values, the RIMCA and the IMCA algorithms will achieve the same 

results. When the noise has a great effect on the analysis, the regularisation 

will shrink the coordinates of the individuals towards the average (Josse et al. 

2012:103). 

The success of this algorithm derives in the fact that all eigenvalues are shrunk 

and the last components are omitted, thus the RIMCA algorithm allows for a 

‘double shrinkage’ (Josse et al. 2012:103). 

4.6 Conclusion 

This concludes the literature and theory on the procedures followed for the 

IMCA and RIMCA algorithms in SI. The methodology of this research and the 

adaptations of the algorithms in SI for the implementation of the RIMCA 

algorithm in MI will be presented in the following chapter. 



Chapter 5  

Methodology 

“The more abstract the truth you want to teach, the more you will have to win 

over the senses in its favor” – Nietzsche 

(Le Roux & Rouanet 2004:1) 

5.1 Introduction 

This chapter presents of the research design and methodology followed for the 

study objectives. This will be followed by the research population, as well as 

the specification of the simulation protocol and the description of the real data. 

The difference between the algorithms in SI and MI will be discussed with 

regard to the uncertainties required for MI, given by Rubin (2003a:620 & cf. 

1.2). 

5.2 Research design 

A quantitative research approach is followed for this empirical research project 

(von Maltitz 2010:15/15). Both secondary (existing) data and simulated 

(created) data are used in order to investigate the performance of the 

algorithms in a real data scenario as well as the strength of the imputations 

obtained from the algorithms in comparison to the complete simulated data. 

The researcher has low control over the existing data, but high control over the 

simulated data, since the data is created by the researcher using a pre-

determined protocol. The existing and simulated data are numerical categorical 

datasets. The real dataset consists of observed data and missing data entries, 

whereas the simulated dataset is complete before the missing entries are 

allocated through specified random and non-random patterns. 
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5.3 Objectives 

The table 5.1 demonstrates the various procedures that are used in each of the 

objectives. Since the objectives are based on comparisons, simultaneous 

columns are selected per objective. 

Table 5.1 Procedures used for the objectives 

Objective RIMCA SI MI 

1    

2    

 

5.3.1 Objective one: To establish whether RIMCA in MI 

outperforms RIMCA in SI 

This objective is attained by applying the RIMCA algorithm as a SI technique to 

the real and simulated datasets with observed data and non-responses, as well 

as applying the RIMCA algorithm as a MI technique to the same datasets. The 

means and confidence intervals obtained from both RIMCA procedures are 

compared in order to determine whether RIMCA performs better in SI or MI. 

Rubin’s rules (cf. 3.5) will be used for the calculation of the descriptive 

statistics obtained by MI, the confidence intervals for the means of the singly 

imputed datasets will be determined by use of the Student’s  -distribution (Rice 

1995:182): 

 ̅   

  √ 
      

95% Confidence intervals (            and            ) will be obtained and 

used in the analysis. 

5.3.2 Objective two: To investigate the accuracy of the 

predictions made by RIMCA in MI when applied to a 

simulated dataset 

The performance of the RIMCA algorithm in MI is determined by comparing the 

original completed simulated datasets, with low and high correlation structure 
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respectively, with the imputed datasets. This is done through an apparent error 

rate: 

           ∑∑
    ̂   

  

 

   

 

   

 

The error rate will enable the researcher to evaluate the performance of the 

predictions made by the RIMCA algorithm for each of the       dimensions, 

where   is the number of individuals and   the total number of variables and   is 

an indicator matrix of the original data, whereas  ̂ is the imputed corresponding 

indicator matrix. An error rate is calculated for each of the possible 

  dimensions in each of the simulated datasets. These simulated datasets 

consist of different missingness mechanisms, percentages of missing values 

and random or non-random patterns (cf. 5.4.1.1). Therefore the amount of 

apparent error rates will be determined by the number of generated datasets 

as well as the possible dimensions available for the datasets in question. The 

apparent error rates of RIMCA in SI will also be calculated, in order to 

determine the difference in accuracy of both procedures. 

5.4 Study population 

Simulated datasets and an existing dataset are used. Table 5.2 illustrates the 

data used for each objective. 

Table 5.2 Data allocation to objectives 

Objective Simulated data Real data 

1   

2   

5.4.1 Simulated data 

The simulated dataset represents the responses of 100 individuals to ten 

questions (variables) with three possible categories per variable. Missing values 

are inserted into the simulated dataset by following random and non-random 

patterns, as well as incorporating MCAR and MAR missingness mechanisms. 

The protocol used for the simulation will be discussed in the following section. 
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5.4.1.1 Simulation protocol 

The protocol followed by Josse et al. (2012:107) is used for the simulation of 

the data. 

The simulated datasets consist of 100 individuals and ten variables which are 

drawn from a multivariate Normal distribution. The correlations for the 

covariance matrices are fixed at 0.4 for the low structure and 0.8 for the strong 

structure. A two-block diagonal covariance matrix is simulated; one block of 

size 6 x 6 and the remaining block of size 4 x 4. The same level of correlation is 

used for both blocks of the diagonal covariance matrix. The ten variables are 

each distributed in three equal-count categories. 

Two missingness mechanisms are taken into account; MCAR and MAR, inserted 

with random and non-random patterns. 

The MCAR case includes 10% and 30% missing values at random over all the 

variables or following a specific non-random pattern. The non-random pattern 

inserts missing values for the first three variables of the first 60 individuals and 

missing values are allocated for the ninth and tenth variables of the last 60 

individuals. Since these proposed non-random patterns for missing values are 

independent of any variables in the data, the MCAR mechanism is well 

represented. 

The MAR case includes 8% and 16% missing values, again either at random, 

excluding variable one and seven, or by inserting a non-random pattern. The 

non-random pattern consists of missing values in the second to sixth variables 

when the first variable allocates the first category and for the eighth to tenth 

variables when the seventh variable allocates the last category. 

Considering the construction of the simulated datasets, the number of 

underlying dimensions will be four. This is achieved since a simulated dataset 

consists of two independent blocks of variables, each containing three possible 

categories per variable. This results in two underlying dimensions for each 

block. Josse et al. (2012:107) states that the use of a cross-validation algorithm 

also suggested four underlying dimensions. 
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Since the researcher aims to evaluate the performance of RIMCA in MI, the 

number of dimensions will not be fixed for the purpose of this research. Not 

fixing the number of dimensions will increase the uncertainty in the model, 

which will incorporate one of the uncertainties required by MI. This will be 

discussed in more detail in the following section (cf. 5.5). 

Table 5.3 provides a summary of the given protocol information. 

Table 5.3 Summary of simulation protocol 

 MCAR MAR 

Correlation Level 
Low structure: 0.4 
High structure: 0.8 

Low structure: 0.4 
High structure: 0.8 

Percentage of 
missing values 

10% and 30% 8% and 16% 

Random pattern Random Random 

Non-random 
pattern 

Variables 1-3 for 
individuals 1 to 40 

 
Variables 1-3, 9 and 10 
for individuals 41 to 100 

Variables 2-6 when variable 
1 allocated the first category 

 
Variables 8-10 when variable 
7 allocated the third category 

 

Therefore eight different sets of data per missingness mechanism (MCAR and 

MAR) are simulated. These eight datasets consist of two covariance matrices of 

low and high correlation structure, allowing for two pre-determined 

percentages of missing values for each level of correlation. The percentages of 

missing values are either inserted at random or by following a non-random 

pattern. This results in eight simulated datasets per missingness mechanism. 

Therefore a total of 16 simulated datasets. 

5.4.2 Real data 

The real dataset originated from a user satisfaction survey of craft operators on 

the Canal des Deux Mers, in the South of France. The survey was performed by 

Voes Navigables de France, a public corporation responsible for the 

development of the largest network of navigable waterways in Europe. 

The questionnaire consists of the responses of 1232 individuals to 14 questions 

with two or three possible categories, with a total of 35 categories. 

Approximately 9% (9.0677%) of the values in the dataset are missing and non-
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responses occur in 42.5% of the respondents. The 14 questions (variables) of 

the Canal des Deux Mers survey are presented in Appendix I. 

5.5 From SI to MI 

The procedures followed for the IMCA and RIMCA algorithms in SI were 

discussed in the preceding chapter (cf. 4.5 & 4.5.1). The adjustments made to 

satisfy the measures of uncertainty of MI will now be discussed. 

Uncertainty in the distribution of the missingness mechanism 

As was discussed in the first chapter of this dissertation (cf. 1.2), the RIMCA 

algorithm is proposed for MAR and MCAR values, the missing values are 

considered as ignorable (cf. 3.3.1.4). Thus the ignorable non-responses allow 

the researcher to ignore the distribution of missingness (Garcίa-Laencina, 

Figueiras-Vidal & Sancho-Gómez 2010:266–267; Buhi et al. 2008:84). 

Therefore the distribution of missingness is not accounted for (Rubin 1978:21). 

Uncertainty in the parameter values used for the imputations 

This uncertainty is concerned with the uncertainty of the model as well as the 

uncertainty in the parameters used for the imputations. This is achieved by 

three changes from SI to MI. 

 In the case of the SI procedures the initial values are allocated 

proportionally with regard to the observed number of categories in the 

dataset, 
  

 
 (cf. 4.5). Therefore, additional uncertainty in the model will 

be incorporated by allowing for random starting points. Therefore the 

substitution of the missing values with initial values in the indicator 

matrix is not done by making use of the missing fuzzy average method 

as was the case for SI (STEP 1 of the SI algorithms (cf. 4.5)); instead 

randomly generated Uniform(0,1) initial values are allocated for the 

category value of a particular variable, placing a constraint over the 

category values per variable to add up to one, in order to satisfy the 

barycentric relations required for MCA (cf. 4.2 & 4.5). 
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 The number of dimensions to retain in the reconstruction algorithm a 

priori will not be fixed, in contrast to the procedure by Josse et al. 

(2012:100). This decision is based on the convergence of the different 

dimensions: it is found that on average all the dimensions converge 

after the same reasonable number of iterations of the algorithms. The 

choice of such a small threshold used (      ) in the third step of the 

IMCA and RIMCA algorithm (cf. 4.5 & 4.5.1) can be explained by the 

fast convergence reached by the algorithms. (Tables providing the 

average number of iterations of the RIMCA algorithm before it 

converges are given in Appendix J.) Therefore, all possible dimensions, 

       , can be used in order to generate imputed datasets in the 

case of RIMCA and       dimensions in the case of IMCA. Thus a 

range of datasets are obtained of which some would possibly be 

underfitting (fuzziness) or overfitting. This incorporates the uncertainty 

in the model. 

The number of multiple datasets to use in MI is recommended to be a modest 

number between two and ten (Rubin 1987:2, 15). In this research ten multiple 

datasets are randomly chosen from the possible   dimensions that are 

available. Therefore the multiple datasets represent imputations made upon a 

randomly selected dimension. The ten dimensions used to generate ten 

imputed datasets are selected by the random integer generation function in 

MATLAB (randi). In order to determine whether the results obtained from 

RIMCA are sensitive towards a random selection of dimensions, a type of 

sensitivity analysis is performed. This consists of the repeating the process of 

the selection of dimensions ten times, followed by the imputation of these 

multiple datasets and their analysis, using Rubin’s rules (cf. 3.5). The sensitivity 

analysis will only be done for the simulated data. Each repetition will consist of 

a newly simulated dataset from which ten newly selected random dimensions 

will be used to obtain multiple datasets, which will then be combined using 

Rubin’s rules. The ten repetitions will be displayed graphically in order to show 

the stability across different dimensions for each variable (cf. 6.3). This will 
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enable the researcher to determine whether the results obtained from the 

multiply imputed datasets fluctuate significantly over a selection of randomly 

appointed dimensions. 

 Five datasets will be drawn randomly from the final fuzzy indicator 

matrix obtained after the convergence of RIMCA, as explained in the 

following uncertainty section. Therefore, multiple datasets for each 

multiple dataset (determined by a specific dimension) will be 

generated, which will incorporate additional model uncertainty. Thus 

the between-variation (cf. 3.5) will capture uncertainty about the 

model and the imputation. 

Uncertainty when drawing imputed values 

The uncertainty in the drawing of imputations is achieved in the transformation 

of the final fuzzy reconstructed values to a matrix of categorical data. The SI 

procedures allocate category values to the largest fuzzy value per variable, thus 

allocating with regard to a degree of membership. In order to obtain 

uncertainty in the actual imputations, the category values for an imputed data 

point will be allocated at random, based on a randomly generated Uniform(0,1) 

value. Thus, the values remaining for each category of a missing data point 

would indicate the probability of that category being drawn as an imputed 

value for that missing data point. Since the final fuzzy values are fixed after the 

algorithm converges, the parameters of the imputation model are also fixed. 

This means that imputations are drawn conditionally on estimates of the 

parameters, therefore the MI variance might be underestimated. 
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Table 5.4 tabulates the differences between SI and MI with respect to the three 

steps of the algorithms (cf. 4.5 & 4.5.1). 

Table 5.4 Differences between SI and MI 

 SI MI 

Step 1 
Expected proportions for initial 

values 
Random initial values 

Step 2 Fixed number of dimensions Allows for a range of dimensions 

Step 3 

Repeat Step 2 until a pre-
determined threshold is reached. 

 
For final dataset: allocate category 

value by means of a degree of 
membership 

Repeat Step 2 until a pre-
determined threshold is reached. 

 
For final dataset: allocate 

category by means of a random 
procedure (repeated 5 times) 

Thus, 5 final datasets per dimension. 

 

5.6 Conclusion 

This concludes the methodology followed for this research. In the following 

chapter, the results obtained from the simulated data will be presented. The 

performance of SI and MI with respect to the true data will be illustrated by 

graphs displaying the relationships between the means and 95% confidence 

intervals obtained from RIMCA in SI, RIMCA in MI, complete-case analysis and 

the true data.                     



Chapter 6  

Simulation Study 

“Feign,…,pretend to be, act like, resemble, wear the guise of, mimic,… imitate 

conditions of (situation etc.) with model, for convenience or training…”  

(Ripley 1987:1) 

6.1 Introduction 

This chapter will provide the motivation for using a simulated dataset. The 

selected dimensions for the reconstruction step of the RIMCA algorithm to 

generate imputed datasets will be discussed and motivated by means of figures 

6.1–6.5. Scatterplot matrices are provided in order to establish the contribution 

of the initial values. This will be followed by the results obtained from the 

execution of the two objectives and an overall summary of the performance of 

the RIMCA MI algorithm over a 1000 simulations; concluding with the 

discussion of the simulation study results. 

6.2 Motivation 

The performance and relevance of the RIMCA algorithm in MI will be 

established when comparing estimates from a complete dataset with the 

estimates of an imputed version of the original data. The accuracy of the 

imputation can then be evaluated. According to Ripley (1987:4) the great 

advantage of simulation is the decrease in approximations, but simultaneously 

the interpretation of analysis becomes tricky, since the data is not based on 

true observations and responses. 

6.3 Dimensions to retain in the second step of RIMCA 

SI 

The dimension selected a priori for the reconstruction step of the algorithms in 

SI is based upon the expectance of underfitting (fuzziness) in the lower 
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dimensions and possible overfitting in the larger dimensions, as mentioned by 

Josse et al. (2012:101). Therefore, an average number of dimensions is 

selected, which in the case of the simulated data is ten. 

MI 

As discussed in the preceding chapter (cf. 5.5), ten randomly selected 

dimensions are used to generate the imputed datasets, which are then 

combined using Rubin’s rules. This procedure is repeated ten times. Therefore 

one repetition refers to the simulation of one dataset, creating missing values 

within this created dataset according to a specific pattern, percentage of 

missing values and missingness mechanism. The RIMCA algorithm is then 

performed on the generated dataset with respect to the randomly selected ten 

dimensions which will result in ten imputed datasets. These datasets are then 

combined to determine estimates used in the analysis. The following figures 

6.1–6.5 illustrate the means and confidence intervals obtained over the ten 

repetitions of the sets of randomly selected dimensions for a selection of 

variables from a dataset with a low correlation structure, MCAR random pattern 

with a low percentage of missing values. The means of the completed 

simulated datasets will be displayed and referred to as Mean Complete, 

whereas the mean estimates of the multiply imputed datasets will be indicated 

by Q MI. The figures of the repetitions of all the simulated datasets are 

presented in Appendix K. 

 

 
Figure 6.1 RIMCA: MI on MCAR LR data with low correlation structure (variable 1) 
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Figure 6.2 RIMCA: MI on MCAR LR data with low correlation structure (variable 2) 

 

 
Figure 6.3 RIMCA: MI on MCAR LR data with low correlation structure (variable 3) 

 

 
Figure 6.4 RIMCA: MI on MCAR LR data with low correlation structure (variable 9) 
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Figure 6.5 RIMCA: MI on MCAR LR data with low correlation structure (variable 10) 

 

It can be seen that the means and confidence intervals stay approximately 

constant over the ten repetitions; this is the case for all variables and all 

simulated datasets (cf. Appendix K). This confirms that the use of random 

dimensions for the multiple imputation of the missing values is suitable. 

The set of multiple datasets used for further analysis is determined by 

randomly generated dimensions. The analyses that follow in sections 6.5.1 and 

6.5.2 are based on the multiple datasets of one repetition. 

6.4 Scatterplot matrices 

In order to establish whether the initial fuzzy values allocated in the first step of 

RIMCA contribute to the final fuzzy values obtained after the convergence of 

the reconstruction steps, scatterplot matrices are used to display the 

relationship between the multiple datasets with regard to the fuzzy values 

obtained for categories one and two. 

The scatterplot matrices of the MCAR missingness mechanism with a low 

percentage of missing values and a random pattern are displayed for the high 

correlation structure (cf. figure 6.6) and the low correlation structure (cf. figure 

6.7). 
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Figure 6.6 Scatterplot matrix of MCAR LR data with a high correlation structure 

 

 
Figure 6.7 Scatterplot matrix of MCAR LR data with a low correlation structure 
 

The scatterplots show a 45 degree line for all matrices, which confirms the 

statement of Josse et al. (2012:100) that the initial values do not contribute in 

any way and will therefore not influence the imputations. This also confirms 

that the RIMCA algorithm is not sensitive to random starting values, as was 
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predicted by Josse et al. (2012:100). The scatterplots show that the RIMCA 

algorithm provides the same or similar fuzzy values for each observation across 

the ten multiple datasets, obtained from a set of ten randomly selected 

dimensions. This shows that the final datasets will always be similar, 

irrespective of the chosen dimension. Scatterplots of the other simulated 

datasets are available in Appendix N. 

6.5 Objective one: To establish whether RIMCA in MI 

outperforms RIMCA in SI 

In the figures that will follow in sections 6.5.1 and 6.5.2 the means of the 

completed simulated datasets will be displayed and referred to as CD Mean or 

the true mean and the CD Confidence Intervals will be referred to as the true 

confidence intervals. The estimates of the mean obtained from complete-case 

analysis will be referred to as CC Mean. The estimated means obtained from 

the imputation processes will be indicated by MI Mean and SI Mean, indicating 

the MI estimate and the SI estimate, respectively. As was discussed in the 

simulation protocol (cf. 5.4.1.1), the high correlation structure refers to a 

correlation of 0.8 and a low correlation of 0.4. The missing values are entered 

using a random (R) or non-random (NR) pattern. The first section will display 

the means and confidence intervals of the datasets with MAR values, followed 

by the section on the datasets with MCAR values. Each sub-section will consist 

of a table and three figures for both correlation structures and each particular 

pattern (random or non-random). The information obtained for one variable 

from the application of Rubin’s rules (cf. 3.5) for the MI case and the results 

obtained for the SI procedure will be presented with the true values from the 

completed data. The first figure represents the means and confidence intervals 

of the completed data, MI, SI and complete-case (CC) procedures on the same 

graph. The second and third graphs will show the performance of MI and SI, 

respectively, in comparison to the mean and confidence intervals obtained from 

the completed data and the complete-case analysis. 
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6.5.1 Simulated data with a MAR missingness mechanism 

The datasets with a MAR mechanism either have a low percentage (L) of 

missing values (8%) or a high percentage (H) of missing values (16%). In all of 

the MAR instances variable one and seven are completely observed, therefore 

no estimates are obtained for these variables. The confidence intervals for 

these variables are equal to the true confidence intervals of the original 

simulated data in both the SI and MI cases. The analysis will be restricted to 

imputed variables only. 

6.5.1.1 MAR HR High correlation structure 

Table 6.1 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR HR high correlated data in 
comparison to the true values 

MAR HR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3424 0.2973 0.3208 2.02 2.2208 2.3800 2.2150 

3* 0.3239 0.3611 0.3083 0.3445 2.02 2.1948 2.3200 2.1908 

4* 0.3239 0.3424 0.3019 0.3294 2.02 2.2208 2.3700 2.2112 

5* 0.3239 0.3611 0.3012 0.3378 2.02 2.1948 2.3600 2.1998 

6* 0.3239 0.3407 0.2649 0.3315 2.02 2.2597 2.1700 2.2650 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3557 0.3049 0.3449 2.02 1.9157 1.6600 1.9196 

9* 0.3239 0.3530 0.3134 0.3465 2.02 1.9277 1.6800 1.9400 

10* 0.3239 0.3622 0.3092 0.3510 2.02 1.9157 1.6700 1.9202 

MAR HR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0860 0.0749 0.0818 

3 0.0816 0.0906 0.0777 0.0878 

4 0.0816 0.0860 0.0761 0.0840 

5 0.0816 0.0906 0.0759 0.0861 

6 0.0816 0.0855 0.0667 0.0845 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0894 0.0768 0.0879 

9 0.0816 0.0887 0.0790 0.0883 

10 0.0816 0.0910 0.0779 0.0895 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
  



85 
 

 
Figure 6.8 Means and Confidence intervals for RIMCA in MI and SI (MAR HR) 

 

 
Figure 6.9 MI and CC vs. CD Mean and CI’s on MAR HR High correlated data 

 

 
Figure 6.10 SI and CC vs. CD Mean and CI’s on MAR HR High correlated data 
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Discussion 

Table 6.1 indicates that MI produces wider confidence intervals than SI for all 

variables. The graphical representation of this information is provided in figure 

6.8. Figures 6.8 and 6.10 show that there is strong evidence that SI is 

statistically different from the true confidence intervals for variables two, four, 

five, eight, nine and ten, since the intervals for these variables do not overlap 

the true confidence intervals. Therefore, for these specified variables SI will not 

provide accurate predictions. The mean estimate obtained from SI for variable 

six is closer to the true mean than the mean estimated obtained from MI, 

whereas all other mean estimates provided by MI (cf. figure 6.9) are closer to 

the true mean than SI. The CC estimates are closely correlated to the MI 

estimates (cf. figure 6.9) and for all of the imputed variables wider confidence 

intervals are obtained from the CC analysis in comparison to the MI procedure. 

Larger standard errors are obtained from the CC analysis for all of the 

variables. 

Thus it is clear that MI is a better fit for the MAR high correlated data with a 

random pattern and higher percentage of missing values than SI.  
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6.5.1.2 MAR HR Low correlation structure 

Table 6.2 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR HR low correlated data in 
comparison to the true values 

MAR HR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3565 0.3282 0.3403 2.02 2.0625 2.2700 2.0652 

3* 0.3239 0.3611 0.3295 0.3428 2.02 2.1125 2.2400 2.1120 

4* 0.3239 0.3713 0.3195 0.3595 2.02 2.0125 2.2800 2.0198 

5* 0.3239 0.3678 0.3233 0.3527 2.02 2.0250 2.2700 2.0352 

6* 0.3239 0.3645 0.2848 0.3412 2.02 2.0125 2.1000 2.0110 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3635 0.2816 0.3427 2.02 1.9375 1.9600 1.9412 

9* 0.3239 0.3565 0.3191 0.3464 2.02 1.9375 2 1.9440 

10* 0.3239 0.3534 0.3134 0.3397 2.02 1.9500 1.6800 1.9616 

MAR HR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0896 0.0827 0.0868 

3 0.0816 0.0907 0.0830 0.0874 

4 0.0816 0.0933 0.0805 0.0916 

5 0.0816 0.0924 0.0815 0.0899 

6 0.0816 0.0916 0.0718 0.0870 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0913 0.0710 0.0874 

9 0.0816 0.0896 0.0804 0.0883 

10 0.0816 0.0888 0.0790 0.0866 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 

 
Figure 6.11 Means and Confidence intervals for RIMCA in MI and SI (MAR HR)  
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Figure 6.12 MI and CC vs. CD Mean and CI’s on MAR HR Low correlated data 

 

 
Figure 6.13 SI and CC vs. CD Mean and CI’s on MAR HR Low correlated data 
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Conclusion for MAR HR for High- and Low correlated data 

In both high and low correlated data RIMCA in MI is a better fit than RIMCA in 

SI. This is confirmed by the statistically different confidence intervals obtained 

from SI for some of the variables in the high correlated data. Both the MI and 

SI procedures perform better under the low correlation structure. A great 

advantage is the fact that wider confidence intervals are obtained from MI in 

both correlation structures, which incorporates the uncertainty when imputing 

missing values. The estimates obtained from CC are similar to the MI estimates 

and perform better than the SI procedure. Therefore, RIMCA in MI is a better 

imputation model than RIMCA in SI for the specified data. 

6.5.1.3 MAR HNR High correlation structure 

Table 6.3 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR HNR high correlated data in 
comparison to the true values 

MAR HNR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3453 0.3057 0.3296 2.02 2.1750 2.3500 2.1794 

3* 0.3239 0.3525 0.2743 0.3561 2.02 2.1750 2.1300 2.1782 

4* 0.3239 0.3320 0.2973 0.3291 2.02 2.2250 2.3800 2.2182 

5* 0.3239 0.3426 0.3012 0.3306 2.02 2.2000 2.3600 2.2036 

6* 0.3239 0.3284 0.2796 0.3145 2.02 2.2500 2.2200 2.2512 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3523 0.3049 0.3370 2.02 1.8625 1.6600 1.8542 

9* 0.3239 0.3451 0.3092 0.3274 2.02 1.8625 1.6700 1.8578 

10* 0.3239 0.3593 0.3049 0.3386 2.02 1.8625 1.6600 1.8656 

MAR HNR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0867 0.0770 0.0840 

3 0.0816 0.0885 0.0691 0.0907 

4 0.0816 0.0834 0.0749 0.0839 

5 0.0816 0.0861 0.0759 0.0843 

6 0.0816 0.0825 0.0705 0.0802 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0885 0.0768 0.0859 

9 0.0816 0.0867 0.0779 0.0835 

10 0.0816 0.0903 0.0768 0.0863 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI)  
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Figure 6.14  Means and Confidence intervals for RIMCA in MI and SI (MAR HNR) 

 

 
Figure 6.15 MI and CC vs. CD Mean and CI’s on MAR HNR High correlated data 

 

 
Figure 6.16 SI and CC vs. CD Mean and CI’s on MAR HNR High correlated data 
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Discussion 

Table 6.3 indicates that MI produces wider confidence intervals than SI for all 

variables. CC produces wider confidence intervals than MI for all of the 

variables, except variable three. Also the standard error obtained from MI for 

variable three is larger than the CC standard error for this specific variable. 

Overall the CC analysis provides larger standard errors than the imputation 

techniques. The graphical representation of this information is provided in 

figure 6.14. Figures 6.14 and 6.16 show that there is strong evidence that SI is 

statistically different from the true confidence intervals for variables four, five, 

eight, nine and ten, since the intervals for these variables do not overlap the 

true intervals. Therefore, for these specified variables SI will not provide 

accurate predictions. The mean estimate obtained from SI for variable three is 

slightly closer to the true mean than the MI estimate for this variable. However, 

the MI estimates (cf. figures 6.14 & 6.15) obtained for all the remaining 

variables are closer to the true mean value than SI. The MI estimates and 

confidence intervals are similar to the CC estimates (cf. figure 6.15). 

The estimates obtained from MI perform better than the SI estimates and MI 

seems to be a good fit for the prediction of the missing values in this particular 

dataset.  
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6.5.1.4 MAR HNR Low correlation structure 

Table 6.4 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR HNR low correlated data in 
comparison to the true values 

MAR HNR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3664 0.3282 0.3488 2.02 2.0750 2.2700 2.0746 

3* 0.3239 0.3637 0.3205 0.3487 2.02 2.1250 2.2900 2.1304 

4* 0.3239 0.3741 0.3259 0.3674 2.02 2.0500 2.2500 2.0582 

5* 0.3239 0.3565 0.3205 0.3472 2.02 2.0625 2.2900 2.0602 

6* 0.3239 0.3642 0.3271 0.3594 2.02 2.0375 2.2600 2.0358 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3642 0.3109 0.3464 2.02 1.9625 1.8500 1.9740 

9* 0.3239 0.3555 0.3282 0.3413 2.02 1.9125 1.7700 1.9132 

10* 0.3239 0.3555 0.3195 0.3474 2.02 1.9125 1.7200 1.9120 

MAR HNR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0920 0.0827 0.0889 

3 0.0816 0.0914 0.0808 0.0889 

4 0.0816 0.0940 0.0821 0.0936 

5 0.0816 0.0896 0.0808 0.0885 

6 0.0816 0.0915 0.0824 0.0916 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0915 0.0783 0.0883 

9 0.0816 0.0893 0.0827 0.0870 

10 0.0816 0.0893 0.0805 0.0886 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.17 Means and Confidence intervals for RIMCA in MI and SI (MAR HNR)  
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Figure 6.18 MI and CC vs. CD Mean and CI’s on MAR HNR Low correlated data 

 

 
Figure 6.19 SI and CC vs. CD Mean and CI’s on MAR HNR Low correlated data 

 

Discussion 

Table 6.4 indicates that MI produces wider confidence intervals than SI for all 

variables. The graphical representation of this information is provided in figure 

6.17. The mean estimates obtained from MI for all variables are closer to the 

true mean than the estimates obtained from SI. The SI predictions (cf. figure 

6.19) are more unstable between variables than the mean values predicted by 

MI with respect to the true values (cf. figure 6.18). The CC results are closely 

correlated with the MI results. 

MI is a better fit for the MAR low correlated data with a non-random pattern 

and high percentage of missing values than SI. 
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Conclusion for MAR HNR for High- and Low correlated data 

RIMCA in MI performed better than RIMCA in SI, since the mean estimates 

resembles the true means more closely. The wider confidence intervals 

obtained from MI in both correlation structures confirm the added uncertainty 

when imputing with multiple datasets. SI performs better in the low correlated 

data, since the confidence intervals for all the variables overlap with the true 

confidence intervals. MI provides better estimates than SI in all cases and is 

therefore a better fit for imputation of this specific dataset. RIMCA in MI 

provided slightly better results in the presence of a low correlation structure. 

RIMCA in MI is a better imputation model than RIMCA in SI for the specified 

data. 

6.5.1.5 MAR LR High correlation structure 

Table 6.5 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR LR high correlated data in 
comparison to the true values 
MAR LR 

High 
Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3403 0.3155 0.3306 2.02 2.0556 2.2100 2.0524 

3* 0.3239 0.3326 0.3225 0.3278 2.02 2.1000 2.1900 2.0920 

4* 0.3239 0.3361 0.2946 0.3262 2.02 2.0889 2.1200 2.0946 

5* 0.3239 0.3361 0.3225 0.3309 2.02 2.0889 2.1900 2.0810 

6* 0.3239 0.3349 0.3105 0.3281 2.02 2.1111 2.2100 2.1108 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3339 0.2998 0.3231 2.02 1.9101 1.9300 1.9164 

9* 0.3239 0.3374 0.2998 0.3246 2.02 1.9213 1.9300 1.9256 

10* 0.3239 0.3408 0.3290 0.3293 2.02 1.9326 1.8600 1.9260 

MAR LR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0856 0.0795 0.0843 

3 0.0816 0.0837 0.0813 0.0836 

4 0.0816 0.0846 0.0742 0.0832 

5 0.0816 0.0846 0.0813 0.0844 

6 0.0816 0.0843 0.0782 0.0837 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0840 0.0756 0.0824 

9 0.0816 0.0849 0.0756 0.0828 

10 0.0816 0.0858 0.0829 0.0840 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI)  
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Figure 6.20 Means and Confidence intervals for RIMCA in MI and SI (MAR LR) 

 

 
Figure 6.21 MI and CC vs. CD Mean and CI’s on MAR LR High correlated data 

 

 
Figure 6.22 SI and CC vs. CD Mean and CI’s on MAR LR High correlated data 
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Discussion 

Table 6.5 indicates that MI produces wider confidence intervals than SI for all 

variables. Further it can be observed that CC provides even wider confidence 

intervals than MI for all variables. The graphical representation of this 

information is provided in figure 6.20. The mean estimates obtained from SI for 

variable four and nine are slightly closer to the true mean than the MI 

estimates. However, MI provides better estimates for all of the remaining 

variables. The MI estimates and CC estimates are similar for all variables (cf. 

figure 6.21). The SI predictions (cf. figure 6.22) are more unstable between 

variables than the mean values predicted by MI (cf. figure 6.21). 

Thus it is clear that MI is a better fit for the MAR high correlated data with a 

random pattern and low percentage of missing values than SI.  
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6.5.1.6 MAR LR Low correlation structure 

Table 6.6 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR LR low correlated data in 
comparison to the true values 

MAR LR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3382 0.3243 0.3271 2.02 2 2.1700 1.9978 

3* 0.3239 0.3495 0.3274 0.3421 2.02 2.0222 2.1900 2.0198 

4* 0.3239 0.3439 0.3243 0.3352 2.02 2 2.1700 2.0006 

5* 0.3239 0.3403 0.3225 0.3353 2.02 2.0556 2.1900 2.0538 

6* 0.3239 0.3438 0.3225 0.3377 2.02 2.0222 2.1900 2.0164 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3478 0.3061 0.3384 2.02 2.0225 1.9700 2.0270 

9* 0.3239 0.3449 0.3302 0.3347 2.02 1.9888 1.8800 1.9924 

10* 0.3239 0.3382 0.3272 0.3306 2.02 1.9438 1.8700 1.9402 

MAR LR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0851 0.0817 0.0834 

3 0.0816 0.0879 0.0825 0.0873 

4 0.0816 0.0865 0.0817 0.0855 

5 0.0816 0.0856 0.0813 0.0855 

6 0.0816 0.0865 0.0813 0.0861 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0875 0.0771 0.0863 

9 0.0816 0.0868 0.0832 0.0854 

10 0.0816 0.0851 0.0825 0.0843 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.23 Means and Confidence intervals for RIMCA in MI and SI (MAR LR) 
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Figure 6.24 MI and CC vs. CD Mean and CI’s on MAR LR Low correlated data 

 

 
Figure 6.25 SI and CC vs. CD Mean and CI’s on MAR LR Low correlated data 

 

Discussion 

Table 6.6 indicates that MI produces wider confidence intervals than SI for all 

variables. The graphical representation of this information is provided in figure 

6.23. The results obtained from CC and MI are similar with respect to the mean 

estimates, but larger standard errors and wider confidence intervals are 

obtained from CC. The mean estimates obtained from MI in comparison to the 

estimates obtained from SI, are closer to the true mean values in all of the 

variables (cf. figures 6.23 & 6.24). 

Thus it is clear that MI is a better fit for the MAR low correlated data with a 

non-random pattern and low percentage of missing values than SI (cf. figures 

6.23 & 6.25).  
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Conclusion for MAR LR for High- and Low correlated data 

SI seems to perform slightly better in the presence of a high correlation 

structure in the data, whereas MI performs better for low correlated data. MI 

outperforms SI with regard to wider confidence intervals and estimates that are 

closer to the true mean values. 

RIMCA in MI is a better imputation model than RIMCA in SI for the specified 

data. 

6.5.1.7 MAR LNR High correlation structure 

Table 6.7 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR LNR high correlated data in 
comparison to the true values 

MAR LNR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3326 0.3210 0.3252 2.02 2.1000 2.1800 2.0984 

3* 0.3239 0.3419 0.3210 0.3384 2.02 2.0889 2.1800 2.0906 

4* 0.3239 0.3313 0.3191 0.3286 2.02 2.1222 2.2000 2.1226 

5* 0.3239 0.3385 0.3155 0.3357 2.02 2.1000 2.2100 2.0962 

6* 0.3239 0.3275 0.3090 0.3213 2.02 2.1333 2.1400 2.1322 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3438 0.3290 0.3457 2.02 1.9778 1.8600 1.9772 

9* 0.3239 0.3380 0.3290 0.3317 2.02 1.9778 1.8600 1.9788 

10* 0.3239 0.3465 0.3259 0.3395 2.02 1.9667 1.8500 1.9644 

MAR LNR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0837 0.0809 0.0830 

3 0.0816 0.0860 0.0809 0.0863 

4 0.0816 0.0834 0.0804 0.0838 

5 0.0816 0.0852 0.0795 0.0856 

6 0.0816 0.0824 0.0779 0.0819 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0865 0.0829 0.0882 

9 0.0816 0.0851 0.0829 0.0846 

10 0.0816 0.0872 0.0821 0.0866 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
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Figure 6.26 Means and Confidence intervals for RIMCA in MI and SI (MAR LNR) 

 

 
Figure 6.27 MI and CC vs. CD Mean and CI’s on MAR LNR High correlated data 

 

 
Figure 6.28 SI and CC vs. CD Mean and CI’s on MAR LNR High correlated data 
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Discussion 

Table 6.7 indicates that MI produces wider confidence intervals than SI for all 

variables. The MI confidence interval for variable three is slightly wider than the 

CC confidence interval. Further, all CC confidence intervals are wider than the 

MI confidence intervals. The graphical representation of this information is 

provided in figures 6.26 and 6.27. The mean estimates obtained from MI (cf. 

figure 6.27) for all of the imputed variables are closer to the true mean values 

than SI (cf. figure 6.28). Thus it is clear that MI is a better fit for the MAR high 

correlated data with a non-random pattern and low percentage of missing 

values than SI. 

6.5.1.8 MAR LNR Low correlation structure 

Table 6.8 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MAR LNR low correlated data in 
comparison to the true values 

MAR LNR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1 0.3239 observed observed observed 2.02 observed observed observed 

2* 0.3239 0.3370 0.3275 0.3354 2.02 2.0667 2.1600 2.0580 

3* 0.3239 0.3428 0.3051 0.3364 2.02 2.0667 2.0700 2.0634 

4* 0.3239 0.3491 0.3195 0.3429 2.02 2.0444 2.0900 2.0418 

5* 0.3239 0.3376 0.3109 0.3325 2.02 2.0444 2.0500 2.0436 

6* 0.3239 0.3434 0.3290 0.3361 2.02 2.0444 2.1400 2.0458 

7 0.3239 observed observed observed 2.02 observed observed observed 

8* 0.3239 0.3352 0.3063 0.3246 2.02 1.9889 1.9900 1.9874 

9* 0.3239 0.3380 0.3332 0.3335 2.02 1.9778 1.8900 1.9726 

10 0.3239 0.3321 0.3332 0.3200 2.02 1.9778 1.8900 1.9794 

MAR LNR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0816 0.0816 0.0816 

2 0.0816 0.0848 0.0825 0.0855 

3 0.0816 0.0863 0.0769 0.0858 

4 0.0816 0.0879 0.0805 0.0875 

5 0.0816 0.0850 0.0783 0.0848 

6 0.0816 0.0864 0.0829 0.0857 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0843 0.0772 0.0828 

9 0.0816 0.0851 0.0840 0.0851 

10 0.0816 0.0836 0.0840 0.0816 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI)  
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Figure 6.29 Means and Confidence intervals for RIMCA in MI and SI (MAR LNR) 

 

 
Figure 6.30 MI and CC vs. CD Mean and CI’s on MAR LNR Low correlated data 

 

 
Figure 6.31 SI and CC vs. CD Mean and CI’s on MAR LNR Low correlated data 
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Discussion 

Table 6.8 indicates that MI produces wider confidence intervals than SI for all 

variables, except variable ten. The graphical representation of this information 

is provided in figure 6.29. The mean estimates obtained from MI for all of the 

imputed variables are closer to the true mean values (CD) than SI. From figures 

6.29 and 6.30 it can be observed that MI fits the data well and provides better 

estimates than the SI (cf. figures 6.29 & 6.31) procedure. Once again the CC 

estimates closely resemble the MI estimates. 

Conclusion for MAR LNR for High- and Low correlated data 

As was the case with the preceding simulated datasets, MI performs slightly 

better in data with a low correlation structure. The estimates obtained from SI 

for the low correlation structure are closer to the true values than the estimates 

obtained from the high correlation structure from SI. In a majority of instances 

the confidence intervals obtained from MI are wider than the confidence 

intervals provided by SI. 

Thus RIMCA in MI is a better fit for the specified data. 

 

6.5.2 Simulated data with a MCAR missingness mechanism 

The datasets with a MCAR missingness mechanism either have a low 

percentage (L) of missing values (10%) or a high percentage (H) of missing 

values (30%). The missing values are entered using a random (R) or non-

random pattern (NR). Estimates are obtained for all of the variables in the case 

of the random pattern, but for the non-random pattern variables four, five, six, 

seven and eight are completely observed. Therefore, the confidence intervals of 

the SI and MI procedures will be equal to the true intervals for these observed 

variables. The analysis will be restricted to imputed variables only. 
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6.5.2.1 MCAR HR High correlation structure 

Table 6.9 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR HR high correlated data in 
comparison to the true values 

MCAR HR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3967 0.3209 0.3706 2.02 1.9853 2.3500 1.9938 

2* 0.3239 0.3783 0.3355 0.3459 2.02 2.0676 1.7500 2.0708 

3* 0.3239 0.4045 0.2644 0.3695 2.02 2 1.9800 1.9944 

4* 0.3239 0.3862 0.3489 0.3553 2.02 2.0278 2.0700 2.0244 

5* 0.3239 0.3835 0.3274 0.3608 2.02 2.0282 2.3100 2.0338 

6* 0.3239 0.4083 0.2912 0.3881 2.02 2.0968 1.8700 2.0986 

7* 0.3239 0.3923 0.3225 0.3674 2.02 1.9589 2.3100 1.9686 

8 0.3239 0.3864 0.3633 0.3553 2.02 2.0704 1.9900 2.0634 

9* 0.3239 0.3628 0.3202 0.3442 2.02 2 2.3400 1.9978 

10* 0.3239 0.3923 0.3084 0.3551 2.02 2 2.3900 1.9956 

MCAR HR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0994 0.0809 0.0944 

2 0.0816 0.0949 0.0845 0.0882 

3 0.0816 0.1013 0.0666 0.0941 

4 0.0816 0.0968 0.0879 0.0906 

5 0.0816 0.0961 0.0825 0.0919 

6 0.0816 0.1021 0.0734 0.0987 

7 0.0816 0.0984 0.0813 0.0936 

8 0.0816 0.0969 0.0916 0.0906 

9 0.0816 0.0910 0.0807 0.0877 

10 0.0816 0.0983 0.0777 0.0905 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.32 Means and Confidence intervals for RIMCA in MI and SI (MCAR HR) 
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Figure 6.33 MI and CC vs. CD Mean and CI’s on MCAR HR High correlated data 

 

 
Figure 6.34 SI and CC vs. CD Mean and CI’s on MCAR HR High correlated data 
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provide accurate predictions. The mean estimates obtained from SI for 
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provided by MI (cf. figure 6.33) are closer to the true mean than SI. The mean 

estimates obtained from CC are close to the mean estimates obtained from MI. 

From the given information and discussion it is clear that MI is a better fit for 

the MCAR high correlated data with a random pattern and high percentage of 

missing values than SI. 

 

6.5.2.2 MCAR HR Low correlation structure 

Table 6.10 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR HR low correlated data in 
comparison to the true values 

MCAR HR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3936 0.3180 0.3609 2.02 2.1029 1.6200 2.0918 

2* 0.3239 0.4076 0.3173 0.3742 2.02 2.0313 1.6300 2.0278 

3* 0.3239 0.3835 0.3251 0.3467 2.02 2.0282 1.6600 2.0280 

4* 0.3239 0.3770 0.3021 0.3663 2.02 1.9863 2.1900 1.9772 

5 0.3239 0.3606 0.3539 0.3392 2.02 1.9863 1.9500 1.9878 

6* 0.3239 0.3740 0.3498 0.3560 2.02 2.0400 1.9700 2.0460 

7* 0.3239 0.3821 0.2937 0.3520 2.02 1.9000 2.2400 1.9082 

8* 0.3239 0.3911 0.3259 0.3695 2.02 1.9437 1.6500 1.9440 

9* 0.3239 0.3836 0.3343 0.3694 2.02 1.9286 1.7600 1.9178 

10* 0.3239 0.4201 0.3322 0.3809 2.02 2.0000 2.3100 2.0140 

MCAR HR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0986 0.0801 0.0920 

2 0.0816 0.1020 0.0800 0.0953 

3 0.0816 0.0961 0.0819 0.0884 

4 0.0816 0.0945 0.0761 0.0933 

5 0.0816 0.0904 0.0892 0.0864 

6 0.0816 0.0938 0.0881 0.0907 

7 0.0816 0.0958 0.0740 0.0897 

8 0.0816 0.0980 0.0821 0.0941 

9 0.0816 0.0961 0.0842 0.0941 

10 0.0816 0.1052 0.0837 0.0970 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
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Figure 6.35 Means and Confidence intervals for RIMCA in MI and SI (MCAR HR) 

 

 
Figure 6.36 MI and CC vs. CD Mean and CI’s on MCAR HR Low correlated data 

 

 
Figure 6.37 SI and CC vs. CD Mean and CI’s on MCAR HR Low correlated data 
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Discussion 

Table 6.10 indicates that MI produces wider confidence intervals than SI for all 

variables except variable five, with CC providing even wider confidence intervals 

than MI. The graphical representation of this information is provided in figure 

6.35. Figures 6.35 and 6.37 show that there is strong evidence that SI is 

statistically different from the true confidence intervals for variables one, two, 

three and eight, since the intervals for these variables do not overlap the true 

intervals. Therefore, for this specified variable SI will not provide accurate 

predictions. The mean estimates of CC and MI are again highly correlated and 

are closer to the true mean values than the SI estimates for all variables (cf. 

figure 6.35). 

Thus it is clear that MI is a better fit for the MCAR low correlated data with a 

random pattern and high percentage of missing values than SI. 

 

Conclusion for MCAR HR for High- and Low correlated data 

MI performs better in the high correlated data with respect to the mean 

estimates. SI also performs better in the high correlated data, since four of 

variables in the low correlation case are statistically different from the true 

mean and confidence intervals. In both correlation cases MI outperforms SI; 

providing more accurate mean estimates and wider confidence intervals.  
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6.5.2.3 MCAR HNR High correlation structure 

Table 6.11 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR HNR high correlated data in 
comparison to the true values 

MCAR HNR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.5458 0.2801 0.4345 2.02 2.2000 2.6300 2.2206 

2* 0.3239 0.5119 0.3770 0.3921 2.02 2.0250 2.0800 2.0232 

3* 0.3239 0.5572 0.1871 0.4220 2.02 2.1000 2 2.1044 

4 0.3239 observed observed observed 2.02 observed observed observed 

5 0.3239 observed observed observed 2.02 observed observed observed 

6 0.3239 observed observed observed 2.02 observed observed observed 

7 0.3239 observed observed observed 2.02 observed observed observed 

8 0.3239 observed observed observed 2.02 observed observed observed 

9* 0.3239 0.5098 0.2677 0.4046 2.02 1.9250 2.6400 1.9212 

10* 0.3239 0.5300 0.1864 0.4094 2.02 1.9250 2.0400 1.9160 

MCAR HNR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.1349 0.0706 0.1104 

2 0.0816 0.1265 0.0950 0.0997 

3 0.0816 0.1377 0.0471 0.1073 

4 0.0816 0.0816 0.0816 0.0816 

5 0.0816 0.0816 0.0816 0.0816 

6 0.0816 0.0816 0.0816 0.0816 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0816 0.0816 0.0816 

9 0.0816 0.1260 0.0674 0.1028 

10 0.0816 0.1310 0.0470 0.1041 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.38 Means and Confidence intervals for RIMCA in MI and SI (MCAR HNR) 
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Figure 6.39 MI and CC vs. CD Mean and CI’s on MCAR HNR High correlated data 

 

 
Figure 6.40 SI and CC vs. CD Mean and CI’s on MCAR HNR High correlated data 

 

Discussion 

Table 6.11 indicates that MI produces wider confidence intervals than SI for all 

variables. The graphical representation of this information is provided in figure 

6.38. Figures 6.38 and 6.40 show that there is strong evidence that SI is 

statistically different from the true confidence intervals for variables one and 

nine, since the intervals for these variables do not overlap the true intervals. 

Therefore, SI is not applicable in these instances and does not provide 

sufficient results. The mean estimate obtained from SI for variable three and 

ten is closer to the true mean than the MI estimate. However, for all the 

remaining variables the mean estimates provided by MI (cf. figure 6.39) are 

closer to the true mean than SI. The CC estimates are similar to the MI 

estimates and provide wider confidence intervals than the MI procedure.  
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6.5.2.4 MCAR HNR Low correlation structure 

Table 6.12 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR HNR low correlated data in 
comparison to the true values 

MCAR HNR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 
1* 0.3239 0.5300 0.1952 0.3962 2.02 1.9250 2.0200 1.9304 

2* 0.3239 0.5456 0.2735 0.4290 2.02 2.1250 1.3600 2.1220 

3* 0.3239 0.5213 0.3738 0.3892 2.02 2.0500 1.9600 2.0302 

4 0.3239 observed observed observed 2.02 observed observed observed 

5 0.3239 observed observed observed 2.02 observed observed observed 

6 0.3239 observed observed observed 2.02 observed observed observed 

7 0.3239 observed observed observed 2.02 observed observed observed 

8 0.3239 observed observed observed 2.02 observed observed observed 

9* 0.3239 0.5119 0.1994 0.3858 2.02 2.0250 2.0100 2.0216 

10* 0.3239 0.5420 0.2814 0.4344 2.02 2 2.6100 2.0046 

MCAR HNR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.1310 0.0492 0.1008 

2 0.0816 0.1349 0.0689 0.1090 

3 0.0816 0.1289 0.0942 0.0990 

4 0.0816 0.0816 0.0816 0.0816 

5 0.0816 0.0816 0.0816 0.0816 

6 0.0816 0.0816 0.0816 0.0816 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0816 0.0816 0.0816 

9 0.0816 0.1265 0.0502 0.0981 

10 0.0816 0.1340 0.0709 0.1104 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.41 Means and Confidence intervals for RIMCA in MI and SI (MCAR HNR) 
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Figure 6.42 MI and CC vs. CD Mean and CI’s on MCAR HNR Low correlated data 

 

 
Figure 6.43 SI and CC vs. CD Mean and CI’s on MCAR HNR Low correlated data 

 

Discussion 

Table 6.12 indicates that MI produces wider confidence intervals than SI for all 

variables. It can also be observed that CC provides wider confidence intervals 

than MI, with regard to the mean estimates these two approaches provide 

similar results. The graphical representation of this information is provided in 

figure 6.41. Figures 6.41 and 6.43 show that there is strong evidence that SI is 

statistically different from the true confidence intervals for variables two and 

ten, since the intervals for these variables do not overlap the true intervals. 
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to the true mean (2.02). However, for all the remaining variables the mean 

estimates provided by MI (cf. figure 6.42) are closer to the true mean than SI. 

 

Conclusion for MCAR HNR for High- and Low correlated data 

Since there is strong evidence that the results obtained from SI are statistically 

different from the true values for two of the variables, it is not a good fit for 

this particular data. To the contrary MI performs well in both correlation 

structures, but slightly better in the presence of a low correlation structure. 

Again the added uncertainty is confirmed by the wider confidence intervals 

provided by MI.  
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6.5.2.5 MCAR LR High correlation structure 

Table 6.13 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR LR high correlated data in 
comparison to the true values 

MCAR LR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3434 0.2958 0.3444 2.02 2.0460 1.9900 2.0390 

2* 0.3239 0.3421 0.3223 0.3345 2.02 2.0714 2.1300 2.0690 

3* 0.3239 0.3460 0.3381 0.3430 2.02 2 2.0400 2.0014 

4* 0.3239 0.3474 0.3259 0.3363 2.02 2.0449 2.1500 2.0446 

5* 0.3239 0.3351 0.3063 0.3305 2.02 2.0323 2.0100 2.0364 

6* 0.3239 0.3391 0.2958 0.3320 2.02 1.9891 1.9900 1.9914 

7* 0.3239 0.3358 0.3061 0.3304 2.02 2.0435 2.0300 2.0374 

8 0.3239 0.3396 0.3302 0.3299 2.02 2.0440 2.1200 2.0480 

9 0.3239 0.3363 0.3423 0.3288 2.02 2 2.0600 2.0016 

10* 0.3239 0.3307 0.3231 0.3249 2.02 2 2.0600 1.9988 

MCAR LR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0864 0.0745 0.0878 

2 0.0816 0.0860 0.0812 0.0853 

3 0.0816 0.0870 0.0852 0.0875 

4 0.0816 0.0874 0.0821 0.0858 

5 0.0816 0.0844 0.0772 0.0843 

6 0.0816 0.0854 0.0745 0.0847 

7 0.0816 0.0845 0.0771 0.0843 

8 0.0816 0.0855 0.0832 0.0841 

9 0.0816 0.0847 0.0862 0.0839 

10 0.0816 0.0832 0.0814 0.0829 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 

 
Figure 6.44 Means and Confidence intervals for RIMCA in MI and SI (MCAR LR) 
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Figure 6.45 MI and CC vs. CD Mean and CI’s on MCAR LR High correlated data 

 

 
Figure 6.46 SI and CC vs. CD Mean and CI’s on MCAR LR High correlated data 

 

Discussion 

Table 6.13 indicates that MI produces wider confidence intervals than SI for all 

variables, except variables eight and nine. Further the confidence intervals for 

CC are larger than the confidence intervals obtained from MI for all variables, 

except variable one. The graphical representation of this information is 

provided in figure 6.44. The mean estimates obtained from SI for variables five 

and seven are slightly closer to the true mean value in comparison to the mean 

estimates of MI. Regardless of this, the mean estimates for all the remaining 

variables provided by MI (cf. figure 6.45) are closer to the true mean than SI 

(cf. figure 6.46). The standard errors obtained from the CC analysis are greater 

than the standard errors obtained from the imputation procedures in a majority 

of the variables. Again the MI estimates and CC estimates are similar.  
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6.5.2.6 MCAR LR Low correlation structure 

Table 6.14 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR LR low correlated data in 
comparison to the true values 

MCAR LR 
Low 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3391 0.3290 0.3346 2.02 1.9891 2.1400 1.9956 

2* 0.3239 0.3460 0.3313 0.3320 2.02 2.0556 2.100 2.0550 

3* 0.3239 0.3441 0.2984 0.3405 2.02 2.0562 1.9800 2.0628 

4* 0.3239 0.3381 0.3322 0.3339 2.02 2 2.0800 2.0002 

5* 0.3239 0.3487 0.3338 0.3424 2.02 2.0341 2.1400 2.0318 

6* 0.3239 0.3408 0.2998 0.3335 2.02 2.0674 2.0700 2.0648 

7* 0.3239 0.3455 0.3236 0.3448 2.02 2.0455 1.9600 2.0402 

8* 0.3239 0.3400 0.3195 0.3326 2.02 1.9780 2.0900 1.9790 

9* 0.3239 0.3530 0.2958 0.3520 2.02 1.9885 2.0100 1.9860 

10 0.3239 0.3351 0.3313 0.3305 2.02 1.9677 1.9000 1.9720 

MCAR LR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0854 0.0829 0.0854 

2 0.0816 0.0871 0.0835 0.0847 

3 0.0816 0.0866 0.0752 0.0868 

4 0.0816 0.0851 0.0837 0.0852 

5 0.0816 0.0877 0.0841 0.0873 

6 0.0816 0.0858 0.0756 0.0850 

7 0.0816 0.0869 0.0816 0.0879 

8 0.0816 0.0856 0.0805 0.0848 

9 0.0816 0.0888 0.0745 0.0897 

10 0.0816 0.0844 0.0835 0.0843 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 

 
Figure 6.47 Means and Confidence intervals for RIMCA in MI and SI (MCAR LR) 
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Figure 6.48 MI and CC vs. CD Mean and CI’s on MCAR LR Low correlated data 

 

 
Figure 6.49 SI and CC vs. CD Mean and CI’s on MCAR LR Low correlated data 

 

Discussion 

Table 6.14 indicates that MI produces wider confidence intervals for all 

variables, except variable ten. The graphical representation of this information 

is provided in figure 6.47. The mean estimates obtained from SI (cf. figure 

6.49) for variables three and nine are slightly closer to the true mean value. 

However, for all the remaining variables the mean estimates provided by MI are 

closer to the true mean than SI. MI and CC provide highly correlated estimates, 

with CC providing slightly wider confidence intervals than MI. Also, the standard 

errors obtained from CC are larger than the standard errors obtained from SI 

and MI. From figures 6.47 and 6.48 it can be observed that MI fits the true 

values well with mean estimates closely resembling the true mean values (CD 

mean). 
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Conclusion for MCAR LR for High- and Low correlated data 

The performance of both imputation procedures is slightly better in the high 

correlated data. RIMCA as a MI procedure fits the data well and incorporates 

wider confidence intervals in a majority of the variables. This confirms that 

RIMCA in MI outperforms RIMCA in SI for this particular data. 

 

6.5.2.7 MCAR LNR High correlation structure 

Table 6.15 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and from RIMCA in SI and MI for MCAR LNR high correlated 
data in comparison to the true values 

MCAR LNR 
High 

Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3710 0.3519 0.3544 2.02 2.0375 2.0400 2.0428 

2* 0.3239 0.3572 0.2875 0.3435 2.02 2.0375 1.9800 2.0380 

3* 0.3239 0.3747 0.3351 0.3617 2.02 2 1.7900 1.9980 

4 0.3239 observed observed observed 2.02 observed observed observed 

5 0.3239 observed observed observed 2.02 observed observed observed 

6 0.3239 observed observed observed 2.02 observed observed observed 

7 0.3239 observed observed observed 2.02 observed observed observed 

8 0.3239 observed observed observed 2.02 observed observed observed 

9* 0.3239 0.3611 0.3282 0.3385 2.02 2 2.2300 1.9952 

10* 0.3239 0.3576 0.2875 0.3489 2.02 2.0125 2.0200 2.0114 

MCAR LNR 
High 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0932 0.0887 0.0904 

2 0.0816 0.0897 0.0724 0.0876 

3 0.0816 0.0941 0.0844 0.0922 

4 0.0816 0.0816 0.0816 0.0816 

5 0.0816 0.0816 0.0816 0.0816 

6 0.0816 0.0816 0.0816 0.0816 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0816 0.0816 0.0816 

9 0.0816 0.0907 0.0827 0.0863 

10 0.0816 0.0898 0.0724 0.0889 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
 
 



119 
 

 
Figure 6.50 Means and Confidence intervals for RIMCA in MI and SI (MCAR LNR) 

 

 
Figure 6.51 MI and CC vs. CD Mean and CI’s on MCAR LNR High correlated data 

 

 
Figure 6.52 SI and CC vs. CD Mean and CI’s on MCAR LNR High correlated data 
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Discussion 

Table 6.15 indicates that MI produces wider confidence intervals for all 

variables, with CC providing even wider confidence intervals for all variables. 

The graphical representation of this information is provided in figure 6.50. The 

mean estimate obtained from SI (cf. figure 6.52) for variable one is slightly 

closer to the true mean value (CD mean) than the MI estimate and for variable 

ten the SI estimate is equal to the true mean. Regardless of this, for all the 

remaining variables the mean estimates provided by MI are closer to the true 

mean than SI. The CC and MI estimates are similar (cf. figure 6.51). From 

figures 6.50 and 6.52 it can be observed that the MI mean estimates closely 

resemble the true mean values and shows good fit. 

6.5.2.8 MCAR LNR Low correlation structure 

Table 6.16 Confidence interval widths, means and standard errors obtained from 
complete-case analysis and RIMCA in SI and MI for MCAR LNR low correlated data in 
comparison to the true values 
MCAR LNR 

Low 
Confidence Interval Width Mean 

Variable CD CC SI MI CD CC SI MI 

1* 0.3239 0.3673 0.2876 0.3484 2.02 2.0500 2 2.0556 

2* 0.3239 0.3678 0.3282 0.3546 2.02 2.0250 1.7700 2.0280 

3* 0.3239 0.3678 0.2848 0.3580 2.02 1.9750 2.0100 1.9698 

4 0.3239 observed observed observed 2.02 observed observed observed 

5 0.3239 observed observed observed 2.02 observed observed observed 

6 0.3239 observed observed observed 2.02 observed observed observed 

7 0.3239 observed observed observed 2.02 observed observed observed 

8 0.3239 observed observed observed 2.02 observed observed observed 

9* 0.3239 0.3611 0.2848 0.3443 2.02 2 2.0100 2.0026 

10* 0.3239 0.3680 0.3173 0.3551 2.02 2 2.1300 1.9834 

MCAR LNR 
Low 

Standard Errors 

Variable CD CC SI MI 

1 0.0816 0.0923 0.0725 0.0888 

2 0.0816 0.0924 0.0827 0.0904 

3 0.0816 0.0924 0.0718 0.0913 

4 0.0816 0.0816 0.0816 0.0816 

5 0.0816 0.0816 0.0816 0.0816 

6 0.0816 0.0816 0.0816 0.0816 

7 0.0816 0.0816 0.0816 0.0816 

8 0.0816 0.0816 0.0816 0.0816 

9 0.0816 0.0907 0.0718 0.0878 

10 0.0816 0.0924 0.0800 0.0905 

CD – complete data, CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI)  
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Figure 6.53 Means and Confidence intervals for RIMCA in MI and SI (MCAR LNR) 

 

 
Figure 6.54 MI and CC vs. CD Mean and CI’s on MCAR Low High correlated data 

 

 
Figure 6.55 SI and CC vs. CD Mean and CI’s on MCAR LNR Low correlated data 
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Discussion 

Table 6.16 indicates that MI produces wider confidence intervals for all 

variables and the confidence intervals provided by CC are even wider than the 

MI intervals. The graphical representation of this information is provided in 

figure 6.53. The standard errors obtained from CC analysis are larger than the 

standard errors of the imputation procedures. The mean estimates obtained 

from RIMCA in MI (cf. figure 6.54) are closer to the true mean values for most 

of the variables than RIMCA in SI (cf. figure 6.55). The MI procedure shows 

good fit in this particular dataset. 

Conclusion for MCAR LNR for High- and Low correlated data 

SI and MI perform slightly better in the low correlation structure of the 

simulated data of this context. Once again the confidence intervals provided by 

MI are wider for all variables, as well as estimates showing better fit. Therefore 

MI outperforms SI in this dataset. 

 

6.5.3 Objective one: Conclusion 

Rubin’s (1987:21) statement regarding the degrees of freedom obtained for the 

calculation of the confidence intervals is confirmed. Large values for the 

degrees of freedom ( ) were to be expected in the presence of small between 

variance (  ) values with respect to the total variance ( ). Another indication 

would be the use of a large number of multiple datasets ( ). Both of these 

indications are observed by the results of the generated data, in each case the 

between-variance (  ) values are smaller than the total variance ( ) and ten 

multiple datasets are generated, which is considered as a large number (Rubin 

1987:2, 15 & cf. 3.4.3.2). In the presence of large degrees of freedom values, 

the t-critical values will be Normal (1.96) with regard to a 95% confidence 

interval. The tables of the statistics obtained from Rubin’s rules (cf. 3.5) are 

available in appendix L. 
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MAR mechanism 

The confidence intervals obtained from MI are wider in each of the variables for 

each of the simulated datasets with a MAR mechanism. This confirms that the 

uncertainty added by MI is successfully incorporated. MI performs slightly 

better in data with a low correlation structure. This is interesting, since 

literature (Josse et al. 2012:114) states that RIMCA in SI is expected to 

perform better for highly correlated data and MAR values. It is found that the 

mean estimates provided by MI are closer to the true means than the SI 

estimates. Also, in the MAR HR and MAR HNR high correlated data SI provided 

estimates that are statistically different from the true values. RIMCA in MI is a 

better fit for the data and incorporates the additional uncertainty expected from 

MI. 

MCAR mechanism 

In all of the datasets MI provides better mean estimates and wider confidence 

intervals in most of the variables. In the MCAR HR and MCAR HNR datasets for 

both correlation structures SI provided inaccurate estimates for some of the 

variables which are statistically different from the true values. The difference in 

the performance of RIMCA in MI with regard to the correlation structures is 

very slight. MI performs well in both correlation structures. 

In general 

For all simulated datasets it is found that the CC estimates and MI estimates 

are extremely close to each other, therefore the assumption can be made that 

estimates close to the estimates obtained from CC analysis will provide 

satisfying results in the context of the specific data. The MI confidence intervals 

are narrower than the confidence intervals provided by CC analysis. The narrow 

confidence intervals can be explained by perhaps a small amount of variance 

that is added on each imputation. An underestimated variance was expected, 

because of the fixed parameter values (cf. 5.5). 

Even though one of the great advantages of MI is the increase in the 

uncertainty (cf. 3.4.3.2), Rubin (1996:482) argues that from a statistical 
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viewpoint sharper confidence intervals with at least 95% coverage will be 

preferred over wider confidence intervals with exactly 95% coverage. Rubin 

(1996:481) also discuss the occurrence of superefficient imputations, which 

could be explained by the allowance of extra information in the sense of 

allowing for extra uncertainty, as opposed to single imputation methods and 

complete-case analysis, therefore the estimates provided by MI could be more 

efficient and precise than the estimates provided by CC. 

The advantages (Rubin 1978:16) of MI over SI listed in the literature review of 

MI (cf. 3.4.3.2) were confirmed by the results. 

It can be seen that in each case the MI estimates closely resemble the true 

means in comparison to the SI estimates. Albeit slight, the estimates obtained 

from RIMCA in SI are more variable in some cases than those obtained from 

MI. This confirms the advantage stating that MI increases the accuracy of 

estimation. Another advantage is that in combining the multiple datasets valid 

inferences are attained incorporating additional variance caused by the missing 

values. 

In the literature extreme variability can be a result of an imputation model that 

does not fit the data well and is far from the actual data or where an extreme 

uncertainty occurs regarding the missingness mechanism (Meng 1994:555). 

Since all missingness mechanisms were known, this confirms that in most cases 

SI does not fit the actual data well. 

This confirms that RIMCA in MI performs well and is a suitable imputation 

technique. 
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6.6 Objective two: To investigate the accuracy of the 

predictions made by RIMCA in MI when applied to a 

simulated dataset. 

The results obtained for this objective will be presented by means of tables 

consisting of the apparent error rates (incorrect imputations) and overall 

success rates (correct imputations). Information regarding the performance of 

RIMCA in MI and RIMCA in SI will be provided and compared. In order to 

determine the accuracy of the predictions obtained from the RIMCA algorithm 

in MI, apparent error rates are calculated for each of the   randomly selected 

dimensions (cf. 5.3.2) as was used in objective one. Since only one dimension 

is chosen a priori for SI, the apparent error rates for all possible   dimensions 

are used to establish the apparent error rates for SI. This will guide the reader 

to allocate the dimensions which performs better for single imputation 

purposes. 

It is important to note that the high percentage of missing values in the MAR 

mechanisms are 16% and for the low percentage of missing values is 8%. The 

high percentage of missing values present in the MCAR datasets is 30% and 

the low percentage of missing values is 10%. Therefore the average values 

presented in the tables show the percentage of incorrect imputations made 

with respect to the percentage of missing values for the specific dataset. The 

success rates for the imputations with regard to the percentage of missing 

values are also given, finally displaying the overall percentage of correctly 

imputed values per specific dataset. 

Table 6.17, 6.19, 6.21 and 6.23 displays the error rates for the data simulated 

over all dimensions, for the SI tables (cf. table 6.21 & 6.23) the highlighted 

cells indicate the smallest error rate which is achieved for the corresponding 

number of dimensions per dataset. Table 6.18, 6.20, 6.22 and 6.24 represent 

the average error rates obtained over all of the dimensions with respect to the 

percentage of missing values for the specific simulated dataset in question. The 

apparent success rates with respect to the percentage of missing values, along 
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with the overall success rates of the imputations are presented. The apparent 

error rates obtained from RIMCA in MI will be presented and discussed and 

followed by the results obtained from RIMCA in SI. 

6.6.1 Apparent error rates: RIMCA in MI 

The results obtained from a selection of ten dimensions are displayed in table 

6.17 and 6.19 with the low and high correlation structures, respectively. The 

datasets obtained from each dimension are indicated by MI 1, MI2, MI3, etc. 

Also the error rates and success rates are presented in table 6.18 and 6.20. 

Table 6.17 Apparent error rates: RIMCA in MI with a low correlation structure 

D
a
ta

se
t 

High percentage of missing values Low percentage of missing values 

Random Non-random Random Non-random 

MAR MCAR MAR MCAR MAR MCAR MAR MCAR 

16% 30% 16% 30% 8% 10% 8% 10% 

MI 1 10.16 20.20 10.70 20.40 5.70 6.70 5.24 6.86 

MI 2 11.14 20.04 10.96 20.08 5.32 7 5.48 6.68 

MI 3 10.90 20.86 10.82 20.06 5.32 6.58 5.54 6.62 

MI 4 10.60 20.70 11.18 19.78 5.62 6.58 5.38 6.42 

MI 5 11.04 20.12 11.30 20.54 5.62 6.60 5.38 6.82 

MI 6 10.58 20.28 10.92 19.58 5.54 6.56 5.26 6.84 

MI 7 11.28 20.14 11.28 19.86 5.78 6.56 5.54 6.80 

MI 8 11.32 20.34 10.98 19.68 5.90 6.54 5.38 6.48 

MI 9 10.58 19.82 11.40 20.32 5.62 6.66 5.40 6.70 

MI 10 11.14 20.04 11.28 20.36 5.64 6.96 5.54 6.60 

 

Table 6.18 Apparent error rates and success rates of the imputations made by 
RIMCA in MI for simulated data with a low correlation structure 

RIMCA in MI 
Low correlated data 

Average apparent 
error rate 

Average apparent 
success rate 

Average overall 
apparent success rate 

MAR HR 10.874 % of 16% 5.126 % of 16% 32.0375 % 

MCAR HR 20.254 % of 30% 9.746 % of 30% 32.49 % 

MAR HNR 11.082 % of 16% 4.918 % of 16% 30.74 % 

MCAR HNR 20.066% of 30% 9.934 % of 30% 33.11 % 

MAR LR 5.606 % of 8% 2.394 % of 8% 29.925 % 

MCAR LR 6.674 % of 10% 3.326 % of 10% 33.26 % 

MAR LNR 5.414 % of 8% 2.586 % of 8% 32.325 % 

MCAR LNR 6.682 % of 10% 3.318 % of 10% 33.18 % 

The interpretation of table 6.18 will be done in depth, providing guidance for 

the interpretation of table 6.20, 6.22 and 6.24. 
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In the MAR data with a random pattern and high percentage of missing values, 

10.874% of the possible 16% missing values are imputed incorrectly, which 

results in a success rate of 5.126% and an overall imputation success rate of 

32.0375%. The MAR data with a non-random pattern and high percentage of 

missing values shows incorrect imputations are made 11.082% of the time, 

implying a success rate of 4.918% and an overall 30.74% of missing values 

being imputed correctly. The MCAR values with random and non-random 

patterns obtained success rates of 9.746% and 9.934%, respectively. The 

overall imputation success rate for MCAR values with a random pattern is 

32.49% and for the non-random pattern is 33.11%. In the case of the low 

percentage of missing values present in the datasets, the MAR mechanism with 

a random pattern has a success rate of 2.394% with regard to the percentage 

of missing values, which results in an overall success rate of 29.925%. The 

MAR mechanism with a non-random pattern obtained an overall success rate of 

32.325%. The MCAR mechanisms differ slightly with respect to patterns; the 

random pattern has an overall success rate of 32.26%, whereas the non-

random pattern has a 33.18% overall success rate. 

On average, irrespective of the simulation protocol followed per dataset, 

32.13% of all the imputations made by RIMCA as a MI procedure are correct 

for the simulated data with a low correlation structure. The imputations made 

for the simulated data with MCAR values perform slightly better than the MAR 

cases, when taking the same pattern and percentage of missing values into 

consideration. 
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Table 6.19 Apparent error rates: RIMCA in MI with a high correlation structure 

D
a
ta

se
t 

High percentage of missing values Low percentage of missing values 

Random Non-random Random Non-random 

MAR MCAR MAR MCAR MAR MCAR MAR MCAR 

16% 30% 16% 30% 8% 10% 8% 10% 

MI 1 11.74 20.28 12.56 19.90 5.64 6.82 5.48 6.54 

MI 2 12 20.90 12.14 19.34 5.60 6.38 5.66 6.90 

MI 3 11.84 20 11.86 20.48 5.78 7.02 5.68 6.76 

MI 4 11.92 20.04 11.62 20.20 5.62 6.92 5.70 6.74 

MI 5 12.30 19.72 11.66 20.26 5.66 6.72 5.78 6.72 

MI 6 12.32 20.22 11.62 20.18 5.78 6.62 5.56 6.84 

MI 7 11.64 19.84 11.88 20.70 5.56 6.90 5.68 6.74 

MI 8 12.32 19.22 11.90 19.98 5.94 6.34 5.68 6.66 

MI 9 12.18 19.74 11.66 20.40 5.98 6.84 5.62 6.76 

MI 10 12.20 20.38 12.50 20.22 5.74 7.06 5.86 6.64 

 

Table 6.20 Apparent error rates and success rates of the imputations made by 
RIMCA in MI for simulated data with a high correlation structure 

RIMCA in MI 
High correlated 

data 

Average apparent 
error rate 

Average apparent 
success rate 

Average overall 
apparent success rate 

MAR HR 12.046 % of 16% 3.954 % of 16% 24.71 % 

MCAR HR 20.034 % of 30% 9.966 % of 30% 33.22 % 

MAR HNR 11.94 % of 16% 4.06 % of 16% 25.375 % 

MCAR HNR 20.166 % of 30% 9.834 % of 30% 32.78 % 

MAR LR 5.73 % of 8% 2.27 % of 8% 28.375 % 

MCAR LR 6.762 % of 10% 3.238 % of 10% 32.38 % 

MAR LNR 5.67 % of 8% 2.33 % of 8% 29.125 % 

MCAR LNR 6.73 % of 10% 3.27 % of 10% 32.7 % 

 

On average, irrespective of the simulation protocol followed per dataset, 

29.83% of all the imputations made by RIMCA as a MI procedure are correct 

for the simulated data with a high correlation structure. Again it can be 

observed that the imputations made for the simulated data with MCAR values 

perform better than the MAR cases when taking the same pattern and 

percentage of missing values into consideration. 

Discussion 

The apparent error rates for each of the multiple datasets for a specific 

missingness mechanism, percentage of missing values, specific pattern and 

correlation structure are similar. This once again confirms that the different 

dimensions perform similarly and that the RIMCA algorithm produces correlated 
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results for each of the dimensions once convergence is reached. The overall 

success rates were higher for the MAR cases in the presence of a low 

correlation structure. Whereas the success rates for the MCAR cases were 

higher than MAR for both high and low correlation structures. 

It should be noted that the error rates are only an indication of the 

performance of the RIMCA algorithm in terms of the accuracy of the guesswork 

and not an indication of which dimensions would deliver the best results. The 

error rates only determine the accuracy of the RIMCA algorithm to predict 

missing values in the context of the simulated datasets. 
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6.6.2 Apparent error rates: RIMCA in SI 

Again, the results obtained from all the possible   dimensions are displayed in 

table 6.21 and 6.23 with the low and high correlation structures, respectively. 

As well as the error rates and success rates illustrated in table 6.22 and 6.24. 

Table 6.21 Apparent error rates: RIMCA in SI with a low correlation structure 

#
 

D
im

e
n
si

o
n
s High percentage of missing values Low percentage of missing values 

Random Non-random Random Non-random 

MAR MCAR MAR MCAR MAR MCAR MAR MCAR 

16% 30% 16% 30% 8% 10% 8% 10% 

1 12.7 21.7 13.2 19.4 7.4 8.1 6.4 7.4 

2 12.7 21.7 13.0 19.5 7.4 7.5 6.4 7.4 

3 13.2 21.5 13.0 19.5 7.4 7.8 6.5 7.3 

4 12.8 21.2 12.9 19.4 7.4 7.9 6.4 7.3 

5 12.9 21.4 13.0 19.4 7.4 8.0 6.4 7.2 

6 12.9 21.4 13.3 19.4 7.4 7.8 6.4 7.1 

7 12.9 21.2 13.2 19.7 7.4 7.7 6.5 7.2 

8 12.9 21.3 13.1 20.0 7.4 7.7 6.4 7.2 

9 12.7 21.3 13.1 20.2 7.4 7.7 6.4 7.1 

10 12.7 21.3 13.1 20.2 7.4 7.6 6.4 7.5 

11 12.6 21.6 13.0 20.0 7.4 7.7 6.6 7.3 

12 13.0 21.7 13.0 20.0 7.4 7.7 6.7 7.3 

13 12.5 21.8 13.1 20.3 7.4 7.7 6.8 7.2 

14 12.6 21.7 13.1 20.2 7.4 7.7 6.8 7.4 

15 12.8 21.6 13.0 20.2 7.4 7.7 6.9 7.2 

16 12.8 21.9 13.1 20.5 7.4 7.7 6.9 7.3 

17 12.8 22.0 13.1 20.4 7.4 7.7 6.9 7.4 

18 13.0 21.8 13.1 20.4 7.4 7.7 6.9 7.4 

19 13.0 21.6 13.1 20.5 7.4 7.7 6.9 7.4 

 

Table 6.22 Apparent error rates and success rates of the imputations made by 
RIMCA in sI for simulated data with a low correlation structure 

RIMCA in SI 
Low correlated 

data 

Average apparent 
error rate 

Average apparent 
success rate 

Average overall 
apparent success rate 

MAR HR 12.82 % of 16% 3.18 % of 16% 19.90 % 

MCAR HR 21.56 % of 30% 8.44 % of 30% 28.12 % 

MAR HNR 13.08 % of 16% 2.92 % of 16% 18.26 % 

MCAR HNR 19.96 % of 30% 10.04 % of 30% 33.47 % 

MAR LR 7.4 % of 8% 0.60 % of 8% 7.50 % 

MCAR LR 7.74 % of 10% 2.26 % of 10% 22.58 % 

MAR LNR 6.61 % of 8% 1.39 % of 8% 17.37 % 

MCAR LNR 7.29 % of 10% 2.71 % of 10% 27.05 % 

 



131 
 

On average, irrespective of the simulation protocol followed per dataset, 21.8% 

of all the imputations made by RIMCA as a SI procedure are correct for the 

simulated data with a low correlation structure. The imputations made for the 

simulated data with MCAR values perform better than the MAR cases when 

taking the same pattern and percentage of missing values into consideration. 

This was also observed for the MI procedures. 

Table 6.23 Apparent error rates: RIMCA in SI with a high correlation structure 

#
 

D
im

e
n
si

o
n
s High percentage of missing values Low percentage of missing values 

Random Non-random Random Non-random 

MAR MCAR MAR MCAR MAR MCAR MAR MCAR 

16% 30% 16% 30% 8% 10% 8% 10% 

1 15.5 20.6 15.4 20.0 7.8 7.7 7.7 7.0 

2 15.5 19.6 15.4 19.9 7.8 7.7 7.7 7.0 

3 15.5 19.5 15.3 19.9 7.8 7.5 7.7 6.9 

4 15.5 19.6 15.4 19.9 7.8 7.5 7.7 6.9 

5 15.5 19.9 15.2 20.0 7.8 7.6 7.6 7.0 

6 15.5 19.7 15.2 20.1 7.8 7.6 7.7 7.0 

7 15.5 19.8 15.3 20.1 7.8 7.7 7.7 7.0 

8 15.5 19.9 15.3 20.1 7.8 7.7 7.7 6.9 

9 15.5 19.9 15.3 20.1 7.8 7.7 7.7 6.9 

10 15.5 20.0 15.4 20.3 7.8 7.7 7.7 7.0 

11 15.5 19.8 15.3 20.3 7.8 7.7 7.8 7.0 

12 15.5 19.7 15.3 20.1 7.8 7.7 7.8 7.0 

13 15.5 19.7 15.3 20.2 7.8 7.8 7.8 7.0 

14 15.5 19.8 15.4 20.3 7.8 7.8 7.7 7.1 

15 15.5 19.8 15.3 20.5 7.8 7.8 7.7 7.1 

16 15.5 19.9 15.2 20.3 7.8 7.8 7.7 7.1 

17 15.5 20.0 15.3 21.0 7.8 7.8 7.7 7.1 

18 15.5 19.9 15.3 20.7 7.8 7.8 7.7 7.1 

19 15.5 19.9 15.3 20.9 7.8 7.8 7.7 7.1 

 

Table 6.24 Apparent error rates and success rates of the imputations made by 
RIMCA in SI for simulated data with a high correlation structure 

RIMCA in SI 
High correlated 

data 

Average apparent 
error rate 

Average apparent 
success rate 

Average overall 
apparent success rate 

MAR HR 15.5 % of 16% 0.50 % of 16% 3.13 % 

MCAR HR 19.84 % of 30% 10.16 % of 30% 33.86 % 

MAR HNR 15.31 % of 16% 0.69 % of 16% 4.31 % 

MCAR HNR 20.25 % of 30% 9.75 % of 30% 32.51 % 

MAR LR 7.8 % of 8% 0.20 % of 8% 2.50 % 

MCAR LR 7.71 % of 10% 2.29 % of 10% 22.95 % 

MAR LNR 7.71 % of 8% 0.29 % of 8% 3.62 % 

MCAR LNR 7.01 % of 10% 2.99 % of 10% 29.89 % 
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On average, irrespective of the simulation protocol followed per dataset, 16.6% 

of all the imputations made by RIMCA as a SI procedure are correct for the 

simulated data with a high correlation structure. Once again, the imputations 

made for the simulated data with MCAR values perform better than the MAR 

cases when taking the same pattern and percentage of missing values into 

consideration. 

Discussion 

The error rates of the different dimensions achieved for the same datasets 

obtained from SI are highly correlated and in some cases equal. It was 

expected that the smaller dimensions would result in a higher error rate 

corresponding to underfitting (fuzziness), as well as high error rates for the 

larger dimensions where possible overfitting could occur. This however is not 

the case for all of the dimensions and is therefore only based on expectations 

and prior beliefs. 

Since the error rates obtained for the different dimensions are so similar, it 

again confirms that a randomly selected dimension to be retained for SI is 

sufficient (cf. 6.3). The similarities between the datasets obtained from the 

different dimensions could be an indication of the success of the regularisation 

algorithm, which maybe implies that the regularisation term of the algorithm 

performs adequately over all dimensions in decreasing the variance. 

The statement made by Josse et al. (2012:114) regarding the performance of 

RIMCA in SI is contradicted, since according to above mentioned authors 

RIMCA is expected to perform better under a MAR mechanism, especially when 

the data has a strong correlation structure. In both the low and high correlation 

cases, the overall success rates obtained from the MCAR mechanisms are 

higher, specifically for the high correlated data structure. 

6.6.3 Objective two: Conclusion 

The percentage of correct imputations varied from approximately 30% for the 

MI application of RIMCA and approximately 20% for the application of RIMCA 

in SI. Therefore, MI evidently outperforms SI, since approximately 10% more 
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data entries are predicted and imputed correctly. The low percentage of correct 

imputations might be the result of a reserved structure. It will be interesting to 

investigate the change in the profiles after imputation, in order to determine 

whether the missing variable values per individual are replaced with the 

variable values of other individuals in the survey with similar observed results. 

In other words, two individuals may have had different responses in the 

complete data, but then after missingness is applied, they are identical. 

Through imputation, the first of the two might have obtained the second’s 

original values through imputation, while the second might have obtained the 

first’s original values. This would create apparent errors where, essentially, 

there are none (the two individuals have just been swapped in the data set 

after imputation). This suggestion is illustrated in the hypothetical example 

provided in table 6.25–6.27. 

Table 6.25 Hypothetical example: observed survey data 
Observed data Var1 Var2 Var3 

Individual 1 2 2 1 

Individual 2 2 2 3 

 
Table 6.26 Hypothetical example: entered missing values 
Incomplete data Var1 Var2 Var3 

Individual 1 2 2 NaN 

Individual 2 2 2 NaN 

 
Table 6.27 Hypothetical example: imputed data 
Imputed data Var1 Var2 Var3 

Individual 1 2 2 3 

Individual 2 2 2 1 

 

In conclusion, this paper strongly advises the use of the RIMCA algorithm in MI, 

since the procedure performs well in the prediction of missing values. The 

applicability of the RIMCA algorithm to be used as a multiple imputation model 

is established and encouraged.  
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6.7 Simulation summary 

The bias, mean square error (MSE) and coverage obtained over a 1000 

simulations are summarised with regard to SI, complete-case analysis (CC) and 

MI. The coverage refers to the percentage of 95% confidence intervals that 

contain the complete data (CD) estimate, also known as the true mean of the 

complete data. Again, each simulation consists of a newly generated dataset, 

then inserted with missing values and imputed or handled with a specific 

technique. In the case of MI, a set of ten randomly selected dimensions are 

used to impute the datasets and then combined using Rubin’s rules. The SI 

makes use of a predetermined dimension, which is chosen as ten (cf. 5.5 & 

6.3). 

The results obtained for the MAR mechanisms are displayed in table 6.28–6.35 

(cf. 6.7.1) and the results obtained for the MCAR mechanisms will follow in 

table 6.36–6.43 (cf. 6.7.2). 

6.7.1 MAR mechanisms 

Table 6.28 MAR HNR High correlation: summary over 1000 simulations 

MAR HNR  

High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.3333 0.1759 0.1756 0.1111 0.0309 0.0308 0.4 43.4 37 

Variable 3 0.3330 0.1752 0.1749 0.1109 0.0307 0.0306 0.4 43.4 36.7 

Variable 4 0.3332 0.1757 0.1753 0.1110 0.0309 0.0307 0.4 45 39 

Variable 5 0.3325 0.1755 0.1751 0.1105 0.0308 0.0306 0.9 45.6 38.8 

Variable 6 0.3338 0.1757 0.1752 0.1114 0.0309 0.0307 0.3 44 36.6 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.3129 0.1680 0.1677 0.0979 0.0282 0.0281 2.8 60.8 49.9 

Variable 9 0.3128 0.1685 0.1680 0.0979 0.0284 0.0282 3.5 58.4 49.7 

Variable 10 0.3110 0.1684 0.1679 0.0967 0.0284 0.0282 4.6 62.7 53.3 
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Table 6.29 MAR HNR Low correlation: summary over 1000 simulations 

MAR HNR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.2298 0.0823 0.0820 0.0520 0.0067 0.0066 16.3 99.5 99.2 

Variable 3 0.2316 0.0828 0.0828 0.0526 0.0068 0.0068 16 99.7 99.6 

Variable 4 0.2247 0.0809 0.0807 0.0496 0.0064 0.0064 18.6 99.7 99.2 

Variable 5 0.2294 0.0816 0.0813 0.0518 0.0066 0.0065 15.7 99.6 99.2 

Variable 6 0.2286 0.0825 0.0823 0.0520 0.0067 0.0067 16.4 98.9 98.5 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.1935 0.0784 0.0782 0.0317 0.0060 0.0060 35.7 99.9 99.6 

Variable 9 0.1910 0.0780 0.0777 0.0308 0.0060 0.0059 37.1 99.9 99.6 

Variable 10 0.1951 0.0780 0.0776 0.0333 0.0060 0.0059 35.7 99.8 99.5 

 

Table 6.30 MAR HR High correlation: summary over 1000 simulations 

MAR HR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.3326 0.1742 0.1741 0.1106 0.0303 0.0303 0.5 49.3 42.5 

Variable 3 0.3338 0.1746 0.1742 0.1114 0.0305 0.0304 0.4 48 42.2 

Variable 4 0.3327 0.1752 0.1751 0.1107 0.0307 0.0307 0.5 46.8 39.9 

Variable 5 0.3336 0.1746 0.1742 0.1113 0.0305 0.0303 0.4 47.3 41.2 

Variable 6 0.3339 0.1759 0.1753 0.1115 0.0309 0.0307 0.7 44.4 38.2 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.3269 0.1749 0.1746 0.1069 0.0306 0.0305 3.4 52.4 42.2 

Variable 9 0.3231 0.1754 0.1750 0.1044 0.0307 0.0306 3.5 53.2 45 

Variable 10 0.3261 0.1750 0.1746 0.1063 0.0306 0.0305 2.7 52 42.4 

 

Table 6.31 MAR HR Low correlation: summary over 1000 simulations 

MAR HR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.2361 0.0843 0.0843 0.0550 0.0070 0.0070 13.8 99.5 98.8 

Variable 3 0.2355 0.0828 0.0825 0.0554 0.0068 0.0068 13.3 99.6 98.8 

Variable 4 0.2302 0.0846 0.0845 0.0522 0.0070 0.0070 17.5 99.6 98.4 

Variable 5 0.2306 0.0838 0.0836 0.0526 0.0069 0.0069 16.3 99.6 99.1 

Variable 6 0.2348 0.0856 0.0852 0.0545 0.0072 0.0072 14.8 99.4 99.1 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.2080 0.0833 0.0830 0.0392 0.0069 0.0068 33.1 99.4 98.4 

Variable 9 0.2067 0.0830 0.0825 0.0368 0.0068 0.0067 33.1 99.2 98.1 

Variable 10 0.1985 0.0822 0.0821 0.0348 0.0067 0.0067 36.5 99.3 99 
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Table 6.32 MAR LNR High correlation: summary over 1000 simulations 

MAR LNR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.1602 0.0774 0.0774 0.0257 0.0060 0.0060 46.1 100 100 

Variable 3 0.1615 0.0780 0.0777 0.0261 0.0061 0.0060 47.7 100 100 

Variable 4 0.1606 0.0780 0.0777 0.0258 0.0061 0.0060 46.1 100 100 

Variable 5 0.1596 0.0776 0.0774 0.0255 0.0060 0.0060 48.1 100 100 

Variable 6 0.1618 0.0786 0.0783 0.0262 0.0062 0.0061 43.4 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.1191 0.0738 0.0736 0.0137 0.0055 0.0054 77.1 100 100 

Variable 9 0.1179 0.0745 0.0740 0.0137 0.0055 0.0055 80 100 100 

Variable 10 0.1192 0.0742 0.0738 0.0140 0.0055 0.0054 78.9 100 100 

 

Table 6.33 MAR LNR Low correlation: summary over 1000 simulations 

MAR LNR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.1073 0.0380 0.0381 0.0106 0.0013 0.0013 95.4 100 100 

Variable 3 0.1119 0.0400 0.0399 0.0120 0.0015 0.0015 94.1 100 100 

Variable 4 0.1054 0.0382 0.0382 0.0106 0.0013 0.0013 95 100 100 

Variable 5 0.1063 0.0392 0.0392 0.0105 0.0014 0.0014 95.4 100 100 

Variable 6 0.1064 0.0381 0.0380 0.0107 0.0013 0.0013 96.2 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.0759 0.0373 0.0374 0.0023 0.0012 0.0012 96.1 100 100 

Variable 9 0.0755 0.0378 0.0375 0.0024 0.0013 0.0012 96.4 100 100 

Variable 10 0.0740 0.0368 0.0368 0.0021 0.0012 0.0012 97.6 100 100 

 

Table 6.34 MAR LR High correlation: summary over 1000 simulations 

MAR LR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.1652 0.0804 0.0801 0.0273 0.0065 0.0064 40.9 100 100 

Variable 3 0.1644 0.0808 0.0808 0.0270 0.0065 0.0065 41.5 100 100 

Variable 4 0.1648 0.0809 0.0804 0.0271 0.0065 0.0065 39.5 100 100 

Variable 5 0.1641 0.0806 0.0804 0.0269 0.0065 0.0065 41.4 100 100 

Variable 6 0.1645 0.0805 0.0804 0.0271 0.0065 0.0065 41 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.1288 0.0780 0.0776 0.0165 0.0061 0.0060 68.7 100 100 

Variable 9 0.1270 0.0783 0.0781 0.0160 0.0061 0.0061 70.7 100 100 

Variable 10 0.1244 0.0782 0.0780 0.0154 0.0061 0.0061 73 100 100 
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Table 6.35 MAR LR Low correlation: summary over 1000 simulations 

MAR LR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0 0 0 0 0 0 100 100 100 

Variable 2 0.1073 0.0388 0.0388 0.0109 0.0014 0.0013 91.5 100 100 

Variable 3 0.1086 0.0405 0.0402 0.0109 0.0015 0.0014 91.8 100 100 

Variable 4 0.1059 0.0386 0.0384 0.0108 0.0014 0.0013 91 100 100 

Variable 5 0.1094 0.0391 0.0391 0.0112 0.0014 0.0014 92 100 100 

Variable 6 0.1063 0.0385 0.0384 0.0108 0.0014 0.0013 92.7 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0.0788 0.0377 0.0377 0.0024 0.0013 0.0012 93.7 100 100 

Variable 9 0.0820 0.0390 0.0388 0.0029 0.0014 0.0013 92.6 100 100 

Variable 10 0.0801 0.0389 0.0387 0.0027 0.0013 0.0013 93.5 100 100 

 

Discussion 

In the presence of a high percentage of missing values in the data (cf. Table 

6.28–6.31) the bias and MSE values for all variables are smaller for low 

correlated data than for highly correlated data. Furthermore, the coverage is 

greater for data with a low correlation structure. This is the case for SI, CC and 

MI techniques. When a smaller percentage of missing values occurs in the data, 

it is observed that a smaller bias, larger MSE and better coverage is obtained 

from data with a low correlation structure, also for all of the techniques. 

Therefore the opposite is true for the high correlated data; larger bias, smaller 

MSE and smaller coverage in comparison to low correlated data. 

SI delivers poor coverage especially for a high percentage of missing values 

and when a non-random pattern of missing values is entered. As the amount of 

missing values decreases, the coverage of the SI procedure increases. CC 

provides larger coverage than MI, but in a majority of the cases the bias and 

MSE’s obtained from MI are slightly smaller than those of CC. 

In general, it is clear that MI provides more satisfactory results than SI, with 

smaller bias and MSE and larger coverage.  
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6.7.2 MCAR mechanisms 

Table 6.36 MCAR HNR High correlation: summary over 1000 simulations 
MCAR HNR  

High 
correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.3899 0.0822 0.0823 0.0036 0.0000 0.0000 35.7 99.1 94.9 

Variable 2 0.3896 0.0818 0.0817 0.0036 0.0000 0.0000 35.4 98.3 94 

Variable 3 0.3877 0.0803 0.0805 0.0025 0.0000 0.0000 36.8 98.6 94 

Variable 4 0 0 0 0 0 0 100 100 100 

Variable 5 0 0 0 0 0 0 100 100 100 

Variable 6 0 0 0 0 0 0 100 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0 0 0 0 0 0 100 100 100 

Variable 9 0.3948 0.0790 0.0787 0.0046 0.0000 0.0000 33.5 98.5 95 

Variable 10 0.4011 0.0812 0.0810 0.0035 0.0000 0.0000 33.1 98.5 94.5 

 
Table 6.37 MCAR HNR Low correlation: summary over 1000 simulations 

MCAR HNR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.3910 0.0804 0.0804 0.0045 0.0000 0.0000 36.4 99.2 94.9 

Variable 2 0.4027 0.0832 0.0835 0.0015 0.0000 0.0000 34.2 98.6 94.2 

Variable 3 0.3972 0.0824 0.0825 0.0046 0.0000 0.0000 35.2 98.3 94.2 

Variable 4 0 0 0 0 0 0 100 100 100 

Variable 5 0 0 0 0 0 0 100 100 100 

Variable 6 0 0 0 0 0 0 100 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0 0 0 0 0 0 100 100 100 

Variable 9 0.4061 0.0816 0.0817 0.0032 0.0000 0.0000 33.3 98.2 94.5 

Variable 10 0.3941 0.0833 0.0839 0.0040 0.0000 0.0000 35.1 98.6 94.2 

 
Table 6.38 MCAR HR High correlation: summary over 1000 simulations 

MCAR HR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.1910 0.0441 0.0440 0.0032 0.0000 0.0000 46.1 100 100 

Variable 2 0.1949 0.0421 0.0419 0.0032 0.0000 0.0000 43.8 100 99.8 

Variable 3 0.1954 0.0441 0.0441 0.0027 0.0000 0.0000 43.4 100 100 

Variable 4 0.1980 0.0429 0.0432 0.0022 0.0000 0.0000 42.7 100 100 

Variable 5 0.1973 0.0431 0.0432 0.0042 0.0000 0.0000 42.9 100 99.8 

Variable 6 0.1963 0.0423 0.0423 0.0029 0.0000 0.0000 43.6 99.9 99.9 

Variable 7 0.1896 0.0416 0.0413 0.0036 0.0000 0.0000 44.6 100 99.8 

Variable 8 0.1924 0.0426 0.0424 0.0022 0.0000 0.0000 43.8 99.9 99.9 

Variable 9 0.1937 0.0420 0.0420 0.0014 0.0000 0.0000 43.6 100 99.9 

Variable 10 0.1953 0.0420 0.0419 0.0040 0.0000 0.0000 43.2 100 99.9 
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Table 6.39 MCAR HR Low correlation: summary over 1000 simulations 

MCAR HR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.2048 0.0430 0.0434 0.0026 0.0000 0.0000 40.6 99.8 99.8 

Variable 2 0.1935 0.0419 0.0419 0.0051 0.0000 0.0000 43.2 100 99.9 

Variable 3 0.1941 0.0430 0.0428 0.0047 0.0000 0.0000 43.5 99.9 99.8 

Variable 4 0.1972 0.0439 0.0438 0.0018 0.0000 0.0000 42.7 99.9 99.8 

Variable 5 0.1944 0.0414 0.0418 0.0028 0.0000 0.0000 43.8 99.9 99.7 

Variable 6 0.1901 0.0412 0.0416 0.0024 0.0000 0.0000 45.1 99.9 99.8 

Variable 7 0.1997 0.0422 0.0423 0.0046 0.0000 0.0000 42 100 100 

Variable 8 0.1931 0.0419 0.0420 0.0037 0.0000 0.0000 43.9 100 100 

Variable 9 0.1941 0.0418 0.0420 0.0030 0.0000 0.0000 42.7 100 99.9 

Variable 10 0.1935 0.0411 0.0411 0.0044 0.0000 0.0000 44.2 100 100 

 

Table 6.40 MCAR LNR High correlation: summary over 1000 simulations 

MCAR LNR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.1331 0.0330 0.0328 0.0027 0.0000 0.0000 52.4 100 100 

Variable 2 0.1286 0.0330 0.0332 0.0025 0.0000 0.0000 53.9 100 100 

Variable 3 0.1368 0.0323 0.0326 0.0030 0.0000 0.0000 49.2 100 100 

Variable 4 0 0 0 0 0 0 100 100 100 

Variable 5 0 0 0 0 0 0 100 100 100 

Variable 6 0 0 0 0 0 0 100 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0 0 0 0 0 0 100 100 100 

Variable 9 0.1314 0.0334 0.0335 0.0018 0.0000 0.0000 53 100 100 

Variable 10 0.1285 0.0340 0.0340 0.0016 0.0000 0.0000 54.6 100 100 

 

Table 6.41 MCAR LNR Low correlation: summary over 1000 simulations 

MCAR LNR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.1347 0.0320 0.0322 0.0028 0.0000 0.0000 50.7 100 100 

Variable 2 0.1361 0.0328 0.0330 0.0029 0.0000 0.0000 49 100 100 

Variable 3 0.1377 0.0331 0.0336 0.0032 0.0000 0.0000 49.5 100 100 

Variable 4 0 0 0 0 0 0 100 100 100 

Variable 5 0 0 0 0 0 0 100 100 100 

Variable 6 0 0 0 0 0 0 100 100 100 

Variable 7 0 0 0 0 0 0 100 100 100 

Variable 8 0 0 0 0 0 0 100 100 100 

Variable 9 0.1334 0.0323 0.0326 0.0024 0.0000 0.0000 51.4 99.9 99.9 

Variable 10 0.1305 0.0330 0.0329 0.0018 0.0000 0.0000 52.2 100 100 
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Table 6.42 MCAR LR High correlation: summary over 1000 simulations 

MCAR LR  
High correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.0637 0.0220 0.0222 0.0010 0.0000 0.0000 95.1 100 100 

Variable 2 0.0624 0.0204 0.0208 0.0010 0.0000 0.0000 96 100 100 

Variable 3 0.0677 0.0225 0.0225 0.0010 0.0000 0.0000 94.6 100 100 

Variable 4 0.0631 0.0217 0.0216 0.0008 0.0000 0.0000 96 100 100 

Variable 5 0.0664 0.0210 0.0210 0.0013 0.0000 0.0000 96.1 100 100 

Variable 6 0.0637 0.0215 0.0216 0.0011 0.0000 0.0000 96.3 100 100 

Variable 7 0.0683 0.0218 0.0219 0.0014 0.0000 0.0000 94.9 100 100 

Variable 8 0.0666 0.0218 0.0220 0.0011 0.0000 0.0000 95 100 100 

Variable 9 0.0660 0.0218 0.0220 0.0010 0.0000 0.0000 95.4 100 100 

Variable 10 0.0658 0.0218 0.0217 0.0011 0.0000 0.0000 94.9 100 100 

 

Table 6.43 MCAR LR Low correlation: summary over 1000 simulations 

MCAR LR  
Low correlation 

Bias MSE Coverage (%) 

SI CC MI SI CC MI SI CC MI 

Variable 1 0.0659 0.0208 0.0208 0.0010 0.0000 0.0000 94.9 100 100 

Variable 2 0.0678 0.0220 0.0220 0.0011 0.0000 0.0000 94.9 100 100 

Variable 3 0.0680 0.0216 0.0217 0.0009 0.0000 0.0000 95.1 100 100 

Variable 4 0.0672 0.0216 0.0219 0.0010 0.0000 0.0000 95.7 100 100 

Variable 5 0.0666 0.0220 0.0221 0.0010 0.0000 0.0000 95.1 100 100 

Variable 6 0.0673 0.0221 0.0223 0.0011 0.0000 0.0000 94.9 100 100 

Variable 7 0.0661 0.0217 0.0219 0.0013 0.0000 0.0000 95.7 100 100 

Variable 8 0.0668 0.0221 0.0223 0.0009 0.0000 0.0000 95.1 100 100 

Variable 9 0.0684 0.0217 0.0219 0.0009 0.0000 0.0000 94.8 100 100 

Variable 10 0.0671 0.0214 0.0214 0.0012 0.0000 0.0000 95 100 100 

 

Discussion 

There is not a significant difference between the low and high correlation 

simulations with respect to each specific type of simulated dataset, as was the 

case for the MAR mechanisms. The difference between bias, MSE and coverage 

between correlation structures are only slight, therefore no conclusion can be 

drawn as to which correlation structure provides more satisfying results. It is 

observed from table 6.36–6.43 that the bias and MSE for SI are larger than the 

bias and MSE values obtained from MI. The coverage provided by MI is nearly 

perfect, with an exception of the MCAR HNR datasets, where a slightly smaller 
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percentage of coverage between 94% and 95% are obtained. Again, the CC 

measures closely resemble the MI measures. 

6.7.3 Simulation summary: Conclusion 

In all of the cases of simulated data it is observed that the coverage provided 

by MI is larger than SI. It is also observed that the bias and MSE values for MI 

are smaller than the bias and MSE values obtained from SI, this was the case 

for all variables in all datasets. It seems as if RIMCA in general performed 

better under a MCAR mechanism (cf. Table 6.28–6.31), since smaller MSE 

values are obtained and the coverage is slightly larger for the CC and MI cases 

and significantly larger for the SI cases, in comparison to the MAR results (cf. 

table 6.36–6.43). 

Therefore, the information provided in sections 6.7.3 and 6.7.4 confirms the 

success of RIMCA in MI over RIMCA in SI. 

6.8 Conclusion 

This concludes the simulation study chapter. A motivation for the choice of 

simulated data was provided, followed by the selection of the specific 

dimensions used for the reconstruction step of the RIMCA algorithm. The 

results obtained for objective one and two applied to simulated data were 

provided and discussed. It was found that RIMCA in MI provides larger 

apparent success rates than RIMCA in SI; therefore predictions made by MI are 

more accurate than those obtained by SI. Further, RIMCA in MI produced wider 

confidence intervals compared to RIMCA in SI, which shows the incorporation 

of uncertainty. Furthermore, the mean estimates obtained from RIMCA in MI 

where closer to the true mean in most of the cases. This was followed by a 

summary of a 1000 simulations, which provided additional information for the 

success of RIMCA in MI over RIMCA in SI. It was found that larger coverage 

and smaller bias and mean square errors were obtained from the MI estimates. 

In the following chapter the real data analysis will be provided and discussed. 

 



Chapter 7  

Real Categorical Dataset 

Canal des Deux Mers 

“The model must fit the data, not vice versa” – Paul-Jean Benzécri   

(Greenacre 1984:10) 

7.1 Introduction 

This chapter will provide the motivation for making use of the specific real 

dataset. The selected dimensions for the reconstruction step of the RIMCA 

algorithm to generate imputed datasets will be discussed and motivated. This 

will be followed by the results obtained from the execution of objective one; 

concluding with the discussion of the real data results. 

7.2 Motivation 

The use of the Canal des Deux Mers dataset enables the researcher to compare 

the performance of the RIMCA in MI against the published results (Josse et al. 

2012) of RIMCA in SI. This allows the researcher to determine which 

imputation approach (SI or MI) performs better with respect to the RIMCA 

algorithm. The dataset is obtained from the R package missMDA (Husson & 

Josse 2013). 

7.3 Dimensions to retain in the second step of RIMCA 

SI 

The dimension selected a priori for the reconstruction step of the algorithms in 

SI is based upon the expectance of underfitting (fuzziness) in the lower 

dimensions and possible overfitting in the larger dimensions, as mentioned by 

Josse et al. (2012:101). Therefore an average number of dimensions are 

selected, which in the case of the real data is ten dimensions. 
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MI 

As was found in the simulation study (cf. 6.3), RIMCA in MI provides stable 

results across a selection of randomly chosen dimensions. Therefore the 

random selection of dimensions is carried out for the real data as well. The set 

of multiple datasets used for further analysis is obtained by randomly selecting 

ten possible dimensions by means of random integer generation function in 

MATLAB (randi). The dimensions obtained for RIMCA in MI are 1, 2, 3, 8, 9, 10, 

13, 17, 18 and 19 for the real data. The dimensions obtained for IMCA in MI 

are 2, 3, 4, 5, 8, 9, 10, 13, 15, 21. 

7.4 IMCA vs. RIMCA in MI 

Table 7.1 Confidence interval widths, means and standard errors obtained from 
complete-case analysis, IMCA in MI and RIMCA in MI 
Real data Confidence Interval Width Mean 

Variable CC IMCA RIMCA CC IMCA RIMCA 

1 0.0738 0.0736 0.0734 1.4300 1.4296 1.4301 

2 0.0988 0.0984 0.0980 1.9085 1.9864 1.9839 

3 0.0641 0.0641 0.0637 1.2928 1.2928 1.2926 

4 0.0500 0.0501 0.0502 1.2676 1.2676 1.2675 

5 0.0495 0.0493 0.0494 1.2575 1.2573 1.2577 

6 0.0416 0.0414 0.0414 1.1610 1.1609 1.1611 

7 0.0567 0.0569 0.0565 1.4741 1.4743 1.4746 

8 0.0567 0.0567 0.0562 1.4095 1.4087 1.4082 

9 0.0764 0.0761 0.0754 1.9383 1.9392 1.9390 

10 0.0626 0.0620 0.0606 1.4017 1.3993 1.4033 

11 0.0640 0.0615 0.0622 1.4491 1.4501 1.4506 

12 0.0785 0.0761 0.0731 2.0155 2.0150 2.0157 

13 0.0827 0.0828 0.0827 2.1938 2.1943 2.1937 

14 0.0635 0.0632 0.0632 1.7150 1.7150 1.7153 

Real data Standard Errors 

Variable CC IMCA RIMCA 

1 0.0188 0.0188 0.0187 

2 0.0252 0.0251 0.0250 

3 0.0163 0.0164 0.0163 

4 0.0127 0.0128 0.0128 

5 0.0126 0.0126 0.0126 

6 0.0106 0.0106 0.0106 

7 0.0144 0.0145 0.0144 

8 0.0144 0.0145 0.0143 

9 0.0195 0.0194 0.0192 

10 0.0159 0.0158 0.0154 

11 0.0163 0.0157 0.0158 

12 0.0200 0.0194 0.0186 

13 0.0211 0.0211 0.0211 

14 0.0162 0.0161 0.0161 

CC – Complete-case analysis 



144 
 

 

In figure 7.1 the estimated mean of the incomplete real data will be referred to 

as CC Mean. The estimated means will be indicated by RIMCA Mean  and IMCA 

Mean, indicating the RIMCA estimate and the IMCA estimate, respectively. 

 
Figure 7.1 Means and Confidence intervals for IMCA and RIMCA in MI 

 

Figure 7.1 illustrates the relationship between the means and confidence 

intervals obtained from IMCA and RIMCA in MI. As was predicted (Josse et al. 

2012:103) the results from IMCA and RIMCA will be closely correlated when 

only a small percentage of missing values occur (approximately 9% missing 

values) and when a strong correlation structure in the data is present. This 

shows that overfitting is not a concern and both algorithms will perform well 

when data is highly correlated and a majority of observed data entries occur. 

The goal of this dissertation is however to determine the performance of 

RIMCA in MI compared to RIMCA in SI. This graph is added for interest’s sake 

and to confirm the results obtained by Josse et al. (2012).  
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7.5 Objective one: To establish whether RIMCA in MI 

outperforms RIMCA in SI 

7.5.1 RIMCA in MI vs. SI 

The comparison between the results obtained from RIMCA in MI and SI will be 

given by means of table 7.2 and figure 7.2. Again, the estimated mean of the 

incomplete real data will be referred to as CC Mean. The estimated means 

obtained from the imputation procedures are indicated by MI Mean and SI 

Mean. 

Table 7.2 Confidence interval widths, means and standard errors obtained from 
complete-case analysis, RIMCA in SI and RIMCA in MI 
Real data Confidence Interval Width Mean 

Variable CC SI MI CC SI MI 

1* 0.0738 0.0714 0.0734 1.4303 1.4131 1.4301 

2* 0.0988 0.0961 0.0980 1.9852 1.9156 1.9839 

3* 0.0641 0.0623 0.0637 1.2928 1.2833 1.2926 

4* 0.0500 0.0492 0.0502 1.2676 1.2622 1.2675 

5* 0.0495 0.0485 0.0494 1.2575 1.2516 1.2577 

6* 0.0416 0.0407 0.0414 1.1610 1.1575 1.1611 

7* 0.0567 0.0557 0.0565 1.4741 1.4602 1.4746 

8* 0.0567 0.0544 0.0562 1.4095 1.3856 1.4082 

9* 0.0764 0.0674 0.0754 1.9383 1.9456 1.9390 

10* 0.0626 0.0517 0.0606 1.4017 1.3084 1.4033 

11* 

* 

0.0640 0.0530 0.0622 1.4491 1.3401 1.4506 

12* 0.0785 0.0534 0.0731 2.0155 2.0106 2.0157 

13* 0.0827 0.0808 0.0827 2.1938 2.1891 2.1937 

14 0.0635 0.0714 0.0632 1.7150 1.4131 1.7153 

Real data Standard Errors 

Variable CC SI MI 

1 0.0188 0.0182 0.0187 

2 0.0252 0.0245 0.0250 

3 0.0163 0.0159 0.0163 

4 0.0127 0.0125 0.0128 

5 0.0126 0.0124 0.0126 

6 0.0106 0.0104 0.0106 

7 0.0144 0.0142 0.0144 

8 0.0144 0.0139 0.0143 

9 0.0195 0.0172 0.0192 

10 0.0159 0.0132 0.0154 

11 0.0163 0.0135 0.0158 

12 0.0200 0.0136 0.0186 

13 0.0211 0.0206 0.0211 

14 0.0162 0.0156 0.0161 

CC – complete-case analysis, SI – single imputation, MI – multiple imputation 
* – indicates the variables with a wider confidence interval with regard to MI (only considering SI and MI) 
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Figure 7.2 Means and Confidence intervals for RIMCA in MI and SI 

 

Figure 7.2 illustrates the comparison between RIMCA in MI and RIMCA in SI. 

The estimated means are similar with a few slight deviations. The confidence 

intervals for MI are slightly wider for all of the variables, with the exception of 

variable 14, where the SI confidence interval is wider. However the uncertainty 

added by MI is only slight as can be seen from the between variance (B) 

statistics provided in appendix M.1. The between variance indicates that the 

differences in estimates across the different dimensions are not significant. This 

confirms the choice of making use of a random selection of dimensions for the 

generation of the multiple datasets (cf. 7.3). The information obtained from the 

use of Rubin’s rules (cf. 3.5) is presented in table 7.3. Seven of the 14 

variables of the real data will be displayed (cf. Appendix M.1). 
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Table 7.3 Rubin’s rules for RIMCA in MI on real data 
RIMCA Variables 

MI 1 2 3 4 5 6 7 

Q bar 1.4301 1.9839 1.2926 1.2675 1.2577 1.1611 1.4746 

U bar 0.0003 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

T 0.0004 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

df 52548.90 15486.17 75691.62 63364.36 111631.60 160231.13 80662.69 

fmi 0.0306 0.0564 0.0255 0.0278 0.0210 0.0175 0.0247 

r 0.0315 0.0596 0.0261 0.0286 0.0214 0.0178 0.0253 

eff 0.9997 0.9994 0.9997 0.9997 0.9998 0.9998 0.9998 

t-val 1.9600 1.9601 1.9600 1.9600 1.9600 1.9600 1.9600 

95% CI 1.3935 1.9349 1.2607 1.2425 1.2330 1.1404 1.4463 

95% CI 1.4668 2.0328 1.3244 1.2926 1.2824 1.1818 1.5028 

width 0.0734 0.0980 0.0637 0.0502 0.0494 0.0414 0.0565 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width 

 

The    ,   and     measures show that the amount of information provided by 

the missing values is small, since the     and   measures are small. The   

measure represents the relative increase in the variance due to the missing 

data entries and the     measure represents the fraction of information 

regarding the mean ( ) due to the missing data entries. Furthermore, the 

efficiency measure (   ) is large (in some cases perfect) across all variables. 

Schenker, Raghunathan, Chiu, Makuc, Zhang and Cohen (2006:929) mention 

that SI and MI will produce point estimates which are very closely related when 

the fraction of missing information is small. This can also be the result of small 

between-imputation variances (  ) that occur when little information is 

missing. From table 7.3 it can be observed that the variance measures  ,    

and  , are very small, close to zero (only two decimal places are indicated). 

Also, the rate of missing information tends to be less than the percentage of 

missing data, which can be explained by the correlation between variables and 

the success of predicting missing values from the observed values (Rubin 

1988:82). 

RIMCA in MI adds uncertainty, resulting in wider confidence intervals for the 

mean. The performance of SI and MI is very similar in the case of this specific 

dataset. The similarity of the two procedures (SI and MI) might be due to the 
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small number of missing values in the data (9%) and also because of a high 

correlation between the variables. 

It will be interesting to investigate the difference in performance of these 

methods when applied to data with a large percentage of missing values and 

where weak correlation is present. 

7.6 Conclusion 

In this chapter the results obtained from the application of the IMCA and 

RIMCA algorithm were illustrated and discussed. The dimensions retained for 

the second step of the algorithms were provided and motivated. A comparison 

of the performance of IMCA and RIMCA in MI were provided, as well as the 

results obtained for the completion of objective one, concerning the real data. 

It was found that the estimates obtained from IMCA and RIMCA in MI were 

extremely close, which could be explained by a high correlation structure and a 

low percentage of missing values in the data. Further it was found that RIMCA 

in MI provides estimates close to the incomplete data estimates, whilst 

providing wider confidence intervals than SI. In the following and final chapter 

of this dissertation the discussion of all the chapters and the conclusion of the 

study will be provided. 



Chapter 8  

Discussion and Conclusion 

We shall not cease from exploration 

And the end of all our exploring  

Will be to arrive where we started  

And know the place for the first time 

T.S. Eliot (1943) 

8.1 Introduction 

This final chapter includes the conclusions and recommendations aimed at 

further / future research in the field of MI in missing survey data. 

Non-responses in data are a pervasive problem, especially experienced in 

survey data. MI techniques increase the accuracy of estimations, valid 

inferences are attained when combining the multiple datasets and finally, MI 

enables imputations that are repeatedly randomly drawn under a number of 

models. Thus the sensitivity of inferences to a variety of models for missing 

values can be studied by simply repeatedly using complete-case methods 

(Rubin 1978:16 & cf. 3.4.3.2). 

The use of a MCA algorithm as an imputation procedure is appropriate in the 

context of missing survey data, since MCA is concerned with the similarities and 

associations within a set of two or more variables. A regularised iterative 

process with regard to MCA was developed by Josse et al. (2012:99) and used 

as a SI method. Since MI possesses the above-mentioned advantages over SI, 

it was an intriguing idea to investigate the performance of RIMCA in MI. 

The aim of this study, as described in Chapter One, was to investigate the 

success of RIMCA in MI. This aim was reached by means of executing two 

objectives: to establish whether RIMCA in MI outperforms RIMCA in SI and to 
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investigate the accuracy of the predictions made by RIMCA in MI when applied 

to a simulated dataset. 

8.2 Conclusions 

The first objective was completed by performing RIMCA as a SI and MI method 

on the same datasets, real and simulated. The simulation study consisted of 16 

different datasets, varying with regard to correlation structure, missingness 

mechanisms and percentage of missing values in the data. Therefore, the 

performance of RIMCA in MI was compared to the performance of RIMCA in SI 

in 17 different constructed datasets (one real dataset and 16 simulated 

datasets), in order to provide comprehensive analysis. 

From the simulation application and real data analysis dedicated to this 

objective, it was found that in almost all of the cases the confidence intervals 

provided by MI were wider than those from SI, which confirms the added 

uncertainty when multiple datasets are imputed. Also, the accuracy of the 

mean estimates obtained from MI was closer to the true mean values than the 

estimates provided by SI. This confirmed that the application of RIMCA in MI 

provided sufficient results in both the real and simulated datasets. 

The second objective was completed by performing the RIMCA algorithm on 

the simulated data, in order to determine the accuracy of the estimations made 

by the imputation model as well as the success rate of predictions. 

The results obtained showed that, on average, MI provided 10% more 

successful imputed values than SI. The average success rate of MI, with regard 

to the calculation of apparent error rates over all dimensions, was 

approximately 30%. Therefore 70% of the missing values were predicted 

incorrectly. This error was larger than expected, but the paper provides a 

reasonable possible explanation for this large error. Regardless of the low 

success rate, MI outperformed SI based on accuracy (cf. 6.6.3). 

RIMCA in SI experienced two problems (df. 1.2): the uncertainty of which 

dimensions to choose and that the final fuzzy values obtained from the 

imputation actually have inherent uncertainties which are not accounted for in 
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the SI method, both these problems lead to invalid inferences. Since RIMCA in 

MI imputes multiply over several dimensions, the first problem is overcome. By 

drawing multiply from the final fuzzy values when allocating categories to the 

imputed values, several multiple datasets are obtained for one dataset of final 

fuzzy values; therefore the second problem is also overcome in the MI 

adaptation of the RIMCA algorithm. The amendments on the SI method 

resulted in valid confidence intervals and improved efficiency. 

Therefore, the aim of the study to investigate the success of RIMCA in MI was 

achieved. It was found that in both the real and simulated data RIMCA 

performs better in MI than in SI. 

8.3 Limitations of the study 

A list of assumptions made in this study are considered as the limitations: 

 Only ordinal categorical data was considered. 

 It was regarded as sufficient to make use of the means as a result. 

 It was assumed that the data followed a Normal distribution in the 

computation of the confidence intervals. The assumption seemed 

appropriate due to the large degrees of freedom obtained. 

 As for any incomplete dataset, no fully observed (complete) dataset is 

available for the comparison of imputed data with the original data. 

Therefore, a limitation experienced in the presence of non-responses is 

that imputations will always be based on estimates and never truly 

known. 

8.4 Recommendations and further research 

 A MNAR mechanism can be added for the simulation study, by 

deliberately removing certain values, in order to establish the 

performance of RIMCA in MI with regard to all the missingness 

mechanisms. 
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 The difficulty of specifying the missingness mechanism should be 

addressed for datasets containing a very large number of variables. 

 The success of RIMCA in MI with respect to the MAR mechanism can 

be further confirmed by adding more auxiliary variables from the 

external sources. This will result in a more plausible assumption of the 

MAR mechanism. 

 RIMCA in MI can be applied to a real dataset with a weaker correlation 

structure and a higher percentage of missing values. 

 Extra bias can be incorporated by a higher percentage of missing 

values, this might result in a significant difference between the results 

obtained from complete-case analysis and MI. 

 It would be interesting to establish what the role of the initial values is 

and why they do not contribute to the final imputed values. 

 RIMCA in MI can be compared to the multinomial model in sequential 

regression multiple imputation (SRMI). 

 It would be interesting to apply RIMCA as a non-iterative method, 

therefore a regularised multiple correspondence analysis imputation 

procedure. This might allow for MNAR values, since the results won’t be 

forced into a MAR mechanism due to the iterations. 

 In order to investigate the high apparent error rates for the simulated 

data, profile analysis can be done for each imputation (cf. 6.6.3). 

 Other methods may be introduced to analyse ordinal data. 

 Methods are required to determine the success of the RIMCA algorithm 

in nominal categorical data. 

8.5 Conclusion 

The aim of this study with its objectives was achieved. The use of the 

regularised iterative multiple correspondence analysis (RIMCA) algorithm in 
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multiple imputation (MI) provided accurate estimates and wider confidence 

intervals. Therefore, whilst adding the uncertainty when imputing missing 

values, sufficient estimates were obtained. 

At the conclusion of this dissertation it should be noted that in the context of 

information being missing, any percentage regained is an accomplishment, 

since something that was expected to have been lost, has partially been 

replaced and therefore provides additional information. 

 

“Data forever lost, but never forgotten” – Johané Nienkemper 2013 
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Appendices 

Appendix A: Functions used within IMCA in RIMCA algorithms 

Assigning initial values 

function [row_vals] = initial_vals(cats,num_missing,varargin) 
 

if nargin > 2 %SI (proportionally) 
    randoms = 0; 
    data = varargin{1}; 
else  
    randoms = 1; 
end 

  
if randoms %MI ( allocate random initial values) 
    row_vals=zeros(num_missing,cats); 
    for num = 1:num_missing         
        row_vals(num,1) = rand; 
        for i=2:cats 
            if i ~= cats 
                row_vals(num,i)=rand*(1-sum(row_vals(num,1:(i-1)))); 
            else 
                row_vals(num,i)=1-sum(row_vals(num,1:(i-1))); 
            end 
        end 
    end 
else 
row_vals=repmat(nansum(data)./sum(isfinite(data(:,1))),num_missing,1); 
end 

Assigning dummy variables to fuzzy values 

function [row_vals] = assign01_to_rows(fuzzy_vectors, varargin) 
if nargin > 1 
    flag_random = 1;%categories allocated randomly (MI) 
else 
    flag_random = 0;%categories allocated to degree of membership (SI) 
end 

  
[num cats] = size(fuzzy_vectors); 
row_vals = zeros(num,cats); 
if flag_random == 0   %SI 
    for i = 1:num 
        [~,index] = sort(fuzzy_vectors(i,:),'descend'); 
        row_vals(i,index(1)) = 1; 
    end 
else 
    for i = 1:num   %MI 
        target_vec = cumsum(fuzzy_vectors(i,:)); 
        target_vec = target_vec./target_vec(end); 
        index = find(target_vec > rand, 1, 'first'); 
        row_vals(i,index(1)) = 1; 
    end 
end 
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Reconstruction of indicator matrix to data matrix 

function [data_final] = categorical_recon(X, vec_size); 

  
[I,~] = size(X); 
vec_cumsum = cumsum(vec_size); 
cols = length(vec_size); 
data_final = zeros(I,length(vec_size)); 

  
for col = 1:cols 
    if col == 1 
        Z = X(:,1:vec_size(1)); 
        for k = 1:vec_size(col) 
            indices = find(Z(:,k)==1); 
            n = length(indices); 
            data_final(indices,col) = k*ones(n,1); 
        end 
    else 
        Z = X(:,(vec_cumsum(col-1)+1):(vec_cumsum(col))); 
        for k = 1:vec_size(col) 
            indices = find(Z(:,k)==1); 
            n = length(indices); 
            data_final(indices,col) = k*ones(n,1); 
        end         
    end 
end 

Appendix B: IMCA algorithm 

%STEP 1 IMCA 
Function 

[X_final,X_start,X_hat,place_holders,vec_size]=imca(data,S,threshold) 
format long 

  
[I J] = size(data); 
X0 = dummyvar(data); 
W=1-(isnan(X0)); 

vec_size=zeros(J,1); 
X = X0; 

 
%Assigning initial values 
place_holders = cell(1,J); 
for col = 1:J 
    vec_size(col)=length(unique(data(isfinite(data(:,col)),col))); 
    vec_cumsum = cumsum(vec_size); 
    place_holders{col} = find(isnan(data(:,col))); 
    if col == 1 

%[row_vals]=initial_vals(vec_size(col),length(place_holders{col}

),X0(:,1:vec_size(1))); %SI 
        

[row_vals]=initial_vals(vec_size(col),length(place_holders{col})

); %MI 
      X(place_holders{col},1:vec_size(1)) = row_vals; 
    else 

%[row_vals]=initial_vals(vec_size(col),length(place_holders{col}

),X0(:,(vec_cumsum(col-1)+1):(vec_cumsum(col)))); %SI 
        

[row_vals]=initial_vals(vec_size(col),length(place_holders{col})

);%MI 
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        X(place_holders{col},(vec_cumsum(col-1)+1):(vec_cumsum(col))) 

= row_vals; 
    end 
end 

  
X_start=X; 
[~,K]=size(X); 
D_sigma=diag(sum(X)); 
X_hat = X; 

  
%I = # individuals; J = # of variables, K = # of categories 
iteration=0; 
iterations=100; 
change = 1; 
conv_prog=(zeros(sum(sum(isnan(data))),max(vec_size),iterations)); 
conv_prog_plot=zeros(iterations, 

max(vec_size),(sum(sum(isnan(data))))); 
size(conv_prog); 

%Step 3 IMCA (while loop)  

while change > threshold 
    %Step 2a IMCA 
    row_counter=0; 
    Z = I*[(X_hat)*(inv(D_sigma))]; 
    M = (1/(I*J))*D_sigma; 
    D=(1/I)*eye(I); 

     
    Z_est=(Z-ones(I,1)*(ones(K,1))')*sqrt(M); 
    Z_tilda=D.^(0.5)*Z_est*M.^(0.5); 

     
    [P L Q]=svd(Z_tilda); 
    C=D^(-0.5)*P; 
    U_hat=M^(-0.5)*Q; 
    F_hat=C*L; 

     
    F_hat_dim=F_hat(:,1:S); 
    U_hat_dim=U_hat(:,1:S); 

     
    %Step 2b ITERATIVE IMCA 
    for i=1:I; 
        for k=1:K; 
            a=(D_sigma(k,k)/I); 
            outer_sum=sum((F_hat_dim(i,(1:S)).*U_hat_dim(k,(1:S)))); 
            X_hat_iter(i,k) = a*(outer_sum+1); 
        end 
    end 
    change = sum(sum(((1-W).*X_hat - (1-W).*X_hat_iter).^2)); 
    change_matrix = ((1-W).*X_hat - (1-W).*X_hat_iter).^2; 

     
    X_hat=(W.*X)+((1-W).*X_hat_iter); 
    D_sigma=diag(sum(X_hat)); 
    iteration=iteration+1; 

     
    for col = 1:J 
        if col == 1; 
            fuzzy_vectors = X_hat(place_holders{col},1:vec_size(1)); 
            

change_vectors=change_matrix(place_holders{col},1:vec_size(1)); 

             
        else 
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            fuzzy_vectors = X_hat(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
            change_vectors = 

change_matrix(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
        end 
        a=row_counter+1; 
        b=row_counter+length(change_vectors(:,1)); 
        conv_prog(a:b,1:vec_size(col),iteration)=change_vectors; 
        row_counter=b; 
        conv_prog_plot=permute(conv_prog,[3 2 1]); 
    end 
end 

 
X_final = X_hat; 
for col=1:J 
    if col == 1; 
        fuzzy_vectors = X_hat(place_holders{col},1:vec_size(1)); 
    else 
        fuzzy_vectors = X_hat(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
    end 

     
    %[row_vals] = assign01_to_rows(fuzzy_vectors); %SI 
    [row_vals] = assign01_to_rows(fuzzy_vectors,1); %MI 
    if col == 1; 
        X_final(place_holders{col},1:vec_size(1)) = row_vals; 
    else 
        X_final(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))) = row_vals; 
    end 
end 
iterations=iteration; 

Appendix C: RIMCA algorithm 

%STEP 1 RIMCA 
function [X_final, X_start, X_hat, F_hat,F_hat_dim, L_hat, 

U_hat,vec_size]=rimca_new(data,S,threshold) 
%data is incomplete (with NaNs) 
format long 

  
[I J] = size(data); 
X0 = dummyvar(data); 
W=1-(isnan(X0)); %obtain weights before filling in initial values for 

the missings 
vec_size=zeros(J,1); 
X = X0; 

  
%Assigning initial values 

  
place_holders = cell(1,J); 
for col = 1:J 
    vec_size(col)=length(unique(data(isfinite(data(:,col)),col))); 
    vec_cumsum = cumsum(vec_size); 
    place_holders{col} = find(isnan(data(:,col))); 
    if col == 1 

%[row_vals]=initial_vals(vec_size(col),length(place_holders{col}

),X0(:,1:vec_size(1))); %SI 
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[row_vals]=initial_vals(vec_size(col),length(place_holders{col})

); %MI 
      X(place_holders{col},1:vec_size(1)) = row_vals; 
    else 

%[row_vals]=initial_vals(vec_size(col),length(place_holders{col}

),X0(:,(vec_cumsum(col-1)+1):(vec_cumsum(col)))); %SI 
        

[row_vals]=initial_vals(vec_size(col),length(place_holders{col})

); %MI 
X(place_holders{col},(vec_cumsum(col-1)+1):(vec_cumsum(col)))= 

row_vals; 
    end 
end 

  
X_start=X; 
[~,K]=size(X); 
D_sigma=diag(sum(X)); 
X_hat = X; 

  
%I = # individuals; J = # of variables, K = # of categories 
iteration=0; 
iterations=100; 
change = 1; 
conv_prog=(zeros(sum(sum(isnan(data))),max(vec_size),iterations)); 
conv_prog_plot=zeros(iterations, 

max(vec_size),(sum(sum(isnan(data))))); 
%Step 3 RIMCA (while loop) 
while (change > threshold && iteration< iterations) 
    %Step 2a RIMCA 
    row_counter=0; 
    Z = I*(X_hat)*(inv(D_sigma)); 
    M = (1/(I*J))*D_sigma; 
    X_hat_reg_shrink = zeros(I,K); 
    D=(1/I)*eye(I); 

     
    Z_est=(Z-ones(I,1)*(ones(K,1))')*sqrt(M); 
    Z_tilda=D.^(0.5)*Z_est*M.^(0.5); 

     
    [P L Q]=svd(Z_tilda); 
    C=D^(-0.5)*P; 
    U_hat=M^(-0.5)*Q; 
    F_hat=C*L; 
    L_hat=L; 
    E=(L_hat).^2; 

     
    L_hat_dim=L_hat(1:S,1:S); 
    F_hat_dim=F_hat(:,1:S); 
    U_hat_dim=U_hat(:,1:S); 

     
    %Step 2b rewritten noise variance REGULARISED RIMCA 
    sigma_hat_2=1/(K-J-S)*sum(diag(E((S+1):end,(S+1):end))); 
    for i=1:I; 
        for k=1:K; 
            a=(D_sigma(k,k)/I); 
            dist_vec = (sum((F_hat_dim(:,1:S).^2))).^0.5;             
shrink=(1./dist_vec(1:S)).*((diag(L_hat_dim(1:S,1:S)))-sigma_hat_2./ 

(diag(L_hat_dim(1:S,1:S))))'; 



166 
 

            

outer_sum_shrink=sum(shrink.*(F_hat_dim(i,(1:S)).*U_hat_dim(k,(1:S))))

; 
X_hat_reg_shrink(i,k) = a*(outer_sum_shrink+1); 
        end 
    end 
    change = sum(sum(((1-W).*X_hat - (1-W).*X_hat_reg_shrink).^2)); 
    change_matrix = ((1-W).*X_hat - (1-W).*X_hat_reg_shrink).^2; 
    X_hat=(W.*X)+((1-W).*X_hat_reg_shrink); 
    D_sigma=diag(sum(X_hat)); 
    iteration=iteration+1; 
    for col = 1:J 
        if col == 1; 
            fuzzy_vectors = X_hat(place_holders{col},1:vec_size(1)); 
change_vectors=change_matrix(place_holders{col},1:vec_size(1)); 
        else 
fuzzy_vectors=X_hat(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
change_vectors = change_matrix(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
        end 
    end 
end 
for rep=1:5 
X_final = X_hat; 
for col = 1:J 
    if col == 1; 
        fuzzy_vectors = X_hat(place_holders{col},1:vec_size(1)); 
    else 
        fuzzy_vectors = X_hat(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col))); 
    end 
    %[row_vals] = assign01_to_rows(fuzzy_vectors);%SI 
    [row_vals] = assign01_to_rows(fuzzy_vectors,1); %MI 
    if col == 1; 
        X_final(place_holders{col},1:vec_size(1)) = row_vals; 
    else 
        X_final(place_holders{col},(vec_cumsum(col-

1)+1):(vec_cumsum(col)))=row_vals; 
    end 

end 

    [data_final] = categorical_recon(X_final, vec_size); 
end 
iterations=iteration; 

Appendix D: Simulation Protocol 

Data simulation 

function [output_l,output_h]=simdata(n,p,r_high,r_low,block1,num_cat) 

 
if num_cat == 1 
    disp('Can''t have 1 category - set category count as 2') 
    num_cat = 2; 
end 
block2 = p-block1; 
bins = ones(1,num_cat); 

 
%low structure correlation 
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sigma1_l=r_low*ones(block1,block1)+diag((1-r_low)*ones(block1,1)); 
sigma2_l=r_low*ones(block2,block2)+diag((1-r_low)*ones(block2,1)); 
sigma = zeros(block1,block2); 
sigma_l=[sigma1_l sigma;sigma' sigma2_l]; 
output_l=mvnrnd(zeros(p,1),sigma_l,n); 
[B IX] = sort(output_l); 
for i = 2:num_cat; 
    bins(i) = floor(((i-1)*n)/num_cat); % equal count categories 
    B(bins(i-1):bins(i),:) = i-1; 
end 
B((bins(i)+1):end,:)=num_cat; %final category 
[~,I] = sort(IX); 
for i = 1:p %unsort each column 
   output_l(:,i) = B(I(:,i),i);      
end 

 
%high structure correlation 
sigma1_h=r_high*ones(block1,block1)+diag((1-r_high)*ones(block1,1)); 
sigma2_h=r_high*ones(block2,block2)+diag((1-r_high)*ones(block2,1)); 
sigma = zeros(block1,block2); 
sigma_h=[sigma1_h sigma;sigma' sigma2_h]; 
output_h=mvnrnd(zeros(p,1),sigma_h,n); 
[B IX] = sort(output_h); 
for i = 2:num_cat; 
    bins(i) = floor(((i-1)*n)/num_cat); % equal count categories 
    B(bins(i-1):bins(i),:) = i-1; 
end 
B((bins(i)+1):end,:)=num_cat; %final category 
[~,I] = sort(IX); 
for i = 1:p %unsort each column 
   output_h(:,i) = B(I(:,i),i);      
end 

MAR and MCAR mechanisms 

function [MCAR_LR, MCAR_LNR, MCAR_HR, MCAR_HNR, MAR_LR, MAR_LNR, 

MAR_HR, MAR_HNR] = josseholes(data) 
[n p] = size(data); 

 
mcar_1 = 0.1; 
mcar_2 = 0.3; 
mar_1 = 0.08; 
mar_2 = 0.16; 

 
%MCAR 
%Case 1 LR 10% 
MCAR_LR = data; 
while sum(sum(isnan(MCAR_LR)))/(n*p)< mcar_1 
    MCAR_LR(randi(100,1),randi(10,1)) = NaN; 
end 
%Case 2 LNR 10% 
MCAR_LNR = data; 
MCAR_LNR(1:20,1:3) = NaN(20,3); 
MCAR_LNR(81:100,9:10) = NaN(20,2); 
%Case 3 HR 30% 
MCAR_HR = data; 
while sum(sum(isnan(MCAR_HR)))/(n*p)< mcar_2 
    MCAR_HR(randi(100,1),randi(10,1)) = NaN; 
end 
%Case 4 HNR 30% 
MCAR_HNR = data; 
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MCAR_HNR(1:60,1:3) = NaN(60,3); 
MCAR_HNR(41:100,9:10) = NaN(60,2); 
%MAR 
%Case 5 LR 8% 
MAR_LR = data; 
while sum(sum(isnan(MAR_LR)))/(n*p) < mar_1 
    IX = find(MAR_LR(:,1)==1,randi(33,1)); 
    MAR_LR(IX(end),2:6) = NaN(1,5); 
    IX = find(MAR_LR(:,7)==3,randi(34,1)); 
    MAR_LR(IX(end),8:10) = NaN(1,3);    
end 
%Case 6 LNR 8% 
MAR_LNR = data; 
MAR_LNR(find(MAR_LNR(:,1)==1,10),2:6)=NaN(10,5); 
MAR_LNR(find(MAR_LNR(:,7)==3,10,'last'),8:10)=NaN(10,3); 
%Case 7 HR 16% 
MAR_HR = data; 
while sum(sum(isnan(MAR_HR)))/(n*p) < mar_2 
    IX = find(MAR_HR(:,1)==1,randi(33,1)); 
    MAR_HR(IX(end),2:6) = NaN(1,5); 
    IX = find(MAR_HR(:,7)==3,randi(34,1)); 
    MAR_HR(IX(end),8:10) = NaN(1,3);    
end 
%Case 8 HNR 16% 
MAR_HNR = data; 
MAR_HNR(find(MAR_HNR(:,1)==1,20),2:6)=NaN(20,5); 
MAR_HNR(find(MAR_HNR(:,7)==3,20,'last'),8:10)=NaN(20,3); 

Appendix E: Code for the selection of 10 random dimensions 

clear 
clc 
n=19; %max # dimensions 
m=10; %# dimensions 
r=randperm(n); 
dim_vec=sort(r(1:m))'; 

Appendix F: Code for CI’s of singly imputed datasets 

Simulated data 

clear 

clc 

data_original=xlsread('<path>\filename.xlsx’); 
data_imputed=xlsread('<path>\filename.xlsx’); 
[m variable] = size(data_original); 
v=m-1; 
tvals = tinv(0.975,v); 

 
Q_avg_org=mean(data_original); 
Q_variance_org=var(data_original)/m; 
Q_avg_imp=mean(data_imputed); 
Q_variance_imp=var(data_imputed)/m; 

 
CIlow_org =(Q_avg_org)-(tvals.*((Q_variance_org).^(0.5))); 
CIhigh_org =(Q_mean_org)+(tvals.*((Q_variance_org).^(0.5))); 
CIlow_imp=(Q_avg_imp)-(tvals.*((Q_variance_imp).^(0.5))); 
CIhigh_imp=(Q_avg_imp)+(tvals.*((Q_variance_imp).^(0.5))); 
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results_org=[Q_avg_org; Q_variance_org; CIlow_org;CIhigh_org]; 
results_imp=[Q_avg_imp; Q_variance_imp; CIlow_imp; CIhigh_imp]; 

real data 

dat_original=xlsread('<path>\filename.xlsx’); 
data_imputed = xlsread('<path>\filename.xlsx’); 
[m variable] = size(Q_hat_original); 
N=sum(isfinite(Q_hat_original)); 
v=N-1; 
tvals = tinv(0.975,v); 

 
Q_avg_org=nanmean(data_original); 
Q_variance_org=nanvar(data_original)/m; 

 
CIlow_org =(Q_avg_org)-(tvals.*((Q_variance_org).^(0.5))); 
CIhigh_org =(Q_avg_org)+(tvals.*((Q_variance_org).^(0.5))); 

 
results_org=[Q_mean_org; Q_var_org; CIlow_org;CIhigh_org]; 

Appendix G: Code for Rubin’s Rules 

data_orginal=xlsread('<path>\filename.xlsx’); 
Q_est=xlsread('<path>\filename.xlsx’); 

U_est=xlsread('<path>\filename.xlsx’); 

 
[n,~]=size(data_original); 
[m var]=size(Q_est); 
Q_bar=(1/m)*sum(Q_est,1); 

U_bar=(1/m)*sum(U_est,1); 
B=(1/(m-1))*(sum((Q_est-(ones(m,1)*Q_bar)).^2)); 

 
T=U_bar+(1+(1/m)).*B; 
r=(1+(1/m)).*(B./U_bar); 

v=(m-1).*(1+(1./r)).^2; 
rmi=(r+2./(v+3))./(r+1); 

 
eff=(1+rmi/m).^(-0.5); 

tvals=tinv(0.975,v); 
CIlow=Q_bar-((T.^0.5).* tvals); 
CIhigh=Q_bar+((T.^0.5).* tvals); 

 
results=[Q_bar; U_bar; B; T; v; rmi; r; eff; tvals; CIlow; CIhigh]; 

Appendix H: Code for Apparent Error Rate 

clear 
clc 
data_original=xlsread('<path>\filename.xlsx’); 
data_imputed=xlsread('<path>\filename.xlsx’); 
x=dummyvar(data_original); 
x_hat=dummyvar(data_imputed); 
[I J] =size(data_original); 
diff=x-x_hat; 
err=(sum(sum(abs(diff)))/2)/(I*J); 
rate=err*100; 
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Appendix I: Description of the variables of the user satisfaction 

survey: Canal des Deux Mers 

Var Name Variable description Categories 

1 
Sites worth 

visiting 
What do you think about information 
given about the sights worth visiting? 

Satisfactory, 

unsatisfactory, no 
opinion 

2 Leisure activity 
Rate the information given on leisure 

activity. 

Satisfactory, 

unsatisfactory, no 

opinion 

3 
Historical canal 

sites 

What is your opinion regarding tourist 

information on historical canal sites 

(docks, bridges, etc.)? 

Satisfactory, 

unsatisfactory, no 

opinion 

4 Manoeuvres 
Where you sufficiently aware of 

manoeuvres at docks at the start of 

your trip? 

Yes, no 

5 
Authorized 

mooring 

Where you sufficiently aware of 
authorized mooring at the start of your 

trip? 

Yes, no 

6 
Safety 

regulations 
Where you sufficiently aware of safety 
regulations at the start of your trip? 

Yes, no 

7 Services 

What is your opinion on signs 

encountered along the way providing 
information on services? 

Satisfactory, 
unsatisfactory 

8 Number of laps 
What do you think about the number of 

laps on your trip? 
Sufficient, insufficient 

9 Cost of water The general cost of water is… 
Inexpensive, average, 

expensive 

10 
Cost of 

electricity 
The general cost of electricity is… 

Inexpensive, average, 

expensive 

11 
Visibility of 

electrical outlets 
What is your opinion of visibility of 

electrical outlets? 
Sufficient, insufficient 

12 
Number of 

electrical outlets 

What do you think about the number of 

electrical outlets on your trip? 
Sufficient, insufficient 

13 Cleanliness 
How would you describe the canal’s 

degree of cleanliness? 
Clean, average, dirty 

14 
Unpleasant 

odours 

Were there unpleasant odours on the 

canal? 

None, occasional, 

frequent 

(Chavent, Kuentz and Saracco 2010:97) 

Appendix J: Number of iterations before the algorithm in 

question converges over all dimensions 

Algorithm Number of iterations 

RIMCA 9 

IMCA 9,10,11,12 

The Bold font indicates the majority of iterations for the case where more than one iteration value was obtained. 
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Number of iterations before algorithm converge over all dimensions 

Correlation  

Structure 

High percentage of missing values Low percentage of missing values 

Random Non-random Random Non-random 

MAR MCAR MAR MCAR MAR MCAR MAR MCAR 

High  7 9, 10 7 16, 17 5 5 5 6 

Low 6, 7 8, 9 6, 7 16, 17 5 5 5 6 

The Bold font indicates the majority of iterations for the case where more than one iteration value was obtained. 

Appendix K: Stability graphs over ten repetitions 

K.1 MAR random pattern with 16% missing values and high 

correlation structure 
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K.2 MAR non-random pattern with 16% missing values and 

high correlation structure 
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K.3 MAR random pattern with 8% missing values and high 

correlation structure 
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K.4 MAR non-random pattern with 8% missing values and 

high correlation structure 
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K.5 MCAR random pattern with 30% missing values and 

high correlation structure 
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K.6 MCAR non-random pattern with 30% missing values 

and high correlation structure 

 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HR High 
Correlation Variable 7 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HR High 
Correlation Variable 8 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HR High 
Correlation Variable 9 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HR High 
Correlation Variable 10 

1.6

1.8

2

2.2

2.4

2.6

1 3 5 7 9

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 1 

95% CI (MI)

Q MI

95% CI (MI)

95% CI
Complete

Mean
Complete

95% CI
Complete

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 2 



180 
 

 

 

 

1.6

1.85

2.1

2.35

2.6

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 3 

1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 4 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 5 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 6 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 7 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR High 
Correlation Variable 8 



181 
 

 

K.7 MCAR random pattern with 10% missing values and 

high correlation structure 
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K.8 MCAR non-random pattern with 10% missing values 

and high correlation structure 
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K.9 MAR random pattern with 16% missing values and low 

correlation structure 
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K.10 MAR non-random pattern with 16% missing values and 

low correlation structure 
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K.11 MAR random pattern with 8% missing values and low 

correlation structure 
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K.12 MAR non-random pattern with 8% missing values and 

low correlation structure 
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K.13 MCAR random pattern with 30% missing values and 

low correlation structure 
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K.14 MCAR non-random pattern with 30% missing values 

and low correlation structure 
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K.15 MCAR random pattern with 10% missing values and 

low correlation structure 

 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR Low 
Correlation Variable 7 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR Low 
Correlation Variable 8 

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR Low 
Correlation Variable 9 

1.5

1.75

2

2.25

2.5

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR HNR Low 
Correlation Variable 10 

1.6

1.8

2

2.2

2.4

1 3 5 7 9

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 1 

95% CI (MI)

Q MI

95% CI (MI)

95% CI
Complete

Mean
Complete

95% CI
Complete

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 2 



195 
 

 

 

 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 3 

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 4 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 5 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 6 

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 7 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 8 



196 
 

 

K.16 MCAR non-random pattern with 10% missing values 

and low correlation structure 

 

 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 9 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LR Low 
Correlation Variable 10 

1.6

1.8

2

2.2

2.4

1 3 5 7 9

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 1 

95% CI (MI)

Q MI

95% CI (MI)

95% CI
Complete

Mean
Complete

95% CI
Complete

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 2 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 3 

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 4 



197 
 

 

 

 

  

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 5 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 6 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 7 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 8 

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 9 

1.6

1.85

2.1

2.35

1 2 3 4 5 6 7 8 9 10

M
e

an
s 

Repetitions 

RIMCA: MI on MCAR LNR Low 
Correlation Variable 10 



198 
 

Appendix L: Rubin’s rules results for simulated data 

L.1 MAR HR high and low correlation structure 

MAR HR 
High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.22 2.19 2.21 2.20 2.27 2.02 1.92 1.94 1.92 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 2019.2 1473.1 1374.9 2173.4 1097.6 Large 2580.6 1791.3 2373.2 

fmi 0.00 0.16 0.18 0.19 0.15 0.21 0.00 0.14 0.17 0.14 

r 0.00 0.18 0.22 0.23 0.18 0.27 0.00 0.16 0.20 0.17 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 2.05 2.02 2.05 2.03 2.10 1.86 1.75 1.77 1.74 

95% CI 2.18 2.38 2.36 2.38 2.37 2.43 2.18 2.09 2.11 2.10 

width 0.32 0.32 0.34 0.33 0.34 0.33 0.32 0.34 0.35 0.35 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

 

MAR HR 
Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.07 2.11 2.02 2.04 2.01 2.02 1.94 1.94 1.96 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 2099.7 2385.9 1577.3 1860.5 3223.0 Large 2754.5 1494.4 1811.5 

fmi 0.00 0.15 0.14 0.18 0.16 0.12 0.00 0.13 0.18 0.17 

r 0.00 0.18 0.17 0.21 0.19 0.14 0.00 0.15 0.22 0.20 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.90 1.94 1.84 1.86 1.84 1.86 1.77 1.77 1.79 

95% CI 2.18 2.24 2.28 2.20 2.21 2.18 2.18 2.11 2.12 2.13 

width 0.32 0.34 0.34 0.36 0.35 0.34 0.32 0.34 0.35 0.34 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
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L.2 MAR HNR high and low correlation structure 

MAR HNR 
High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.18 2.18 2.22 2.20 2.25 2.02 1.85 1.86 1.87 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 2047.4 845.87 1045.6 1664.3 1983.8 Large 1816.8 2299.1 2864.5 

fmi 0.00 0.16 0.24 0.22 0.17 0.16 0.00 0.17 0.15 0.13 

r 0.00 0.18 0.32 0.28 0.21 0.19 0.00 0.20 0.17 0.15 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 2.01 2.00 2.05 2.04 2.09 1.86 1.69 1.69 1.70 

95% CI 2.18 2.34 2.36 2.38 2.37 2.41 2.18 2.02 2.02 2.03 

width 0.32 0.33 0.36 0.33 0.33 0.31 0.32 0.34 0.33 0.34 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

 

MAR HNR 
Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.07 2.13 2.06 2.06 2.04 2.02 1.97 1.91 1.91 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 2532.5 1989.9 1222.5 1496.5 1188.2 Large 2506.0 1819.1 1419.0 

fmi 0.00 0.14 0.16 0.20 0.18 0.20 0.00 0.14 0.17 0.19 

r 0.00 0.16 0.19 0.25 0.22 0.25 0.00 0.16 0.20 0.23 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.90 1.96 1.87 1.89 1.86 1.86 1.80 1.74 1.74 

95% CI 2.18 2.25 2.30 2.24 2.23 2.22 2.18 2.15 2.08 2.09 

width 0.32 0.35 0.35 0.37 0.35 0.36 0.32 0.35 0.34 0.35 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
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L.3 MAR LR high and low correlation structure 

MAR LR 
High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.05 2.09 2.09 2.08 2.11 2.02 1.92 1.93 1.93 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 9366.0 5264 8238.1 5251.2 5496.1 Large 9089.7 12978 8860.7 

fmi 0.00 0.07 0.10 0.08 0.10 0.09 0.00 0.07 0.06 0.07 

r 0.00 0.08 0.11 0.08 0.11 0.10 0.00 0.08 0.07 0.08 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.89 1.93 1.93 1.92 1.95 1.86 1.75 1.76 1.76 

95% CI 2.18 2.22 2.26 2.26 2.25 2.27 2.18 2.08 2.09 2.09 

width 0.32 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.33 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
 
 

MAR LR 
Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.00 2.02 2.00 2.05 2.02 2.02 2.03 1.99 1.94 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 10490 6864.6 7658.6 5491.3 6022.0 Large 5890.0 8421.0 4973.6 

fmi 0.00 0.07 0.08 0.08 0.09 0.09 0.00 0.09 0.08 0.10 

r 0.00 0.07 0.09 0.09 0.10 0.10 0.00 0.10 0.08 0.11 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.83 1.85 1.83 1.89 1.85 1.86 1.86 1.83 1.77 

95% CI 2.18 2.16 2.19 2.17 2.22 2.19 2.18 2.20 2.16 2.11 

width 0.32 0.33 0.34 0.34 0.34 0.34 0.32 0.34 0.33 0.33 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

  



201 
 

L.4 MAR LNR high and low correlation structure 

MAR LNR 
High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.10 2.09 2.12 2.10 2.13 2.02 1.98 1.98 1.96 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 6165 4235.7 4173.6 4348.2 6123.4 Large 2821.4 5756.5 6199.4 

fmi 0.00 0.09 0.11 0.11 0.11 0.09 0.00 0.13 0.09 0.09 

r 0.00 0.10 0.12 0.12 0.12 0.10 0.00 0.15 0.10 0.10 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.94 1.92 1.96 1.93 1.97 1.86 1.80 1.81 1.79 

95% CI 2.18 2.26 2.26 2.29 2.26 2.29 2.18 2.15 2.14 2.13 

width 0.32 0.33 0.34 0.33 0.34 0.32 0.32 0.35 0.33 0.34 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

 

MAR LNR 
Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.02 2.06 2.06 2.04 2.04 2.05 2.02 1.99 1.97 1.98 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df Large 3782.7 5450.4 5182 5324.1 6965.7 Large 11024 4900.2 16417 

fmi 0.00 0.11 0.10 0.10 0.10 0.08 0.00 0.07 0.10 0.05 

r 0.00 0.13 0.10 0.11 0.11 0.09 0.00 0.07 0.11 0.06 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.86 1.89 1.90 1.87 1.88 1.88 1.86 1.83 1.81 1.82 

95% CI 2.18 2.23 2.23 2.21 2.21 2.21 2.18 2.15 2.14 2.14 

width 0.32 0.34 0.34 0.34 0.33 0.34 0.32 0.32 0.33 0.32 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
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L.5 MCAR HR high and low correlation structure 

MCAR 
HR High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 1.99 2.07 1.99 2.02 2.03 2.10 1.97 2.06 2.00 2.00 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 705.55 2183.9 863.25 1403.4 902.49 414.19 1293.2 1319.5 1274.9 1220.7 

fmi 0.27 0.15 0.24 0.19 0.23 0.35 0.20 0.19 0.20 0.20 

r 0.36 0.18 0.31 0.23 0.30 0.52 0.24 0.24 0.24 0.25 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.97 1.96 1.96 1.96 1.96 

95% CI 1.81 1.90 1.81 1.85 1.85 1.90 1.78 1.89 1.83 1.82 

95% CI 2.18 2.24 2.18 2.20 2.21 2.29 2.15 2.24 2.17 2.17 

width 0.37 0.35 0.37 0.36 0.36 0.39 0.37 0.36 0.34 0.36 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width 

 

MCAR 
HR Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.09 2.03 2.03 1.98 1.99 2.05 1.91 1.94 1.92 2.01 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 908.44 642.44 1854.2 731.34 1163.2 1234.5 1090.5 817.52 626.73 837.13 

fmi 0.23 0.28 0.16 0.26 0.21 0.20 0.21 0.25 0.28 0.24 

r 0.30 0.38 0.19 0.35 0.26 0.25 0.27 0.32 0.39 0.32 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.91 1.84 1.85 1.79 1.82 1.87 1.73 1.76 1.73 1.82 

95% CI 2.27 2.21 2.20 2.16 2.16 2.22 2.08 2.13 2.10 2.20 

width 0.36 0.37 0.35 0.37 0.34 0.36 0.35 0.37 0.37 0.38 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width 
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L.6 MCAR HNR high and low correlation structure 

MCAR 
HNR High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.22 2.02 2.10 2.02 2.02 2.02 2.02 2.02 1.92 1.92 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 276.55 356.79 393.62 Large Large Large Large Large 290.39 339.02 

fmi 0.43 0.37 0.36 0.00 0.00 0.00 0.00 0.00 0.41 0.38 

r 0.73 0.59 0.55 0.00 0.00 0.00 0.00 0.00 0.70 0.61 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.97 1.97 1.97 1.96 1.96 1.96 1.96 1.96 1.97 1.97 

95% CI 2.00 1.83 1.89 1.86 1.86 1.86 1.86 1.86 1.72 1.71 

95% CI 2.44 2.22 2.32 2.18 2.18 2.18 2.18 2.18 2.12 2.12 

width 0.43 0.39 0.42 0.32 0.32 0.32 0.32 0.32 0.40 0.41 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

 

MCAR 
HNR Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 1.93 2.12 2.03 2.02 2.02 2.02 2.02 2.02 2.02 2.00 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 426.77 299.10 437.17 Large Large Large Large Large 378.91 292.52 

fmi 0.34 0.41 0.34 0.00 0.00 0.00 0.00 0.00 0.36 0.41 

r 0.51 0.68 0.50 0.00 0.00 0.00 0.00 0.00 0.56 0.69 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.97 1.97 1.97 1.96 1.96 1.96 1.96 1.96 1.97 1.97 

95% CI 1.73 1.91 1.84 1.86 1.86 1.86 1.86 1.86 1.83 1.79 

95% CI 2.13 2.34 2.22 2.18 2.18 2.18 2.18 2.18 2.21 2.22 

width 0.40 0.43 0.39 0.32 0.32 0.32 0.32 0.32 0.39 0.43 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

  



204 
 

L.7 MCAR LR high and low correlation structure 

MCAR 
LR High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.04 2.07 2.00 2.04 2.04 1.99 2.04 2.05 2.00 2.00 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 1994 2259.7 2920.5 7789.8 10839.9 11584.
3 

9308.3 13102.6 11907.5 10327.4 

fmi 0.16 0.15 0.13 0.08 0.07 0.07 0.07 0.06 0.06 0.07 

r 0.19 0.17 0.15 0.09 0.07 0.07 0.08 0.07 0.07 0.07 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.87 1.90 1.83 1.88 1.87 1.83 1.87 1.88 1.84 1.84 

95% CI 2.21 2.24 2.17 2.21 2.20 2.16 2.20 2.21 2.17 2.16 

width 0.34 0.33 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.32 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
 
 

MCAR 
LR Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.00 2.06 2.06 2.00 2.03 2.06 2.04 1.98 1.99 1.97 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 7423.7 18669.8 3576 10419.6 3500.1 5287.8 2397.1 7138.3 2165.7 10089 

fmi 0.08 0.05 0.12 0.07 0.12 0.10 0.14 0.08 0.15 0.07 

r 0.09 0.05 0.13 0.07 0.13 0.11 0.17 0.09 0.18 0.07 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.83 1.89 1.89 1.83 1.86 1.90 1.87 1.81 1.81 1.81 

95% CI 2.16 2.22 2.23 2.17 2.20 2.23 2.21 2.15 2.16 2.14 

width 0.33 0.33 0.34 0.33 0.34 0.33 0.34 0.33 0.35 0.33 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
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L.8 MCAR LNR high and low correlation structure 

MCAR LNR 
High 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.04 2.04 2.00 2.02 2.02 2.02 2.02 2.02 2.00 2.01 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 1973.2 1836 1798.7 Large Large Large Large Large 2959.9 1459.8 

fmi 0.16 0.16 0.17 0.00 0.00 0.00 0.00 0.00 0.13 0.18 

r 0.19 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.15 0.22 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.87 1.87 1.82 1.86 1.86 1.86 1.86 1.86 1.83 1.84 

95% CI 2.22 2.21 2.18 2.18 2.18 2.18 2.18 2.18 2.16 2.19 

width 0.35 0.34 0.36 0.32 0.32 0.32 0.32 0.32 0.34 0.35 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 

 

MCAR LNR 
Low 

Variables 

MI 1 2 3 4 5 6 7 8 9 10 

Q bar 2.06 2.03 1.97 2.02 2.02 2.02 2.02 2.02 2.00 1.98 

U bar 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

df 2308.3 1787.6 1444.0 Large Large Large Large Large 2341.9 1768.7 

fmi 0.15 0.17 0.19 0.00 0.00 0.00 0.00 0.00 0.15 0.17 

r 0.17 0.20 0.23 0.00 0.00 0.00 0.00 0.00 0.17 0.20 

eff 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

t-val 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

95% CI 1.88 1.85 1.79 1.86 1.86 1.86 1.86 1.86 1.83 1.81 

95% CI 2.23 2.21 2.15 2.18 2.18 2.18 2.18 2.18 2.17 2.16 

width 0.35 0.35 0.36 0.32 0.32 0.32 0.32 0.32 0.34 0.36 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width, Large 
– refers to a very large value which will not be displayed 
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Appendix M: Rubin’s rules results for real data 

M.1 RIMCA 

RIMCA Variables 

MI 1 2 3 4 5 6 7 

Q bar 1.4301 1.9839 1.2926 1.2675 1.2577 1.1611 1.4746 

U bar 0.0003 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

T 0.0004 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

df 52548.90 15486.17 75691.62 63364.36 111631.60 160231.13 80662.69 

fmi 0.0306 0.0564 0.0255 0.0278 0.0210 0.0175 0.0247 

r 0.0315 0.0596 0.0261 0.0286 0.0214 0.0178 0.0253 

eff 0.9997 0.9994 0.9997 0.9997 0.9998 0.9998 0.9998 

t-val 1.9600 1.9601 1.9600 1.9600 1.9600 1.9600 1.9600 

95% CI 1.3935 1.9349 1.2607 1.2425 1.2330 1.1404 1.4463 

95% CI 1.4668 2.0328 1.3244 1.2926 1.2824 1.1818 1.5028 

width 0.0734 0.0980 0.0637 0.0502 0.0494 0.0414 0.0565 

RIMCA Variables 

MI 8 9 10 11 12 13 14 

Q bar 1.4082 1.9390 1.4033 1.4506 2.0157 2.1937 1.7153 

U bar 0.0002 0.0003 0.0002 0.0002 0.0003 0.0004 0.0003 

B 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 

T 0.0002 0.0004 0.0002 0.0003 0.0003 0.0004 0.0003 

df 22475.93 5096.20 1504.19 1232.12 1064.91 71154.90 59993.78 

fmi 0.0468 0.0984 0.1816 0.2007 0.2160 0.0263 0.0286 

r 0.0490 0.1087 0.2202 0.2491 0.2731 0.0269 0.0294 

eff 0.9995 0.9990 0.9982 0.9980 0.9978 0.9997 0.9997 

t-val 1.9601 1.9604 1.9615 1.9619 1.9622 1.9600 1.9600 

95% CI 1.3801 1.9013 1.3730 1.4196 1.9792 2.1523 1.6837 

95% CI 1.4364 1.9767 1.4336 1.4817 2.0522 2.2350 1.7469 

width 0.0562 0.0754 0.0606 0.0622 0.0731 0.0827 0.0632 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width 
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M.2 IMCA 

IMCA Variables 

MI 1 2 3 4 5 6 7 

Q bar 1.4296 1.9864 1.2928 1.2676 1.2573 1.1609 1.4743 

U bar 0.0003 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

T 0.0004 0.0006 0.0003 0.0002 0.0002 0.0001 0.0002 

df 33615.62 11528.99 39776.97 82719.17 146527.63 165406.02 30939.76 

fmi 0.0382 0.0654 0.0351 0.0244 0.0183 0.0172 0.0399 

r 0.0397 0.0697 0.0364 0.0249 0.0186 0.0175 0.0414 

eff 0.9996 0.9993 0.9996 0.9998 0.9998 0.9998 0.9996 

t-val 1.9600 1.9602 1.9600 1.9600 1.9600 1.9600 1.9600 

95% CI 1.3929 1.9372 1.2607 1.2426 1.2326 1.1402 1.4458 

95% CI 1.4664 2.0356 1.3248 1.2927 1.2819 1.1816 1.5027 

width 0.0736 0.0984 0.0641 0.0501 0.0493 0.0414 0.0569 

IMCA Variables 

MI 8 9 10 11 12 13 14 

Q bar 1.4087 1.9392 1.3993 1.4501 2.0150 2.1943 1.7150 

U bar 0.0002 0.0003 0.0002 0.0002 0.0003 0.0004 0.0003 

B 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 

T 0.0002 0.0004 0.0002 0.0002 0.0004 0.0004 0.0003 

df 12941.55 3857.23 1026.67 1477.10 651.10 63963.11 50638.61 

fmi 0.0617 0.1132 0.2200 0.1832 0.2766 0.0277 0.0311 

r 0.0656 0.1270 0.2795 0.2227 0.3780 0.0285 0.0321 

eff 0.9994 0.9989 0.9978 0.9982 0.9972 0.9997 0.9997 

t-val 1.9601 1.9606 1.9623 1.9616 1.9636 1.9600 1.9600 

95% CI 1.3803 1.9012 1.3683 1.4194 1.9769 2.1528 1.6834 

95% CI 1.4370 1.9772 1.4302 1.4809 2.0530 2.2357 1.7466 

width 0.0567 0.0761 0.0620 0.0615 0.0761 0.0828 0.0632 

Q bar –estimated mean for MI (Rubin’s rules), U bar –estimated variance for MI (Rubin’s rules), B – between-
imputation variance, T – total variance, df – degrees of freedom, fmi – fraction of missing information, r – relative 
increase in variance, eff – efficiency rate, 95% CI – 95% confidence intervals, width – confidence interval width 

 

  



208 
 

Appendix N: Scatterplot matrices 

N.1 MAR HR with high correlation structure  

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 2:42:41 PM 
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N.2 MAR HNR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 2:44:26 PM 
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N.3 MAR LR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 2:39:15 PM 
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N.4 MAR LNR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 2:40:55 PM 
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N.5 MCAR HR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:05:12 PM 
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N.6 MCAR HNR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:07:56 PM 
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N.7 MCAR LR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 12:37:56 PM 
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N.8 MCAR LNR with high correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:01:05 PM 
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N.9 MAR HR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 3:12:06 PM 
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N.10 MAR HNR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 3:13:48 PM 
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N.11 MAR LR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 3:08:16 PM 
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N.12 MAR LNR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 3:10:22 PM 



220 
 

N.13 MCAR HR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:35:12 PM 
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N.14 MCAR HNR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:37:02 PM 



222 
 

N.15 MCAR LR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:31:32 PM 
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N.16 MCAR LNR with low correlation structure 

 

Generated by the SAS System ('Local', X64_7PRO) on 10 July 2013 at 1:33:18 PM 

 



Summary 

Key terms: incomplete ordinal categorical data, missingness mechanisms, 

multiple imputation, multiple correspondence analysis, principal component 

analysis, regularised iterative multiple correspondence analysis. 

Non-responses in survey data are a prevalent problem. Various techniques for 

the handling of missing data have been studied and published. The application 

of a regularised iterative multiple correspondence analysis (RIMCA) algorithm in 

single imputation (SI) has been suggested for the handling of missing data in 

survey analysis. 

Multiple correspondence analysis (MCA) as an imputation procedure is 

appropriate for survey data, since MCA is concerned with the relationships 

among the variables in the data. Therefore, missing data can be imputed by 

exploiting the relationship between observed and missing data. 

The RIMCA algorithm expresses MCA as a weighted principal component 

analysis (PCA) of a data triplet (     ), which represents a weighted data 

matrix, a metric and a diagonal matrix containing row masses, respectively. 

Performing PCA on a triplet involves the generalised singular value 

decomposition of the weighted data matrix  . Here, standard singular value 

decomposition (SVD) will not suffice, since constraints are imposed on the rows 

and columns because of the weighting. 

The success of this algorithm lies in the fact that all eigenvalues are shrunk and 

the last components are omitted; thus a ‘double shrinkage’ occurs, which 

reduces variance and stabilises predictions. RIMCA seems to overcome 

overfitting and underfitting problems with regard to categorical missing data in 

surveys. 

The idea of applying the RIMCA algorithm in MI was appealing, since 

advantages of MI occur over SI, such as an increase in the accuracy of 
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estimations and the attainment of valid inferences when combining multiple 

datasets. 

The aim of this study was to establish the performance of RIMCA in MI. This 

was achieved by two objectives: to determine whether RIMCA in MI 

outperforms RIMCA in SI and to determine the accuracy of predictions made 

from RIMCA in MI as an imputation model. 

Real and simulated data were used. A simulation protocol was followed creating 

data drawn from multivariate Normal distributions with both high and low 

correlation structures. Varying the percentages of missing values in the data 

and missingness mechanisms (missing completely at random (MCAR) and 

missing at random (MAR)), as is done by Josse et al. (2012), were created in 

the data. 

The first objective was achieved by applying RIMCA in both SI and MI to real 

data and simulated data. The performance of RIMCA in SI and MI were 

compared with regard to the obtained mean estimates and confidence 

intervals. In the case of the real data, the estimates were compared to the 

mean estimates of the incomplete data, whereas for the simulated data the 

true mean values and confidence intervals could be compared to the estimates 

obtained from the imputation procedures. 

The second objective was achieved by calculating the apparent error rates of 

predictions made by the RIMCA algorithm in SI and MI in simulated datasets. 

Along with the apparent error rates, approximate overall success rates were 

calculated in order to establish the accuracy of imputations made by the SI and 

MI. 

The results of this study show that the confidence intervals provided by MI are 

wider in most of the cases, which confirmed the incorporation of additional 

variance. It was found that for some of the variables the SI procedures were 

statistically different from the true confidence intervals, which shows that SI 

was not suitable in these instances for imputation. Overall the mean estimates 

provided by MI were closer to the true values, with respect to the simulated 

and real data. A summary of the bias, mean square errors and coverage for the 
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imputation techniques over a thousand simulations were provided, which also 

confirmed that RIMCA in MI was a better model than RIMCA in SI in the 

contexts provided by this research. 

 



Opsomming 

Sleutelwoorde: ontbrekende ordinale kategoriese data, verlorenis 

meganismes, meervoudige imputasie, meervoudige ooreenkomsanalise, 

hoofkomponentanalise, regulariseerde iteratiewe meervoudige 

ooreenkomsanalise. 

Die verskynsel van ontbrekende waardes in vraelyste is ‘n algemene probleem. 

Verskeie tegnieke vir die hantering van ontbrekende waardes is gebestudeer en 

gepubliseer. Die toepassing van ‘n regulariseerde iteratiewe meervoudige 

ooreenkomsanalise (RIMCA) algoritme in enkelvoudige imputasie is voorgestel 

vir die hantering van ontbrekende waardes in die konteks van vraelyste. 

Meervoudige ooreenkomsanalise (MCA) as ‘n imputasie prosedure is gepas vir 

vraelys data, aangesien MCA die verhoudings tussen veranderlikes in die data 

benut. Dus kan die ontbrekende waardes opgevul word deur imputasie wat 

bepaal word deur die verhoudings tussen die waargenome en ontbrekende 

data. 

Die RIMCA algoritme omskryf MCA as ‘n geweegde hoofkomponentanalise 

(PCA) wat die data as ‘n drietal (       uitdruk. Die drietal stel die geweegde 

data, metries en ry massas, onderskeidelik voor. Die uitvoer van PCA op ‘n 

drietal sluit die toepassing van ‘n veralgemeende singulierewaarde-ontbinding 

van die geweegde data matriks   in. Standaard singulierewaarde-ontbinding is 

nie voldoende in hierdie geval nie, aangesien beperkings op die rye en 

kolomme geplaas word as gevolg van die geweegde data matriks. 

Die sukses van hierdie algoritme is die verkleining van die eiewaardes en die 

weglaat van die laaste komponente. Dus ontstaan daar ‘n dubbelle krimping 

wat sodoende die variansie laat afneem en voorspellings stabiliseer. Dit wil 

voorkom asof RIMCA oormatige passings- en ondermatige passingsprobleme in 

die konteks van kategoriese ontbrekende waardes in vraelyste oorkom. 
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Die idee vir die toepassing van RIMCA in meervoudige imputasie was aanloklik, 

aangesien meervoudige imputasie voordele inhou bo enkelvoudige imputasie 

met ‘n toename in die akkuraatheid van beramings en die verkryging van 

geldige inferensie wanneer die meervoudige datastelle saamgevoeg word. 

Die doel van hierdie studie was om die prestasie van RIMCA in meervoudige 

imputasie te evalueer. Daar was twee doelstellings, naamlik: om vas te stel of 

RIMCA in meervoudige imputasie beter vaar as RIMCA in enkelvoudige 

imputasie, asook om die akkuraatheid van voorspellings gemaak deur RIMCA in 

meervoudige imputasie vas te stel. 

Werklike en gesimuleerde data is gebruik. ‘n Simulasie protokol is gevolg wat 

gebruik is deur Josse et al. (2012) waarin waardes van ‘n meerveranderlike 

Normaal verdeling met hoë en lae korrelasie struktuur geneem is. Ontbrekende 

waardes is in die volledige datastelle geplaas volgens verskillende vereistes 

aangaande die persentasie ontbrekende waardes in die data, sowel as die tipe 

verlorenis meganisme (algeheel stogasties verlore (MCAR) en stogasties verlore 

(MAR)). 

Die eerste doelstelling is bereik deur die toepassing van RIMCA in beide 

enkelvoudige en meervoudige imputasie op ware data en gesimuleerde data. 

Die optrede van RIMCA in enkelvoudige imputasie is vergelyk met dié van 

meervoudige imputasie deur middel van gemiddelde beramings en 

vertrouensintervalle. In die geval van die werklike data is die imputasie 

beramings met die ontbrekende beramings vergelyk, terwyl die gesimuleerde 

data die navorser toegelaat het om die beraamde imputasie waardes met die 

ware gemiddelde waardes te kon vergelyk. 

Die tweede doelstelling is bereik deur die berekening van die skynbare 

foutkoers van die voorspellings gemaak deur die RIMCA algoritme in 

enkelvoudige- en meervoudige imputasie. Die benaderde algehele sukseskoers 

is bereken om sodoende die akkuraatheid van die imputasies deur beide 

enkelvoudige- en meervoudige imputasie te bepaal, asook die skynbare 

foutkoerse. 
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Die resultate van hierdie studie het aangedui dat die vertrouensintervalle verkry 

van die meervoudige imputasie tegniek wyer was as die intervalle verkry van 

die enkelvoudige imputasie tegniek. Hierdie bevinding bevestig die addisionele 

onsekerheid wat deur meervoudige imputasie bygevoeg word. Sommige van 

die veranderlikes het statisties verskil van die ware vertrouensintervalle na die 

toepassing van enkelvoudige imputasie, en daarom was enkelvoudige imputasie 

nie in hierdie gevalle geskik nie. In die algemeen was die gemiddelde 

beramings van meervoudige imputasie nader aan die ware gemiddelde waardes 

in beide die ware- en gesimuleerde data. ‘n Opsomming van die sydigheid, 

gemiddelde kwadratiese fout en die dekking van die imputasie tegnieke oor ‘n 

duisend simulasies het tesame met die doelstellingsresultate bevestig dat 

RIMCA in meervoudige analise ‘n beter en meer gepaste model is as RIMCA in 

enkelvoudige imputasie. 


