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Nanotechnology research has expanded notably, with a wide range of applications from 

catalysis in fuels, to optics. A key factor in manufacturing these particles is understanding 

diffusion and segregation of dopants and impurities in the nanocrystals, as segregation of 

these impurities influences which atom is exposed to the surface of the nano-particle, and 

able to react. Understanding these processes in terms of the shape and size of the particle, as 

well as the effects of temperature, are all important factors for nano-material manufacture. 

Molecular Dynamics software is uniquely able to study the dynamics inside particles of up 

to several thousand atoms. The Sutton-Chen potential, in particular, is able to simulate the 

reactions of face-centred cubic (FCC) metals and model bulk modulus, elastic constants, 

lattice parameters, surface energies, phonon dispersion, cohesion energy and vacancy 

formation energy. It is ideally suited for studying the diffusion and segregation dynamics of 

the large clusters of atoms that make up nanocrystals.  

In this study, a Molecular Dynamics model using the Sutton-Chen potential was built. This 

model implements the Verlet Velocity scheme to simulate the kinetics of the atoms, and uses 

the Berendsen thermostat to keep the system at a constant temperature. The model was tested 

on six FCC metals, namely Al, Ni, Cu, Pd, Ag and Pt, and, making use of periodic boundaries 

in order to simulate bulk crystals, calculated the cohesion energy to confirm the effectiveness 

of the model. The model further confirmed surface orientation dependence for low index 

surfaces. The relationship for vacancy formation energy of      111 100 110

v v vE E E   applied to 

all the FCC metals studied. The effects of temperature on other diffusion-related energies in 

the crystals were also studied. It was further found that the diffusion activation energy of 

FCC metals has the same relationship of 
(110) (100) (111)Q Q Q  . 

Equipped with this information, the model was used for in-depth analysis of Cu, and later 

Ag, nano-cubes, -rhombicuboctahedrons and -octahedrons. A thorough analysis of the 

surface orientation dependence, size dependence, shape dependence and temperature 

dependence of key energies involved in diffusion, created a complete picture of nanoparticle 

stability and surface reactivity. It was found that larger particles are more stable, and that 



 

 

 

surface reactivity indicates that nano-rhombicuboctahedrons are more reactive than perfect 

cubes, and that octahedrons are the least surface-reactive. 

The final part of this study calculated the segregation energy in Ag/Cu systems to confirm 

the ability of the mixed Sutton-Chen potential to simulate segregation in alloys. In the Ag/Cu 

system, Ag is known to segregate to the surface, while Cu desegregates, and the model was 

able to demonstrate this. As this model can successfully reproduce that segregation, it can 

become a powerful tool for the study of diffusion dynamics in FCC alloy nano-materials. 

  



 

 

 

Nanotegnologie navorsing het geweldig uitgebrei, met 'n wye verskeidenheid van 

toepassings van katalise in brandstof, tot optika. 'n Belangrike faktor in die vervaardiging 

van hierdie deeltjies is die begrip van diffusie en segregasie van doteermiddels en 

onsuiwerhede in nano-kristalle, aangesien segregasie van hierdie onsuiwerhede beïnvloed 

watter atoom word blootgestel op die oppervlak van die nano-deeltjie, en in staat is om te 

reageer. Begrip van hierdie prosesse in terme van die vorm en grootte van die deeltjies, sowel 

as die effekte van temperatuur is almal belangrike faktore vir die vervaardiging van nano-

materiale. 

Molekulêre Dinamika sagteware is uniek in staat daarin om die dinamika binne deeltjies van 

tot 'n paar duisend atome te bestudeer. Die Sutton-Chen potensiaal, in besonder, is in staat 

om die reaksies, volumemodulus, elastisiteitskonstantes, roosterkonstantes, 

oppervlakenergie, fononverstrooiing, kohesie-energie en  leemte-vormingsenergie van vlak-

gesentreerde kubiese metale te modelleer. Dit is ideaal vir die bestudering van diffusie en 

segregasie dinamika van groot groepe atome waaruit die nano-kristalle bestaan. 

In hierdie studie is 'n Molekulêre Dinamika model, wat van die Sutton-Chen potensiaal 

gebruik maak, ontwikkel. Hierdie model maak gebruik van die Verlet Snelheid skema om 

die kinetika van die atome te  simuleer, en maak gebruik van die Berendsen termostaat om 

die sisteem teen 'n konstante temperatuur te hou. Die model is getoets op ses FCC metale, 

naamlik Al, Ni, Cu, Pd, Ag en Pt, en deur van periodiese-randvoorwaardes gebruik te maak 

om grootmaatkristalle te simuleer, die kohesie-energie  is bereken om die doeltreffendheid 

van die model bevestig. Die model bevestig verder die oppervlak afhanklikheid vir lae-

indeks oppervlaktes. Die verhouding vir leemte-vormingsenergie van      111 100 110

v v vE E E   is 

van toepassing op al die FCC metale wat bestudeer was. Die effek van temperatuur op ander 

diffusie-verwante energieë in die kristalle is ook bestudeer. Dit is verder bevind dat die 

diffusie-aktiveringsenergie vir FCC metale het dieselfde verhouding dat 

(110) (100) (111)Q Q Q  . 



 

 

 

Met hierdie inligting is die model gebruik vir in-diepte analise van Cu, en later Ag, nano-

kubussse, -rombiese-oktaëders en -oktaëders. 'n Deeglike ontleding van die 

oppervlakafhanklikheid, grootteafhanklikheid, vormafhanklikheid en 

temperatuurafhanklikheid van die energieë betrokke by diffusie en segregasie het 'n 

volledige beeld van nano-deeltjie se stabiliteit en oppervlak-reaktiwiteit gegee. Daar is 

bevind dat groter deeltjies meer stabiel is, en die oppervlak-reaktiwiteit getoon het dat nano-

rombiese-oktaëders meer reaktief is as perfekte kubusse, en dat oktaëders die minste 

oppervlak-reaktief is. 

In die laaste gedeelte van hierdie studie is die segregasie energie in 'n Ag/Cu sisteem bereken 

ten einde die vermoë te bevestig dat die gemengde Sutton-Chen potensiaal segregasie in 

legerings kan simuleer. In die Ag/Cu sisteem, is Ag bekend daarvoor dat dit segregeer na die 

oppervlak terwyl Cu de-segregeer, en die model was in staat om dit te demonstreer. 

Aangesien hierdie model suksesvol segregasie kan weergee, kan dit 'n kragtige instrument 

vir die studie van diffusie dinamika in FCC allooi nano-materiale word. 
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Nanocrystals can be described as any material with at least one dimension less than or equal 

to 100 nm that is a single crystal [1], such as those seen in Figure 1.1 [2]. Nanocrystals are 

massed atoms ranging from a few hundred to tens of thousands which form a "cluster".  A 

typical nanocrystal is around ten nanometers in diameter and is larger than molecules but 

smaller than bulk solids and consequently exhibits physical and chemical properties 

somewhere between both. A nanocrystal is mostly surface with little volume and its 

properties can change noticeably as the crystal grows in size [3]. For instance, doped 

nanocrystals are a new class of materials whose quantum efficiency, a measure of the 

efficacy of wavelength absorption, increases with decreasing size of the particles [4]. In 

order to develop doped crystals for a variety of applications, it is also important to understand 

the properties and behaviour of the impurities in the semiconductor nanocrystals, such as the 

segregation and diffusion of the dopants. 

Doped semiconductor nanocrystals have a range of uses, such as in video displays or 

windows as electrochromic materials [5], usage in materials requiring a well-defined optical 

absorption at mid-infrared wavelengths and possible application in high-density optical data 

storage [6]. With n-type doping the photoluminescence of doped semiconductor nanocrystals 

is quenched and this has applications in chemical synthesis for molecular biology. These 

materials have a variety of applications because of the range of semiconductor compositions 

available and the ability to tune their electronic and optical properties by changing particle 

size and the impurities with which they are doped.  

The shape, such as corner and edge sharpness, or availability of corners, kinks and steps, can 

also increase catalytic productivity [7]. Further, the spectra of surface plasmon resonance 

(SPR) peaks are red-shifted by sharp corners of custom nanoparticle shapes, which give them 

a range of useful plasmonic properties [7, 8]. 
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Figure 1.1 (a-d). (a) and (b) show SEM images of nano-crystals. These crystals are cubic in 

shape and slightly truncated. (c) shows a TEM image of the same crystals. (d) shows an XRD 

spectrum of the Ag nano-crystals, in arbitrary units [2]. 

In recent years, the search for energy-efficient fuels has spurred on research into nanoparticle 

catalysts [9, 10]. Extensive research is being done into the synthesis of nanoparticles of 

particular shapes and sizes. Size [11], shape [12], composition [13] and active sites [14] all 

affect nanoparticle properties [7], which are useful in various applications ranging from use 

as organic catalysis in cancer treatment [15], to enhancing the growth of more complex 

nanoparticle shapes [16].   For instance, Pt alloy nanoparticles are of interest because of their 

use as electrocatalysts in fuel cells. Figure 1.2 on the following page shows a variety of 

nanocrystals and their associated applications [17]. 

Manufacture of effective catalysts requires in-depth understanding of phase-segregation and 

alloying in bimetallic nanoparticles, including the effects of various factors such as phase-

structures on the resulting catalytic activity [9]. An experimental study of Au-Pt, and density 

functional theory modelling, indicated a size and temperature dependence of phase 

segregation, indicating greater Au segregation at higher temperatures. 

In another case, Cu-Au alloying allowed shape control and greater versatility in 

manufacturing catalysts [18], and the existence of Cu-Au nanocubes was first predicted by 

computational models.  An analytical and computational study examined the effects of 

particle shape and size on segregation in Ag-Au, Cu-Au and Au-Pd nanoparticles [19]. In 
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nanoparticles, the role of the bulk volume as an almost infinite sink or reservoir of atoms, 

and the shape dynamics of the nanoparticle influence dynamics. The Wulff model used in 

the study lacked the ability to predict particular atomistic details, but the study suggested 

that numerical models, like the Sutton-Chen potential, could elucidate such details. 

 

 Silver nanocubes have been synthesized as seen in Figure 1.1 [2]. Ag nanocrystals have 

particularly bright colloidal colours because of its emission spectra [7]. Cu nanocrystals are 

of particular use because of its excellent conductivity and catalytic properties [7, 20]. Wang 

et al. have reported synthesis of Cu nanoparticles with six (100) facets in perfect cubes [8]. 

An imperfect cube, or rhombicuboctahedron [21], the shape and construction of which is 

described in more detail later in this thesis, also displays (110) orientations on edges and 

(111) orientations on corners which are useful in synthesis of more complicated nanoparticle 

shapes.  

 

Nanocubes are uniquely suited as building blocks in self-assembling structures [7, 18]. 

Nanocubes form large-scale regular lattices, and the shape of the final assembled structures 

can be controlled by application of hydrophilic and hydrophobic monolayers to the six faces. 

Nanocubes further provide information-rich characteristic hotspots for Raman scattering. 

These functions give shape controlled nanocrystals sensing applications as well. Nanocubes 

and truncated nanocubes can also be used in the manufacture of new complex nanoparticles, 

from 1-dimensional structures such as nanorods and nanorice, to more intricate structures 

such as branched nanocrystals and nanocages [8, 12]. Cuboctahedra can be used as seeds to 

grow octahedra with exposed {111} free surfaces [20]. It has been shown that the surface 

orientation of the particles have a significant effect on the reactivity of the catalyst, such as 

the aforementioned {111} faces of octahedra available for Heck coupling. Heck coupling is 

a reaction of an unsaturated halide with an alkene in the presence of a base and a palladium 

catalyst to form a substituted alkene. 

 

The creation of noble metal nanocatalysts with base metal cores is also of interest to 

manufacturers for economic reasons. One method is to use a seed such as a base metal 

nanocube and to grow an epitaxial layer of noble metal on the activated sites [16]. Another 

possible method is to use surface segregation to grow a coating of the reactive metal on the 

surface. Another use of controlled segregation is the ability to change surface composition 

[22]. It has been shown that alloy composition of the surface can influence catalytic  
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Figure 1.2 shows a representation of various shapes of nanocrystals that have been synthesized, 

and their possible applications in nano-systems for use in catalysis, optics, electronics and 

medicine [17]. 

reactivity, such as the composition of Cu-Pt surfaces in nanocubes used in electrocatalytic 

CO2 reduction [13].  

 

To develop doped crystals for a variety of applications it is also important to understand the 

properties and behaviour of the dopants in the semiconductor nanocrystals, which will be 

aided by the creation of a model describing diffusion and segregation in nanocrystals. To 

know which metal will segregate to the surface and be available for catalytic reaction, 

segregation in the system needs to be well understood. It is important to know whether 

diffusion and segregation of these metals used as catalysts show temperature dependence or 
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surface orientation dependence, as this may provide vital information for effective catalyst 

manufacturing, characterization, and use.  

Segregation refers to the enriching of a material with an impurity or dopant material at a free 

surface or an internal interface. Segregation sites can include surfaces, a dislocation, or a 

grain boundary [3]. Segregation to surfaces also has significant consequences involving the 

purity of samples. Some impurities have favourable segregation to the surface of the material 

resulting in a relatively small concentration of impurity in the bulk of the sample and 

significant coverage of the impurity on the cleaved surfaces. Absorption theories for the 

solid-solid interface and the solid-vacuum surface are directly comparable to well-known 

theories in the field of gas absorption on the free surfaces of solids [23]. Some previous 

studies have shown that segregation coefficients of impurities are found to depend on the 

growth conditions of the nanocrystals [24]. 

In this study, a model is constructed to explain the behaviour of impurities in nanomaterials. 

This will be achieved by utilizing Molecular Dynamics to learn more about the migration-, 

diffusion- and segregation energies for an atom migrating in the bulk and surface layers of 

nanocrystals.  

 

The project aims to create a model that describes diffusion and segregation in nanocrystals. 

To do this, the model must accurately describe the interactions between the atoms in the 

nanocrystal and the impurities. Interaction potentials and forces need to be calculated that 

accurately describe the system and a set of realistic initial conditions must be chosen. By 

means of solving the classical equations of motion, the behaviour of impurities can be 

predicted, such as whether the impurities remain in the bulk of the nanocrystal or segregate 

to the surface. The behaviours predicted by the model must be confirmed using experimental 

data obtained from literature. 

In order to look at the properties and physical behaviour of impurities in nanocrystals, the 

activation barriers were considered, activation energies for vacancy formation and migration 

for dilute impurities were determined. These energies yield the diffusion rates of impurities 

by the mono-vacancy mechanism [25]. Diffusion involves the rate of change of the density 
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of the diffusing substance at a fixed point in space. In nanocrystals with little bulk and mostly 

surface, boundary conditions need to be carefully regarded [26].  

In nanocrystals, the surface to bulk ratio is significantly larger than in bulk crystals, 

increasing the significance of studying the effects of the surface on segregation. There are 

few studies, focused on bulk materials, that consider the impact of surface orientation on 

segregation energy [27]. A few models studied alloys using modelling software [28-35], 

often with the use of Monte Carlo modelling software, which is not able to model the 

dynamics of the system. The current study aims to thoroughly investigate diffusion to 

different surface orientations in not only bulk materials, but also nano-materials, using 

Molecular Dynamics simulations. The study will compare vacancy formation energies, an 

important diffusion parameter, for various face-centred cubic (FCC) metals, in bulk. It then 

aims to investigate in detail the effects of surface orientations, nano-crystal size, nano-crystal 

shape, and temperature on these same quantities in a particular metal, namely copper, before 

applying these insights to study the influence of several of these parameters on segregation 

in the Ag/Cu system. 

The model used to quantify the above-mentioned properties was first developed using the 

Lennard-Jones potential, Verlet Velocity Scheme and a small number of atoms. The program 

was put together and tested with a few variables to ensure it runs smoothly. Once the model 

was able to make the necessary calculations, the Sutton Chen potential was substituted as 

the interaction potential, as it is more effective in predicting the properties of FCC metals 

[36].  Extensive calculations were done to determine the behaviour of the materials under 

various conditions, using first bulk materials and then nanomaterials. After each set of tests, 

the model was recalibrated or improved to further improve the ability of the calculated results 

to simulate the materials being studied. Finally, the properties of impurities in the 

nanocrystal were studied. The results were collected in a dissertation and published in papers.  

If the model can simulate segregation in the Ag-Cu system, and describe in detail the 

segregation and diffusion dynamics in nanocrystals, the model can be applied to a range of 

mixed materials, and can study the in-depth segregation dynamics of other bimetallic 

systems which can be used in the manufacture of surface-coated catalytic nanoparticles. It 

could be useful in predicting the temperature, shape, size, and other necessary parameters 

for a desired result in nanoparticle manufacture. It may also yield further insights into 

diffusion and segregation of impurities in nanomaterials in order to better understand their 
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effects on the properties of semiconductor nanocrystals and their possible applications in 

optics and catalysis.  

 

Presented in this section is a layout of the chapters in the thesis along with a short description 

of each chapter. In total the thesis consists of 8 chapters, a conclusion, plus 2 appendixes; 

appendix A and B.   

1.3.1.1 Chapter 2  -Diffusion and Segregation Theory 

This chapter covers the theory of diffusion and segregation which is being investigated in 

this study. 

1.3.1.2 Chapter 3  -Molecular Dynamics – The Calculations 

Chapter 3 looks at the calculations that the Molecular Dynamics model needs to do, 

including the algorithms used to calculate interatomic forces, positions, velocities and 

accelerations, and temperature control algorithms. 

1.3.1.3 Chapter 4  -The Code and Implementation  

This section investigates the various challenges and pitfalls of implementing the above 

calculations, and the particular practical solutions implemented to overcome them during 

this study. 

1.3.1.4 Chapter 5  -Confirmation of the Model Using Bulk Crystals 

This section presents the first results of this study; bulk calculations for a range of FCC 

metals which can be compared to experimental data to confirm the voracity of the working 

model. The model compares the cohesion energy and vacancy formation energy of Al, Ni, 

Cu, Pd, Ag and Pt to that of experimental values. 

1.3.1.5 Chapter 6  -Comparative Study of Cu Nanocubes at 0 K 

Chapter 6 looks at Cu nano-materials and investigates the effects of particle size and shape 

on the parameters from the previous chapter. It compares the results to the bulk values as 

well as the experimental values from the previous chapters. 
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1.3.1.6 Chapter 7  -Thermodynamics in Cu Nanocubes 

Chapter 7 adds an important variable to the investigation begun in Chapter 6, by studying 

the properties of the Cu nanocrystals over a range of temperatures. It pays particular attention 

to surface energies, but also looks at melting behaviour and vacancy formation energy. 

1.3.1.7 Chapter 8  -Diffusion Dynamics in Pure Cu and Ag Crystals 

This section adds migration energy measurements to the body of data on Cu, and investigates 

Ag as well, in preparation to compare the pure metal interactions to mixed interactions in 

the next chapter. With migration energy and a new metal included in the study, the Sutton-

Chen parameters are also revisited and recalibrated.  

1.3.1.8 Chapter 9  -Diffusion and Segregation in Alloy Cu and Ag Crystals 

The culmination of this study: Ag and Cu are mixed, and the various crystal properties are 

measured and investigated, in particular, the segregation energies of Cu in Ag, and Ag in Cu. 

The chapter ends with a long relaxation run with a mixed Cu and Ag nanoparticle, to see if 

the model will successfully model spontaneous segregation. 

1.3.1.9   Conclusion 

This final chapter draws a conclusion outlining the results obtained in this study.  

1.3.1.10  Appendices 

Appendix A: Computer code  

Appendix B: Publications and conferences attended  
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Segregation has a great many applications. This chapter investigates the theory behind 

segregation, diffusion, and the particular method of atomic transport which will be modelled 

in the study. 

Segregation in metal alloys is the separation of the constituent metals, such that surface 

enrichment of one of the metals causes the reduction of the Gibbs free energy of the system 

[1-3]. The minimizing of the Gibbs free energy is a driving force for many processes. When 

surface segregation occurs, atoms jump randomly from one site into another vacant one, but 

the rate at which the enriching metal atoms jump into the surface layer exceeds the rate at 

which that same metal’s surface atoms jump into the bulk [4].  

The total change in energy of surface segregation of a closed system in thermodynamic 

equilibrium can be expressed as  

 ,E T S P V G         (2.1) 

where T  is the temperature, S  the entropy, P  the pressure and V the volume of the system 

and the Gibbs free energy is given by G  [5, 6]. Thus, the Gibbs free energy depends on 

temperature and pressure. However, the Gibbs free energy in a system depends on the 

chemical bonds, as well as the phase of the system and the concentration of the constituent 

metals. Where pressure is not varied, the change in can also be expressed in terms of the 

entropy and enthalpy of the system [7, 8]: 

 .G H T S      (2.2) 

H  is the internal energy of the system. The driving forces for spontaneous reactions lean in 

the direction of decreased internal enthalpy, H , an increase in entropy, S , and the 

release of heat, or exothermic, T . In the case where a reaction decreases enthalpy, 

increases entropy, and is exothermic, G  is negative. Therefore, negative change in Gibbs 
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free energy indicates a spontaneous reaction. Where a reaction is not exothermic, an increase 

in temperature may overcome the energy barrier and produce a negative change in Gibbs 

free energy to drive segregation. 

In a system where the pressure and temperature remain constant: 

 E G    (2.3) 

from equation 2.1 which indicates that the change in energy of surface segregation can be 

expressed as a change in Gibbs free energy G  [5, 6]. The Gibbs free energy may be 

represented as a function of the chemical potential [5, 6, 9, 10]. This chemical potential is 

the energy per atom in the crystal. The difference in the chemical potential energy between 

the multi-layers can be considered as the cause of the driving force behind segregation [5, 

11-13], or the energy cost of transferring the enriching metal to the surface [14, 15]. If the 

change in Gibbs free energy between layers of a crystal is negative, it would indicate a 

driving force for spontaneous segregation between those layers. 

Being able to simulate surface segregation may be useful, in that measuring surface 

enrichment over time or temperature can allow the determination of other important 

variables, such as the diffusion factor 0D  or activation energy Q , which determine 

diffusion. Diffusion is discussed in the next section [16-22]. 

 

 

Bulk diffusion limits segregation, so understanding bulk diffusion is important in measuring 

segregation [23]. Diffusion is often driven by a gradient of some sort, whether a 

concentration gradient, thermal energy gradient, stress gradient or electro-magnetic gradient. 

Fick’s law of flux in steady-state crystals, which uses a change in concentration gradient to 

measure diffusion, gives the number of particles n  over time through a unit surface area 

A  as  

 ,
C

n D A t
x


   


  (2.4) 
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Figure 2.1. A diagram representing flux; the change in particles over time through an area is 

proportional to the concentration gradient which drives the flux. 

with D  the diffusion coefficient and the concentration gradient given by  

  2 1 2 1/ .
C

C C x x
x


  


  (2.5) 

Then flux J   is given by  

 
1

,
n C

J D
A t dx

 
   


  (2.6) 

which is represented in Figure 2.1. 

In non-steady state diffusion where the concentration gradient changes over time, Fick’s law 

can be expressed as [24, 25] 

 .
C C C

D
t x x

     
       

  (2.7) 

Where the diffusion coefficient D  is concentration independent: 

 
2

2
.

C C
D

t x

 


 
  (2.8) 

This relation has the solution of  

   0, const erf .
2

x
C x t C

Dt

 
   

 
  (2.9) 
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For further reading on a detailed derivation of the solution for the flux equation, refer to 

reference [24]. 

The coefficient of diffusion D   is famously given by the Arrhenius relationship 

 0 exp .
B

Q
D D

k T

 
  

 
  (2.10) 

Where Q  is the activation energy for diffusion, T  is the temperature, Bk  is Boltzmann’s 

constant and 0D   is the pre-exponential frequency factor [26-28]. 

 

Diffusion can occur in a variety of ways: there is volume diffusion, where there is bulk 

movement; surface diffusion along a free surface of a crystal; grain boundary diffusion; 

diffusion through interstitial crystal positions; and diffusion through the vacancy mechanism 

[27-29]. All crystals contain point defects, namely vacancies.  

The vacancy mechanism is the most common method by which diffusion takes place, 

especially in metal FCC, BCC and HCP crystals, as there are always vacancies available, 

and the activation energy for the vacancy mechanism is less than that of the interstitial 

diffusion mechanism. 

Using the probability term vP , the number of vacancies in a crystal, at a given temperature, 

can be determined by [6, 25, 26, 28, 30]:                

 0 exp ,v
v

B

E
N N

k T

 
  

 
  (2.11) 

where the activation energy for vacancy formation is vE , T  is the temperature, Bk   is the 

Boltzmann’s constant and 0N  is the number of lattice sites. 

In the vacancy mechanism, the bulk diffusion coefficient is determined by two factors. The 

first factor is the probability that the diffusing atom has enough energy to cause the crystal 

matrix to deform as it moves to a new location. The second factor is the probability that the 

new location is vacant.  
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The activation energy of diffusion Q  can be deconstructed into two separate energies; the 

vacancy formation energy and the activation energy for atom migration mE  [25, 28, 30, 31], 

where  

  .
v m

Q E E    (2.12) 

These two factors are part of the diffusion equation [32] 

 0 exp exp ,

m v

m v

B BP P

E E
D D

k T k T

      
      
         

 
    (2.13) 

where the mP   term is the probability that an atom has the required energy to move from one 

lattice position to another. The vP   term is the probability that there is a vacancy available to 

which the atom can move.  

The vacancy formation energy is thus an important factor in atomic transport, and is used to 

describe diffusion kinetics in materials. The vacancy formation energy ( vE ) has been shown 

to be dependent on surface orientation in both Al and Cu [31, 33], but this has not been 

extensively studied as a function of temperature. In the following sections, the calculations 

used to determine the vacancy formation and migration activation energies will be discussed. 

 

Point defects are often referred to as Schottky defects, not to be confused with the anion-

cation vacancy pair from ionic crystals [34]. In the case of a neutral vacancy in a metal 

crystal, the term serves to distinguish between a vacancy-adatom, and vacancy-interstitial 

defects, the Schottky defect being the one with an adatom. 

The Schottky mechanism for vacancy formation is shown in Figure 2.2 where a simplified 

perfect FCC crystal whose only defect is the free surface represented by the top layer of 

atoms, forms a point defect. The Schottky mechanism is demonstrated here by atoms moving 

into open defect positions, such as the surface (b) or existing vacancies (c).  
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Figure 2.2 (a-f). The Schottky mechanism for vacancy formation. (a) and (d) show a simplified 

perfect FCC crystal containing only a surface defect at the top. The Schottky mechanism 

involves atoms moving into open defect positions, (b) and (c). A simplified version of the 

vacancy-adatom pair formation which only represents the initial (d) and final (f) crystal states 

approximates the process and allows effective calculations of the vacancy formation energy. 

Thus in (e) the atom is extracted straight from the middle of the crystal and deposited on the 

surface in (f). 

The calculation of the vacancy formation energy ( vE ) for the Schottky defect has previously 

been simplified to the energy difference between the energy needed to extract an atom from 

inside the crystal bulk and the energy obtained from adding an atom to the crystal surface 

[31-33]. The vacancy formation energy can be calculated with: 

 .v extr surfE E E    (2.14) 

extrE  is the energy needed for an atom to be removed from the bulk of a crystal to a position 

infinitely far away, and surfE  is the energy gained for adding the extracted atom (adatom) on 

the surface.  For simplification, these energies will be defined as the extraction energy extrE   

and the adatom energy surfE . 

The extraction energy was evaluated by determining the potential energy of a perfect crystal 

(
total

perfectU ), finding the potential energy for the crystal once a vacancy had been formed in the 

middle by extracting an atom (
total

vacancyU ) and finding the difference: 
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 .total total

extr perfect vacancyE U U    (2.15) 

To find the binding energy for the adatom surfE  the system energy was evaluated for the 

crystal with a vacancy in the centre, as an adatom was moved closer to the surface from 

infinity (see Figure 2.2 (f)). 

This was done for all possible positions on the surface to find the most preferred binding 

positions.  Preferred binding sites were chosen as the points where the potential energy of 

the system from adding the adatom to the surface was a minimum. Using likely bonding 

sites, the average surface-adatom binding energy (
total

surfU ) for each crystal was determined 

and used to calculate the adatom energy: 

 .total total

surf surf vacancyE U U    (2.16) 

Finally, the vacancy formation energy is calculated using equation 2.14. 

 

There is activation energy needed for the motion of an atom from a lattice site to a point 

defect. In the process of migrating, the atom comes closer to other crystal atoms and needs 

to overcome repulsive Pauli forces. 

The difference in energy between the state where the atom is in a lattice position, and when 

it is being maximally repelled by neighbouring atoms is the magnitude of the energy barrier 

that needs to be overcome. This energy barrier is the migration activation energy, represented 

in Figure 2.3. By measuring the total energy of a crystal as an atom is migrating from its 

original position to the neighbouring vacancy, the change in crystal energy can be used to 

determine the amplitude of this energy barrier. This activation energy barrier is the migration 

energy, mE , and makes up the second part of the diffusion activation energy. The method 

for calculating the migration energy is explained in greater detail in section 4.8. 
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Figure 2.3. The migration energy is obtained from measuring the amplitude of the peak of 

change in energy as an atom moves from one lattice position into a vacancy. 

 

The diffusion activation energy Q  limits diffusion and segregation, which consists of two 

parts: the vacancy formation energy vE , and the migration energy mE . A gradient in the 

crystal’s free energy drives diffusion, and the diffusing atom migrates through an interstitial 

mechanism to an available vacancy. The energy needed to create such a Schottky vacancy 

in the crystal is vE , which is created by an abbreviated two-step process. mE  is obtained by 

noting the change in crystal energy when migrating the atom to the neighbouring vacancy. 

Using the Sutton-Chen potential, these energies can be measured by calculating the energy 

differences in the crystal directly when creating vacancies, and when migrating an atom to a 

vacancy.  

In the next chapter, the various algorithms used to model atomic interactions and calculate 

energies are discussed, and in Chapter 4, the practical aspects of performing the calculations 

described in this chapter are more fully explored. 
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The original simulation software was first developed using the Lennard-Jones potential, with 

a Velocity integrator and thermostat, before substituting the Lennard-Jones for the Sutton-

Chen potential. Molecular Dynamics (MD) simulations can make use of a wide variety of 

algorithms, each with their own unique advantages and shortcomings. 

 

 

The Lennard-Jones potential (LJ) determines the potential between two or more uncharged 

atoms [1]. The LJ potential is best used for closed shell systems, such as with the rare gases 

Ar or Kr. LJ is not suitable for use with open shell systems such as in localized covalent 

bonds or in metals [2]. The LJ standard potential can be used for solids, liquids, surfaces and 

clusters amongst others. The lowest energy arrangement of an infinite number of atoms 

calculated by the LJ potential is hexagonal close packed (HCP), and by raising the 

temperature, simulated material first becomes cubic and then liquid [3]. It is ideal for looking 

at fundamental issues but is not suitable for describing the properties of a metal.  

The LJ potential is written as: 

 

12 6

4 ,

LJ LJ

ij ijLJ LJ

ij ij

ij ijr r

 
 

    
             

 (3.1) 

where ij  is the potential between particles i and j ,    is the depth of the energy well, r  is 

the distance between the particles and   is a finite distance at which the interparticle 

potential  is zero [4]. The 12r  term is strongly repulsive, representing the Pauli repulsion 

between particles at close distances due to the overlap of electron orbitals [1]. A more  
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Figure 3.1. The force exerted by the molecules (or atoms) upon one another is the derivative 

of the potential energy, with respect to distance between them.  

appropriate representation of the behaviour of the potential, at small distances of 
1

62r   

is represented by an exponential term. Term 12r  shows Pauli interactions at 
1

62r  , and 

9r  terms can also be used [2, 5]. The 6r term describes a weakly attractive potential over 

larger distances of 
1

62r  , due to the Van der Waals forces that arise from induced dipole 

– induced dipole interactions [1]. The LJ potential can be represented in a diagram as shown 

in Figure 3.1. The depth of the energy well is also indicated as   in the diagram [6]. 

For simplicity 
1

62   defined in Figure 3.1 can be named mr , and equation 3.1 can be 

simplified to:  

 

12 6

2 .LJ m mr r

r r
 

    
     

     

 (3.2) 

Its simple form is exactly what makes it ideal for creating new simulation software to test 

and refine before beginning more complicated calculations. 

 

It is practical to consider a cut-off distance cR  [7] where after particles are regarded to no 

longer interact, so that the LJ potential is given by: 

  
     if ,

0                         if .

LJ LJ

c c

c

r R r R
V r

r R

   
 



 (3.3) 
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This saves computing power and prevents a jump discontinuity at cr R . The truncated part 

of the potential does affect the cohesion energy and pressure of the system, and in solids 

with periodic boundaries a small constant contribution can be made to compensate for this. 

In a system with free surfaces and lower symmetry the truncation effect may, however, be 

much larger.  Potentials for metals and semiconductors are designed such that   0,cR   

and at least for the first two derivatives:   0cR  and  2 0cR   [7]. 

Typically values of 2.5  and 3.2  are used for cR  [7]. When calculating potentials in a 

simulation it is expedient to imagine that the system is contained in a box that has dimensions 

of at least 2 cR in every direction [8]. 

 

The force between two particles due to the LJ potential   is represented by [1] 

 .F     (3.4) 

It can be written in terms of positions ir  and jr  of two atoms: 

  
14 8

 on  on 

1 1
24 2 ,j i i j i jF F r r

r r

     
        

     

 (3.5) 

where i jr r r  . 

 

3.2.4.1 Introduction 

It is conventional to use 1   and 1    in computer simulations [2]. For real materials, 

however,   and   must be determined experimentally [9].   is the depth of the potential 

well where the energy is less than Bk T  [10] and influences the freezing temperature of the 

system, and  influences the solid-state structure of the system [11]. Materials have standard  

  and  values, such as for water 0.6501696 kJ/mol    and 0.3165555 nm   [1]. The 

former is more often referred to as / Bk , which is expressed in units of temperature [10]. 
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Table 3.1: The   and   values for selected elements [10, 12]. 

Material H F Cl Br N O 

/ Bk  (K) 8.6 52.8 173.5 257.2 37.3 44.6 

  (nm) 0.281 0.283 0.335 0.354 0.331 0.295 

Note in Table 3.1 that as one moves down the periodic table, / Bk  increases as the 

polarizability of the elements increase, while   decreases as one moves across the periodic 

table because as the nucleus charge increases, the electron shell becomes smaller.  For atoms 

found in polymers  0.3 nm   [10]. 

3.2.4.2 Calculating LJ parameters 

The calculation of   and  obtained from the experimental sublimation energy and the 

lattice spacing at 0 K is obtained through a procedure followed by Brown in 1964 [13]. This 

evaluation takes into account both cubic and quartic contributions to the lattice free energy. 

The inclusion of the anharmonic contributions yield a better correlation between calculated 

and measured values. 

The Lennard-Jones potential parameters are found by the simultaneous solution of equations 

for the lattice sublimation energy: 

     2

0 0 0 3 40 0 ,L E F F      (3.6) 

with 0L  the lattice sublimation energy, 0  the static lattice energy, 0E the zero-point 

energy. The last terms represent the cubic and quartic contributions to the lattice sublimation 

energy. The total resulting contributions to lattice pressure is set equal to atmospheric 

pressure, such that: 

 
   3 420 0

atm

0 0
.

T T

dF dFd dE

dV dV dV dV


    
        

     
 (3.7) 

Here  

 
 

1
2

,
M 

   
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 is Planck’s constant and M  is the mass of a lattice atom. The static lattice energy is found 

from the expression 

 
000 000

6
0 6

3 1 1
,

6 6

m

m

S Sm

m m z z

      
      

      
 (3.8) 

where 
000

mS and  
000

6S are lattice sums and z  is the reduced intermolecular separation, with 

,z b   where b  is half the edge length of the face-centred cubic (FCC) cell of the lattice. 

m  is an integer such that 0 ,m K   where K  is the total number of wave vector sampling 

points in the first Brillouin zone. The lattice sums discussed were taken for first, second and 

all nearest neighbour contributions. The lattice zero-point energy can be expressed as  

  

11 22 000 000

2 8
0 6

54
1.0223 1 .

6

m

m

S Sm
E m

m z z z

 
  

     
   

 (3.9) 

The experimental data needed is the values for M , b  and 0L .
 

Now that both the 0  and 0E  terms have been defined, only the anharmonic terms 

 2

3 0F  and  2

4 0F remain to be determined. The reduced separation x  is defined as 

2 2 / .x z b      By using a first neighbour model, the reduced potential is defined in 

terms of  r by  

    
6

,
6

m
r x

m


  


 (3.10) 

where the potential  x  is defined by 

   6

1 1
.

6m
x

mx x
    (3.11) 

The potential derivatives are defined by 

  
 1

,
d r

r
r dr


   (3.12) 

where, in general: 
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 (3.13) 

Thus, the nth reduced derivative can be found from: 

    
 
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

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 (3.14) 

This can also be written as:  

  
      

2 6 2

2 4 ... 2 2 8... 4 2
.n m n n

m m m n n
x

x x 

    
    (3.15) 

Reduced potential derivatives like these allow cubic and quartic terms to be written in a 

simpler form. Using first nearest neighbour treatment 
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 (3.16) 

and  
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 (3.17) 

Terms 1 6S S  are functions of volume since they depend on  , where:  

 1

2

2

1
,

x


 
   

 
 

which involves the slope of the intermolecular potential at the equilibrium lattice separation. 

The cubic and quartic terms in equation 3.7 involve volume derivatives of  2

3 0F  and 

 2

4 0F and volume derivatives of the lattice sums obtained by differentiating polynomials 

found from cubic polynomials fit to anharmonic lattice sums. The sublimation equation and 

the pressure equation are solved iteratively on a computer using values of lattice spacing b  

and sublimation energy 0L obtained experimentally. 
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Once the Lennard-Jones potential has been used to resolve computational errors and 

difficulties, it is replaced by the Sutton-Chen potential, which can model material properties 

in FCC metals. 

 

The Sutton-Chen potential uses particle densities in FCC metals and can determine pairwise 

distributions. The Sutton-Chen (SC) empirical many-body potential is a long-range Finnis-

Sinclair potential, using inverse powers for both attractive and repulsive terms [14]. The 

inverse powers give rise to a van der Waals interaction at long range, which is an important 

interaction in noble metals. The same term that describes the van der Waals interaction at 

long range also describes the short range unsaturated covalent bond. The SC potential is able 

to simulate FCC metals with better accuracy and is ideal for calculating the vacancy 

formation energy. 

 

The Sutton–Chen potential ( iU ) has an embedded many-body term that uses particle 

densities in FCC metals to determine the interactions between atoms [14]. The total energy 

of the simulated crystal (U ) is calculated using 

  1
2

,i ij i

i i ji

U U V r c 


 
   

 
    (3.18) 

with ε an energy parameter and c a dimensionless scaling parameter. V is the pairwise 

repulsive potential and ρi is a density-like bonding term [15];  

   ,

n
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a
V r

r

 
   
 

  (3.19) 

   ,

m

i ij

i j i j ij

a
r

r
 

 

 
    

 
    (3.20) 

where rij is the distance between atoms i and j, a is the lattice constant, n  a positive integer 

that determines the repulsive potential and m  is a positive integer that determines the range  
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Figure 3.2. The Sutton-Chen potential has two terms, one modelling the Pauli repulsive forces, 

as shown in red, the other the weak Van der Waals attractive forces in green. The strength of 

the attractive forces and repulsive forces depend on the distance between nuclei of the atoms, 

and where the attractive force is a maximum, the atoms bond together. 

 Table 3.2 The Sutton–Chen parameters for Al, Ni, Cu, Pd, Ag, and Pt [14]. 

Element ε (eV) a (Å) c n m 

Al 3.3147 10-2 4.05 16.399 7 6 

Ni 1.5707 10-2 3.52 39.432 9 6 

Cu 1.2382 10-2 3.61 39.432 9 6 

Pd 4.1790 10-3 3.89 108.27 12 7 

Ag 2.5415 10-3 4.09 144.41 12 6 

Pt 1.9833 10-2 3.92 34.408 10 8 

 

of the attractive potential such that n > m. A representation of the potential is shown in Figure 

3.2. 

In order to determine the Sutton-Chen potential for a particular material, the constants n , m  

and a  need to be known [16]. The parameters used were published by Sutton and Chen [14], 

and are listed in Table 3.2.  The strongly repulsive pairwise potential term in the short-range 

acts on atoms that approach each other too closely and are repelled. The weakly attractive 

density-like term simulates the interactions of metals with an electron cloud by calculating 

the contributions of surrounding atoms to the interactive potential. This density-like 

attractive term is long range. 
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Using the SC potential, the potential energy from atomic interactions can be evaluated. This 

potential energy evaluated for perfect crystals (
total

perfectU  ) can be used to calculate the cohesion 

energy as follows [17]: 

 ( ) / ,total total

coh r perfectE U U n    (3.21) 

where 
total

perfectU  is the total potential energy of the perfect crystal and 
total

rU    is the total 

potential energy of the system where the n  atoms are infinitely far removed from each other, 

in ground state and at 0 K. When using the SC potential to evaluate system energies, it is 

important to note that the potential energies are entirely due to atom interactions, and that 

the total system energy with all atoms infinitely far removed is 0 eV. Thus equation 3.21 can 

be simplified to 

 / .total

coh perfectE U n   (3.22) 

 

The total force can be calculated from the SC potential in the following way: 

 .
i i

f U   (3.23) 

This can be reduced to: 

 ,
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i ij

i j ij

r
f f

r

  (3.24) 

where ijf  is the force between atoms i  and j , and can be expressed as: 
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Here   has a dimension of energy, c  is dimensionless, a  is the FCC lattice constant, and 

n  and m  are positive integers so that n m  [16, 18, 19]. 
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Feraoun et al. have developed a new many body potential inspired from the SC potential, 

with a new approach to modelling the cross interaction for alloys [20]. The potential was 

obtained by expressing the Hamiltonian (total energy in terms of potential and kinetic 

energies) in a Finnis-Sinclair potential form [21]: 
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Here ˆ
ip  is a site occupancy operator and is defined as follows: 

 
1, if site  is occupied by an  atom,

ˆ
0, if site  is occupied by a  atom.

i

i A
p

i B


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

 (3.27) 

Functions ,AAV  ,BBV  ,ABV  ,AA  
BB   and 

AB  are defined as follows: 
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 (3.28) 
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 (3.29) 

The constants AAd and BBd  are defined as 

  and  .AA AA AA BB BB BBd c d c    (3.30) 

In equations 3.28 to 3.30 the constants AAa , AAc , AA , AAm  and AAn  denote the 

corresponding constants for the pure metal A , and similarly the constants BBa , BBc , BB , 

BBm  and BBn  denote the corresponding constants for the pure metal B . These values can all 

be obtained from the parameters for pure metals as defined by Sutton and Chen [14]. The 
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only parameters that remain to be determined are the constants ABa , AB , ABm  and ABn . 

This may be done if the following is assumed: 
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AB AA BB

V V V  (3.31) 

and 
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2( ) .AB AA BB     (3.32) 

This assumption leads to the following expressions that allow the unknown parameters to be 

calculated from the parameters of the pure metals: 

 
1

2

1
2

1
2

1
2

( ),

( ),

( ) ,

( ) .

AB AA BB

AB AA BB

AB AA BB

AB AA BB

m m m

n n n

a a a

  

 

 





 (3.33) 

These mixed potentials were employed by Jin et al. [22] to determine the melting behaviour 

of cubo-octahedron Al4033 nanoclusters with Pb cores. The potentials were modified slightly 

to describe the immiscibility of the alloy system. With the provision that equation 3.33 is 

entirely empirical, ABm  and ABn  could be adjusted to reflect the immiscible properties of 

the alloy, by making ABn  slightly larger than the mean of AAn  and BBn : 

  1
2

,AB AA BBn n n     (3.34) 

where   is chosen for the alloy.  The expression used to determine the total energy for the 

alloy was: 
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where 
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Rodriguez-Lopez et al. used the mixed potentials to establish other thermodynamic 

behaviours of a system where the melting points were previously determined [23]. No 

adjustments were made to equation 3.33. 

 

From equation 3.24 where ijf  is the force between atoms i  and j , it can be expressed as 

[24]: 
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 (3.38) 

However, in equation 3.35 and 3.36 it can be seen that   is not a common factor in binary 

alloys. Thus, calculating the force in binary alloys would be changed to: 
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This is the formula currently used to calculate the forces in the simulation used in this study. 

However, in a PhD study conducted by S. Özdemir Kart [25] the force is calculated as 

follows: 
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which can be simplified for comparison to: 
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Another simple direct derivation from equation 3.35 will yield: 
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The SC force calculation is used thusly by the MBN Explorer, multipurpose computer code 

suitable for use in multiscale modelling [26].  

 

Equations 3.39, 3.40 and 3.42 have been independently derived from equation 3.35 [20, 21, 

25], often with small differences, which were used by the MBN Explorer, multipurpose 

computer code suitable for use in multiscale modelling [26], and to determine the melting 

behaviour of Al nanoclusters with Pb cores, with small modifications to describe the 

immiscibility of the alloy system [27]. It provides a formula with which to calculate the force 

of atom j  on atom i . This study uses equation 3.39. 

However, the terms for two alloy atoms are to be calculated with ij ijn term m term    

where:  
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The n-term is the same for either element, the m-term varies widely due to AA AAc which 

depends on the element. Thus, when calculating the force constant, ij jim term m term    , 

and as it is much larger than the ijn term , ij jif f  , and the difference is significant. An  
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Figure 3.3 The forces calculated using the mixed potential and the original Sutton-Chen 

parameters from Table 3.2 are unequal and do not conserve momentum, and requires a new c  

value for mixed potentials. 

empirical calculation of the partial forces ijf   and jif   for a two-body system of Cu and Ag 

yield partial forces of 0.82 eV for the Cu atom and 0.42 eV for the Ag atom at a separation 

of 2.3 Ǻ, which is far from the same. It is clear the critical difference in these partial forces 

comes from the second term in the force calculation, due to the large differences in AAc  and 

BBc . A visual representation of the discrepancy is presented in Figure 3.3. 

This is because the c  values, though a dimensionless parameter, represent the lattice 

stabilities and the  AAc  and BBc values represent the states of the pure metals, but not 

necessarily that of the alloy. If these lattice parameters differ too greatly, neither can 

accurately reflect the state of the lattice. Therefore, the model fails. For this purpose, a new 

Sutton Chen c  parameter must be calculated for the alloy. 

Returning to the original derivation of the Sutton-Chen [14], the dimensionless parameter c  

was fixed to a constant for a crystal at equilibrium and related to the lattice sum  
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   (3.43) 

with the sum taken over all inter-atomic separations ijr  from a random atom i . Setting fa

equal to the lattice parameters allows c  to be written as   

 .
f

n

f

n

nS
c

m S
   (3.44) 
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As each atom itself makes up 50% of its interactions with other atoms, half of the interspecies 

interaction is provided from the element of the local atom, and half from that of the nearest 

neighbour. 

Using this new definition for a in equation 3.43 and substituting into the equation for c 

allows us to then calculate a new lattice sum parameter 

  
1

2

.AB AA BBc c c   (3.45) 

This result was also compared to a manually calculated c using the lattice sum equation and 

yielded similar results. Using this new parameter to calculate the partial energies between 

atoms of different elements gives an equal partial force being exerted by each atom, which 

conserves energy and momentum. 

 

Barron et al. [28] used a Genetic Algorithm to find the low Lennard-Jones energy 

configurations for atomic clusters in the range 13    147n  . Configurations C  were 

created with points p  denoting the positions of lattice atoms. Using the LJ potential, the 

energy of the system was calculated and the configuration with a minimum energy was found 

using a Genetic Algorithm.  

The Genetic Algorithm involves creating a parent “population” of 9 configurations and 

“mating” or mutating them to create successive generations. From these generations, the 

configuration with the lowest LJ energy is chosen as the LJ configuration. 

Once the parent generation has been created, the configurations are relaxed. Atoms with too 

close proximity are randomly relocated to the outer shell of the configuration to prevent 

overflow as a result of a too high LJ energy.  Bumps are also removed from the configuration 

by eliminating atoms with an unusually low number of nearest neighbours and replacing 

them on the outer shell. Once the configuration is relaxed, bumps are removed and the LJ 

energy has been minimised, the parent configurations are then used to create the next 

generation. Six parent configurations are randomly chosen, though the probability of being 

selected as parent is increased with decreasing LJ energy. 
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Figure 3.4. Using time integration algorithms, a new position after lapse of time t  can be 

calculated. 

 

Rather than using Genetic Algorithms, Time Integration Algorithms can be used. Time 

algorithms are necessary to integrate the equations of motion in order to follow the trajectory 

of the interacting particles in the system [29]. There are two commonly used algorithms, 

namely the Verlet algorithm and the predictor-corrector algorithm. These methods are based 

on finite difference methods where the time is divided into small discrete steps of t . 

Knowing the position and its time derivatives at a certain time t , the new position and its 

corresponding time derivatives can be calculated at a time t t  using these algorithms, as 

represented in Figure 3.4. Errors that may occur during time integration are truncation errors 

and round off errors. Truncation errors are intrinsic to the specific algorithm and relate to 

the use of finite difference methods, such as Taylor expansions where the equation is 

truncated after a certain number of terms.  The Verlet algorithm has a truncation error 

proportional to 4t  for each integration time step. Round off errors relate to the 

implementation of the algorithm, such as the finite number of digits used in computer 

arithmetics.  Round off errors can be kept to a minimum by using 64-bit precision. Both 

round off errors and truncation errors can also be minimised by using smaller time steps t . 

 

3.5.1.1 The Taylor expansion 

The Verlet algorithm is two third order Taylor expansions [30, 31] for the position  r t  at 

the times t t and t t : 
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            2 3 41 1
2 6

,r t t r t v t t a t t b t t O t           (3.46) 

            2 3 41 1
2 6

.r t t r t v t t a t t b t t O t           (3.47) 

Where v  is the velocity, a  the acceleration and b  the third derivative of r .  4O t  is the 

fourth term of the Taylor expansion, which is later omitted, making the local error of the 

Verlet scheme of the order of  4 .O t  The two expressions are added together to obtain  

          2 42 .r t t r t r t t a t t O t         (3.48) 

Here  

     1 .ma t V r t   (3.49) 

The velocity which is needed to calculate the kinetic energy can be found from: 

  
   

,
2

r t t r t t
v t

t

  



 (3.50) 

which has a global error proportional to 2t . Alternatively, the velocity can be obtained 

through the Velocity Verlet Scheme. 

3.5.1.2 The Velocity Verlet Scheme 

The alternative to using equation 3.50 is to use the Velocity Verlet: 

      1
2

2 ,v t t v t t a t t t       (3.51) 

 which can be obtained from  

         21
2

,r t t r t v t t a t t       (3.52) 

 

      1
2

2 ,v t t v t a t t     (3.53) 

and 
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     1 .ma t t V r t t     (3.54) 

Equation 3.54 is found from calculating the acceleration and substituting equation 3.52, 

where after the Velocity Verlet is easily obtained by substituting in equations 3.53 and 3.54. 

An alternative expression for the Velocity Verlet is 

         1
2

,v t t v t a t a t t t       (3.55) 

which is obtained from substituting equations 3.49 and 3.54 in equation 3.55. The truncation 

error involved in calculating the velocity through the Velocity Verlet is of the order of 4t  

as opposed to the error of order 2t of equation 3.50. 

 

An alternative to the Verlet Velocity algorithm is the Predictor-Corrector algorithm, which 

involves three steps [32]: 

1. Predictor: From the known r , r  and r  values at time t  the same values are 

predicted for a time t t  by a Taylor expansion. 

2. Force evaluation: The force is calculated from the gradient of the potential at the 

new time t t  and the acceleration obtained from the calculated force is compared 

to the predicted value for  .a t t  The difference in these values is the error signal. 

3. Corrector: The error signal is used to correct the values for r , r and r at time 

t t and the error signal is proportional to the corrections made. The proportionality 

constant is determined to ensure the maximum stability of the algorithm and is a 

‘magic number’. 

 

The temperature in the system is related to the kinetic energy of the atoms in the crystal. The 

kinetic energy is obtained from the average velocities of the atoms. When the crystal is 

created, the velocities of the crystal are set using random velocities generated from a normal 

distribution. Figure 3.5 shows a visual representation of the possible spread of velocities of 

the atoms around  
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Figure 3.5 The temperature is found from the average kinetic energy derived from the 

distribution of atom velocities. Alternatively, a spread of atom velocities can be obtained from 

a normal distribution around an average velocity obtained from the desired temperature. 

an average velocity calculated from temperature “T”. The directions of these vectors are 

isotropically spread using unit vectors calculated from randomly generated numbers. 

 

The kinetic energy is given as the sum of the kinetic energies of all the atoms in the system 

[33]: 

 

2

1

.
2

N
i

i i

p
KE

m

  (3.56) 

The kinetic energy is related to the temperature as follows: 

  3 .
2

B
C

k T
KE N N   (3.57) 

N  is the total number of atoms in the system, 3CN   is the number of constraints on the 

system, T  is the system temperature and Bk  is Boltzmann’s constant. Thus, using the sum 

of atom velocities as represented in Figure 3.5, the temperature can be obtained from the 

average kinetic energy. This gives the temperature: 

 
 

2
.

3 3B

KE
T

k N



 (3.58) 
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As the velocities of the atoms in the system are updated with the time-integration algorithm, 

it can affect the temperature. This temperature needs to be adjusted to account for the change. 

The change in temperature can be calculated as [33]: 

 
 

2 2

1 1

1 1
2 2 .

2 2

N N
i i i i

i idf B df B

m m
T

N k N k

 

 

     (3.59) 

dfN  is the number of internal degrees of freedom. Equation 3.59 can also be written as: 

    2 1 ,T T t    (3.60) 

where  is a factor that is multiplied to the velocities for velocity scaling, with  T t  the 

temperature at time t . This gives the velocity scaling factor as: 

  0 ,/T T t   (3.61) 

with 0T  the desired temperature of the system. 

 

 

The Berendsen Thermostat adjusts the temperature of the system with a velocity scaling 

factor, by coupling the system to a heat bath with a fixed temperature 0T  through a feedback 

cycle. How closely the system is coupled to the heat bath determines the scaling factor.  The 

rate of change in temperature is proportional to [33]: 

 
 

  0 ,
1dT t

T T t
dt 

   (3.62) 

where   is a coupling parameter that determines how closely the heat bath and the real 

system are linked. The change in temperature for each time step is then: 

   0 ,
t

T T T t



    (3.63) 
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Figure 3.6. This diagram shows a representation of a velocity scaled crystal after a number of 

time steps, where all the atom velocities have been converted into particle translation and the 

particle has turned into a “flying ice-cube”. 

and the velocity scaling factor is thus: 

 
 

2 0

2

1 1 .
t

Tt

T t 






  
   

  

 (3.64) 

The coupling parameter   is used empirically to adjust the strength of the coupling. At the 

limit where   is infinitely large, the coupling is inactive. Where   is chosen too small, 

temperature fluctuations have an unrealistically scaled temperature fluctuation amplitude. A 

typical value used in MD simulations is 0.1ps  . This however does not generate a 

canonical ensemble. 

 

A common problem of velocity scaling is that all the kinetic energy of the atoms is converted 

into a translated velocity of the centre of mass, whereas the internal motion of the particle 

relative to each other are reduced as shown in Figure 3.6. Dissipative Particle Dynamics 

(DPD) can be used to add random noise and prevent the amplification of relative motion of 

the simulated system by adding random noise to the velocity, as shown in Figure 3.7.  

DPD is often used in polymers, where there are mesoscopic particles, that is, soft spheres 

connected by a spring [34, 35]. DPD adds pairwise dissipative random forces f to the force 

term of the equations of motion in terms of the positions iq  and momenta ip , which are: 

    .C D Ri i i
i ij ij ij

i ji

dq p dp
, f t F F F

dt m dt 

       (3.65) 
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Figure 3.7. This diagram shows a velocity scaled crystal which includes random noise from 

DPD, preserving internal random motion, which prevents the particle from drifting. 

CF  are the conservative forces, DF  are the dissipative forces and RF  are the random forces. 

In the case of a Molecular Dynamics simulation, only the random forces are of concern. 

These random friction forces are applied to pairs of particles to conserve total linear 

momentum. The pairs can be chosen at random, according to a distance-weighted probability, 

or one nearest neighbour per atom.  

The noise vector can be three dimensional and applied isotopically to the force vector. The 

noise vector is applied to the pairs of particles up to the cut-off distance, beyond which noise 

forces are 0. The vector is also linearly scaled according to inter-atom distances. The friction 

can be applied parallel to the interatomic separation, perpendicular to it, or in the direction 

of the velocity itself.  

First the velocity noise factor g  is determined; 

  2 / .B refg f f k T     (3.66) 

Here   is the reduced mass of the particle pair: 

  .
i j

i j

m m

m m
 


  (3.67) 

The relative velocity vector is given as: 

  .i jBv v v    (3.68) 

B  is the Berendsen scaling factor.  
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Figure 3.8. The first method of selecting vector directions is to select random vectors. 

The choice is then whether to apply the noise isotropically, in which case the constructed 

vector would be: 

 ,v fv g      (3.69) 

where   consists of 3 randomly chosen numbers from a normal distribution: 

  1 2 3, , .      (3.70) 

Figure 3.8 shows a representation of randomly chosen atom pairs with isotropically applied 

noise where the vectors are chosen randomly. 

If the noise is to be applied in parallel, then the unit vector 1e  is used: 

 1 ,
ij

ij

r
e

r
   (3.71) 

where ij j ir r r   in the interparticle direction. Then: 

   1.parv fv g e      (3.72) 

direction. 

To find the component of v  in the interparticle direction one uses: 

 1.parv ve   (3.73) 
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Figure 3.9. An alternative way to apply noise is in the direction parallel to the interatomic  

A representation of the crystal with random noise applied in the interatomic direction can be 

seen in Figure 3.9. 

The other option is in the direction perpendicular to the interparticle direction. In this case 

the perpendicular component of velocity is:  

 1 1( ) ,perpv v ve e    (3.74) 

which has a unit vector of:  

 2 ,
perp

perp

v
e

v
   (3.75) 

which can be used to calculate the unit vector 3e : 

 3 1 2.e e e    (3.76) 

Then the perpendicular vector can be constructed as: 

  2 2 3 3 .perpv fv g e e        (3.77) 

Figure 3.10 shows random noise applied in the direction perpendicular to the interatomic 

direction. 

The vectors are applied over two particles as follows: 

 

,

.

R

i B i

i

R

j B j

i

v v v
m

v v v
m







  
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  (3.78) 
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Figure 3.10. The random forces can be applied in the direction perpendicular to the interatomic 

direction. 

Thus momentum i i j jmv m v  is conserved. 

 

After a thorough analysis of the various algorithms used to simulate materials, algorithms 

were chosen to be used in this study. The energies and forces were calculated with the 

Sutton-Chen potential, positions, velocities and accelerations were given by the Velocity 

Verlet integrator, and temperature control used the Berendsen thermostat. Other algorithms 

such as Dissipative Particle Dynamics were later used as well. 

Having done a thorough study of all the algorithms involved in Molecular Dynamics 

simulations, the next step is implementing the code.   
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This chapter examines the process of implementing the calculations discussed in the 

previous section; the particulars of coding; and some of the challenges and how they were 

overcome. From packing the crystals, running a simple relaxation run of a packed crystal, to 

optimizing processing time and the more creative solutions, are fully discussed in this 

chapter. 

 

The first challenge was to determine a regular way to pack the atoms to produce free surfaces 

with the low index surface orientations used in this study.  

 

Each Cartesian coordinate was incremented in a set pattern, allowing for variations every 

other row or layer to produce the characteristic surfaces shown in Figure 4.1.   

The (110) surface had to switch between two identical patterns of packing for each layer, the 

one slightly offset in height and position from the other. To program the offset, the “mod” 

function was used, using a remainder to keep track of whether to offset a layer or row, or 

not. Combining the function with the counter for the particular row or layer allowed the 

precise switching between one set of coordinates and another at the correct junction. 

 

Here “i” is the atom number in the row, “j” is the number of rows and “k” the number of 

layers.   

1. shift_layer = j Mod 2 
2.  

3. set_position(int_selected_atom, x) = i * root_two_a + shift_layer * (root_two_a / 2) 
4. set_position(int_selected_atom, y) = j * lattice_const / 2 
5. set_position(int_selected_atom, z) = k * (root_two_a) + shift_layer * (root_two_a / 2) 
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Figure 4.1. The free surfaces of the three bulk crystal packings; the (110) free surface with 

crests and troughs; the (100) square-packed surface; and the closely packed (111) surface. 

 

Figure 4.2. This graphic demonstrates the principle of using “Mod” to shift atoms at regular 

intervals in the lattice. 

Using the “j Mod 2” function allows the shift of every second row, in the x- and z-direction, 

as can be seen in Figure 4.2, which is found in code lines 3 and 5. To pack the (100) is simple 

as each row is identical, though every second layer is offset in the x- and y-directions:  

 

Finally, the most complex to pack is the crystal with a (111) free surface, where both rows 

and layers are shifted: 

 

1. shift_layer = k Mod 2 
2.   
3. set_position(int_selected_atom, x) = i * root_two_a + shift_layer * (root_two_a / 2) 
4. set_position(int_selected_atom, y) = j * root_two_a + shift_layer * (root_two_a / 2) 
5. set_position(int_selected_atom, z) = (k) * (lattice_const / 2) 

1. shift_layer = k Mod 3 
2.   
3. shift_row = j Mod 2 
4.   
5. set_position(int_selected_atom, x) = i * root_two_a + shift_row * (root_two_a / 2)  
6.     + shift_layer * (root_two_a / 2) 
7. set_position(int_selected_atom, y) = j * three_root_two_a  
8.     + shift_layer * root_three_root_two_a 
9. set_position(int_selected_atom, z) = k * root_three_a 
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Figure 4.3. A representation of the surface orientations of the bulk crystals used to calculate 

the vacancy formation energy, migration energy, segregation energy and diffusion activation 

energy in bulk (volume of the crystal away from surface defects). 

The final product is a large crystal, larger in width than the cut-off radius, shown in Figure 

4.3. The size means that in the centre of the crystal, surface effects no longer influence atom 

dynamics. The exact shape of the crystal also needs to fit like a puzzle piece with a copy of 

itself for periodic boundaries which is discussed in section 4.3.3. As a Molecular Dynamics 

simulation works on a larger scale than some of the more intensive models like Density 

Functional Theory (DFT), it is able to simulate thousands of atoms up to 5 nm in width with 

little difficulty. 

 

Having unpacked the structure of the bulk crystals, creating custom nanocrystals is the next 

challenge. The nanocrystals simulated in this study resemble nanocubes manufactured by 

Wang et al. who have reported synthesis of Cu nanoparticles with six (100) facets in perfect 

cubes [1], and similar Ag nanocubes manufactured by Sun et al. [2]. 

Packing the cubes themselves involves adjusting the (100) crystal packing to take on perfect 

(100) faces on all sides. The cubes produced in the labs sometimes assumed the shape of a 

rhombicuboctahedron, meaning the cubes were truncated where the edges and corners have 

had layers shaved away. To mimic this, {110} and {111} planes were calculated and used 

as a boundary condition of perfect cubes; if atoms fell on the wrong side of this plane, they 

were removed, as shown in Figure 4.4. 
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Figure 4.4 (a-d) shows the process of packing an imperfect Cu nanocube packed 9 atoms per 

row, with (100) faces, (110) edges and (111) corners. First the perfect cube with (100)-faces 

was packed in (a), then 3 layers of atoms were removed along the (111) plane to reveal (111) 

corners (b), and finally another 3 layers of atoms were cut away along the (110) edges (c). 

This produced the 9 9 9 3   , or 
3

9


  particle (d). 

 

Figure 4.5 shows a perfect Cu nanocube, 
0

5  shown in (a), with edges and corners 

progressively cut away to produce rhombicuboctahedrons (b) 
1

5


, (c) 
2

5


, (d) 
3

5


, and the 

octahedron 45  in (e). 
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Figure 4.6. A small 6 6 6   cube packed with each atom having a maximum number of 

nearest neighbours of a foreign element produces a layered packing. 

Figure 4.5 shows smaller examples of the various shapes of nanocubes that can be easily 

produced using the software, from a perfect cube, through truncated cubes, called a 

rhombicuboctahedron, to the final shape of two inverted pyramids attached at their bases: an 

octahedron.  

The particular shapes of these nanocubes provided an opportunity to study the interactions 

of relationships between low-index surfaces, their boundary interactions, and particle size, 

along with the other factors that could be studied in the bulk crystals. 

 

As this study ultimately aims at examining segregation in bimetallic nanoparticles, packing 

crystals with more than one element was essential. 

4.1.3.1 Homogenous concentration 

A homogenous packing of crystals would be an ideal starting point from which to measure 

segregation, as any change in the consistent concentration of the different metals would be 

easier to pick up. However, an attempt to make sure that each atom has the maximum number 

of nearest neighbours of a foreign element in contact with them led to a banded, or layered, 

structure, as seen in Figure 4.6. Ultimately it was decided to try other configurations to 

measure segregation in this study.  
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4.1.3.2 Random distribution 

Another method of mixing two different metals was to use random assignment of each 

element. All atoms would be set to the first element, and, depending on the concentration, a 

certain number of atoms would then be changed to the second element, chosen by a random 

number generator. This method was used for a long relaxation run, where atoms are moved 

to positions which minimize the crystal potential energy, at the very end of this study in 

Chapter 9. 

4.1.3.3 Assigning the Central Atom as a Foreign Element 

The final method of assigning a second element to the crystal was also the main method used 

for much of this study. By calculating the average position of all atoms in the x-, y-, and z-

directions, the central atom of the crystal can be easily determined. By setting the element 

of this atom to a foreign element, the atom can be used for calculations that are independent 

of surface interactions. 

4.1.3.4 Assigning a Custom Atom as a Foreign Element 

Finally, in some calculations such as determining the migration energy along a diffusion 

path, the entire crystal is set to the first element, and the selected atom is set to the second 

element. In the case of the migration segregation energy calculations, the elements of the 

atoms are switched around, so that the main selected atom is always the one with the foreign 

element and all the others are of the same original element. 

 

A large part of the simulations run in this study involved looking at the reaction of atoms to 

their environment in real time. The integration step subroutine is called multiple times in the 

code and used in different capacities, from relaxing atoms in a local location, to relaxing the 

crystal after a change in atom positions and elements, to main relaxation runs that examine 

the effects of crystal size, shape, temperature and free surfaces on the energy and atom 

interactions over time. For each time-step, the integration step is run, where the dynamics of 

each atom is calculated for the same instant. 
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Figure 4.7. A flow diagram representing the main crystal relaxation process.  

 

Each small time-step is only a picosecond, and thus the longest run of 500 000 steps is a 

mere 0.5 milliseconds of time. The process is summarized in Figure 4.7. The settings include 

a large number of variables, including the Sutton-Chen parameters, number of atoms, time 

step, required temperatures, the thermostat constant which determines heat damping, and so  
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Figure 4.8. A representation of a multilevel array. Arrays can have many levels, but can 

compound the amount of memory needed to store them quickly with each added dimension. 

on. Along with these settings, each atom’s position and initial velocity vector is also read 

into the program.  

The main program uses a simple loop which moves the atoms according to the Velocity 

Verlet, adjusts the temperature, and then checks whether the run has been completed. The 

diagram does gloss over some of the processes, such as checks for saving regular image files, 

a sleep function which allows the program to pause, and a function which writes the progress 

to console, but it shows the important steps. 

 

The program makes extensive use of multilevel arrays. The largest of these is the array which 

stores the nearest neighbour information, which is discussed in the next section.  

Figure 4.8 shows a representation of a multilevel array, with the dimensions 16 15 10   

(recall that the first entry is always 0). Though it appears small at first glance, the example 

array can store 2 400 entries. Although it is an easy way to organize related data, this is also 

a shortcoming of this type of array, as it ties up large quantities of memory, not all of which 

is always used.  
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Figure 4.9. This flowchart shows the process of isolating which nearest neighbours are within 

the cut off range of an atom. The subroutine is called from within the program, and the program 

continues using the list constructed during the sub. 

 

The array which stores the nearest neighbour information is a multilevel array. It needs 

multiple levels, as each atom has its own list of neighbours, and each atom-neighbour 

interaction has a few factors that need to be saved. These include reference numbers to point 
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at their positions in the array so that the correct index is used to call up a particular neighbour. 

Additionally, this array was used to save whether the interactions were between atoms of the 

same element, element 1 or 2, or different elements. 

The flowchart presented in Figure 4.9 shows the process by which this array is populated. It 

requires nested loops that cycle through each atom, then every other atom it interacts with, 

and checks whether they are close enough to each other to interact. (The second loop starts 

at 1j i  , which is a time-saving method discussed in section 4.3.4.) 

 

From the very beginning the program was written using equation 3.39. Where parameters 

like AB AAc c  , equation 3.39 becomes equation 3.25. Thus, the following code is equation 

3.39, using variables that are pre-determined by the atom whose partial force is being 

calculated, and the nearest neighbour whose contribution to the force is being considered. 

The element of the selected atom, called “D” in the code, and the nearest neighbour, 

“nearest_neighbour”, will determine which Sutton-Chen parameters are used, namely, 

parameters for pure-metal interactions, or mixed parameters. 

 

The parameters for the pure metals and mixed interactions are calculated when the settings 

are created, and passed with other settings when the program is loaded. These are stored in 

a simple 2-level array. During the integration step, the type of interaction is stored in the 

nearest-neighbour information array, and called up to determine which parameters to load. 

This check is repeated for every interaction. 

 

The loading and saving modules were written in C# by L. A. L. Wessels [3], and integrated 

into the Visual Basic code using:  

 

1. partial_force_constant = (g_dbl_SC_constants(e, sc_element) / _ 
2.          (g_dbl_interatomic_distance(D, nn) * g_dbl_interatomic_distance(D, nn))) _ 
3.          * ((g_dbl_SC_constants(n, sc_element) * g_dbl_nn_SC_terms(D, nn, 1)) _ 
4.          + ((((g_dbl_SC_constants(m, sc_element) * g_dbl_SC_constants(c, sc_element))_ 
5.          / 2)) * (g_dbl_nn_SC_terms(D, nn, 0))) _ 
6.          * ((1 / g_dbl_nn_SC_terms(D, 0, 0)) + (1 _ 
7.          / g_dbl_nn_SC_terms(nearest_neighbour, 0, 0)))) 
 

1. Imports FileUtils 
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With simple commands, individual variables could be read from the settings files, saved to 

them, and updated. Atom positions and velocities were saved in a resume file with the 

*.txt.gz extension, a zipped file which saves a percentage of hard drive space when writing 

the files. The file utilities could also save image files – snapshots of the atoms’ positions and 

instantaneous system potential energy, kinetic energy, and temperature – to compile into a 

ISO (Image Standard Optical) file, from which temperature and energy graphs, and even 

videos can be extracted using another (program-) plugin from the same author.  

 

Although Molecular Dynamics calculations are less time-intensive than more intensive 

methods like DFT, and are measured in days or weeks, rather than months, it is still 

beneficial to streamline calculations, cut down on calculation time and save as much memory 

space as possible. 

 

Although it is often easier to follow the equations in the code by doing them step by step, 

this creates extra operations, and when these are done thousands of times inside nested loops 

(themselves an undesirable programming trait) they add up. Below is an example of code 

which could be streamlined: 

 

In this case the code is easier to read and debug should errors arise. However, especially in 

a loop such as the “For”-loop in the above example, the extra steps needed to define each 

variable can take up precious micro-seconds, which, when compounded over thousands of 

iterations, can slow down a calculation by a significant percentage. 

1. For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
2.             
3.             a = g_dbl_SC_constants(a, sc_element) 
4.  
5.             distance = g_dbl_interatomic_distance(D, nn) 
6.  
7.             n = g_dbl_SC_constants(n, sc_element) 
8.  
9.             m = g_dbl_SC_constants(m, sc_element) 
10.  
11.             mterm = (a / distance) ^ m 
12.  
13.             nterm = (a / distance) ^ n 
14.  
15.  Next nn 
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Above is a sample of the same code where the values were injected straight into the equations. 

Though the equation becomes long and difficult to read, it saves computation time and is 

much preferred. Wherever possible, it is more efficient to eliminate intermediate steps that 

serve to clarify, in favour of simplicity in the code. 

 

With reference to Figure 3.2 from the previous chapter, the interaction potential that 

determines the magnitude of the force of one atom acting upon another falls off to 0 the 

further apart the atoms are from each other. At a certain point the calculation cost of taking 

into account these miniscule influences becomes too expensive when compared to the effect 

they have on the overall forces in the system. As such, a cut-off radius is determined beyond 

which all interactions are assumed to be 0, as mentioned in section 3.2.2. Some typical cut-

off distances are 2.5  and 3.2 , distances that include successively more layers of nearest 

neighbours, where   is the distance between two directly adjacent atoms when the potential 

is zero. These larger cut-off distances are consequently costlier in processing time and 

memory. The current study used 3.2  wherever possible. 

 

A large part of this study involved comparing calculations from the simulations with 

experimental values. This means using large crystals that simulate bulk conditions, which 

can then be compared to reference values from experimental measurements. Of course, such 

large crystals can contain tens of thousands of atoms and consume weeks of processing time 

and gigabytes of internal memory. Another method for saving some time and memory is to 

simulate a smaller central crystal, and replicate it in its surrounds, mapping its reactions back 

onto itself. These copies are made in the x- and y-directions, leaving the z-surface free. In 

effect, the left-most atoms will see the right-most atoms as their left-hand neighbours, and 

so on (refer to Figure 4.10). 

1. For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
2.   
3.             mterm = (g_dbl_SC_constants(a, sc_element) / _ 
4.                     g_dbl_interatomic_distance(D, nn)) ^ _ 
5.                     g_dbl_SC_constants(m, sc_element) 
6.             nterm = (g_dbl_SC_constants(a, sc_element) / _ 
7.                     g_dbl_interatomic_distance(D, nn)) ^ _ 
8.                     g_dbl_SC_constants(n, sc_element) 
9. Next nn 
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Figure 4.10 shows how periodic boundaries would work, mirroring the position of every atom 

8 times in its surroundings. Atoms close to the boundaries may interact with atoms on the other 

side of the original crystal because of this mirroring. It is important to choose the box-length 

large enough so that, unlike in this example picture, an atom will not have the same atom as 

nearest neighbour twice, or even interact with itself. 

As a result, every atom will have endless neighbours in every direction except the z-direction, 

allowing the computation of large crystal dynamics without the processing cost. Of course, 

the box lengths of the original crystal need to be larger than the cut-off distance. The above 

example fails in that regard in that some of the atoms are counted twice as nearest neighbours, 

which can lead to artificial effects that are artefacts of the boundaries, such as wave-like 

undulations on the surface, and not true reactions of a bulk crystal.  

 

Mirroring array values is another simple way to save calculation time. As mentioned before 

in section 4.2.3, it is an invaluable tool to save time when calculating interactions of 

thousands of atoms. Figure 4.11 shows an example where the interactions between 7 atoms, 

0 to 6, need to be calculated; each atom with every other atom except with itself. Using a 

simple rule to divide the array into halves, the first atom x, and the second atom y are chosen 

such that y > x. As the forces and influences upon each other are equal, the interaction for (x, 

y) can be calculated once, and the result copied to (y, x). 
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Figure 4.11. Mirroring identical values saves time. As the force of atom x on atom y is the 

same as the force of atom y on atom x, it only needs to be calculated once. The force of atom 

x on itself does not need to be calculated. 

This scenario still works even if every interaction is not taken into account because of the 

reciprocity. For example, the cut-off radius means that the interaction between every atom 

and every other atom does not need to be calculated, but only the interaction list with a list 

of nearest neighbours. Copying the value from (i, j) to (j, i) becomes a little complicated, 

because stepping through array values no longer involves incrementing in integer values. 

Instead, the numbers of the nearest neighbour, its position in the nearest neighbour list, and 

the position of the original atom on the nearest neighbour’s nearest neighbour list need to 

kept into account! It is thus important to save pointers in the nearest neighbour information 

array, so that, as the list of neighbours is stepped through, the related array entries can be 

identified and accessed. Identifying which interactions can be ignored entirely will be 

discussed in the next section. 

 

In some calculations, like finding the migration energy on a diffusion path, the changes in 

energy occur in a localised area which includes first- and second-nearest neighbours, so the 

partial energies of most of the atoms do not need to be recalculated. In this case, a list of 

atoms close to the affected area is set up, such as shown in Figure 4.12, where it involves  
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Figure 4.12. When measuring the change in energy along a diffusion path in the crystal, 

choosing to calculate the changes in energies of only the nearest neighbours (shown here as 

larger light grey atoms) of the start point and end point (in darker grey) allows for a much 

shorter calculation time. 

the nearest neighbours of the start point and end point of the migration atom. The cut-off 

distance used was 3.2 , as before. 

 

Originally, the force exerted by every atom on every other atom would need to be found. 

Using the cut-off radius, that list can be pared down to a much smaller list of interactions, 

and if the calculation is localized, all but a select few atoms can be ignored. However, the 

partial forces for each atom need to be calculated at least once, and this is done using the 

Sutton-Chen potential. 

The potential is quite involved and takes several steps to calculate. Each step is a separate 

subroutine in a module for the Sutton-Chen calculation. The calculation has two major terms, 

the n term and the .m term  The m term  also contains the density-like term i , of 

equation 3.18, which is a sum itself.  The calculation starts with calculating the terms 
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where the parameters used depend on whether they are the same element or two different 

elements. Once these two terms have been calculated, the second can be summed for all 

nearest neighbours to produce i . These terms can then be used in the partial energy and 

calculation for each individual atom-atom interaction, which is summed for all nearest 

neighbours to determine that atom’s energy in the crystal. These terms are also used to find 

the force of one atom on another, and summing those forces over nearest neighbours produce 

the total force acting on the atom. 

 

Calculating the velocity and acceleration is straightforward. The equations are followed as 

set out in section 3.5.1.2, starting with calculation of the new position from equation 3.52, 

then the new acceleration, and the velocity at half a time step from equations 3.53 and 3.54, 

and finally the new velocity using equation 3.51, such as the example shown below: 

 

There is a correction factor multiplied to the force to ensure the units of the resulting energy 

are in electron volt. For the complete code of the module, refer to Appendix A. 

 

 

Temperature control, too, is straightforward.  

After the new velocities have been calculated, the kinetic energy is found, and from that, the 

temperature.  

 

1. g_dbl_atom_velocity(i, 0) = g_dbl_atom_velocity(i, 0) + (1 / 2) * _ 
2.                             g_dbl_acceleration(i, 0) * dt 

 

1.  kinetic_energy = kinetic_energy + (conversion_factor) * (mass(element(i)) * _ 
2.                   velocity_squared(i)) / 2 
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The program uses the Berendsen thermostat, which is really just velocity scaling with a 

factor which is calculated using equation 3.64. 

 

The scaling factor is applied by multiplying it with each component of the velocity for each 

atom. However, the scaling only reduces or increases the magnitude of the velocities, and 

does nothing to change their direction. 

 

As mentioned in section 3.6.4, one difficulty with using velocity scaling is that there is 

nothing to prevent all the atoms from locking into position and flying off together into one 

particular direction, such as the particle illustrated in Figure 4.13 (a). The program does not 

take the velocity of the reference frame into account, so a frozen particle moving at high 

velocity still counts as a high system temperature. This phenomenon was named the “Flying 

Ice-Cube” by Harvey et al. [4]. 

To solve this problem, one solution is to calculate the particle velocity and rotation and 

correct for them. Another solution is to make use of Dissipative Particle Dynamics (DPD) 

[5, 6], which adds dissipative friction forces in such a way as to conserve momentum. The 

program used isotropically applied DPD noise, and made use of equations 3.66 to 3.73, and 

equation 3.78. The result is a particle with random velocities, such as the one pictured in 

Figure 4.13 (b). Use was made of DPD by applying equation 3.69, where the direction of the 

noise vectors were randomly chosen using the Troschuetz Random Number Generator 

library [7] according to equation 3.70. The atom pairs to which the noise was applied was 

also chosen using the random number generator. 

 

 

3. Dim temperature As Double 
4.   
5.     temperature = (2 / 3) * (kinetic_energy / k_boltzmann)     '=(1.60218E-19)  
6.   
7. Return temperature  

8. Berendsen_scaling_factor = 1 + (dt / Berendsen_constant) * _ 
9.                  ((desired_temperature / system_temperature) - 1) 
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Figure 4.13 (a, b). No matter the velocities of the crystal as a whole, the frozen ice-cube is 

locked tightly in a 0 K packing (a) with no changes in inter-atom displacement, diving 

headlong through space. (b) Introducing noise into the velocity vectors of the atoms keeps 

them from locking into place and rushing off, instead simulating the flux and change of 

dynamics in a high-temperature crystal. 

 

 

Calculating the vacancy formation energy has two parts; extracting a bulk atom from the 

centre of the crystal and removing it as far away as possible, and placing the extracted 

adatom back on the surface. Unexpectedly, the second process is far more involved and time-

consuming, and involves multiple problems that require creative solutions. 

Whereas extracting the atom from inside the crystal means adding considerable distance to 

one of its coordinates, placing it on the surface as in Figure 4.14 means mapping a large part 

of the surface to determine the optimum binding sites. Figure 4.15 shows an area of the 

surface of a crystal with a (100) free surface, with the third dimension representing the 

surface energy. The mapped energy is lighter where there are surface atoms, and the gaps 

between them appear darker. These more negative sites also indicate where an atom would 

preferentially bind.  
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Figure 4.14 shows the potential energy curve produced by bringing a single atom closer to a 

surface. The atom is likely to occupy the distance from the surface indicated by the potential 

energy minimum. To find that minimum without stepping the atom through thousands of 

points requires selective sampling, discussed later. 

 

 

Figure 4.15. The surface energy measured on a (100) surface shows clearly the preferred 

binding sites in darker colours and hint at the surface atom positions in white. 
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Figure 4.16. Finding the minimum of a range of points involves a loop counting through all 

the values and saving only the smallest value. 

In order to find the optimum distance from the surface, and the optimum coordinate of width 

and breadth on the surface, the absolute minima, and local minima must be determined. The 

general programming code to find a minimum is set out in the flowchart of Figure 4.16. The 

process involves a reference value and index for comparison, and then cycling through all 

the points, comparing them to the reference point to see if their values are smaller than the 

reference. If they are, the reference value is replaced with the new value and index, and the 

search continues. For a general minimum, the search is cycled through all points and only  
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Figure 4.17. To find the minimum binding energy on the surface requires a nested loop 

stepping through each point of 2 directions while finding a minimum in the third direction. 

the extreme minimum is returned. For local minima, a search range must be defined, either 

cycling through indexes, or using other data such as surface position in a certain radius, to 

search through. The search range is kept small, and as soon as the next search values are all 

larger than the reference value, a local minimum is assumed and the search loop is escaped. 
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Having determined how to find a minimum, this needs to be implemented in the program to 

classify the surface over an area of the crystal. A simplified version of the program is detailed 

in the flowchart in Figure 4.17. Note that the chart in Figure 4.17 used “direction 1, 2, 3” 

instead of “x, y, z”, a measure included to allow 3D investigation of any of the three planes. 

The x-, y-, and z-coordinates can be substituted for any of the three directions, or even 

flipped with a negative sign to measure the opposite side of the crystal.  

Finding the minimum energy above the surface is repeated in nested loops that step through 

every point across the surface area in 2 dimensions. However, the optimum height is a little 

more difficult to find without incrementing through hundreds of steps from sufficiently far 

away from the crystal not to become caught inside an atom or interstitial position in the 

crystal. To cut down on time and processing, while quickly isolating the optimum binding 

distance from the crystal, the Multi-Section Method was used. 

 

 

A common method to search for a minimum is to use two points, bisect it with a third, then 

choose the two points with the smallest values and repeat the process; narrowing down the 

exact position of the minimum more quickly than incrementing through it extremely slowly.  

If the position is incremented, then as the atom is brought closer to the surface along a 

trajectory perpendicular to the surface, the potential energy decreases as the long-range, 

weak attractive force pulls the adatom, until it approaches the surface too closely and is 

repelled by the short-range strong repulsive force.  

The Multi-Section Method (MSM) represented in Figure 4.18 takes into account that the 

minimum could lie outside the range of the initial chosen two points, and so extends the 

range by adding a further two points on either side of the range. It is critical that none of the 

points fall within the crystal to start, as this can confuse the readings. 
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Figure 4.18. A graphical representation of the MSM. Step one shows two starting points, and 

three neighbouring points chosen, one bisecting and two extending the range. The two points 

with the minimum energy values are chosen, and the step as repeated with the minima as 

starting points. 

The whole process starts with locating the position of the surface by cycling through crystal 

atom positions. Once an approximate position is determined, a safety margin is added to the 

height so the MSM will not be caught in interstitial positions inside the crystal. Next, the 

adatom, which will scan the surface, is brought closer to the surface until the adatom is in 

close proximity to another crystal atom, and all atoms within the cut-off radius are added to 

the nearest neighbour list of the adatom. Now the initial two points of the MSM are used, 

two points are extrapolated on either side and one point is interpolated in between. Of the 

five points, the two smallest energies are chosen as the new starting points, and the process 

is repeated. The MSM is started further away, instead of from the position where nearest 

neighbours are chosen, as the extrapolated points could land in an interstitial point inside the 

crystal and give a false minimum. As the methods closes in on the surface minimum, the 

distances between the search points decreases and there is a smaller chance of an interstitial 

point being chosen. 

 

For nanocrystals, there are corners and edges where some minima could be missed if only 

measured from one direction, so a corner is chosen, and measured from three directions. 
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Figure 4.19 shows on the left a 3D view of the corner's potential binding sites on the surface 

(grey dots) which correspond to local minima on the contour plot of the surface energy on the 

right.  

 

Once the energies across the surface have been measured, the plot is often much like that in 

Figure 4.19 on the right-hand-side. To translate it back to the left-hand-side of the figure, 

which has exact positions, where an adatom would preferentially bind on the surface, have 

been pin-pointed, a further sweep of the surface data must be done to determine local minima. 

In this case, an arbitrary number of points are defined in a grid across the surface of the 

contour energy plot, and allowed to search nearby energies by choosing coordinates within 

a small radius of the starting point. As soon as the search reveals a local minimum, the search 

at that point on the grid is stopped. The minima are classified by their energies, and can be 

drawn on the surface as an imaginary adatom to show their position, as in the left-hand-side 

figure of Figure 4.19. 

4.7.3.1 Finding Difficult Minima 

Figure 4.20 shows a saddle point, where the search for a local minimum gets caught between 

two minima. Sometimes a slope in one direction is steeper, directing searches toward one 

minimum and away from another. Other times a minimum is hidden behind outcroppings, 

something that occurs more frequently during higher temperature runs. Some simple 

solutions are to run the search using a tight grid with many search points across the surface; 

to increase the search area slightly once a local minimum is found, to make sure it is not a 

saddle point; and to search the same point from multiple directions. This is also why 3D 

measurements are useful. 
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Figure 4.20. Some minima can be saddle points, and prevent a search from finding nearby 

minima unless the range is extended. 

4.7.3.2 Eliminating Double Results 

One challenge with 3D measurements is that sometimes the same search yields different 

results as the true minimum is out of sight from one direction and yields a false minimum 

instead. It is thus necessary to run the results through a screen which searches through 

minima in close proximity to each other, but having similar, or different binding energies. 

Some minima will be listed twice, where one of the values can be safely ignored, while 

others cannot be ignored. In high temperature runs with surface fluctuations there is a danger 

of eliminating a true minimum because it has an unusual energy and position, thus manual 

monitoring along with the automatic screening is also important. Most of the time two points 

in extreme proximity are a false minimum and true minimum double, and the lowest energy 

can be kept as the true value. 

4.7.3.3 Eliminating Boundary Results 

Figure 4.21 presents another challenge. Some minima may be cut off by the measurement 

range itself, and have atypical energy values that can distort the results. As a general rule, 

all minima that lie directly on a measurement boundary are ignored.  

4.7.3.4 Differentiating Between Different Surface Orientations 

The final step in classifying the surface data is differentiating between different surface  
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Figure 4.21. Minima found on the extreme edges of the measured ranges run the risk of being 

atypical values, and should be eliminated. 

 

Figure 4.22. Using the (111) point to orient the cube in space, lines can be drawn that delineate 

the different surfaces along their edges, allowing the classification of surface types and 

energies. 

 

orientations. On the free surfaces of the bulk crystals this step is not necessary, but on the 

multi-faceted surfaces of the nanocubes, it is important to differentiate the many different 

binding points. 

In order to find the edges and distinguish the different surfaces, three points on the corners 

of the (111) surface were chosen. Cutting the cube along the cardinal planes through those 

three points hems in the {110} surfaces and the {100} faces. The edges of these planes fall 

on edge-type energies which have atypical binding values. Figure 4.22 shows a 

representation of this division of surfaces and how the orientations are assigned. 
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The segregation energy and migration energy measurements are similar in that they both 

occur along a diffusion path, plotted along atom coordinates from a chosen surface atom into 

the bulk to the centre-most atom. Whereas for the migration energy measurements, the next 

atom in line is removed and the first atom is stepped incrementally to the second position, 

for segregation energy, the atom positions remain the same but the foreign atom element is 

exchanged from one atom along the path to another. For both processes the change in total 

crystal energy is measured, and used to calculate either migration energy or segregation 

energy. 

 

4.8.1.1 Choosing the diffusion path 

Figure 4.23 shows the program flowchart for measuring migration energy. Initially the 

program structure closely resembles that of the surface measurements in Figure 4.17, in that 

it has a nested loop, inside which the important processing takes place. In this case though, 

instead of incrementing through surface coordinates, the program cycles through atoms 

along a diffusion path, into the bulk of the crystal, in the outer loop. For each atom along 

that path, the program then cycles through all of the path atom’s nearest neighbours in the 

inner loop. Once a path atom has been chosen, and it’s nearest neighbour selected, that 

nearest neighbour is placed 1 m away from the crystal to create a vacancy, and the chosen 

atom is drawn into that vacancy at incremental steps, while the crystal energy is measured 

and saved. 

 For segregation energy calculations, the processing inside the inner loop is a simple 

switching of the atom’s elements. The first atom along the path has its element changed to 

that of a foreign element and the crystal energy is measured; then the element is changed 

back and the next atom along the diffusion path has its element changed to that of an impurity 

and the energy is saved, and so on. The system energy calculation, where the impurity is at 

the centre of the crystal, is saved for later comparison. 
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Figure 4.23. Similar to measuring surface binding energies, measuring the migration energy 

involves nested loops, though not in directions, but in counting through atoms and their nearest 

neighbours. The measurement for each path also involves a loop incrementing along the 

migration path. 

Figure 4.24 (a) and (b) shows the process in more detail. Only the nearest neighbours in the 

plane facing the reader are considered to reduce clutter and make the diagram simpler to 

understand. 
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Figure 4.24 shows a visual representation of the process described in the flowchart. Beginning 

at the surface in (a), the atom is migrated along paths to the position previously occupied by 

its displaced nearest neighbours. The nearest neighbour closest to the centre of the crystal is 

chosen to become the migrating atom in (b). All migration energy profiles are saved, but those 

along the migration path to the centre are stitched together to give a migration energy profile 

along the diffusion path from surface to bulk. 

Figure 4.24 (a) shows the first step of a migration energy calculation, starting with the pre-

selected atom on the surface. In the inner loop of the program, each nearest neighbour is 

removed from the crystal and the surface atom is stepped into the vacancy left behind. Once 

all the nearest neighbours have had their paths measured, the nearest neighbour closest to 

the centre is identified; its path is highlighted in red.  

This neighbour is chosen as the new primary atom, and the whole process is repeated in 

Figure 4.24 (b) with a new primary atom stepping to its nearest neighbours. Its neighbour 

closest to the centre is identified and the whole process is repeated. This laborious process 

is done with every nearest neighbour so that in the full dataset, the different profiles can be 

studied, including steps within the same layer, or in the surface layer. This helps to calibrate 

the results as atoms in the same layer should have similar energies in bulk. 
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Figure 4.25 shows how the relative position of a foreign atom in the crystal can affect the 

overall crystal energy. That difference in crystal energy causes a drive to segregate and is 

equivalent to the segregation energy. 

 

Once all the migration energy profiles along multiple paths have been measured, the paths 

highlighted in red in Figure 4.24 are isolated using the atomic numbers of each primary 

migration atom and the nearest neighbour which becomes a vacancy.  These are stitched 

together end to end, though which end is which also depends on whether the migration path 

is following the migration of the atom, or that of the vacancy. 

For the segregation energy, the only thing to stitch together is the series of system energy 

measurements done as the element of each successive atom was changed to a foreign element. 

Extracting the Energy Difference 

For segregation energy, the final step is to compare the range of energies with the total crystal 

energy where the foreign element is buried deep inside the centre. The energy difference is 

an indication of whether the crystal has an overall lower energy with the foreign element in 

bulk, on the surface, or somewhere in between. 

For the migration energy, the energy differences are more complex as the process involves 

creating a vacancy. Thus, the reference energy used to zero the measurements is the crystal 

state where one atom is in a binding position within the centre of the crystal and another is 

removed to create a vacancy. This energy is deducted from the entire profile, and shows 

whether a vacancy closer to the surface creates a more or less stable crystal state, and whether 

the atom moving between two positions increases or decreases crystal energy compared to 

this default state.  
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The program and its difficulties are varied and involved, providing a challenge in measuring 

known and unknown quantities in new ways. However, in the next chapters the data 

generated by the simulation algorithms will be explored to discover if the program can 

replicate experimental results found in literature. The effects of new configurations, such as 

change in crystal size or system temperature, will also be investigated. 
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5.1  

The modelling software was developed with the Sutton-Chen potential, Velocity Verlet 

scheme, and Berendsen thermostat discussed in Chapter 3. Using the periodic boundaries 

described in section 4.3.3, bulk materials could be simulated. Experimental studies are often 

conducted on large single crystals. Thus, validating the voracity of the model is best done 

by comparing calculations to bulk values. 

The cohesion energy is defined as the energy required to be added to a crystal to create atoms 

at infinite separation in their ground state at 0 K [1]. Cohesion energies are well established 

and form a good standard for comparison.  

The bulk vacancy formation energies (Ev) were calculated for Al, Ni, Cu, Pd, Ag, and Pt 

single crystals with a molecular dynamics simulation that made use of the Sutton-Chen 

many-body potential.  The monovacancy formation energies for single crystals with the 

surface orientations of (111), (100) and (110) were calculated at temperatures ranging from 

0 K to 1000 K or to below the melting temperatures of some of the elements. As the 

calculation only investigates a single monovacancy-adatom pair, all energies given in 

electron Volt (eV) are per atom, even if not explicitly stated. In this chapter, temperature and 

surface orientation dependence of the vacancy formation energy in bulk FCC crystals are 

investigated.  

 

The six types of FCC metals were simulated as crystals with exposed surface orientations of 

(100), (110) and (111) at different temperatures, such as those seen in Figure 4.3 from section 

4.1.1. Molecular Dynamics simulations were run for each metal for a range of temperatures 

from 0 K to 1000 K in 50 K steps where the simulated crystal was not melted. For the 
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purposes of this study investigation was limited to where premelting was not observed in 

surface layers. Although disordering such as surface roughening was observed at high 

temperatures in some metals as a result of anharmonic vibrations, these results did fall inside 

the scope of the study, provided the crystal surface did not premelt. The results would fall 

outside the scope of this study if the crystal surface layers became amorphous and a crystal 

packing structure could no longer be identified.  

Perfect crystals were simulated for each metal with 1584 atoms arranged in 12×12, 11 layers 

deep, to minimise internal effects of the surface. The crystal structures were allowed to relax 

for 20 000 steps. Snapshots of the crystal state were taken at time intervals of 1 000 steps 

during which the crystal energy was monitored. To establish the validity of the current 

calculation software, the cohesion energy was calculated for each of the three crystals.  

The cohesion energy in the crystal is the energy needed to scatter all the atoms in the crystal 

infinitely far apart, and is essentially a measure of how stable the crystal is. Using equation 

3.22 from section 3.3.3, this can simply be calculated by dividing the total crystal energy 

(
total

perfectU ) by the number of atoms in the crystal n : 

 / .total

coh perfectE U n   

After confirming the comparative calculating capabilities of the model using cohesion 

energies, the vacancy formation energy was calculated for Schottky defects. In this study the 

particular case of surface-adatom/vacancy pair formation was studied. A vacancy was 

created by extracting an atom from the middle of the crystal, removing it to a distance of 1 

m from the crystal to approximate infinity where interactions between the adatom and the 

crystal become negligible. The vacancy in the middle of the crystal was created far enough 

from free surfaces so that the vacancy was not affected by the crystal's surface. Atoms 

surrounding the vacancy were not allowed to relax. The extracted atom, which became the 

adatom, was then added to the surface. The surface-adatom energy was calculated for the 

system where the adatom occupied the ideal bonding site on the crystal surface. Using likely 

bonding sites, the average surface binding energy for each crystal was determined for each 

of the various temperatures.  From the energy measurements described above, the vacancy 

formation energy was calculated as described in section 2.2.3. 

The perfect crystal-, atom extraction- and surface-adatom binding energies were measured 

for several snapshots of the crystal state over time. At higher temperatures, the crystal state 

tends to vary due to the anharmonic movements of the atoms in the crystal. By averaging 
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the different crystal states calculated over time, a better average of the energy states for each 

temperature was obtained.  

 

Perfect single crystals of FCC Al, Ni, Cu, Pd, Ag, and Pt were simulated at 0 K using the SC 

potential to calculate the total crystal potential energy. Using equation 3.22, the cohesion 

energy for each element was evaluated and compared to literature values (Table 5.1). All the 

values calculated for cohesion energy compare well with established literature values 

reported by Kittel (2005) [1]. This shows that the SC potential accurately models the atomic 

binding energies in the crystals simulated. 

Table 5.1 Cohesion energy as calculated for Al, Ni, Cu, Pd, Ag, and Pt and compared 

to values from literature [1].  

Element Calculated (eV/atom) Literature (eV/atom) 

Al 3.23 3.39 

Ni 4.24 4.44 

Cu 3.34 3.49 

Pd 3.81 3.89 

Ag 2.82 2.95 

Pt 5.75 5.84 

 

After calculating and comparing cohesion binding energies, the vacancy formation energy 

was calculated using equation 2.14: 

 .v extr surfE E E    

 

The vacancy formation energy depends on two energies: the strength of the bond of an atom 

in the bulk, and the strength of the bond of an atom on the surface. 



 

83 

 

 

The influence of the surface orientation on vE  was investigated in the following section. 

5.4.1.1 The Extraction Energy 

The vacancy formation energy was calculated for crystals with the different surface packing 

structures (111), (100) and (110) shown in Figure 4.3. An atom was extracted from the 

perfect bulk crystals to obtain the extraction energy 
(Bulk )

extrE  using equation 2.15: 

 .total total

extr perfect vacancyE U U    

The extraction energy was determined from the difference between the perfect crystal and 

the crystal containing a vacancy where the extracted atom was removed far enough away for 

zero interaction with the crystal. At intervals of 1 000 steps during the simulation, the crystal 

state was saved, producing a "freeze-frame" that captured the atom positions, velocities and 

energies.  

The crystal energy was determined for each freeze-frame. The energy was then determined 

for the same crystal freeze-frame after a vacancy had been created, and finally the surface of 

that crystal state was characterized.   

Although the extraction energy was calculated for crystals packed with a (111), (100) and 

(110) surface orientation, there is no difference in the energy values for the different 

orientations, i.e. 
     111 100 110

extr extr extrE E E  . For example, the extraction energy calculated for a 

single Cu atom was 4.32 eV, and 3.90 eV for Al, irrespective of surface orientation. This is 

as expected, as it shows that the simulated crystal was big enough, so that the vacancy in the 

middle of the crystal was not affected by the different surface orientations. 

5.4.1.2 The Surface Binding Energy 

Each crystal freeze-frame, or snapshot, taken in order to calculate the extraction energy also 

had its surface characterized using equation 2.16: 

 .total total

surf surf vacancyE U U    
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Figure 5.1 (a-c). The contour map shows the surface-adatom binding energy on, from left to 

right, the Cu(100) surface in (a), the Cu(110) surface in (b) and the Cu(111) surface in (c). 

Preferential bonding sites are coloured in the contour plot and show where the adatom is most 

strongly attracted to the surface. The (110) contour plot shows sites with the strongest bonding 

sites in red and (111) the weakest in yellow. 

Figure 5.1 shows contour plots of the Cu(100) surface in (a), the Cu(110) surface in (b) and 

the Cu(111) surface in (c). Each colour on the plot corresponds to a different magnitude of 

surface-adatom binding energy.  

Different colours show preferential binding sites as the adatom energy reaches the greatest 

minimum at these points. Averaged over these preferred binding sites, Cu(110) at 0 K has 

an adatom surface binding energy of 3.24 eV, whereas Cu(100) has an adatom energy of 

3.00 eV and Cu(111) has the lowest adatom energy at 2.81 eV.  

These adatom energies are due to the packing structure and surface orientation. The (110) 

surface has ridges and deep troughs, resulting in an uneven surface. Adatoms can bind deeply 

in troughs and as a result of the deep binding position, adatoms can form bonds with more 

atoms near the surface which results in a larger surface-adatom binding energy. Conversely 

the (111) surface is the most closely packed surface orientation, offering shallow binding 

sites where the adatom can only weakly bind to a few surface atoms it comes into contact 

with, so that the surface-adatom binding energy is significantly lower. The relationship that 

was observed between the adatom energies is
     111 100 110

.surf surf surfE E E   

5.4.1.3 The Vacancy Formation Energy 

The vacancy formation energy was evaluated for Al, Ni, Cu, Pd, Ag, and Pt for each of the 

freeze-frames of the crystal at intervals in the run-time and then averaged over time to 

describe more accurately the various crystal states. The results for the vacancy formation 

energies calculated at 0 K are detailed in Table 5.2.  
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The calculated values are compared to various values from literature, both theoretical, and 

experimentally obtained by positron annihilation spectroscopy. The surface orientation 

dependence of the vacancy formation energy is clearly shown and shows a relationship of   

Table 5.2 The results for each metal are detailed below. Results for these metals from 

previous studies are also detailed; bulk values with surface orientation dependent values 

are noted below the results calculated in this study, in the relevant surface orientation 

column. Bulk values without a surface orientation component are noted in a separate 

column. All values are per atom. 

Element 110 

(eV) 

100 

(eV) 

111 

(eV) 

Lit. 

(eV) 

Al 0.59±0.05 

0.37 [3] 

0.64±0.02 

0.50 [3] 

0.78±0.01 

0.66 [3] 

0.69±0.03 [4] 0.68 [5] 

0.56, 0.60, 0.73 [6] 

0.66, 0.68 (experimental) [7] 

Ni 1.38±0.02 1.68±0.01 1.91±0.01 1.67, 1.78 [8] 

1.43-1.94 [9] 

1.55-1.88 (experimental) [9] 

Cu 1.08±0.02 

1.07 [2] 

1.33±0.01 

1.34 [2] 

1.51±0.01 

1.54 [2] 

1.29±0.02 [10] 

1.31±0.05 (experimental) [11] 

1.42 (experimental) [7] 

Pd 1.49±0.01 1.80±0.01 2.09±0.01 1.71, 1.70 [12] 

1.44 [13] 

1.85 (experimental) [7] 

Ag 1.20±0.01 1.47±0.01 

1.04 [15] 

1.65±0.01 

0.9 [15] 

1.16±0.02 [10] 

1.06, 1.13 [14] 

1.31 (experimental) [7] 

Pt 1.41±0.07 1.59±0.03 1.96±0.02 1.68 [13] 

1.66, 1.62 [16] 

1.35 (experimental) [7] 

 

     111 100 110
.v v vE E E   This corresponds to the results obtained by Terblans [2, 3]. The 

implication of this relationship is that the activation energy needed to create a vacancy-

adatom pair in the bulk in a (110) surface orientation FCC crystal is less than the activation 

energy needed for the same process in a crystal with a (111) surface orientation. The vacancy 

formation energies compared in Table 5.2 show good correlation between the literature 

values and the average vacancy formation energies. Values from literature often correspond 

best with the vacancy formation energies calculated for the (100) surfaces. 

 

This section investigated the effects of temperature on vE , including it’s the effects on 

surface orientation dependence. 
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5.4.2.1 The Extraction Energy 

To investigate the effect of temperature on these calculated energy values, the same 

calculations detailed above were repeated with crystals that were simulated at 0 K. The 

process was repeated at different temperatures, ranging from 0 K to 1000 K in 50 K steps, 

with the exclusion of where premelting was observed in Al from 400 K and in Cu at 900 K. 

The results can be seen in Figure 5.2.  

The SC potential used to simulate the Al crystals showed melting of the surface at lower 

temperatures than the other metals, especially considering the expected melting temperature. 

Al is the lightest of the elements simulated in this study. Although the melting temperature 

of Al is found at 933.47 K, melting of the crystal was found to occur at temperatures as low 

as 400 K. This underestimation of the melting temperature in Al has also been observed 

before in thermodynamic studies of Al clusters and bulk simulations [17-21]. The Al surface 

was further found to premelt at temperatures below its melting temperature [22]. For the 

purposes of this study Al crystals were simulated for temperatures ranging up to 350 K.  

Cu also displayed surface premelting. At high temperatures, a large degree of surface 

disordering was observed, especially for the (110) orientation, which exhibited roughening 

and the formation of an adlayer. Previous work in literature with an embedded atom model 

simulating a Cu(110) surface also showed the formation of an adlayer at 900 K through a 

generation of vacancies, and surface premelting at 80 K below the simulated bulk melting 

point [23]. Another study used a semi-empirical potential based on the tight-binding method 

to study the thermal behaviour of low index copper surfaces [24] and it was found in Cu(110) 

that above 700 K an adlayer formed due to adatom/vacancy formation, which lead to 

roughening and premelting of the Cu(110) surface. The Cu(100) surface showed disordering 

above 800 K, whereas the Cu(111) surface was observed to be the most stable with an 

ordered surface observed for high temperatures. Thermodynamic properties were calculated 

for Cu in the range between 0K up to 850 K. 

As mentioned before in section 5.4.1.1, the extraction energy is independent of surface 

orientation. The extraction energies obtained over the range of temperatures show a slight 

decreasing trend over the temperature range of 0 K to 1000 K, as seen in Figure 5.2. This 

shows a temperature dependence in the extraction energy, with the cost in energy to extract 
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Figure 5.2. The extraction energy for the different metals as calculated at 50 K intervals. An 

atom is more easily extracted from the bulk of Al than of Pt.  

an atom becoming lower as the temperature increases. These extraction energies were found 

to decrease by as little as 1% for Al, or as much as 5% for Ag. The extraction energy of Cu 

decreased by 3-4%, that of Ni decreased by 3.5%, Pd by 4% and Pt by 2%.  

5.4.2.2 The Surface Binding Energy 

It is expected that the expansion of crystals at higher temperatures will affect the extraction 

energy as seen in Figure 5.2, but it is also important to investigate the effect of temperature 

on the surface. Figure 5.3 shows contour plots of the different surface orientations of Cu at 

different temperatures. The (110) surface which has deep troughs at 200 K has fewer strong 

binding sites as the temperature increases. As a result of the high surface-adatom binding 

energy and the unstable binding of the atoms in ridges, the surface is more unstable and 

becomes easily disordered. The disordering leads to the filling of the adatom binding sites 

in troughs and a decrease in the depth of available binding sites so that the adatom binding 

energy on the surface decreases. The (111) surface moves from a closely packed stable 

surface at 200 K to a more open surface at 800 K as a result of disordering from the high 

temperature. This leads to an increase in the adatom binding energy for the (111) surface. 
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Figure 5.3. These are contour plots of the surfaces of Cu(110), (100) and (111) surface 

orientations at different temperatures. 

5.4.2.3 The Vacancy Formation Energy 

Using the calculated energies of Cu over temperature, Figure 5.4 sums up the temperature 

dependency in the FCC crystals studied, as they all show similar tendencies. Figure 5.4 

shows a summary of the energies and their tendencies over increased temperature. The 

extraction energies shown in Figure 5.4 (a) are the same for all three orientations and 

decrease slightly as the crystal expands from increased temperature. The surface-adatom 

binding energies shown in Figure 5.4 (b) are not the same. The (110) surface-adatom binding 

energy is significantly higher than that of (100), whereas the (111) surface yields the lowest 

value. From eq. 4 this gives: 
     111 100 110

v v vE E E   which can also be seen in Figure 5.4 (c).  

At a high temperature where surface disordering and anharmonic vibrations influence the 

surface packing, the surface-adatom energy, given as positive values, changes as seen in 

Figure 5.4 (b); decreasing for (110) by 3.5%, barely increasing in (100) by 0.2%, while 

increasing in (111) by 3%. Coupled with the 3-4% decrease in the extraction energy, this 

gives an indication of the ratio by which the vacancy formation energy changes over 

temperature.  
(111)

vE  decreases by 15%, 
(100)

vE  decreases by 12% and 
(110)

vE  only decreases 

by 4%.  
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Figure 5.4 (a-c). (a) shows the surface-adatom binding energy which is different for the (110), 

(100) and (111) surface orientations. The extraction energy for copper (b), is the same for all 

three orientations.  As a result the vacancy formation energy in (c) is different for the different 

surface orientations. 

 

The energies for Al, Ni, Cu, Pd, Ag, and Pt crystals were also evaluated for higher 

temperatures. Figure 5.5 to Figure 5.7 show the vacancy formation energy for the different 

surface orientations for all six of the FCC metals. The lowest vacancy formation energy 

belongs to the metal with the lowest melting temperature. The vacancy formation energy is 

progressively larger for elements that have progressively higher melting points. Al, with the 

lowest melting temperature, where premelting is seen at temperatures as low as 400 K, also 

has the lowest vacancy formation energy.  
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Figure 5.5. The vacancy formation energy for all six FCC metals where the perfect crystal had 

a (111) surface orientation. Metals such as Al, Cu and Ag with lower melting temperatures 

were more subject to surface disordering and premelting.  

 

 
Figure 5.6. The vacancy formation energy for all six FCC metals where the perfect crystal had 

a (100) surface orientation.  
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Figure 5.7. The vacancy formation energy for all six FCC metals where the perfect crystal had 

a (110) surface orientation.  

Cu also displays premelting below 1000 K and has the next lowest vacancy formation energy. 

Ag and Ni have melting points above 1000 K, where Pd and Pt have the highest melting 

points. Comparing the vacancy formation energies between Figure 5.5, Figure 5.6 and Figure 

5.7, it is clear that the vacancy formation energy is the highest for (111) surface orientations 

and the lowest for (110). In other words: 
     111 100 110

v v vE E E   for all the studied FCC 

elements. The vacancy formation energy of all three orientations shows a trend of a slight 

decrease as the temperature increases. As the surface disorders, it is no longer as closely 

packed and the atoms in the bulk also expand.  

With increased temperature, the (111) surfaces shown in Figure 5.5 and (100) surfaces 

shown in Figure 5.6 become more disorganized. Binding positions for the adatom on the 

surface allow the adatom to bind with more surface atoms, resulting in an increase of the 

surface-adatom binding energy for (111) and (100). The result is that the vacancy formation 

energy becomes lower. In contrast (110) shown in Figure 5.7 displays a much less marked 

decrease of vacancy formation energy at increased temperatures.  

Here, as the surface becomes disordered, the deep binding sites in the troughs of the (110) 

surface where the adatom bonds with many atoms, become shallower and thus bind with  
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Table 5.3 The percentage decrease in vacancy formation energy with increased 

temperature over the temperature range studied for the different surface orientations 

of the Al, Ni, Cu, Pd, Ag, and Pt crystals. 

Element 
110 

(%) 

100 

(%) 

111 

(%) 

Al 8.5 4 6 

Ni 9 9 15 

Cu 4 12 15 

Pd 10 9 12 

Ag 4.5 13 17 

Pt 10 7.5 12 

 

 

fewer atoms. The greater (110) surface-adatom binding energy, due to multiple surface 

atoms bonding to the adatom, decreases as fewer atoms on the surface are close enough to 

form a bond, resulting in a less marked vacancy formation energy decrease. A slight decrease 

is still seen as extrE  decreases. 

Table 5.3 summarises the decreases of the vacancy formation energy in the different metals 

for different surface orientations. Elements such as Ni, Cu, and Ag showed anharmonic 

vibrations at high temperatures which led to some disordering of the crystal surface at high 

temperatures. This is evident in the larger decrease of 
(111)

vE of 15-17% and a markedly 

smaller decrease in 
(110)

vE of between 4 and 9 %, with the decrease in
(100)

vE  lying in between 

that range. This is not observed in Al as the data points with premelting is outside the scope 

of this study, leaving a small arrangement of points from which to draw a trend.  

Ag showed some surface disordering from anharmonic vibrations as it approached higher 

temperatures. Surface roughening is observed for Ag(110) as low as 950 K, but is not 

observed for Ag(111) for temperatures of 1000 K or lower, although surface vacancies were 

seen to form in Ag(111) at 1000 K. Surface disordering was also observed in Ag(100) for 

temperatures 950 K or higher. Literature studies on surface morphology on Ag(110) from 

300 to 1100 K, using reliable, many-body interaction potentials and Molecular Dynamics 

simulations, show that the surface disorders around 750 K, roughens around 930 K and 

premelts at about 1000 K  [25]. Similar studies of Ag(111) show that the surface does not 

disorder until 1100 K and does not premelt [26]. In a literature study by Kimura et al. a value 

of 1.03 eV was obtained for the monovacancy formation energy of Ag [16]. The study used 

the SC potential but relaxed the restraints on the parameters used. The vacancy formation 
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energies obtained for Ag in this study of 1.20-1.65 eV are slightly larger. It may be that the 

original SC parameters published by Sutton and Chen [27] are not the ideal fit to describe 

the vacancy formation energy in Ag.  

Pt and Pd did not display any surface disordering in the temperature range that was studied 

as the temperature range is well below the melting point of Pt or Pd and thus their surface-

adatom binding energies were not influenced significantly.  Pd and Pt also show a stronger 

decrease in 
(111)

vE  of 12%, than in 
(110)

vE  where it is 10%.  However, the decrease for 
(100)

vE  

is slightly larger than the decrease of 
(110)

vE  for Pd and Pt in this temperature range. It may 

be worth investigating the trend for Pd and Pt closer to their respective melting temperatures. 

 

The Sutton Chen potential was used to simulate Al, Ni, Cu, Pd, Ag, and Pt FCC crystals with 

(110), (100) and (111) surface orientations at a range of temperatures. To establish the 

accuracy of the model, cohesion energies were calculated at 0 K for all the crystals. The 

calculated cohesion energies compared well with values from literature. The vacancy 

formation energy for Schottky defects was calculated. It was found that the surface 

orientation of a crystal influences the vacancy formation energy of the underlying bulk 

crystal, in that 
     111 100 110

v v vE E E  . This is evident in all six FCC metals studied. Some 

premelting was seen in Al and Cu, and surface disordering was observed in Ag and Ni as 

well. Where the surface packing becomes disordered, the difference in 
(110)

vE  is less marked 

as the surface-adatom binding energy decreases, whereas there is a more marked decreasing 

trend in 
(111)

vE  where the surface-adatom binding energy increases at high temperatures. In 

Pd and Pt where the melting temperature is significantly higher than the temperature range 

studied, surface disordering is not observed. A decrease in vacancy formation energy 

resulting from crystal expansion at higher temperatures was observed for all the vacancy 

formation energies calculated. 
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6.1  

After using bulk crystals to validate the model, nano-crystals were studied. The nano 

particles of FCC Cu with shapes ranging from perfect cubes through to octahedrons, 

resembling the nanocubes synthesized by Wang et al. [1], were modelled and characterized. 

Bulk properties in the volume of the crystal, surface energies, vacancy formation energy, vE   

and cohesion energies, cohE , were investigated for particles simulated up to 5 nm in diameter. 

This chapter presents the findings of the investigation of the vacancy formation energy 

shape-, size- and surface orientation-dependency, using the embedded atom potential 

developed by Sutton and Chen [2]. All energy values are given per atom. Employing the 

model, properties can be examined in far more detail than is possible in the lab. 

Using the surface characterization as well as measurements of the overall cohesion energy 

of the particles, size and shape dependence was investigated to find the most stable cube, 

rhombicuboctahedron or octahedral shape for each particle size. Although any particle shape 

can be produced theoretically, for practical purposes it is best to determine the most preferred 

forms.  

 

All calculations were performed at 0 K to eliminate the effects of temperature on energies. 

The particles were created by first packing a perfect cube with six {100} facets such as the 

9 atoms per row, in 9 rows in 9 layers, or 9 9 9   cube shown in Figure 4.4.  By cutting 

away three {111} layers (-3), and {110} layers, it produces the imperfect cubic particle 

called a rhombicuboctahedron, shown in Figure 4.4 (d), which will be denoted by 39 .  This 

particle is roughly 3 nm in diameter. The sizes of the crystals were varied, from 3 3 3   
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which is roughly 0.7 nm in diameter, to 15 15 15   which measures about 5 nm in diameter 

and which contains over 12 000 atoms. For each crystal size, the corners and edges were 

progressively cut away until the particles resembled octahedrons, as can be seen in Figure 

4.5. For more information on packing the nano-crystal, refer to section 4.1.2. 

For each crystal size, from 03   through to 1415 ,  the crystal was relaxed and the energies 

were measured for 20 000 time steps of 1 picosecond each, before an atom of the crystal was 

removed and vacancies were created to simulate the Schottky mechanism for vacancy 

formation. The removed atom was extracted from various depths and placed at a distance of 

1 m from the particle to simulate infinity, the energy difference giving the binding energy 

extrE   of this atom in the volume of the nanoparticle. The final part of the vacancy formation 

energy calculation involved placing the removed atom back on the surface of the crystal to 

yield the surface binding energy surfE . As in Chapter 5, these energies were used to 

determine vE  using equation 2.14. cohE  was also calculated using equation 3.22.   

 

The effect of the depth of vacancy on the extraction energy was calculated first. All the 

results calculated thus far were determined by extracting the adatom at the centre of the 

crystal. To investigate the effect on the vacancy formation energy, the atom was 

progressively brought closer to the surface in each particle of each size. For each particle, 

the adatom was extracted progressively closer to the surface. The resulting extrE  for the 

15 15 15   cube was drawn in Figure 6.1. 

Except for the 3 3 3   particle which is less than 1 nm in diameter, all the particles exhibit 

a similar trend, where the adatom extracted from within the volume of the crystal gives a 

constant extraction energy value as soon as it is sufficiently deep beneath the surface. This 

constant value approaches the value found in the bulk, presented in the previous chapter [3]. 

The extraction energy spikes slightly by a negligible 0.01 eV when the adatom is taken from 

just beneath the surface, showing the strongest binding energies are achieved at subsurface 

layers. This is where the vacancy atom is binding to surface atoms which have fewer, 

stronger bonds.  The exception to this trend is the octahedron, where the subsurface spike in 

extraction energy is up to 0.3 eV, depending where on the surface the measurement is taken. 
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Figure 6.1. Single adatoms were extracted (one at a time) at different depths within a perfect 

cube of 15 15 15   with a diameter 50 Å, or 5 nm. At each depth the energy needed to extract 

the atom was measured. 0 Å represents the surface layer and 25 Å represents the centre of the 

particle. Energy values are per atom. 

The adatom extracted from the surface yields the lowest activation energy. This is also 

dependent on which surface orientation the adatom is extracted from, as this influences the 

number and strength of bonds with neighbouring atoms. The adatom was always cut away 

from the middle of the (100) face. When all the edges and corners have been cut away, this 

atom is found at the tip of a pyramid, making its bonds weak and the subsequent extraction 

energy low. Cutting the adatom away from the {110} edges or {111} corners, this further 

influenced the extraction energy of the vacancy atom on the surface. However, it is quickly 

established that below the subsurface layer, the extraction energy is independent of the 

surface orientation or particle shape and instead becomes dependent on particle size. As the 

intermediate steps in subsurface layers do not influence the final vacancy formation energy 

value, every vacancy was consequently created in the centre of the nanoparticles. For this 

reason, the number of atoms per row, the number of rows and of layers were odd numbers, 

giving a convenient obvious central atom. 
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Figure 6.2.  The surface of a 5 nm diameter nanoparticle was analysed as its shape was changed, 

with it starting as a perfect cube at 0 on the x-axis, moving through rhombicuboctahedron [4] 

to octahedron at 14 on far end. The x-axis shows the variable i in the expression ix   which 

represents the nanoparticle shape produced from shaving i layers of atoms from the edges and 

corners of a perfect x x x  -packed cube. The corresponding vacancy formation energy is 

represented above each point of surface characterization.  

 

An investigation into the roles of the extraction energy extrE  and surface-adatom binding 

energies surfE  in the vacancy formation energy vE  reveals that where the particle is large 

enough, extrE  remains constant. This extraction energy does change when the particle is so 

small that the volume atoms become influenced directly by the surface defect. To investigate 

the effect of the surface orientation dependency on the vacancy formation energy, the overall  
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Figure 6.3 (a-d). (a) represents the contour graph of a corner of the surface energy across a 

Cu(100) face of the perfect cube with diameter of 5 nm, expressed as 
0

15 . (b) shows a corner 

of the rhombicuboctahedron formed from cutting 4 layers from edges and corners to form the 

4
15


 particle. (c) Another rhombicuboctahedron with more {110} binding points on the edges, 

denoted by 
8

15


. (d) The octahedron formed from 
14

15


. 

percentage of each orientation binding point on the surface was drawn as the edges were cut 

away. "edg" denotes binding points on the surface with unusual binding energies, typically 

found at the interface between surfaces of different orientations. 

9 9 9   particles up to 15 15 15  packed particles all display similar characteristics. The 

percentages of the different surface orientations of each shape of 15 15 15  , 015   to 1415 , 

were plotted in Figure 6.2 along with the corresponding  vE .  As the {100} surface is cut 

away, the percentage of {100} surface declines steadily. Both the occurrences of {110} and 

{111} increase, where the percentage of {110} edges initially rises quickly.  

At the shape 415 , whose surface is shown in Figure 6.3 (b), where 4 layers have been cut 

from the edges and corners, {100} and {110}, which have more reactive binding sites, have 

reached an equilibrium with {111} binding sites. Thus, up to 415  has an increase in {110} 

surfaces, moderately reactive {100} surfaces and fewer non-reactive {111} surfaces, to 
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produce the lowest vacancy formation energy, meaning that the surface is overall the most 

reactive.  

Up to the particle shape 815 , shown in Figure 6.3 (c) where the edge {110} is a maximum 

percentage, as more layers are cut away, the percentage of less reactive {111} corners 

increases rapidly at the expense of the more reactive {110} edges, and {100} decreases as 

well, lowering overall reactivity. Up to a critical point. {111} percentage dips, while "edg" 

energies spike, which suggests that the intersections between different orientations more 

strongly affect each other.  

At this shape the surface has the most {110} binding points and vE dips as well, as the deep 

binding sites on the {110} orientated surfaces are ready binding places for an adatom and 

good potential sinks for vacancy creation, thus requiring less vacancy formation energy.  

From this point on {100} continues to decrease while percentage {111} increases stepwise 

and {110} decreases in the same stepwise fashion. vE  seen in the top graph of Figure 6.2 

shows the same step-like character as observed in the relative percentages of the different 

orientations from the same graph, with discrete changes in energy values. The vacancy 

formation energy also increases as the percentage of {111} orientated surface becomes 

exposed, as the closely-packed {111} surface shown in Figure 6.3 (d) does not bind as 

strongly to adatoms. 

It is necessary to plot out each individual particle and to characterize each surface in turn to 

determine the surface reactivity. It is also a more precise indication of the available activated 

sites than using Wulff constructs [4], geometric approximations of surface reactivity based 

on particle shape, and can be useful in predicting useful shapes with active sites for further 

growth of more advanced nano shapes, such as Figure 6.3 (b) and (c), rhombicuboctahedrons 

that could be used to construct hollow nanostructures through the addition and etching 

process described by Rang Long et al. [5]. The lowest vacancy formation energy corresponds 

to an optimal combination of {100} surface, {110} edges and {111} corners.  

For smaller particles, the surfaces were also investigated. In 3 3 3  , although the perfect 

cube 03   has sides packed in {100} orientation, their binding points are in the range of 2.8 

eV, resembling bulk {111} surface binding energies. Figure 6.4 shows the changes of 

binding site energies of different surface orientation against particle size. Besides the  



COMPARATIVE STUDY OF CU NANOCUBES AT 0 K 

102 

 

 

Figure 6.4. The average surface-adatom energy of different surface binding sites on 

nanoparticles of different sizes. 

smallest particle, 3 3 3  , which has a diameter of less than 1 nm, most particles have 

surface energies resembling bulk surfaces, with the largest nanocube having surface binding 

energies at the {111}-, {100}- and {110}-surfaces of 2.78 eV, 2.98 eV and 3.25 eV 

respectively. The main influence on the energy of a binding site was whether it bordered on 

another surface, as can be seen in Figure 6.3 (b) and (c) in the yellow points bordering the 

edges between the {100} and {110} surfaces. 

 

In this section the shape and size dependence on the vacancy formation energy vE  was 

investigated.  

 

Vacancy formation energy was calculated using equation 2.14, combining the volume 

extraction energy and the surface-adatom energy. Since the bulk value remains relatively 

constant for a particle of fixed size, variation in vE  is thus largely a reflection of surface 

binding energies which is surface orientation dependent, and the results are presented in  
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Figure 6.5. The vacancy formation energy vE   presented for the range of shapes of 

nanoparticles of different sizes. The x-axis shows the variable i in the expression which 

represents the nanoparticle shape produced from shaving i layers of atoms from the edges and 

corners of a perfect x x x  -packed cube, and the legend represents the x.   

Figure 6.5. The vacancy formation energy for the smallest particle is the highest. As edges 

and corners are cut away to change the shape and the particles consequently become smaller, 

average vE  swiftly approached the average cohesion energy per atom. All the larger 

particles have comparatively similar vacancy formation energies, but display a stepped 

character during the progression of discrete shape modification. The minimum vacancy 

formation energy indicates a low activation energy threshold for creating vacancies in the 

particle, which is taken as an average over the entire surface of the particle and varies 

according to surface orientation, similar to the results in Figure 6.2.  

The vacancy formation energy also depends on the extraction energy in the volume of the 

particle, which is influenced by the ratio of surface-to-volume atoms. This dependency on 

size is much weaker, however, than surface energy dependency on orientation.  The surface 

should be characterized individually on a case by case basis for more specific properties.  

vE  is strongly shape dependent, and the expected size-dependence is not obvious from 

Figure 6.5. 
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Figure 6.6. The vacancy formation energy plotted against the inverse size of perfect nanocubes 

and octahedra.   

 

To eliminate shape-dependency and look at the influence of particle size on vE , the energies 

of perfect cubes and octahedrons were plotted in Figure 6.6 against size as the inverse of the 

radius of each nanoparticle.  

N.T. Gladkikh et al. calculated the vacancy formation energy in spherical particles and found 

a linear relation of a decrease in vE  with the increase in particle size [6]. The expected 

decrease in vacancy formation energy with increase in size was not observed as predicted by 

the abovementioned study, and a linear trend line did not produce a satisfactory fit for 

octahedral shaped particles, though the inverse of the expected relationship is observed in 

cubic particles. This further suggests that surface effects and particle shape have a far greater 

effect on determining vacancy formation energy, something which was not taken into 

account in the study by N.T. Gladkikh et al., where spherical particles were used. 
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Next the average energy per atom in each particle was investigated. This is an indication of 

the overall stability of each nanoparticle. The higher the cohesion energy, the better the 

atoms "cling together" and the more stable the shape, as it takes more energy to break the 

particle apart.  

 

Perfect cubes with six {100} faces, ranging from diameters of 0.7 nm to 5 nm, were 

simulated at 0 K to obtain the average cohesion energy per atom in each particle. The shapes 

were created by first simulating a perfect cube with six {100} facets, which is the first shape. 

The largest particle of 5 nm was packed 15 15 15   atoms edge to edge, disregarding face-

centred atoms in the count. Progressively shaving off one {110} layer of each edge and one 

{111} layer of the corners produced an imperfect cube with a reactive {110} surface on the 

edges but a less reactive {111} on the corners, and is called a rhombicuboctahedron. Once 

all the edges and corners have been shaved away, an octahedron shape resembling two 

pyramids attached top-to-bottom remains, which has 8 triangular {111} facets.  

Figure 6.7 shows the particles of a 15 15 15   perfect cube with 0 layers cut away,  the 

particle with 3 layers cut away, denoted by 315 , 8 layers cut away; 815 , and 14 layers cut 

away to form an octahedron; 1415  . Each shape has a different cohesion binding energy also 

plotted in Figure 6.7.  

As mentioned before, the cohesion energy measures the amount of energy taken to break the 

particle apart and place the atoms infinitely far apart where their interactions with each other 

are negligible; thus, the greater this energy, the more stable the particle. From the maximum 

binding energy of the curve, the most stable particle can be identified.   

As would be expected, the perfect cube with its sharp edges and corners is less stable than a 

rhombicuboctahedron, which more closely resembles a sphere. The octahedron is even less 

stable than the perfect cube. For the largest particle of 5 nm, packed 15 15 15   atoms, 

cutting away 3 layers on the edges and corners, denoted 315 , is the most stable shape. This 

process was repeated for each particle size ranging in odd numbers from 3 3 3   atoms 

through 15 15 15   atoms.  
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Figure 6.7. Showing how the most stable shape was determined by progressively cutting away 

edges and corners to change the particle shape and comparing the corresponding average 

binding energies. The x-axis shows the variable i in the expression which represents the 

nanoparticle shape produced from shaving i layers of atoms from the edges and corners of a 

perfect x x x  -packed cube. 

 

Shown in Figure 6.8 is the cohesion energy for each particle size as the corners were 

systematically cut away to change particle shape. A comparison of all the calculated 

cohesion energies further show a progression in stability as the particle sizes increase. The 

smallest particle 3 3 3   are by far the most unstable, and the cohesion energy increases as 

the size is scaled up, drastically at first, and then with smaller and smaller steps. From 

9 9 9   the particles take on a roughly similar cohesion energy which suggests that they are 

comparatively stable. For each size, the octahedron shape represented by ( 1)xx   was the least 

stable shape with the lowest cohesion energy for any particle of that size. 
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Figure 6.8. The x-axis again shows the variable i in the expression 
i

x


 which represents the 

nanoparticle shape produced from shaving i layers of atoms from the edges and corners of a 

perfect x x x  -packed cube, where the legend represents the x. Cohesive energy for each 

particle shape and size is plotted, showing the most stable particle sizes are larger, and the 

more stable shapes are rhombicuboctahedrons. 

For the smallest nanocube the cohesion energy is the highest at 03  where no edges are cut 

away. This suggests that the particle is more stable when it is slightly larger. For 5 5 5   

the highest cohesion energy is not the perfect cube but the particle that has had one layer of 

atoms cut away from the edges, 15  , exposing {110} on the edges and {111} on the corners. 

However, as more edge atoms are cut the particle becomes less stable again. Similarly, 17  

is more stable than 07 . For the 9 9 9  particles, optimum stability shown by the maximum 

cohesion energy begins to shift to 29   as the particles become larger. This suggests that the 

particles are less stable as perfect nanocubes with sharp edges and corners and become more 

stable when one or two layers are cut away. This makes sense in terms of the bonds available 

to atoms sitting on edges and corners; they are in contact with fewer neighbouring atoms and 

are therefore not anchored as firmly. Once these unstable atoms are stripped away the 

underlying atoms that have more bonds to neighbouring atoms are more stable and increase 

the average cohesion energy per atom.  
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Figure 6.9.  For each size of particle, the most stable shape is shown as determined by average 

cohesion energy of the particle. 

 
Figure 6.10. The cohesion energy plotted against the inverse size of perfect nanocubes and 

octahedra shows an inverse correlation to size in nanoparticles.   

The series of cubes, or imperfect cubes, which represent the most stable form for each 

nanoparticle of a particular size, are presented in Figure 6.9. Using these more practically-

shaped and sized particles, future studies can be done which may investigate other factors, 

such as temperature variation. 

 

Figure 6.10 shows the cohesion energy of cubes and octahedra of different sizes plotted 

against the inverse of their size. 
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When the shape factor is eliminated and cohesion energy cohE  is plotted against the inverse 

of particle radius in Figure 6.10, the previously expected decrease in energy with decrease 

in size expected in Figure 6.6 is finally seen. Cohesive energy is not as strongly influenced 

by surface orientation and shape, and thus produces a linear character corresponding to the 

results of N.T. Gladkikh et al. [6]. 

 

Another useful way to visualize the information of vE  and cohE  is to plot the two variables 

against each other to determine each particle's respective stability and surface reactivity, as 

shown in Figure 6.11.  

In Figure 6.11, the smallest particles are clearly shown to be the least stable with the most 

reactive surfaces. As the particles become larger their energy values become more similar; 

they become more stable, with stronger cohesion binding energies between atoms, but the 

surface shows a small range of reactivity depending on its shape. Octahedron shapes are 

much less reactive, given in yellow, with larger vacancy formation energies. 

Rhombicuboctahedrons, given in pink, are the most reactive. 

Vacancy formation energy indicates surface reactivity, as the larger vE  value corresponds 

to a larger area of densely packed (111) surface where atoms bind more weakly to the surface. 

A low vE  corresponds to more (110) and (100) surfaces where atoms can bond more 

strongly to the surface. (110) only occurs in rhombicuboctahedrons, where there are (100) 

and (111) surfaces, which limit overall surface reactivity.   

Cohesion energy indicate the energy per atom, and a lower cohE  leads to instability, such as 

in octahedral with many sharp corners where atoms cannot bond strongly to many nearest 

neighbours. This can lead to rearrangement and phase changes of the particle, as the bonds 

of these unstable corners of the particle are easily broken. The same is true of perfect cubes 

with sharp edges and corners. The spherical shape is the most stable as it allows most surface 

atoms to maximize their number of nearest neighbours, so particles with a roughly spherical 

shape and few corner atoms with unstable bonds will have larger cohesion energies and 

better stability. 
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Figure 6.11. This is a plot of particle stability on the x-axis and surface reactivity on the y-axis. 

This figure presents all the particle sizes. 

 

Figure 6.12 This figure examines the largest particles of 15 layers wide, in more detail. The 

labels indicate the shape of the particle, indicating how many layers have been cut off the 

edges and corners. 
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Figure 6.12 shows the range of shapes of the 15 15 15  , 5 nm diameter particles, where the 

label on the symbol represents 15 i . Thus “0” represents the 015  perfect cube, “-1” 

represents 115  , and so on. From the graph the most stable, more reactive, particles are 415  , 

515  , and 315 , in that order. The less reactive stable particles are 215  and 115 . 1415  is 

both unreactive and unstable. Depending on the level of surface reactivity required of a 

particle, this type of characterization of particles may be useful. 

 

Nanoparticles of FCC Cu ranging in size from 0.7 nm to 5 nm, with shapes ranging from 

perfect cubes, to rhombicuboctahedrons, to perfect octahedrons, were simulated and 

characterized. A study was made of the interactions between the size and shape, and the 

vacancy formation and cohesion energies of the particles. The model could effectively 

simulate large particles of over 12 000 atoms in relatively short amounts of time of a few 

days per run, and could produce models of the surfaces, the corresponding binding energies 

of those surfaces and the internal cohesion binding energies of each particle. It was found 

that particles less than 1 nm in diameter were too unstable to be practical for analysis. The 

larger the particle was, the more stable it was internally. Even so, the different shapes had a 

wide range of surface reactivities, where a large number of {110} binding points correspond 

to a more reactive particle, while the octahedron shapes were the least reactive and least 

stable. While vE   varied extensively based on shape but not particularly strongly influenced 

by particle size, cohE  was dependent both on nanoparticle size and shape. Using cohE  as a 

guide, particles were chosen which had the most stable shape. In the next chapter, the 

behaviour of these stable particles are studied over temperature; the melting temperatures, 

surface energies, extraction energies, and vacancy formation energies are investigated. 
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7.1  

Cu nanocubes have a wide range of uses and been created experiemntally, and there now 

exists ever more efficient ways to control size, shape, and the surface orientation of the 

exposed surface [1]. In the previous chapter, Cu nanocubes of different sizes were simulated. 

For each size the rhombicuboctahedron shape that minimized the internal cohesion energy 

of the particle was chosen. In the previous chapter, characterization ignored temperature 

dependence, keeping particles at 0 K. 

Diffusion limited segregation in nanoparticles is of interest for use in catalysts because it 

determines the element available for reaction at active binding sites on the surface, and the 

study of this segregation means that diffusion kinetics under various conditions need to be 

understood. Having previously studied the diffusion kinetics of small nanoparticles under 

strictly regulated conditions, this chapter aims to investigate the behaviour of nanoparticles 

under the influence of a range of temperatures.  

In this chapter, each of the chosen particle’s thermodynamic properties were investigated by 

calculating the average potential energy per atom for each particle over temperature. The 

vacancy formation energy of the particles as well as the internal binding energy and surface 

binding energies of each particle were also calculated. The nanoparticle melting 

temperatures, surface energies and vacancy formation energy were analysed. All energies 

given in electron Volt (eV) are given per atom, even if not stated to be per atom. 

 

Using the Sutton Chen molecular dynamics algorithm, several nanocubes were simulated 

ranging from size 0.7 nm to 5 nm. The nanocubes pictured in Figure 6.9 were chosen for the 

greatest stability by comparing the average cohesion binding energy of different shapes of 

nanocubes, octahedrons and rhombicuboctahedrons [2].  
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The melting behaviour of each particle was studied by monitoring the potential energy (PE) 

[3, 4] of each crystal as atoms were relaxed for 20 000 time steps of 1 picosecond. As the 

total potential energy is 
total

perfectU , average PE/atom can be calculated similarly to the cohesion 

energy with equation 3.22. A smaller time step allowed for the minimizing of both rounding 

errors and truncation errors caused by using a truncated Taylor expansion of the time 

integration algorithm, to more accurately model FCC atomic interactions [5]. The process 

was repeated at various temperatures ranging from 0 K to 850 K in discrete intervals of 50 

K. The nanoparticles were heated up to 850 K, as the previous molecular dynamics studies 

of Cu bulk crystals in Chapter 5 showed surface premelting and the formation of an adlayer 

around 900 K [6-8]. The Berendsen thermostat was used for temperature control. Whereas 

in Chapter 5 the periodic boundaries prevented significant displacement of the crystal, and 

in Chapter 6 the 0 K temperature severely restrained displacement, in this chapter atoms 

were allowed to relax, and moved at ever higher velocities. As such, the Dissipative Particle 

Dynamics (DPD) algorithm described in section 3.6.4 was used to prevent the so-called 

“flying ice-cube” effect. 

This study aims to investigate the solid state behaviour of the nanoparticles and thus the 

range of temperatures where melting occurs, falls outside the scope of this study. 

Furthermore, the interest of this study is in studying FCC crystals only, as the Sutton-Chen 

deals with modelling FCC metal properties. 

 

Literature study indicates that melting in nanoparticles occurs not at one temperature but 

over a range of temperatures, where the surface melts first and then deeper layers start to 

melt and disorder at successively higher temperatures [6]. One way to discern this process 

is by observing the potential energy per atom (PE/atom) over temperature [3, 4]. This can be 

observed, both over time as the crystal is relaxed [9], and as a running average energy at that 

particular temperature [3]. Observing the total PE/atom over time for a particular 

temperature, melting will appear as an increase in the total PE/atom. 

Using averages of crystal energies over the relaxation run, where the crystal temperature 

most closely resembled the desired temperature, an average vacancy formation energy for a 

Schottky vacancy with the surface as a defect was calculated. This allowed for the  
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Figure 7.1. The previously 3 3 3   packed FCC structure 03  shows a marked decrease in 

average PE/atom at 50 K, and the structure itself had changed to a HCP structure.   

characterization of vacancy formation energy in Cu nanocrystals over a variety of 

temperatures and sizes. 

 

Nanocubes with stables shapes having {100} faces, {110} edges and {111} corners, ranging 

from diameters of 0.7 nm to 5 nm, were simulated. Consequently, the behaviour of the 

chosen stable shapes was investigated over different temperatures. Each particle was 

simulated for 20 000 steps at a stable temperature that ranged from 0 K to 850 K in steps of 

50 K.  

For the 03  particle at temperatures as low as 50 K the atoms rearranged themselves into a 

hexagonal close packed, or HCP, lattice. For the slightly larger 15  particle, the same was 

observed at 450 K. A marked change in the average PE/atom can also be observed; the 

energy decreases markedly, indicating a phase change. This can be seen for the average 

PE/atom of the 03  particle in Figure 7.1, and for the 15  particle in Figure 7.2. 
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 Figure 7.2. The PE/atom of 15  also decreased, though less drastically than 03 , and the 

particle rearranged itself into an HCP structure.  

 

Figure 7.3. The average PE/atom of the 
2

11


crystal. The particle was simulated for 20000 

steps at each temperature. At 850 K the average PE increases, and the positive slope is an 

indication of melting. 
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Figure 7.4. Time-averaged PE/atom plotted against temperature shows at which temperature 

each particle melts.  The two smallest particles show a dip which indicates an FCC-HCP 

transition, whereas 
1

7


, 
2

9


 , and 
2

11


 particles show a rise pointing to melting which occurs 

before the cut-off temperature of 850 K. 

Larger shapes retained their FCC packing until they began showing slight premelting, before 

finally melting completely. As the particle melts, the average PE increases notably as much 

of the system’s energy is converted into kinetic energy. Figure 7.3 shows the 211  particle 

which melts at the slightly lower temperature of 850 K. 

The curve over simulated time steps for the 850 K simulation behaves differently from the 

other runs; the energy has a positive slope as the average PE/atom increases. The smaller the 

particle, the lower the melting temperature. Premelting is also observed, most notably in the 

corners. This suggests that the slightly cubic shape chosen at 0 K is not as stable at higher 

temperatures, and a more spherical shape may be more resistant to premelting at higher 

temperatures. It may be pertinent to test the relative stability of each different shape at 

different temperatures to determine the most desirable shape for each temperature. 

 

Having investigated the PE changes at various temperatures, the data is summarized in 

Figure 7.4. Each run shown in Figure 7.3 was averaged to create a single data point.  
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The initial phase of each run from Figure 7.3, where temperature changes as the crystal 

settles from the unrelaxed initial state, was omitted in order to use data points corresponding 

to the desired simulated temperature. These points were plotted against their corresponding 

temperature, to produce a new curve. When viewing the average PE/atom for the different 

temperatures, melting can be seen as a sharper upward slope in the line, a sudden increase, 

an interruption in the steady progression in energy. For the 211  curve, the sudden increase 

in slope between 800 K and 850 K is apparent, indicating a phase change. Thus, by 850 K, 

the 211  rhombicuboctahedron undergoes melting. This “bump” is also observed in the other 

particle sizes, most notably 17   and 29 , which show melting at 750 K and 850 K each. The 

FCC – HCP phase change gives rise to a decrease in slope. In 03   this decrease is obvious, 

less so in 15   where it only produces a small plateau.  On the other end of the scale, the 

largest particles melt around the same temperatures as the bulk. Having determined the 

melting behaviour of the simulated particles, the vacancy formation energy behaviour with 

temperature can be determined.  

 

Using the range of temperatures where the particles are unmelted, the vacancy formation 

energy was determined for several time steps at each temperature: the same range of stable 

temperature used to draw Figure 7.4. The fluctuations in crystal energy created a large spread 

in the data, and error bars are included to show the range of values for each temperature run.  

Figure 7.5 shows that the average monovacancy formation energy of each particle does not 

change significantly with temperature - the greatest decrease is 0.13 eV, which lies within 

the error margin on the high temperature values of 0.14 eV. However, a trend of a slight 

decrease with temperature may be observed. This dip most often occurs close to melting and 

may also indicate pre-melting as the crystal begins to expand [6], and mirrors the dip in 

PE/atom seen in Figure 7.4. The vacancy formation energy of smaller particles tended to 

oscillate more wildly at lower temperatures as they undergo phase changes at lower 

temperatures. The vacancy formation energies of both the 03  nanocube at 0 K, and the 15  

imperfect crystal at 400 K, showed a sudden increase in vE , shortly before undergoing phase 

change and rearranging into HCP structures.   
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Figure 7.5. The vacancy formation energy of the nanoparticles with increased temperature 

showed a slight decrease, particularly approaching high temperatures. 

 

The previous study of bulk Cu crystal with the same SC software may be helpful to aid in 

interpreting the data. The study showed the vacancy formation energy is strongly influenced 

by surface orientation, and only slightly by bulk binding energy inside the crystal. The 

surface binding energies of {111} and {110} surfaces changed with temperature, though the 

{100} surface showed little change in its binding energy. The bulk showed only a small, 

steady decrease in binding energy associated with the expansion of the crystal as it heats up.  

As the nanoparticles have mainly {100} surfaces, this energy is not expected to change 

significantly with increase in temperature, though the energies on the edges and corners are 

expected to show a greater change, more closely resembling {100} binding energies, 

showing only slight change as seen in Figure 7.6 in the right-hand figure. However, as the 

particle approaches melting point, the surface becomes increasingly disordered, including 

the {100} surface, changing the surface energy more. The crystal is expected to expand with 

increasing temperature, corresponding to a slight decrease in bulk binding energies, which 

is reflected in the decreases in bulk binding energies in Figure 7.6 in the left-hand figure,  
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Figure 7.6. The left-hand figure shows bulk binding energies decreasing slightly with 

increasing temperature, reflecting the expansion of the nanocrystal. The right-hand figure 

shows the change in surface energies, which doesn't show a significant decreasing trend 

compared to bulk energies. 

 

 

Figure 7.7 (a, b). The contour plot of a corner of the 315  particle at 0 K shows distinct surface 

orientations on the different facets in (a), and the size of the particle is small enough to be 

bounded by the graph. (b)  The contour plot of the same particle at 800 K shows disorder on 

the surface though the different orientations are still identifiable.  The size of the particle has 

swollen to become larger than the range of the graph. 

particularly from 750 K. The net result is a slight negative slope in the vacancy formation 

energy over temperature, which becomes more pronounced than was observed in bulk, as it 

approaches its melting point, which is what is nominally observed in Figure 7.5.  
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A similar effect can be observed from the contour plots of the 315  surface energies shown 

in Figure 7.7 (a) and (b). Figure 7.7 (a) shows the nanocrystal at 0 K, with the different 

surface orientations clearly distinguishable with distinct binding energies. In Figure 7.7 (b) 

the 315  crystal is shown at 800 K. The change in the bulk energy is reflected in the visible 

expansion of the crystal size. As the crystal is centred and the scale is fixed, it is clear that 

crystal boundaries distinctly visible in Figure 7.7 (a) have disappeared in (b). The surface is 

in flux, but the overall binding energy averages out to that of a {100} surface. With higher 

temperatures, the orientations become less distinct as surface premelting occurs. 

 

To investigate the effect of heating on the surface energies and compare it to the data in 

Figure 7.6, a sampling of the surface energies of different surface orientations in a small 17  

particle was made. This particle melts at a relatively low temperature and thus surface 

behaviour can be observed from frozen, all the way to melting. The surface has {100} on the 

faces, a row of {110} binding sites on the edges, a single {111} point on the corners, and a 

few binding points on the ridges between the differently orientated surfaces that have 

uncharacteristically low binding energies. From the {100} points and {110}, sufficient sites 

could be sampled to produce a representative average. These could be compared to bulk 

values of the SC simulated Cu with periodic boundaries used to interpret Figure 7.6, and 

compared in Figure 7.8 (a).  

The {100} energies of both the small nanoparticle and the bulk were not appreciably 

different, and this small difference is attributed to the small size of the particle and the 

surface-to-volume ratio of the nanoparticle. The interesting comparison is found in the {110} 

points, which have an appreciably lower value at 0 K than is observed for bulk. As soon as 

the particle is heated even slightly, the energies increase. This is reflected in Figure 7.8 (b), 

where the bottom figure shows more red dots as the {110} binding sites become stronger. A 

larger sample size is needed to interpret the behaviour of the {110} energies more fully. 

However, it does appear to approach {100} energies at temperatures close to melting. The 

average surface energy shown at 750 K also averages out to resemble that of {100}, as 

expected from the bulk study. 

The nano data points in Figure 7.8 (a) represent only a small sample size, but show 

interesting interactions between neighbouring surfaces which bear more study. The shape,  
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Figure 7.8 (a-c). (a) A sampling of the surface binding energies of a small 17  particle is 

compared to surface energies from bulk materials. The {100} are similar, but the {110} 

energies range widely and differ substantially from the bulk values.  (b) The contour plots of 

the 17  particle at 0 K are easily compared visually with the same particle at 150 K in (c), 

where red spots indicate a stronger binding energy for 150 K. 

particular temperature, and its interaction with the different surfaces could have interesting 

implications for directed diffusion and segregation, particularly in bimetallic segregation and 

the manufacture of complex nanoparticles [10].  

 

This study allowed the investigation of the molecular dynamics present at different 

temperatures of entire nanoparticles of several thousand atoms each. The smallest 

nanoparticles were too unstable in cube form, indicating that nanoparticles have a minimum 

size requirement of 1 nm diameter. As particle sizes increased, the most stable shapes also 

changed. At higher temperatures, the surfaces changed and particles assumed more spheroid 

shapes, indicating that the shapes chosen as most stable at 0 K may not be the most stable at 

higher temperatures, particularly close to melting temperatures.  

Each particle reacted slightly differently with regards to melting behaviour according to its 

size. Smaller particles melted faster. Particles showed surface disordering which decreased 

their vacancy formation energies at temperatures up to a 100 K below melting point, and the 

binding energies inside the bulk of the nanocrystals decreased due to nanoparticle expansion. 
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The surface energies of the {100} faces acted much as in bulk material with a {100} surface 

when simulated with periodic boundaries, but edges and corners showed interesting 

behaviour due to interactions between different orientated surfaces and changes in shape 

with increased temperatures. These properties can have interesting implications in directed 

segregation and creation of complex nanoparticles. 
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8.1  

In this chapter, the properties of pure Cu and pure Ag were studied, in preparation for the 

final chapter, where the mixed potential was used to study segregation and diffusion in mixed 

Cu/Ag. Using the Sutton-Chen potential, Molecular Dynamics simulations were done of Ag 

and Cu bulk and nanocrystals and the vacancy formation energy, migration energy, and 

diffusion activation energy were calculated. The migration energy along a diffusion path was 

studied for different low index surface orientations. With these energy values, interactions 

in pure metals and mixed metals will be compared in the following chapter. 

Part of accurately modelling thermodynamic properties of modelled nanoparticles in this 

chapter included the optimization of the Sutton Chen parameters used in further calculations. 

In previous chapters, only the vacancy formation energy vE  and cohesion binding energy 

cohE  were calculated. In the following two chapters, the calibration of the Sutton-Chen 

parameters are revisited in order to optimize for the calculation of the migration energy ,mE  

diffusion activation energy Q , and, in the next chapter, segregation energy G . All energies 

are given per atom. 

 

Using large crystals of Ag and Cu with a {100} surface to approximate a large bulk crystal, 

the vacancy formation energy, migration activation energy, diffusion activation energy and 

segregation energies were determined using the original Sutton-Chen parameters, the Rafii-

Tabar Sutton adjustment [1], the Classical Sutton Chen parameters, and the Quantum Sutton 

Chen parameters respectively. By comparing the data to literature values, the best set of 

parameters could be chosen. 
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Figure 8.1. Three sizes of rhombicuboctahedrons were simulated, such as the Ag nanoparticles 

pictured here, to investigate the effect of crystal size on the various energies calculated with 

the Sutton-Chen potential. The crystal denoted 
1

7


 indicates a 7 7 7  packed crystal where 

one row of atoms has been removed from the edges and corners. 

Employing the most effective parameters for calculating the energies for Cu and Ag, the 

influence of open surfaces could then be determined, by first simulating large crystals with 

{110}, {111} and {100} free surfaces to approximate bulk crystals, and then nanoparticles, 

as previously produced in a lab and characterized in Chapters 6 and 7. Based on these studies 

[2, 3], rhombicuboctahedrons with a stable form were chosen, which have six {100} faces, 

slight edges of {110} and corners with {111} orientated surfaces. Particles below 1 nm in 

diameter were unstable and so were thereafter ignored. The nanoparticles shown in Figure 

8.1 ranged from 1 nm to 4 nm in diameter, where crystals began to display melting behaviour 

similar to bulk crystals. In addition to vacancy formation energies vE   for each surface 

orientation, the migration activation energies, mE  and from the sum of vE  and mE , the 

diffusion activation energies ,Q  for each respective surface orientation were also 

determined.  

 

The four different sets of parameters for the Sutton-Chen model are given in Table 8.1. Each 

set was used to simulate large Ag and Cu crystals representing a bulk crystal with (100) free 

surface at 0 K, similar to the (100) crystal shown in Figure 4.3. For each set of parameters, 

the cohesion binding energy, the migration activation energy, and the vacancy formation 

energy were calculated, and by extension, the diffusion activation energy Q , where  

 v mQ E E    

as given by equation 2.12. 
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Figure 8.2. Energy values as obtained from the Sutton-Chen parameters tabled in Table 1 and 

compared to values from literature. Literature values of 
coh

E  are from reference [6], 
v

E   from 

reference [7], and Q is from reference [8]. 

 

The resulting cohesion binding energies, vacancy formation energies and activation energies 

are given in Figure 8.2, along with experimental literature values [6-8]. Statistical analysis 

calculating deviation from the mean indicated that the Quantum Sutton Chen parameters 

gave the closest approximation to values obtained in literature. However, it is clear that these 

parameters, which were optimized to calculate the lattice parameter, cohesion energy, 

phonon dispersion, elastic constants, bulk modulus, surface energy and vacancy formation 

energy, deviate on diffusion activation energy values. Diffusion orientated recalibration of  

Table 8.1 The Sutton–Chen parameters (SC), Rafii-Tabar – Sutton parameters (RTS), 

Classical Sutton-Chen (NSC) and Quantum Sutton-Chen (QSC) for Cu, and Ag [1, 4, 5].  

Element Parameters ε (eV) a (Å) c n m 

Cu SC 1.2382 10-2 3.6100 39.432 9 6 

 RTS 1.2351 10-2 3.6100 39.756 9 6 

 NSC 5.9066 10-3 3.6030 83.073 10 5 

 QSC 5.7921 10-3 3.6030 84.843 10 5 

Ag SC 2.5415 10-3 4.0900 144.410 12 6 

 RTS 2.5330 10-3 4.0900 145.658 12 6 

 NSC 4.0072 10-3 4.0691 94.948 11 6 

 QSC 3.9450 10-3 4.0691 96.524 11 6 
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Figure 8.3 (a-c). A portion of the surface energy of the Cu 7 7 7 1    particle (denoted 

1
7


), 

the 9 9 9 2    particle (denoted 
2

9


), and the 11 11 11 2    particle (denoted 
2

11


) surface 

showing the different surface orientations. 

Sutton-Chen parameters for specific use in calculating diffusion-related energies is worth 

future consideration. 

 

The following section investigated the vacancy formation energy, migration energy, and the 

diffusion activation energy of Cu and Ag bulk- and nanocrystals in detail. 

 

In order to simulate bulk crystal reactions, large crystals of approximately 2 000 atoms each 

were created, with free surfaces of each of the three surface orientations (100), (110) and 

(111), similar to those in section 5.4.1.2 shown in Figure 5.1 (a-c). 
 

Considering Figure 8.3 (a-c), the free surfaces of the representative section of the three 

nanocrystals of Figure 8.1 reveal a similar trend, with the most shallow, weakest energies 

on the {111} corners, and the deepest, strongest binding energies in the troughs of the {110} 

edges, with the binding points on the {100} faces falling in between. The energies of the 

29   rhombicuboctahedron in Figure 8.3 (b) and the 211   particle in Figure 8.3 (c) look the 

same. By following the method explained in section 2.2.3 and noting the differences in total 

system energy, the extraction energy extrE   and surface energy surfE  were obtained and 

plotted in Figure 8.4 for Ag and Figure 8.5, for Cu. extrE  was calculated by taking the 

differences between a perfect crystal and the crystal with a point vacancy, and surfE  was 

obtained by adding the extracted atom, or adatom, back onto the surface at the strongest 

binding points and noting the energy difference. In Figure 8.4 and Figure 8.5, in both Ag 
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Figure 8.4. The surface energies and extraction energies of the adatom for the various Ag 

crystals. 

 
Figure 8.5. The surface energies and extraction energies of the adatom for the various Cu 

crystals. 
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and Cu respectively, the extraction energy is independent of surface orientation, as it is too 

far removed from a free surface, while the surface energy depends upon the surface 

orientation, and 
     111 100 110

    surf surf surfEE E  . 

The surface dependence is more pronounced in the smallest rhombicuboctahedrons, where 

the {111} surface is on an interface between other orientations. It is worth noting that 

whereas the Cu extrE  values barely changed after the crystal was relaxed for 20 000 steps, 

the Ag values changed slightly, indicating that the crystal relaxed further. 

 

Bulk Crystals 

From the extraction and surface energies, the vacancy formation energy can be calculated. 

To find the diffusion activation energy Q  from equation 2.12, the migration energy of the 

atom also needs to be determined. Following the original diffusion path shown in Figure 

4.24, the energy differences of a crystal with a single point vacancy, where an atom is 

migrating to that vacancy, was noted. The maximum peak height of energy increase 

corresponds to the migration activation energy. Figure 8.6 shows the energy profiles of all 3 

bulk crystals for Ag atoms migrating from one layer to another. The calculation yields close 

to 50 points for each peak, thus every second point was plotted for better clarity. 

The depth profile is not continuous as, after the atom has migrated into the point vacancy, 

for the atom to proceed in the same direction, the vacancy must move from behind it to ahead 

in its path, as seen in Figure 8.8 (a). The vacancy being before, and then after, the migrating 

atom, correspond to two different states, causing the discontinuity. On the other hand, Figure 

8.7 follows the vacancy on a continuous path as different atoms move through it, shown in 

Figure 8.8 (b). As there is no change in the crystal state, there is no discontinuity. 

It is further pertinent to note that the different surface orientations have different activation 

energies and turning points. In Figure 8.6 the left-most minimum corresponds to the atom 

being in the surface layer. The diffusion path followed by this atom in the (110) surface is 

exposed to the surface for two steps of its migration, namely, from the crest into a trough, 

and from the trough into the subsurface layer. As the atom moves to the subsurface layer, 

the vacancy moves to the surface, which is the most stable configuration of the crystal 

containing a point defect. 
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Figure 8.6 shows the change in crystal energy following the diffusion path of a migrating atom 

in Ag crystals with (110)-, (100) and (111) free surfaces. 

 

 
Figure 8.7 shows the change in energy following the segregation path of a point vacancy in 

the Ag bulk crystals. 
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Figure 8.8 (a, b). The route of an atom as it follows a diffusion path inwards from the surface 

is shown in (a), while (b) shows the same process from the perspective of the vacancy’s 

diffusion path. In (a) The process starts where a subsurface vacancy is created to open a path 

for diffusion for the surface atom. In step 2, after the surface atom moved into the vacancy, 

the vacancy is exchanged with a position further down into the crystal, so that the diffusing 

atom can continue ever deeper. The atom moves into the new vacancy in step 4, and step 3 is 

repeated in step 5. In (b), the same process is seen from the perspective of the vacancy. In this 

case the atom migrated upwards into the vacant position, and the vacancy shifts downwards 

(step 2). Step 1 and 2 are repeated in 3 and 4, and so on. 

This accounts for the much lower minimum on the right-hand side of the peak. This is also 

borne out by investigating the vacancy segregation profile in Figure 8.7 which clearly shows 

the vacancy’s preference for being in the surface layer which produces a much lower 

minimum. It is also interesting to note that the (110) surface shows lower activation energies 

close to the surface and a higher tendency for vacancies to want to segregate to that surface. 

The migration profiles of adatoms and vacancies in Cu bulk crystals resembled those of Ag 

in Figure 8.6 and Figure 8.7. 

Nano-crystals 

In comparison, the energy depth profile of the diffusion path measured on the Cu 

rhombicuboctahedrons shown in Figure 8.9-Figure 8.11 are like the bulk in the deeper 

layers, with slight differences appearing on the surface. The most marked difference was the 

{111}, and {110} diffusion path energies in the 17  imperfect cube of Figure 8.9. As the 

atoms on these surfaces are on the edges between different surface orientations, and are also 

sitting at the extreme edges of the crystal with few bonds to first, second, etc., nearest 

neighbours, it makes sense that removing one of these nearest neighbours to create a point 

defect will change the crystal energy drastically, and more so if the vacancy has migrated to 

take the place of the unstable edge atom. As such, it is no surprise that the lowest minimum 

turning point occurs when the vacancy occupies the position of the {111} migrating atom 

which is located on the corner of the crystal. Once again, the activation energy for the {110} 

surface migration path is the lowest in all three crystals, but for the smallest crystal, the 

activation energy for subsurface-to-surface migration in {111} and {110} is lower than in 

 

(a) (b) 
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Figure 8.9. The change in crystal energy following the diffusion path of a migrating atom from 

three different positions in the Cu 
1

7


 imperfect cube. 

 

 
Figure 8.10. The same change in crystal energy following the diffusion path of a migrating 

atom in the Cu 
2

9


 particle. 
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Figure 8.11 shows the change in crystal energy following the diffusion path of a migrating 

atom in the Cu 
2

11


 imperfect cube, which resembles the energy profile for the 
2

9


 imperfect 

cube. 

 

Figure 8.12 (a, b). The surface and subsurface atoms chosen for the diffusion paths on the 
1

7


 

imperfect cube in (a), and the 
2

9


 imperfect cube in (b). 

the other two nanocrystals. The chosen diffusion paths from the various surfaces of the 17   

crystal are shown in Figure 8.12 (a).  

(a) (b) 
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The {111} surface atom appears particularly unstable, and as the next atom down is a trough 

atom of the {110} edge, it has a similar energy to that of the {110} diffusion path’s trough 

atom. There is little difference between the 29  and 211  particle profiles shown in Figure 

8.10 and Figure 8.11, and their diffusion paths also differ slightly from the smaller 

rhombicuboctahedron, as shown in Figure 8.12 (b). In particular, the {111} subsurface atom 

is obscured by a larger tightly packed {111} surface, so that the migration energies measured 

for the subsurface position approximately resemble those of the bulk crystal. However, the 

surface atom is still on the edge of the {111} surface, and that gives a slight difference to the 

bulk values. The {100} atom diffusion path energy profile resembles the bulk (100) energy 

profile in all three crystals. The similarities in the 29  and 211  crystal profiles suggest that 

the differences are influenced by crystal shape but not crystal size. Atoms found on the 

borders between surface orientations will most likely have energy profiles which deviate 

from bulk values, and those in large surfaces will resemble bulk profiles.  

 

Figure 8.13 and Figure 8.14 show the vacancy formation energy vE , migration energy in the 

bulk mE  as the amplitude of the migration peaks deep within the crystal, and diffusion 

activation energy Q . These values were calculated using the data tabulated in Table 8.2 and 

presented in Figure 8.4, Figure 8.6 and Figure 8.9. As the migration energy is measured in 

the bulk, it is not surface orientation dependent. However, since vE  is surface orientation 

dependent, with 
     110 100 111

    v v vEE E  , Q  shows the same dependency, with 

(110) (100) (111)Q Q Q  . This can be seen in both Figure 8.13 and Figure 8.14. This relationship 

is more pronounced in the smaller crystal, especially in the Cu 
1

7


 rhombicuboctahedron 

shown in Figure 8.14.  However, as the {111} surface is at an extreme corner of the crystal 

at a junction between {100}- and {110}-surfaces, this is most likely because of edge-effects 

and not crystal size. 

Once again Ag values changed slightly as the crystal was allowed to relax for 20 000 steps, 

slightly increasing the activation energies. This may be due to unoptimized QSC fitting 

parameters for Ag. There is good agreement with the experimental literature values of vE

obtained from electrical resistivity measurements [7], although the Q  values from  
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Table 8.2 Summary of calculated and literature diffusion parameters for Ag and Cu crystals. All energies are given per atom. 

  extrE  (eV) surfE  (eV) 
vE  (eV) mE  (eV) Q  (eV) 

  Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed 

Ag Bulk (111) -3.91 -4.01 -2.34 -2.34 1.57 1.66 1.33 1.33 2.90 2.99 

 Bulk (100) -3.91 -3.99 -2.54 -2.53 1.37 1.46 1.33 1.33 2.71 2.79 

 Bulk (110) -3.91 -3.99 -2.78 -2.75 1.13 1.24 1.33 1.33 2.46 2.57 

 Lit      

1.16  

[7]    

1.96  

[8] 

 Nano7-1 {111} -3.91 -3.96 -2.20 -2.14 1.71 1.81 1.33 1.33 3.04 3.14 

 Nano7-1 {100} -3.91 -3.96 -2.49 -2.47 1.42 1.49 1.33 1.33 2.75 2.82 

 Nano7-1 {110} -3.91 -3.96 -2.78 -2.70 1.13 1.26 1.33 1.33 2.47 2.59 

 Nano9-2 {111} -3.91 -3.96 -2.26 -2.20 1.65 1.76 1.33 1.33 2.98 3.09 

 Nano9-2 {100} -3.91 -3.96 -2.49 -2.48 1.43 1.49 1.33 1.33 2.76 2.82 

 Nano9-2 {110} -3.91 -3.96 -2.77 -2.71 1.15 1.25 1.33 1.33 2.48 2.58 

 Nano11-2 {111} -3.91 -3.98 -2.26 -2.19 1.65 1.79 1.33 1.33 2.98 3.12 

 Nano11-2 {100} -3.91 -3.98 -2.48 -2.48 1.43 1.50 1.33 1.33 2.76 2.83 

 Nano11-2 {110} -3.91 -3.98 -2.77 -2.71 1.14 1.27 1.33 1.33 2.47 2.60 

Cu Bulk (111) -4.65 -4.65 -2.90 -2.90 1.75 1.75 1.18 1.18 2.93 2.93 

 Bulk (100) -4.65 -4.65 -3.06 -3.06 1.59 1.59 1.18 1.18 2.77 2.77 

 Bulk (110) -4.65 -4.65 -3.33 -3.31 1.33 1.34 1.18 1.18 2.50 2.52 

 Lit      

1.31  

[7]    

2.19  

[8] 

 Nano7-1 {111} -4.65 -4.65 -2.44 -2.42 2.21 2.23 1.17 1.18 3.38 3.41 

 Nano7-1 {100} -4.65 -4.65 -2.92 -2.90 1.73 1.74 1.17 1.19 2.90 2.93 

 Nano7-1 {110} -4.65 -4.65 -3.15 -3.11 1.50 1.54 1.17 1.19 2.67 2.72 

 Nano9-2 {111} -4.65 -4.65 -2.61 -2.59 2.04 2.06 1.17 1.17 3.21 3.23 

 Nano9-2 {100} -4.65 -4.65 -2.90 -2.89 1.75 1.77 1.17 1.17 2.93 2.94 

 Nano9-2 {110} -4.65 -4.65 -3.18 -3.14 1.47 1.51 1.17 1.17 2.64 2.69 

 Nano11-2 {111} -4.65 -4.65 -2.60 -2.59 2.05 2.07 1.17 1.17 3.22 3.24 

 Nano11-2 {100} -4.65 -4.65 -2.90 -2.90 1.75 1.75 1.17 1.17 2.92 2.92 

 Nano11-2 {110} -4.65 -4.65 -3.18 -3.14 1.47 1.51 1.17 1.17 2.64 2.68 
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Figure 8.13. The vacancy formation energy 

v
E , migration energy in the bulk 

m
E  and diffusion 

activation energy Q   for the various Ag crystals. The literature values of 
v

E  are from 

reference [7], and Q  values from reference [8]. 

 
Figure 8.14. The vacancy formation energy 

v
E , migration energy in the bulk 

m
E  and diffusion 

activation energy Q   for the Cu crystals. Literature values of 
v

E  are from reference [7], and 

Q  from reference [8]. 
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radioactive tracer diffusion data [8] show less correspondence. This is most likely due to two 

factors: the fitting of the QSC parameters, suggesting the parameters are not optimized to 

model migration in the crystal, and the artificially large mE  value, as a result of freezing the 

crystal during migration activation energy measurements. Fitting SC parameters for 

calculating diffusion activation energies, and allowing the crystal to relax during migration 

energy measurements, could improve the ability of the model to predict diffusion activation 

energies 

 

A thorough investigation of diffusion energies at 0 K in pure Ag and Cu was conducted using 

the Sutton-Chen potential. Fitting different Sutton-Chen parameters to literature diffusion 

data indicated that the Quantum Sutton-Chen provided the results closest to experimental 

values for all the energies studied in Cu and Ag. However, the QSC was not able to model 

the Ag diffusion activation energy Q  well. Nevertheless, modelling different bulk and 

nanocrystals of Ag and Cu showed that certain energies were dependent on the surface 

orientation, because a component of that energy depended on a surface energy surfE , and 

     111 100 110
    surf surf surfEE E  . As this was a component of the vacancy formation energy vE , it is 

also surface orientation dependent, and 
     110 100 111

    v v vEE E  . vE  is used to calculate the 

diffusion activation energy Q , and thus it, too, is surface orientation dependent with 

(110) (100) (111)Q Q Q  . The other crystal energies, the extraction energy extrE , and the 

migration energy in the bulk mE , are measured deep in the crystal and are thus surface 

orientation independent. However, close to the surface the migration peaks and troughs of 

the energy profile have a similar surface-orientation dependent character in the bulk crystals. 

In nanocrystals, the surface-orientation dependence is also influenced by edge effects caused 

by the proximity of other orientations, and whether a surface is on a sharp edge or corner 

with fewer nearest neighbours. Relaxing the crystals changed the Ag crystal energies more 

significantly than the Cu crystals, and the diffusion values calculated corresponded less to 

literature values, suggesting that the QSC parameters are not ideally suited to simulating 

diffusion in Ag. These energy relationships indicate that in self-diffusion and vacancy 

segregation, the surface orientation influences diffusion. In rhombicuboctahedrons, with the 

lower subsurface activation energy in {111}, vacancies will preferentially migrate there.  
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Having investigated the diffusion parameters as modelled by the Sutton-Chen Molecular 

Dynamics simulation for pure Cu and Ag bulk and rhombicuboctahedrons in the previous 

chapter, the next step is to investigate its mixing potential and its ability to model segregation 

which is known to occur in Ag and Cu mixtures. Using the mixed form of the potential for 

bimetallic interactions with a slight adjustment, the interactions between Ag and Cu were 

simulated. As before, vacancy formation energies were calculated. Migration energy depth 

profiles and energies allowed the calculation of the diffusion activation energy. Additionally, 

segregation energies at different depths were studied. These energies were evaluated for a 

foreign adatom of Ag in the Cu crystals, and a Cu adatom in the Ag crystals. The 

investigation of the segregation energy G  allowed the modelling of the change in free 

energy of mixed Ag and Cu in bulk and nanocrystals. The segregation energies were 

calculated by starting with the foreign adatom at the surface and successively exchanging it 

with a first nearest neighbour deeper within the crystal along the diffusion path, noting the 

change in free crystal energy each time. All energies are given per atom. The final part of 

this chapter presents the outcomes of a time-lapse relaxation run of a mixed 

rhombicuboctahedron of Cu/Ag, proving definitively whether the new mixed potential can 

model surface segregation in this alloy. 

 

This section revisited the diffusion energies from section 8.4, calculated for a foreign 

element adatom. The vacancy formation energy, migration energy and diffusion activation 

energy were calculated for a Cu atom in Ag bulk- and nanocrystals, and the same was done 

for a Ag atom in Cu bulk- and nanocrystals. 
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Figure 9.1. The surface energies and extraction energies of the Ag adatom for the Cu bulk and 

nanocrystals. 

 

For the mixed metals, only the energies of the bulk crystals and the 17  

rhombicuboctahedron shown in Figure 8.12 (a) were investigated, as the values of the 

smallest crystal diverged the most from bulk values and provide values that can be contrasted 

and compared.  

As before with the pure metals, an adatom was extracted from the bulk and then brought to 

the surface, though in this case, in a Cu crystal the adatom was Ag, and in the Ag crystal the 

adatom was Cu. In Figure 9.1 and Figure 9.2 the same trends from Figure 8.4 and Figure 8.5 

are repeated, with the same orientation dependence for the surface energy, as would be 

expected from our inspection of Figure 5.1 and Figure 8.3. Even though the adatom element 

has changed in Figure 9.1 and Figure 9.2, the values are still similar to those for the pure 

metals, as shown in Figure 8.4 and Figure 8.5. However, the Ag adatom’s extraction changed 

dramatically by up to 0.51 eV/atom when the crystal was relaxed, suggesting a distortion in 

the lattice as the Ag atom pushed against the more closely packed Cu lattice. The extraction 

energy for the Ag atom in Figure 9.1 became significantly more negative, meaning that it 

binds more strongly in the bulk.  
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Figure 9.2. The surface energies and extraction energies of the Cu adatom for the Ag bulk and 

nanocrystals. 

 

With the vacancy formation energy components calculated, the bulk migration energy is next. 

Once again, a similar method to the process in Chapter 8 is followed, but the migrating 

atom’s element is set to Ag in the Cu crystal, and Cu in the Ag crystal, such that there is only 

one foreign element in the crystal at one time. 

9.2.2.1 Ag Atom Migration in Cu Crystals 

Bulk Crystals 

As in the previous chapter, the energy depth profile following the diffusion path of the 

foreign element shows a discontinuity where the vacancy is swopped out. In Figure 9.3 the 

(110) energies are not as distinct from the other orientations for a Ag atom in a Cu bulk 

crystal, though the vacancy still has a slight preference for segregating to the (110) surface, 

as seen Figure 9.4. Another interesting feature of this profile is that as the atom of the 

migrating element is changed so there is only one foreign element in the crystal at a time; 

the crystal state is slightly changed from one jump to the next. As seen in Figure 9.5, closer 
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Figure 9.3 shows the change in crystal energy following the diffusion path of a migrating Ag 

adatom in the Cu bulk crystals. 

 
Figure 9.4 shows the segregation of a point vacancy coupled to a migrating Ag adatom in the 

Cu bulk crystals. 

 

 



 

143 

 

 

Figure 9.5 (a, b). The process is shown for determining step-by-step the energy following the 

diffusion path of (a) a foreign element from the surface to the bulk, or (b) a vacancy tied to a 

foreign element migrating from the surface to the bulk. The process in Figure 9.5 (a) is similar 

to Figure 8.8 (a), except that the diffusing atom is of a foreign element. As before, after the 

surface atom moved into the vacancy, the vacancy is exchanged with a position further down 

into the crystal, so that the diffusing atom can continue ever deeper. In (b), from the perspective 

of the vacancy, the foreign element migrated upwards into the vacant position, and the vacancy 

shifts downwards. However, for the migration energy measured to be that of a foreign element, 

the foreign element atom has to be exchanged from above the vacancy to below it in step 2. In 

step 3 the vacancy can then continue deeper into the crystal, while measuring the migration of 

a foreign element. Step 1 and 2 are once again repeated in 3 and 4, and so on. 

to the surface, this also leads to discontinuities in the energy profile of the vacancy 

segregation path. 

Even though the vacancy and foreign element are inextricably linked and the graph in Figure 

9.3 cannot be used to discern the segregation energy of the foreign element alone, the slight 

decrease in energy of the minima turning points, on either end of the bell curves, as the atom 

approaches the surface gives a clear indication of segregation. It also suggests that the 

foreign element and vacancy both have a slight preference for segregating to the more open 

(110) surface, and the least preference for the closely-packed (111) surface. In addition, the 

amplitude of the activation energy peaks are much larger than in the pure metals (2.60 eV as 

opposed to 1.33 eV in pure Ag and 1.18 eV in Cu), with the larger Ag needing more energy 

to move through the more tightly packed Cu lattice. 

Nano-Crystals 

Figure 9.7 9.6 and Figure 9.7 show similar plots for the Cu rhombicuboctahedron with a Ag 

migrating atom. The surface-to-subsurface activation energy is much higher for the {100} 

than for the other two orientations, but once again this is due to the particle shape, as 

discussed before in section 8.4.2. Figure 9.6Figure 9.7 and Figure 9.7 also show a downward 

sloping trend in the minima turning points as the foreign atom/vacancy pair approaches the 

surface, hinting at segregation of the Ag atom towards the surface in Cu crystals, more so 

for the {111} corner and {110} edge in the rhombicuboctahedron, than the solid {100} face. 

One can consider the “{111}” surfaces and “{110}” surfaces in this small cuboid particle to 

be dominated by edge effects. 

(a) (b) 
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Figure 9.6 shows the change in crystal energy following the diffusion path of a migrating Ag 

adatom in the Cu imperfect cube. 

 
Figure 9.7 shows the change in crystal energy of the segregation of a point vacancy coupled 

to a migrating Ag adatom in the Cu imperfect cube. 
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9.2.2.2 Cu Atom Migration in Ag Crystals 

Bulk Crystals 

An investigation of the energy profile measured along the diffusion path of a Cu in a Ag 

crystal yielded surprising results. The discontinuity caused by the presence of a point defect 

is much larger relative to the activation energy in the Ag crystal in the presence of a Cu atom 

in Figure 9.8, than it was in Figure 9.3. The steep incline of the surface-to-subsurface 

migration peak shows a remarkably strong drive for the vacancy to segregate to the surface, 

and the Cu atom to desegregate to the subsurface layer. As in Figure 9.3 and Figure 9.4, the 

drive to desegregate appears strongest in the (110) surface, followed by (100), and finally 

the (111) surface.  

The lower activation energy for the (110) surface-to-subsurface migration path is because 

the first peak corresponds to migration of the Cu adatom from a crest position on the surface, 

to a trough position which is still exposed to the surface defect. The second peak is also 

lower, as this follows migration of the adatom from the trough to the subsurface layer. There 

is also a slight incline in the minima turning points approaching the surface, but increasing 

slightly, showing an inclination for the Cu adatom to desegregate into the bulk of the crystal 

away from the surface. As opposed to the Ag atom in the Cu lattice, the Cu atom can move 

through the Ag lattice with relative ease, shown by the smaller activation energy represented 

by the smaller amplitude of the peak, as the relatively small Cu atom can manoeuvre the 

transition in the more widely spaced Ag lattice. 

Nano-crystals 

Figure 9.10 and Figure 9.11 show the same energy profile of the Cu adatom, this time in the 

Ag 17   rhombicuboctahedron. In this case the surface segregation of the vacancy to the 

surface is even more aggressive, with absolutely no activation energy needed for the Cu 

adatom on the {111} corner to slip to the subsurface layer. 
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Figure 9.8 shows the change in crystal energy following the diffusion path of a migrating Cu 

adatom in the Ag bulk crystals. 

 
Figure 9.9 shows the change in crystal energy the segregation of a point vacancy coupled to a 

migrating Cu adatom in the Ag bulk crystals. 
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Figure 9.10 shows the change in crystal energy following the diffusion path of a migrating Cu 

adatom in the Ag imperfect cube. 

 

 
Figure 9.11 shows the change in crystal energy following the segregation of a point vacancy 

coupled to a migrating Cu adatom in the Ag imperfect cube. 
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A close second for strong vacancy segregation is the crest of the {110} surface. As in the 

bulk, the rhombicuboctahedron displays a slight upward slope of the minima turning points 

from bulk to surface, indicating that the Cu atom would preferentially desegregate into the 

bulk of the crystal. 

 

From the migration energy depth profiles a strong indication was observed for segregation 

of Ag and Cu: Ag to the surface, Cu to the bulk. As a final indicator, the difference in free 

energy, G , was calculated. The free energy represents the differences in the total potential 

energy of the crystal, and the change in free energy when a foreign atom is moved from 

within the crystal to its surface is an indication of whether that element is driven to segregate 

or desegregate. A negative G  value indicates segregation while a positive value points to 

a drive to desegregate. The values of extrE , surfE , vE , mE , Q  and G  are all summarized 

in Table 9.1. The activation energy Q  was compared with values obtained from radiotracer 

data [1], and the segregation energy G  compared with Molecular Dynamics calculations 

of surface dependent values from reference [2].  

In Figure 9.12 is a summary of a vE , mE  and Q  for a single Ag atom in Cu bulk and 

nanocrystals, and in Figure 9.13 the same data for a Cu atom in Ag bulk and nanocrystals. 

Referring to Figure 8.13 and Figure 8.14, the migration energy of a Ag atom in Cu is much 

higher than for a Ag atom in a Ag crystal, or a Cu atom in a Cu crystal, which increases the 

diffusion activation energy Q  significantly as well. The Ag atom has greater difficulty 

migrating through the more tightly packed Cu lattice, which explains the increase in mE .  It 

is interesting to note that although this is a Cu crystal, if it is allowed to relax around the Ag 

atom, the adatom’s associated vE  energies change to a significant degree, as was seen in 

pure Ag crystals. This is as a result of the large change in extrE  as seen in Figure 9.1.  

In bulk this affects the activation energy Q . However, in the nanocrystal, the relaxation 

changes the vE  and mE  values proportionately so that Q  remains relatively unchanged. It 

may be that the smaller crystal deforms more thoroughly, which influences mE  in the 
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Figure 9.12. The vacancy formation energy, migration energy in the bulk and diffusion 

activation energy of the Ag adatom for the Cu bulk and nanocrystals. Literature values from 

reference [1]. 

 
Figure 9.13. The vacancy formation energy, migration energy in the bulk and diffusion 

activation energy of the Cu adatom in the Ag crystals. Literature values from reference [1]. 
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Table 9.1 A summary of the diffusion and segregation energy values of the mixtures of Ag and Cu crystals. All energies are given per atom. 

  
extrE  (eV) surfE  (eV) 

vE  (eV) mE  (eV) Q  (eV) G  (eV) 
 

  Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed Lit. Unrelaxed Relaxed  

Ag atom in Cu crystal 

Bulk 

(111) -4.12 -4.63 -2.76 -2.76 1.36 1.87 2.60 2.58 3.96 4.45 

-0.25  

[2] -0.25 -0.21  

 

Bulk 

(100) -4.12 -4.50 -2.92 -2.92 1.20 1.59 2.60 2.57 3.80 4.16 

-0.30 

[2] -0.31 -0.27  

 

Bulk 
(110) -4.12 -4.52 -3.18 -3.17 0.93 1.35 2.60 2.58 3.53 3.93 

-0.31 
[2] -0.35 -0.28 (110) crest 

             
-0.06 -0.12 (110) trough 

 

Lit. 

        

2.02  

[1]  

 

   

Ag atom in Cu crystal 

Nano7-1 

{111} -4.12 -4.41 -2.43 -2.36 1.69 2.06 2.60 2.16 4.29 4.22 

 

-0.53 -0.35  

 

Nano7-1 

{100} -4.12 -4.41 -2.85 -2.83 1.26 1.59 2.60 2.16 3.87 3.75 

 

-0.33 -0.30  

 

Nano7-1 
{110} -4.12 -4.41 -3.12 -3.06 1.00 1.36 2.60 2.16 3.60 3.52 

 
-0.45 -0.34 {110} crest 

            
 -0.26 -0.17 {110} trough 

Cu atom in Ag crystal 

Bulk 

(111) -3.98 -3.98 -2.42 -2.41 1.56 1.56 0.58 0.58 2.14 2.14 

 

0.09 0.06  

 

Bulk 
(100) -3.98 -3.96 -2.62 -2.61 1.36 1.35 0.58 0.58 1.94 1.93 

 
0.10 0.07  

 

Bulk 

(110) -3.98 -3.97 -2.82 -2.79 1.15 1.18 0.58 0.58 1.73 1.76 

 

0.09 0.05 (110) crest 

            
 0.09 0.08 (110) trough 

 

Lit. 

        

2.00  
[1]  

 

   

Cu atom in Ag crystal 

Nano7-1 

{111} -3.98 -3.98 -2.25 -2.17 1.72 1.81 0.58 0.60 2.30 2.40 

 

0.15 0.05  

 

Nano7-1 

{100} -3.98 -3.98 -2.57 -2.54 1.40 1.44 0.58 0.59 1.99 2.03 

 

0.11 0.08  

 

Nano7-1 
{110} -3.98 -3.98 -2.80 -2.73 1.17 1.25 0.58 0.59 1.75 1.84 

 
0.12 0.06 {110} crest 

            
 0.16 0.12 {110} trough 
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nanocrystal as well. The literature value of Q  of 2.02 eV/atom for Ag in Cu [1] does not 

compare well to the calculated values, which begin at 3.53 eV/atom, possibly related to the 

combination of a bad fit of QSC parameters to calculating Q , particularly mE , as vE  values 

correspond well. As the vacancies are not allowed to relax during migration to prevent the filling 

of open vacancies before the migration atom can migrate there, this freezing of the vacancy can 

artificially increase the migration energy as the nearest neighbours cannot move out of the way 

of the migrating atom. During Molecular Dynamics simulations where atoms relax and can 

move freely, this problem will not be a factor. An additional factor may be a bad fit of QSC 

parameters for modelling Ag. 

In contrast to Figure 9.12, Figure 9.13 displays a low mE  value for the Cu atom migrating 

through the Ag lattice, corresponding to the low peak amplitudes observed in Figure 9.10 and 

Figure 9.11.  Thus, it results in a lower Q  value. Even though the Cu atom is embedded in a Ag 

crystal, the adatom’s associated energies do not change significantly when it is relaxed, and thus 

there is not a great change in the Q  values from unrelaxed to relaxed crystals. The literature 

value also compares far better, as the QSC parameters are better able to calculate energies for 

Cu, and a lower mE  value corresponds better to literature. 

 

 

Bulk Crystals 

Having investigated fully all the diffusion activation energies, this section investigates the 

segregation energy of the foreign elements directly. By noting the difference in total free energy 

G , when the position of the foreign element in a surface is exchanged with that of a nearest 

neighbour deeper inside the crystal, a prediction can be made of the tendency of that element to 

segregate to the surface or the bulk. In Figure 9.14 and Figure 9.15 the left-most points (1 on 

the x-axis) correspond to the surface layer, the next point corresponds to the next nearest 

neighbour one step deeper, and so on.  
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Figure 9.14. The segregation energy of the Ag adatom at each successive layer and into the bulk 

in unrelaxed Cu bulk crystals for each of the different surface orientations. 

 
Figure 9.15. The segregation energy of the Ag adatom at each successive layer and into the bulk 

in relaxed Cu bulk crystals for each of the different surface orientations. 
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The change in free energy is determined by using the crystal state with the foreign element in 

the bulk as the default energy and finding the energy change when the foreign element is 

exchanged with another atom in a layer closer to the surface. Thus, the energy change in the 

surface layer is plotted at one, the change to the sub-surface layer is plotted to 2, etc. A negative 

energy indicates a drive to segregate out to the surface, as the overall energy of the crystal is 

more negative when the foreign element is on the surface, indicating a more strongly bonded, 

stable crystal. 

In Figure 9.14 these changes in free energy were plotted for a Ag atom in Cu bulk crystals for 

different surface orientations. Thus far, measurements done on the surface have yielded different 

readings, with 
     111 100 110

    surf surf surfEE E  , and the energy profiles from the migration paths of 

atoms to the surface showed a similar trend in bulk where edge effects did not interfere. 

On the surface, the number of first nearest neighbours an atom has, has a significant influence 

on its energy. If a Ag atom is placed in the lattice position of a Cu atom, it will be closer to its 

nearest neighbours than is optimal for a Ag atom, and it disturbs first nearest neighbours 

significantly, which in turn influences the energy of the Ag atom. In the (110) surface an atom 

has seven nearest neighbours, in the (100) surface it has eight, and in the (111) surface it has 

nine. If it is assumed that the change in free energy is greatest when the foreign element goes 

from the full count of twelve nearest neighbours to the lowest number, a similar 

(111) (100) (110)G G G      trend in the magnitude of the energy change in surface measurements 

would be expected. In the unrelaxed crystals, these expectations are borne out. As the Ag atom 

is stepped ever deeper into the unrelaxed Cu crystal, G  becomes less negative, showing a 

lesser drive to segregate to that layer. By the third layer, G  is almost negligibly small. Thus, 

in unrelaxed bulk Cu crystals, Ag will preferentially segregate out to the (110) surface, then the 

(100) surface, and least prefers to segregate to the tightly packed (111) surface.  

The picture changes if, after the foreign atom is exchanged into each layer in the unrelaxed Cu 

crystal, it is allowed to relax for 4 000 steps. The crystal can adjust to the new position of the 

foreign element, to accommodate it and find a new arrangement which leads to an overall lower 

crystal energy. The resulting magnitude of the change in free energy shown in Figure 9.15 is 

slightly less, but the surface orientation dependence of G  changes. As the Cu atoms are 

allowed to relax, the first nearest neighbours are no longer uncomfortably close, which resulted 
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in a disproportionate contribution to the bond interactions with the foreign atom in the unrelaxed 

crystal. As a result, the effect becomes less localized, and the second, third, and so on, nearest 

neighbours also contribute a larger proportion to the binding energies of the Ag adatom. With a 

larger volume of atoms interacting, the number of first nearest neighbours has a lesser effect, so 

the surface orientation dependence disappears, as can be seen in the (100) and (110) surface 

energies, where the difference between them become negligible. However, as the (111) surface 

is more tightly packed, it cannot relax as much, leading to a slight drop in segregation energy. 

Nano-crystals 

The picture looks different in the unrelaxed 17  Cu rhombicuboctahedron in Figure 9.16, 

particularly with all the edge effects distorting the typical energies. In the “{111}” corner 

position, the Ag atom has a mere 5 nearest neighbours, atypical of bulk {111} surface atoms 

(refer to Figure 8.12 (a)). For this corner atom, the drive to segregate is even stronger. This 

indicates strongly that for the large Ag atom in an unrelaxed crystal, the drive for surface 

segregation is strongest towards surface positions which minimize the number of first nearest 

neighbours. In the case of the nanocrystal, this is the “{111}” corners with very few nearest 

neighbours, and the “{110}” edges with a few more nearest neighbours. The troughs of the {110} 

edges also have a low vacancy formation energy which further improves the chance of 

segregation to those sites. 

This relationship of nearest neighbours and segregation energies once again becomes less 

apparent if the crystal can relax, at 1 on the x-axis in Figure 9.17. In this case the edge energies, 

with a more limited number of wider nearest neighbours, and more space for first nearest 

neighbours to relax, resemble each other, while the energy in the {100} face of the 

rhombicuboctahedron is slightly lower. The step-like character of the “{111}” atom is as a result 

of stepping into the crystal along a diagonal path, thus remaining closer to the surface than the 

{100} which steps into the bulk perpendicularly. 
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Figure 9.16. The segregation energy of the Ag adatom at each successive layer of the different 

surface orientations in the unrelaxed Cu imperfect cube. 

 
Figure 9.17. The segregation energy of the Ag adatom at each successive layer of the different 

surface orientations in the relaxed Cu imperfect cube. 
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Bulk Crystals 

In Figure 9.18 are the segregation energies of a Cu atom from the surface into the unrelaxed 

bulk of Ag bulk crystals. It is immediately apparent that the expected relationship of 

(111) (100) (110)G G G      to first nearest neighbours is not present. Instead, as the Cu atom is 

smaller and thus further removed from the Ag nearest neighbours than it would be in a Cu 

crystal, that interaction is weakened. Rather, it is the sum of the first, second, third, and so on, 

nearest neighbours, overall, that influences the relationships between the surface segregation 

energies of the different orientations. As the effect is spread out over the wider volume, the 

small differences in number of first nearest neighbours become less influential, and the 

differences in surface segregation energy of the different orientations are negligible, including 

the trough of the (110) surface, shown as the second point from the surface on the (110) series. 

Overall the segregation energy is positive, suggesting that the Cu atom prefers to desegregate 

into the bulk of the crystal. The drive is not as strong, however, as it was for Ag to segregate out 

of a Cu crystal. The segregation energy is a mere 0.1 eV per atom. This positive segregation 

energy decreases rapidly by the third layer as the effect of the surface defect decreases on the 

segregating atom. By the fourth layer, there are no detectable influences from the free surface. 

In Figure 9.19 the segregation energy relationships are not much changed other than a small 

decrease in magnitude. There is also a slight decrease in the segregation energy of the crest of 

the (110) surface. As in the previous case, allowing the Ag crystals to relax changes the bonds 

between the Cu adatom and its first nearest neighbours. In this case, the (110) surface on the 

crest position with the fewest first nearest neighbours can relax more closely around the Cu 

adatom without disturbing the crystal too greatly, allowing for a slight decrease in segregation 

energy to that position. However, the Cu atom would still desegregate into the bulk of the crystal 

from a (110) crest position. The (110) trough position, on the 2-position on the x-axis in Figure 

9.19, has the highest segregation energy of 0.08 eV for a single atom. This is because a Cu atom 

in the trough position have (110) crest atoms as nearest neighbours, which are greatly disturbed 

when the crystal relaxes. As for the (111) and the (100) surfaces, the differences in segregation 

energies or a single atom are negligible, 0.06 eV and 0.07 eV respectively. 
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Figure 9.18. The segregation energy of the Cu adatom at each successive layer of the different 

surface orientations in unrelaxed Ag bulk crystals. 

 
Figure 9.19 The segregation energy of the Cu adatom at each successive layer of the different 

surface orientations in relaxed Ag bulk crystals. 
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Nano-crystals 

Figure 9.20 shows the segregation energy of a Cu atom in the unrelaxed Ag 17  

rhombicuboctahedron. The differences in segregation energy seems to correspond with the 

number of first nearest neighbours, from five for the corner “{111}” position, to seven for the 

edge “{110}” position, to eight in the {100} face. However, as the “{111}” atom is on a corner, 

it would have the fewest second, third, fourth and so on, nearest neighbours as well. The {110} 

atom occurs on the edge of the crystal and has more extended nearest neighbours than the corner 

atom, but fewer than the {100} atom embedded in the middle of a face. The {110} trough 

segregation energy is slightly higher than the crest value, while the sub-surface energy of the 

“{111}” surface has the highest segregation energy. In both these cases, the Cu atom in a 

subsurface atom position has weak bonds with surface atoms that already have fewer nearest 

neighbours, significantly undermining the stability of the crystal.  

Thus, these subsurface positions on the edges have the highest positive segregation energies, 

indicating the Cu atom least prefers to occupy subsurface positions in the corner and edge of the 

Ag 17  rhombicuboctahedron. The relaxed segregation energy shown in Figure 9.21 has shown 

a marked change, where the relationship has completely swung around, with the corner atom 

having the lowest surface segregation energy, followed by the {110} crest atom, with the {100} 

face atom having the largest segregation energy. The sub-surface segregation energy of the 

“{111}” corner atom is much higher than the other segregation energies. With the crystal 

allowed to relax, the Cu adatom can bind more closely with its first nearest neighbours when it 

is on an edge surface position. However, when it is in the subsurface position of those same 

edges, it significantly disturbs weakly bonded surface atoms around it, which leads to an 

increased segregation energy. 
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Figure 9.20. The segregation energy of the Cu adatom at each successive layer of the different 

surface orientations in the unrelaxed Ag imperfect cube. 

 

Figure 9.21. The segregation energy of the Cu adatom at each successive layer of the different 

surface orientations in the relaxed Ag imperfect cube. 
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Figure 9.22 and Figure 9.23 show a summary of all the segregation energies calculated for the 

different surfaces. In Figure 9.22 the bulk segregation energies are also compared to a previous 

Molecular Dynamics calculation of segregation energies of Ag in Cu crystals [2]. For better 

comparison, the values were converted to eV/atom and the use of negative and positive energies 

changed to the convention of negative energies driving surface segregation, whereas positive 

energies driving bulk desegregation. The literature values and the energies calculated in this 

study agree well. Though some surface orientation dependence is evident, there is only a slight 

difference in the (111) bulk surface for a Ag atom in a Cu crystal, where the large Ag atom 

distorts the tightly packed surface layer. The {110} crest for the Cu in a Ag crystal has a slightly 

lower desegregation energy as it allows the Cu atom to relax without disturbing the crystal 

structure too much. The greatest influence on segregation energy seems to be the shape of the 

crystal, as evidenced by the greater effect of edges on the segregation energies in the 17   

rhombicuboctahedrons. This effect is much more magnified in the unrelaxed crystal, but may 

have a non-negligent impact on the preference for surface segregation to the corners and edges 

of nanocrystals. 

 

Having confirmed the segregation energy is likely to drive segregation of Ag out onto the 

surface, and Cu into the bulk, a small 17  imperfect cube of 50 % Cu and 50 % Ag, mixed 

randomly, was simulated for 500 000 steps at 650 K to ensure that atom transport could take 

place in a relatively short time. Figure 9.24 (a-d) shows the heated nanoparticle as it loses its 

cubic shape. Figure 9.24 (d) and (e) appear to have mostly Ag on the surface, with Cu in the 

sub-surface layer. 

A cross-section of the final step of the relaxation run in Figure 9.25 shows clear separation 

taking place between the Cu and Ag atoms, with the Ag atoms forming a thin shell on the outside 

of the particle. It is thus conclusively shown that the algorithm as modified can simulate 

segregation in Ag and Cu, with Ag atoms migrating to the surface. 

 



 

161 

 

 
Figure 9.22. The segregation energy of the Ag adatom on the different surface orientations of the 

Cu bulk and nanocrystals. Literature values are from reference [2], though the convention for 

negative and positive energies are reversed for better comparison. 

 
Figure 9.23. The segregation energy of the Cu adatom on the different surface orientations of the 

Ag bulk and nanocrystals.  
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Figure 9.24 (a-e). A 

1
7


 imperfect cube of 50/50 Cu/Ag was left to run for 500 000 steps at 650 

K. (a) through (e) are respectively 0 steps, 50 000 steps, 100 000 steps, 250 000 steps, and 500 

000 steps. 

 

 
Figure 9.25. A cross-section through the nanoparticle at 500 000 steps. The central atoms are 

darkened slightly to help distinguish between bulk and surface atoms. The surface atoms are 

visibly enriched with Ag. 

(a) (b) 

(c) (d) (e) 
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It would be interesting to see if future investigations of runs at lower temperatures for longer 

times would allow the cubic nanoparticle to retain its shape, and whether the face, edge and 

corners would segregate at different rates, as predicted by the energies in Figure 9.22. 

 

Surface segregation of Ag in Cu was successfully simulated and the calculated segregation 

values of a Ag atom in Cu compared well to literature values. 

The surface-orientation dependent relationships with diffusion energies were seen in the mixed 

metals. The migration energy profiles were interesting, as the minima showed a decreasing trend 

to the surface in the case of a Ag atom in a Cu crystal, and an increasing trend to the surface in 

the case of a Cu in a Ag crystal. These trends hinted that Ag would want to segregate out of a 

Cu crystal and Cu would want to desegregate into a Ag crystal. The migration energy involved 

a vacancy-adatom pair, and so to extract the pure segregation energy without the influence of a 

point defect, the change in free energy was measured from exchanging the position of the foreign 

element with atoms at different depths in the perfect crystal. The segregation energy of Ag in a 

Cu crystal was negative on the surface, indicating Ag wanted to segregate to the surface, while 

the Cu atom in Ag had a positive segregation energy, indicating it wanted to desegregate into 

the bulk of the Ag crystal. The relationship between the segregation energy and the surface-

orientation was not quite as simple as the other diffusion-related energies, as the effect is not as 

local and not only first nearest neighbours, but also second, third etc. nearest neighbours have 

an influence on the segregation energy. As such, the differences in segregation energies were 

far more pronounced in the rhombicuboctahedron, where the surface atom’s position on the 

corner, edge, or a face of the rhombicuboctahedron more significantly influenced the 

segregation energy. 

A final time-relaxation run of a 50/50 Ag/Cu rhombicuboctahedron yielded a spherical particle 

with an outer shell of mostly Ag atoms, with the majority of Cu atoms in the bulk of the 

nanoparticle. This confirmed the ability of the Molecular Dynamics simulation of a Sutton-Chen 

potential using Quantum Sutton-Chen parameters to successfully model the segregation in the 

Ag and Cu system. 
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The Sutton-Chen potential was used in Molecular Dynamics simulations to model the diffusion 

in face-centred cubic (FCC) crystals and develop a model that could successfully simulate the 

segregation in alloys. In depth analysis of both surface effects and temperature was also 

conducted. 

The study used the Sutton-Chen potential with the original Sutton-Chen parameters to model 

pure crystals of Al, Ni, Cu, Pt and Ag using periodic boundaries to simulate bulk crystals. For 

these crystals, the cohesion energy per atom was calculated to validate the model. The cohesion 

energy ( cohE ) is summarized in Table 10.1. The vacancy formation energy of monovacancies 

for each metal was also determined, for crystals with (110)-, (100)- and (111)-free surfaces. It 

was found that the surface binding energy ( surfE )  of a single adatom on the free surfaces had 

the relationship 
     111 100 110

surf surf surfE E E  , and as the vacancy formation energy depends on the 

surface energy when creating a vacancy-adatom pair, the vacancy formation energy ( vE ) has 

the relationship of 
     111 100 110

v v vE E E  . vE  at 0 K was also summarized in Table 10.1. 

Table 10.1 summarizes the cohesion binding energies and vacancy formation energy of the (100) 

surface for 6 FCC metals using the SC potential. All energies are given per atom. 

FCC Metal coh
E  (eV) (110)

vE  (eV) 
(100)

vE  (eV) 
(111)

vE  (eV) 

Al 3.23 0.59 0.64 0.78 

Ni 4.24 1.38 1.68 1.91 

Cu 3.34 1.08 1.33 1.51 

Pd 3.81 1.49 1.80 2.09 

Ag 2.82 1.20 1.47 1.65 

Pt 5.75 1.41 1.59 1.96 

The effect of temperatures between 0 K and 1000 K on the vacancy formation energy was also 

measured. It was found that Al was not adequately modelled by the Sutton-Chen parameters, 

showing significant melting of the surface at 400 K, more than 500 K lower than the true melting 
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temperature of Al. Cu also showed surface pre-melting at 900 K. Using temperature ranges that 

excluded premelting, it was found that with crystal expansion from increased temperature, and 

the change in surface binding energies resulting from fluctuations in surface structure, the 

vacancy formation energy decreased from 4 % to 17 % over the range of temperatures measured, 

up to 0.28 eV/at in the case of 
(111)Ag . The rates of change were also dependent on the 

orientation of the free surface. Thus, the activation energy for vacancy formation decreases with 

increased temperature, but also depends on surface orientation. 

From characterizing the bulk materials, the study moved to characterizing nanomaterials, 

specifically Cu nanocubes, rhombicuboctahedrons and octahedrons. Particles ranged in size 

from 0.7 nm 3 3 3   packed cubes to large 5 nm 15 15 15   packed Cu cubes with {100} faces. 

Rhombicuboctahedrons are imperfect cubes with layers shaved off the edges and corners to 

expose {110} surfaces on the edges and {111} surfaces on the corners. These particles are 

classified, first by the size of the original cube in layers, and then by the number of layers shaved 

off the edges and corners. Thus, 315  denotes a  15 15 15   packed cube with three layers 

shaved off the corners and edges. Octahedrons are two inverted pyramids, with {111} free 

surfaces. The focus was on the effect of size and shape on particle stability and reactivity. The 

rhombicuboctahedrons still showed surface orientation dependency in surfE , as in  the largest 

crystal 
(111) 2.78surfE   eV, 

(100) 2.98surfE  eV and 
(110) 3.25surfE  eV. 

     111 100 110

v v vE E E  also applies to rhombicuboctahedrons, but edges between different surface 

orientations influence surface energies. Changing the shape by cutting away more layers of 

atoms from the edges and corners provide larger {110} and {111} surfaces and changed the 

reactivity of the particles. Comparing cohE   and vE   showed that larger particles are more stable, 

with a more negative cohE , while particles with more exposed {110} edges are more reactive. 

The most stable particle shape for each particle size was chosen for temperature-dependence 

study, namely the 
0

3 , 
1

5


, 
1

7


, 
2

9


, 
2

11


, 313  and 
3

15


 particles. 

Using the average potential energy (PE) per atom which is equivalent to cohE , the melting 

behaviour of these stable particles was studied. As with bulk materials, vE  decreased an average 
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of 0.13 eV as temperature increased. Fluctuations in PE/atom also clearly indicated the 

temperature range at which the particle melted, and this melting temperature changed with size. 

The 
0

3  and
1

5


 particles were deemed too unstable as 
0

3  changed to hexagonal close-packed 

(HCP) at 50 K, and 
1

5


 changed to HCP at 450 K. The melting temperatures of the other 

particles are noted in Table 10.2.  

Table 10.2. A summary of temperatures at which Cu rhombicuboctahedrons of various sizes 

changed state, either by rearranging into an HCP structure, or by melting, as simulated by the 

Sutton-Chen. Particles sizes are denoted as 
i

x


, which means a x x x  -packed particle with i  

layers cut away from the edges and corners.  

Particle ( -i
x ) Temperature (K) 

0
3  

 

50 (HCP) 

-1
5  

 

450 (HCP) 

-1
7  

 

750 (melt) 

-2
9  

 

850 (melt) 

-2
11  

 

850 (melt) 

-3
13  

 

900 (melt) 

-3
15  

 

900 (melt) 



CONCLUSION 

168 

 

In order to prevent the “flying ice-cube effect”, where the particle as a whole has a high average 

velocity but atoms become closely packed and appear “frozen”, it was necessary to include 

Dissipative Particle Dynamics in the Berendsen thermostat, which was used to regulate the 

temperature. As the 313  and 
3

15


 particles have diffusion energies closely resembling that 

found in bulk crystals, 
1

7


, 
2

9


and 
2

11


 rhombicuboctahedrons were used to further the study of 

diffusion and segregation in nanoparticles. 

Having chosen nanoparticle shapes and sizes for comparing to bulk materials, the study focussed 

on Ag and Cu which are known to segregate. The Sutton-Chen parameters were revisited and 

specifically optimized for calculating cohesion energy cohE , vacancy formation energy vE  and 

diffusion activation energy ( Q ) in these two metals, and the Quantum Sutton-Chen (QSC) 

parameters were chosen to give the closest results when compared to literature. These produce 

a different vE  value to the values from the original parameters. The new values for relaxed bulk 

and nano-crystal energies are summarized in Table 10.3. The same relationships where 

     111 100 110

surf surf surfE E E   and 
     111 100 110

v v vE E E  , were found with the new QSC parameters in 

both pure Ag and Cu. As diffusion activation energy Q  depends on vE , it was found that 

(110) (100) (111)Q Q Q  .  

Table 10.3. The vacancy formation energy and diffusion activation energy for Cu and Ag bulk- 

and 
1

7


 nano-crystals. All energies are given per atom. 

Crystal  Free Surface 
vE  (eV) Q  (eV) 

Bulk -1
7  

-2
9  

-2
11  Bulk -1

7  
-2

9  
-2

11  

Ag {110} 1.24 1.26 1.25 1.27 2.57 2.59 2.58 2.60 

 {100} 1.46 1.49 1.49 1.50 2.79 2.82 2.82 2.83 

 {111} 1.66 1.81 1.76 1.79 2.99 3.14 3.09 3.12 

Cu {110} 1.34 1.54 1.51 1.51 2.52 2.72 2.69 2.68 

 {100} 1.59 1.75 1.77 1.75 2.77 2.93 2.94 2.92 

 {110} 1.75 2.23 2.06 2.07 2.93 3.41 3.23 3.24 

The energies for the larger nanocrystals approached those of the bulk. However, the diffusion-

related energies of the 17 crystal diverged from bulk values significantly, as the 17  particle has 

edge effects which influence surface energies of its {110} and {111} edges and corners. Thus, 
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for the last part of the study, the 17  rhombicuboctahedron was used to contrast with bulk energy 

values. 

The final part of the study examined the Ag/Cu alloy, using the mixed Sutton-Chen potential 

with slight modifications, which ensure the conservation of energy and momentum. The 

diffusion activation energy for a Cu impurity in Ag crystals and Ag impurity in Cu crystals is 

summarized in Table 10.4. The activation energies are larger for Ag in Cu than the values for 

the pure metals in Table 10.3, and the energies are lower for Cu in Ag. The 

rhombicuboctahedron values for {110} and {111} surfaces are more a result of edge-effects 

than the typical free surface found in bulk crystals.  

Table 10.4. The diffusion activation and segregation energies for impurities in Ag and Cu are 

summarized for bulk and nanocrystals. All energies are given per atom. 

Adatom in 

Crystal  
Free Surface 

Q  (eV) ΔG  (eV) 

Bulk -1
7  Bulk -1

7  

Ag atom in 

Cu crystal 

{110} 3.93 3.52 -0.28 -0.34 

{100} 4.16 3.75 -0.27 -0.30 

{111} 4.45 4.22 -0.21 -0.35 

Cu atom in 

Ag crystal 

{110} 1.76 1.84 0.05 0.06 

{100} 1.93 2.03 0.07 0.08 

{110} 2.14 2.40 0.06 0.05 

In the calculation of the diffusion activation energy, the minima of the migration energy profile 

indicated that Ag would segregate to the surface, and Cu into the bulk. The segregation energy 

of a Ag atom in a Cu crystal and for a Cu atom in a Ag crystal was calculated and the results are 

also summarized in Table 10.4. The negative segregation energy for a Ag atom in a Cu crystal 

indicates a drive for Ag to diffuse to the surface. The slight positive energy of the Cu atom in a 

Ag crystal indicates a weak drive for Cu atoms to desegregate into the bulk of the Ag crystal. 

After the crystals are allowed to relax, the relationship (111) (100) (110)G G G     indicating 

surface orientation dependence is not seen. There is no strong correlation between surface 

orientation and segregation energy, beyond a slight lesser preference of Ag atoms for the 

Cu{111} surface. The shape of the rhombicuboctahedron did have a larger effect on the 

segregation energy, particularly in the case of the Ag atom in a Cu crystal. Here slight 

differences in energy are less a result of the surface orientation, which determines the number 
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of first nearest neighbours of an atom, and more due to the foreign atom’s position on a corner 

or edge, as opposed to a face. This position on an edge or corner has fewer first, second, third 

etc. nearest neighbours, and as segregation affects a larger volume of atoms than just immediate 

nearest neighbours, these positions have a greater impact on segregation energy values.  

In the final part of this study, a time-lapse run of a 50/50 Ag/Cu 17  rhombicuboctahedron was 

run for 500 000 integration steps at 650 K. The result showed conclusively that the modified 

mixed Sutton-Chen potential successfully simulated surface segregation, by forming a thin shell 

of Ag on the surface of the nanoparticle.  

A future relaxation run at a lower temperature could test the shape dependence of the segregation 

energy in a rhombicuboctahedron predicted by the segregation energy in Table 10.4. The effect 

of temperature on segregation could also be studied. Further improvements in calibrating the 

Sutton-Chen parameters would improve the calculated results, and the model could be a useful 

tool to study other segregating alloys, impurities and dopants. 
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This appendix contains the computer code written during the course of this study. The code was written in Visual Basic. The following 

code includes the main code for the nearest neighbour list set up, migration energy measurements, integration step, Berendsen thermostat, 

Dissipative Particle Dynamics, Sutton-Chen potential calculations, Velocity Verlet algorithm, periodic boundaries, surface binding energy 

measurement and Multi-Section Method, described in Chapters 3 and 4. Comments are given in green to clarify points on the code. 

Nearest Neighbours List 
Public Sub nearestNeighbours(ByRef g_cut_off_radius As Double, ByRef g_dbl_periodic_boundary_x As Double, ByRef g_dbl_periodic_boundary_y As Double, _ 
                                 ByRef bln_bulk As Boolean, ByRef dbl_atom_radius As Double) 
        'This is a simple function to find which atoms are close enough to each other to react. The distances between atoms 
        'and themselves are not calculated. Those that are close enough to interact are written into a nearest neighbour  
        'list. The nearest neighbour's index is written into the next available space in an array that lists the nearest neighbours 
        'for each atom. It is also stored wether or not the nearest neighbour is the same element as the selected atom.  
        'The total number of nearest neihgbours for each atom is stored in the 0 array position. 
  
        'Note g_int16_nearest_neighbour_information(A, 0, 0) is where the total number of nearest neighbours 
        'for atom A is stored in the array. The number_of_nn array keeps track of how many neighbours each atom has and refreshes each 
        'time nn are recalculated. The index for the first nearest neighbour is stored in g_int16_nearest_neighbour_information(A, 1, 0), 
        'the second in g_int16_nearest_neighbour_information(A, 2, 0) and so on.  
  
        'g_int_element is either 0 or 1. The element index can range from 0 to 3, depending on wether the two nearest neighbours 
        'selected are both el1, both el2, or el1-2, or el2-1. As g_int_element = 0 for el1 and 1 for el2, and same_element = 0 
        'and different_element = 1, then the element index  in g_int_nearest_neighbour_information should work as follows: 
        'el1-el1 = 0 
        'el1-el2 = 1 
        'el2-el2 = 2 
        'el2-el1 = 3 
  
        'Lastly a pointer value is stored that associates the two nearest neighbours with each other.  
        Const same_element As Integer = 0  'Both selected atom and selected nearest neighbour are of same element 
        Const different_element As Integer = 1  'Selected atom and selected nearest neighbour are of differnt elements 
  
        Dim number_of_nn(g_int_total_system_atoms - 1) As Integer 
        Dim inter_neighbour_distance As Double 
  
  
        For i As Integer = 0 To g_int_total_system_atoms - 1 
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            For j As Integer = 0 To i - 1 
  
                Dim j_pointer As Integer    'points to where j is in i's list of nn 
                Dim i_pointer As Integer    'points to where i is in j's list of nn 
                'This provides a temporary pointer in case it's a nearest neighbour  
  
                j_pointer = number_of_nn(i) + 1 
                i_pointer = number_of_nn(j) + 1 
  
                interAtomicDisplacement(i, j, i_pointer, j_pointer, bln_bulk, g_cut_off_radius, g_dbl_periodic_boundary_x, g_dbl_periodic_boundary_y) 
                inter_neighbour_distance = interAtomicDistance(i, j_pointer)  
  
                If inter_neighbour_distance < g_cut_off_radius Then 
  
                    number_of_nn(i) = j_pointer 
                    number_of_nn(j) = i_pointer 
  
                    g_int16_nearest_neighbour_information(i, j_pointer, index) = j           'the i_pointer'th nearest neighbour of i is j. 
                    g_int16_nearest_neighbour_information(j, i_pointer, index) = i 
  
                    g_int16_nearest_neighbour_information(i, j_pointer, pointer) = i_pointer      'To find i in the nearest neighbour list of j, look at the j_pointer'th n
earest neighbour of j 
                    g_int16_nearest_neighbour_information(j, i_pointer, pointer) = j_pointer 
  
                    'save inter_neighbour_distance for use in potential energy calculation for both i and j 
                    g_dbl_interatomic_distance(i, j_pointer) = inter_neighbour_distance 
                    g_dbl_interatomic_distance(j, i_pointer) = inter_neighbour_distance 
  
                    'save the interaction of elements if bimetallic 
                    If g_int_number_of_elements = 2 Then 
                        If g_byt_element(i) = g_byt_element(j) Then 
                            g_int16_nearest_neighbour_information(i, j_pointer, element) = same_element + 2 * g_byt_element(i) 
                            g_int16_nearest_neighbour_information(j, i_pointer, element) = same_element + 2 * g_byt_element(j) 
                        Else 
                            g_int16_nearest_neighbour_information(i, j_pointer, element) = different_element + 2 * g_byt_element(i) 
                            g_int16_nearest_neighbour_information(j, i_pointer, element) = different_element + 2 * g_byt_element(j) 
                        End If 
                    Else 
                        g_int16_nearest_neighbour_information(i, j_pointer, element) = 0 
                        g_int16_nearest_neighbour_information(j, i_pointer, element) = 0 
                    End If 
  
                End If 
  
            Next j 
  
        Next i 
  
        For k As Integer = 0 To g_int_total_system_atoms - 1 
            g_int16_nearest_neighbour_information(k, 0, index) = number_of_nn(k) 
        Next k 
  
          
    End Sub 
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Migration Enegy Measurement 
 Public Sub RunA() 
        'This sub measures the migration energy of an adatom as it is stepped towards the position of its nearest neighbour 
        Dim number_of_steps As Integer 
        Dim dbl_result_potential_energy As Double 
        Dim dbl_initial_potential_energy As Double 
        Dim dbl_zero_potential_energy As Double 
        Dim dbl_transpose_potential_energy As Double = 0 
        Dim dbl_migration_distance As Double 
        Dim dbl_total_migration_dist As Double 
        Dim bln_centre As Boolean 
        Dim bln_end As Boolean 
  
        Dim lst_all_data As New List(Of String) 
        Dim lst_migration_atoms As New List(Of Integer) 
  
        Dim str_element(g_int_total_system_atoms - 1) As String 
  
        ReDim g_sgl_fixed_atom_positions(0, 3) 
        ReDim g_sgl_fixed_atom_velocities(0, 3) 
        Dim selected_atom_positions(g_int_total_system_atoms - 1, 2) As Double 
        Dim selected_atom_velocities(g_int_total_system_atoms - 1, 2) As Double 
  
        int_iteration_steps = 0 
  
        For i As Integer = 0 To g_int_total_system_atoms - 1 
            str_element(i) = str_element1 
            g_byt_element(i) = 0 
        Next i 
  
        bln_centre = False 
        bln_end = False 
  
        'find the centre atom 
        Dim dbl_centre(2) As Double 
        Dim point(2) As Double 
        Dim distance As Double 
        Dim new_distance As Double 
        Dim centre_atom As Integer = 0 
  
        findCentreAtom(dbl_centre, point, distance, new_distance, centre_atom, g_dbl_atom_position, g_int_total_system_atoms) 
  
        'The start atom, its nearest neighbours and their nearest neighbours are loaded as selected atoms 
        int_selected_atoms = 1 
        ReDim g_int_selected_atoms(g_int_total_system_atoms - 1) 
        Dim int_start_atom As Integer 
        '*** 
        'SECOND START ATOM 
        '================= 
        Dim int_start_atom2 As Integer 
        Dim bln_second_start_at As Boolean = True 
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        Dim int_atoms_down As Integer = 0       'how far are we from the surface? to specifiy a second surface atom to step to for 110 
  
  
        int_start_atom = int_start_migration_atom 
        lst_migration_atoms.Add(int_start_atom) 
        Try 
            If int_start_migration_atom2 <> 0 Then 
                int_start_atom2 = int_start_migration_atom2 
            Else 
                bln_second_start_at = False 
            End If 
        Catch ex As Exception 
            bln_second_start_at = False 
        End Try 
  
        'FOR EACH START ATOM: 
        '==================== 
        'Until the centre of mass is reached: 
        Do Until bln_end = True 
  
            Dim int_nearest_neighbour As Integer 
            Dim int_total_nn As Integer 
            Dim dbl_original_start_postion(2) As Double 
            Dim dbl_vacancy_position(2) As Double 
            Dim dbl_migration_position(2) As Double 
            Dim dbl_step_vector(2) As Double 
  
            '******* 
            g_int_total_selected_atoms = g_int16_nearest_neighbour_information(int_start_atom, 0, 0) 
  
            selectedMigrationAtoms(int_start_atom, g_int_selected_atoms, g_int_total_selected_atoms) 
 
            For k As Integer = 0 To 2 
                dbl_original_start_postion(k) = g_dbl_atom_position(int_start_atom, k) 
            Next k 
  
            int_total_nn = g_int16_nearest_neighbour_information(int_start_atom, 0, index) 
  
         
            '=========================================================== 
            'discriminate against nearest neighbours that are too far removed from the migration atom 
            'set first nearest neighbours as separate array so next nearest neighbours don't confuse matters 
            Dim lst_vacancy_atoms As New List(Of Integer) 
            Dim int_tot_vac_atoms As Integer 
            Dim vacancy_atoms_nn(g_int_max_neighbours - 1) As Integer 
  
            For nn As Integer = 1 To int_total_nn 
  
                int_nearest_neighbour = g_int16_nearest_neighbour_information(int_start_atom, nn, index) 
  
                For k As Integer = 0 To 2 
                    dbl_vacancy_position(k) = g_dbl_atom_position(int_nearest_neighbour, k) 
                Next k 
  
                dbl_total_migration_dist = FindDistanceBtnPts(dbl_vacancy_position, dbl_original_start_postion) 
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                If dbl_total_migration_dist < dbl_atom_radius * 2.3 Then 
                    lst_vacancy_atoms.Add(g_int16_nearest_neighbour_information(int_start_atom, nn, index)) 
                End If 
            Next nn 
  
            int_tot_vac_atoms = lst_vacancy_atoms.Count 
  
            Dim vacancy_atoms(int_tot_vac_atoms - 1) As Integer 
            For i As Integer = 0 To int_tot_vac_atoms - 1 
                vacancy_atoms(i) = lst_vacancy_atoms(i) 
            Next i 
            '=========================================================== 
  
            'reset the start atom element 
            If int_fix_start_atom_element = 1 Then 
                g_byt_element(int_start_atom) = 1 
                str_element(int_start_atom) = str_element2 
            End If 
  
            'Refresh system term calculation after changing the elements of the crystal 
             
            updateDistance(g_int_total_system_atoms) 
            If g_int_number_of_elements = 2 Then 
                calculateLocalNnConc(dbl_atom_radius) 
            End If 
            nmTerm(g_int_total_system_atoms) 
  
            'writePathandEnvironment(int_start_atom) 
  
            'find the migration atom nearest neighbours 
             
            'save atoms as relaxed 
            'Dim save As Integer 
            For atom As Integer = 0 To g_int_total_system_atoms - 1 
                 
                For k As Integer = 0 To 2 
                    selected_atom_positions(atom, k) = g_dbl_atom_position(atom, k) 
                    selected_atom_velocities(atom, k) = g_dbl_atom_velocity(atom, k) 
                Next k 
            Next atom 
  
            'FIND MIGRATION ATOM BINDING ENERGY 
            '============================== 
            'save the first binding energy calculation to later transpose the migration energy profile with  
            'Find the crystal energy to use to zero measurements 
            updateDistance(g_int_total_system_atoms) 
            If g_int_number_of_elements = 2 Then 
                calculateLocalNnConc(dbl_atom_radius) 
            End If 
            nmTerm(g_int_total_system_atoms) 
            dbl_zero_potential_energy = SystemEnergyCalculation() 
  
            If int_start_atom = 263 Then 
                int_start_atom = int_start_atom 
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            End If 
            If int_start_atom = 223 Then 
                int_start_atom = int_start_atom 
            End If 
  
            '============================== 
  
            int_atoms_down = int_atoms_down + 1 
  
            'FOR EACH NEAREST NEIGHBOUR: 
            '=========================== 
            'CALCULATE AND SET PATHS AND NN, CREATE VACANCY 
            For vac As Integer = 1 To int_tot_vac_atoms 
  
                int_nearest_neighbour = vacancy_atoms(vac - 1) 
  
                'calculate step vector 
                For k As Integer = 0 To 2 
                    dbl_vacancy_position(k) = g_dbl_atom_position(int_nearest_neighbour, k) 
                Next k 
  
                setStepVector(dbl_vacancy_position, dbl_original_start_postion, dbl_step_vector) 
                   
                'nearest neighbours of vacancy atom 
                Dim total_selected_vac As Integer 
                selectedMigrationAtoms(int_nearest_neighbour, vacancy_atoms_nn, total_selected_vac) 
  
  
                '**** 
                Dim total_selected_nn As Integer 
  
                total_selected_nn = g_int_total_selected_atoms 
  
                '======================================= 
                'combine selected atoms and vacancy nn 
                For j As Integer = 0 To total_selected_vac - 1 
                    Dim bln_repeat As Boolean = False 
                    'check the nearest neighbour hasn't already been selected 
                    For i As Integer = 0 To g_int_total_selected_atoms - 1 
                        If g_int_selected_atoms(i) = vacancy_atoms_nn(j) Then 
                            bln_repeat = True 
                        End If 
                    Next i 
                    'if it's not a repeat, add it to the selected atoms 
                    If bln_repeat = False Then 
                        g_int_selected_atoms(total_selected_nn) = vacancy_atoms_nn(j) 
                        total_selected_nn = total_selected_nn + 1 
                    End If 
                Next j 
                '======================================= 
  
                'make sure all nearest neighbours are nearest neighbours of the start atom 
                int_added_atom = int_start_atom 
                g_int_total_selected_atoms = total_selected_nn 
                setSelectAtomNearestNeighbours() 
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                'remove nn from position to create vacancy 
                g_dbl_atom_position(int_nearest_neighbour, 2) = g_dbl_atom_position(int_nearest_neighbour, 2) + 1000000 
  
                If int_nearest_neighbour = 263 Then 
                    int_start_atom = int_start_atom 
                End If 
                If int_nearest_neighbour = 223 Then 
                    int_start_atom = int_start_atom 
                End If 
           
                'System energy calculation is saved as a reference energy 
                updateDistance(g_int_total_system_atoms) 
                If g_int_number_of_elements = 2 Then 
                    calculateLocalNnConc(dbl_atom_radius) 
                End If 
                nmTerm(g_int_total_system_atoms) 
                dbl_initial_potential_energy = SystemEnergyCalculation() 
  
                'STEP LENGTH 
                '=========== 
                'calculate an atom radius and add 0.25 atom radius bracket to the measurement length 
                Dim step_length As Double 
  
                step_length = Math.Sqrt(dbl_step_vector(0) ^ 2 + dbl_step_vector(1) ^ 2 + dbl_step_vector(2) ^ 2) 
  
                number_of_steps = Math.Floor((dbl_atom_radius / 2.5) / step_length) 
  
                'step atom position 
                For k As Integer = 0 To 2 
                    g_dbl_atom_position(int_start_atom, k) = g_dbl_atom_position(int_start_atom, k) - (number_of_steps * dbl_step_vector(k)) 
                Next k 
                '=========== 
  
                Dim lst_data As New List(Of String) 
                Dim partial_energy_change(g_int_total_system_atoms - 1) As Double 
                Dim previous_partial_energy(g_int_total_system_atoms - 1) As Double 
  
                'STEP THE MIGRATION ATOM FROM ORIGINAL POSITION TO VACANCY 
                '========================================================= 
                'MEASURE ENERGY CHANGE AND SAVE PERTINENT INFORMATION IN LISTS 
                'for each step: 
  
                For steps As Integer = 0 To ((2 * number_of_steps) + 49) 
  
  
                    'calculate system energy 
                    updateDistance(g_int_total_system_atoms) 
                    If g_int_number_of_elements = 2 Then 
                        calculateLocalNnConc(dbl_atom_radius) 
                    End If 
                    nmTerm(g_int_total_system_atoms) 
                    dbl_result_potential_energy = SystemEnergyCalculation() 



 

APPENDIX  A  -  COMPUTER CODE - 178 

 

  
  
                    'Now, to give the binding energy of the migration atom: 
                    '====================================================== 
                    'The bracket calculates the change in crystal energy during atom migration, 
                    dbl_transpose_potential_energy = (dbl_result_potential_energy - dbl_initial_potential_energy) _ 
                        + (dbl_zero_potential_energy - dbl_initial_potential_energy) 
  
                    'calculate the relative separation between migration atom and vacancy 
                    For k As Integer = 0 To 2 
                        dbl_migration_position(k) = g_dbl_atom_position(int_start_atom, k) 
                    Next k 
  
                    dbl_migration_distance = Math.Round(FindDistanceBtnPts(dbl_original_start_postion, dbl_migration_position), 3) 
                    If steps < number_of_steps Then 
                        dbl_migration_distance = -dbl_migration_distance 
                    End If 
                    If steps = number_of_steps - 1 Then 
                        dbl_migration_distance = dbl_migration_distance 
                    End If 
                    If steps > (24 + number_of_steps) Then 
                        dbl_migration_distance = dbl_migration_distance 
                    End If 
                    If steps > (48 + number_of_steps) Then 
                        dbl_migration_distance = dbl_migration_distance 
                    End If 
  
                    Dim pos(2) As Double 
  
                    'step the migration atom 
                    For k As Integer = 0 To 2 
                        pos(k) = dbl_migration_position(k) 
                        g_dbl_atom_position(int_start_atom, k) = g_dbl_atom_position(int_start_atom, k) + dbl_step_vector(k) 
                    Next k 
  
                    '=============== 
                    'save the number of selected and relaxed atoms, the migration atom # and vacancy atom # 
                    'the relative separation, position and the difference in energies 
                    lst_all_data.Add(Convert.ToString(int_start_atom & "," & int_nearest_neighbour & "," & dbl_migration_distance _ 
                                                             & "," & pos(0) & "," & pos(1) & "," & pos(2) _ 
                                                              & "," & dbl_transpose_potential_energy & "," & g_int_total_selected_atoms _ 
                                                               & "," & dbl_zero_potential_energy & "," & dbl_initial_potential_energy _ 
                                                               & "," & dbl_result_potential_energy)) 
                    '*dbl_result_potential_energy is the total energy of the crystal with a vacancy after the migration atom was  
                    ' moved 
                    '*dbl_initial_potential_energy is the total energy of the crystal with a vacancy before the migration atom  
                    ' was moved 
                    '*dbl_zero_potential_energy is the total energy of the perfect crystal 
                    '*dbl_transpose_potential_energy is the total change in crystal energy from the perfect crystal to the current  
                    ' vacancy/migration atom position 
  
  
                    '=============== 
                    'write xyz file 
                    lst_data.Add(Convert.ToString(pos(0) & "," & pos(1) & "," & pos(2))) 
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                Next steps 
                '========================================================= 
  
                writePathandEnvironment(int_start_atom, int_nearest_neighbour, number_of_steps, dbl_original_start_postion, dbl_vacancy_position, lst_data) 
  
                '===================================== 
                'RESET SYSTEM FOR NEXT NN 
                'return nearest neighbour to original position 
                g_dbl_atom_position(int_nearest_neighbour, 2) = g_dbl_atom_position(int_nearest_neighbour, 2) - 1000000 
  
                'return migration atom to original position 
                For k As Integer = 0 To 2 
                    g_dbl_atom_position(int_start_atom, k) = dbl_original_start_postion(k) 
                Next k 
  
                'reset selected atoms to only start atom nn 
                nearestNeighbours(g_cut_off_radius, g_dbl_periodic_boundary_x, g_dbl_periodic_boundary_y, bln_bulk, dbl_atom_radius) 
                selectedMigrationAtoms(int_start_atom, g_int_selected_atoms, g_int_total_selected_atoms) 
  
                'writePathandEnvironment(int_start_atom) 
  
                'reset atoms 
                For atom As Integer = 0 To g_int_total_system_atoms - 1 
                    'save = g_int_selected_atoms(atom) 
                    For k As Integer = 0 To 2 
                        g_dbl_atom_position(atom, k) = selected_atom_positions(atom, k) 
                        g_dbl_atom_velocity(atom, k) = selected_atom_velocities(atom, k) 
                    Next k 
                Next atom 
                '===================================== 
  
            Next vac 
            '=========================== 
  
            'Allow the program to pause if needed 
            Do Until bln_Pause = False 
                Sleep(100) 
                System.Windows.Forms.Application.DoEvents() 
            Loop 
  
            '================================================= 
            'RESET SYSTEM FOR NEXT MIGRATION ATOM 
            'if relax_nearest_neighbours is selected, reload the original atom positions before starting 
            If int_relax_nn = 1 Then 
                loadAtoms() 
            End If 
  
            'reset the start atom element 
            If int_fix_start_atom_element = 1 Then 
                g_byt_element(int_start_atom) = 0 
                str_element(int_start_atom) = str_element1 
            End If 
  
            'Next: choose a nearest neighbour closest to the centre of mass as the start atom 
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            Dim next_start_atom As Integer 
  
            distance = 10 ^ 6 
            new_distance = 10 ^ 6 
  
            For j As Integer = 0 To int_tot_vac_atoms - 1 
  
                next_start_atom = vacancy_atoms(j) 
  
                For k As Integer = 0 To 2 
                    point(k) = g_dbl_atom_position(next_start_atom, k) 
                Next k 
  
                distance = FindDistanceBtnPts(point, dbl_centre) 
                If distance < new_distance Then 
                    int_start_atom = next_start_atom 
                    new_distance = distance 
                End If 
            Next j 
  
            'set second start atom if preselected 
            If bln_second_start_at = True Then 
                If int_atoms_down = 1 Then 
                    int_start_atom = int_start_atom2 
                End If 
            End If 
  
            'Stop when the centre is passed 
            If int_start_atom = centre_atom Then 
                bln_centre = True 
            End If 
            If bln_centre = True Then 
                If int_start_atom <> centre_atom Then 
                    bln_end = True 
                End If 
            End If 
  
            'if start atom element is fixed, toggle atom elements 
            If int_fix_start_atom_element = 1 Then 
                g_byt_element(int_start_atom) = 1 
            End If 
  
            'store the migration atom in a list 
            lst_migration_atoms.Add(int_start_atom) 
  
            'recalculate the nearest neighbours for a new migration atom 
            nearestNeighbours(g_cut_off_radius, g_dbl_periodic_boundary_x, g_dbl_periodic_boundary_y, bln_bulk, dbl_atom_radius) 
  
        '================================================= 
  
        Loop 
        '==================== 
        int_iteration_steps = int_iteration_steps - 50 
        Dim iso_image_file As New ImageFileHandler() 
        iso_image_file.SaveISOImages(str_save_file & "\") 
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        'WRITE ALL MIGRATION ENERGIES TO FILE 
        '======================================= 
        'write all data profiles from all nn 
        Dim str_all_data As String 
        str_all_data = str_load_file & "\all_data_profiles.txt" 
  
        WriteValuesToText(str_all_data, "start_atom,vacancy_nn,migration_distance,posx,posy,posz,result_potential_energy,total_selected_atoms,total_crystal_energy,nn_vac_e
nergy,migration_vac_energy") 
  
        For Each data_line As String In lst_all_data 
            WriteValuesToText(str_all_data, data_line) 
        Next data_line 
  
        'write out the migration atoms in xyz 
        writeMigrationAtoms(lst_migration_atoms) 
  
        'CREATE A DEPTH AGAINST MIGRATION ENERGY PROFILE 
        '=============================================== 
        'load saved file and extract depth profile from surface to centre using index #'s saved 
        Dim lst_profile As New List(Of String) 
        createMigrationDepthProfile(lst_all_data, lst_migration_atoms, number_of_steps, lst_profile) 
  
        'calculate the segregation and activation energy values to file 
        Dim lst_energy_values As New List(Of String) 
        calculateMigrationEnergies(lst_profile, lst_energy_values) 
        '=============================================== 
  
        'WRITE MIGRATION ENERGY PROFILES TO FILE 
        '======================================= 
        
        'write continuous depth migration energy profile 
        Dim str_profile As String 
        str_profile = str_load_file & "\depth_profile.txt" 
  
        For Each data_line As String In lst_profile 
            WriteValuesToText(str_profile, data_line) 
        Next data_line 
  
  
        System.IO.File.Copy(str_load_file & "depth_profile.txt", str_load_file & "depth_profile.csv", True) 
  
        'write a file with segregation and activation energies 
        Dim str_energy_value As String 
        str_energy_value = str_load_file & "\migration_energies.txt" 
  
        For Each data_line As String In lst_energy_values 
            WriteValuesToText(str_energy_value, data_line) 
        Next data_line 
        '======================================= 
  
    End Sub 
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Time Lapse Relaxation Run 
Private Sub RunB() 
  
        'The start button runs the main part of this program, which is designed to relax already existing structures.  
        'Starting conditions are loaded that contain original positions, velocities and energies. From there an outer loop is  
        'started which calls a function to determine the nearest neighbour of each atom in the system. Once this is established, 
        'an inner loop runs the integration steps. This inner loop selects the atoms for which the calculations need to be done, 
        'does the necessary calculations by calling the relevant modules and functions. The calculated values are returned, 
        'stored and used in subsequent calcualtions. The inner loop runs a predetermined number of times, before returning to  
        'the outer loop to recalculate the nearest neighbours. The outer loop continues either for a predetermined number of  
        'times or until a user interrupt event. 
  
 
        kineticEnergyAndTemperatureControl() 
  
        If g_int_full_save_after = 0 Then 
            g_int_full_save_after = int_user_set_iterations 
        End If 
  
        If g_int_image_save_after = 0 Then 
            g_int_image_save_after = int_user_set_iterations 
        End If 
  
        int_iteration_steps = int_start_step 
  
        time.Restart() 
  
        Do Until int_iteration_steps = int_user_set_iterations Or bln_Stop = True 
  
            int_iteration_steps = int_iteration_steps + 1 
  
             
            nearestNeighbours(g_cut_off_radius, g_dbl_periodic_boundary_x, g_dbl_periodic_boundary_y, bln_bulk, dbl_atom_radius) 
 
            integrationStep() 
  
            If bln_fixed_base = True Then 
                fixBottomLayerPositions() 
            End If 
  
            If bln_fixed_atoms = True Then 
                fixAtomPosVel() 
            End If 
  
  
            kineticEnergyAndTemperatureControl() 
  
            g_dbl_total_potential_energy = SystemEnergyCalculation() 
  
 
            'changes the frequency of full saves during the middle of a simulation 
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            If int_iteration_steps Mod g_int_full_save_after = 0 Then 
                If g_int_full_save_to = 0 Then 
                    g_int_full_save_to = int_user_set_iterations 
                End If 
                g_int_full_save = g_int_full_save_to 
            End If 
  
            'changes the frequency of image saves during the middle of a simulation 
            If int_iteration_steps Mod g_int_image_save_after = 0 Then 
                If g_int_image_save_to = 0 Then 
                    g_int_image_save_to = int_user_set_iterations 
                End If 
                g_int_image_save = g_int_image_save_to 
            End If 
  
            If int_iteration_steps Mod g_int_full_save = 0 Then 
                saveFullResults() 
                writePotentialToText() 
            End If 
  
            If int_iteration_steps Mod g_int_image_save = 0 Then 
                saveImage() 
                outputProgress() 
            End If 
  
  
            'Allow execution of windows program if needed 
            System.Windows.Forms.Application.DoEvents() 
  
            'Allow the program to pause if needed 
            Do Until bln_Pause = False 
                Sleep(100) 
                System.Windows.Forms.Application.DoEvents() 
            Loop 
  
        Loop 
  
        saveFullResults() 
  
        'Convert image files into ISO 
        Dim iso_image_file As New ImageFileHandler() 
        iso_image_file.SaveISOImages(str_save_file & "\") 
  
        Exit Sub 
  
    End Sub 
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Integration Step 
Private Sub integrationStep() 
  
        'This is a sub-routine which runs the integration step. The sub calls a function which randomly selects atoms from the system for which  
        'to calculate new data. It then calls the module to do the Sutton Chen calculations for those selected atoms and returns a value which is  
        'returned to the main run sub. Either all atoms are selected and moved, or only one is moved at a time, or a few are chosen and moved.  
        'After selecting which atoms are being worked with, the sub selects and atom and checks wether the acceleration for that selected atom has  
        'previously been calculated. If it has, the acceleration is copied over, if not, it is calculated. With the current acceleration calculated,  
        'the sub then calls the calculation that determines the new position of the atom selected. Thereafter new interatomic distances between the  
        'selected atom and its nearest neighbours are determined, and a new acceleration is then calculated for the newly determined position.  
        'Finally, a new velocity is determined for the selected atom. Once the sub has followed these processes for each selected atom, it exits  
        'the sub. 
  
        Dim int_selected_atom As Integer 
  
        '##CALCULATE POSITION## 
        '====================== 
        For i As Integer = 0 To (g_int_total_selected_atoms - 1) 
  
            If g_int_total_selected_atoms = g_int_total_system_atoms Then 
                int_selected_atom = i 
            Else 
                int_selected_atom = g_int_selected_atoms(i) 
            End If 
  
            newPositionCalculation(int_selected_atom, g_dbl_time_step, g_dbl_atom_position, g_dbl_atom_velocity, g_dbl_atom_acceleration) 
  
        Next i 
  
        '##CALCULATE VELOCITY 1/2## 
        '================================== 
        For i As Integer = 0 To (g_int_total_selected_atoms - 1) 
  
            If g_int_total_selected_atoms = g_int_total_system_atoms Then 
                int_selected_atom = i 
            Else 
                int_selected_atom = g_int_selected_atoms(i) 
            End If 
  
  
            newVelocityCalculation(int_selected_atom, g_dbl_time_step, g_dbl_atom_velocity, g_dbl_atom_acceleration) 
  
            'Allow the program to pause if needed 
            Do Until bln_Pause = False 
                Sleep(100) 
                System.Windows.Forms.Application.DoEvents() 
            Loop 
  
        Next i 
  
  
        '##CALCULATE ACCELERATION## 
        '=================================== 
        'Updates the interatomic distances 
        updateDistance() 
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        'Calculate the density-like term and "n" and "m"-terms. 
 
        nmTerm(g_int_total_system_atoms) 
  
        'calculate new accelerations 
        For i As Integer = 0 To (g_int_total_selected_atoms - 1) 
  
  
            If g_int_total_selected_atoms = g_int_total_system_atoms Then 
                int_selected_atom = i 
            Else 
                int_selected_atom = g_int_selected_atoms(i) 
            End If 
  
            'set concentration dependent SC values if alloy 
            If g_int_number_of_elements = 2 Then 
                setLocalNnSCconstants(int_selected_atom) 
            End If 
  
            CalculateAcceleration(int_selected_atom) 
  
            'Allow the program to pause if needed 
            Do Until bln_Pause = False 
                Sleep(100) 
                System.Windows.Forms.Application.DoEvents() 
            Loop 
  
        Next i 
  
        '##CALCULATE VELOCITY 2/2## 
        '================================== 
        For i As Integer = 0 To (g_int_total_selected_atoms - 1) 
  
            If g_int_total_selected_atoms = g_int_total_system_atoms Then 
                int_selected_atom = i 
            Else 
                int_selected_atom = g_int_selected_atoms(i) 
            End If 
  
            newVelocityCalculation(int_selected_atom, g_dbl_time_step, g_dbl_atom_velocity, g_dbl_atom_acceleration) 
  
            'Allow the program to pause if needed 
            Do Until bln_Pause = False 
                Sleep(100) 
                System.Windows.Forms.Application.DoEvents() 
            Loop 
  
        Next i 
  
 
    End Sub 
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Temperature Control 
  Public Sub kineticEnergyAndTemperatureControl() 
        'This sub checks wether the system temperature is at the desired temperature. It first calculates the kinetic energy, then the temperature  
        'and then checks that system temperature against the desired temperature. If the temperature needs adjusting, the sub calls the  
        'Thermostat module, before checking the temperature again. 
        'To determine which thermostat needs to be used, the user-set constant is checked: 0 for velocity scaling, 1 for the Berendsen thermostat and 2 for the NoseHoover. 
        '(3 for Langevin?) 
        Dim scaling_factor As Double 
  
        calculateSystemTemperature() 
         
        'BerendsenTemperatureControl() 
  
        If int_thermostat = 0 Then 
  
            'simple velocity scaling 
            scaling_factor = VelocityScalingFactor(g_dbl_desired_temperature, g_dbl_system_temperature) 
            VelocityScaling(scaling_factor, g_int_total_system_atoms, g_dbl_atom_velocity) 
  
        ElseIf int_thermostat = 1 Then 
  
            'calculate dissipative particle dynamics noise using current velocities 
            Dim noise_factor(g_int_total_system_atoms - 1, 2) As Double 
            If bln_run_a = False Then 
                If g_dbl_desired_temperature <> 0 Then 
                    DissipativeParticleDynamicsScaling(g_int_total_system_atoms, g_cut_off_radius, g_dbl_time_step, g_dbl_desired_temperature, g_sgl_Mass, g_byt_element, _ 
                                                       g_int16_nearest_neighbour_information, g_dbl_interatomic_distance, g_dbl_atom_velocity, noise_factor) 
                End If 
            End If 
  
            'Double check the temperature 
            calculateSystemTemperature() 
  
            'velocity scaling with Berendsen scaling factor 
            scaling_factor = BerendsenScalingFactor(g_dbl_desired_temperature, g_dbl_system_temperature, g_dbl_thermostat_constant, g_dbl_time_step) 
            VelocityScaling(scaling_factor, g_int_total_system_atoms, g_dbl_atom_velocity) 
  
            'add calculated noise factors 
            If bln_run_a = False Then 
                If g_dbl_desired_temperature <> 0 Then 
                    AddDPDTerms(noise_factor, g_dbl_atom_velocity, g_int_total_system_atoms) 
                End If 
            End If 
  
        End If 
  
            VelocitySquaredCalculation(g_dbl_velocity_squared, g_dbl_atom_velocity, g_int_total_system_atoms) 
            g_dbl_total_kinetic_energy = KineticEnergyFromVelocitySquared(g_dbl_velocity_squared, g_sgl_Mass, g_byt_element, g_int_total_system_atoms, bln_fixed_base, _ 
                                                                          g_int_start_fixed_atoms, g_int_end_fixed_atoms) 
            g_dbl_system_temperature = TemperatureFromKineticEnergy(g_dbl_total_kinetic_energy, g_int_total_system_atoms) 
  
    End Sub 
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Berendsen Thermostat  
Public Function BerendsenScalingFactor(ByVal desired_temperature As Double, ByVal system_temperature As Double, ByVal Berendsen_constant As Double, _ 
                                           ByVal dt As Double) As Double 
        'This function calculates a factor for velocity scaling that corrects the system temperature to the desired temperature by weak coupling. 
  
        Dim scaling_factor As Double 
  
        If system_temperature <> 0 Then 
            If desired_temperature <> 0 Then 
                scaling_factor = 1 + (dt / Berendsen_constant) * ((desired_temperature / system_temperature) - 1) 
            Else 
                scaling_factor = 0 
            End If 
        Else 
            scaling_factor = 0 
        End If 
  
        scaling_factor = Math.Sqrt(Math.Abs(scaling_factor)) 
  
        Return scaling_factor 
  
    End Function 

 

Dissipative Particle Dynamics 
Public Sub DissipativeParticleDynamicsScaling(ByVal total_system_atoms As Integer, ByVal r_cut_off As Double, ByVal time_step As Double, ByVal Temperature_ref As Double, _ 
                                                  ByVal mass() As Single, ByVal element() As Byte, ByVal neighbour_info(,,) As Integer, ByVal interatom_dist(,) As Double, 
_ 
                                                  ByVal velocity(,) As Double, ByRef noise_factors(,) As Double) 
        'This sub adds noise and friction to the berendsen scaling factor. 
        Dim random_number As Double 
  
        'The normal distribution is used to select a scalar value for the velocity 
        randomGen = New Troschuetz.Random.MT19937Generator() 
        normalDistribution = New Troschuetz.Random.NormalDistribution(randomGen) 
        normalDistribution.Sigma = 1        'Sigma of normal distribution 
        normalDistribution.Mu = 1           'The mean value 
  
        random_number = normalDistribution.NextDouble() 
  
        Dim r_interatom As Double 
  
        For i As Integer = 0 To total_system_atoms - 1 
  
            'For each atom choose its nearest neighbour according to distance weighted probability 
            'get random number and multiply with r_cut_off/2.6 
            Dim random_dist As Double 
            random_number = normalDistribution.NextDouble() 
            random_dist = (r_cut_off / 2.6) * random_number 
  
            'compare the random distance with the interatomic distances of the nearest neighbours and find the one closest to it 
            Dim nn As Integer 
            Dim search_nn As Integer 
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            Dim max_nn As Integer 
            Dim min_dist As Double 
  
            nn = 1 
            search_nn = 1 
            max_nn = neighbour_info(i, 0, 0) 
            If max_nn < 1 Then 
                GoTo skipline 
            End If 
            min_dist = Math.Abs(random_dist - interatom_dist(i, search_nn)) 
  
            Do Until search_nn = max_nn 
                search_nn = search_nn + 1 
                Dim new_dist As Double 
                new_dist = Math.Abs(random_dist - interatom_dist(i, search_nn)) 
                min_dist = Math.Min(min_dist, new_dist) 
  
                If min_dist = new_dist Then 
                    nn = search_nn 
                End If 
  
            Loop 
  
skipline: 
   
            'Find interatomic distance 
            r_interatom = interatom_dist(i, nn) 
  
            'find damping factor 
            Dim damping_factor As Double 
            damping_factor = dpdDampingFactor(r_cut_off, r_interatom, time_step) 
  
            'find velocity noise factor 
            Dim j As Integer 
            Dim vel_noise_factor As Double 
            Dim weighted_mass As Double 
  
            j = neighbour_info(i, nn, 0) 
            weighted_mass = (mass(element(i)) * mass(element(j))) / (mass(element(i)) + mass(element(j))) 
            vel_noise_factor = Math.Sqrt((damping_factor * (2 - damping_factor) * k_boltzmann * Temperature_ref) / weighted_mass) 
  
            'find the components to the relative velocity vector 
            Dim relative_vel(2) As Double 
            Dim random_vector(2) As Double 
  
            relative_vel(0) = velocity(i, 0) - velocity(j, 0) 
            random_vector(0) = normalDistribution.NextDouble() 
  
  
            relative_vel(1) = velocity(i, 1) - velocity(j, 1) 
            random_vector(1) = normalDistribution.NextDouble() 
  
            relative_vel(2) = velocity(i, 2) - velocity(j, 2) 
            random_vector(2) = normalDistribution.NextDouble() 
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            'determine the direction of the noise vector 
            Dim unit_vector(2) As Double 
            Dim unit_vector_r As Double 
  
            unit_vector_r = Math.Sqrt(relative_vel(0) ^ 2 + relative_vel(1) ^ 2 + relative_vel(2) ^ 2) 
            If unit_vector_r = 0 Then 
                unit_vector_r = 1 
            End If 
            For k As Integer = 0 To 2 
                unit_vector(k) = relative_vel(k) / unit_vector_r 
            Next 
  
            'find the change in velocity due to noise and friction 
            Dim velocity_change(2) As Double 
            For k As Integer = 0 To 2 
                velocity_change(k) = ((-damping_factor) * (relative_vel(k)) + vel_noise_factor * random_vector(k)) * unit_vector(k) 
            Next k 
  
            'distribute weighted relative velocity 
            Dim mass_factor_i As Double 
            Dim mass_factor_j As Double 
  
            mass_factor_i = weighted_mass / mass(element(i)) 
            mass_factor_j = weighted_mass / mass(element(j)) 
            For k As Integer = 0 To 2 
                noise_factors(i, k) = noise_factors(i, k) + (mass_factor_i * velocity_change(k)) 
                noise_factors(j, k) = noise_factors(j, k) - (mass_factor_j * velocity_change(k)) 
            Next k 
  
        Next i 
  
    End Sub 

 

Dissipative Particle Dynamics Damping Factor 
  Public Function dpdDampingFactor(ByVal r_cut_off As Double, ByVal r_interatom As Double, ByVal time_step As Double) 
        'This function calculates the factor used to determine the dpd noise 
  
        Dim damping_factor As Double 
  
        If r_interatom < r_cut_off Then 
            damping_factor = Math.Abs((r_cut_off - r_interatom)) 
            damping_factor = (-damping_factor) * time_step * 0.0001 
        Else 
            damping_factor = 0 
        End If 
  
        damping_factor = 1 - Math.Exp(damping_factor) 
  
        Return damping_factor 
  
    End Function 
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Sutton-Chen Module 
Module SuttonChenCalculations 
 
    'Variables 
    Dim Density As Double 
    Dim Energy As Double 
    Dim acceleration As Double 
    Dim nearest_neighbour As Integer 
  
    'Locally used arrays with stored terms for re-use 
    Public g_cut_off_radius As Single 
    Public partial_energy() As Double 
  
    'Arrays holding SC constants 
    Public g_dbl_SC_constants(,) As Double 
 
 'This module determines the acceleration and energy of the atoms specified using Sutton Chen potential calculations. 
    'This module needs an input of the Sutton Chen constants for the relevant materials, the lattice parameters  
    'and the interatomic distances, as well as the atoms for which to do calculations and the nearest  
    'neighbours for the selected atom. The module first uses the interatomic distances and the lattice parameter  
    'along with the SC constant m to calculate the density like terms ρi in a separate function. This  
    'term is then used with the atom, its nearest neighbours and the SC constants supplied to then calculate the forces.  
    'First the individual forces of each nearest neighbour influencing the selected atom is calculated,  
    'and then all the forces are summed to find the total force acting on the selected atom. Finally  
    'the force is used to calculate the acceleration. 
  
    'Constants 
    Public Const m As Integer = 0 
    Public Const n As Integer = 1 
    Public Const a As Integer = 2 
    Public Const e As Integer = 3 
    Public Const c As Integer = 4 
    Const correction_factor As Single = 9648.5 
    Const same_element As Integer = 0  'Both selected atom and selected nearest neighbour are of same element 
    Const different_element As Integer = 1  'Selected atom and selected nearest neighbour are of differnt elements 
 

“nm” Term Calculation 
 Public Sub nmTermCalculation(ByVal D As Integer, Optional ByVal run_B As Boolean = False) ', ByRef g_int16_nearest_neighbour_information As Array, ByRef g_dbl_nn_SC_terms
 As Array, _ 
        'ByRef g_dbl_interatomic_distance As Array) 
        'This function calculates the m-term for the atom number that is passed in, with all its nearest neighbours. 
        'Note the upper limit is g_int_nearest_neighbour_list(A, 0, 0), which is where the total number of nearest neighbours 
        'for atom A is tored in the array. The index for the first nearest neighbour is stored in g_int16_nearest_neighbour_information(A, 1, 0) 
        'and so on.  
  
        'In order to know which Sutton Chen parameters to use, the selected atom - nearest neighbour el - el needs  
        'to be known. These are stored in the nearest_neighbour_element(i, j, #) array, where the elements of i and j (1 or 0) is stored in 
        'g_int16_nearest_neighbour_information(i, 0, element): 
  
        'el1-el1 = 0 
        'el1-el2 = 1 
        'el2-el2 = 2 
        'el2-el1 = 3 



 

191 

 

        Dim mterm As Double 
        Dim nterm As Double 
        Dim sc_element As Integer 
        Dim nearest_neighbour As Integer 
        Dim nn_pointer As Integer 
  
        For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
            nearest_neighbour = g_int16_nearest_neighbour_information(D, nn, index) 
  
            If run_B = True Then 
                If nearest_neighbour > D Then 
                    GoTo SkipRepition 
                End If 
            End If 
  
            nn_pointer = g_int16_nearest_neighbour_information(D, nn, pointer) 
  
            sc_element = g_int16_nearest_neighbour_information(D, nn, element) 
  
            mterm = (g_dbl_SC_constants(a, sc_element) / g_dbl_interatomic_distance(D, nn)) ^ g_dbl_SC_constants(m, sc_element) 
  
            g_dbl_nn_SC_terms(D, nn, 0) = mterm 
            If run_B = True Then 
                g_dbl_nn_SC_terms(nearest_neighbour, nn_pointer, 0) = mterm 
            End If 
   
            nterm = (g_dbl_SC_constants(a, sc_element) / g_dbl_interatomic_distance(D, nn)) ^ g_dbl_SC_constants(n, sc_element) 
  
            g_dbl_nn_SC_terms(D, nn, 1) = nterm 
            If run_B = True Then 
                g_dbl_nn_SC_terms(nearest_neighbour, nn_pointer, 1) = nterm 
            End If 
  
SkipRepition: 
  
        Next nn 
  
    End Sub 

 

Density Term Calculation 
 Public Sub ElectronDensityTermCalculation(ByVal D As Integer) ', ByRef g_int16_nearest_neighbour_information As Array, ByRef g_dbl_nn_SC_terms As Array, _ 
        'ByRef g_sgl_interatomic_distance As Array) 
        'This function calculates the density term for the atom number that is passed in, with all its nearest neighbours. 
  
        Density = 0 
  
        For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
            Density = Density + g_dbl_nn_SC_terms(D, nn, 0) 
        Next nn 
  
        g_dbl_nn_SC_terms(D, 0, 0) = Math.Sqrt(Density) 
  
    End Sub 
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Force and Acceleration Calculation 
Public Sub CalculateAcceleration(ByVal D As Integer) 'ByRef g_dbl_atom_position As Array, ByRef g_int16_nearest_neighbour_information _ 
        'As Array, ByRef g_dbl_interatomic_distance As Array, ByRef g_dbl_nn_SC_terms As Array, ByRef g_dbl_atom_acceleration As Array) 
        'This sub calculates the acceleration for the selected atom D. It first calls a density term calculation for the selected atom, 
        'then runs through the list of nearest neighbours, does a density term calculation for each and sums the individual force's components.  
        'Finally it calculates the acceleration from the total force. k is the xyz component. 
  
        'g_int_element is either 0 or 1. The element index can range from 0 to 3, depending on wether the two nearest neighbours 
        'selected are both el1, both el2, or el1-2, or el2-1. As g_int_element = 0 for el1 and 1 for el2, and same_element = 0 
        'and different_element = 1, then the element index  in g_int_nearest_neighbour_information should work as follows: 
        'el1-el1 = 0 
        'el1-el2 = 1 
        'el2-el2 = 2 
        'el2-el1 = 3 
  
        'The g_dbl_nn_SC_terms array works with a similar system to that of the g_int_nearest_neighbour_information array: the first index indicates 
        'the atom with which you are working, while the second index indicates what the number of nearest neighbour you are working with is. This g_dbl_nn_SC_terms 
        'array stores (a/r)^m values between selected_atom and nearest_neighbour and the square root of the sum of these values for each selected_atom at  
        'g_dbl_nn_SC_terms(selected_atom, 0). 
  
        'It's also important to have the global array g_dbl_interatomic_displacement with the following structure: 3-d array with the first dimension having the primary 
        'index of the atom for which the displacement is used; the second dimension stores the # of nearest neighbour that is displaced from the primary atom; the third 
        'dimension of the array stores the x, y, and z components of the displacement in positions 0, 1, and 2 respectively. 
  
        Dim Force() As Double = {0, 0, 0} 
        Dim sc_element As Integer 
        Dim nearest_neighbour As Integer 
        Dim partial_force_constant As Double 
        
        For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
  
            nearest_neighbour = g_int16_nearest_neighbour_information(D, nn, index) 
            sc_element = g_int16_nearest_neighbour_information(D, nn, element) 
  
            partial_force_constant = (-g_dbl_SC_constants(e, sc_element) / (g_dbl_interatomic_distance(D, nn) * g_dbl_interatomic_distance(D, nn))) _ 
                * ((g_dbl_SC_constants(n, sc_element) * g_dbl_nn_SC_terms(D, nn, 1)) _ 
                   + ((-((g_dbl_SC_constants(m, sc_element) * g_dbl_SC_constants(c, sc_element)) / 2)) * (g_dbl_nn_SC_terms(D, nn, 0))) _ 
                   * ((1 / g_dbl_nn_SC_terms(D, 0, 0)) + (1 / g_dbl_nn_SC_terms(nearest_neighbour, 0, 0)))) 
  
            Force(0) = Force(0) - partial_force_constant * g_dbl_interatomic_displacement(D, nn, 0) 
            Force(1) = Force(1) - partial_force_constant * g_dbl_interatomic_displacement(D, nn, 1) 
            Force(2) = Force(2) - partial_force_constant * g_dbl_interatomic_displacement(D, nn, 2) 
  
        Next nn 
  
        g_dbl_atom_acceleration(D, 0) = correction_factor * Force(0) / g_sgl_Mass(g_byt_element(D)) 
        g_dbl_atom_acceleration(D, 1) = correction_factor * Force(1) / g_sgl_Mass(g_byt_element(D)) 
        g_dbl_atom_acceleration(D, 2) = correction_factor * Force(2) / g_sgl_Mass(g_byt_element(D)) 
  
    End Sub 
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System Energy Calculation 
 Public Function SystemEnergyCalculation(Optional ByRef dbl_partial_energy() As Double = Nothing) 'ByVal Max As Integer) ', ByRef g_int16_nearest_neighbour_information As 
Array, ByRef g_dbl_interatomic_distance As Array, _ 
        'ByRef g_dbl_nn_SC_terms As Array)     ', Optional ByVal atom_number As Integer = 0)  '*for MC 
  
        '    'This function runs through all the atoms in the system and calculates the partial energies, sums them and returns the total energy. 
        '    'Later it can be adjusted to only work out the partial energies of a selected few atoms who's positions and velocities have changed, 
        '    'before summing all partial energies. 
  
        '    'Currently the MC alternative which involves calculating the nearest and next nearest neighbours of only a limited 
        '    'amount of atoms has been conscripted for use in the potential measurement RunC sub. For this purpose the index of the 
        '    'added atom which is varied is passed as "index", and only those terms are calculated. 
  
        Energy = 0 
  
        For a As Integer = 0 To g_int_total_system_atoms - 1 
            If a = 101 Then 
                a = 101 
            End If 
            partial_energy(a) = NewEnergyTermCalculation(a) ', g_int16_nearest_neighbour_information, g_dbl_interatomic_distance, g_dbl_nn_SC_terms) 
        Next a 
  
        For i As Integer = 0 To g_int_total_system_atoms - 1 
            Energy = Energy + partial_energy(i) 
        Next i 
  
        Return Energy 
  
    End Function 
 
  

Energy Term Calculation    
 Public Function NewEnergyTermCalculation(ByVal D As Integer) ', ByRef g_int16_nearest_neighbour_information As Array, _ 
        'ByRef g_dbl_interatomic_distance As Array, ByRef g_dbl_nn_SC_terms As Array) As Double 
        'This function calculates the energy for each individual atom. It can be optimized. 
        'Note the upper limit is g_int_nearest_neighbour_list(D, 0), which is where the total number of nearest neighbours 
        'for atom D is stored in the array. The index for the first nearest neighbour is stored in g_int_nearest_neighbour_list(D, 1) 
        'and so on. 
  
        'In order to know which Sutton Chen parameters to use, the selected atom - nearest neighbour el - el needs  
        'to be known. These are stored in the nearest_neighbour_element(i, j) array, where the element (1 or 0) os stored in 
        'nearest_neighbour_element(i, 0). nearest_neighbour_element(0, j) hold the information for the selected atom D passed into 
        'the function, with nearest_neighbour_element(0, 0) storing the element of atom D and nearest_neighbour_element(0, 1-12) 
        'storing the relationship between atom D and its nearest neighbours 1 - 12. Similarly nearest_neighbour_element(1-12, j) holds 
        'the information of the nearest neighbours 1-12 of atom D. 
  
  
        Dim Energy_term As Double 
        Dim nn_summation As Double 
        Dim sc_element As Integer 
        Dim nearest_neighbour As Integer 
  
        nn_summation = 0 
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        'set concentration dependent SC values if alloy 
        If g_int_number_of_elements = 2 Then 
            SimulationProgram.setLocalNnSCconstants(D) 
        End If 
  
        For nn As Integer = 1 To g_int16_nearest_neighbour_information(D, 0, index) 
            nearest_neighbour = g_int16_nearest_neighbour_information(D, nn, index) 
            sc_element = g_int16_nearest_neighbour_information(D, nn, element) 
  
            nn_summation = nn_summation + g_dbl_nn_SC_terms(D, nn, 1) 
  
        Next nn 
  
        If g_int_number_of_elements = 2 Then 
            If g_int16_nearest_neighbour_information(D, 0, conc) = 0 Then 
                sc_element = 2 
            ElseIf g_int16_nearest_neighbour_information(D, 0, conc) = 10 Then 
                sc_element = 0 
            Else 
                sc_element = 1 
            End If 
        Else 
            sc_element = 0 
        End If 
  
        Energy_term = g_dbl_SC_constants(e, sc_element) * ((nn_summation / 2) - g_dbl_SC_constants(c, sc_element) * g_dbl_nn_SC_terms(D, 0, 0)) 
  
        Return Energy_term 
  
    End Function 
 
End Module 

 

Velocity Verlet Module 
Module VerletAlgorithmCalculation 
  
  
    'This module needs access to four arrays; atom_position, which is 2-dimensional and contains the index of the atom in the first dimension 
    'and the x,y,z-component of the position in the second dimension; a similarly structured atom_velocity array, and two 1-dimensional arrays; 
    'sgl_acceleration for acceleration after time step dt, which contain only the x,y,z-components of the  
    'accelrations for the currently selected atom i. 
  

Position Calculation 
    Public Sub newPositionCalculation(ByVal i As Integer, ByVal dt As Double, ByRef g_dbl_atom_position As Array, ByRef g_dbl_atom_velocity As Array, ByRef g_sgl_accelerat
ion As Array) 
        'This module will be used to calculate the position of the selected atom i at a time t+dt from values of current 
        'position, current velocity and current acceleration supplied.  
  
        g_dbl_atom_position(i, 0) = g_dbl_atom_position(i, 0) + dt * (g_dbl_atom_velocity(i, 0)) + ((1 / 2) * (dt * dt) * g_sgl_acceleration(i, 0)) 
        g_dbl_atom_position(i, 1) = g_dbl_atom_position(i, 1) + dt * (g_dbl_atom_velocity(i, 1)) + ((1 / 2) * (dt * dt) * g_sgl_acceleration(i, 1)) 
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        g_dbl_atom_position(i, 2) = g_dbl_atom_position(i, 2) + dt * (g_dbl_atom_velocity(i, 2)) + ((1 / 2) * (dt * dt) * g_sgl_acceleration(i, 2)) 
  
    End Sub 
  

Velocity Calculation 
    Public Sub newVelocityCalculation(ByVal i As Integer, ByVal dt As Double, ByRef g_dbl_atom_velocity As Array, ByRef g_dbl_acceleration As Array) 
        'This module will be used to calculate the velocity of the selected atom i at a time t+dt from values of current 
        'velocity, current acceleration and the acceleration at time t+dt supplied.  
  
        g_dbl_atom_velocity(i, 0) = g_dbl_atom_velocity(i, 0) + (1 / 2) * g_dbl_acceleration(i, 0) * dt 
        g_dbl_atom_velocity(i, 1) = g_dbl_atom_velocity(i, 1) + (1 / 2) * g_dbl_acceleration(i, 1) * dt 
        g_dbl_atom_velocity(i, 2) = g_dbl_atom_velocity(i, 2) + (1 / 2) * g_dbl_acceleration(i, 2) * dt 
  
    End Sub 
  
End Module 

 

Periodic Boundary Module 
Module PeriodicBoundaries 
  
    Public Sub CopyCentralBlock(ByRef positions(,) As Double, ByRef velocities(,) As Double, ByVal total_central_atoms As Integer, ByVal _ 
                                       box_length_x As Double, ByVal box_length_y As Double) 
        'This sub copies the positions and velocities of the central block of a bulk crystal to surrounding blocks. The atoms in the  
        'system runs from index 0 to total_central_atoms x 9 - 1. The central block atoms which are used in calculations are from index 
        '0 to total_central_atoms - 1. The next atom is in block A, through to H, each containing the same number of atoms as the central 
        'block. 
  
        Dim int_start As Integer 
        Dim int_end As Integer 
        Dim j As Integer 
  
        'BLOCK A 
        '======= 
        '(x)( )( ) 
        '( )(o)( ) 
        '( )( )( ) 
  
        int_start = total_central_atoms 
        int_end = 2 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) - box_length_x 
            positions(i, 1) = positions(j, 1) + box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  



 

APPENDIX  A  -  COMPUTER CODE - 196 

 

            j = j + 1 
  
        Next i 
  
  
        'BLOCK B 
        '======= 
        '( )(x)( ) 
        '( )(o)( ) 
        '( )( )( ) 
  
        int_start = 2 * total_central_atoms 
        int_end = 3 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) 
            positions(i, 1) = positions(j, 1) + box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK C 
        '======= 
        '( )( )(x) 
        '( )(o)( ) 
        '( )( )( ) 
  
        int_start = 3 * total_central_atoms 
        int_end = 4 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) + box_length_x 
            positions(i, 1) = positions(j, 1) + box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK D 
        '======= 
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        '( )( )( ) 
        '( )(o)(x) 
        '( )( )( ) 
  
        int_start = 4 * total_central_atoms 
        int_end = 5 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) + box_length_x 
            positions(i, 1) = positions(j, 1) 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK E 
        '======= 
        '( )( )( ) 
        '( )(o)( ) 
        '( )( )(x) 
  
        int_start = 5 * total_central_atoms 
        int_end = 6 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) + box_length_x 
            positions(i, 1) = positions(j, 1) - box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK F 
        '======= 
        '( )( )( ) 
        '( )(o)( ) 
        '( )(x)( ) 
  
        int_start = 6 * total_central_atoms 
        int_end = 7 * total_central_atoms - 1 
        j = 0 
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        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) 
            positions(i, 1) = positions(j, 1) - box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK G 
        '======= 
        '( )( )( ) 
        '( )(o)( ) 
        '(x)( )( ) 
  
        int_start = 7 * total_central_atoms 
        int_end = 8 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) - box_length_x 
            positions(i, 1) = positions(j, 1) - box_length_y 
            positions(i, 2) = positions(j, 2) 
  
            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
        'BLOCK H 
        '======= 
        '( )( )( ) 
        '(x)(o)( ) 
        '( )( )( ) 
  
        int_start = 8 * total_central_atoms 
        int_end = 9 * total_central_atoms - 1 
        j = 0 
  
        For i As Integer = int_start To int_end 
  
            positions(i, 0) = positions(j, 0) - box_length_x 
            positions(i, 1) = positions(j, 1) 
            positions(i, 2) = positions(j, 2) 
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            For k As Integer = 0 To 2 
                velocities(i, k) = velocities(j, k) 
            Next k 
  
            j = j + 1 
  
        Next i 
  
    End Sub 
 
End Module 
 
 

Surface Binding Energy Measurement 
 Public Sub RunC() 
        'This sub measures the surface potential energy at different points by moving an atom closer to the surface  across the surface 
        'and calculating the potential. 
  
        'to allow flexibility in x,y,z directions: 
        Dim int_loop_count As Integer = 0 
        Dim int_dirctn_1 As Integer 
        Dim int_dirctn_2 As Integer 
        Dim int_dirctn_3 As Integer 
        Dim dbl_min_1 As Double 
        Dim dbl_max_1 As Double 
        Dim dbl_step_1 As Double 
        Dim dbl_min_2 As Double 
        Dim dbl_max_2 As Double 
        Dim dbl_step_2 As Double 
        Dim dbl_min_3 As Double 
        Dim dbl_max_3 As Double 
        Dim bln_bottom_surface As Boolean 
        Dim bln_no_result As Boolean = False 
  
        Dim str_dirctn_suffix As String = "" 
  
        'To only save the minimum energy for each point 
        Dim multirange_min As Double 
        Dim multirange_max As Double 
        Dim multirange_step As Double 
        Dim dbl_exit_for As Double 
        Dim dbl_result_point As Double 
        Dim dbl_result_potential_energy As Double 
        Dim dbl_initial_potential_energy As Double 
        Dim bln_full_range As Boolean = False 
  
  
        str_save_file = str_save_file & "\results\" 
  
        If (Not System.IO.Directory.Exists(str_save_file)) Then 
            System.IO.Directory.CreateDirectory(str_save_file) 
        End If 
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        'in case of drifting particles 
        If bln_psm_auto_drift = True Then 
            autoDriftTracking(bln_bottom_surface, _ 
                              dbl_min_x, dbl_min_y, dbl_min_z, _ 
                              dbl_max_x, dbl_max_y, dbl_max_z) 
        End If 
  
        Do 
  
            Dim savePotential As New SettingHandler 
            savePotential.Clear() 
  
            'check if PSM is 1D or 3D and set directions accordingly 
            Range1D2Dor3D(bln_full_range, int_dirctn_1, dbl_min_1, dbl_max_1, dbl_step_1, int_dirctn_2, dbl_min_2, dbl_max_2, dbl_step_2, _ 
                          int_dirctn_3, dbl_min_3, dbl_max_3, bln_bottom_surface, int_loop_count, str_dirctn_suffix) 
  
            g_dbl_atom_position(int_added_atom, int_dirctn_3) = g_dbl_atom_position(int_added_atom, int_dirctn_3) + 1000 
  
            updateDistance(g_int_total_system_atoms) 
  
            nearestNeighbours(g_cut_off_radius, g_dbl_periodic_boundary_x, g_dbl_periodic_boundary_y, bln_bulk, dbl_atom_radius * 1.2) 
            If g_int_number_of_elements = 2 Then 
                calculateLocalNnConc(dbl_atom_radius) 
            End If 
            nmTerm(g_int_total_system_atoms) 
  
            g_dbl_total_potential_energy = SystemEnergyCalculation() 
  
            dbl_initial_potential_energy = g_dbl_total_potential_energy 
  
            'Make sure the range is not larger than the distance between atoms 
            refineMultisectionRange(multirange_max, multirange_min, multirange_step, int_dirctn_3, bln_bottom_surface) 
  
            g_dbl_atom_position(int_added_atom, int_dirctn_3) = multirange_min 
  
            'if only selected atoms are being used, all selected atoms are used in calculations 
            If int_selected_atoms = 1 Then 
                setSelectAtomNearestNeighbours() 
            Else 
                g_int_total_selected_atoms = g_int_max_neighbours 
                ReDim Preserve g_int_selected_atoms(g_int_total_selected_atoms - 1) 
            End If 
  
            int_iteration_steps = int_start_step 
  
            time.Restart() 
  
            '##Find minimum in range## 
            '========================= 
            For vary_1 As Double = dbl_min_1 To dbl_max_1 Step dbl_step_1 
  
                g_dbl_atom_position(int_added_atom, int_dirctn_1) = vary_1 
  
                For vary_2 As Double = dbl_min_2 To dbl_max_2 Step dbl_step_2 
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                    g_dbl_atom_position(int_added_atom, int_dirctn_2) = vary_2 
  
                    dbl_result_potential_energy = 0 
                    dbl_exit_for = 0 
  
                    '##Use  multisection method to find the minimum## 
                    '================================================ 
  
                    int_iteration_steps = int_iteration_steps + 1 
  
                    'If dbl_min_3 <> dbl_max_3 Then 
  
                    dbl_max_3 = multirange_max 
                    dbl_min_3 = multirange_min 
  
                    If int_selected_atoms = 0 Then 
                        updateAdatomNearestNeighbours(int_dirctn_3, dbl_min_3, multirange_step, bln_bottom_surface)   
                    End If 
  
                    multiSection(dbl_max_3, dbl_min_3, dbl_result_point, dbl_result_potential_energy, dbl_initial_potential_energy, int_dirctn_3, bln_bottom_surface)  
  
  
                    dbl_result_potential_energy = dbl_result_potential_energy - dbl_initial_potential_energy 
  
                    '##Write final result## 
                    '====================== 
                    'only write the result to file if a minimum potential was found 
                    If bln_no_result = False Then 
                        Dim potential_result(3) As String 
                        potential_result(int_dirctn_1) = Convert.ToString(vary_1) 
                        potential_result(int_dirctn_2) = Convert.ToString(vary_2) 
                        potential_result(int_dirctn_3) = Convert.ToString(dbl_result_point) 
                        potential_result(3) = Convert.ToString(dbl_result_potential_energy) 
  
                        savePotential.AddLine(potential_result) 
                    End If 
  
                    outputProgress() 
  
                    If dbl_step_y = 0 Then 
                        Exit For 
                    End If 
  
                    'Allow the program to pause if needed 
                    Do Until bln_Pause = False 
                        Sleep(100) 
                        System.Windows.Forms.Application.DoEvents() 
                    Loop 
  
                    If bln_Stop = True Then 
                        savePotential.Save(str_save_file) 
                        System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults.csv", True) 
                        If bln_3D = True Then 
                            System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "simsettings" & str_dirctn_suffix & ".txt", True) 
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                            System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults" & str_dirctn_suffix & ".csv", True) 
                        End If 
                        Exit Sub 
                    End If 
  
                Next vary_2 
  
                If dbl_step_x = 0 Then 
                    Exit For 
                End If 
  
                savePotential.Save(str_save_file) 
                System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults.csv", True) 
                If bln_3D = True Then 
                    System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "simsettings" & str_dirctn_suffix & ".txt", True) 
                    System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults" & str_dirctn_suffix & ".csv", True) 
                End If 
  
                'Allow execution of windows program if needed 
                System.Windows.Forms.Application.DoEvents() 
  
                'Allow the program to pause if needed 
                Do Until bln_Pause = False 
                    Sleep(100) 
                    System.Windows.Forms.Application.DoEvents() 
                Loop 
  
            Next vary_1 
  
            savePotential.Save(str_save_file) 
            System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults.csv", True) 
            If bln_3D = True Then 
                System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "simsettings" & str_dirctn_suffix & ".txt", True) 
                System.IO.File.Copy(str_save_file & "simsettings.txt", str_save_file & "psmresults" & str_dirctn_suffix & ".csv", True) 
            End If 
  
        Loop Until bln_full_range = True 
  
    End Sub 
 

Multi-Section Method 
 Public Sub multiSection(ByVal high_pt As Double, ByVal low_pt As Double, ByRef result_pt As Double, ByRef result_potential As Double, _ 
                            ByVal start_potential As Double, ByVal dirctn As Integer, ByVal opp_side As Boolean) ', ByVal str_filename As String) 
        'This function quickly finds the point closest to the minimum surface potential energy in the z-direction for a particular x,y point 
  
        Dim minimum_pt As Double 
        Dim min_val As Double = 0 
        Dim min_val2 As Double = 0 
        Dim high_val As Double 
        Dim low_val As Double 
        Dim mid_intvl As Double 
        Dim mid1_val As Double 
        Dim mid1_pt As Double 
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        Dim mid2_val As Double 
        Dim mid2_pt As Double 
        Dim mid3_val As Double 
        Dim mid3_pt As Double 
        Dim choose1_pt As Double 
        Dim choose1_val As Double 
        Dim choose2_pt As Double 
        Dim choose2_val As Double 
        Dim i As Integer 
        Dim neg_pot As Boolean = False 
        Dim not_too_far As Boolean = False 
        Dim continue_on As Boolean = False 
        Dim step_intvl As Double 
  
        'check against a faraway point 
        Dim start_pt As Double 
        If opp_side = True Then 
            start_pt = low_pt - 100 
        Else 
            start_pt = high_pt + 100 
        End If 
        findSurfacePotentialForPt(start_pt, dirctn) 
        start_potential = g_dbl_total_potential_energy 
  
        step_intvl = high_pt - low_pt 
  
        Dim count_up As Integer = 0 
  
        'find the potential energies for the lowest and highest points in the range 
        Do Until (continue_on = True) 
  
            If count_up Mod 10 = 0 Then 
                low_pt = low_pt + step_intvl * 0.5 
            End If 
  
            count_up = count_up + 1 
  
  
            findSurfacePotentialForPt(high_pt, dirctn) 
            high_val = g_dbl_total_potential_energy 
  
            findSurfacePotentialForPt(low_pt, dirctn) 
            low_val = g_dbl_total_potential_energy 
  
            'do a check to see that the adatom is not too far from the surface 
            If high_val >= start_potential Then 
                If low_val >= start_potential Then 
                    not_too_far = False 
                Else 
                    not_too_far = True 
                End If 
            Else 
                If low_val >= start_potential Then 
                    not_too_far = False 
                Else 
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                    not_too_far = True 
                End If 
            End If 
  
            'if the adatom is too far away, move it closer a step 
            If not_too_far = False Then 
                step_intvl = high_pt - low_pt 
                If opp_side = True Then 
                    high_pt = high_pt + (step_intvl) 
                    low_pt = low_pt + (step_intvl) 
                Else 
                    high_pt = high_pt - (step_intvl) 
                    low_pt = low_pt - (step_intvl) 
                End If 
            End If 
  
            'do a check to see that the adatom is not too close to another atom 
            If high_val > 0 Then 
                neg_pot = False 
            ElseIf low_val > 0 Then 
                neg_pot = False 
            Else 
                neg_pot = True 
            End If 
  
            'if the adatom is too close to an atom, move it away a step 
            If neg_pot = False Then 
                If opp_side = True Then 
                    high_pt = high_pt - 1 
                    low_pt = low_pt - 1 
                Else 
                    high_pt = high_pt + 1 
                    low_pt = low_pt + 1 
                End If 
            End If 
  
            'can we continue? 
            If neg_pot = False Then 
                continue_on = False 
            ElseIf not_too_far = False Then 
                continue_on = False 
            Else 
                continue_on = True 
            End If 
  
            'in case this loop turns into a "step-forward-step-backward-cha-cha-cha", at least the loop is not infinite 
            If count_up > 20 Then 
                Exit Do 
            End If 
            'if this ever become problematic, maybe rethink this structure? 
  
        Loop 
  
        i = 0 
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        'Loop through a procedure that looks at the potential mid-way between the two range extremes 
        Do 
  
            i = i + 1 
  
            mid_intvl = high_pt - low_pt 
            mid1_pt = high_pt + mid_intvl 
            mid2_pt = low_pt - mid_intvl 
            mid3_pt = low_pt + (mid_intvl / 2) 
  
            findSurfacePotentialForPt(mid1_pt, dirctn) 
            mid1_val = g_dbl_total_potential_energy 
  
            findSurfacePotentialForPt(mid2_pt, dirctn) 
            mid2_val = g_dbl_total_potential_energy 
  
            findSurfacePotentialForPt(mid3_pt, dirctn) 
            mid3_val = g_dbl_total_potential_energy 
  
            'Find the minimum value 
            min_val = Math.Min(mid1_val, min_val) 
            min_val = Math.Min(mid2_val, min_val) 
            min_val = Math.Min(mid3_val, min_val) 
            min_val = Math.Min(low_val, min_val) 
            min_val = Math.Min(high_val, min_val) 
  
            ' outputData(0, 0) 
  
            If min_val = mid1_val Then 
                choose1_pt = mid1_pt 
                choose1_val = mid1_val 
                minimum_pt = mid1_pt 
  
                'Find the next smallest value 
                min_val2 = Math.Min(mid2_val, min_val2) 
                min_val2 = Math.Min(mid3_val, min_val2) 
                min_val2 = Math.Min(low_val, min_val2) 
                min_val2 = Math.Min(high_val, min_val2) 
  
            ElseIf min_val = mid2_val Then 
                choose1_pt = mid2_pt 
                choose1_val = mid2_val 
                minimum_pt = mid2_pt 
  
                'Find the next smallest value 
                min_val2 = Math.Min(mid1_val, min_val2) 
                min_val2 = Math.Min(mid3_val, min_val2) 
                min_val2 = Math.Min(low_val, min_val2) 
                min_val2 = Math.Min(high_val, min_val2) 
  
            ElseIf min_val = mid3_val Then 
                choose1_pt = mid3_pt 
                choose1_val = mid3_val 
                minimum_pt = mid3_pt 
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                'Find the next smallest value 
                min_val2 = Math.Min(mid1_val, min_val2) 
                min_val2 = Math.Min(mid2_val, min_val2) 
                min_val2 = Math.Min(low_val, min_val2) 
                min_val2 = Math.Min(high_val, min_val2) 
  
            ElseIf min_val = low_val Then 
                choose1_pt = low_pt 
                choose1_val = low_val 
                minimum_pt = low_pt 
  
                'Find the next smallest value 
                min_val2 = Math.Min(mid1_val, min_val2) 
                min_val2 = Math.Min(mid2_val, min_val2) 
                min_val2 = Math.Min(mid3_val, min_val2) 
                min_val2 = Math.Min(high_val, min_val2) 
  
            ElseIf min_val = high_val Then 
                choose1_pt = high_pt 
                choose1_val = high_val 
                minimum_pt = high_pt 
  
                'Find the next smallest value 
                min_val2 = Math.Min(mid1_val, min_val2) 
                min_val2 = Math.Min(mid2_val, min_val2) 
                min_val2 = Math.Min(mid3_val, min_val2) 
                min_val2 = Math.Min(low_val, min_val2) 
  
            End If 
  
            'Set the second smallest value 
            If min_val2 = mid1_val Then 
                choose2_pt = mid1_pt 
                choose2_val = mid1_val 
            ElseIf min_val2 = mid2_val Then 
                choose2_pt = mid2_pt 
                choose2_val = mid2_val 
            ElseIf min_val2 = mid3_val Then 
                choose2_pt = mid3_pt 
                choose2_val = mid3_val 
            ElseIf min_val2 = low_val Then 
                choose2_pt = low_pt 
                choose2_val = low_val 
            ElseIf min_val2 = high_val Then 
                choose2_pt = high_pt 
                choose2_val = high_val 
            End If 
  
  
            If Math.Abs(choose1_val - choose2_val) < 0.00001 Then 
                If Math.Abs(choose1_pt - choose2_pt) < 0.1 Then 
                    result_pt = choose1_pt 
                    result_potential = choose1_val 
                    Exit Sub 
                End If 
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            End If 
  
            'Limit the range depending on where the values of the potential are the smallest 
            If choose1_pt > choose2_pt Then 
  
                high_pt = choose1_pt 
                high_val = choose1_val 
  
                low_pt = choose2_pt 
                low_val = choose2_val 
  
            Else 
  
                low_pt = choose1_pt 
                low_val = choose1_val 
  
                high_pt = choose2_pt 
                high_val = choose2_val 
  
            End If 
  
            If i >= 50 Then 
                Exit Do 
            End If 
  
        Loop 
  
        result_pt = minimum_pt 
        result_potential = min_val 
  
    End Sub 
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