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CHAPTER 1

INTRODUCTION AND BACKGROUND TO STUDY

1.1 Introduction

One of the aims of statistical modelling is to predict relationships among events

in our surroundings. This is accomplished by finding predictive patterns that

relates quantities in the real world. Linear modelling is one such statistical tool

that is used to determine a linear function between the predicted and input

attributes, say Y and Z. The investigation may seek to establish a linear

relationship that exists between two phenomena that occurs naturally or by

experimental design. This is generally denoted as

Yi = J.!(Zi) + ei (i = 1,2,...,n) (1.1)

where J.!(Zi) is a deterministic linear function of Z, while Y and E are stochastic

components. Y, also referred to as the response variable, is dependant on Z

while c is a latent variable whose distribution usually is assumed known. The

most commonly used of which is the Normal distribution, thus rendering Y a

continuous random variable. Y as a response variable evolves in any of the

following scenarios: (1) As the actual response measure like weight in maize

yield after dosage of fertilizer, or amount of viral load in a blood specimen

taken from a patient who is undergoing anti-retroviral therapy. (2) Time-to-

realization of event of interest, like time to. recuperation after undergoing

surgery. The two response situations, different as they are, address a common

phenomenon using diverse analytical approaches. In ordinary linear modelling

for instance, the response variable is a direct function of the linear combination
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of explanatory variables. This method is well established and the abundance of

literature that discusses this field of study vindicates this statement. Meanwhile

analysis of response variable emanating from a lifetime requires the use of

survival analysis techniques that implicitly relate the time response to the

explanatory variables, resulting in departure from linear relationship. Since

time is the actual measure, the response is assumed continuous and can only

take positive values, thus normality assumptions no longer hold. Relaxing the

continuity assumption for the response variable in both cases lead to a discrete

Y as shall be elucidated in chapter 2, and when this happens, modifications of

standard techniques is a necessity.

One aspect of survival data is that some experimental units do not realize the

event of interest within the predetermined duration of study hence such

observations are censored. This is a fundamental characteristic of survival data.

A brief description of the kind of data and types of censoring prelude Chapter

2, with a subsequent review of literature that is related to the subject. It is

important to mention that the main focus of this research shall be on interval

right censoring for both grouped (disjoint) and overlapping intervals.

In Chapter 3 the likelihood functions are derived for both grouped and

overlapping data types using distribution-free methods for a single lifetime.

The results of using a non-parametric approach shall be compared to the

parametric approach to be discussed in chapter 4. Dependence between



compliance by study units and censoring can have adverse effect on estimation

of parameter values, thus as proposed by Finkelstein et al (2002), a likelihood

that conditions, hence eliminating the effect of such a phenomena, is also

derived. Still using non-parametric method, the univariate likelihood is

extended to multiple failure time. Three methods are applied, these are by

deriving likelihood functions to be used to estimate parameters under the

independence working assumption method (lW), the Conditional Bivariate

(CB)method by conditioning on the coordinate of one lifetime against the other,

and use of Clayton Copula method (CC). In chapter 4 a Weibull distribution is

assumed to be the underlying distribution for interval-censored data sets, and

hence likelihood functions are derived for both univariate and multivariate

distributed lifetimes situation using lW and CC methods.

A fundamental objective of this research is to explore the use of Bayesian

methods by estimating posterior distributions for the unknown parameters, and

where feasible, results from classical method of maximum likelihood estimation

will also be computed. Since the type of prior distribution used for the

parameters influences the final posterior function, our priority will be to derive

non-informative priors where possible. Depending on the resultant posteriors,

appropriate Monte Carlo Markov Chain methods like importance sampling,

Gibbs sampling and Metropolis Hastings algorithm 'will be applied where

possible. This topic is covered in Chapter 5. Illustrative examples, using several

data sets, are given at the end of the chapter.

3



An alternative approach to survival analysis is explored in Chapter 6. The goal

is to see if the same conclusions drawn using survival analysis results can be

attained using other methods. The use of latent variables as illustrated by

Albert and Chib (1993)is used, but with a logistic distributed latent variable. All

statistical methods proposed for use undergo vigorous checking for estimation

adequacy using simulated data. In Chapter 7 a Matlab computer program to

simulate bivariate data using a Farlie-Morgenstern family of distributions, with

exponentially distributed marginals, is used. The use of bivariate distributions

is to depict the two lifetimes, and to address the question of multiple failure

times and the inherent problem of correlated responses. The task therefore is to

formulate stable parameter estimators in the presence of correlation on sparse

data points. Finally, having established the adequacy of the aforementioned

methods, they shall be applied on the estimation of parameters for explanatory

variables in the Aids Clinical Trial Group (ACTG 175) data set.

Finally a brief summary of all major findings emanating from this research, are

reported in Chapter 8.

1.2Background Study and Variables of Interest

Human Immuno-deficiency Virus (HIV) and its related disease status Acquired

Immune Deficiency Syndrome (AIDS), threaten to decimate human population

from the face of the earth. Even though the pandemic is a universal tragedy, the

4
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situation in Sub-Saharan Africa has reached genocide proportions, with some

countries experiencing estimated national HIV prevalence rate of over 30%

among the productive population (UNAIDS, (2002)),http://www.unaids.org.

Researchers world-over are devoting time and massiveresources to investigate

the effect of AIDS on human kind. The recent development of antiretroviral

(ARV) drugs offers hope, temporary as it may, in that sero-converted (HIV

positive) patients' lifetime can be prolonged. Unfortunately the cost relating to

acquisition of these drugs are prohibitive to the majority of third world

countries. Thus to juggle the already over-stretched meagre resources to avail

these drugs at affordable price to the ailing population, it is very important that

the most potent and effective drugs are selected. Such information is not readily

available, but applying methods mooted in this research on data solicited from

a study conducted in the USA and described below, we partially address some

of the aforementioned issues.

The ACTG 175 is a clinical trial study to assess the effectiveness of nucleosides

on sero-converted or HIV positive patients, whose CD4 cell count just prior to

enrolment into the study was measured to be between 200 and 500 per cubic

millilitres. Patients were recruited from 43 Clinical Trials Units and 9 National

Haemophilia Foundation sites in the United States and Puerto Rico. The study

involved 2467 subjects whose time of enrolment varied between December 1991

and October 1992.Criterion for eligibility into the study were that subjects be of

age 12 years or more, having laboratory documentation of HIV-1 type infection,

http://www.unaids.org.


Prior studies show that plasma HIV Ribonucleic Acid (RNA) load (see section

7.3) is increasingly being used as a measure of viral replication in order to

adequately evaluate the effect of antiretroviral 'drugs. Thus running

concurrently with this study, a virology subgroup of 391 patients from among

the main study patients were enrolled at 11 study sites and had their plasma

HIV RNA concentrations also monitored. A primary studyendpoint of 1 unit

increase in the log base 10 of the number of copies per millimetre to the baseline

concentrations of plasma HIV RNA was used. The copies of RNA per

millimetre of blood were transformed in order to eliminate the variation

between measurements. For instance some patients had values below the limit

of detection (200 copies per millimetre), yet some had up to 1.45million copies

per millimetre. The first two monitoring period were at week 8 and 20, which

their CD4 cell count range between 200 and 500 per cubic millimetre within a

month prior to the date of trial treatment, have no AIDS defining illnesses, a

Karnofsky performance score of at least 70 and acceptable laboratory results.

All patients were randomly assigned to any of the two single nucleosides (600

mg of zidovudine or 400 mg of didanosine) or a combination of nucleosides

(600mg of zidovudine plus 400mg of didanosine or 600 mg of zidovudine plus

2.25mg of zalcitabine). A monitoring and determination of CD4 cell levels were

done at week 8 and every 12 weeks thereafter, with a primary studyendpoint

of 50% decline in CD4 cell count from the average of two pre-treatment counts,

development of AIDS or death (Hammer et aI1996).

6



time period at which these measurements were assessed. Also recorded for

synchronized with CD4 cell determination periods, but for viral load, the

monitoring was subsequently done every 36 weeks,' provided the patients

continued to receive assigned treatment. Thus this provided a bivariate

measures of viral load and CD4 cell count as dependant variables, including the

each patient is the baseline demographic characteristics like age (years), race

(white, black, Hispanic and Other race), weight (pounds) and gender. Also

recorded were homosexual tendency, haemophilic, Karnofsky score, history of

anti-retroviral use (ZDV), intravenous drug use (IDV),.assigned treatment and

presence or absence of syncytium-inducing phenotype. The study terminated in

February 1995.

Some of the statistical methods employed towards the analysis of the data from

ACTG 175 were univariate Cox's proportional hazard model for time-to either
I

of the two variable end points, ANOVA with mean levels of CD4 cells and

plasma concentration of HIV RNA, log-rank tests and two sample t-tests

(Katzenstein et aI1996).

7
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S(t) = P(T > t) = f f(u)du (2.3)

CHAPTER 2

LITERATURE REVIEW AND RESEARCH OBJECTIVES

2.1 Literature Review

Survival analysis is a special case of linear modelling which deals with time to

occurrence of an event of interest. This may be time to death, failure, detection

of some phenomena, etc. This inevitably renders a lifetime T non-negative and

continuous random variable. Available literature on survival analysis like,

Klein and Moeschberger (1997), Crowder (2001), Kalbfleisch and Prentice

(2002),etc, have all shown important functions that describe the distributions of

lifetime for both continuous and discrete variables. We shall only define the

continuous case as follows; the unconditional probability of event (say failure)

occurring at an infinitesimally small interval (t, t+.M)gives a probability density

function;

f(t) = lim pet $ T < t + ~t)
~t -7 0 ~t

(2.1)

Probability of event occurring at or prior to time t is the probability distribution

t

F(t) = P(T s t) = f f(u)du .
o

(2.2)

Probability that a subject survives beyond time t is the survival function:

The conditional probability of failure or the chance that a subject who has

survived to time t experiencing failure in the next instant, i.e. instantaneous rate

of failure at time t given the subject survives up until t, is called the hazard rate.

8



H(t) = f feu) du = -In[S(t)].
, 01- F(u)

(2.6)

lim pet < T < t + bot IT> t)het) = - -
bot ~ 0 bot

(2.4)

Finally the cumulative hazard function is given by

t

H(t) = f h(u)du .
o

(2.5)

Survival analysis literature elucidates the relationship that exists between all the

five functions. For instance, (2.6) shows the relation between all five functions.

Time to event data could be easy to manipulate if data was complete for all

subjects in the study, which is not the case in survival analysis. Instead, time-to-

event maybe known to have occurred prior to the inception of the study, or

certain subjects in the study may not have experienced failure at the time of

termination of the study. Furthermore a design of study may militate that

subjects be observed for failure at predetermined intervals, hence the

occurrence of failure will only be known to have occurred between two time

points, all of which are not exact lifetime. The above situations give rise to what

is termed as censoring in survival analysis. There are three types of censoring.

Right censoring, assumes a fixed termination point of study Cr and for each

subject determine a lifetime TA. These are independent and identically

distributed with probability density function f(t) and survival function S(t).

Thus exact lifetime is realized if TA::;Cr, otherwise it is censored. This arises due

to either subjects still surviving at termination period or some subjects moving

9



away from study for other reasons. Data obtained from each subject is

represented as (t.ê) where 8 is an indicator variable taking value 1if the subject

has an exact lifetime or ° if the subject is censored, implying that Tr=rniru'I'x.C«).

A subject displaying an exact lifetime provides information that the probability

of failure occurring is approximated by a density function of T at t, whilst a

censored subject shows probability of survival evaluated at the termination of

study.

P(T,8 = 0) = S(Cr).

P(T,o = 1) = f(t). .

Thus

P(T,o) = [f(t)]O [S(t) ]1_0. (2.6)

A subject whose failure time t is known to have occurred prior to inception of

study at time Cl is left censored. We observe that the exact event time is

unknown, but that TE[O,t]and is analogous to right censoring, hence when

contrasted with right censoring, Ternaxf'I'x.Cr). The third type, the one that this

research focuses on, is called interval censoring. It may not be feasible to

observe the actual time of occurrence of event of interest, instead a time of last

absence and first detection may be known, hence an interval. This happens in a

longitudinal study like in clinical trial studies where treatment effect on study

units are monitored and obtained periodically during clinic visits resulting in

either complete or incomplete data. Turnbull (1976), in the estimation of

distribution function for incomplete, censored and truncated data, proposed

letting the checking times form a grid of time points which are completely

10



L a TIf(t)TIS(C) TI(1- SeO)TI(S(L) - S(Ri» . (2.7)

covered by end points TE[L,Ri] for all participants. Finkelstein (1986)discussed

this scenario for fitting a proportional hazards regression model on a single

lifetime where the intervals are disjoint, while Cuo and Lin (1994) illustrated

the same model for complete data situation.

Study design may vary, in that though predetermined clinic visits and study

termination period is common to all units and is strictly enforced, study units

may not commence study at the same time. A situation where study units start

at varying times results in varying duration of study after rescaling. Thus for

those units not having realized failure at termination point, will be censored,

but the censoring may occur at any of the intervals. Yet if all units had

commenced study simultaneously and no units lost (attrition), then any

censoring will be at the last interval. A follow-up paper by Coggins and

Finkelstein, (2000) discussed multiple failure lifetimes for interval-censored

data with overlapping and non-disjoint intervals. In general, knowledge of type

of censoring enables one to compute a likelihood function, which is of the form:

ieE . ieG ieH iel

E a subset of all individuals having exact lifetimes, C is all individuals whose

lifetime is right censored, H individuals whose lifetime is left censored and all

individuals whose lifetime is interval censored will belong in I, where Land R

is the lower and upper end points of an interval, respectively.

11



There exist two reasons that impede the use of ordinary linear models. First,

due to censoring, ordinary linear models will either omit those units that are

censored or subdivide units into two groups for analysis. Efromovich (1999)

illustrated the pitfalls of endeavouring to analyse survival data using the above

approach. Secondly the distribution of lifetime data deviate from the

accustomed normal distribution, hence conventional linear model results based

on normal assumption cannot hold. Moreover, censoring invalidates the use of

moments due to difficulty associated with estimation of right tail, which in

reality may have significant influence on the mean. It is plausible that the

distribution of a lifetime can be specified, resulting in parametric models as

discussed by Lawless (1982),Cox and Oakes (1984)and Kalbfleisch and Prentice

(2002). Not withstanding the difficulty associated with identifying a

distribution that closely fit the data at hand, due to their restrictive

distributional nature, lifetimes requires some transformations like logarithm,

etc. Cox's (1972)proportional hazard model (PH), a distribution free method, is

championed as robust in that it is able to handle survival data without having

to resort to any of the afore-specified intervention. Its appeal is based on its

avoidance of assuming an underlying distribution for the data, yet through the

hazard function, is able to relate the response variable with the covariates.

A(tIz) = Ao(t)h(t,z). (2.8)

Here AO(t)is an arbitrary and unspecified baseline hazard function, and relative

risk function h(t,z) specifies the relationship between covariates and the hazard

function. When the covariates in the model are fixed so that Z(t) = Z for all t,

12
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then the hazard function is independent of time, implying that the relative risk

for any two individuals with different covariates are proportional, hence

proportional hazard model. This model requires estimation of the baseline

hazard. Cox's (1975) version of proportional hazards model is only partially

parametric in that baseline parameters take arbitrary values and do not feature

in the estimating equations, hence partial likelihood model. Satten (1996) also

showed an approach that used marginal likelihood on interval-censored data to

estimate parameters in the proportional hazard model without having to

estimate the baseline hazard.

Motivated by Satten's paper, Pan and Chapell (2002) showed that the

nonparametrie MLE of the regression coefficient from the joint likelihood works

well for the PH model with left truncated and interval censored data. If

covariates vary with time, then there exist models that allows for the time

variation in these variables, hence are called time-dependant covariates. It may

happen that there exist unobservable heterogeneity among units, and to

account for this random variability, frailty model discussed by among others,

Hougaard (2001) and McGilchrist and Aisbett (1991),has proved to yield good

results. Other suggested interventions to improve analysis of survival data

include data imputation using auxiliary variables (Faucett et al; 2002). In their

paper, FIerning and Lin (2000) outline what has been achieved in terms of

research on survival analysis, summarily giving potential future research areas.



The dominance by a classical approach in survival analysis cannot be ignored,

hence their call for contributions from a Bayesian perspective.

Yet there are other models which Fleming and Lin (2000) termed semi-

parametric transformed models. These models depict lifetime as a function of

an unspecified link function h(T), which in turn is a linear function of the

covariates and random error term with a given distribution function F. If h(T) is

a log-log transform, resulting in F being an extreme value distribution, this

yields a proportional hazard model. Meanwhile a logit transformation h(T),

with a logistic distribution F, will result in Collett's proportional odds (Collett,

(1994)) model discussed by Colosimo et al (2000) and Cheng, Wei and Ying

(1995). Lawless (1982) illustrated the use of both proportional hazard and

proportional odds (PO) models for grouped interval censored data for a single

lifetime. The methods presented are subsequently used to make comparisons

between several independent cohorts. Even though the literature discusses both

the continuous and discrete cases for both parametric and distribution free

situation, we shall highlight the scenario for the interval data with both

grouped and overlapping time intervals since it epitomizes this research's focal

interest.

On the issue of multiple failure lifetimes with interval censoring experienced by

an individual, the dependence that exists between the two measures cannot be

wished away. The dependence structure varies with field of study, for instance

14
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the dependence between competing risks will differ from recurrent events

(Crowder, (2001)). Fleming and Lin once again mention the use of frailty

models on bivariate survival data from a parametric perspective. The deficiency

in exploring the use of non-parametric methods is apparent as amplified by

their comment "No such results are available for general interval-censored data,

although ad hoc methods (e.g. Finkelstein, (1986); Satten, (1996)) have been

suggested". Goggins and Finkelstein (2000) used an independence assumption

model (lW) approach to estimate the required parameters. The inherent

dependence structure between lifetimes is thus unaccounted for except through

the use of common covariates parameters between the marginal distributions of

lifetimes. Hougaard (2001) terms it marginal modelling. The model seems to

thrive in estimating the parameter values if the dependence between the failure

types is not so strong and for relatively large sample sizes, though the same

cannot be said with regard to variance estimation. Use of a 'sandwich estimator'

to stabilize the variance is roped in as a mechanism to eliminate the

inconsistencies. A complementary approach to the marginal modelling is the

concept of using copulas. The problem of specifying a probability model for

independent observations from a bivariate population with non-normal

distribution function H(x,y) can be simplified by expressing H in terms of

marginal distributions and its associated dependence function implicitly

defined. (Genest and Rivest, (1993))This assumes a uniform distribution on the

unit square hence, if the distributions are continuous, they are transformed to

the uniform case. The class of dependence functions or copulas are widely



available, as shown by Clayton (1978), Oakes (1982), Prentice and Cai (1992)

and Gumbel (1960), to name a few. Betensky and Finkelstein (2002) made a

follow-up on the question of non-compliance on a single failure time to

illustrate how the dependence between failure time and visit compliance can

affect the estimation of parameters. Sinha et al (1999) put together several

Bayesian models which they compare using Bayes factors.

If all units realize the event of interest, i.e. in the absence of censoring, then

familiar methods are available for analysing this type of data, one of which is

the Generalized Linear models (GLM). The application of GLM, alongside with

details on the estimation of parameters is given by McCullagh and Nelder

(1989). The models involve a mean of observations given by the linear

combination of unknown parameters and covariates on a link function

transformed scale. Use of log-log, logit and probit link functions has been

illustrated for both nominal and ordinal responses, as shown by Amemiya

(1981), Agresti (1990) and Powers and Xie (200Q.).These models bear

resemblance to the semi-parametric models on lifetime data. A cumulative logit

on polychotomous responses is similar to proportional odds model on interval

complete survival data, yet log-log is similar to proportional hazard on the

same scale. These treat the ordinal responses as emanating from an

unobservable latent lifetime variable. Mallick and Gelfand's (1994) approach is

to treat the link function as an unknown, thus estimate it jointly with mean

structure. Meanwhile Albert and Chib (1993) used data augmentation from a
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Bayesian perspective to fit models on ordinal response variables. In their paper

(Albert and Chib, (2001)), they apply the logit model (sequential ordinal

modelling) to survival data. Earlier paper by Tanner and Wong (19987)

described the data-augmentation algorithm for' calculating marginal

distributions. A method similar to the one applied by Albert and Chib (1993)

will be applied to Tri-Continental AIDS data as an alternative to using survival

methods.

2.2 Research Objectives

1 An endeavour to develop methods for analysing multiple lifetime data

emanating from the same individual resulting in correlated failure time data.

This give rise to multiple and correlated failure times.

2 A Longitudinal study results in interval data if patients are monitored at

predetermined time periods. Overlapping intervals may arise and are difficult

to handle. Methods that address this situation shall be presented.

3 To assess the impact of baseline predictors (covariates) of participating units

on survival probabilities.

4 An exploratory investigation involving non-parametric methods with some

Copulas like Farlie-Morgenstein and Clayton combined with either Cox's



Proportional Hazards or Proportional odds models will be closely scrutinized

for their efficiency in parameter estimation.

5 Augmentation estimation techniques will be used since there is a tendency for

methods to crash due to data scarcity. The method of Maximum Likelihood for

instance, has shown to be highly sensitive to small sample situation. A Bayesian

approach with good prior distributions for parameter and using Metropolis-

Hastings, a branch of MCMC methods, is presented as an alternative. This takes

centre stage in this research. Yet for large samples it will be shown that the two

methods complement each other by using the MLE estimate of the covariance

matrix for the covariance of the proposal distribution in posterior estimation.

6 The iterative process of cycling between parameters to simulate the next

single parameter value in the MCMC method can be' slow if the number of

parameters involved is large. Suggested methods of alternating conditional

sampling using blocks of parameters will be used.

7 Check the asymptotic traits of the parameter estimates by bootstrap methods

for simulating pseudo samples and checking if the sampling distributions of the

estimators converge to the true population values. This calls for the writing of

appropriate computer programs to generate and analyse data.
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8 Explore alternative methods to the survival ones that can be used to analyse

data sets available. This will be tied to existing Generalized Linear Models

techniques for categorical data, by adopting a Bayesian approach

9 Finally of profound interest is to assess the general applicability of the

methods developed on real data situations using the following data sets: Aids

Clinical Trials Group Study (ACTG 175) data, Mango data, Kidney data and

Tri-continental Aids data.
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CHAPTER3

NONP ARAMETlUC SURVIVAL MODELS

3.1Introduction

Measure of time to event (failure) for observations cannot always be ascertained

exactly. As indicated earlier, a clinical study where units are expected to be

checked at predetermined checking times O=to< ti < .... < tr+1=00 is a good

example. Two scenarios arise when one views the regularity with which units

adhere to the clinic monitoring times. If units observe and attend at all

predetermined times, their failures will fall within two successive end points of

an interval Ij = (tj_I,tjL this results in Grouped failure times (complete data),

with every unit described by a single interval within which failure/censoring

occurs. Grouping of observed time into categories according to intervals results

in discrete data. But any non-compliance results in failures stretching over

several intervals, resulting in overlapping and non-disjoint intervals over

individuals and are of varying lengths. This may be due to a subject missing

several visits such that by the time they return, their response status has

changed, hence their interval is now indexed by two end points Lj and R,which

may encompass several of the predetermined interv,als Ij' Modification of

methods used to analyse complete interval data is necessary since interval

censoring of this nature is more intricate. To analyse this data, a distribution-

free approach of Cox's proportional hazard and Collett's proportional odds is

assumed, hence a non-parametric approach. Section 3.2 of this chapter shows
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methods applied if a single lifetime is involved, which is extended m

subsequent sections to address multiple failure time situations.

3.1.1 Proportional Hazards Models

Define the probability of an event occurring in time interval (tj-I,til , P(T E (tj-I,tj])

as

j=l,2,,,.,r+1

= S(tj-l)- S(tj). (3.1)
Survival function at tj, the probability of surviving interval (tj-I,tj]is given by

(3.2)

The conditional probability of failure in interval (tj-l,tj]is,

= 1 _ S(tj) .
S(tj - I) (3.3)

So ~j= h(tj)S(tj-I) is the unconditional probability of failure in interval (tj-I,til.

Survival function can therefore be modified to (Cox and Oakes (1984) )

j

S(tj) =TI (1- h(ts»'
s=1

(3.4)

Of fundamental importance is the conditional probability of survival beyond

interval. Ij given that one has survived to the interval. Let the conditional

probability of being free of failure at the end of the jib interval be
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j-I

~j = (1- Pj) TIPs.

se l
(3.7)

= s=j+1
r

L~'
s=j

(3.5)

where upon the survivor function (3.4), can be written in terms of Pj;

r r

S(tj)= L~' = Plj-I L~' (s-cj)
s=j+1 s=j-2

j

= TIp,·
s=1

(3.6)

Let the unconditional probability of failure at Lfor a given unit rewritten in

terms of conditional survival probability be

Under proportional hazards model, the probability that a person characterized

by a vector of covariates z, survives beyond an interval is:

(3.8)

Take a complementary log-log link function that' relates the monotone

Pj(Z)= exp(-exp(Yj+ f3z» (3.9)

differential function of the conditional survival probability Pi to the linear term

composed of the explanatory variables, (Fahrmeir & Tutz (1994». Then

The transformation yields y(s, which are known as baseline survivor

parameters. These parameters, unlike the conditional probability parameters,

have a support that belongs to a real line. The unrestrictive nature of the

parameters enhances easier estimation for any given likelihood function.
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3.1.2 Proportional Odds Models

Collett's Proportional Odds model is defined as

F(Ij I z)
1- F(I

j
_
1
I z) = exptjïz). (3.10)

The proportional odds model is the odds ratio of failure at interval Ij given

survival to beginning of Ij'

Let

= 1- Pj(z).

By taking a logit transformation relating the conditional survival probability

and the linear parameter function, we show that the resultant distribution is

Logistic. For z = 0, the baseline log odds of failure at Ij in terms of conditional

survival probability,

{
l-P/O)]

(X. = lo
J P.(O)'

J

(3.11)

can be written in terms of conditional failure probability,

We note then that if the effect of explanatory variables is included, then

t.(z) c. AZ
J = e JeP

1- t/z)

(3.12)

hence
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· j-I

g(D I z.) = (l-Pj(z;)!ij(P/Z;))-'PijI1Pj(Z;)
s=1

(3.15)

(3.13)

The conditional survival probability under proportional odds model is then

given as

(3.14)

3.2 Univariate Failure Time

Suppose all the observations have a single lifetime with survival space sub-

divided into rintervals (j=1,2, ... ,r) denoting the checking times, then depending

on the choice of model we shall derive the appropriate likelihood. A univariate

model is defined using (3.6 and 3.7) where the conditional survival probability

Pj is replaced by (3.9) for a proportional hazard 'model or (3.14) for a

proportional odds model. Define a dichotomous random variable <Pij for each

observation taking the value 1 if the failure occurs at interval Ij for ith subject,

and 0 otherwise, such that the contribution by ith unit to the likelihood is

where D is a vector of parameters to be estimated for a specific model, for

instance B= {iJ'YI'Y2""Y.} for a PH likelihood. The above model applies if the

intervals at which failure occurs are disjoint, but a need for modification arises

if the intervals are non-disjoint and overlapping as described in section 2.1.

TurnBull (1976) proposed letting 0 = to < ti <....< tr = 00 be a grid of time points
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which includes all L and R, for all participants that experience failure. Inability

to know the single interval at which failure occurs, implies that we need to

ascertain the failure probability by summing failure probabilities (3.7) over all

intervals falling within the two end points. Meanwhile for censored

observations, the potential intervals of failure are all intervals subsequent to the

lower censoring endpoint L. Define an indicator Wij= 1 if the interval (tj-l, tj] is

contained in the end points (L, Ri] and 0 otherwise. Then the log likelihood for

ith unit is denoted as

r .

£(81 z.) = logL.WiAjj,

je l
(3.16)

where ~ij is from (3.7) and is a function of Pj(Zi)which can be derived from any

of the transformation models. The overall log likelihood is then the sum of

individual units' log likelihood.

3.3 Failure Time Data with Dependent Interval Censoring

The use of informative censoring and its effect on the estimated parameter

values is important and feasible if the follow-up period is long enough. In this

section we explore the effect any dependence that exist between clinic visiting

times and failure intervals may have on the results. Generally it is assumed that

the true failure time is independent of censoring mechanisms that controls

visits. But that may not necessarily be the case in that for instance, if a study is

on deadly diseases, time to detection of disease preceded by symptoms compels

study units to see a doctor and have tests done without failure, resulting in
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some dependence between failure time and interval. Likewise, detection of the

disease may prompt a unit to strictly adhere to clinic checks thereafter for

treatment. (Finkelstein et al, (2002)).

Let's assume that all units commence study at the same time with j=l,2, ..,r clinic

checks such that if any unit is censored at the termination of study, this will be

at the rth interval i.e. in the absence of units lost due to study attrition. To

analyse this kind of data, it is essential that information on visit compliance

before and after failure be taken into consideration. Let the unobservable

continuous failure time be denoted by T. Since we only observe

interval I, within which failure occurred, all intervals preceding the fh include

units that have experienced failure, thus we can model the likelihood from the

interval perspective. Let v be a vector of binary indicator variables taking value

1 if a visit is made and 0 otherwise. Let 7tBjbe the probability of making the visit

in interval Ij before the failure occurred, and 7tAjbe the probability of making

the visit in interval Ij after the failure occurred. The probability of failure in

interval I, is ~j = P(tj-l< T < tj). Let nBjbe the number of patients who make the

visit in interval Ij and for whom that visit was one before they failed and nAjbe

the number of units who make the visit in interval Ij and for whom that visit

was one after they failed. Also let dj be the number of units who failed at

interval Ij. Finally, let rBjbe the number of people who were under observation

and had not failed at time j whether or not they made their visit, while rAjis the
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(3.17)

number of people who were under observation and had already failed by time j

whether or not they made their visit. By Bayes theorem, P(v,T) = P(v IT)P(T) is

the joint likelihood of failure time T and visit schedule. The joint conditional

probability of a unit making a visit is the product of individual conditional

probabilities at interval Ij'

P(v IT) = P(vll T)P(v21T)....P(vr IT).

Probability of failure for a unit at interval Ij is denoted as in (3.7) where Pj(z) is

as defined in (3.5).The probability of failure at interval Ij is based on all dj units

in that interval. The product of each unit's failure probability therefore will

yield the necessary failure probability for that interval. If all units have

complied with clinic visit times, then such data is complete or grouped. To

derive likelihood for this data, we define the conditional probability of a unit

making a visit at interval Ijbefore failure as:

and the conditional probability of a unit making a visit at interval Ij after failure

IS:

(3.18)

where

{
I if patient i makes lh visit before failure

VBj = 0 otherwise,

and similar Iy

VA. = {I if patient i makes Jh visit after failure
J . 0 otherwise.
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Hence at a given interval, the likelihood of a unit is described by the product of

probability of failure, probability of a unit making a visit prior to failure and

probability of making a visit after failure.

(3.19)

For all patients in interval Ij' the likelihood is given by

hence, the overall likelihood across all intervals is the product of individual

interval's likelihood,

(3.20)

However, if the intervals are non-disjoint and overlapping (incomplete) such

that are defined by lower and upper endpoints, (Li ,RJ, modifications need be

made on the likelihood. Define an indicator variable Wij as in section 3.2. Equally

vital to observe is the fact that units may have varying numbers of intervals in

the study due to study attrition, hence each unit will have its own ri, the last

checking interval. The likelihood then is

(3.21)
i=1 je l s=1 s=j

Under Cox's proportional hazard model with individual units' covariates,

failure probability is denoted by

(3.22a)

whereas proportional odds model has
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n r fi

R = ITL (l)ii· Jl1tij5 Vij(1- 1tijj-Vij
ie l je l 5=1

(3.24)

(3.22b)

A logit transform for the uniformly distributed visit probabilities, yields a

logistic distribution that enable the inclusion of individual unit covariates

(Finkelstein et al 2002). Then, the probability of the ith patient making the jth

visit at sthfailure interval can be written as

(3.23)

where f..l j is a constant for the jth visit time irrespective of failure time (baseline or

post-failure visits) and llj5is a binary variable taking value 1 if s-cj and zero

otherwise, with a coefficient A. This coefficient therefore give a direction as to

whether a unit is likely to make more visits prior or after a failure. The presence

of such a coefficient in the model allows for the combination of the two

Bernoulli components into one Bernoulli with two inbuilt indicator variables

catering for visiting periods (before and after failure) and whether an interval is

contained by the upper and lower endpoints. Meanwhile v measures the effect

that covariates may have on probability of visit. The modified likelihood is

denoted by

Application for this method is shown in chapter 7 where both simulated data is

generated and then an analysis of ACTG 175AIDS data is used on CD4 failure

times.
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(3.25)

3.4 Marginal Likelihood Model for Multiple Failure Interval-Censored Data

A phenomenon can be described by several events, thus rendering it a

multivariate type. For n observations, let there be M failure times (m=l,2, ... ,M)

with each having survival space sub-divided into I'm intervals (jm=l,2,... ,rm)

representing the checking times. Consequently the failure times may be

correlated to a reasonable degree since ith subject's failure event at fh interval for

all lifetimes is defined as a hyperspace described by a vector {Ilij,I2ij, ...,IMiJ

depicting the intervals at which each lifetime event occurred. We shall restrict

our illustration to two lifetimes, (j=l,2,..rr: q=l,2, ...rz},hence a region Ijq = {Ij> Iq}.

Define for each subject an indicator variable

<p .. = {I if m" failure lifetime occurs at fh interval for patient i
miJ 0 if censored

The unconditional probability that a unit experiences both failure events in the

intervals hij and bq assuming the failure times are independent and the

intervals are disjoint, is a product of the marginal probabilities,

The conditional survival probability shown in (3.5) is subscripted by lifetimes

and interval at which the event of interest occurs, hence the overall likelihood

using appropriate conditional survival probabilities is denoted as

where <Pmij =1 if ithpatient's mthfailure occurs in the jthinterval and 0 otherwise.

Where it not for the common covariates, hence common parameter estimates
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(3.27)

for the marginal, the model would be equivalent to simply combining the

marginal likelihood functions used in the individual univariate lifetime

analysis. Thus the dependence, if any, is accounted for by the common effect of

the covariates. This model is called Independence assumption model with

proportional hazard (IWH) or proportional odds (IWO). In a similar fashion, if

the intervals are overlapping and non-disjoint, define an indicator variable Wmij

(m=1,2) for each lifetime taking value 1 if the end points (Li.Ri] contain the

jth failure interval. The overall log likelihood model is denoted by

3.5 Conditional Bivariate Model

When we analyse data from a bivariate distribution, the data set depicts two

failure times whose relation is brought about by a dependence parameter. An

example is the bivariate normal distribution. The parameter p measures the

dependence between the two variables involved. In the previous section we

analysed survival data using marginal likelihood because we assumed that data

would reveal its dependence through the explanatory variable parameter

estimates. We know that if the failure types are independent, then we have two

independent marginal distributions, hence their joint likelihood is a product of

individual marginal distributions. A deviation from the above expectation can

only be explained by existence of dependence between the data set. A weak

dependence may not be discernable by using marginal parameter estimates
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hence a need to apply a technique that would take cognisance of any prevailing

dependence between two failure types in the computation of the parameter

estimates. By conditioning on the coordinate of one lifetime, we compute the

joint likelihood using conditional survival probabilities as before,

simultaneously considering the position of failure of the other lifetime. This is

presented as one option described as follows. Define P2qjas a subject's

conditional survival probability at interval (tq...:1,tq] for second lifetime, given

the first lifetime's failure occurred at (tj_" tj], j = l,2, ... ,f1+1; q = l,2, ... .rz.

Let

(3.28)

where for continuous Tl and T2,

tj

P[T2 > tq,tj_l <TI < tj] = j ff(t"t2)dt1dt2•
tq tj.t

(3.29)

The conditional survival probabilities are easily extended to include the effect

of covariates using any of the transformations described in section 3.1. The

marginal failure probability at Ij is as defined as (3.7), while the conditional

failure probability at interval (tq_l' tq] for the second lifetime, given that failure

for first lifetime occurred at ( tj_I't j ], is denoted by

(3.30)

Thus the unconditional joint failure probability at the intervals (tj-l,tj] and

(tq_l' tq] is by Bayes theorem, the product of ~2qj and the marginal
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r +1
P[TI > tj,tq_1 <T2 < tJ = LL'llsL'l2qs

s=j+1
(3.31)

unconditional failure probabilities for the conditioning lifetime, L'llj' We note

that if the two lifetimes are independent, then L'l2qj = L'l2q for all j, hence the joint

unconditional probabilities will be the product of the marginal unconditional

probabilities, L'l jq = L'l2qL'llj' failure of which we conclude that the two lifetimes

are dependent. If a unit's first lifetime is censored at the conditioning interval

Ij' failure can only occur in one of the subsequent intervals, hence sum up all

the joint failure probabilities of those intervals for known intervals of second

lifetime. This gives the joint failure probability for this unit as

Then using (3.28), (3.30)and indicator variables in section 3.3, the likelihood for

a subject whose event of interest occurs at interval Ij for first lifetime and

interval Iq for second lifetime is given by

g(81 z;)=

[(1- P"(Zi ))ftp"~ (z, )( 1- P",(z;» TIp'" (z.) J'''''[(1-P" (z, ))ftP, ,(Zi )U P'u(Zi )T"-"'"
,~[ (1-P" (z.) )DP" (z,)(1-P",,(z,))P'P",(Zi) T··'"
,~[ (I - ~,(z,) )~.<z,) 1)P",(Z,)f"'''__' (3.32)

This gives the overall likelihood over all units to be the product of all

individual's likelihood. The number of baseline parameters to be estimated

depends on the predetermined intervals involved, i.e. including the covariates

parameters, there are n(l+f2) + p parameters to be estimated.
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3.6 Use of Copulas for Bivariate Models

The use of a conditional bivariate model approach presented in section 3.4

poses problems due to the number of parameters involved. Therefore with

small data sample, the method is bound to collapse, especially since some of the

intervals may be empty. An alternative would be to use models that are built

from the Copula distributions as per definition presented by Prentice & Cai

(1992),based on the ithsubject's joint survival or failure function for two failure

times. The method breaks away from the independence working assumption

adopted for univariate likelihood in section 3.3, in that this method introduces

dependence parameter between the two lifetimes. For example, a Clayton

copula is depicted in terms of marginal survival functions. (Prentice and Cai,

(1992))

(3.33)

where (O<K<oo) K-70 implies a perfect correlation between the two failure times

and absolute independence when K-7oo. S(hj) is the marginal survival

probability for the first lifetime at interval Ij. For instance, under Cox's

proportional hazard model, the ith subject with a covariate z and discrete

random variable T whose marginal survival at the jth interval is as shown in

(3.8)contributes the following component to the joint survival:

where hs(y,f3) = er",,+Pz, yielding ajoint survival function'
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(3.34)

To write a joint likelihood, we use the same definition for the indicator variables

'Plijand 'P2iqas in previous sections. The likelihood of a unit who has bivariate

disjoint intervals for both lifetimes is given by

[S(tj' tq_I) - S(tj' tq)}I-<P1ij)<P2i4 [S(tj' tq)}I-<Plij)(I-<P2i'l) ) (3.35)

If the regions are non-disjoint and overlapping, let there be two indicator

variables (l)mj'for each lifetime as previously defined in section 3.3, also the

probability of failure at region Ijq (3.25) is given by

Hence the overall log likelihood is the sum of each unit's likelihood for each

lifetime as in (3.16);

M n rm+l

£(81 z) = LLlogL<Pmij~ms .
me l i=1 s=1

(3.36)

The Farlie- Morgenstein copula is in terms of marginal cdfs, hence of the form

(3.37)

with K the measure of association between the two failure times such that

correlation between them is p= K/4. For this model the maximum K attainable is

1, representing a not so strong dependency. The failure probability (3.25) is then

defined in terms of joint CDF, not joint survival probabilities, as is the case with
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Clayton copula. Then use the function (3.37) to attain an overall likelihood

(3.36) for observations drawn from Farlie-Morgenstein distribution that has

overlapping intervals.

3.7 Chapter Summary

The standard distributions we could in most cases apply to other types of data

are not necessarily relevant to survival data. This is true especially with

interval-censored data with overlapping intervals. This chapter introduced two

types of interval-censored data in the grouped (disjoint) intervals and the

overlapping intervals data. The latter kind is complicated to handle and the

parameters estimated under this situation are susceptible to regularity of visits.

The Cox's method of using distribution-free hazard function, make the non-

parametric method more preferable since the models have proved to be easier

to evaluate and can adjust to any kind of data distribution. Three non-

parametric models for survival data were introduced in this chapter. These are:

Independence assumption model, conditional bivariate model and the use of

copulas to allow for measure of association between failure times. For each of

the models, a likelihood function was derived after transforming the hazard

function by either a log-log transform to get a proportional hazard model or a

logit transform to get a proportional odds model, so as to facilitate for the use of

unrestricted parameters.



t~
~t~(J)-lexp(-_)

f(t) - A- A~r«(l) 0< t < 00. (4.1)

CHAPTER4:

PARAMETRXC SURVXV AL MODELS

4.1 Introduction

The most extensively used methods in analysing lifetime data is the parametric

methods. The difficulty associated with these methods is of ascertaining that the

underlying distribution of the lifetime data is correctly specified. Failure to do

so would result in erroneous conclusions. Since lifetime is a time measure,

hence continuous, the distribution involved needs be continuous. Properties of

continuous distributions are well documented and readily available such that

their use in modelling, if the data does comply, makes them more eligible for

use. Moreover, for parametric models all four functions characterizing lifetime

data, namely probability density function, probability distribution, hazard or

cumulative hazard rates and survivor functions, are of closed form for most of

these distributions. This renders estimation of a single failure time event more

feasible. These distributions include the Weibull, Exponential, Log-Logistic, etc.,

most of which emanate from the Generalized Gamma (GG) family of

distribu tions denoted as

Extensions to multiple failure times employ the use of copulas with marginal

distributions from known univariate continuous distributions. Section 4.3

discusses the use of Farlie-Morgensten and Clayton distribution copulas the
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~ t~
f(t) = -t~-lexp(-__.:.)A A (4.2)

same way as outlined in section 3.5 for distribution-free situation, with built-in

relatedness measure to assess dependence between failure times, if it exists.

4.2Weibull Distribution

One versatile distribution bearing some unique properties in the analysis of

lifetime data T is the Weibull (A.,~) distribution (a special case of the GG when

w=l) whose density and probability distribution are given by respectively

and

t~
F(t) = 1- exp(--),

A

and its k" moment is given by

An Exponential (A.) distribution is a special case of the Weibull when ~=1,hence

most of the characteristics of a Webull distribution are easily extendable to the

exponential situation. A Weibull distributed lifetime with ~ not equal to 1 gives

a non-constant hazard function, a property better suited for certain lifetimes.

Let Y=log T, then

(4.3)

1 1
LetIl = -0' logA. and a = I' then
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f(y) ~ ~{exp[(y:~ )-exf:~ )J} (4.4)

Furthermore, a unique property which makes this distribution attractive to use

in survival analysis is that a log transformation of the original data distributed

as Weibull with both A and ~ equal to one, yields a standard Extreme Value

distribution with a survivor function S(y), similar to. the Cox's proportional

hazard shown in previous chapters:

S(y) = expl- exp(y)) -00 < y < 00.

Our focus is to model the impact of a vector of explanatory variables

z = (ZI'Z2,...,Zp-I)on the lifetime. One way will be by fitting a linear model of the

form (1.1) to the transformed data Y, where the error component e , follows an

Extreme Value distribution and the mean f..1(z)is a function of explanatory

variables, i.e.

!l(Z) = '1'0 + lJ1z, (4.5)

where the vector \jl =("'1,"'2,... ,'lip-I) consists of regression coefficients. Suppose

the original untransformed data was used to fit a linear model with vector

~=(~I,P2'···'~p_l)being the regression coefficients, then the two sets of

regression coefficients relates through

~=_lJ1.
c (4.6)

With a log transformation, the survival function of the th unit is written as

S( I ) { (Yi-I-l(Zi))}' 12Yi cr,lJ1,Zi = exp - exp cr ,1= , , ... ,n. (4.7)
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The density is of the form defined in (4.4)with expected. logarithm lifetime J.!(z)

and standard deviation cr.It is vital to note that the resulting survivor function

has reduced number of parameters. Knowledge that some of the subjects

haven't realized the event of interest and hence are censored has to be taken

into consideration when analysing survival data. Maintaining the same

indicator variable as in section 3.2 to depict the censoring status of an

experimental unit characterized by a vector of covariates z, the general form of

the likelihood is

g(BI z) = TI {(f(y;)<p; XS(yy-<P; )}.
j=}

Hence

Suppose the experimental units are observed only at intervals Ij = (tj_ptjl such

that the event of interest is only known to occur in Ij' then the likelihood for

interval-censored data has to be applied. Let Lj and R, 'be the lower and upper

endpoints of the interval containing' the i th failure as previously defined, such

that the difference between survival probabilities at the endpoints yields the

failure probability for a unit in interval (Lj,R;]. Then

Since the afore-specified interval is composed of several sub-intervals,

Finkelstein (1986) showed that the contribution of the jth observation to the



likelihood is the sum of all failure probabilities of sub-intervals enclosed within

the endpoints. The conditional survival probability at Ij is given by

P()
{ [ (Yij-I-!l(Zi))] [ (Yij-!l(Zi))]}j Z = exp - exp - exp .

cr . cr
(4.10)

Groenewald & Mokgatlhe (2002) have shown that the log-likelihood can be

written in terms of conditional survival probabilities hence write the

unconditional failure probability as

j ~(Yij-I -J.!(Zi))l{[1 -e-~J.!(Zi) J j ~YiJ·-1 ~YijI}= ex~ - e ) - e eX1_e - e )'

where ~ = J._. Thus the log likelihood is of form
a

n r

f(SI z) = _LlogLwij[P(Yi E Ij IS,z;)],
i=1 i=!

(4.11)

where Wijis as defined in section 3.3. This is a univariate failure time situation,

and is easily extended to multiple failures by using a multivariate family of

distributions, as shall be illustrated in the next section.

4.3 Use of Copulas with Weibull distribution

Assuming a Weibull distributed variable T, a log transformation results in a

variable Y with density as shown in (4.4). lts probability distribution is denoted

by
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Define Y= {Yli, Y2i} as a matrix consisting of two vectors representing the two

failure times, (i=1,2, ... ,n). Then the joint distribution may be represented by a

Farlie-Morgenstern distribution, denoted by

(4.12)

where K is the measure of association, and

m = 1,2.

To account for explanatory variables, the mean term is rewritten as a function of

covariates and their regression coefficients as in (4.5). The interval is now

described by four coordinates Ijq={(tlj_l'tlj],(t2q_l't2q]}' thus probability of failure

in interval Ijqis (j=l,2, ... .ri: q=l,2, ... rz)

~ jq = P(y i E I jq I z)

(4.13

Note that F(tlo, t20) = o. Hence the log likelihood will be

n rl r.,

R(81 z) = ~log~L(l)ijJp(~jq 18,z)]
i=1 j=1 q= l

(4.14)

Meanwhile the Clayton Copula (3.33), which is more tractable compared to the

Farlie-Morgensten copula, utilizes marginal survivor functions. Assume a

Weibull marginal density, and use the Extreme Value distribution marginal
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survival function from the transformation, as in (4.7).Then the Clayton copula

survivor function is given as

I I

(4.15)

resulting in failure probability in interval Ijq in terms of joint survival

probabilities as follows, while log likelihood is denoted as in (4.14).

4.4 Chapter Summary

A relatively easier to use and involving fewer parameters, is the parametric

method. Its only weakness is that one can never be sure of which distribution to

assume for the data. A goodness-of-fit criterion test on interval-censored data

with overlapping intervals is not yet available. Likelihood functions derived for

the parametric model are the Weibull distribution based, and use of copulas

with either a Farlie-Morgenstern or a Clayton distributions for bivariate data,

all having Weibull marginal distributions.
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CHAPTERS

PARAMETER ESI1MATION

5.1 Bayesian Approach

5.1.1 Introduction

Bayesian prior probability of an event x is a person's degree of belief in that

event, based on cumulative evidence and evidence based on practice. Whereas

a classical probability is a tangible property of the world, (e.g. the probability

that a coin will land head), a Bayesian probability is a property left entirely to

the person who assigns the probability (e.g. your degree of belief that the coin

will land heads). Thus to sum up, the classical probability is based on the

concept of repeated trials while the degree of belief in an event is a Bayesian or

personal probability. One clear distinction between the two is that to measure

personal probability we do not need to think of repeated trials, which is an

acceptable notion in Bayesian, contrary to classical probability. The problem

with Bayesian prior probability is that these probabilities seem arbitrary. This is

further compounded by fact that whereas it would be satisfying to assign

probability one (zero) to an event that will occur (not), it becomes problematic

to assign probabilities to beliefs which are not on the ex~reme.

For illustration, take the tossing of a fair coin, which either rest on its head or

tail. Suppose we toss the coin N+1 times, making sure that the conditions on

each toss remain identical. Base on the first N outcomes, we want to determine

the probability of head being the outcome on the N+1 toss. In the classical
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analysis of this problem, we assert that there is some unknown but fixed

probability !:i, of head. We estimate this probability from the N observations

using criteria such as low bias and low variance. Then we use this estimate á as

our probability for heads on the (N + l)th toss. In the classical statistics,

estimation of an unknown parameter from sample data can be done, among

other procedures, by least square estimates, maximum likelihood estimation,

etc. In the estimation of these parameters, any information relating to the

unknown parameter prior to data collection is not used. Moreover, the

unknown parameter is considered fixed, while the sample data of the response

variable to be used in the estimation of the parameter is treated as random.

Nothing in terms of a probability distribution is mentioned in reference to the

parameter.

From a Bayesian perspective, there is no distinction between observations and

parameters of a statistical model in that they are all viewed as random

quantities. Hence, Bayesians assume that there is some belief about the

probability of heads and that the unknown parameter is a random variable.

Any privy information regarding the parameter that is known prior to data

sampling must be used in the estimation. So the beliefs is combined with the

results from the N tosses of the coin to estimate the probability on the (N+l)th

toss. Viewing the parameter as a random variable implies that a distribution

that is a function of the parameter exists. Thus the prior information relating to

parameter and the information from the sample data enables one to estimate
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this function of parameter, known as the posterior distribution. Since it is a

probability distribution, it need conform to all aspects of a probability density

function.

Suppose we denote random variables Xi, ....,XNand assign a true state or value

to each variable in a given set as xi, ...,XN.Also denote P(X=x 18) or P(x 18) as the

probability density function for x given the parameter 8. Let e be the parameter

space. We express the uncertainty about 8 using the probability density

function P(81 X), where X is any related information. Let

D={Xt=Xl,X2=X2,...,XN=XN)denote a set of observations. Bayes' rule obtains the

probability distribution for 8 given D and X,

P(8 I D, X)= P(8Ix)g(DI8,X) .
fa:e g(DI8,x)P(8Ix)d8

(5.1)

Both Bayesian and classical statisticians agree on the likelihood function

N

g(Dle,x) = ITp(xile). The denominator represents a normalizing constant,
i=1

which for complicated likelihood functions, is not easy to evaluate, Gilks et al

(1996). Any distributional characteristics of a posterior distribution are

legitimate for Bayesian inference, e.g. moments, highest posterior regions, etc.

The kth moment of a function f(8) is

f. «» } fP(8)g(D 18)f(8jd8Ef ,8 J ID = -=----,....------f P(8)g(D I8:kIe
gee

(5.2)

Just as the Newton-Raphson or Least Square estimation methods enables a

classical statistician to estimate a parameter for a given model, Bayesians use
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the idea of Markov chain simulation to generate a random walk in the

parameter space of e which converges to a stationary distribution called joint

posterior distribution as defined in (5.1). This requires evaluation of a

normalising constant, thus multiple integration would be impractical if a large

number of parameters are involved. With a reasonably large sample from a

density we can approximate the mathematical form of that density via curve

estimation or kernel density method (Izenman, (1991)) as observed by Smith

and Gelfand (1992). Samples from a density whose functional form is implicitly

defined can also be simulated. This method hinges largely on the large sample

theory, in that the larger the sample of e simulated from a posterior function

whose normalizing constant cannot be ascertained become the more accurately

we can recreate the posterior density. This method is called Markov chain

Monte Carlo (MCMC) method, and there are a variety of these situational

methods in place.

5.1.2 PriorDistributions

In this section we will discuss priors for various likelihood functions discussed

in the previous chapters specifically for interval censored data. The likelihood

function for a Clayton model with multiple interval-censored lifetimes for

instance, given in (3.35), where z are fixed observed covariates and

8 = {P,Ym,K,}isa vector of unknown parameters with Ym= {Ym"Ym2,..• ,Ymr},
m

i=l,2, ... ,n; s<j=l,2, ... ,rm;m=l,2, ... ,M. The Bayesian approach postulates that the
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f( .) _ -eymj ymj
Ym) - e e -00 < Ymj < 00

joint posterior distribution for the unknown parameters given data is

proportional to the product of the likelihood and prior distribution of the

parameter of interest.

Prior 1

To derive a prior for the conditional survival probability under nonparametrie

proportional hazard model (PHM), let Pmi from (3.9), with z=O follow a

Uniform(O,l) distribution for all m.j, Taking the log(-log) link transform, then

ymihas an Extreme Value (EV) distribution;

-eYmj
F(Ymj) = e .

Allow probability density function (5.3) to be prior distribution for ym" while

the rest of the parameters assume diffuse or non-informative prior:

n(f3) a k

eYmj Y .n(Ymj) = e- e mj . (5.3)

In a similar fashion for the nonparametrie proportional odds model (POM), in

the absence of covariate effects, let Pmjfrom (3.14) be i.i.d. Uniform(O,l). By

taking a logit transformation,

we have that amj has a logistic probability density function.

«;e .
n( amj) = a .

(l+e mj )2
(5.4)
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(5.5a)

Priors (5.3) and (5.4) assume that all the baseline conditional survival

probabilities are uniformly and independently distributed. The resultant

posterior function from combining a likelihood function like (3.36)with prior

distributions (5.3) or (5.4) is proportional to the posterior distribution for PHM;

and for POM

c. {[ a.+z.
A J. 1 }

r ) nr) 11"')- 1
P(8!D,z) an e 2 DL e TI .

. a·.. a·+z· a +z
)=1 ( 1+ e )) 1=;1 )=1 1+e) lP 5=1 1+ e 5 lP

(5.5b)

The above functions are of the form that is intractable to evaluate analytically.

Prior II

In the previous section, non-informative priors were derived from the staring

assumption that the conditional probabilities Pmj, are all independently

Uniform(O,l) distributed. An Alternative would be, for the partitioned survival

spaces of each lifetime, perceive the grouping of observations into intervals

within which failure occurs, as similar to allotting n objects into r+1 bins with

probabilities ~mk (k=l,2, ... r+1) as defined in (3.1). Allotment probabilities in

each lifetime are assumed independent. The distribution for a given lifetime is

then Dirichlet with unknown hyper parameters b
mk

•

(5.6)
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For a Binomial distribution, the Beta distribution is a conjugate prior. Thus a

multivariate generalization of Beta distribution or Dirichlet is a conjugate prior

for a Multinomial, (Agresti (1990)). Defining the cumulative probability at

j

tinterval, 0mj = LLlmk (o., < Om2< ... < OU"< 1), yields' an ordered r-variate
k e l

Dirichlet distribution (Wilks (1962)). The conditional probability of surviving

beyond interval Z,given survival up to interval Ij_I in terms of cumulative

probabilities is then

The marginal distribution of (Omj_I';Omj) is the ordered bivariate Dirichlet

distribu tion:

r+1 j-I r-sl

r(I0mk) _LOmk -1 LOmj-I

f(omj_pOmj) = k-I r+l O~j~1 (Omj - Omj_l)Om
j
-I(1- 0mY=j+1 ,(5.7)

r(Omk )r(8mj)r( L0mk)
k=j+1

o < 0mj_1 < 0mj < 1.

I-omjTake a transform Pmj = and Wmj = 1- 0mj' then the joint distribution of
1-0mj_1

r+1
(Pml>Wm) is Dirichlet, while the marginal of Pmjreduces to a Beta( LOmk, 0mj)

,k=j+1

distribution. Furthermore, the Pmj'S are independently distributed (j=l,2,., .,r).

The log-log transformation (3.9)maps the support of the parameters concerned

from a probability space onto an open space, hence for multiple lifetimes, the

prior for the baseline parameters is becomes
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(5.8)

Assuming a Dirichlet prior distribution with 0mj = 1 for all m,j, then

(5.9)

If 0mj = 0.5 for all m,j, a Jeffreys prior, then

(5.10)

The distribution of the r parameters is shown in Figure 5.1.All the distributions

are negatively skewed, moving form left to right with increase in the interval

number. From (5.9), the baseline parameter for the jth interval has Extreme

Value distribution. A transformation U..j = e"(mj results in an Exponential(r+ 1-j)

distribution.
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Figure 5.1: The prior distributions for (r=5) baseline parameters under PHM with
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In the same way, if a logit transformation of Pmj is effected for the POM model,

(5.11)

If all hyper-parameters take the value 1, the prior distribution for the rth interval

reduces to a Logistic density. We used hyper-parameters of 0.5 for rintervals.

0.5amj1 e
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0.02

Figure 5.2:The prior distributions for the (r=5) baseline parameters under FOM with

8j=O.5
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Figure 5.2 depicts the prior distribution from left to right for the smallest to the

largest value of j respectively. The shape of the distributions for the first r-I

parameters is negatively skewed, but the distribution for the rth parameter

displays some symmetry around 0, thus the prior for the last interval yield a

distribution similar to a Logistic density.

Importantly to note is that both Dirichlet priors assumes uniformly distributed

failures over all intervals, resulting in a shift to the right in the means of the

resultant baseline parameters as the interval number increases.
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1 {o* with probability mmtnr.I)o =
Ot-! otherwise

(5.13)

5.1.3 Metropolis-Hastings Algorithm

A Metropolis algorithm is an example of the MCMC methods introduced in

section 5.1.1. Some posterior functions are of the form such that a normalizing

constant of the joint posterior distribution cannot be analytically evaluated.

Furthermore, if the conditional distribution function of the parameter involved

is of non-standard form that does not enable drawing of sample estimates from

it, a Metropolis type method is then applied to draw. samples of parameter

values. This method is premised on drawing a sequence of values of 0 from a

symmetric proposal density and comparing the posterior likelihood of the

newly sampled parameter with that of the current parameter estimate. The new

value is accepted as the updated parameter estimate if the posterior likelihood

of the new value exceeds that of the current, otherwise is accepted with

probability computed as the ratio of the posterior likelihoods. The following

steps summarize the algorithm as follows: (Chib and Greenberg, (1995)).

• Start with a good approximate starting value 0° for which P( 0 ly) > 0

• Then sample a candidate point 0* from a proposal distribution f(0' I 0(1-1))

at time t. The jumping distribution must be symmetric about the current

value of O.

• Calculate the ratio

P(O'I data)m = ___:___:,_ ___;_
P(ot-! I data) (5.12)

and let
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The relative importance ratio m will have to be computed for each (e+, e).

o If m>l then the estimate is automatically accepted. If m <1, then draw a

Ue-Uniforrruê.L) observation and accept e+ if U< m, thus jumping to

higher posterior value. If the new value from proposal density, e+ is such

that Uc-m, it will not be accepted hence set e' = s'". In summary, the

importance ratio determines the direction of the jump, always accepting

(jumping towards) parameter values that yield larger values of the

posterior likelihood, yet accepting parameter values that yield smaller

values of the posterior likelihood with a probability less than 1.

The rate at which new values are accepted is known as acceptance rate. A

generalization of the Metropolis algorithm by doing away with symmetry in the

jumping distribution results in the Metropolis-Hastings algorithm, Gelman et al

(1995)). This increases the speed of the random walk. Combining the

Metropolis-Hastings algorithm with the Gibbs sampling technique of cyeling

between sub-vectors (blocks) is another way of dealing with multidimensional

problems. These blocks need be conditionally independent so that updates can

be carried out simultaneously within a block, (Besag et al (1995)).One cyele of

the MCMC algorithm consists of a visit to each block in random order.

The repeated sampling generates dependant sequence of random draws, which

subjet to certain regularity conditions, eventually forgets the starting values,

and converges to a stationary density, (Congdon, (2001)). This is called
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convergence, and the rate at which this occurs is important. Some of the factors

influencing the rate of convergence are:

o Sample size

o The way parameters are expressed.

o Complexity of the problem (number of parameters matters)

o Sampling scheme adopted (e.g. use of blocks helps).

e Closeness of the starting values to that of the stationary distribution.

For a joint posterior function that consists of several diversely distributed

parameters, the use of a simultaneous simulation of the next parameter values

in a given block, using a multivariate proposal distribution is recommended.

Effective distributions suited for the proposal density are the ones that are

symmetric about the current value of e and have a spread similar to that of the

marginal posterior for that variable. Rectangular and Gaussian distributions are

therefore recommended. If the support of the parameter is restricted to an

interval, a suitable transformation enables us to use the above-mentioned

distributions. (Roberts et al, 1995).

5.1.4. Illustration with Example on Mango Data

Application I: Colosimo et al (2000)reported data on survival of mango trees in a

complete randomised block design. By grafting scions on stocks, such that

scions produce mango fruits while stocks serve as conductors of nutritional



Using the log likelihood of the form (3.15) for both PHM and POM models and

logarithm of priors type I and II were applied resulting in log posterior function

of form (5.5a and 5.5b). Since this is a non-standard model, a Metropolis-

Hastings algorithm was invoked, and with Normal distribution as the proposal

density. Samples of parameter values were drawn and the posterior likelihood

of each drawn value compared with that of the current value. There were

12+5+6+30parameters to be estimated. To speed up the process, simulation of

parameter values was done in four blocks according to the effect. For a given

requirements, the effect of scions and stocks on the resistance to disease was

observed. Thus a randomised block experiment was conducted with treatments

in a 6x7 factorial design involving the 6 varieties of scions and seven varieties of

stocks. The duration of experiment was 20 years (1972 to 1992), wherein 12

visits were conducted to assess the status (dead/alive) of mango trees. Since all

12visits were honoured, this resulted in interval-censored grouped data. Using

conditional survival probability under PHM (3.9) and fOM (3.14)models with

a linear component of the form y + Przr+ l>pzp+ IJrpzrpwere fitted for univariate

lifetime of the mango trees. The z's are dummy variables taking value lor 0, the

vectors y is the baseline (interval) effect for either of the models, ~r, 1,2,... ,5 is

the scion effect, Op, 1,2,... ,6 is the stock effect and Tlrpis the interaction effect.

Due to insignificant effect of stock and interaction on lifetime of mango trees,

the results reported are on the covariate of scion varieties compared to a

baseline variety Extrema .
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cycle, a multivariate normal density was used to simultaneously simulate all six

parameters values for scion effect while the values of other parameters were

held constant. 80000 sets of values were generated.

Table 5.1: Estimated posterior means of regression coefficients obtained by fitting

PHM and POM models on mango data.

PHM POM

Prior Varieties Parameter Mean 95% HPD Mean 95% HPD

Oliviera ~1 -0.8793 -1.46, -0.31 -0.9407 -1.53, -0.36

Pahiri . ~2 -0.4133 -0.94,0.10 -0.4061 -0.96,0.16

I Imperial ~3 -0.6044 -1.13, -0.09 -0.6361 -1.20, -0.06

Carlota ~4 -0.6176 -1.16, -0.06 -0.6555 -1.25, -0.11

Bourbon ~5 ·0.4635 -0.03,0.96 0.4467 -0.07,0.97

Oliviera ~1 -05704 -1.14, -0.06 -0.7520 -1.35, -0.21

Pahiri ~2 -0.1136 -0.62,0.38 -0.2380 -0.83,0.32

II Imperial ~3 -0.3141 -0.85,0.18 -0.4606 .-1.05,0.11

Carlota ~4 -0.3286 -086,0.18 -0.4784 -1.09,0.07

Bourbon ~5 0.7277 0.24,1.21 0.6275 0.10,1.15

Results (Table 5.1) show that Extrema variety is not affected differently from

Pahiri, but is significantly different from Oliviera variety for all models used.

Whereas the POM and PHM methods do not yield different results, the type of

prior used does matter. Using Prior II for both models shows that Oliviera

variety has significantly higher resistance than Extrema, Bourbon has lower

resistance, while the other varieties are not affected differently. If prior I is used,

Oliviera, Imperial and Carlota varieties have higher resistance than Extrema
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Figure 5.3: Showing least significant difference between varieties for PHM with prior

II (a) and with prior I (b).

a)

I Bourbon I I Extrema I I Pahiri I I Imperial I I Cado!a I IOliviera

variety, while the rest are not affected differently from Extrema variety. This

goes to show that the results are still sensitive to the prior.

The varieties have varying resistance in the following sequence, Oliviera has the

highest resistance, followed by Carlota, Imperial, Pahiri, Extrema and Bourbon

is the most susceptible. Moreover, a 95% least significant difference (LSD) test

on results obtained from PHM with prior II (Figure 5.3a) shows that Bourbon is

different from the rest of the varieties. Whereas Oliviera and Extrema are

significantly different on individual basis, these varieties are not different from

Pahiri, Imperial and Carlota varieties. A POM with prior II return similar

results. Meanwhile a 95%LSD test on the effect of prior I on PHM (Figure 5.3b)

show that the mean difference between Bourbon and Extrema is not significant.

Yet, Extrema is not different from Pahiri, which itself is different from Bourbon,

but not from the rest of the varieties.

bl

IBourbon I IExtrema I I Pahiri I I Imperial I I Cado!a I IOliviera
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Curves for estimated survival functions at each time interval for each of the six

varieties are shown in Figures 5.4 and 5.5. The survival probabilities for

Bourbon rapidly decline to 0.80 in the first two years of study. By the end of

study, it had reached 7% level, while that of the most resistant variety is around

40%at the end of study.

Figure 5.4. Estimated survival functions for PHM: prior II
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Colosimo et al (2000), reported similar results obtained using the method of

maximum likelihood estimation on the two models of PHM and POM.

Likewise, in their results, the two models did not yield varying results.

Figure 5.5 Estimated survival functions for POM: prior II
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to infections at point of insertion of the catheter (in days) on 38 kidney patients

5.1.5Illustration with Example on Bivariate Kidney Data

Application II: McGilchrist and Aisbett (1991)presented data on recurrence times

using a portable dialysis machine. Two exact right-censored times for each

patient, their age and gender (O-male, 'l-female) were reported. Also reported is

whether a patient had disease type AN, GN or PKD. To analyse this data we

assume pseudo-checking times at 30, 90, 180, 365 and 600 days for each of the

infection times to create interval data. Thus data is analysed as bivariate

grouped interval-censored. (see Klein and Moeschberger (1997) for data).

Methods used to analyse this data included the Independence assumption (lW)

model (3.26),Conditional Bivariate (CB)model (3.32) and Clayton copula (CC)

model (3.34) and (3.35).These are all nonparametrie methods, and for each both

the PHM and POM transform were used.

Figure 5.6:A frequency histogram of Time-ta-Second infection
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data.

CCW

Variable Parameter Estimate 95% HPD
Interceptl \jI01 6.1978 5.25, 7.38
Intercept2 \jI02 6.7344 3.76, 6.19

Age \jIt 0.0124 -0.01, 0.05
Gender \jI2 -3.5991 -5.62, -1.44
GN \jI3 -0.8007 -3.31, 1.77
AN \jI4 -1.5674 -4.24, 0.61
PKD "'5 0.7646 -2.43, 3.71
Sigma o 2.9511 1.62, 4.55
Assoc K 2.9018 0.69, 4.55

IWW

Estimate 95% HPD
4.3578 3.53, 5.98
6.8932 6.20, 7.47
-0.0037 -0.01, 0.00
-2.8035 -3.24, -2.39
0.0254 -0.17, 0.16
-0.4798 -1.11, 1.16
1.7917 1.23, 2.44
1.5411 1.19, 2.03

Assuming a Weibull distribution for both infection lifetimes, parametric

methods of Independence assumption (IWW) (4.12) and Clayton copula (4.15)

and (4.14) giving (CCW) were used, (Weiclapos.m in Appendix B). For all the

nonparametrie models the linear component of the conditional survival

probabilities is given as Ymj + J31(age)+ J32(gender)+ J33(GN)+ J34(AN)+ J3s(PKD)

and for the parametric models, \jlmO + \jIl(age) + \jI2(gender) + \jI3(GN) + \jI4(AN) +

\jIs(PKD),m=l,2 and j=l,2,,, .,5.

Table 5.2: Estimated posterior means from fitting Independence assumption ([WW)

and Clayton Copula (CCW) models assuming Weibull distributed marginals on kidney

The parametric method was executed after doing a crude goodness of fit test on

the interval data to determine if data was Weibull distributed. For first and

second times to infection, X2 values of 52.13 and 5.13 respectively with 35

degrees of freedom were obtained. The values show that whereas data for time-

to-second infection is distributed as Weibull, the first one is not. For analysis we

63



assumed that both infection times follow a Weibull distribution. The next

characteristic of these two failure-time survival data is the degree of

dependence.

Figure 5.7:Posterior distribution of association parameter K in the Clayton model with

Weibull marginals.
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The measure of association obtained from assuming a. Weibull distribution is

(K=2.90), while the non-parametric Clayton copula methods reveal a

dependency measure of about 2.9 (Tables 5.2a and 5.2b) between the infection

times. This show a not so strong relation, hence we expect the independence

working assumption method to also do well in estimating the parameters. The

crude estimated mean failure time (11 = exp(\jImO + lJ1z)) for a 50 years old female

patient with PKD disease, is 111= 178 days to first infection and 112= 305 days to
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second infection. The delta method using cr = 2.95as shown by Worku (1997)

and Rice (1995) is more precise, giving expected failure times to be 208 and 353

days for first and second infection respectively. The two models shows that

gender has a significant effect on time to infection.

Figure 5.8: Posterior distribution of parameter for gender in the Clayton model with

Weibull marginals.
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When using a Clayton copula model, only gender is significant. Meanwhile,

assuming independence between time to first and second infection, variables

gender and disease type PKD, are significant, apparently due to unstable nature

of the method when the sample is small, and ignoring the dependence effect.

Using separate coefficients for the parameter for each failure time, the effect of

gender on the two infection times varies, (table not included) with females
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(W2=-3.18) at higher risk towards first infection and male (W2=O.1669) towards

time to second infection, yet the combined effect shows females are at higher

risk for both times, lowering the expected infection times, (see Figure 5.9).

Table 5.2a: Estimated posterior means from fitting Independence working (lWH),

Bivariate Conditional (CBH) and Clayton Copula (CCH) models using proportional

hazard on kidney data.

IWH CBH
Mean 95%HPD Mean 95%HPD
-0.003 -0.01,0.00 0.0003 -0.003,0.003
2.228 1.90,2.61 1.793 1.43,2.01
0.185 0.02,0.28 0.125 -0.06,0.26
-0.004 -0.04,0.03 0.101 -0.03,0.32
-0.088 -0.15,0.00 0.017 -0.11,0.12

Results in Table 5.2a and 5.2b shows that the estimated values of variable

gender are significant for all three non-parametric methods used with both

proportional odds and proportional hazard models. Hougaard (1987) made

similar conclusions on this data, analysed using a frailty model. Under the

independence assumption model (lW), an extra variable is significant apart

from gender. For instance, both priors I and II used with PH, shows that disease

type GN is significant, though the effects are inversely related. Meanwhile, with

the same model using proportional odds, Age, gender and disease type PKD

are significant for prior II. The Bivariate Conditional model (conditioned on

Prior Var
Age

Gender
GN
AN
PKD
Assoc
Age

Gender
Il GN

AN
PKD
Assoc

0.004 -0.01,0.01 0.001 -0.001, 0.01
1.870 1.70,2.06 1.082 0.76,1.42
-0.434 -0.75,-0.01 0.272 0.00,0.50
0.050 -0.00,0.10 -0.123 -0.26,0.07
0.044 -0.08,0.21 0.056 -0.04,0.14
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CCH
Mean 95% HPD
0.003 -0.004,0.01
2.032 1.51,2.37
0.105 -0.04,0.20
-0.185 -0.33,0.00
0.016 -0.06,0.10
2.70 2.55,2.83
0.013 -0.00,0.02
2.041 1.82,2.22
0.100 -0.02,0.23
0.103 -0.02,0.19
0.031 -0.12,0.14
2.97 2.74,3.20



failure interval of first time to infection) shows that disease type GN has effect

Table 5.2b: Estimated posterior means from fitting Independence working (IWO), a

Bivariate Conditional (CBO) and Clayton Copula (CCG) models using proportional

on time when a PH is used with prior 1.

odds on kidney data.

CCO
Mean 95%HPD
0.002 -0.00,0.01
1.812 1.72,1.96
-0.039 -0.31,0.24
0.154 -0.21,0.71
-0.243 -0.86,0.29
2.78 2.62,2.89
-0.005 -0.00,0.003
1.682 1.63,1.75
0.060 -0.26,0.52
-0.637 -1.64,0.09
0.133 -0.38,0.76
2.91 2.77,3.06

Table 5.3 below depicts the baseline conditional survival probabilities for the

five intervals of first failure time. The results in table 5.3 show that lW yields

higher survival probabilities compared to CB and CC, which seem to have

comparable results. The quick drop in survival for time-to-first infection is

apparent and is rapid in the first interval, at 68% and 53% for the CB and CC

models respectively. These decline rates in survivals are slow compared to the

IWO CBO
Mean 95% HPD Mean 95%HPD
-0.005 -0.02,0.00 -0.002 -0.01,0.00
1.987 1.69,2.42 1.380 1.26,1.53
-0.017 -0.13,0.16 0.197 -0.02,0.43
-0.083 -0.20,0.04 0.051 -0.08,0.21
0.095 -0.00,0.21 0.154 -0.01,0.31

Prior Var
Age

Gender
GN
AN
PKD
Assoc
Age

Gender
II GN

AN
PKD
Assoc

0.016 0.00,0.03 -0.0004 -0.01,0.00
2.033 1.77,2.36 1.680 1.45,1.85
-0.061 -0.33,0.20 -0.019 -0.38,0.22
0.001 -0.07,0.07 0.099 -0.01,0.21
0.280 0.05,0.45 -0.116 -0.21,0.03

rate for time-to-second infection.
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Table 5.3: Posterior mean estimates of baseline conditional survival probabilities of the

first lifetime: Prior II

CB lW CC
Prob. Mean 95%HPD Mean 95%PHD Mean 95% HPD
Pu 0.6829 0.19,0.95 0.8350 0.71,0.92 0.5299 0.05,0.89
Pl2 0.6697 0.46,0.58 0.8458 0.77,0.92 0.8749 0.73,0.95

PH Pl3 0.7623 0.65,0.84 0.8090 0.68,0.90 0.8657 0.74,0.93
Pl4 0.2410 0.04,0.64 0.5927 0.39,0.71 0.7433 0.42,0.93
PIS 0.0013 0.00,0.02 0.0915 0.00,0.24 0.0308 0.00,0.16
Pu 0.5694 0.38,0.71 0.9019 0.84,0.95 0.8309 0.74,0.88
P12 0.8598 0.69,0.93 0.9117 0.88,0.93 0.8445 0.80,0.88

PO P13 0.6462 0.44,0.80 0.8414 0.74,0.89 0.8463 0.79,0.89
Pl4 0.6034 0.45,0.82 0.6436 0.54,0.71 0.5449 0.33,0.67
PIS 0.1044 0.05,0.17 0.3497 0.16,0.54 0.5561 0.29,0.76

The non-parametric methods appear to return good estimates of survival

probabilities for time to second infection (see figure 5.7), whereas assuming a

Weibull distribution for the time to infection seem to only do well at the end-

points. This is explained by the fact that a single baseline parameter is used to

estimate survival probabilities at all intervals, whereas interval specific baseline

parameter estimates are used in non-parametric estimation, hence more

precision. For both models, the gender effect is in the same direction. For

example, after surviving for 90 days without infection, males have more that

60% chance of being free from infection during the next 90 days, while females

have less than 20% chance.
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5.2Classical Approach: MLE for Interval-Censored Data

Given a likelihood function g(D I 0), which is a function of 8, we need to

determine a vector (p+1) of estimators ê of 0 taking on values in 8, the

parameter space. The values ê which assigns the largest possible value to

g(D I 0) I so that they provide the best explanation of the observed values and

thus are a natural estimator of ij are called Maximum Likelihood Estimators
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(MLE's) if they exist. Instead of maximizing the likelihood g(D 18), it is

convenient (yielding same results) to maximize the log-likelihood, .e(8). Under

some mild regularity conditions, ê maximizes R(8) if the expectation of first

derivative, also called the score equation, E[R'(9)]=O, and the second

derivative £"(0)< o. Furthermore if the regularity conditions hold, then there

exists a sequence of ê, = ên (x., x2 , ... x,) of local maxima of the log-likelihood

function which is consistent, such that

ê, ~8 for all SEe

and with probability tending to 1 as n-700, is the MLE, (proof Lehmann (1999)).

The local maxima are determined by setting the score function equal to O.

(5.13)

The difficulty arises in the choosing a local maximum when there exists several

local maximum. One of the remedies to this dilemma is the use of the Newton-

Raphson iterative method. It leads to estimators which are not exact roots of the

log-likelihood but which have the same asymptotic behaviour as ê.. In this case

the score equation of the log-likelihood tn (8)is replaced by the linear term of its

Taylor expansion about a starting value S~, and therefore replaces the log-

likelihood score equation with the equation

(5.14)

where
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(5.16)

and

v',v=l,2, ...p (5.15)

This suggests the solution of the equation (5.14)for 8 to be

as a first approximation to the solution of the log-likelihood equation. The

solution in (5.16), constitute the Newton-Raphson method. The procedure is

then iterated by replacing e~ by en and continued until a convergence is

achieved. It can be shown that the starting point as an estimator of 8 is both

consistent and .r;;(e~ - e) is bounded in probability.

Due to the complicated nature of the log-likelihood function for the CB, CC or

CWM models, the MLE method could not be used for models seeking to

encompass the dependence structure. For a single lifetime with overlapping

intervals, the log-likelihood under PHM as denoted by (3.16), with a p

explanatory variables, let 8={{3,yl be a r+p vector of unknown parameters and

H(8) be the negative definite r+p Hessian matrix of mixed second partial

derivatives of Rep, y) defined by,

v',v= 1,2,... ,r+p';

and a vector of first derivatives

The MLE's are iteratively estimated as
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n aI -log (g(z.,p)) = 0
i=1 a~v

for all pv v=l,2, .... ,r+p+ 1

the idea being to search for a global maximum point which is approximated

when

(Lehmann, (1999)). The above method derives the parameter estimates under

the assumption of independent lifetimes. Independence is a necessary condition

for estimation of MLE's, and the inverse of H, the Fisher information evaluated

at the estimated ~ value of parameter value is the estimate of variance of the

parameter estimate, (Casella and Berger, (1990)). ~(I+I) converge to the ML

estimates & and H(~)converges to the matrix iI which, when inverted will be

1\

the covariance matrix of ~ Agresti (1990).

Generally the log likelihood ith unit for IWH model ~ith disjoint intervals is

given by (3.15). Cuo and Lin (1994) presented the first and second derivatives

for this model, (see appendix AI). If the intervals are overlapping the log-

likelihood is written as (3.16). The derivatives will be dependent on the size of

the endpoints (Li'R), so let Ui = number of intervals contained in (Lj,R) and

h j(z) = eYj+J}z • If a unit fails within the endpoints then, {j E (Lj,R) ) and s<j. Note

that if a unit's observation is censored, then R, = r. The first and second

derivatives for model (3.27) are then as follows:
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I-TIe J

j=L;

The above result is applied if there is one lifetime. Under the independence

assumption, the derivatives can be extended to multiple failure times situation

by summing over the m lifetimes involved.

5.2.1Univariate lifetime with Illustrative Example: MLE

Application III: Using Kidney failure data example, MLE's for each univariate

lifetime were computed assuming that data is Weibull distributed. A SAS

program was used, and the following are the results obtained. Note: SAS can

only handle one lifetime.
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Table 5.4:Results of MLE' s obtained from Weibull distributed univariate kidney data.

First Infection Time Second Infection Time
Variable MLE STD P-val MLE' STD P-val
Intercept 5.77 0.555 0.0001 4.832 0.657 0.0001
Age -0.0047 0.013 0.7203 0.0007 0.016 0.9964
Gender -2.9617 0.587 0.0001 -1.028 0.582 0.0771
GN -0.2315 0.489 0.6357 0.069 0.653 0.9161
AN -0.8898 0.449 0.0474 0.436 0.622 0.4833
PKD 1.3938 0.771 0.0708 1.242 0.850 0.1499
Assoc. 0.86 0.23 0.0001 1.06 0.44 0.008
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In this case intercepts are significant for both infection times. Also significant

are variables gender and disease AN, for time to first infection and none for

second infection. These results compares well with the ones obtained using

posterior means from Table 5.2, with minor variation in that gender is not

significant for second infection. Apparently MLE method has conservative

confidence intervals compared to the posterior mean's HPD.

5.2.2Bivariate Lifetimes with Illustrative Example: MLE .

Ignoring the dependence component between the lifetimes, results in unstable

variance estimates for the parameter estimates, which only stabilize when the

sample size is large (see Chapter 7). A robust estimator of variance of

parameters, which is an attempt to address the correlated effect between failure

types, is by introducing a matrix D composed of products of first derivatives

whose off-diagonal terms are nonzero, unlike the Information matrix. D is used

to build an estimator called sandwich estimator as follows: (Guo and Lin,

(1994)),



(5.20)

v,v'=l,2, ... ,p (5.18)

White (1982) showed that for large n, Dn~D, where

(5.19)

An improved robust estimator of variance for the estimated parameters which

accounts for the correlated failure type outcomes is given by

where Hn is as in (5.15)

Application IV: Using Kidney data, maximum likelihood estimates are computed

using the two lifetimes under the independence working assumption. To adjust

for dependence between lifetimes, the variance estimate is computed using a

sandwich estimator. Only results on gender are reported. Gender is the only

significant factor towards infection, with female ~2 = 1.0050 (p-value=0.0012)

hence a shorter lifetime towards infection for both Naïve and Sandwich

vanance estimator. The sandwich estimator improves and stabilizes the

0.4786by sandwich estimator, (Indmle.m in Appendix B).

variance estimation for baseline parameters (Table 5.5). Note that, for second

infection at intervalS, the variance estimate is 4.93, which is improved to be
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Table 5.5: Showing the MLE's for baseline parameters using a IWH model.

Naïve Sandwich
Parameter Estimate STD P-val STD P-val

yu -1.1663 0.3107 < 0.01 0.2778 < 0.01
Y12 -1.4964 0.4505 < 0.01 0.4220 <0.01
Y13 -0.6707 0.3863 >0.05 0.3785 >0.05
Y14 -1.1367 0.4468 <0.01 0.5984 >0.05
Y15 1.8931 1.8351 > 0.05 0.0995 < 0.01
Y21 -1.9097 0.3990 < 0.01 0.3219 < 0.01
y22 -0.9814 0.3591 < 0.05 0.3772 <0.01
Y23 -0.8005 0.3984 < 0.01 0.4050 0.05
Y24 0.2689 0.4481 >0.05 0.5896 >0.05
Y25 1.0099 4.9267 >0.05 0.4786 <0.05

5.3 Chapter Summary

This chapter introduced the approaches to be used for estimating parameters.

There is the classical approach of maximising the likelihood. Thus for

likelihoods derived in previous chapter, derivatives were computed. For the

Bayesian approach, two proper prior distributions were derived based on the

kind of transformations that involved the baseline parameters. Combining the

likelihood with priors, resulting in a posterior function, determines the kind of

estimation algorithm to be used. The Metropolis-Hastings algorithm was

preferred.

Finally the Bayesian approach was applied on Mango data while both

approaches were applied on the Kidney Infection data set. For the mango data

set, results show that it does not matter which transformation to use between a
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logit and log-log. Meanwhile the type of prior used does matter, with a more

informative prior II preferable. As for Kidney infection,data, the MLE method,

which only could be applied under the independence assumption, was less

preferred due to sample size and the visible dependence between failure times.

Thus giving the Bayesian approach superiority over the Classical approach.



CHAPTER6

OTHER MODELS WITH CATEGORICAL RESPONSE DATA

6.1 Introduction

A situation may present itself whereby we know the response outcome is

neither time related nor continuous. An example is a study that observes the

final response of a subject with regard to whether an event of interest has

taken place or not, disregarding the time at which 'it occurs. To illustrate
J

methods for analysing data of this nature, we start by describing the Linear

Models (LM). The classical linear model assumes a response random variable

Y, (i=l,2, ...,n) following a normal distribution, with expectation Il and

variance 02, and is denoted as

i= l,2, ..,n,

where

Ei -N(O, (2).

The expectation of the response variable ~j = E(Yi I z.) = zJI is a linear combination

of observable covariates and unknown parameters J31,132, ..... ,J3p. The task then is to

estimate the unknown parameters. A specialized field of linear models called

Generalized Linear Models (GLM), introduced by Nelder and Wedderburn

(1972) handles such kind of data. The above characteristics can be relaxed if

the assumptions mentioned below are adhered to so that data not normally

distributed can also be handled.

79



A distribution belongs to a class of family called exponential family

exponential family if its functional form can be expressed as: (Fahrmeir &

Tutz (1994))

j y 8 - b(8( I
fey I 8,<f» = ex~ a(<f» + c(y;8) ) (6.1)

where c(y;8) ~ 0 and is measurable, and 8 is called the natural parameter

which is a function of the mean, i.e. 8 = 8(f..ti).The component <I> is a dispersion

parameter. Several distributions belong to this class, including among others,

the Normal, Bernoulli, Poisson, etc.

GLM has been found to adequately handle qualitative (ordinal and nominal)

response data. When there is ordering between successive intervals, then data

is ordinal. Over and above naturally arising ordinal data, it can be created

from continuous data by means of thresholds. Conversion of continuous data

by dichotornising the entire continuous measurable space using a single

threshold to, such that Tzto or T<to, results in ordinal data with dichotomous

categories. Use of multiple thresholds to get interval data arises if the support

space of a continuous response variable is subdivided into multiple intervals

of interest and then labelled by numeric values, polychotomous response

categories. Use of power family transformations like logit, probit, log-log

links etc, to relate the expectation of the response variable with the predictor

variable has been found to yield good estimation results. Thus
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where g(.) is the link function. There exist link functions like logit link, which

has an error term with a Logistic distribution. The complementary log-log

link, also used in survival analysis, has error term with Extreme Value

(Gumbel) distribution, while probit link has a Normal distributed error term,

and finally the t-link utilizes the Student t-distributed error term. This chapter

briefly address the legit and probit links in GLM as alternative models for

interval data.

6.2 Generalized Linear Models for Binary Responses.

In carrying out an experiment, the response from experimental units may

consist of only two mutually exclusive outcomes. The outcome of a patient

undergoing a surgical operation may either be complete recovery or not, or

the outcome of an insect exposed to a lethal insecticide may be dead or alive.

These are merely a classification without any ordering, hence nominal

responses. For convenience, we let the two possible outcomes take numerical

values, i.e. let Y be a Bernoulli random variable such that:

{
I with probability11y-

- 0 with probability (1-11) .

Yet we can also use a threshold if we know that every insect could resist death

(tolerance) up to a certain amount of insecticide used, but beyond that

amount the insecticide will be lethal. We define T as the random variable

denoting the amount of insecticide used, and any amount Tc-to is lethal to the

insect, once again resulting in a Bernoulli random variable. For Yl,Y2, ... .Y;
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identically and independently distributed random variables representing the

n experimental units involved, we write

Prt Y, =1) = P(Ti::; to) = ~

The first two moments of a Bernoulli distributed random variable are given

by

E(Yi) = ~

Var(Yi) = ~(l-~).

(6.2)

As a linear model, the objective is to express the dichotomous responses as a

linear combination of unknown parameters and covariate Z=(Zl, Z2, ... ,zp),

which in this instance are observable. These are measurable variables, which

in their variation have an effect on the probability of a particular response.

The expectation of the response variables given the covariates relates to linear

predictor in that the dependence of !l on Z occurs through T1= zf3, (-oo<T1<oo ).

Meanwhile the random" component, which is the distributional function of Y

also relates to !lo Thus to reconcile the two disproportionate components, a

transformation that map the linear predictor TIfrom an unbounded linear

space to a probability space (0,1) is necessary, hence conforming to probability

rules. Such a function h is the link function

h(~i) = ZiP

J..ti= h-I(ZiP) = ~i'

Letting h-1=F be monotone differentiable, F is called a response function. The

(6.3)

class of distributions belonging to the exponential family have natural link

functions that relate the natural parameter to the linear predictor. The natural
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link function for a Bernoulli distribution is called logit of /1. Generalized linear

models that use the logit link function are called logit models, (Hosmer &

Lemeshow, (1989)). The function F is usually taken as the CDF of some

continuous distribution, for the reason given in the following theorem.

Theorem Let Y have a continuous cdf Fy(y) and define a 'random variable W such

that W = Fy(y), Then W is uniformly distributed on (0,1), i.e. pew ~ w) = w;

(O<w<1).

Proof: Casella and Berger (1990).

Since F is a cumulative distribution function, by the Theorem let W=F, thus

W~U(O,l). Taking a legit transformation

11= loi~),
E\l-w

then

f(11) = (1+ exp(11))2 •
(6.4)

This is a logistic probability density for Yl (-00<11<00) and

z·fl ( )

J' exp 11
P(yj = 1) = /1j = ( ( )) 2dfJ__ 1+ exp 11

1
(6.5)

There exist other link functions like probit, log-log, ete, for different distributions

within the exponential class of distributions. Albert & Chib (1993) discuss the probit.
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In the example of insects exposed to an insecticide, suppose T is distributed as N(O,!),

then the probability of an insect surviving the exposure is

1 lo 1
2

P(Y = 1) = ~ fe -"2dt = <p(to),
,,21t _~

(6.6)

where F=<pis a standard normal distribution function relating the expectation

to the linear predictor, and

1 Zi~_~

~j = <P(Zj~) = ~f e 2 dt .
,,21t -s-ee

(6.7)

Assuming that all experimental units are i.i.d, we can derive the likelihood,

making it possible to estimate the unknown parameters. By utilizing the

known distribution of the response variable, which in this case is Bernoulli,

the likelihood for all n units is denoted by

n

g(P I Zj,Yj) = TI[F(z;l3)] Yj ~-F(z;P)] I-Yj •

;=1

(6.8)

6.3 Generalized Linear Models for Polychotomous Responses

For independent binary response variables, the outcome follows a Bernoulli

distribution. For N repeated trials of this experiment the number of successes

or failures can be grouped together resulting in a Binomial distribution. Now

suppose instead of dealing with dichotomous responses, we have more than

two mutually exclusive response categories. The response variable can be

categorical (nominal or ordinal) or continuous. If continuous, then the

multivariate linear model suffices for the analysis of that kind of data, but our
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interest here is to address the categorical data. Example is the rolling a six-

faced fair die, where the mutually exclusive possible outcomes in a roll are

11,2,... ,61occurring with probability LlI, Ll2, ... , Ll6respectively, O<Llj<l. This is a

single trial multinomial distribution and is a generalization of the Bernoulli

distribution for more than two categories.

If a response is nominal there is no ordering, instead it is a classification or

discrete choice modelling of a subject's choice of one of several response

options. Then comparison can be made between a baseline category and the

rest of the r-I categories. To analyse this data, let random variable X take any

of the values j=11,2,....r},where

r

Pr(Xi= j) = 8j and L,8j=1.
j=1

(6.9)

The last condition implies that the probabilities of r categories are not

independent, but are independent only if r-I categories are considered. The rth

category that is omitted is known as the 'reference' category.

In exactly the same way that a Bernoulli distributed trial is extended to a

Binomial situation by repeated experiments, if N repeated independent trials

are executed and grouping together similar outcomes that belong to the jth

category such that Yj is the number of Xi's taking value j, then Yj is a

multinomial random variable with a distribution:

P ( Y Y) N! yl y,r Yt=yi. 2=y2,..., r=yr = 81 ···fu .
yt! ...yr!

Yj = O,l, .... ,N (6.10)
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r-I r

s, = 1- I,t:..jand LY j = N .
j-I j_1

A multinomial distribution belongs to the exponential family, thus can be

written as

Pr(Yr = Yr)=exP{Yr10J ~r )+NIOg[1- ft:..jl+c} j=1,2, ...r-L (6.11)
~ 1 t:..j J-I )

Since the model in use treat variable Y as a response, the expected probability

given the p global covariates is given by J.1 = F(zï'~), where F is the CDF

related to the link function of our choice. Whereas the baseline parameters are

category specific, the covariates can either be category-specific or global. In

this case the probabilities are a function of a vector of covariates. Hence

Pr(Yi=j)= t:..ijforj=1,2, ...,r-1

and

(6.12)

Therefore

Pr(Yi = r) = 1-t:..i1-...-t:..ir-l

1= (6.13)r-I

1+ Lexp (POj + ZiPj)
je l

while

exp( POj+ ZiP j)Pr(Yi = j) = --r--:-I_..::.....__-<---
1+ Lexp (POj + ZiPj)

j-I

(6.14)

(See appendix A3)
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Lack of independence between the response categories dictates that if r

categories are involved, only r(r-1)/2 pairs of responses can have their logits

formulated. Furthermore, the above model requires 2(r-1) parameter

estimates for a single covariate of which each is category specific. This model

therefore, would be difficult to estimate if several explanatory variables are

used with multiple categories.

Ordinal response data arises in situation where there is some ordering of

response categories, but the. magnitude between orders is not of any

importance. There are several logirs that can be used on ordinal data as

shown below:

1 Adjacent Categoricallogits

1 Pr(Yi = j) Il
og = z'p

Pr(Yi = j + 1) I

(6.15)

2 Cumulative logits

1
Pr(Yi ::; j) Il .

og = z.p
Pr(Yi > j) I

(6.16)

3 Continuation-ratio logits

I Pr(Yi = j) (.t

ag r = zit'
LP(Yi = s)
s=j+l

(6.17)

Of interest is that the cumulative logit is equivalent to Collett's proportional

odds (3.14) defined in terms of conditional failure probability, T/Z) = 1- Pj(z)

in survival analysis, (Albert and Chib (2001)). Also to be noted, is that if a log-

log transform is used in (6.16)with conditional probability of success instead
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of failure, then this result s in proportional hazard model (3.10). Ignoring the

covariate effect, the cumulative logit model is denoted as

I
Pr(Yi ::;j)

og =v.
Pr(Yi > j)

(6.18)

The Vjis called the 'cut-off' parameters. Agresti(1990) explain this model as

assuming a non-observable latent response variable Y· which is continuous

and dependent on covariates through ll(z)=z~. Suppose then that the cut-off

points, -OO=VO<Vl<...<Vr=oo,is such that the ordinal response Y is

Vj-l<Y*<Vj.

The likelihood is then formulated for the event as in form (6.8), using

appropriate probabilities, and finally parameters relating to the covariates

and baseline cut-offs are estimated.

6.4Gibbs Sampling for Nominal Responses using a Latent Variable

The Gibbs sampler is a special case of MCMC, and with some modification,

can be applied in a multidimensional problem it is also called alternating

conditional sampling (Geman etal (1995)).There are sub-vectors representing

the dimensions and a complete iteration of a Gibbs Sampler cycle through the

sub-vectors of ij draws each subset conditional on the value of all the others.

The idea is to generate random estimates of parameters from the conditional

distribution of parameters in question, while holding constant other related

estimates of parameters. This procedure is a method for generating a sample

from the marginal in an indirect way, by sampling instead from the
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conditional distributions that are known in statistical models, (Casella and

George, (1996)). This is done in the following steps:

1Begin with some initial guess or estimates of parameters, 8=\81,82,,,.8r) and

denote their initial values by 8~,8~,...,8~.

2 Generate random draws in sequence from the conditional posterior

distribu tions:

8(p+l)- P(8. I data 8P.)
JJ' -J j=2, ... ,r.

3 Repeat step 2 many times, say L, L-7oo, conditioning at each iteration on the

most recently generated parameter vector for the other partitions. Discard the

first P sets of 8 to avoid dependence on the initial values. Keep the next L-P

sets.

4 Check for convergence to ensure optimality. For large enough L, the

sequence of realized sets of parameter estimates would then approximate the

random sample emanating from f(8j I data), (GeHand et al, (1990)).

A simulated approach using data augmentation method assumes that the

observable variable Y is merely a categorized version of a latent continuous

variable W. In the case of a grouped response variable, W may be considered

as the unobserved underlying continuous variable. Thus W, the latent

variable is primarily used in this type of approach, called data augmentation
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or threshold approach (Fahrrneir & Tutz (1994)). The algorithm is expressed

as follows:

Start with values 8(0)generated from either the prior distribution for 8 or other

unbiased estimators of 8. Then iterate as follows:

Choose 8i+1of 8 from the conditional density P(8 I W(i),data)

Choose Wi+lofW from the density P(W I 8i+1,data)

If the values (8, W) given the values up to now depends only on the present

ones, then it is a Gibbs sampler (Lee, (1997)). After a large number of

iterations the resulting values of 8 and W have a joint density close to the true

density P(8,W I data). Successive 8i, 8i+1will in general not be independent

since each depend on the previous value of the parameter, but the ideal is to

obtain an independently and identically distributed set of observations of W

and 8. To attain the objective, one can run the process through k successive

iterations, retaining only the final values obtained on m different replications.

For the Bayesian estimation of the parameters for binary responses, let P(Yi=l)

be a Logistic function and introduce the latent variable Wl,W2,...WN into the

problem, where Wi has a Uniform(O,l) distribution. For a given matrix Z

(Nxp) of predictor variable and unknown vector of parameters rJ (px1), the

threshold approach postulates that the response variable YE[0,1] and the

unobservable latent variable W relate through

0< er < 1,
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Pr(Yi = 1) ~ Pr(Wi ~ ei),

c = exp(zJ3)
I 1+ exp(z;{3) .

Here er is the threshold or cutoff point. The joint posterior distribution of ~

and W for known prior distribution, n(~), observed values of Y and given

covariates Z is

= rr(f3) IT~(ZIP~ -log I:~ ) I(Yj = I)+ 1(9 < -log l:~. ) I(Yj = 0)}1(0.1)( wj) , (6.20)
j::;:::} I I

where I is the indicator function. Assuming a non-informative prior for ~,

then the marginal conditional distribution of ~l given the rest of the (3'sis a

Uniform(AL(I),Au(I)) distribution for 1= 1,2, ... -P where

I l+w
AL(l) = max[--(zP-Zjjl~1 +In( I »I(Yj = I'Zjl > 0)]

j Zjl Wj

I I-w.
Au(l) = min[--(zp-zjJ(31 +In( 1»1(\ =O,Zjl<0)]. (6.21)

j ZiJ wj

The conditional distribution of the latent variable Wi isgiven by

uniforn{ 0, exp(z;p) ) if Y, =0
n(Wj I P,y,z)- 1+ exp(zJl)

(6.22)
uniforn{ exp(z;p) ,1) if Yj =1

1+ exp(zjp)

Given starting values of ~ that can be any of the unbiased estimators of ~ like

the MLE or least square estimate, a cycle of the Gibbs algorithm (see
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Logitpol.m in Appendix B) will yield a Wand f3. The cycles are permitted to

run k times where k is large to obtain large sample from the marginal

posterior distributions.

Consider now the case where the response variable Y has more than two

(polychotomous) response categories and assume independence among the

repeated trials. This results in a data set of N response observations whose

distribution is Multinomial. Assuming a legit link function (see Appendix

A4), the probability of observing a jth category response follows a logistic

distribution given as:

Pr(Yi = j) = (6.23)
i= 1,2, ,N
j=1,2, ,r-l.r-l

1+ Lexp(z;p)
j=l

For easier illustration, let there be one explanatory variable, p=L The response

probability matrix Il, is a (N x k-i).

r-l

Let a = L,exp(zil3j) for j:;éj', then
jot j'

exp(Zil3f)/lij = --.::.....;_.....:..._.;___
1+ a + exp(zil3f)

Let

be the cut-off points. The transformation variable Wij has a uniform

distribution on interval (0,1), and the resulting distribution is a CDP of a
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logistic distribution with r response categories. The joint posterior distribution

of ~ and W (Nxr-L) given observed data is:

(6.24)

Letting the prior distribution of ~ be proportional to 1, then the conditional

distribution of the i,jthelement of Wis:

= uniform[ exp(zi~ j) 1
r-I ' 1

1+L exp(zi~ J
. j=1

(6.25)

To define the conditional distribution of ~j, let i(j) be the set of all i for which

Yj= j, then

[
1 {w .. (r-I j}]aj =max -In lj 1+ L,.exp(zi~j)

I(jl Z· 1-w·· je lI Ij-

is the lower limit of ~j if ZiO) > 0 and

[
1 {w.. (r_1 j}]bj= min -In __ 'J_ 1+ L,.exp(zj~)

I(Jl z. 1-w.. '-1I IJ j-

(6.26)

is the upper limit of ~j if Zi(j) > O.The reverse would be true if Zi(j)< 0 for the

upper and lower limits, and

n(l3j IW, y.. (3) = Uniformfaj.bj) j=1,2, ...r-1.
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An extension of the above result to encompass multiple explanatory variables

is such that j = 1,2,... .r-I: i=1,2, ... ,N; l=0,1,2, ... p; ~ is a (p+1xr-1) matrix, ~j=

WOj,~lj,...,~pj]', z: =[1 Zil,Zi2,..,.Zip].In exactly the same way as we derived the

above results, assuming a uniformly distributed latent variable W, the joint

posterior distribution of ~ and W given observed categorical data yl, .... ,yN

and explanatory variables z, is given by:

Letting the prior distribution of ~ be proportional to 1, then conditional

distribution of latent variable Wij is:

(6.28)

If i(j) is the set of all i for which Yr = j, then

(6.29)

is the lower limit of ~j'j' if Zi(j)> 0 and if i(j) is the set of all i for which Yi:;tj,then

(6.30)

is the upper limit of ~I'j' if Zi(j)> 0 (Appendix AS), and

1t(~ljI Wij,yi,~) = Uniformtas, bij) j=1,2,...r-1.
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6.5 Gibbs Sampling for Ordinal Responses Using a Latent Variable

For an explanatory variables z, p unknown parameters ~ and the observable

variable Y falling in any of the r-ordered categories, the idea is to utilize the

ordering of response categories. Take a continuous latent variable Wi

uniformly distributed over [0,1] interval such that the following would be

true:

j = 1,2, ... ,r; i=1,2, ... ,N

. exp(~+ z·ll)
Pr(Yi s J I z,~) = F(aj+zi~) = '

1+ exp(~ + zill)

The aj are the ordered cut-off points for the continuous latent variable W.

Figure 6.1: Example of cut-off points for the distribution of a latent variable

The joint distribution of ~, a, W, given the response variable Y and covariates

z is given by

1t(~, a,W Iy, z) oe 1t(~, a)
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(6.31)

Assuming a non-informative prior distribution for ~ and a, then the

conditional posterior distribution of latent variable Wi is given by

( '1 A ) - U of (exp(aj_1 + ZiP) exp(aj + ZiP) J \-I' hi hY, - °1t W1 t-',a, y, Z - nl orm , , v I W IC 1 - J.
1+ exp(aj_1 + ZiP) 1+ expïo, + ZiP)

The conditional posterior distribution for parameter ~J' given a, w, y, Z is

n(~l'I a, w,~ y, z) = U(AL, Au)

where

1 r-I

AL = maxlrnaxj-"- [In( ~) - aj - ~>il~l] }} ,
I J Zil I-wj loOI'

and

(6.32)

The posterior distribution for the cut-point aj is derived under the following

conditions:

i) If Y, = j then F(aj-l+zi (3)< Wi < F(<Xj+ z, (3)

ii) if Y, = j+ lthen F(aj + z, (3)< Wi < F(<Xj+l+ zi ~).

exptcq+ z·P). .Thus Wi < I Imphes that
1+ expïo, + ZiP)

W.
aj-l < In( I) - Zi~ < <Xj set of i's for which Y, = j

l-Wi

and

W. .
cq c lnï I )-zi~<aj+l set of I's for which Yre j+l.,

I-W.
I
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giving the posterior distribution of the cut-off points to be uniformly

distributed,

n(aj I ~, W, y, z) = Uniform(CL, Cu)

with

CL= max [max{In(~) - Zi~, aj-l}]
i l-W

I

Cu= min [mint In( Wi
) - Zi~, aj+l}].

I 1-W
i

(6.33)

Once again the maximisation (minimisation) to find the intervals CL (Cu) is

only over the set of i's for which Yi= j (Yi = j+1).

To carry out a Gibbs sampler in this case, we start with good estimators of ~

and a like the MLE or least square estimate, and then simulate from

conditional posterior distribution of aj in (6.33), followed by simulating the

latent variable and finally use the conditional posterior distribution of ~ in

(6.32).

6.6Gibbs Sampling on Tri-Continental AIDS Data

Illustration V: Data is from an AIDS study on sero-converted men in the

Amsterdam, Netherlands from 1985 to 1996,when the study terminated. This

was a section of the study termed The European Seroconverter Study among

Injecting Drug Users whose data was analysed by Prins and Veugelers (1997).

117 subjects entered the study at different times, a year after sero-conversion
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with earliest entrant being followed for a period of a little over 10 years. Data

is only on subjects who were AIDS free one year after sera-conversion.

Measured on each patient are the following variables:

1 Entry Time: Date of study entry a year after sera-conversion

2 CD4: The number of CD4 cells per micro-litre of blood at entry

3AIDS:Time (years) to diagnosis of AIDS if subject is HIV positive otherwise

it is termination period.

4 AIDS Status: Indicator for subject's AIDS status (Oenegative: l=positive)

5Death: Time (years) to death if AIDS related, otherwise its termination

period study for those subjects alive.

6 Death Status: Indicator for death status (O=dead l=alive)

7 Age: age of participant at entry point

Using the joint posterior (6.20)with AIDS status (I or 0) as a nominal response

variable, we used a Gibbs Sampler (Logitbi.m in appendix B) to simulate the

parameters from conditional distributions given in (6.21) and (6.22) with a

latent variable method to estimate the probability of developing AIDS given

the explanatory variables age and CD4 cell counts of a patient at entry point.

50000Gibbs cycles was run. The parameter estimate for age is -0.08 (-0.14, -

0.03) and for the log of CD4 levels at entry is -0.8211 (-1.35, -0.26), which

implies that probability of developing AIDS is lowered for high CD4levels at

entry and older males. The odds in favour of developing AIDS decreases by

e(-O.8211)=0.44for every unit increase in the log of CD4 cell counts.
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Figure 6.1: A frequency histogram to show the posterior distributions of log(CD4)

and age explanatory variable parameters.

8XO~----------~------------~----------~

-1 -0.5
Estirrated log(CD4) ooeffident

o

OL__---
-0.18 -0.16 -0.14 -0.12 -0.1 -0.00 -0.00 -0.04 -0.<12 0

Estirrated age cx:Sfident

The posterior distributions in terms of frequency histograms of the two

coefficients of explanatory variables in the AIDS data are shown in Figure 6.1.

The two parameters show signs of being negatively skewed.

6.7Chapter Summary

A computational method for the Bayesian analysis for the Logistic regression

is given in this chapter snd applied to AIDS data. The method handles both

nominal and ordinal response variables with multiple categories. Thus for

99



time related variables whose exact values cannot be ascertained, hence

converting it to discrete variable, this method can be applied. Application of

this method to AIDS data reveal that the levels of CD4 and age of a patient are

factors influencing the probability of a change in status from AIDS-free to

AIDS. Albert and Chib (1993) applied a similar method with probit link and

latent variable on some binary and polychotomous response data.
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CHAPTER 7

DATA ANAL YSXSAND RESUL I'S

7.1Simulation Results

7.1.1Introduction

A Matlab (1992) computer program was used to generate and analyse both

the simulated and ACTG 175 data sets (see Appendix B7 for programs). For

theMl.E method convergence for small samples occurred after a few iterative

searches, but got slower (8 seconds) for large samples of size 200. Thus to

draw m repeated samples posed no problem. For the MLE approach, 2000

samples were generated for samples sizes of 50 and 100. Meanwhile the

Bayesian approach was affected more by a slight increase in sample size. The

method took 6 minutes to make 2000 cycles for a sample of size 50. This not

only constrained the number of samples that could be generated, but also

curtailed the use of large sample sizes. At most 300 samples were generated

with maximum size of 50 observations. The univariate parameter estimates

when assuming Weibull distributed lifetimes were computed using SAS

(1986).

7.1.2Results from Simulated Bivariate Data

To ascertain the validity of methods suggested in this research, they were

applied to some simulated data, and the sampling distribution of the

estimated parameters determined. Some m pseudo samples of size 50 were
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simulated from the Farlie-Morgenstern (F-M) distribution (3.37) with some

specified measures of association and covariate parameters. Using these

samples, parameter estimates were computed using each of the methods

derived in Chapter 3. An array of marginal distributions can be used,

including among others, the Exponential, Weibull, etc. For simulation, the

Exponential marginal distributions for each of the failure times were

preferred. (Simfm.m in Appendix B).

The joint probability distribution function for the Farlie-Morgenstern copula

is denoted by

(7.1)

with K the measure of association between the failure times such that the

correlation is p=K/4. For this model the maximum K attainable is I,

representing a not so strong dependency. With an exponential marginal, the

hazard function is of the form t..=eZ~ . To simulate the two random variables

Tl and T2, first generate Tl from the marginal distri~ution F(b)= 1-e-Al, and

thereafter for given values of Tl simulate T2from the conditional distribution

F(b I ti).

(7.2)

This is done by setting

Tl = -t..-llog(l-UI)and T2=-t..-Ilog(1-v),

where UIand U2are Uniform(O,l), and
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(1- K - 2Ka) - ~(1+ K - 2Ka)2 - 4u2(1- 2a)v = with a=exp(-Ah).
2K(I- 2a)

Steps towards generating Tl and T2are as follows;

o A sample of size n of a single normally distributed covariate, Z-N(O,l),

is generated, and a vector of hazard functions obtained where,

\ = e~Zi. This assumes common hazard functions for both failure

times, unless the Wsare made different.

o For given Ai, generate Tl from an Exponential distribution by the

inversion method, (Devroye (1986)).

II Finally using the values of Tl, generate T2using the inversion method

on the conditional distribution (7.2) by calculating v.

• To address the issue of intervals, the simulated values for both

lifetimes are then grouped into non-overlapping intervals. The

following intervals were used: {0-0.5; 0.5-1.0; 1.0-2.0; 3-oo} resulting in 3

intervals with observations belonging to the open interval brought to

the 3rd as censored.

An alternative to a Farlie-Mogenstern copula would be to use the Clayton

Copula distribution, which allows for a stronger dependence between Tl and

T2, to generate the data. The survival function by assuming Exponential

marginal distribution is

~ ~
S(t"t2)=(eK +e " -IrK.
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Hence setting Ai= ePZ; to account for the covariate effect, then Tl=-A-1log(1-Ul)

and T2=-A-1K1.og(v)where v= (1- a) + a(I- u2fo+K)-1 with a=expï-Xti), (Prentice

and Cai, (1992)).

Using the Exponential marginal distributions with a Farlie-Morgenstern

copula, the baseline conditional survival probabilities Pmj for the three

intervals from each failure type were computed as {0.606, 0.606, 0.368} which

are transformed by log-log to give Ymj={-0.6914,-0.6914, O}for PHM, or alogit

transform with <Xmj={-0.4305,-0.4305, 0.5408} for the POM. Of interest to note

is that these conditional probabilities are based on the independent marginal

distributions. Therefore if some association between the variables exist, it

would be revealed by the data. The baseline parameter values from the two

transformations were taken as true values. To assess the performance of the

independence assumption with .proportional hazard model IWH (3.26), data

with two failure times simulated using either the K=O(p=O)or K=l (p=0.25) on

the F-M copula was used, (Indmlesim.m in Appendix B). Results from the

method of Maximum Likelihood and posterior distribution (Indposim.m in

Appendix B) for the parameter estimates are given on Tables 7.1.1-7.1.4. SE

and CP are respectively the sampling averages of standard errors (from

diagonal of H-l or H-IDH-l of estimator) and the coverage probability of the

95% confidence interval or 95% posterior density regio.n. SSE is square-root of

the sampling variance, of the estimator ~ where, ~I is the1=1 .

m-I
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estimate from the lth sample. Estimate (Est.) is the value of ~ obtained by

averaging over all samples, while bias is the difference-between the true value

and the estimated value.

Table 7.1.1: Maximum Likelihood mean estimates of parameters computed under

IWH model, for data simulated from a F-M copula using 2000 samples, n=50,

~=0,25, K=O,and K=l.

Naïve Robust
Par. p Mean Bias SSE SE CP SE CP

~ 0 0.2592 0.0092 0.1238 0.1197 0.938 0.1155 0.929
0.25 0.2528 0.0028 0.1313 0.1183 '0.922 0.1216 0.930

yll 0 -0.7173 -0.0260 0.2374 0.2334 0.949 0.2337 0.949
0.25 -0.7098 -0.0185 0.2329 0.2327 0.944 0.2329 0.944

yl1 0 -0.7143 -0.0230 0.3219 0.3079 0.932 0.3078 0.932
0.25 -0.7207 -0.0294 0.3170 0.3091 0.941 0.3088 0.941

yl3 0 0.0169 0.0169 0.3496 16.230 1.000 0.3251 0.938
0.25 0.0082 0.0082 0.3515 28.420 1.000 0.3245 0.935

y11 0 -0.7126 -0.0213 0.2371 0.2329 0.947 0.2334 0.948
0.25 -0.3333 0.3580 0.4138 0.2058 0.587 0.2064 0.588

y 22 0 -0.7164 0.0251 0.3242 0.3090 0.944 0.3086 0.943
0.25 -0.4469 0.2444 0.4130 0.3188 0.870 0.3184 0.868

y13 0 0.0208 0.0208 0.3395 0.3271 0.940 0.3240 0.939
0.25 0.2427 0.2427 0.5796 97.609 1.000 0.3828 0.894

The MLE approach (Table 7.1.1) is sensitive to small sample sizes as

evidenced by its tendency to either crush or return biased estimates with

highly inflated standard errors, when estimating parameters for samples of 30

or less observations. The effect of small sample is shown by the standard

errors of Y13 and Y23 which are inflated. The bias in estimating the baseline

parameter for the second failure when there is dependence (p=0.25) is

conspicuously evident compared to bias when failures times are independent.
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The covariate parameter is less affected. The standard errors by naïve

estimator are highly erratic. The robust estimator's endeavour to correct the

anomaly succeeds quite well.

Table 7.1.2: Maximum likelihood mean estimates of parameters computed under

IWH, for data simulated from F-M copula using 2000 samples. n=100, f3=0.25 and

K=O and 1.

Naïve Robust
Par _Q Est. Bias SSE SE CP SE CP
~ 0 0.2553 0.0053 0.0838 0.0820 0.940 0.0808 0.939~

0.25 0.2426 -0.0074 0.0877 0.0813 0.934 0.0855 0.944
yll 0 -0.7078 -0.0165 0.1653 0.1632 0.9450 0.1633 0.949

0.25 -0.6960 -0.0047 0:1609 0.1625 0.950 0.1625 0.950
yl2 0 -0.7045 -0.0132 0.2153 0.2131 0.950 0.2131 0.950

0.25 -0.6925 -0.0012 0.2150 0.2126 0.941 0.2125 0.941
yiJ 0 0.0014 0.0014 0.2311 0.2257 '0.940 0.2246 0.939

0.25 0.0048 0.0048 0.2319 0.2269 0.949 0.2253 0.947
y21 0 -0.7002 -0.0089 0.1665 0.1627 0.946 0.1629 0.946

0.25 -0.3292 0.3621 0.1444 0.1443 0.950 0.1445 0.950
y12 0 -0.7014 -0.0101 0.2141 0.2133 0.949 0.2132 0.949

0.25 -0.4239 0.2694 0.2213 0.2180 0.950 0.2181 0.950
y13 0 0.0028 0.0028 0.2343 0.2264 0.939 0.2251 0.938

0.25 0.1892 0.1892 0.2743 0.2665 0.942 0.2651 0.942

Finally for samples of size 100 the MLE method begins to display stability,

(see Table 7.1.2). Increasing the sample size to 100 greatly improves the

standard errors of the parameter estimates resulting inmore precise coverage.

However the parameter estimates for the second failure remains different

from the assumed true parameter values if the association measure is not

zero.



failure when dependence is not accounted for, persists. It is vital to

Bayesian methods of using posterior distributions with Priors I and II were

also applied. 274 samples were used in the Bayesian approach with a

Metropolis-Hastings algorithm, compared to 2000 samples for the MLE

method. Prior II return large bias for values of ~, compared to both prior I

and MLE estimates, (see Table 7.1.3).

Table 7.1.3: Posterior means estimated using [WH for samples of size 50 generated

from F-M copula with ~ = 0.25 and 2000 cycles. 274 samples were generated.

Prior I Prior II
Par. P Mean Bias SSE CP Est. Bias SSE CP

0 0.2618 0.0118 0.1269 0.987 0.2697 0.0197 0.1265 0.993
~ .25 0.2518 0.0018 0.1352 0.971 0.2601 0.0101 0.1343 0.981

0 -0.7232 -0.0319 0.2205 0.983 -0.7696 -0.0780 0.2205 0.990
y" .25 -0.7196 -0.0283 0.2249 0.971 -0.7777 -0.0860 0.2403 0.985

0 -0.7235 -0.0322 0.3167 0.990 -0.8002 -0.1090 0.3128 0.987
y" .25 -0.7325 -0.0412 0.3344 0.986 -0.7751 -0.0850 .0.3250 0.992.

0 -0.0064 -0.0064 0.3158 0.980 -0.0669' -0.0669 0.3432 0.973
y13 .25 -0.0046 -0.0046 0.3344 0.914 -0.0094 -0.0092 0.3433 0.974

0 -0.7346 -0.0433 0.2510 0.997 -0.7616 -0.0702 0.2535 0.987
Y21 .25 -0.3554 0.3359 0.3859 0.686 -0.4069 0.2844 0.3492 0.883

0 -0.7300 -0.0387 0.3125 0.967 -0.7259 -0.0353 0.2830 0.987
912 0.25 -0.4623 0.2290 0.3917 0.857 -0.5152 0.1761 0.3497 0.947

0 -0.0614 -0.0614 0.3252 0.990 -0.0523 -0.0523 0.3327 0.980
y~J .25 0.1436 0.1436 0.4062 0.903 0.1265 0.1265 0.3697 0.911

The use of posterior measures does well in the estimation of standard errors,

hence a good coverage, but the issue of deviating estimates of the second

acknowledge that since data is correlated, we do not expect the baseline
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parameters for the second failure to be estimated as well as those for the first

failure time. Interestingly, the sampling standard errors using both priors are

consistently small, comparable to the sandwich standard error estimates,

actually remains so even when correlation is taken aboard. In the absence of

dependence between failure types, the standard errors of parameters relating

to conditional probabilities are also well estimated. Furthermore, data

simulated using a Farlie-Morgenstein copula with a fairly weak association of

K=0.6and same Exponential distribution for failure times, hence same true

values as above, was generated. One again a Metropolis-Hastings MCMC

algorithm on a nonparametrie Clayton Copula with proportional hazard

model (CCH) was used to analyse the data and results given in Table 7.1.4.

Table 7.1.4: Posterior means estimated using a CCH with prior I for samples of size

50 generated from a F-M copula with f3 = 0.25 and 2000 iterations. 274 samples were

generated.

Para ~ yll A y21 y22 y23yl2 yl3
Est 0.2715 -0.6949 -0.6884 -0.0017 -0.6679 -0.7009 -0.0136
Bias 0.0215 -0.0036 0.0029 -0.0017 0.0234 -0.0096 -0.0136
SSE 0.0667 0.0670 0.0713 0.0688 0.0644 0.0811 0.0649
CP 0.9533 0.9533 0.9567 0.9500 0.9500 0.9500 0.9500

The CCH model returns good estimates with small SSE. The baseline

parameters also have good coverage probabilities. The fact that we can also

ascertain the measure of association between the failure times augurs well for

the method. The graph below (Figure 7.1.1) shows posterior distributions

parameter coefficients B and the measure of association.
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Once again it has been demonstrated that the ability to estimate using a

classical approach is affected by the small sample size hence an improvement

is brought about by increasing the simulated data observations to 100.

Meanwhile the more stable results from Bayesian approach come at price,

since this requires a large number of cycles to converge, explaining why a

small number (2000) of cycles was used. Due to similarity in results obtained

from either PH or PO transforms, only PH was used in analysing simulated

data. Prior type II tends to perform better. Finally, the results show that if

dependence exist between lifetimes, then model that account for the measure

must be used.

Figure 7.1.1: Histograms showing the posterior distributions of simulated covariate

and dependence parameters from 300 samples using a CCH model with prior 1.
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7.1.3 Simulation Data with Dependent Visiting Times

In this section, simulated data is used to assess the effect non-compliance to

predetermined visiting times has on the estimation of parameters values. The

model (3.24)shall be applied to the simulated data. To simulate pseudo data,

assume a lifetime data that follows an Exponential distribution, X-Exp.(0.3),

(0<X<12)with each integer value representing an interval. The assumption is

that the actual lifetimes are not observable (latent) but we can observe the

intervals, (t j_1 ' t .]. With intervals and distribution now known, failure

probabilities for each of the 12 intervals plus the open interval involved were

computed using

-0.31)'_1 -0.31).gj = e -e j = 1,2,... ,13, where h3=oo.

Let Pj j=l,2,oo.,12, again be the conditional probability of surviving beyond

t interval given survival to its beginning, these are computed to be 0.7408for

all intervals. For explanatory variable effect, a single normally distributed

variable with 50 observations with mean and variance of 0 and 1 respectively

(Vispos.m in Appendix B), were simulated. Also of importance is knowledge

of each unit's frequency of visits prior and post failure time, since we are

interested in the relationship between visiting compliance and failure. For

each unit, a binary random variable lljs taking value 1 when a unit makes visit

before failure at j and 0 otherwise, thus the parameter A allows for test of

compliance before or after failure was used. Also incl~ded is the constant !lj,

specific to interval j and the effect of covariates on the compliance

probabilities (3.23)is measured by parameter v.
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For true values of J..lj=1.25-0.25(j-1},13=0.30,A=l, v=-0.5, and for each sequence

a failure interval was generated, and then the visiting status for each interval

was subsequently generated. Using a Metropolis-Hastings algorithm in blocks

on model (3.24)with a PH transform, one complete cycle accomplished by:

o Simulating values of Pj simultaneously from a proposal distribution

Multivariate Normal MY(P,:L}.:L is a diagonal matrix with all its

elements equal 0.4. A logit transformation on the hazard was applied

hence prior II was used. Meanwhile the rest of the parameters in other

blocks are held constant.

• Next values of J..lj,A, and v were also simulated from a MY proposal

distribution with current values of Pand 13.

• Finally the value of 13was simulated to complete a cycle. This was

iterated 2000 times.

The results obtained from simulated data are given as ~=0.3138 (0.015;0.630),

~=1.4962 (0.917;2.000) and v =-0.8573 (-1.281;-0.467).The plot in Figure 7.1.2

shows the estimated values of explanatory variable returned by the jumping

distribution. The plot reveal some stabilization and hence convergence in the

2000 cycles. A plot of the visiting probabilities at each of the 12 simulated

intervals is shown in Figure 7.1.3. The simulated data reveals decreasing

compliance probabilities for increasing interval numbers with prior-to-failure

visiting probabilities higher than after failure for both true and estimated

values as indicated by the positive value of the estimated parameter.
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Figure 7.1.2: 2000 iterations from a Metropolis-Hastings algorithm for the

explanatory variable coefficient with a proposal distribution of N(~(t-1),O.3).
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Table 7.1.5: Results of parameters estimates obtained from simulated visiting data

Interval Pj A

!lj 1tSj 1tAj 1tSj 1tAj

1 1.5 1.01 (-0.05,2.21) 0.9246 0.7330 0.9241 0.8176
2 1.25 1.08 (0.29, 1.88) 0.9293 0.7465 0.9047 0.7773
3 1 0.50 (-0.24, 1.25) 0.8804 0.6225 0.8808 0.7311
4 0.75 0.86 (0.07, 1.56) 0.9134 0.7027 0.8520 0.6792
5 0.5 0.22 (-0.42,0.80) 0.8476 0.5548 0.8176 0.6223
6 0.25 0.65 (-0.04,1.35) 0.8976 0.6570 0.7773 0.5622
7 0 0.10 (-0.48,0.67) 0.8315 0.5250 0.7311 0.5000
8 -0.25 -0.60 (-1.27, 0.10) 0.7102 0.3543 0.6792 0.4378
9 -0.50 -0.40 (-1.03,·0.18) 0.7495 0.4013 0.6225 0.3775
10 -0.75 -0.52 (-1.27, 0.12) 0.7264 0.3729 0.5622 0.3208
11 -1.00 -1.11 (-1.91,-0.23) 0.5954 0.2479 0.5000 0.2689
12 -1.25 -1.59 (-2.44,-0.70) 0.4766 0.1694 0.4378 0.2227

The estimated coefficient for the parameter "A of the visiting compliance

variable (before/after) is overestimated, (See Figure 7.1.3).
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Figure 7.1.3: True and estimated probabilities of making a visit before and after

failure.
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The effect of compliance cannot be ignored since it affects the estimation of

baseline survival probabilities. (See Finkelstein et al (2002».

2 4 6
Visiting Interval

8 10 12

+ Est. Before - - - True Before
* Est. After ------ True After

113



7.2 Results from AC'fG 175AIDS Data

Background information on the design and analysis of ACTG 175 study data

was described in Chapter 1. Iri this section we apply some of the models

derived in Chapters 3, 4 and 5. Specialized medical terms have been used to

describe the study, hence brief information on HIVand the meaning of some

of the related key words used are explained in the next section.

7.2.1Information on HIVand Treatment therapies

Human immunodeficiency virus (HIV) was isolated almost at the same time

at three different places by three independent groups of scientists. A French

cancer specialist Luc Montaigner who is a scientist at Pasteur Institute in Paris

isolated a human retrovirus from the lymph node of a man at risk of Aids.

Almost simultaneously, two separate American scientists in Robert Galla of

the National Cancer Institute in Bethesda, Maryland and virologist Jay Levy

of the University of California in San Francisco also isolated the same

retrovirus from people with Aids. The virus was subs~quently named HIV, a

virus that plays a pivotal role in progression towards AIDS. HIV is spread

through exchange of body fluids like semen, blood and blood products. Since

1984,its been known that HIV enters human cells by binding with a receptor

protein called CD4 located on human immune cells surfaces. A person

infected with HIV gradually loses immune function, thus rendering him/her

fatally susceptible to opportunistic infections (infection by organism that do

114



not under normal circumstances cause disease except in people whose

immune system has been greatly compromised).

Ribonucleic Acid (RNA) has the same structural composition as

Deoxyribonucleis Acid (DNA), a genetic material that ~arries information that

determines protein structure in every cellular organism. HIV RNA belongs to

the ·single strand type of viruses called retroviruses. On entering a host, HIV

binds to specific receptors (CD4 and Chemokine receptors) found on the

surface cells of a host. CD4 T-4 cells are responsible for every human body's

immunity. On release into the cell, a viral protein called Enzyme Reverse

Transcriptase (RT) converts the single strand RNA into double strand DNA

and is subsequently joined into the cellular DNA chain for multiplication.

After multiplication, a protease protein facilitate the formation of new single

strand HIV RNA, and this exit the cell ready to infect other cells. During the

process of replication, CD4 cells get destroyed directly. The destruction of

CD4 occurs gradually in stages that determine the progression of a

seroconverted patient, culminating in AIDS when the cell counts fall beyond

200per millimetre of blood.

The only available intervention on the deteriorating status of an AIDS patient

is through the use of Anti-retroviral (ARV) drugs, which are therapeutic in

nature. Available ARV exploits the characteristic behaviour of the virus. The

nucleosides for instance, are viral DNA-chain terminator in that if the virus
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mistakes the drug for viral DNA nucleotide, then it gets attached to the DNA

chain, terminating any replication. Some of the available nucleosides are

Zidovudine (AZT), Didanosine (DDI), Zalcitabine (DDC) and Stavudine

(d4T), among others. Some of these treatment therapies were administered to

patients in the ACTG175 study.

7.2.2Univariate Cox's models on Failure Times

The preliminary descriptive statistics on actual measure of CD4 cell count and

plasma concentrations of HIV RNA for the sample data from ACTG175 is

given by Katzenstein et al (1996).Results are based on the 348 patients having

their follow-up data for both CD4 cells count and HIV RNA levels over the

three and half years of study. Table 7.2.1 show the distribution of patients

according to failure/ censored for each of the CD4 and RNA intervals.

The failure for CD4 variable is a 50% decline in CD4 cells from the baseline

entry count, while a unit increase of log base 10 measure of plasma

concentration of HIV RNA was used as an endpoint for the RNA variable.

Attention should be paid to the fact that this data has overlapping intervals

and data reported are the observation's endpoints. Inevitably, some units

have their times transcend over several intervals. This will influence the

computation of interval conditional probabilities, sinceany unit's contribution

to an interval is taken aboard even if its endpoints are not in that interval.
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Table 7.2.1: The number of observations in each interval of the two failure days,

CD4 , RNA
Time

Interval
Failure Censored Failure CensoredTime

Interval
0-56
56-140

0-56
56-140

To show the distribution of patients who experienced failure in CD4 cell

counts during the study period, Figure 7.2.1 a histogram depict this

information. Since patients' exact failure time is not known, shown in the

histogram are the upper-end points of a given patient. The failures are

clustered into two groups, with the first early group's failure occurring

between 140 and 425 days. A temporary absence in of failure, then failures

resume at 500 days, peaking at 800days, and then declines gradually.

140-224
224-308
308-392
392-476
476-560
560-644
644-728
728-812
812-896
896-980
980-1064
1064-1148
TOTAL

140-392
392-694
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Figure 7.2.1:A frequency histogram to show distribution of time to failure for CD4

cell counts. (failed units only)

A decline by 50%, seemed to occur mostly between 700 and 1100 days after

assignment to treatment as shown on Figure 7.2.1, whereas increase in HIV
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RNA peaked between 140 and 700 days. A decline in CD4 cells is generally

superseded by increase in RNA levels, as indicated in Table 7.2.1. At 140 days,

5 patients under treatment had experienced a unit increase in viral load, yet

only one patient had CD4 cells below 50% of the entry value at that time.The

time to 50% decline in CD4 cells count does not follow a Weibull distribution,

hence parametric inference on this data will be kept at minimum.
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The departure point of analysis of ACTG 175 data was through the use of a

univariate proportional hazards and odds models on individual failure times,

using model (3.16) with all 14 explanatory variables described in Chapter 1

included in the regression. The Metropolis-Hastings algorithm was used with

explanatory variables coefficients estimated simultaneously in a one block

and the interval specific baseline parameters simultaneously simulated in

another. For each block of parameters, a Multivariate Normal was used as a

proposal distribution with a vector of either i3 or y (updating values), and

variance matrix from information matrix of maximum likelihood estimates.

(See Indrnleaid.m in Appendix B). Due to the size of the data set hence was

slow to make a complete cycle, 5000 iterations where done.

Table 7.2.2: Estimated posterior means of explanatory variable coefficients for

univariate failure times using the PHM model.

CD4 Failure Time RNA Failure Time
Prior II Prior I Prior II

Variable Mean 95%HPD Mean 95%HPD Mean 95%HPD
Age 0.012 -0.01,0.04 0.0009 -0.02,0.02 0.004 -0.02,0.03
Gender -0.183 -0.44,0.01 0.2986 -0.06,0.49 0.435 -0.05,0.73
Kamofsky -0.025 -0.04, -0.01 -0.0257 -0.04,-0.00 -0.018 -0.02,0.00
ZDV 0.573 0.43,0.70 0.6587 0.53,0.84 0.511 0.41,0.70
Weight -0.008 -0.03,0.01 -0.0131 -0.03,0.00 -0.012 -0.03,0.00
Homosexual 0.341 0.16,0.57 0.0701 -0.27,0.36 0.054 -0.32,0.31
Symptomatic 0.958 0.79,1.06 0.5417 0.41,0.66 0.515 0.45,0.59
ID use -0.360 -0.85,0.08 -0.2965 -0.98,0.23 -0.320 -0.91,0.12
Ethnic white 0.951 0.54,1.28 0.5491 0.12,0.93 0.405 -0.08,0.80
Ethnic black 1.162 0.59,1.66 0.6844 -0.03,1.28 0.494 -0.10,0.93
Hispanic 0.501 -0.10,0.95 1.0021 0.57,1.44 0.692 0.37,1.15
DdI -0.419 -0.51, -0.30 -0.6322 -0.78,-0.50 -0.725 -0.88,-0.49
AZT + ddI -1.051 -1.13, -0.94 -0.9234 -1.16,-0.92 -1.074 -1.20,-0.99
AZT + ddC -0.713 -0.78, -0.65 -0.5438 -0.72,-0.~4 -0.702 -0.90,-0.60
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The results (Tables 7.2.2, 7.2.3 and 7.2.4) emanating from univariate analysis

of the sample data suggest that neither age, gender and weight has significant

effect on both time to 50% decline in CD4 cell counts and time to increase in

viral load measured by HIV RNA for all models applied. The two transform

models PHM and POM applied under Bayesian method gave similar results,

but the PHM under maximum likelihood estimation method gave out

differing results.

The Bayesian approach has the following variables featuring in all transforms

irrespective of prior type, as having significant effect, on both failure times:

History of antiretroviral use (ZDV), having AIDS symptoms at entry and

using DDI, AZT+DDI or AZT+DDC. ZDV and symptomatic hasten time to

failure. The effect of all ARV's is slowing progression towards failure relative

to AZT alone, as shown by negative estimated values even though it has

slightly varying effect on both failure times and among themselves. The effect

is in the following order: AZT+DDI is more potent, followed by AZT+DDC,

DDI and AZT in that sequence. The rest of the variables fluctuate between

having effect for one model, and not for the other. What is apparent is that

some covariates have differing effect on the two failure times. A high

Karnofsky score at the commencement of the study signify a lower risk in

time to CD4 decline, yet doesn't have effect on time to increase in viral load.

This is also true with homosexual tendencies, which increases the risk of
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decline in CD4 cells but doesn't have effect on time to unit increase in log of

viral RNA.

Using the classical approach by estimating MLE's using univariate PH

models, results show (Table 7.2.4) that only ZDV, symptomatic signs, and all

ARV affect the progression time to decline in CD4 cell count. Meanwhile time

to a unit increase in IOglOof viral load is affected by ZDV, symptomatic signs

and AZT +DDI combination only. The rest of the variables are not significant.

This begins to show the difference between the two approaches.

Table 7.2.3: Estimated posterior means of explanatory variable coefficient for

univariate failure times using the POM model.

CD4 Failure Time RNA Failure Time
Prior I Prior II Prior I

Variables Mean 95% HPD Mean 95% HPD Mean 95% HPD
Age 0.0107 -0.01,0.03 0.008 -0.01,0.03 0.0012 -0.03,0.03
Gender -0.2209 -0.54,0.11 0.024 -0.16,0.37 0.3537 0.02,0.60
Kamofsky -0.0397 -0.05,-0.02 -0.027 -0.04,-0.01 -0.0242 -0.04,-0.01
ZDV 0.6394 0.43,0.82 0.680 0.51,0.80 0.6088 0.52,0.73
Weight -0.0100 -0.02,0.01 -0.007 -0.02,0.01 -0.0116 -0.03,0.01
Homosexual 0.1143 -0.23,0.42 0.096 -0.11,0.29 0.1684 -0.14,0.53
Symptomatic 0.8893 0.70,1.07 0.905 0.82,0.97 0.4844 0.31,0.89
ID use -0.7625 -1.63,0.21 -0.441 -0.78,-0.11 -0.0473 -0.49,0.41
Ethnic white 1.8027 1.20,2.33 0.871 0.52,1.28 0.7449 -0.10,1.35
Ethnic black 2.0732 1.20,2.66 1.049 0.62,1.81 1.0667 0.41,1.61
Hispanic 1.0088 0.31,1.79 0.200 -0.24,0.78 1.2733 0.64,1.87
Ddi -0.4967 -0.69,-0.33 -0.506 -0.62,-0.43 -0.6017 -0.79.-0.49
AZT + ddi -1.2413 -1.52,-1.09 -1.046 -1.16,-0.89 -1.3951 -0.79,-0.49
AZT+ ddc -0.7500 -1.07,-0.54 -0.577 -0.72,-0.49 -0.6064 -0.75,-0.49

The other variable that has a significant effect on time to decline in CD4 cells

counts is ethnicity (white and black), which has a high risk to decline in CD4
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cells. Thus both white and black ethnicity has increased risk of time to decline

in CD4 in comparison to Other races.

The results mirror the ANOVA findings by Katzeintein et al (1996), using the

means of CD4 cell counts and log of HIV RNA concentration levels found per

cubic millimetre of blood extracted from patients. A univariate analysis of

time-to-increase in HIV RNA using the same covariates reveals a similar trend

with some minor deviations.

Figure 7.2.3: Frequency histograms from 5000 MCMC simulations for some of the

significant covariates using POM with Prior Ion RNA time to failure.
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Table 7.2.4:Maximum Likelihood estimates of explanatory variable coefficients

using univariate PH models.

CD4 Failure Time RNA Failure Time
Variable Estimate STD p-value. Estimate STD p-value
Age 0.0187 0.0125 0.1336 0.0112 0.0128 0.3844
Gender 0.1027 0.4648 0.8258 -0.2091 0.5302 0.7040
Karnofsky -0.0121 0.0103 0.2420 0.0044 0.0109 0.6892
ZDV 0.7351 0.2364 0.0020 0.6523 0.2363 0.0058
Weight -0.0026 0.0099 0.7948 -0.0069 0.0099 0.4902
Homosexual -0.3774 0.4116 0.3576 0.3236 0.4916 0.5092
Symptomatic 1.0400 0.2857 0.0000 0.7100 0.2866 0.0136
ID use -0.4419 0.3699 0.2340 -0.2779 0.3955 0.4840
white -0.1157 0.8647 0.8966 0.1473 0.8916 0.8650
Black -0.0529 0.9092 0.9522 0.2800 0.9409 0.7718
Hispanic -0.7715 0.9153 0.4010 0.6839 0.8979 0.4472
Dd! -0.6389 0.3003 0.0340 -0.5771 0.3039 0.0574
AZT + ddï -1.2693 0.3652 0.0006 -1.1190 0.3687 0.0024
AZT+ddC -0.7965 0.2991 0.0078 -0.5692 0.2944 0.0536

7.2.3 Non-Compliance Effect on Parameter Estimation: ACTG 175 Data

To assess the impact of non-compliance to visits by study patients on the

parameter estimation, a univariate analysis of the CD4 visits was carried out.

CD4 failure time was preferred because patients .had their CD4 levels

monitored more regularly than for the RNA failure time. The only problem

was that for ethical reasons, patients who experienced failure were removed

from the study hence their after-failure visits could not be ascertained. An

MCMC method on the joint posterior using a non-parametric approach with

PH transform was used, (Visposaid.m in Appendix B).
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The probability of visiting is high (all larger than 0.70) for all intervals except

the last one, before the occurrence of a 50% decline in CD4 cells. The lowest

visiting probability prior to CD4 decline is at the last interval estimated to be

0.44.Meanwhile the probabilities of continuing to visit after 50% decline are

low, all except for the 1st and 4th intervals are below 0.5. This may be

explained by the fact that some patients had their treatment changed once

there was a 50%decline in CD4 cells, while some had died, hence the measure

for post-failure visits is not observed by a lot of patients.

Figure 7.2.4: Visiting probabilities prior and after 50%decline in CD4 cells and

interval survival probabilities estimated with compliance effect.
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The high prior-failure probabilities imply that the effect of compliance can be

ignored. Thus we expect the method that accounts for visiting chances not to

differ much from the one that excludes the visiting effect.

7.2.3 Bivariate Models on ACTG 175Data

As elucidated in early chapters, the bivariate models endeavour to illustrate

the joint effect of explanatory variables on the two failure times. In general we

envisage the parameter estimates from individual analysis of failure times to

be averaged out with some weighting dependent on the number of

observations experiencing that phenomenon for the given explanatory

variable. For instance, with time to increase in RNA, 25% of females had

experienced one unit (lOgIO)increase in viral load by end of the study,

compared to 23% of males. Thus for this phenomenon, males may have a

higher conditional survival probability. Meanwhile with time to 50% decline

in CD4 cells counts, 25% of males experience the decline against 22% of

females. The issue then is, given the gender of a patient can we determine the

joint risk of time-to 50% decline in CD4 cell counts and a unit increase in log

of HIV RNA concentrations after undergoing treatment?

For those patients who experienced both failures in shown on Figure 7.2.5,

majority of them experienced a failure in RNA before CD4 failure. Only one

patient's RNA failure occurred after 800 days, with the majority occurring

before 2 years. Meanwhile CD4 failures took longer than that. Some patients
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experienced failure in only one of the times (Figure 7.2.5), these are points

depicted on the axis.

Figure 7.2.5: A scatter diagram of time to failure for CD4 and HIV RNA (failures

only) f the 45degree line shows equal times.
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Four models, the independence assumption (lW) model, bivariate conditional

(CB) model, non-parametric Clayton Copula (CC) and use of Weibull

marginal distributions with the Clayton copula (CCW) will be applied to the

ACTG 175 bivariate data. For each of the non-parametric methods, either a

proportional hazard or proportional odds model is used in a combination

with priors I and II and, a Metropolis-Hastings algorithm applied to estimate

the posterior distributions for the parameters.

126



Figure 7.2.6: A scatter plot of CD4 follow-up time against RNA follow-up time in

days.
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Table 7.2.5 summarizes the bivariate failure time data showing the

frequencies of failure on time to decline in CD4 for a given time of RNA

follow ups.
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Table 7.2.5: Frequencies of failure /censored and estimated survival probabilities of

CD4 time for given failure time interval of RNA time, computed using CBH with

prior II.

RNA Time (d~s)

CD4 Time (days) 0-56 56-140 140-392 392-694 694-1164 Total
0(3) 0(0) 0(0) 0(0) 0(0) 0(3)

0-56 0.6009 0.8717 0.8663 0.8978 0.9711 0.9887
1(1) 0(9) 0(2) 0(0) 0(0) 1(12)

56-140 0.3605 0.5732 0.6255 0.7622 0.7798 0.8999
2(1) 2(1) 3(10) . 1(0) 0(1) 8(13)

140-224 0.2346 0.3545 0.3570 0.5788 0.7253 0.8401
0(1) 1(1) 5(6) 0(1) 1(0) 7(9)

224-308 0.0886 0.2074 0.2361 0.3947 0.5899 0.7217
0(0) 2(3) 5(5) 1(0) 0(0) 8(8)

308-392 0.0533 0.1186 0.1628 0.3156 0.5622 0.6942
1(0) 0(1) 0(3) 1(2) 0(0) 2(6)

392-476 0.0412 0.0351 0.0843 0.1649 0.5411 0.6451
0(0) 1(1) 1(1) 3(5) 1(0) 6(7)

476-560 0.0161 0.0195 0.0524 0.0764 0.4663 0.5776
0(0) 0(2) 1(0) 3(1) 3(0) 7(3)

560-644 0.0075 0.0167 0.0308 0.0687 0.3817 0.4805
0(0) 1(0) 0(3) 3(4) 2(1) 6(8)

644-728 0.0022 0.0015 0.0111 0.0355 0.2694 0.3978
1(0) 2(1) 1(3) 7(2) 2(11) 13(17)

728-812 0.0005 0.0001 0.0038 0.0165 0.1563 0.3060
0(4) 3(6) 2(1) 2(11) . 1(28) 8(50)

812-896 0.0001 0.0000 0.0012 ,0.0131 0.1388 0.2522
0(2) 0(2) 2(6) 3(10) 2(25) 7(45)

896-980 0.0001 0.0000 0.0002 0.0060 0.0855 0.1954
0(5) 0(2) 2(5) 3(8) 4(50) 9(70)

980-1064 0.0000 0.0000 0.0000 0.0023 0.0786 0.1603
0(0) 0(1) 0(1) 0(1) 1(12) 1(14)

1064-1148 0.0000 0.0000 0.0000 0.0007 0.0485 0.1243

Total 3(16) 12(30) 22(46) 27(35) 17(128) 83(265)

Also given are the corresponding interval survival probabilities for given RNA

failure time. These are results obtained from the CBH model (3.32), computed by

using (3.28).The results suggest that if a patient's viral load increases shortly after

taking treatment then his/her survival probability for time to decline in CD4 cell

count will be lowered.
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Fitting a Clayton model (Claposaid.m in Appendix B), the estimated measure of

association between time to 50% decline in CD4 cells. and time to a unit (legio)

increase in viral load is 0.25 and 0.30 for CCH with prior I and II respectively,

while CCO gives 0.70 and 0.53 for prior I and II respectively. This represents a

fairly strong positive dependence between the two failure times. This implies that

if the suppression of viral multiplication by Anti-retroviral drugs takes longer,

then we expect commensurately longer time towards decline in CD4 cells.

Table 7.2.6a: Estimated posterior means of covariate parameters from fitting

Independence assumption model, Conditional bivariate and Clayton copula using

proportional hazard with prior I.

The presence of association renders the independence assumption results

inefficient as shown in Table 7.2.6a and 7.2.6b. The estimates returned by the

method tend to be larger with large standard errors, as shown by its HPD

IWH CBH
Mean 95%HPD Mean 95%HPD
0.012 -0.01,0.03 -0.0004 -0.02,0.01
0.259 -0.14,0.68 -0.069 -0.13,0.00
-0.030 -0.05, -0.02 -0.022 -0.03,-0.01
0.872 0.73,0.98 0.566 0.55,0.59
-0.006 -0.02,0.02 -0.001 -0.01,0.01
-0.038 -0.31,0.13 0.013 -0.15,0.20
0.954 0.84,1.10 0.583 0.49,0.67
-0.569 -1.55,0.27 -0.080 -0.40,0.25
0.419 0.06,0.86 0.089 -0.26,0.33
0.803 0.06,1.13 0.071 -0.25,0.32
-0.475 -0.83,0.11 -0.007 -0.47,0.27
-0.345 -0.47,-0.27 -0.633 -0.68,-0.57
-1.042 -1.18,-0.86 -0.860 -0.92,-0.80
-0.720 -0.77,-0.67 -0.680 -0.71,-0.65

Variables
A e
Gender
Karnofsk
ZDV
Wei ht
Homosex
S m tom
ID use
white
black
His anic
DDI
AZT+ DDI
AZT+ DDC
Assoc.
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CCH
Mean 95%HPD
0.002 -0.02,0.02
0.153 -0.07,0.33
-0.018 -0.03,0.00
0.561 0.52,0.59
-0.010 -0.03,0.00
-0.405 -0.73,0.05
0.870 0.78,0.97
-0.811 -1.19,-0.19
0.446 -0.11,1.16
0.237 -0.42,1.16
0.431 -0.13,0.98
-0.642 -0.71,-0.60
-1.150 -1.21,-1.07
-0.629 -0.67,-0.58
0.25 0.18,0.36



intervals. Meanwhile the Conditional bivariate model performs well and its

Table 7.2.6b: Estimated posterior means of covariate parameters from fitting

Independence assumption model, Conditional bivariate and Clayton copula using

results are comparable to the ones from the Clayton model.

proportional hazard with prior II.

Variables

patients, having HIV related symptoms at entry and treatment therapies are

variables that consistently and significantly affect time to progression towards

a 50% decline in CD4 cells and a unit increase (log 10) in viral load for

patients undergoing ARV treatment, irrespective of model used. Thereafter

different variables' effect on time-to-event depends on which model is used.

For instance, level of Karnofsky score at entry significantly affect progression

time if we assume independence between failure times (lW), or analysing

IWH CBH
Mean 95%HPD Mean 95%HPD
0.009 -0.02,0.03 0.002 -0.01,0.01
0.089 -0.07,0.24 -0.246 -0.45,0.02
-0.029 -0.05,-0.01 -0.024 -0.03,-0.01
0.738 0.65,0.85 0.558 0.53,0.59
-0.004 -0.02,0.02 -0.001 -0.01,0.01
0.207 0.03,0.38 0.1657 -0.08,0.34
0.915 0.80,1.15 0.6676 0.51,0.78
-0.046 -0.16,0.07 -0.124 -0.51,0.20
0.729 0.14,1.26 0.276 0.01,0.52
0.547 0.03,0.93 0.274 0.06,0.50
0.233 -0.19,0.75 0.145 -0.17,0.45
-0.534 -0.61, -0.46 -0.596 -0.68, -0.54
-1.059 -1.17, -0.95 -0.856 -0.91, -0.81
-0.511 -0.68, -0.37 -0.704 -0.75, -0.66

A e
Gender
Karnofsk
ZDV
Wei ht
Homosex
S m tom
ID use
white
black
His anic
DDI
AZT+ DDI
AZT+DDC
Assoc.

Results show that before study use of anti-retroviral
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CCH
Mean 95% HPD
0.002 -0.02,0.02
0.036 -0.24,0.28
-0.019 -0.03, -0.01
0.528 0.45,0.58
-0.009 -0.02,0.01
-0.030 -0.26,0.18
0.9216 0.82,1.02
-0.297 -0.69,0.27
0.341 -0.56, 1.32
0.239 -0.89,1.23
0.386 -0.59, 1.47
-0.649 -0.74, -0.57
-1.18 -1.24,-1.12
-0.692 -0.73, -0.64
0.30 0.23,0.38

therapy (ZDV) by



data for a known interval of the other failure time (CB model), yet it is not so

if we use a Clayton copula with non-parametric approach. Race and

intravenous drug use, are the other variables with effects dependent on the

model used.

The baseline survival probability estimates (\ generated using a CB model

with baseline parameters having prior II (5.11) applied to a proportional odds

model are shown on Figure (7.2.7). Results obtained from proportional hazard

and proportional odds models do not differ much.

Table 7.2.7: The baseline survival probabilities estimated using CB and CC for

proportional hazards and odd models at RNA time intervals.

Model CC CB

Prior Interval POM PHM POM PHM

0 1 1 1· 1

0-56 0.9924 0.9881 0.8609 0.8892

I 56-140 0.5437 0.4357 0.4872 0.3727

140-392 0.3799 0.2433 0.2112 0.0945

392-694 0.2824 0.2103 0.0742 0.0190

694-1164 0.1170 0.0690 0.0010 0.0000

0 1 1 1 1

0-56 0.9927 0.9822 0.8911 0.8533

56-140 0.5109 0.5015 0.5000 0.3726
IT 140-392 0.3185 0.1652 0.2096 0.1229

392-694 0.1941 0.0177 0.0741 0.0176

694-1164 0.0108 0.0005 0.0008 0
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Both indicate that if a patient's viral load increases at early stage of therapy,

then their progression to 50% decline in CD4 cells will, also occur early, hence

low survival probabilities. For instance, a patient whose RNA level failure

time occurs at interval between 0 and 56 days, will only have a 10% chance of

surviving beyond 300 days before 50% decline in CD4 cells occurs.

Figure 7.2.7: Baseline survival probabilities of CD4 time for given RNA intervals

obtained using Conditional Bivariate with prior II on proportional odds model
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Meanwhile if a patient's viral load increase occurs nearly two years after

treatment, there is 30% chance that their CD4 cell count will not have declined

by 50% in the same period. It is easy to establish that a viral load increase
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precede a decline in CD4 cells with low CD4 survival probabilities as duration

of study increases. If a patient's viral HIV RNA increase of 1 unit takes place

at 0-56days interval, then there is between 75%-100%chance for CBO model,

and 60%-100%chance for CBH model, that this patient's CD4 cell count will

not decreased by 50% at this time.

Also, if viral increase occurs at 694-1164 days, then there is between 70% and

90% chance that 50% decline in CD4 cell count has occurred. Thus for

monitoring, it may be advisable to regularly monitor the viral load of a

patient undergoing treatment for early warning of adverse effects, than

relying on CD4 cells count, despite costs involved in using the former. To

illustrate the impact of treatment therapy variable on survival times, we plot

the baseline survival probabilities of time to increase in viral load (equivalent

to AZT mono-therapy) in Figure 7.2.8, and then show the effect of each of the

treatment therapies under a Clayton Copula with prior II for baseline

parameters and proportional hazard model.

The superior effect of combination AZT and DDI is apparent. The mono-

therapy of AZT results in very low survival rate for patients on that therapy.

The effect of DDI alone and AZT + DDC is significantly superior to that of

AZT alone, but the distinction between the two is negligible. Survival from

viral increase is low for AZT patients, at a mere 5% at 56 days, yet AZT+DDI

boost its patients to a 45% chance for the same period. Whereas patients have

no chance of survival after 3 years of AZT therapy, those on combination
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therapy, still have a 10% chance of survival. Also given that one's survival

interval from increase in viral load is known, a history of prior use of anti-

retroviral at the inception of the study renders one having high risk towards a

decline in CD4 cells. The same applies to homosexuals, while ethnic blacks

and Hispanics are at high risk compared to Other races.

Figure 7.2.8:Showing the effect ofiour treatment therapies on estimated survival for

RNA probabilities using CCH model with prior II for baseline parameters.
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7.3 Chapter Summary

On simulated data, bivariate data generated using a Farlie-Morgenstern

copula with a maximum allowable dependence measure under this copula,

was analysed using independence assumption model. The model proved to

be inefficient for small sample size and presence of dependence between

failure times. An improvement in using the method of maximum likelihood

was only realized after increasing the sample size, and use of sandwich

estimator on variance. A nonparametrie Bayesian method was also applied

with PH transform. A type II prior that distinguishes baseline parameters

belonging to different intervals was preferred for use.

The focus of the study culminates in this chapter when ACTG175 AIDS data

is analyzed. A strong association between CD4 and HIV RNA failure times

was established. The use of either Clayton copula or Conditional bivariate

method with Prior II was found more appealing. Results further showed that

certain factors play a significant role in the progression of the failure times.

These are history prior of ARV's and showing AIDS symptoms at entry. These

have adverse effects. Meanwhile the treatment therapies ranked according to

effectiveness as AZT+DDI, DDI and AZT+DDC, while AZT alone is the lease

effectiveof the four.
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CHAPTER8

RECOMMENDATIONS AND CONCLUSIONS

The effect of dependence among multiple failure times is critical and cannot be

ignored. lts effect on small sample sizes when MLE are used can yield biased

results in parameter estimation. The use of robust estimators was found to work

well when sample sizes are large enough. The Bayesian approach of using MCMC

methods on copulas is robust and mathematically less intense, but computationally

intense. lts usefulness is evidenced by its ability to estimate for small samples, as

long as proper priors like type I and II are used. In all applications prior II proved

to perform better since it make a distinction between different baseline parameters

in each failure interval.

Methods for testing for goodness of fit on survival data with overlapping intervals

are not so developed. It is therefore difficult to make conclusive decisions on the

use of parametric methods. This limits the use of parametric methods, which

otherwise involves fewer parameters. On comparable basis, the non-parametric

method of either Cox' proportional hazard or proportional odds applies and

combines well with copulas (Clayton) when using MCMC algorithms. Once again

the MLEmethod is confined in application by its mathematical intensity.
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Methods that estimate the measure of association between failure times are highly

recommended. It remains to be seen if these copulas can be extended to handle

multiple failures exceeding two, since this would require multiple correlation

matrix. Through the Clayton method the presence of strong association between

the markers of the two failure times in the ACTG 175 data was determined which

enables prediction of one variable using the other. To determine the level of HIV

RNA in a patient is expensive, yet early detection of viral increase is important.

Thus knowledge of levels of CD4 can be used to augment sparse data on time to

viral load increase, which would prove to be cost effective.

The issue of assessing how well the Cox's model of using the hazard function fit

interval data with overlapping intervals need to be explored further. In this study,

an ad-hoc approach of assessing the behaviour of the sampling distributions of the

estimated parameter values was used, this hinges on the large sample theory.

Ibrahim et al (2001) suggested some Bayesian model diagnostics that can be used

on simpler interval-censored data when the intervals are not overlapping.



APPENDIX A

Appendix AI: Derivatives for Grouped Interval Data: PHM

for s<j

for s = j

For m=m', the second derivatives are

a e (13, y) =0
al3mll3ml'

a e (Jl, y) =0
°Yllloym,

_af (JJ2'Y) __ ~ eyms+ZipLJ for s<jay ms i=l
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_ a2R(~,'y) = 0
OymJ'Ymv

if v:t:j
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Appendix A2: Derivatives for Grouped Interval Data: POM

Generally the log likelihood for proportional odds model is written in (3.16):

M n [ r / mj+ZiP j-I 1 ]
fCP, y) = L L log L (l)mij +Z. TI +Z.

m=1 ;=1 i=v 1+ er mj lP s=1 1+ erms lP

If an observation is known to be censored in the jth interval, then

and

=
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eYms+Z;P
a R(I3, y) _ - Z. -::--_
a~ldy ms - I (1+ e Yms +z;P ) 2

If unit fails during the jth interval

[

Y .+z.A . 1 jM n e mj dIJ J- 1
€(~, 1) = L L log .+z. TI +z.

m=1i=1 1 + eYmj ,13 s=1 1 + eY ms ,13

eYms+Z;(J
aR(p,y) _
a l+eYms+z;(JY rns

aecp,y)
Oy~s Y·+Z.Al+ e mj J .....

aR(p,y) e'Ymj+Zil3

a~la'Yms =-Zi (1+e'Ymj+Zil3)2

aR(p,y) e'Ymj+Zil3

a~la'Ymj =Zi (1+e'Ymj+Zil3)2



j=1

Appendix A3: Derivation of Category-Specific Probabilities for (6.12) and (6.13).

1 Pr(Yi = j) 1 (IT ij) Aag = ag -- = Zi I-'j
Prï Y, = r) IT ir

j =172,....r-I

r-) r-lL1tij = LnirexP(zJ3j)
j=1 j=l

r-I

( ~ rt. = 1- rt. )L..J IJ Ir

r-l

I-nir = nir Lexp(zi~j)
je I

1
nir = --r--l----

1+ Lexp(Zi~j)
j=l
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1 [W.. r-1 1
--:-In ~.(1 + L.exp(Zi~S)) < ~j
z, 1 W'J s*j

for Zi > O.

Appendix A4: Deriving Conditional Posterior Distributions for r Nominal Categories

with One Covariate used in (6.26).

For Y=j

exp(ZiPi)Wij< --::k-_7-1....:.._:....;.:__

1+ L.exp(zipS)
s=1

r-1

Wij(1+ L.exp(zi~S))< exp(zi~j)
s=1

r-1

Wij(1+ L.exp(zipS))< expïz, ~j)- Wijexpïz, ~j)
s*j

W.. r-1

_'J_ (1+ L.exp(zipS))< exptz, ~j)
1- W ij s*j
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p

exp'~>il~lj
1-1Wij' < -.....,.--!.::.!----

k-l P

1+Lexp( LZil~15)
5=1 1=1

{
~: 1,2, ,p
1 -1,2, ,N

s=1,2, ...,k

Appendix AS: Deriving Conditional Posterior Distributions forp-Covariate

Parameters on r Nominal Categories used in (6.27).

Wij< k-l

1+ Lexp(~15 + Zi2P25+ ...+ ZipPp5)
5=1

k-l P P

Wij (1+ Lexp(~:>ilPI5)) < exp( LZi~lj)
5=1 1=1 1=1

This must hold for all Xii' > 0, i = 1,2, ... .n, so equation (6.29) follows. Similarly for

equation (6.30).
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APPENDIX lB

Computer Programs

Logitbi.m: A Matlab program for simulating parameter values using latent variable with a Gibbs
Sampler applied on binary nominal responses of Tri-continental AIDS data withAIDS status as
response variable and two explanatory variables.
****************************************************************************************************************
clear all
F=Tridata;
F(:,4);
F(:,9)

%Data file
%CD4 cells counts
%,AGE

r=3;
a=5.4429; b=-O.4712; c=-0.156; bfl=a: b1=b; b2=c;
B=[8.4429 -0.4712 -0.156)';
n=length(F);
one=ones(n,l );
x=[one log(F(:,4» F(:,9)];
y=F(:,5);
c=size(x);
p=c(2);
Lo=[]; Up=[]; BB=[]; P2=[];
for k=1:80000
k

e=exp( -x*B). / (1+exp( -x*B»;
for i=Ln
if y(i)==l
z(i)=e(i)+rand(l,l )*(l-e(i»;

else
z(i)=e(i)*rand(l,l);

end
end;
for j=l:p

11 = find(y==l & x(:,j»O);
12= find(y==O & x(:,j»O);
13= find(y==l & x(:,j)<=O);
14= find(y==O & x(:,j)<=O);
v=-(l. / x(:,j)'). *(B'*x'-B(j)*x(:,j)'+log(z. / (l-z»);
v l = v([11;14]);
v2 = v([12;13]);
lo(j)=max(v1);
up(j)=min(v2);
B(j)=lo(j)+rand(1,l)*(up(j)-lo(j»;

end;
BB=[BB;B'];
Lo=[Lo;lo];
Up=[Up;up ];

end;
W=l. / (Up-Lo);
FB=[]; M=[]; C=[]; H=[];
for j=l:p
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m=min(Lo(:,j»; c=max(Up(:,j»;
h=(c-m)/lOO;
55=[];
for q=m:h:c

J=find(Lo(:,j)<=q & Up(:,j»=q);
5=sum«WO,j)));
55=[55;5];

end;
FB=[FB 55]; M=[M m]; C=[C cl; H=[H hl;

end;
FB=FB/k;
for j=l:p

d=FB(:,j);
q=M(j):H(j):C(j);
figure (j)
plot(q,d)
TITLE('Posterior Distribution of Beta(j)')
Grid

end;
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Logitpol.m: A Matlab program for simulating a polychotomous nominal response data and
analysing using latent variable approach .An MCMC method of using a Gibbs Sampler is
applied on the data which has p explanatory variables.
*****************************************************************************************************************
forma t compact
n=lOO;
J=3;
r=2;
bOl=O.4; b02=.6; b03=O.2l; b04=.002; bOS=2; b06=.9; b07=.4;
bll=O.3; b12=.2; b13=O.S4; b14=.002; blS=2; b16=.9; b17=.4;
b2l=O.1; b22=.3S; b23=O.34; b24=.002; b2S=2; b26=.9; b27=.4;
b3l=O.8; b32=.2S; b33=O.2; b34=.002; b3S=2; b36=.9; b37=.4;
Bs=[bOl b02 b03 b04 bOS b06 b07;bll b12 b13 b14 bIS b16 b17;b2l b22 b23 b24 b25 b26 b27J;
xl=3*rand(n,l);
v-u
B=[]; Py=[ J;
p=[];
for j=1:J-l
b=Bs(:,j);
B=[B bj;

end;
Bl=B(l,:);
for i=Ln

e=exp(xl *Bl);
t=l+(sum(e')');
py=e(i,:). / t(i);
Ps=sum(py);
PL=l-Ps;
Py=[py PLJ;
Fy=cumsum(Py);
z=rand(1,l);
y=min(find(Fy>=z));
Y=[Y;y];

end;
x=[ones(n,l) 3*rand(n,r)];
c=sizetx):
p=c(2);
BB=[]; LL=[];
for k=l:SO
k
c-u
e=exp(x*B);
t=l +sum(e,2);
Es=sum(e,2);
for j=l:J-l
uu=[ ];
for ie l:n
if Y(i)==j;
u=rand(l,l )*exp(x(i,: )*B(:,j)) / t(i);

else
u=(l-exp(x(i,: )*B(:,j)) / t(i) )*rand(l,l )+exp(x(i,: )*B(:,j))/ t(i);

'end'
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uu=[uu;u];
end

V=[V uu];
end;
D=[Y x V];
LlM=[ ];

for i=1:J-I
ll=find(Y==i); JI=find(Y +=j):
Lim=[ ];
for i=Lp
e=explxtB):
t=l+sum(e,2);
Es=sum(e,2);
EsI=1 +(Es-e(:,j»;
MI=x(II,:)""B(:,j)-x(ll,i)""B(i,j);
M2=xO 1,:)""B(:,j)-xOI,i)""B(i,j);
vl=(l. Ix(ll,i». ""(log(EsI(Il). ""(V(Il,j). I (I-V(Il,i» »-MI);
v2=«I. Ix(JI,i». ""(log(EsI al). ""(VOI,i).I (I-VOI,i» »-M2»;
Lo=maxïv l):
Vp=rnin(v2);
lim=[Lo Vp];
B(i,i)=(Vp-Lo)""rand(I,I)+Lo;
Lim=[Lim;lim];
end

LlM=[LlM;Lim];
end

BB=[BB;B];
LL=[LL;LlM];
end;
W=I./LL(:,2)-LL(:,I);
for i=l:p""O-I)
I=i:p""(J-I):length(LL);
a=min(LL(I,I»; c=max(LL(I,2»;
T=[];
h=(c-a)/IOO;
N=LL(I,:); NN=W(I);
for q=a.h:c
K=find(N(:,I)<=q & N(:,2»=q);
t=sum(NN(K»;
T=,[T;t];

end
F(:,i)=T Ik;
ql=a:h:c;
figure(i)
plot(ql,F(:,i»
grid

end



*****************************************************************************************************************

Logitord.m: A Matlab program for simulating a polychotomous ordinal response data and and
analysing it using a latent variable approach. A Gibbs Sampler is applied on the data with p
explanatory variables.

clear
n=20;
x=2*rand(n,2);
B=[-2;1];
A=[1.5;2.5;30); J=3;
for j=l:J
N(:,j)=exp(A(j)+x*B). / (1+exp(A(j)+x*B»;

end
z=randfn.I):
for i= l.m
Y(i)=min(find(z(i)<=N(i,:»);

end
ll=find(Y==I);
12=find(Y==2);
13=find(Y==3);
m=100; AA=[ ); BB=[ ]; UU=[ );
for ke l.m
Gup=zeros(n,l); Glo=zeros(n,l);
Gup(Il)=A(l); Gup(12)=A(2); Gup(13)=A(3);
Glo(12)=A(1); Glo(13)=A(2);
Lo=exp(Glo+x*B). / (1+exp(Glo+x*B»;
Up=exp(Gup+x*B). / (1+exp(Cup+x'Bj):
U=Lo+rand(n,l).*(Up-Lo);
UU=[UUU);
logl =max([log(U (11). / (l-U (11» )+x(Il,: )*B;O]);
upgl=min([log(U(12). / (1-U(12) »+x(12,:)*B;A(2)]);
log2=max([log(U (12). / (1-U (12» )+x(l2,: )*B;A(l»));
upg2=min([log(U (13)./ (1-U (13» )+x(13,: )*B;A(3)]);
Lg=[logl upg1;log2 upg2);
A=[Lg(:,I)+randO-1,1). *(Lg(:,2)-Lg(:,1»;30);
lob11=max«(log(U(Il). / (1-U(Il»)-A(1)-x(Il,2)*B(2»./x(Il,1»;
upb 11=min( (log(U (12). / (l-U (12»)- A(1)-x(l2,2)*B(2». / x(l2, 1»;
lob 12=max( (log(U(12). / (l-U (12» )-A(2)-x(l2,2)*B(2». / x(12,1»;
upb 12=min( (log(U(13). / (1-U(13»)- A(2)-x(13,2)*B(2». / x(13,1»;
lob1=max([loblllob12)); upb1=min([upbll upb12));
b l=lob 1+rand(1,1)*(upb1-lob1);
lob21=max«log(U(Il). / (l-U(Il) »-A(1)-x(Il,2)*B(1»./ x(Il,2»;
upb21 =min( (log(U (12). / (1-U (12»)- A(l )-x(12,2)*B(1». / x(12,2»;
lob22=max( (log(U (12). / (1-U (12»)- A(2)-x(12,2)*B(1». / x(12,2»;
upb22=min( (log(U (13). / (1-U (13»)- A(2)-x(13,2)*B(1». / x(13,2»;
lob2=max([lob211ob22]); upb2=min([upb21 upb22]);
b2=lob2+rand(1,1)*(upb2-lob2);
B=[bl;b2];
AA=[AA A); BB=[BB B);

end
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Simfm.m: A Matlab program used to simulate dependent bivariate data from a Farlie-
Morgenstern distribution, with Exponential marginal distributions for each failure time.
*****************************************************************************************************************
clear all
n=100;
r=l;
B=.25;
Int=O.5;
M=2;
K=1;
u1=rand(n,l);
Z=[ randrun. 1)-2 randn(n,1)];
Lam=exp(B*Z);
xl =-(l./Lam(:,l)).*log(l-u 1);
u2=rand(n,1);
u3=rand(n,1 );
d=K*((2*Lam(:,1). *exp( -xI.*Lam(:, 1)))-1);
a=d.*Lam(:,2);
b= l-a:
c=u2-1;
Rt=(b."2-(4*a. *c)).".5;
y1=( -b-Rt).! (2*a);
y2=( -b+Rt)./ (2*a);
x2=-log(y2);
X=[x1;x2];
figure (1)
hist(x2,10)
xlabel('x2')
figure (2)
scatter(X(1 :n),X(n+ 1:n*M))
xlabel('xl ')
ylabel('x2')
grid



clear all
simfm.m
n=lOO;
r=S;
B1=.25;
gl=-.6931; g2=-.6931; g3=0;
g4=-.6931; g5=-.6931; g6=0;
delta=[gl g2 g3;g4 g5 g6);
beta=[B1 B2 gl g2 g3 g4 g5 g6);
betaebeta':
Int=[O.5 1 2];
M=2;
Zl=[Z(:,1);Z(:,2)];
for i=1:n'M

if X(i»=Int(r)
alp(i,r+ 1)=1;

elseif X(i»=Int(r-1) & X(i)<Int(r)
alp(i,r)=l;

elseif X(i»=Int(r-2) & X(i)<lnt(r-l)
alp(i,r-1)=1;

elseif X(i»=O & X(i)<Int(r-2)
alp(i,r-2)=1;

end

%simulated data

lndmlesim: A Matlab program for estimating MLE under independence assumption model from
simulated data
*****************************************************************************************************************

end
% iteration should start here
BB1=[]; BB2=[]; Likel=[-337J; LLike=[]; diff=fl.I: count=[O];
k=l
while diff>=.OOOOOOOOl
count=[ count;k];
h=exp(delta+B'Z(i:,»;
co=exp( -h);
rem- l-co:
data=[X alp];
data1=[rem h X]:
for i=l:n
if alp(i,4)==l
lil(i)=-sum(h(i, 1:r));
fd1(i,:)=[-Zl(i)"sum(h(i,1:r» 0 -h(i,l) -h(i,2) -h(i,3) 000];
sdd1(i,:)=[-Zl(i)1\2'sum(h(i,1:r» 0 -h(i,l) -h(i,2) -h(i,3) 000];
sdc1(i,:)=[O 0 -Zl(i)'h(i,l) -Zl(i)*h(i,2) -Zl(i)*h(i,3) 0 0 0];

else if alp(i,3)==1
li1(i)=log(rem(i,r) )-sum(h(i, 1.r-Ij):
fd 1(i,:)=[Zl (i)*(( co(i,r)*h(i,r) / rem(i,r»-sum(h(i,l :r-1») 0 -h(i,l)

-h(i,2) (co(i,r)'h(i,r))/rem(i,r) 0 0 0];
sdd l(i,: )=[Zl (i)1\2'( ((co(i,r)'h(i,r)'(l-co(i,r)"h(i,r») / rem(i,r)1\2)-sum(h(i,1 :r: 1») 0 -h(i,l) -h(i,2)

co(i,r)*h(i,r)*( (l-co(i,r)
-h(i,r)))/(rem(i,r))1\2 0 0 0];
sdc1(i,:)=[O 0 -Zl(i)"h(i,l) -Zl(i)"h(i,2) ZI(i)*(co(i,r)"h(i,r)*(1-co(i,r)-h(i,r)))/(rem(i,r))1\2 0 0 0];

elseif alp(i,2)==1
li1(i)=log(rem(i,2) )-h(i, 1);
fd1(i,:)=[Zl(i)*((co(i,r-1)"h(i,r-1)/rem(i,r-1»-h(i,1)) 0 -h(i,l) (co(i,r-1)'h(i,r-1»/rem(i,r-1) 0 0 0 0];
sdd1(i,:)=[ZI(i)1\2*((( co(i,r-l )*h(i,r-l )"(I-co(i,r-1 )-h(i,r-l))) / rem(i,r-1)1\2)-h(i, 1)) 0 -h(i,l) co(i,r-1 )'h(i,r-l)'(l-

coti.r-I)
-h(i,r-1»/(rem(i,r-1»1\2 0 0 0 0];
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sdcl(i,:)=[O 0 -Zl(i)*h(i,l) Zl(i)*(co(i,r-1)*h(i,r-1)*(1-cci(i,r-1)-h(i,r-1)))/(rem(i,r-1))"2 0 0 0 0];
elseif alp(i,l)==l
li1(i)=log(rem(i,1));
fd1(i,:)=[Zl(i)*(co(i,1)*h(i,1)/rem(i,1)) 0 (co(i,l)*h(i,l))/rem(i,l) 0 0 0 0 0];
sdd l(i,:)=[Zl (i)"2*( (co(i, 1)*h(i, 1)*(l-co(i, l)-h(i, 1))) / rem(i, 1)"2) 0 (eo (i) )*h(i, 1)*(l-co(i, 1)-h(i, 1))) / (rem( i,1))"2

00000];
sdcl(i,:)=[O 0 Zl(i)*(co(i,1)*h(i,1)*(1-co(i,1)-h(i,1)))/(rem(i,1))"2 0 0 0 0 0];

end
end
Li=li l':
for i=n+ItntM
if alp(i,4)==l
li2(i)=-sum(h(i,1:r));
fd2(i,:)=[0 -Zl(i)*sum(h(i,l:r)) 0 0 0 -h(i,l) -h(i,2) -h(i,3)];
sdd2(i,:)=[0 -Zl(i)"2*sum(h(i,l:r)) 0 0 0 -h(i,l) -h(i,2) -h(i,3)];
sdc2(i,:)=[0 0 0 00 -Zl(i)*h(i,l) -Zl(i)*h(i,2) -Zl(i)*h(i,3)];

elseif alp(i,3)==1
li2(i)=log(rem(i,r) )-sum(h(i,l :r-1));
fd2(i,:)=[0 Zl(i)*«co(i,r)*h(i,r)/rem(i,r))-sum(h(i,l:r-1))) 0 0

o -h(i,l) -h(i,2) (co(i,r)*h(i,r))/rem(i,r)];
sdd2(i,: )=[ 0 Zl (i)"2*( « co(i,r )*h(i,r)*(l-co(i,r)

-h(i,r)))/rem(i,r)"2)-sum(h(i,l:r-1))) 0 0 0 -h(i,l)
-h(i,2) (co(i,r)*h(i,r)*(l-co(i,r)- h(i,r))) / (rem(i,r)) "2];

sdc2(i,:)=[0 0 0 0 0 -Zl(i)*h(i,l) -Zl(i)*h(i,2)
Zl(i)*( co(i,r)*h(i,r)*(l-co(i,r)-h(i,r))) / (rem(i,r) )"2];

elseif alp(i,2)==1
li2(i)=log(rem(i,2))-h(i,l);
fd2(i,:)=[0 Zl(i)*«co(i,r-l)*h(i,r-l)/rem(i,r-l))-(h(i,l))) 0 0 0

-h(i,l) (co(i,r-l)*h(i,r-l))/rem(i,r-l) 0];
sdd2(i,:)=[0 Zl(i)"2*( « co(i,r-l )*h(i,r-1 )*(1-co(i,r-1)

-h(i,r-1)))/rem(i,r-1)"2)-h(i,l)) 0 0 0 -hfi.l )
(co(i,r-1 )*h(i,r-l )*(1-co(i,r-1 )-h(i,r-1))) / (remti.r-l ))"2 0];

sdc2(i,:)=[0 0 000 -Zl(i)*h(i,l) Zl(i)*(co(i,r-l)*h(i,r-1)
*(1-co(i,r-1)-h(i,r-1)))/(rem(i,r-l))"2 0];

elseif alp(i,l)==l
li2(i)=log(rem(i,l) );
fd2(i,:)=[0 Zl(i)*(co(i,l)*h(i,l)/rem(i,l)) 0 0 0

(co(i,l)*h(i,l))/rem(i,l) 0 0];
sdd2(i,:)=[0 Zl(i)"2*( (co(i,l)*h(i,l)*(l-co(i,l)-

h(i,l)))/rem(i,l)"2) 0 0 0
(co(i,l )*h(i,l )*(l-co(i,l)-h(i,l))) / (rem(i,l))"2 0 0];

sdc2(i,:)=[0 0 000 Zl(i)*(co(i,l)*h(i,l)*(l-co(i,l)-
h(i,1)))/(rem(i)))"2 0 0];

end
end
li2=li2(n+ 1:n*M);
fd2=fd2(n+ 1:n*M,:);
sdd2=sdd2(n+l:n*M,:);
sdc2=sdc2(n+ 1:n*M,:);
Li=[Li;li2'];
fd=[fd1;fd2];
q=(sum(fd))';
sdd=[sddl;sdd2];
sdc=[sdcl;sdc2];
sufd=sum(fd);
sudd=surrusdd):
sudcl=sumïsdcl ):
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sudc2=sum(sdc2);
sudc=sum(sdc);
isudcesudc':
diadd=diag(sudd);
for j=l:r'M+2
for i=I:r*M+2
if i==j
HI(i,j)=diadd(i,j);

elseif i==l & j>l
Hl (i,j)=sudcl(i,j);

elseif j== 1 & i> 1
Hl(i,j)=sudc1(j,i);

elseif i==2 & j>M
HI(i,j)=sudc2(1,j);

elseif j==2 & ic-M
HI(i,j)=sudc2(1,i);

else
Hl(i,j)=O;

end
end

end
H=inv(HI);
likel=sum(Li);
beta=beta-H*q/2;
delta=[beta(3) beta(4) beta(5); beta(6) beta(7) beta(8)];
Bl=beta(l);
B2=beta(2);
BBI=[BBI;Bl];
BB2=[BB2;B2];
LLike=[LLike;likel];
Likel=[Likel;likel]
diff=Likel(k+ 1)-Likel(k)
k=k+l
end



154

lndphrnle: A Matlab program for estimating MLE under independence assumption model using a
bivariate data with overlapiing intervals.
**********************************************************************************************
clear all
% Data file
% Specify starting values for all parameters.
beta=[B rdelta cdelta]';
v=length(B);
vr=v+rnr:
vrc=v+rnr+cdr:
'!/() iteration should start here
BB=[]; Likel=[-2000); Q=[]; LLike=[]; diff=O.I;
BETA=[];
k=I; O;;,abs(diff»=.OOOl &
while diff>=O.I
k
LI=[]; SBB=[]; SBR=[]; SBCC=[];SBCR=[];
for q=l:rnr

for j=I:cdr
for i=l:n
rnh(i,q)=exp(rdelta(q)+Z(:,i)*B'
cdh(i,j)=exp(cdelta(j)+Z(:,i)*B'

end
end

end
cdco=exp( -cdh);
cdrem=I-cdco;
mco=exp( -rnh);
mrerne l-mco:
for i=Ln
cl=cda1p(i,I);
cu=cda1p(i,2);
if cl==O
cdli(i)=-sum( cdh(i, I .cuj):

elseif cl-=O & cl==cu
cdli(i)=log( cdrem(i,cu) )-sum( cdh(i, I .cu-Ij):

elseif cl-=O & cl=ecu-I
cdli(i)=log( cdrem(i,cu)*exp( -sum( cdh(i, I .cu-l) )+cdrem(i,cu-I )*exp( -sum( cdh(i, I :cl-2»»;

elseif cl-=O & cl=ecu-Z
cdli(i)=1og( cdrem(i,cu)*exp( -sum( cdh(i, I .cu-I) )+cdrem(i,cu-I )*exp( -sum( cdh(i, I :cu-

2» )+cdrem(i,cu-2)*exp( -sum( cdh(i, I :cl-3»»;
end

end
for ieLn
rl=ma1p(i,I);
ru=ma1p(i,2);
if rl==O
rnli(i)=-sum(rnh(i,I:ru»;

elseif r1-=0 & rl==ru
rnli(i)=1og(rnrem(i,ru) )-sum(rnh(i, I .ru-Ij):

elseif rl-=O & rle=ru-I



rnli(i)=log(rnrem(i,ru)*exp( -sum(rnh(i, 1.ru-I) )+rnrem(i,ru-1 )*exp( -sum(rnh(i, 1:ru-2»»;
elseif rl-=O & rl==ru-2
rnli(i)=log(rnrem(i,ru)*exp( -sum(rnh(i, 1:ru-1»)+rnrem(i,ru-1 )*exp( -sum(rnh(i,l .ru-

2» )+rnrem(i,ru- 2)*exp( -sum(rnh(i, 1:ru-3»»;
end

end
li=cdli+rnli':
for t=1:v
for i=Ln
cl=cdalpti.I):
cu=cdalp(i,2);
if cl==O
fc(i, 1:cu)=-cdh(i, 1:cu);
fb(i,t)=-Z(i,t)*sum(cdh(i,l:cu»;
sc(i,l :cu)=-cdh(i,l:cu);
sb(i,l:v )=-Z(i,t)*Z(i, 1:v)*sum( cdh(i,l .cuj):
sbc(i, 1:cu)=-Z(i, t)*cdh(i, 1:cu);

elseif d-=O & d==cu
fc(i,l :cu-1)=-cdh(i,1:cu-1);
fc(i,cu)=cdco(i,cu)*cdh(i,cu) / cdrem(i,cu);
fbc(i, t)=Z(i, t)*((cdco(i,cu)*cdh(i,cu) / cdrem(i,cu) )-sum( cdh(i, 1.cu-l jj):
sc(i,l :cu-1 )=-cdh(i, l:cu-1);
sC(i,cu)=cdco(i,cu)*cdh(i,cu)*(l-cdh(i,cu)-cdco(i,cu» / cdrem(i,cu) "'2;
sb(i,l:v )=Z(i, t)*Z(i, l:v )*((cdco(i,cu)*cdh(i,cu)*(l-cdh(i,cu)-cdco(i,cu» / cdrem(i,cu) "'2)-

sumfcdhfi.Lcu-Ijj):
sbc(i,1:cu-1)=-Z(i,t)*cdh(i,1:cu-1);
sbc(i,cu)=Z(i, t)*cdco(i,cu)*cdh(i,cu)*(l-cdh(i,cu)-cdco(i,cu» / cdrem(i,cu) "'2;

elseif d-=O & cl=wcu-I
fc(i,l :cu-2)=-cdh(i, 1:cu-2);
fC(i,cu-1)=cdco(i,cu-1)*cdco(i,cu)*cdh(i,cu-1) / (l-cdcofi.cur'cdcou.cu-Ij),
fc(i,cu)=cdco(i,cu)*cdco(i,cu-1 )*cdh(i,cu) / (l-cdcoii.cujtcdcofi.cu-Ij):
fb(i,t)=(Z(i,t)*cdco(i,cu)*cdco(i,cu~ 1)*(cdh(i,cu)+cdh(i,cu-1» / (1-cdco(i,cu)*cdco(i,cu-1 »)_

Z(i, t)*sum( cdh(i, 1:cu- 2»;
sc(i,1:cu-2)=-cdh(i,1:cu-2);
sc(i,cu-1 )=cdco(i,cu)*cdco(i,cu-1 )*cdh(i,cu-1 )*(1-cdco(i,cu)*cdco(i,cu-1 j-cdhd.cu-t) / (1-

cdco(i,cu)*cdco(i,cu-1) )"'2;
sc(i,cu)=cdco(i,cu)*cdco(i,cu-1 )*cdh(i,cu)*(1-cdco(i,cu)*cdco(i,cu-1 )-cdh(i,cu» / (1-

cdco(i,cu)*cdco(i,cu-1»"'2;
sb 1=cdco(i,cu)*cdco(i,cu-1 )*(cdh(i,cu)+cdh(i,cu-1) )*(1-cdco(i,cu)*cdco(i,cu-1 )-cdh(i,cu)-

cdhti.cu-I) / (t-cdcod.cur'cdcou.cu-Ij)o 2;
sb(i,l:v )=Z(i, t)*Z(i, 1:v)*(sb l-sum( cdh(i, 1:cu-2»);
sbc(i,l :cu-2)=-Z(i, t)*cdh(i, 1:cu-2);
sbcti.cu-I )=Z(i, t)*cdco(i,cu)*cdco(i,cu-1 )*cdh(i,cu-1 )*(1-cdco(i,cu)*cdco(i,cu-1 )-cdh(i,cu-

l)+cdh(i,cu» / (t-cdcou.cur'cdcou.cu-tjj-z:
sbc(i,cu)=Z(i, t)*cdco(i,cu)*cdco(i,cu-1 )*cdh(i,cu)*(1-cdco(i,cu)*cdco(i,cu-1)-

cdh(i,cu)+cdh(i,cu-1» / (1-cdco(i,cu)*cdco(i,cu-1) )"'2;
elseif d-=O & d==cu-2
fc(i,l :cu-3)=-cdh(i, 1:cu-3);
fc(i,cu-2)=cdco(i,cu)*cdco(i,cu-1 )*cdco(i,cu-2)*cdh(i,cu-2) / (l-cdcofi.cur'cdcoti.cu-

1)*cdco(i,cu-2»;
fc(i,cu-1 )=cdco(i,cu)*cdco(i,cu-1 )*cdco(i,cu-2)*cdh(i,cu-1) / (l-cdco(i,cu)*cdco(i,cu-

1)*cdco(i,cu-2»;
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fc(i,cu)=cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2)*cdh(i,cu) / (l-cdcou.cur'cdcou.cu-I )*cdco(i,cu-
2»;

fb(i, t)=(Z(i, t)*cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2)*( cdhfi.cuj+cdhïi.cu-I )+cdh(i,cu- 2» / (1-
cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2» )-Z(i, t)*sum( cdh(i, 1.cu-Sl):

scïi.l :cu-3)=-cdh(i, 1:1:cu-3);
scti.cu-2)=cdco(i,cu)* cdcofi.cu-I)" cdco( i.cu -2)*cdh(i,cu- 2)*(l-cdcoti.cu) *cdco( i.cu-

1)*cdco(i,cu-2)-cdh(i,cu-2» / (I-cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2) )"2;
scu.cu-I )=cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2)*cdh(i,cu-I )*(1-cdco(i,cu)*cdco(i,cu-

1)*cdco(i,cu-2)-cdh(i,cu-I» / (I-cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2) )"2;
sc(i,cu)=cdco(i,cu)* cdco( i.cu -1)*cdco(i,cu- 2)*cdh(i,cu )*(1-cdco(i,cu )*cdco( i.cu-l )*ed co( i.cu-

2)-cdh(i,cu» / (I-cdco(i,cu)*cdco(i,cu-I)*cdco(i,cu-2) )"2;
sb 1=cdco( i.cu )*cdco( i.cu -1)*cdco( i.cu -2)*(l-cdcot i.cu)" cdco(i,cu -1)*cdco( i,cu -2)-cdh(i,cu)-

cdhti.cu-I )-cdh(i,cu-2) )*(cdh(i,cu)+cdh(i,cu-I )+cdh(i,cu-2» / (I-cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-
2»"2;

sb(i, I:v )=Z(i, t)*Z(i, Lv )*(sb l-sumï cdh(i, 1:cu-3»);
sbc(i,I :cu-3)=-Z(i,t)*cdh(i, 1:cu-3);
sbc( i.cu -2)=Z( i, t)"cdco( i,cu) *cdco(i,cu-I) "cdcoï i.cu- 2)*cdh( i.cu- 2)*(l-cdcoï i.cu)"ed co( i.cu-

1)*cdco(i,cu-2)-cdh(i,cu-2)+cdh(i,cu)+cdh(i,cu-I» / (I-cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2»" 2;
sbc(i,cu-I )=Z(i, t)*cdco(i,cu)*cdco(i,cu-I )*cdco(i,cu-2)*cdh(i,cu-I )*(I-cdco(i,cu)*cdco(i,cu-

1)*cdco(i,cu-2)-cdh(i,cu-I )+cdh(i,cu)+cdh(i,cu-2» / (l-cdcoti.cuj=cdcofi.cu-I )*cdco(i,cu- 2»" 2;
sbc(i,cu)=Z( i,t)*cdco(i,cu )*cdco(i,cu-I )*cdco( i.cu- 2)*cdh(i,cu)*( l-cdcoti.cu )*cdco( i.cu-

1)*cdco(i,cu-2)-cdh(i,cu)+cdh(i,cu-I )+cdh(i,cu-2» / (l-cdcofi.cur'cdcofi.cu-I )*cdco(i,cu- 2»" 2;
end

end
ssbc=sum(sbc);
ssb=surrusb):
SBB=[SBB;ssb );
SBCC=[SBCC;ssbc);
for i=Ln
rlernalpti.I):
ru=rnalp(i,2);
if rl==O
fr(i,I :ru)=-rnh(i, 1:ru);
fbr(i,t)=-Z(i,t)*sum(rnh(i,I:ru»;
scrfi.l :ru)=-rnh(i, 1:ru);
sbru.l :v)=-Z(i,t)*Z(i,I :v)*sum(rnh(i, 1.ruï):
sbcr(i,I :ru)=-Z(i,t)*rnh(i, 1:ru);

elseif rl-=O & rle=ru
fr(i,I :ru-I)=-rnh(i,I:ru-I);
fr( i.ru )=rnco(i,ru)*rnh( i.ru) / mrem(i,ru);
fbr(i,t)=Z(i, t)*((rnco(i,ru)*rnh(i,ru) / rnrem(i,ru) )-sum(rnh(i, 1.ru-Ijj):
scr(i,I :ru-I)=-rnh(i,I:ru-I);
scr(i,ru)=rnco(i,ru)*rnh(i,ru)*(I-rnh(i,ru)-rnco(i,ru» / mrem(i,ru)" 2;
sbrti.I:v )=Z(i, t)*Z(i, 1:v)*((mco(i,ru)*rnh(i,ru)*(I-rnh(i,ru)-rnco(i,ru» / rnrem(i,ru)" 2)-

sumïmhfi.Lru-Llj);
sbcr(i,I:ru-I)=-Z(i,t)*rnh(i,I:ru-I);
sbcr(i,ru)=Z(i, t)*mco(i,ru)*rnh(i,ru)*(I-rnh(i,ru)-rnco(i,ru» / mrem(i,ru)" 2;

elseif rl-=O & rl==ru-I
fr(i,I :ru-2)=-rnh(i, 1:ru-2);
fr(i,ru-I)=rnco(i,ru-I)*rnco(i,ru)*rnh(i,ru-I) / (I-rnco(i,ru)*rnco(i,ru-I »;
fr(i,ru)=rnco(i,ru-I )*rnco(i,ru)*rnh(i,ru) / (l-rncoti.rur'rncou.ru-Ij):
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fr(i,ru-1 )=rnco(i,ru)*rnco(i,ru-1 )*rnco(i,ru-2)*rnh(i,ru-1) / (1-rnco(i,ru)*rnco(i,ru-1 )*rnco(i,ru-

fbr(i,t)=(Z(i,t)*rnco(i,ru)*rnco(i,ru-1)*(rnh(i,ru)+rnh(i,ru-1)) / (1-rnco(i,ru)*rnco(i,ru-1 »)-
Z(i,t)*sum(rnh(i,l .ru-Zj):

scr(i,l :ru-2)=-rnh(i, 1:ru-2);
scr(i,ru-1)=rnco(i,ru)*mco(i,ru-1 )*rnh(i,ru-1 )*(1-rnco(i,ru)*rnco(i,ru-1 )-rnh(i,ru-1» / (1-

mcoïi.ruj=mcofi.ru-Ij}" 2;
scr(i,ru)=rnco(i,ru)*mco(i,ru-1)*rnh(i,ru)*(1-rnco(i,ru)*rnco(i,ru-1)-rnh(i,ru» / (1-

rnco(i,ru)*rnco(i,ru-1»/\2; ,
sb 1=rnco(i,ru)*rnco(i,ru-1 )*(rnh(i;ru)+rnh(i,ru-1) )*(1-rnco(i,ru)*rnco(i,ru-1 )-rnh(i,ru)-

rnhïi.ru-I) / (1-rnco(i,ru)*rnco(i,ru-1»/\2;
sbr(i,l:v )=Z(i, t)·Z(i, 1:v)*(sb l-sum(rnh(i, 1:ru-2»);
sbcr(i,l :ru-2)=-Z(i,t)*rnh(i,1 :ru-2);
sbcr(i,ru-1 )=Z(i,t)*rnco(i,ru)*rnco(i,ru-1 )*rnh(i,ru-1 )*(1-rnco(i,ru)*rnco(i,ru-1 )-rnh(i,ru-

l)+rn.l}(i,ru» / (1-mco(i,ru)*rnco(i,ru-1»/\2;
sbcr(i,ru)=Z(i, t)*rnco(i,ru)*rnco(i,ru-1 )*rnh(i,ru)*(1-rnco(i,ru)*rnco(i,ru-1)-

rnhïi.rul+rnhfi.ru-I) / (1-rnco(i,ru)*rnco(i,ru-1»/\2;
elseif rl-=O & rl==ru-2
fr(i,l :ru-3)=-rnh(i, 1:ru-3);
fr(i,ru-2)=mco(i,ru)*mco(i,ru- ~)*rnco(i,ru-2)*rnh(i,ru- 2) / (1-rnco(i,ru)*rnco(i,ru-1 )*mco(i,ru-

2));

2»;
fr(i,ru)=rnco(i,ru)*rnco(i,ru-1 )*rnco(i,ru-2)*rnh(i,ru) / (1-rnco(i,ru)*rnco(i,ru-1 )*mco(i,ru- 2»;
fbr(i, t)=(Z(i, t)*rnco(i,ru)*rnco(i,ru-1 )*rnco(i,ru-2)*(rnh(i,ru)+rnh(i,ru-1 )+rnh(i,ru- 2» / (1-

mco( i,ru) *rnco(i,ru-1 )*rnco( i,ru- 2»)- Z( i,t)*sum( rnh(i, 1.ru-Sj):
scr(i,1:ru-3)=-rnh(i,1:1:ru-3); ,
scr( i,ru- 2)=rnco(i,ru)*mco(i,ru -1)*mco( i,ru -2)*rnh( i,ru -2) *(1-rnco( i,ru )*rnco(i,ru-

1)*mco(i,ru-2)-rnh(i,ru-2» / (1-rnco(i,ru)*mco(i,ru-1 )*mco(i,ru-2) )/\2;
scr(i,ru-1 )=rnco(i,ru)*mco(i,ru-1 )*mco(i,ru-2)*rnh(i,ru-1 )*(l-mco(i,ru)*rnco(i,ru-

1)*mco(i,ru-2)-rnh(i,ru-1» / (1-mco(i,ru)*mco(i,ru-1)*mco(i,ru-2»/\2;
scr(i,ru)=rnco(i,ru)*mco(i,ru -1)*mco( i,ru -2)*rnh(i,ru )*(1-mco( i,ru )*mco( i,ru-1 )*rnco( i,ru- 2)-

mhti.ru) / (1-rnco(i,ru)*mco(i,ru-1)*mco(i,ru-2»/\2;
sb 1=mco(i,ru)*rnco(i,ru-1 )*mco(i,ru-2)*(rnh(i,ru)+rnh(i,ru-1 )+rnh(i,ru-2) )*(1- .

mco(i,ru)*mco(i,ru-1 )*mco(i,ru-2)-rnh(i,ru)-rnh(i,ru-1 )-rnh(i,ru-2» / (l-mco(i,ru)*mco(i,ru-
1)*mco(i,ru-2))/\2;

sbr(i,l:v )=Z(i, t)*Z(i, 1:v)*(sb l-sum(rnh(i, 1:ru-3»);
sbcr(i.I :ru-3)=-Z(i, t)*rnh(i, 1:ru-3);
sbcr(i,ru- 2)=Z(i, t)*mco(i,ru)*mco(i,ru-1 )*mco(i,ru -2)*rnh(i,ru- 2)*(1-mco( i,ru )*mco(i,ru-

1)*mco(i,ru-2)+rnh(i,ru)+rnh(i,ru-1 )-rnh(i,ru-2» / (1-mco(i,ru)*mco(i,ru-1 )*rnco(i,ru-2»" 2;
sbcr(i,ru-1)=Z(i,t)*mco(i,ru)*mco(i,ru-1)*mco(i,ru-2)*rnh(i,ru-1)*(1-mco(i,ru)*mco(i,ru-

1)*mco(i,ru-2)+rnh(i,ru)-rnh(i,ru-1 )+rnh(i,ru-1» / (1-mco(i,ru)*mco(i,ru-1 )*rnco(i,ru-2»/\ 2;
sbcr( i,ru) =Z(i, t)*mco( i,ru )*mco(i,ru-1 )*mco(i,ru -2)*rnh( i,ru)*( 1-mco( i,ru)*mco(i,ru-

1)*mco(i,ru-2)-rnh(i,ru)+rnh(i,ru-1 )+rnh(i,ru-2» / (1-mco(i,ru)*mco(i,ru-1 )*rnco(i,ru-2) )"2;
end

end
ssbcr=sumfsbcr):
ssbr=sum(sbr);
SBR=[SBB;ssbr ];
SBCR=[SBCR;ssbcr];

end
sfc=sum(fc);
sfr=sum(fr);
sfb=surrufb );
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sfbr=sum(fbr);
SC=[sum(scr) sum(sc)];
SBC=[SBCR SBCC];
GBl=[]; GB2=[]; DIAI=[]; DIA2=[]; CRI=[]; Ub=[];
for i=n
for 1=1:v
ub( i/l)= fbr( i/l)*( fbr(i.l)» fb( i,l)) +fbfi.l) *(fbr( i/l)+ fb (i,l));
crb I (i.Lrnr )=(fr(i/l :rnr )*fbr(i/l)+fr(i/l :rnr)*fb(i/l));
crb2( i,l :cdr)= (fc( i,l :cdr )*fbr(i/l) +fc( i,l :cdr )*fb( i,l));
GBI=[GBI crbl ]: GB2=[GB2 crb2];

end
end
UB=sum(ub);
SGBI=sum(GBI); SGB2=sum(GB2);
Dlé l=zerostrnr.rnr):
DIA2=zeros( cdr.cdr):
CRI =zerosfmr.cdr):
for i=l:n
diA I =(fr(i/l :rnr) '*fr(i/l :rnr));
diA2=(fc(i/1 :cdr) '*fc(i/l :cdr));
cr l =(fr(i/l :rnr) '*fc(i/l :cdr));
DIAI=DIAI+diAI; DIA2=DIA2+diA2;
CRI=CRI+crl;

end
CRR=[];
CRC=[];
for j= l:v
crr=SGBI«j-I)*rnr+ l:j*rnr);
crc=SGB2«j-I)*cdr+ l:j*cdr);
CRR=[CRR;crr];
CRC=[CRC;crc];

end
D=[diag(UB) CRR CRC;CRR' DIAl CRI;CRC' CRI' DIA2];
likel=surn(li)
q=[sfbr+sfb sfr sfc]';
Q=[Q q];
HI=[SBB SBC;SBC diag(SC)];
H=inv(HI);
NH=H*D*H;
betaebeta--Nl-Pqy l O,
BETA=[BETA beta];
B=beta(l .v)':
BI=beta(I)';

rdelta=beta(v+l:vr) ';
cdelta=beta(vr+l:vrc) ';
BB= [BB;Bl) ;
LLike=[LLike;likel);
Likel=[Likel;likel);
diff=Likel(k+l)-Likel(k);
k=k+l;

end
plot(BB,LLike)
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Datasim.m: A simulation of dependant visiting times, one covariate for failure times and covariate
for visiting probabilities which vary over intervals
*****************************************************************************************************************
clear
N=50;
J=12; t=O.3; z=randn(l,N); bet=O.3; x=roundfrandfbl.Ij):
X=O:J-1;
muj=1.5-0.25*X; nu=l; thet=-O.5;
g=exp( -t*X)-exp( -t*(X+1»;
g=[g 1-sum(g)]';
G=[O;cumsurn(g) ];
Gi=l-G;
r=rand(N,l);
V=[]; A=[]; Gamjk=[];
for i= l.N
G= I-Gi.l\exp(bet*z(i»;
l(i)=min(find(G>=r(i)))-l;
K=I(i);
if I(i)==J+1;
I(i)=J;

end
gamjk=[ ones(l,I(i» zeros(l,J-I(i»];
vv=Il.
for j=l:J
pijk=exp(muj(j)+nu*gamjk(j)+thet*x(i» / (1+exp(muj(j)+nu*gamjk(j)+thet*x(i»);
r2=rand(1,1);
if r2>=pijk
v=O;

else v=l;
end
vv=[vv;v];

end
vv=[vv;O];
V=[V;vv'];
a=zeros(1,J+ 1);
if K<=J
c=min(find(vv(I(i):J)== 1»+ I(i)-l;
if isempty(c)
c=J+1;

end
d=max(find(vv(l:I(i)-l)==l»+ 1;
if isempty(d)
d=l;

end
a(d:c)=ones(l,length(a(d:c»);
else
f=maxïfindtvvee lj):
a=[zeros(1,f) ones(l,J-f+ 1)];

end
A=[A;aJ;
Gamjk=[Gamjk;gamjk];
End



:0------------

Vispos.m: A Gibbs sampiere for Dependent Visits, data form DATASIM.M with one covariate
for failure times and covariate for visiting probabilities that vary over intervals.
***************************************************************************************************************
clear
datasim.m
'1.,STARTINC VALUES
I~:~.I-_- - _

muj=0.12S*onesG,I); nu=O; thet=O; bett=O;
for j=1:J+1
P(j)=(l-sum(g(l:j)) / (l-sum(g(l:j-l)));

end
PP=[]; MUj=[]; NU=[]; THET=[]; tel l=O; te12=0; te13=0; BET=[];
for k=1:2000
k

''{,sIMULATINC P
0:

L=[];
for i=l:N
pijk=[ exp(muj+nu *Gamjk(i,:)' +thet*x(i)). / (1+exp(muj+nu *Gamjk(i,:)' +thet*x(i)) );0];
B=prod((pijk'./\ V (i,:». *((I-pijk)' ./\(1-V(i,: ))));
11=0;
for j;"l:J+l
I=A(i,j)*(1-(P(j) ./\exp(bett*z(i))) )*prod(P(1 :j-l )./\exp(bett*z(i)) )*B;
11=11+1;

end
L=[L;ll];

end
LL=smn(log(L»;
lnpr=O;
for j=l:J
pr=(P(j)/\(O.S*G+ 1)))*((I-P(j))/\( -0.5));
Inpr=lnpr+log(pr);

end
lnpostel.Ls-lnpr:
Zl=min(P,O.9999); Z2=max(ZI(1:12),O.0001);
P=[Z20];
r1=1; al=O;
while r1>=a 1;
r=0.4 *randn(I,J)+log(P(1:J). / (1-P(1 :J)));
PO=[l./(I+exp(-r)) 0];
L=[]; tell =tel1 + 1;
for i=1:N
pijk=[ exp(muj+nu*Gamjk(i,:)' +thet*x(i) ).; (1+exp(muj+nu*Gamjk(i,:)' +thet*x(i)) );0];
Beprodtjpijk'.« V(i,:)). *((I-pijk)' ./\(1-V(i,:))));
11=0;
for j=1:J+l
I=A(i,j)*(I-(Po(j)./\exp(bett*z(i))) )*prod(Po(1 :j-1)./\exp(bett*z(i)) )*B;
11=1l+1;

end
L=[L;l1];

end
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LL=sum(log(L));
lnpr=O;
for j=1:J
pro=(Po(j)/\(O.S*(J -j-l)) )*«1- Po(j))/\( -0.5));
Inpr=lnpr+log(pro );

end
lnposto= LL+ lnpr;
a1=exp(lnposto-lnpost);
rl =rand(l,l);
end
P=Po;
PP=[PP;P];
(~·;)SItv1ULATINC MUj, NU AND TI-IET
0:.:() - --- --- ---- ------ ------ ----
L=[];
for i=1:N
pijk=[exp(muj+nu*Gamjk(i,:)'+thet*x(i))./(I+exp(muj+nu*Gamjk(i,:)'+thet*x(i)));O];
Beprodupijk'.« V(i,:)). *((I-pijk)' ./\(1-V(i,:))));
11=0;
for j=I:J+l
I=A(i,j)*(I-(P(j)./\exp(bett*z(i))))*prod(P(l :j-l)./\exp(bett*z(i)))*B;
11=11+1;

end
L=[L;l1];

end
LL=sum(log(L));
lnpr=O;
for j=1:J
pr=(P(j)/\(O .5*0 -j-l)) )*«1- P(j)) /\(-0.5));
Inpr=lnpr+log(pr);

end
lnpost=LL+lnpr;
r1=2; a2=0;
while r2>=a2;
mujo=muj+randnfj.Ij'ff.Ió;
nuo=nu+randn(l,l)*O.I;
theto=thet+randn(I,I)*O.I;
L=[]; te12=te12+ 1;
for i=I:N
pijk=[ exp(mujo+nuo*Gamjk(i,:)' +theto*x(i)). / (1+exp(mujo+nuo*Gamjk(i,:)' +theto*x(i)) );0];
Beprodïjpijk'.« V(i,:)). *«I-pijk)' ./\(1-V(i,:))));
11=0;
for j=1:J+1
I=A(i,j)*(I-(P(j) ./\exp(bett*z(i))) )*prod(P(I :j-I )./\exp(bett*z(i)) )*B;
11=11+1;

end
L=[L;l1];

end
LL=sum(log(L));
lnpr=O;
for j=1:J
pro=(P(j)I\(O.S*O -j-1)) )*( (1-P(j))/\( -0.5));
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Inpr=lnpr+log(pro );
end
lnposto=Ll+lnpr:
a2=exp(lnposto-lnpost);
r2=rand(I,I);
end
muj=mujo; nu=nuo: thet=theto;
MUj=[MUj;muj']; NU=[NU;nu]; THET=[THET;thet];
(~!(,s[rvruLATINGBETA
(I::'0---------------

L=[];
for i=I:N
pijk=[ exp(muj+nu*Gamjk(i,:)' +thet*x(i». / (1+exp(muj+nu*Gamjk(i,:)' +thet*x(i») ;0];
Beprodupijk'." V(i,:». *«I-pijk)' ."(1- V(i,:»»;
11=0;
for j=1:J+l
l=A(i,j)*(I-(P(j)."exp(bett*z(i))))*prod(P(1 :j-l)."exp(bett*z(i)))*B;
11=11+1;

end
L=[L;ll];

end
LL=sum(log(L»;
lnpr=O;
for j=I:J
pr=(P(j)"(O.5*U-j-l»)*«I- P(j»"( -0.5»;
lnprelnpr+logtpr):

end
Inpost=LL+lnpr;
r3=1; a3=0;
while r3>=a3;
beto=bett+randn(I,I)*0.3;
L=[]; te13=te13+ 1;
for i=I:N
pijk=[ exp(muj+nu*Gamjk(i,:)' +thettxfil). / (1+exp(muj+nu*Gamjk(i,:)' +thet*x(i» );0);
Beprodupijk'." V(i,: ». *«I-pijk)' ."(1- V(i,:))));
11=0;
for j=1:J+l
l=A(i,j)*(I-(P(j)."exp(beto*z(i))) )*prod(P(1 :j-l)."exp(beto*z(i) »*B;
11=11+1;

end
L=[L;l1];

end
Ll.esumïlogtl.l):
lnpr=O;
for j=I:J
pro=(P(j)"(O.S*U-j-l»)*«I-P(j»"( -0.5»;
lnprelnpr+ log(pro);

end
lnpostoel.Ls-lnpr:
a3=exp(lnposto-lnpost);
r3=rand(I,I);
end
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bett=beto:
BET=[BET;bettl;
<>"';,pélllse
end
save c: \matlabr11 \deptsiml.mat pp MUj NU THET BET J g A V Gamjk x z



clear al!
Pekiddata: %Kidney data file
x=P(:,2:3);
x1=x(:,1);
n=length(x);
stat=P(:,4:5);
ZO=ones(n,l);
Zl=P(:,6);
Z2=P(:,7);
Z3=P(:,9);
Z4=P(:,10);
Z5=P(:,ll);
Z=[ZO Zl Z2 Z3 Z4 Z5];
tho=2.3781;
M=2;
cut=[O 30 90180365600];
Int=[30 90 180365 600];
LInt=log(Int);
cat=length(cut);
r=cat-I:
for m= l.M
for j=l:r
for i=Ln
if x(i,m»=cut(j) & x(i,m)<cut(j+1)
alp(i,m)=j;

end
end

end
end
%Llntl =Iog(lnt(:,l));
'j'oLlnt2=log(Int(:,2));
sigma=2.033;
%sigma2=20.2789;
BO=[6.246.76];
B1=[O.l423 -1.3290 -0.6706 -0.1599 1.3630];
Al =0.5*ones(2,r+ 1);
K=5000; BBO=[]; BB1=[]; Fd=[]; Sd=[]; THO=[]; SIGMA=[]; tel I=D;
for Ite l.K
It
Itho= I/tho;
L=[];
for i=I.n
PSl=[l cumprod(exp( -exp((LInt-ZO(i)*BO(1,1)-Z(i,:)*B1 ') / sigma))) ]."-Itho;
PS2=[1 cumprod(exp(-exp((LInt-ZO(i)*BO(1,2)-Z(i,:)*B1')/sigma)))]."-Itho;
j=alp(i,l); q=alp(i,2);
if stat(i,l)==l & stat(i,2)==1
1=((PS1(j+1)+PS2(q+ 1)-1)"-tho)+((PS1(j)+PS2(q)-1)"-tho)-((PS1(j)+ PS2(q+ l)-l)"-tho)-

((PS1(j+ 1)+PS2(q)-1)"-tho);

Weiclapos: A program for computing posterior distributions with a bivariate CC assuming Weibull
Marginal distributions, this is applied to kidney infection data using Metropolis-Hastings
algorithm.
*************************************************************************
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elseif stat(i,I)==1 & stat(i,2)==0
l=((PSl (j)+PS2(q+ 1)-I)"-tho)-((PSl (j+1)+PS2(q+ 1)-I)"-tho);

elseif stat(i,I)==O & stat(i,2)==1
1=((PSl (j+1)+ PS2(q)-I)"-tho)-((PSl (j+1)+PS2(q+ 1)-I)"-tho);

elseif stat(i,I)==O & stat(i,2)==0
l=((PSl (j+1)+PS2(q+ 1)-I)"-tho);

end
L=[L;I];

end
like=sum(log(L) )
u=L; a=O;
while u>a
nbl=randn(I,5)*0.05+Bl;
nbO=randn(I,2)*0.05+BO;
tell=tell +1;
nL=[];
for i=Ln
nPSl=[1 cumprod(exp( -exp((LInt-ZO(i)*nbO(I,I)-Z(i,:)*nbl ') / sig») ]."- Itho:
nPS2=[1 cumprod( exp( -exp((LInt-ZO(i)*nbO(I,2)-Z(i,:)*nbl ') / sig») ]."- Itho;
j=alp(i,I); q=alp(i,2); ,
if stat(i,I)==1 & stat(i,2)==1
l=((nPSl (j+ 1)+nPS2(q+ 1)-I)"-tho)+((nPSl (j)+nPS2(q)-I)"-tho)-((nPSl (j)+nPS2(q+ 1)-1 )"-tho)-

((nPSl(j+ 1)+nPS2(q)-I)"-tho);
elseif stat(i,I)==1 & stat(i,2)==0
l=((nPSl (j)+nPS2(q+ 1)-I)"-tho)-((nPSl (j+1)+nPS2(q+ 1)-I)"-tho);

elseif stat(i,I)==O & stat(i,2)==1
1=((nPSl (j+1)+nPS2(q)-I)"-tho)-((nPSl(j+ 1)+nPS2(q+ 1)-I)"-tho);

elseif stat(i,I)==O & stat(i,2)==0
l=((nPSl (j+1)+nPS2(q+ 1)-I)"-tho);

end
nL=[nL;l];

end
nposesumtlogtnl.j):
a=min(exp(npos-pos),I);
u=randf Ll ):

end
Bl=nb;
BO=nbO;
BBl=[BBl;Bl];
BBO=[BBO;BO];
for i=l:n
PSl=[1 curnprod(exp(-exp((LInt-Z(i,:)*Bl ') / sigma»»)."-Itho;
PS2=[1 curnprod(exp(-exp((LInt-Z(i,:)*B2')/sigma»)]."-Itho;
j=alp(i,I); q=alp(i,2);
if stat(i,I)==1 & stat(i,2)==1
1=((PSl(j+ 1)+ PS2(q+ 1)-I)"-tho)+((PSl (j)+PS2(q)-I)"-tho)-((PSl(j)+ PS2(q+ 1}-l)"-tho)-

((PSI (j+1)+PS2(q)-I}"-tho);
elseif stat(i,I)==1 & stat(i,2)==0
l=((PSl (j)+PS2(q+ 1)-I)"-tho)-((PSl(j+ 1)+PS2(q+ 1}-I)"-tho);

elseif stat(i,I)==O & stat(i,2)==1
l=((PSl(j+ 1)+ PS2(q)-I)"-tho)-((PSl (j+1)+PS2(q+ 1)-I)"-tho};

elself stat(i,I)==O & stat(i,2)==0
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1=((PS1 (j+1)+PS2(q+ l)-l)"-tho);
end
L=[L;I];

end
like=sum(log(L) )
u=l; a=f):
while uxa
lsig=O.Ol *randn(1,1)+log(sigma1);
nsig=exp(lsig);
Ltho=O.Ol *randn(l,l)+log(tho);
ntho=exp(Ltho);
nltho=l Intho;
tell =tell +1;
nL=[];
for i=Ln
nPS1 =[1 cumprod(exp( -exp((Llnt-ZO(i)*BO(l, 1)-Z(i,:)*Bl ') Insig») ]."-nltho;
nPS2=[ 1 cumprod( exp( -exp( (Llnt-ZO(i)*BO(1,2)-Z(i,: )*B1') Insig»)] ."-nItho;
j=alp(i,l); q=alp(i,2);
if stat(i,l)==l & stat(i,2)==1
1=((nPS1 (j+1)+nPS2(q+ 1)-1)"-ntho)+((nPS1 (j)+nPS2( q)-1)"-ntho)-((nPS1 (j)+nPS2( q+ 1)-1 )"-

ntho)-((nPS1 (j+1)+nPS2(q)-1)"-ntho);
elseif stat(i,l)==l & stat(i,2)==O
. 1=((nPS1 (j)+nPS2(q+ 1)-1)"-ntho)-((nPS1 (j+1)+nPS2(q+ l)-l)"-ntho);
elseif stat(i,l)==O & stat(i,2)==1
1=((nPS1 (j+1)+nPS2(q)-1)"-ntho)-((nPS1 (j+1)+nPS2(q+ l)-l)"-ntho);

elseif stat(i,l)==O & stat(i,2)==O '
1=((nPS1 (j+1)+nPS2(q+ l)-l)"-ntho);

end
nL=[nL;I];

end
npos=surn(log(nL) );
a=rnin(exp(npos-pos),l);
u=rand(L'l ):

end
sigma 1=nsig 1;
tho=ntho:
SIGMA=[SIGMA;sigma];
THO=[THO;tho ];
end
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Indpos: A Program for simulating posterior distributions for bivariate data using Metropolis-
Hastings algorithm on lW model.
*****************************************************************************************************************
clear all
% Data file
% Starting values for all parameters
%Specify Intervals, # of intervals

M=2;
BB=[];PPr=[]; PPc=[]; LI=[]; K=20000; tel1=O;Like=[];
for It=l:K
It
RLI=[];CLI=[];
for i=l:n
PcZ=l. / (1+exp(cdelta+Z(i,:}*B'));
PrZ=l. / (1+exp(rdelta+Z(i,:)*B'}};
if cdalp(i,l}==O
Hc=O; sGc=O;
for j=1:cdalp(i,2}
Gc=(l- PcZ(j)}*prod(PcZ(l :j-1}};
sGc=sGc+Gc;
hc=Ac(i,j)*Gc;
Hc=Hc+hc;

end
cli=Hc+(l-sGc};

else
cli=O;
for j=l:cdr
cl=Ac(i,j)*(l- PcZ(j}}*prod(PcZ(1:j-1}};
eli=eli-eel:

end
end
if rnalp(i,l}==O
Hr=O; sGr=O;
for q=1:rnalp(i,2}
Gr=(1-PrZ(q}}*prod(PrZ(1:q-1}};
sGr=sGr+Gr;
hr=Ar(i,q}*Gr;
Hr=Hr+hr:

end
rli=Hr+(l-sGr};

else
rli=O;
for q=l:rnr
rl=Ar(i,q}*(l-PrZ(q}}*prod(PrZ(1 :q-1));
rlierli+rl:

end
end
RLI=[RLI;rli);CLI=[CLI;cli);

end
Li=sum(log(RLI}}+surn(log(CLI}}
lposteLi:



ZPc=min(Pe,O.9999); Pe=max(ZPc,O.OOOl);
ZPr=min(Pr,O.9999); Pr=max(ZPr,O.OOOI);
u= l: a=O;
while u>a
nb=randnf I. 14)"'diag(varb )"'0.01+B;
nCLI=[); nRLI=[]; tell=tell +1;
for i=Ln
PoZe=I. / (1+exp(cdelta+Z(i,:)"'nb'));
PoZr= 1. / (1+exp(rdelta+Z(i,:)"'nb'));
if rnalp(i,I)==O
Hr=O; sGr=O;
for q=l:rnalp(i,2)
Gr=(I-PoZr(q))"'prod(PoZr(I :q-I));
sGr=sGr+Gr;
hr=Ar(i,q)"'Gr;
Hr=Hr-ehr:

end
rli=Hr+(I-sGr);

else
rli=O;
for q=l:rnr
rl=Ar(i,q)"'(I- PoZr( q) )"'prod(PoZr(1 :q-1));
rli=rli+rl;

end
end
if cdalp(i,I)==O
Hc=O; sGe=O;
for j=1:edalp(i,2)
Ge=(l-PoZcQ))"'prod(PoZc(I :j-I));
sGc=sGc+Ge;
he=Ae(i,j)"'Gc;
He=He+he;

end
cli=He+(I-sGe);

else
cli=O;
for j= Lcdr
cl=Ae(i,j)"'(I- PoZe(j) )"'prod(PoZe(I :j-l));
eli=eli+cl: .

end
end
nCLI=[nCLI;cli];
nRLI=[nRLI;rli];

end
sLi=sum(log(nRLI) )+sum(log(nCLI));
Iposto=sLi;
a=min(exp(lposto-lpost),I);
u=randf Ll ):

end
B=nb;
BB=[BB;B];
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'~",..simulating baseline parametars
lpr=fl,
for q= lrnr
for j=l:cdr
csal=sum(cAl(j+ 1:cdr+ 1»;
sal1=sum(cAl(j:cdr+1»;
(~i;)cpr=CI/beta(csal,cA1Cl,j) »)*exp(cAI"cdel tatl ,j» / Cl+exptcdeltat 1,j»)"saI2;
rsal=sumfrAlfq+l-rnr-s l j):
salê=surrur.Alfq.rnr+l j):
%rpr=(1 /betatrsal.r AlfLq) )*exp(r Al*rdeJta( 1,q»)/ (:t -expïrdel taïI.q) )"saI2;
cpr=exp (cdelta (j)) / (1+exp(cdelta(j)))1\2;
rpr=exptrdeltaïq) / (1+exp (rdelta(q))) 1\2;
Ipr=lpr+log(cpr)+log(rpr);

end
end
Cli=[]; Rli=[]; PC=[];
for i=l:n
PcZ= 1./ (1+exptcdelta-Zu.ir'B'j):
PrZ=l. / (1+exp(rdelta+Z(i,:)*B'»;
if cdalp(i,l)==O
Hc=O; sGc=O;
for i= 1:cdalp(i,2)
GC=(l-PcZ(j»*prod(PcZ(l :j-1»;

. sGc=sGc+Gc;
hc=Ac(i,j)*Gc;
Hc=Hc+hc;

end
cli=Hc+(l-sGc);

else
cli=O;
for j=l:cdr
cl=Ac(i,j)*(1-PcZQ»*prod(PcZ(1:j-1»;
cliecli+cl:

end
end
if rnalp(i,l)==O
Hr=O; sGr=O;
for q=1:rnalp(i,2)
Gr=(1-PrZ(q»*prod(PrZ(1:q-1»;
sGr=sGr+Gr;
hr=Ar(i,q)*Gr;
Hr=Hr+hr;

end
rli=Hr+(l-sGr);

else
rli=O;
for q=Lrnr
rl=Ar(i,q)*(l- PrZ( q) )*prod(PrZ(l .q-Ij):
rli=rli+rl:

end
end
Rli=[Rli;rli];Cli=[Cli;cli];
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end
Li=surn(log(Rli) )+surn(log(Cli));
lpost=l.i+lpr:
ZPe=min(Pe,O.9999); Pe=max(ZPe,O.OOOl);
ZPr=min(Pr,O.9999); Pr=max(ZPr,O.OOOl);
u=I: a=O;
while uc-a
Poe=O.Ol *randn(l,edr)*diag(vare)+cdelta;
Por=O.Ol *randn(1,rnr)*diag(varr)+rdelta;
lpro=O:
for q=l:rnr
for j=l:edr
esal==sum(eAl(j+ l:edr+ 1));
sal1=sum(eAl(j:edr+1));
'\'l1cpr=(l/beta(csal,cAI(l,])))*exp(cAl( l,j)*Poc(j)) / (I+exp(Poc(j))Y'sa Il;
rsal==sum(rAl(q+ Lrnr+ 1));
sa12==sum(rAl(q:rnr+ 1));
'Y"nrpr=(l/bela(rsal,l' Al(l,q)))*exp(r Al(1,q)"'Por( q)) / (1+exp( Pore g)) )"'r5aI2;
nepr==exp(Poe(j)) / (1+exp(Poe(j)))1\2;
nrpr=exp(Por(q)) / (1+exp(Por(q)))1\2;
Ipro==lpro+log(nepr)+log(nrpr);

end
end
nCli=[ ); nRli==[ ); tell=tell +1;
for i=l:n
PoZe==l. / (1+exp(Poe+Z(i,:)*B'));
PoZr= 1. / (1+exp(Por+Z(i,:)*B'));
if malp(i,l)===O
Hr=O; sGr==O;

. for q=1:rnalp(i,2)
Gr==(1-PoZr(q))*prod(PoZr(1:q-1));
sGr=sGr+Gr;
hr==Ar(i,q)*Gr;
HreHr+hr:

end
rli=Hr+(l-sGr);

else
rli=O;
for q==l:rnr
rl=Ar(i,q)"'(l- PoZr( q) )*prod(PoZr(1:q-1));
rli=rli+rl:

end
end
if edalp(i,l)==O
He==O; sGc=O;
for i= 1:edalp(i,2)
Ge==(l-PoZe(j))*prod(PoZe(l:j-l));
sGe=sGe+Ge;
he=Ac(i,j)*Gc;
Hc==Hc+hc;

end
cli==Hc+(l-sGc);
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else
cli=O;
for j=l:cdr
cl=Ac(i,j)*(l-PoZc(j) )*prod(PoZc(i .j-l j):
eli=eli+cl:

end
end
nCli=[ nCli;cli);
nRli=[nRli;rli);

end
sLi=sum(log(nRli»+sum(log(nCli»;
lposto=sl.i+lpro;
a=rylin(exp(lposto-lpost),l);
u=randf Ll );

end
cdelta=f'oc:
rdelta=Por:
PPc=[PPc;cdelta);
PPr= [PPr ;rdelta);

end
HSB=sort(BB);
HPB=[HSB«K*O.025),:);HSB«K*O.975),:») .
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M=2;
BB=[]; CDdelta=[]; RNdelta=[]; LI=[}; K=5000;
for It=I:K
It
PI=[};
for i=l:n
p l =exp( -exp(fdelta+ Z(i,: )*B'»;
PI=[PI;pI);

end
for q=Lrnr
for i= Ln
for j=I:edr
P2(i,j)=exp( -exp( edelta( q,j)+ Z(i,: )*B'»;

end
cl=edalp(i,I);eu=cdalp(i,2);
fl=rnalp(i,I);fu=rnalp(i,2);
if cl==O
li(i,q)=(1- PI (i.q) )*prod(PI (i.I .q-I) )*prod(P2(i, 1.cuj):

elseif cl==eu
li(i,g)=(I-PI(i,g»*prod(PI(i,I :g-I»*(I- P2(i,eu»*prod(P2(i, 1.cu-Ij):

else if cl-=O & cl==eu-I
li(i,g)=(I- PI (i.q))*prod(P1 (i,1.q-l) )*(1-P2(i,eu) )*prod(P2(i, 1.cu-I) )+(1- PI (i.q) )*prod(P1 (i, 1:g-

1»*(I-P2(i,cu-1»*prod(P2(i,1:eu-2»;
elseif cl-=O & cl==cu-Z
li(i,g)=(l- PI (i,g) )*prod(P1 (i,l .q-I) )*(1-P2(i,eu) )*prod(P2(i, 1.cu-I) )+(1- PI (i.q) )*prod(P1 (i,1:g-

1))*(1-P2(i,cu-1) )*prod(P2(i, 1:eu-2) )+(1-P1 (i.q) )*prod(P1 (i,1.q-l) )*(1-P2(i,eu-2) )*prod(P2(i, 1.cu-Sj):
elseif cl-=O & cl==cu-4
li(i,g)=(l- PI (i,g) )*prod(P1 (i,l .q-I) )*(1-P2(i,eu) )*prod(P2(i, 1:eu-1) )+(1- PI (i.q) )*prod(P1 (i,1:g-

1))*(1-P2(i,eu-1) )*prod(P2(i, 1:eu-2) )+(1- PI (i.q))*prod(P1 (i,1.q-l) )*(1-P2(i,eu-2) )*prod(P2(i, 1:eu-3) )+(1-
PI (i.q) )*prod(P1 (i,l :g-l) )*(1-P2(i,cu-3) )*prod(P2(i, 1:eu-4) )+(1-P1 (i.q) )*prod(PI (i, 1.q-I) )*(1-P2(i,eu-
4»*prod(P2(i,1 .cu-Sj):

end
end

end
for i=l:n
cl=cdalp(i,1);eu=edalp(i,2);
fl=rnalp(i,1);fu=rnalp(i,2);
if cl==O & fl==O
lli(i)=log(sum(li(i,fu+ 1:rnr),2»;

elseif fl>O & cl==O
lli(i)=log( sum(li(i,fl:fu»);

elseif fl==O & el>O
lli(i)=log(sum(li(i,fu+ 1:rnr),2»;

elseif fl>O & el>O

Conpos: A Program for simulating posterior distributions for bivariate data using Metropolis-
Hastings algorithm on Conditional bivariate (CB) model.
*****************************************************************************************************************
clear all
% Data file
% Starting values for all parameters
%Speeify Intervals, # of intervals
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Hi(i)=log( surn(li(i,fl: fu»);
end

end
lbesumtlli)
u= l: a=O;
while u>a
nb=randn(1,14)*0.01 *diag(varb)+B;
nPI=[];
for i=Ln
npl=exp(-exp(fdelta+Z(i,:)*nb'»;
nPl=[nPl;npll;

end
for q= lrnr
for i=l:n
for j=l:cdr
nP2(i,j)=exp( -exp( cdelta( g,j)+Z(i,:)*nb '»;

end
cl=cdalp(i,l);cu=cdalp(i,2);
fl=malp(i,l );fu=malp(i,2);
if cl==O
nli(i,q)=(l-nPl (i.q) )*prod(nPl (i,l .q-I) )*prod(nP2(i,1 .cul):

elseif cl==cu
nli(i,q)=(l-nPl (i.q) )*prod(nPl (i.I :q-l) )*(1-nP2(i,cu) )*prod(nP2(i,1 .cu-Ij):

elseif cl-=O & cl==cu-l
nli(i,q)=(l-nPl (i,g»*prod(nPl(i,l:q-l»*(I-nP2(i,cu»*prod(nP2(i,l .cu-L) )+(1-

nPl(i,g»*prod(nPl(i,l :q-I»*(1-nP2(i,cu-l»*prod(nP2(i,l .cu-Zj):
elseif cl-=O & cl==cu-2
nli(i,q)=(l-nPl (i.q) )*prod(nPI (i,l .q-I) )*(I-nP2(i,cu) )*prod(nP2(i,1 .cu-I ))+(1-

nPl(i,g»*prod(nPl(i,l:g-1))*(1-nP2(i,cu-l))*prod(nP2(i,I :cu-2»+(1-nPl (i.q) )*prod(nPl (i.Lq-I) )*(1-
nP2(i,cu- 2))*prod(nP2(i,l .cu-Sj):

elseif cl-=O & cl==cu-4
nli(i,q)=(l-nPl (i,q) )*prod(nPI (i,l .q-l ))*(1-nP2(i,cu) )*prod(nP2(i,1 :cu-l) )+(1-

nPl (i.q))*prod(nPl (i,l .q-l) )*(I-nP2(i,cu-l) )"prod(nP2(i,1 :cu-2) )+(1-nPI (i.q) )*prod(nPl (i,l .q-I) )*(1-
nP2(i,cu-2) )*prod(nP2(i,l :cu-3) )+(l-nPI (i.q) )"prod(nPl (i.I .q-l) )*(1-nP2(i,cu-3) )*prod(nP2(i,l .cu-
4))+(l-nPl (i.q) )*prod(nPl (i,l .q-I) )"(I-nP2(i,cu-4) )"prod(nP2(i,l .cu-Sj):

end
end

end
for i=Ln
cl=cdalp(i,l);cu=cdalp(i,2);
fl=malp(i,l);fu=malp(i,2);
if cl==O & fl==O
nlli(i)=log(surn(nli(i,fu+ 1:rnr),2»;

elseif fl>O & cl==O
nllilil=Iogfsumfnlifi.fl.fu) );

elseif fl==O & c1>O
nlli(i)=log(surn(nli(i,fu+ 1:rnr),2»;

elseif flc-O& c1>O
. nlli(i)=log(surn(nli(i,fl:fu)));
end

end
nlb=surrunlli):
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a=min(exp(nlb-lb),l);
u=randf Ll ):

end
B=nb;
BB=[BB;B];

'''ê,sUvlU LA TINe PARAMETERS FOR RNA PARAMETERS
priof=O;
sfpr=O;
for q=l:rnr
fsal=sum(fAl(q+ Lrnr+ 1»;
'Yclfpr=(1/ beta( fsal,fAI( l,q) )*exp(fdelta (1,q)- Isa I"

exp( fdel ta(:! ,q» )*( l-exp( -exp(fdeJ ta(l,q))) )I\(f A1(1,q)-1 );
fpr=exp( -exp(fdel ta( Lq) )*exp(fdel ta(l,q»;
sfpr=sfpr+logtfpr):

end
priofesfpr:
Pl=[];
for i=Ln
p l =exp( -exp(fdel ta +Zei,: )*B'»;
Pl=[Pl;pl];

end
for q= l.rnr
for i= I.n
P2=[];
for j=l:cdr
P2(i,j)=exp(-exp(cdelta(q,j)+Z(i,:)*B'»;

end
cl=cdalp(i,l);cu=cdalp(i,2);
fl=malp(i,l);fu=malp(i,2);
if cl==O
li(i,q)=(l- PI (i,q) )*prod(Pl (i.l :q-l) )*prod(P2(i,l .cuj):

elseif cl==cu
li(i,q)=(l- PI (i,q) )*prod(Pl (i,l .q-I) )*(1-P2(i,cu) )*prod(P2(i,l .cu-Ij):

elseif cl-=O & cl==cu-l
li(i,q)=(l- PI (i,q) )*prod(Pl (i.l :q-l) )*(1-P2(i,cu) )*prod(P2(i,l :cu-l) )+(1- PI (i.q) )*prod(Pl (i.l :q_

1))*(1-P2(i,cu-l»*prod(P2(i,l:cu-2»;
elseif cl-=O & cl=ecu-Z
li(i,q)=(l- PI (i.q) )*prod(Pl (i,l :q-l) )*(1-P2(i,cu) )*prod(P2(i,l .cu-l ))+(1- PI (i,q) )*prod(Pl (i,l :q_

1))*(1-P2(i,cu-l) )*prod(P2(i,l:cu-2) )+(1- Pl(i,q) )*prod(Pl (i,l :q-l) )*(1-P2(i,cu-2) )*prod(P2(i,l .cu-Sl):
else if cl-=O & cl=ecu-d
li(i,q)=(l- PI (i,q) )*prod(Pl (i,l :q-l) )*(1-P2(i,cu) )*prod(P2(i,l .cu-l ))+(1- PI (i,q) )*prod(Pl (i,l :q_

1))*(1-P2(i,cu-l) )*prod(P2(i,l :cu-2) )+(l-Pl(i,q) )*prod(Pl (i.I :q-l) )*(1-P2(i,cu-2) )*prod(P2(i,l :cu-3) )+(1-
Pl(i,q) )*prod(Pl (i,l :q-l) )*(1-P2(i,cu-3) )*prod(P2(i,l:cu-4) )+(l-Pl (i.q) )*prod(Pl (i.I :q-l) )*(1-P2(i,cu-
4) )*prod(P2(i,l reu-Sj):

end
end

end
for i=Ln
cl=cdalpti.I );cu=cdalp(i,2);
fl=malp(i,l );fu=malp(i,2);
if cl==O & fl==O
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Hi(i)=log(sum(li(i,fu +1:mr ),2»;
elseif f1>O& cl==O
Hi(i)=log(sum(li( i.fl: fu»);

elseif El==O& e1>O
lli(i)=log(sum(li(i,fu+ l:rnr),2»;

elseif El>O& e1>O
Hi(i)=log(sum(li( i.fl.fujj):

end
end
If=sum(lli)+priof
u=l; a=O;
while u>a
nfdelta=randn(l,rnr)*O.OI *diag(fvar)+fdelta;
npriof=O;
nfpr=O;
for q=l:rnr
fsal=sum(fAI(q+l:rnr+l»;
o·{,nfr=(l/beta (fsal,fAlCI ,q)»*exp(nfdelta(Lq)-fsal *

exp(nfdel ta(q))'{I-exp( -exp(nfdel ta(1 ,q»))/\(f AI(l .ql-l ):
nfr=exp( -exptnfdeltarl.q) )*exp(nfdelta(l,q»;
nfpr=nfpr+log(nfr);

end
npriof=nfpr;
nPl=[];
for i=Ln
npl=expï-exptnfdelta-Zu.n-B'j).
nPl=[nPl;npl];

end
nP2=[];
for q=l:rnr
for i=Ln
for j=l:edr
nP2(i,j)=exp( -exp( edelta( q,j)+Z(i,: )*B'»;

end
cl=edalp(i,I);eu=edalp(i,2);
El=malp(i,I);fu=rnalp(i,2);
if cl==O
nli(i,q)=(I-nPl (i.q) )*prod(nPl (i,1.q-I) )*prod(nP2(i, 1.cuj):

elseif cl==eu
nli(i,q)=(I-nPl (i,q) )*prod(nPl (i, 1:q-l) )*(I-nP2(i,eu) )*prod(nP2(i, 1.cu-Ij),

elseif cl-=O & cl==eu-l
nli(i,q)=(1-nPl (i.q) )*prod(nPl (i, 1.q-l ))*(I-nP2(i,eu) )*prod(nP2(i, 1:eu-l) )+(1-

nPl (i.q) )*prod(nPl (i, I :q-l) )*(1-nP2(i,cu-l) )*prod(nP2(i, I :eu-2»;
elseif cl-=O & cl==eu-2
nli(i,q)=(1-nPI (i.q) )*prod(nPl (i, I .q-I) )*(1-nP2(i,eu) )*prod(nP2(i, I :eu-l) )+(1-

nPI(i,q»*prod(nPI (i,l :q-l»*(I-nP2(i,eu-I»*prod(nP2(i,l:eu-2»+(I-nPl(i,q))*prod(nPI(i, I :q-I»*(1-
nP2(i,eu-2) )*prod(nP2(i, I .cu-Sj):

elseif cl-=O & cl==eu-4
nli(i,q)=(I-nPI (i.q) )*prod(nPl (i,l :q-l) )*(I-nP2(i,eu) )*prod(nP2(i,1 .cu-l ))+(1-

nPl (i,q) )*prod(nPl (i,1:q-l) )*(I-nP2(i,eu-l) )*prod(nP2(i, 1:eu-2) )+(I-nPl (i.q) )*prod(nPI (i,1.q-I) )*(1-
nP2(i,eu-2) )*prod(nP2(i, 1:eu-3) )+(I-nPl (i.q) )*prod(nPl (i, 1:q-l) )*(I-nP2(i,eu-3) )*prod(nP2(i, 1:eu-
4))+(I-nPl (i.q) )*prod(nPl (i,1:q-l) )*(I-nP2(i,eu-4) )*prod(nP2(i, 1.cu-Sj):



end
end

end
for i=1:n
cl=edalp(i,1);eu=edalp(i,2);
fl=rnalp(i,1);fu=rnalp(i,2);
if cl==O & fl==O
nlli(i)=log(sum(nli(i,fu+ 1:rnr),2»;

elseif fl>O & cl==O
nlli(i)=log(sum(nli(i,fl:fu» );

elseif fl==O & ebO
nlli(i)=log(sum(nli(i,fu+ 1:rnr),2»;

elseif fb-O & ebO
nlli(i)=log(sum(nli(i,fl:fu» );

end
end
nlf=sum(nlli)+npriof;
a=min(exp(nlf-lf),l);
u=rand(l,l);

end
fdelta=nfdelta;
RNdelta=[RNdelta;fdelta];

'\Sirnulating for CD.:! failure parameters
prioc=D:
scpr=D:
for g=l:rnr
for j=l:edr
esal=sum(eAl(j+ l:edr+ 1»;
'Yc,cpr=(1/ beta] csaJ,cAl(q,j» )*exp(cdelta(q,j)-csa ,•.

exp] edeltaf q,j» )*(l-exp( -exp( edel ta (q,j») )1'( cAI( q.jj-I):
epr=exp( -exp( edelta( g,j» )*exp( edelta( g,j»;
sepr=sepr+ loge epr);

end
end
prioc=sepr;
P1=[];
for i=1:n
p1=exp(-exp(fdelta+Z(i,:)*B'»;
P1=[P1;p1];

end
P2=[];
for qe l.rnr
for i=Ln
for j=l:edr
P2(i,j)=exp( -exp( edelta( q,j)+ Zei,:)*B'»;

end
cl=edalp(i,I);eu=edalp(i,2);
6=rnalp(i,I);fu=rnalp(i,2);
if cl==O
li(i,g)=(I- PI (i.q) )*prod(PI (i,1.q-l ))*prod(P2(i, 1.cuj):

elsei f cl==eu

176



li(i,q)=(1-P1 (i,q))*prod(P1 (i.lq-I »*(1-P2(i,eu»* prod(P2(i,l:eu-1»;
else if cl-=O & cl==eu-1
li(i,q)=(1-P1 (i,q»*prod(P1 (i.lq-I) )*(1-P2(i,eu)* prod(P2(i,1 :eu-1) )+(1- P1(i,q) )*prod(P1 (i,1:q-

1)*(1- P2(i,eu-1 »)*prod(P2(i, 1.cu-Zj):
elseif cl-=O & cl==eu-2
li(i,q)=(l- PI (i.q) )*prod(P1 (i,1:q-1) )*(1-P2(i,eu) )*prod(P2(i, 1:eu-1) )+(1- PI (i.q) )*prod(P1 (i,1:q-

1)*(1- P2(i,eu-1»)*prod(P2(i, 1:eu-2»)+(1-P1(i,q»* prod(P1(i,1:q-1»*(1-P2(i,eu-2) )*prod(P2(i, 1.cu-Sj):
elseif cl-=O & cl==eu-4
li(i,q)=(l- PI (i,q) )*prod(P1 (i.l :q-1) )*(1-P2(i,eu) )*prod(P2(i, 1:eu-1) )+(1- PI (i.q) )*prod(P1 (i,1:q-

1))*(1-P2(i,eu-1) )*prod(P2(i, 1:eu-2) )+(1- PI (i.q) )*prod(P1 (i, 1:q-1) )*(1-P2(i,eu-2) )*prod(P2(i, 1:eu-3) )+(1-
PI (i.q) )*prod(P1 (i, 1:q-1) )*(1-P2(i,eu-3) )*prod(P2(i, 1:eu-4) )+(1- PI (i,q) )*prod(P1 (i, 1:q-1) )*(1-P2(i,eu-
4))*prod(P2(i, 1.cu-Sj):

end
end

end
for i=l:n
cl=edalp(i,1);eu=edalp(i,2);
fl=rnalp(i,l );fu=rnalp(i,2);
if cl==O & fl==O
lli(i)=log(sum(li(i,fu +1:rnr ),2»;

elseif fl>O & cl==O
Ui(i)=log( sum(li(i,fl:fu»);

elseif fl==O & e1>O
lli(i)=log(sum(li(i,fu+ 1:rnr),2»;

elseif flc-O & e1>O
lli (i)= log( sum(li( i,fl:fu)));

end
end
lc=sum(lli) +prioe;
u=l; a=O;
whi.le uc-a
ndel=randn(l,edr*rne r)*O.Ol+[edelta(l,:) edelta(2,:) edelta(3,:) delta(4,:) edelta(5,:) );
nedelta=[ndel(1,1:14);ndel(1,15:28);ndel(1,29:42);ndel(1,43:56); ndel(1,57:70) );
nprioc=O:
nepr=O;
for q=l:rnr
for j=l:edr
csalesumfc.Altj+ l:edr+ 1));
'\,ner=( I/beta (csa l,eA I(q.j)))*exp( nedel ta (q,j)-csal··

exp(nedelta( q,j) )*(l-exp( -exp(ncdel ta( q,j)) f\ (cAl( q,j): 1);
ner=exp( -exp(nedelta( q,j»))*exp(nedelta( q,j»;
ncpr=ncpr+log(ner);

end
end
nprioe=nepr;
nP1=[);
for i=J:n
npl=exp(-exp(fdelta+Z(i,:)*B'));
nPl=[nPl;npl);

end
nP2=[);
for q=l:rnr
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for i=1:n
for j=l:cdr
nP2(i,j)=exp( -exp(ncdel ta( q,j)+Z(i,: )*B'»;

end
cl=cdalp(i, 1);cu=cdalp(i,2);
fl=malp(i,1 );fu=malp(i,2);
if cl==O
nli(i,q)=(I-nPl (i,q»*prod(nPl(i,1 :q-l»*prod(nP2(i, 1.cuj):

elseif cl==cu
nli(i,q)=(I-nPl (i.q) )*prod(nPl (i, 1:q-l) )*(I-nP2(i,cu) )*prod(nP1(i, 1.cu-Ij):

else if cl-=O & cl==cu-l
nli(i,q)=(I-nPl (i.q) )*prod(nPl(i, 1:q-l) )*(I-nP2(i,cu) )*prod(nP2(i, 1:cu-l) )+(1-

nPl (i.q) )*prod(nPl (i,1:q-l) )*(I-nP2(i,cu-l) )*prod(nP2(i, 1.cu-Zl):
elseif cl-=O & cl==cu-2
nli(i,q)=(I-nPl (i.q) )*prod(nPl (i.I :q-l) )*(I-nP2(i,cu) )*prod(nP2(i, 1:cu-l) )+(1-

nPI (i.q) )*prod(nPl (i, 1:q-I) )*(I-nP2(i,cu-l) )*prod(nP2(i, 1:cu-2) )+(I-nPl (i.q) )*prod(nPl (i, 1:q-l) )*(1-
nP2(i,cu-2»*prod(nP2(i,l:cu-3»;

elseif cl-=O & cl==cu-4
nli(i,q)=(I-nPl(i,q»*prod(nPI(i, 1:q-l»*(I-nP2(i,cu»*prod(nP2(i, 1:cu-l»+(I-

nPI (i.q) )*prod(nPl (i, 1:q-l) )*(I-nP2(i,cu-l) )*prod(nP2(i, 1:cu-2) )+(I-nPI (i.q) )*prod(nPI (i, I :q-l) )*(1-
nP2(i,cu- 2))*prod(nP2(i, 1:cu-3) )+(I-nPl (i.q) )*prod(nPl (i,1:q-l) )*(I-nP2(i,cu-3) )*prod(nP2(i, 1:cu-
4))+( l-nPl (i.q) )*prod(nPl (i, 1:q-I) )*(I-nP2(i,cu-4) )*prod(nP2(i, 1.cu-Sj):

end
end

end
for i=l:n
cl=cdalp(i,I);cu=cdalp(i,2);
fl=malp(i,I);fu=malp(i,2);
if cl==O & fl==O
nlli(i)=log(sum(nli(i,fu+ 1:rnr),2»i

elseif fl>O & cl==O
nlli(i)=log(sum(nli(i,fl:fu»)i

elseif fl==O & cbO
nlli(i)=log(sum(nli(i,fu+ 1:rnr),2»i

elseif flc-O& cb-O
nlli(i)=log(sum(nli(i,fl:fu»);

end
end
nlcesumlnllil+nprioc,
a=min(exp(nlc-lc),I)i
u=randf l.L):

end
cdeltaencdelta:
CDdelta=[CDdelta;cdelta);

end
codell=CDdelta(I:S:S*K-4,:)i
codeI2=CDdelta(2:S:S*K-3,:)i
codeI3=CDdelta(3:S:S*K-2,: »
codeI4=CDdelta( 4:5:5*K-l,:);
codelS=CDdelta(5:5:5*K,:);



clear all
% Data file
% Starting values for all parameters
%Specify Intervals, # of intervals.
M=2;
cAI=O.5*ones(l,cdr+ 1);
rAI=O.5*ones(l,mr+1);
BB=[]; CDdelta=[]; RNdelta=[]; THO=[]; POS=[]; K=10000; tell=O;
for It=l:K
It
for i=Ln
PSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*B'»)].A-Itho;
PSC=[l cumprod(exp(-exp(cdelta+Z(i,·:)*B'»)].A-Itho;
jl=cdalp(i,l);ju=cdalp(i,2);ql=malp(i,l);qu=malp(i,2);
if STATC(i)==O & STATR(i)==O
li=«PSCQu+ l)+PSR(qu+ l)-l)A-tho);

elseif STA TC(i)==O & STATR(i)== 1
li=«PSC(ju+ l)+PSR(ql)-l)A-tho)-«PSC(ju+ 1)+PSR(qu+ l)-l)A-tho);

elseif STATC(i)==l & STATR(i)==O
li=«PSC(jl)+ PSR(qu+ l)-l)A-tho)-«PSC(ju+ l)+PSR(qu+ 1)-1 )A-thO);

elseif STATC(i)==l & STATR(i)==l
li=«PSC(ju+ 1)+PSR(qu+ l)-l)A-tho)+( (PSC(jl)+ PSR(ql)-l)A-tho )-«PSC(jl)+ PSR(qu+ 1)-1)A-tho)-

«PSC(ju+ l)+PSR(ql)-l)A-tho);
end
L=[L;li];

end
ll=sumflog'(L)
fb=ll;
POS=[POS;fb ];
u=l; a=O;
while uxa
nb=randn(l,14)*O.Ol*diag(varb )+B;
tell=tell + 1;
NL=[];
for i=Ln
NPSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*nb'»)].A-Itho;
NPSC=[l cumprod(exp(-exp(cdelta+Z(i,:)*nb'»)].A-Itho;
jl=cdalp(i,l); ju=cdalp(i,2); ql=rnalp(i,l); qu=rnalp(i,2);
if STATC(i)==O & STATR(i)==O
1=«NPSC(ju+ l)+NPSR(qu+ l)-l)A-tho);

.elseif STA TC(i)==O & STATR(i)== 1
1=«NPSC(ju+ l)+NPSR(ql)-l)A-tho)-«NPSC(ju+ l)+NPSR(qu+ l)-l)A-tho);

elseif STA TC(i)== 1 & STATR(i)==O
l=«NPSC(jl)+NPSR(qu+ l)-l)A-tho)-«NPSC(ju+ l)+NPSR(qu+ l)-l)A-tho);

elseif STATC(i)==l & STATR(i)==l
1=«NPSC(ju+ l)+NPSR(qu+ l)-l)A-tho)+«NPSC(jl)+NPSR(ql)-l)A-tho)-

«NPSC(jl)+NPSR(qu+ l)-l)A-tho)-«NPSC(ju+ l)+NPSR( ql)-l)A-tho);
end
NL=[NL;l];

Clapos: A Program for simulating posterior distributions for bivariate data using Metropolis-
Hastings algorithm on Clayton copula (CC) model. (Nonparametric)
***************************************************************************************************************
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end
nil =sum(log(NL»;
nfb=nll+nprior:
a=min(exp(nfb-fb),l);
u=rand(l,l);

end
B=nb;
BB=[BB;B];

%Sl1vWLATINC PARAMETERS FOR CD4 VARIABLE;
prioc=O:
for j=l:cdr

csal=sumfc.Aljj-e l.cdr-e l j):
cpr=betat csal,cAI(l,j) "-I *exp( cdelta(l,j)-csal*exp( edel ta(l,j) )*(l-exp(-

exp( cdelta( Lj))))"(cAI(1, j)-1);
prioc=prioc+log(cpr);

end
end
L=ll;
for iel.n
PSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*B')))]."-Itho;
PSC=[l cumprod( exp( -exp( cdelta--Zu,. )*B'») ]."- Itho;
jl=cdalp(i,1);ju=cdalp(i,2);ql=malp(i,l);qu=malp(i,2);
if STATC(i)==O & STA TR(i)==O
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STA TC(i)==O & STA TR(i)== 1
li=«PSC(ju+ 1)+PSR(ql)-l)"-tho)-«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseifSTATC(i)==l &STATR(i)==O
li=«PSC(jl)+ PSR(qu+ l)-l)"-tho)-«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STATC(i)==l & STATR(i)==l
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho)+( (PSC(jl)+PSR(ql)-l)"-tho )-«PSC(jl)+ PSR(qu+ l)-l)"-tho)-

«PSC(ju+ 1)+ PSR(ql)-l)"-tho);
end
L=[L;li];

end
ll=sumtlogfl.)
fc=ll+prioc:
POSC=[POSC;fc];
u=I: a=O;
while uz-a
nprioc=O;

ncdelta=randn(l,14)"O.Ol"diag(cocd,O)+cdelta;
tell=tell + 1;

for j= l.cdr
csal=sumf cAI(j+ 1.cdr+ 1»;
ncpr=(beta( csal,cAI(l,j) )"-1 )"exp(ncdelta(j)-csal"exp(ncdeltaG» )"(l-exp(-

expïncdeltatj) »)"(cAI(j)-l);
nprior=nprior+log(ncpr);

end
end
NL=[];
for i= ln
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NPSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*B'))))."-Itho;
NPSC=[l cumprod(exp(-exp(ncdelta+Z(i,:)*B'))))."-Itho;
jl=cdalp(i,l); ju=cdalp(i,2); ql=rnalp(i,l); qu=rnalp(i,2);
if STATC(i)==O & STA TR(i)==O
1=«NPSC(ju+ l)+NPSR(qu+ l)-l)"-tho);

elseif STATC(i)==O & STATR(i)==l
1=«NPSC(ju+ l)+NPSR(ql)-l)"-tho)-«NPSC(ju+ l)+NPSR( qu+ l)-l)"-tho);

elseif STATC(i)==l & STA TR(i)==O
l=«NPSC(jl)+NPSR(qu+ l)-l)"-tho)-«NPSC(ju+ l)+NPSR( qu+ l)-l)"-tho);

elseif STATC(i)==l & STATR(i)==l
l=«NPSC(ju+ l)+NPSR(qu+ l)-l)"-tho)+«NPSCQl)+NPSR(ql)-l)"-tho)-

«NPSC(jl)+NPSR(qu+l)-l)"-tho)-«NPSC(ju+l)+NPSR(ql)-l)"-tho);
end
NL=[NL;l);

end
nIl=sum(log(NL));
nfc=nll+nprioc:
a=min(exp(nfc-fc),l);
u=rand(l,l);

end
cdelta=ncdelta;
CDdelta=[CDdelta;cdelta);

'X,slivlULATINC PARAMETER ESTIMATES FOR RNA
prior=O:
for q= l.mr
rsal=sum(rAl(q+ Lrnr+ 1));
rpr=beta(rsal,r Al(l,q) )"-l*exp(rdelta(l,q)-rsal*exp(rdelta(l,q)) )*(l-exp(-

exp(rdelta(l,q) )))"(rAl(l,q)-l);;
prior=prior+log(rpr);

end
L=[);
for i=Ln
PSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*B'))))."-Itho;
PSC=[l cumprod(exp(-exp(cdelta+Z(i,:)*B'))))."-Itho;
jl=cdalp(i,l);ju=cdalp(i,2);ql=rnalp(i,l);qu=rnalp(i,2);
if STATC(i)==O & STA TR(i)==O
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STATC(i)==O & STA TR(i)==l
li=«PSC(ju+ 1)+PSR(ql)-l)"-tho)-«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STATC(i)== 1 & STATR(i)==O
li=«PSC(jl)+PSR(qu+ l)-l)"-tho)-«PSC(ju+ 1)+PSR(qu+ l)-l)"-tho);

elseifSTATC(i)==l & STATR(i)==l
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho)+«PSC(jl)+PSR(ql)-l)"-tho)-«PSC(jl)+ PSR(qu+ 1)-1 )"-tho)-

«PSC(ju+l)+PSR(ql)-l)"-tho); ,
end
L=[L;li);

end
ll=sum(log(L))
fr=ll+prior:
POSR=[POSR;fr );
u= I: a=O;
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while u>a
nprior=O:
nrdelta=randn(1,5)*O.Ol*diag(corn,O)+rdelta;
tell =tell + 1;
for q=1:rnr
rsal=sum(rAl(q+ l:rnr+ 1));
nrpr=(beta(rsal,r Al(l,q)) "-I )*exp(nrdel ta( q)-rsal*exp(nrdelta( q)) )*(l-exp(-

exp(nrdelta(q))))"(rAl(q)-l); %assurne Al(m,j)=l for all m.j
nprior=nprior+ log(nrpr);

end
NL=[];
for i= l.n
NPSR=[l curnprod(exp(-exp(rdelta+Z(i,:)*B')))]."-Itho;
NPSC=[l cumprod(exp(-exp(cdelta+Z(i,:)*B')))]."-Itho;
jl=cdalp(i,l); ju=cdalp(i,2); ql=rnalp(i,l); qu=malp(i,2);
if STATC(i)==O & STATR(i)==O
l=«NPSC(ju+ l)+NPSR(qu+ l)-l)"-tho);

elseif STATC(i)==O & STATR(i)==l
l=«NPSCGu+ l)+NPSR(ql)-l)"-tho )-«NPSCGu+ l)+NPSR(qu+ l)-l)"-tho);

else if STATC(i)==l & STATR(i)==O
l=«NPSCGl)+NPSR(qu+ l)-l)"-tho)-«NPSC(ju+ l)+NPSR(qu+ l)-l)"-tho);

elseif STATC(i)==l & STA TR(i)==l
l=«NPSC(ju+ l)+NPSR(qu+ l)-l)"-tho)+«NPSC(jl)+NPSR(ql)-l)"-tho)-

«NPSC(jl)+NPSR(qu+ 1)-l)"-tho)-«NPSC(ju+ l)+NPSR( ql)-l)"-tho);
end
NL=[NL;l];

end
nll=sum(log(NL));
nfr=nll+nprior:
a=min(exp(nfr-fr),l);
u=rand(l,l);

end
rdelta=nrdelta:
RNdelta=[RNdelta;rdelta];
'\SIMULA TINC THE DEPEDENCE PARAMETER

Itho=l/tho;
L=[];
for i=Ln
PSR=[l curnprod(exp(-exp(rdelta+Z(i,:)*B')))]."-Itho;
PSC=[l curnprod(exp(-exp(cdelta+Z(i,:)*B')))]."-Itho;
jl=cdalp(i,1);ju=cdalp(i,2);ql=malp(i,1);qu=rnalp(i,2);
if STATC(i)==O & STATR(i)==O
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STA TC(i)==O & STA TR(i)== 1
li=«PSC(ju+ l)+PSR(ql)-l)"-tho)-«PSC(ju+ l)+PSR(qu+ l)-l)"-tho);

elseif STATC(i)==l & STA TR(i)==O
li=«PSC(jl)+PSR(qu+ l)-l)"-tho)-«PSCGu+ l)+PSR(qu+ l)-l)"-tho);

elseif STATC(i)==l & STATR(i)==l
li=«PSC(ju+ l)+PSR(qu+ l)-l)"-tho)+«PSC(jl)+PSR(ql)-l)"-tho)-«PSC(jl)+ PSR(qu+ l)-l)"-tho)-

«PSC(ju+ 1)+PSR(ql)-l)"-tho);
end



L=[L;li];
end
llesurnïlogfl.)
ra-u.
u=l; a=O;
while uc-a
nho=O.Ol *randn(l,l)+log(tho);
ntho=exp(nho);
nltho=l/ntho; tel1=tel1+1;
nprior=nprior+log(ncpr)+log(nrpr);
NL=[];
for i=Ln
NPSR=[l cumprod(exp(-exp(rdelta+Z(i,:)*B'»)]."'-nItho;
NPSC=[l cumprod(exp(-exp(cdelta+Z(i,:)*B'»)]."'-nItho;
jl=cdalpfi.I): ju=cdalp(i,2); ql=rnalp(i,l); qu=rnalp(i,2);
if STATC(i)==O & STATR(i)==O
1=((NPSC(ju+ l)+NPSR(qu+ l)-l)"'-ntho);

elseif STATC(i)==O & STATR(i)==l
1=((NPSC(ju+ l)+NPSR(ql)-l)"'-ntho)-((NPSC(ju+ l)+NPSR( qu+ l)-l)"'-ntho);

elseif STATC(i)==l & STATR(i)==O .
1=((NPSC(jl)+NPSR(qu+ l)-l)"'-nthó)-((NPSC(ju+ l)+NPSR(qu+ 1)-l)"'-ntho);

elseif STATC(i)==l & STATR(i)==l
1=((NPSC(ju+ l)+NPSR(qu+ l)-l)"'-ntho)+((NPSC(jI)+NPSR(qI)-l)"'-ntho)-

((NPSC(jI)+NPSR(qu+ l)-l)"'-ntho)-((NPSC(ju+ l)+NPSR(qI)-l)"'-ntho);
end
NL=[NL;I];

end
nll=sum(log(NL»;
nfd=nll;
a=min(exp(nfd-fd),l);
u=rand(l,l);

end
tho=ntho:
THO=[THO;tho ];

end
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************************************************************************************************************

Visposaid.m A Matlab program for computing interval visting visiting probabilities for patients
being monitored for CD4 cell count in ACTG75 study.

r
I

clear
Xr=Visit:
01=usaids;
n=length(Dl);
02=treat;
V=X(:,6:19);
cdlass=D1(:,3:4);
rnlass=D1(:,5:6);
for ie ln
for j=1:3
if 01(i,9)==j
2(i,j)=I;

else
2(i,j)=0;

end
end

end
A=[];
for i=l:n
if X(i,4)==0
a=[zeros(I,X(i,5» ones(I,14-X(i,5»];

else
a=[zeros(I,X(i,4)-I) ones(I,X(i,5)-X(i,4)+ 1) zeros(l, 14-X(i,5»];

end
A=[A;a];

end
21=01(:,7); %AGE
22=01(:,8); %SEXM=I;F=O
23=Dl(:,10); %KARN
24=01(:,11); %Previous ARV(2DV) use Y=I;N=O
25=Dl(:,19); %Weight
26=01(:,15); %Homosexuality Y=I; N=O
27=01(:,21); %Symptomatic Y=I; N=O
28=01(:,17); %Intravenous Drug use Y=I; N=O
29=2(:,1); %Racel
210=2(:,2); %Race2
211=2(:,3); %Race3
212=D2(:,I); %Didanosine ARV
213=D2(:,2); %2idovudine+Didanosine ARV
214=D2(:,3); %2idovudine+2alcitabine ARV
2=[21 22 23 24 Z5 26 27 28 29 210 211 212213214];
M=2;
Int=56:84:1148;
CDin=[OInt];
cdcat=length(CDin);
r=cdcat-l;
Ri=X(:,2);
for me l.M
for j=l:r
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for i=l:n
if cdlass(i,m»=CDin(j) & cdlass(i,m)<CDin(j+ 1)
cdalp(i,m)=j;

elseif cdlass(i,l)==O
cdalp(i,l)=O;

end
end

end
end
%STARTING VALUES
0/0 _

r

B=[0.03 -0.2 -0.029 0.55 -0.003 0.131.05 -0.21.21.20.5 -0.65 -1.1 -0.7];
cdelta=[-9.3 -1.8 -1.7 -1.7 -2 -2 -2 -1.5 -1.4 -1.1 -1.5 -0.9 -2.2 -0.9];
cAI=[O.·S0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5];
pa=[0.3 0.99 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.22 0.28 0.3 0.33 0.7];
pb=[0.91 0.990.920.910.910.880.890.920.880.910.890.940.950.7];
varb=[0.2 0.50 0.091 0.30.20.61 0.3 1.5 1.5 1.5 1.5 0.246 0.297 0.251];
cvpa=[0.0387 0.0331 0.0499 0.0380 0.0258 0.0734 0.0827 0.0588 0.0564 0.0367 0.0838
0.0528 0.0762 0.0698]; .
pa=O.l*ones(l,r); pb=0.93*ones(1,r);
Like=[];
P=exp( -exp(cdelta));
PP=[]; Pb=[]; Pa=[]; BB=[]; tel1=O; te12=0; te13=0;
for k=1:2000
k
%SIMULA TING P
0/0 _

L=[];
for i=Ln
PZ=P.l\exp(Z(i,:)*B');
FB=(pb.1\ V(i,:)). *«(I-pb ).1\(1- V(i,:)));
FA=(pa.1\ V(i,:». *«l-pa).I\(l- V(i,:)));
if X(i,4)==0
H=O; sG=O;
for j=l:Ri(i)-l
E=prod(FB(l:j));
F=prod(F A(j+ 1:Ri(i)));
G=(l-PZO))*prod(PZ(l:j-l));
sG=sG+G;
h=A(i,j)*G*E*F;
H=H+h;

end
ll=H +( l-sG)*prod(FB(l :Ri(i)));

else
1l=0;
for j=l:r
E=prod(FB(l:min(j,Ri(i))));

. F=prod(FA(j+l:Ri(i)));
I=A(i, j)*(1- PZ(j) )*E*F;
n-u-u

end
end



L=[L;l1];
end
LL=sum(log(L))
Like=[Like; LL];
lnpr=O;
for j=1:r
pr=(P(j)A(O.5*(r-j-l)))*«l-P(j))A( -0.5));
Inpr=lnpr+log(pr);

end
Inpost=LL+lnpr;
ZP=min(P,0.9999); P=max(ZP,O.OOOl);
%P=[Z20];
rl=l; al=O;
while rl>=al;
gam=O.OS*randn(l,r)+ log(P(l:r). / (1-P(l :r)));
Po=[ 1./ (1+exp( -gam))];
L=[]; tel1=tell +1;
for i=Ln
PoZ=Po. Aexp(Z(i,:)*B');
FB=(pb. AV(i,:)).*«l-pb). A(l_V(i,:)));
PA=(pa. AV(i,:))."(I l-pa). A(1-V(i,:)));
if X(i,4)==O
H=O;sG=O;
for j=l:Ri(i)-l
E=prod(FB(l:j) );
P=prod(PA(j+l:Ri(i»);
G=(l- PoZG) )*prod(PoZ(l :j-l»;
sG=sG+G;
h=A(i,j)*G*E*P;
H=H+h;

end
l1=H+(l-sG)*prod(FB(l :Ri(i»));

else
11=0;
for j=l:r
I=A(i,j)*(l- PoZ(j) )*prod(FB(l:minG,Ri(i)) )*prod(P A(j+ 1:Ri(i»);
11=11+1;

end
end
L=[L;11];

end
LL=sum(log(L));
Inpr=O;
for j=l:r
pro=(Po(j)A(O.5*(r-j-l» )*((1-Po(j))A( -0.5»);
Inpr=lnpr+log(pro);

end
lnposto=Ll.elnpr:
al=expllnposto-lnpost)
rl=rand(l,l);

end
P=Po;
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PP=[PP;PJ;

%SIMULA TINC PB AND PA0/0 _

L=[J;
for i= l.n
PZ=P.l\exp(Z(i,:)"B');
FB=(pb.1\ V(i,:)). "«I-pb ).1\(1- V(i,:)));
FA=(pa.1\ V(i,:)). "«I-pa).I\(I- V(i,:)));
if X(i,4)==0
H=O; sC=O;
for j=I:Ri(i)-1
E=prod(FB(I:j) );
F=prod(FAG+ I:Ri(i)));
G=(I- PZ(j))"prod(PZ(I:j-l));
sG=sC+C;
h=A(i,j)"C"E*F;
H=H+h;

end
ll=H+(I-sC)"prod(FB(1 :Ri(i)));

else
ll=O;
for j=l:r
. I=A(i,j)*(I-PZ(j))"prod(FB(I:min(j,Ri(i))))"prod(FA(j+ 1:Ri(i)));
u-u-i.

end
end
L=[L;llJ;

end
LL=sum(log(L));
Inpr=O;
for j=l:r
pr=(P(j)I\(O.5"(r-j-l)) )..((1-P(j))I\( -0.5));
lnpr=lnpr+logtpr):

end
Inpost=LL+lnpr;
r2=1; a2=0;
while r2>=a2;
bbl=Srandn(l,r)+log(pb./(I-pb));
aa 1=.5"randn(l,r)+log(pa. / (I-pa));
pbb=l./ (1+exp(-bbl));
paa=l./ (1+exp(-aal));
L=[J; te12=te12+ 1;
for i=Ln
FB=(pbb.1\ V(i,:)). "«I-pbb ).1\(1-V(i,:)));
FA=(paa.1\ V(i,:)). "«I-paa).I\(I- V(i,:)));
if X(i,4)==O
H=O; sC=O;
for j=I:Ri(i)-1
E=prod(FB(l:j));
F=prod(FA(j+l:Ri(i)));
G=(I-PZ(j))"prod(PZ(I:j-l));
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sG=sG+G;
h=A(i,j)*G*E*F;
H=H+h;

end
11=H+( l-sG)*prod(FB(l :Ri(i)));

else
11=0;
for j=l:r
I=A(i,j)*(l- PZ(j) )*prod(FB(l :min(j,Ri(i))) )*prod(F A(j+ 1:Ri(i)));
11=1l+1;

end
end
L=[L;llJ;

end
LL=sum(log(L));
Inpr=O;
for j=l:r
pro=(P(j)"(0.5*(r-j-1)) )*((1-P(j))"( -0.5));
lnpr= lnpr+ log (pro );

end
lnposto=Ll.s-lnpr:
a2=exp(lnposto-lnpost)
r2=rand(l,l);

end
pb=pbb:
pa=paa;
Pb=[Pb;pb ];Pa=[Pa;pa J;

%SIMULA TING BETA
0/0 _

L=[];
for i=l:n
FB=(pb. "V(i,:)). *((l-pb). "(1-V(i,:)));
FA=(pa. "V(i,:)). *((l-pa). "(1-V(i,:)));
if X(i,4)==O
H=O; sG=O;
for j=l:Ri(i)-l
E=prod(FB(l:j));
F=prod(F A(j+ 1:Ri(i)));
G=(l- PZ(j) )*prod(PZ(l :j-1));
sG=sG+G;
h=A(i,j)*G*E*F;
H=H+h;

end
11=H+( l-sG)*prod(FB(l :Ri(i)));

else
11=0;
for j=l:r
I=A(i,j)*(l- PZ(j) )*prod(FB(l :min(j,Ri(i))) )*prod(F A(j+ 1:Ri(i)));
11=1l+1;

end
end

188



189

L=[L;11];
end
Lls=sumtlogfl.J):
lnpr=D:
r3=1; a3=0;
while r3>=a3;
nb=B+randn(l,14)*0.01 *diag(varb);
L=[]; teI3=te13+ 1;
for i=Ln
PZ=P./\exp(Z(i,:)*nb');
FB=(pb./\ V(i,:». "(Cl-pb )./\(1- V(i,:)));
FA=(pa./\V(i,:».*«l-pa)./\(l-V(i,:)));
if X(i,4)==O
H=O; sG=O;
for j=1:Ri(i)-l
E=prod(FB(l:j»;
F=prod(FA(j+ 1:Ri(i»);
G=(l-PZ(j)*prod(PZ(1:j-l»;
sG=sG+G;
h=A(i,j)*G*E*F;
H=H+h;

end
11=H+(1-sG)*prod(FB(l :Ri(i»);

else
11=0;
for j=l:r
l=A(i,j)*(l- PZ(j) )*prod(FB(l :min(j,Ri(i») )*prod(F A(j+ 1:Ri(i»);
11=11+1;

end
end
L=[L;ll];

end
Ll.oesumflogfl.j):
a3=exp(LLo-LL)
r3=rand(1,l);

end
B=nb;
BB=[BB;B];
%pause

end
%save c:\mat1abrll \work\LES\cd4.mat PP Pa Pb
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OPSOMMING

Tyd tot 'n gebeurtenis (faling) van eenhede op 'n regiment van longitudinale

kliniese besoeke kan nie altyd presies bepaal word nie. Gewoonlik kan net 'n

interval waarin 'n gebeurtenis plaasgevind het bepaal word. In so 'n geval word

elke eenheid se faling beskryf deur 'n enkele interval wat lei tot gegroepeerde data

oor die hele steekproef. Verder, as gevolg van nie-nakornings van besoeke deur

sommige eenhede, kan die falings slegs beskryf word deur die eindpunte van die

tydperk waarin die gebeurtenis plaasgevind het. Hierdie eindpunte mag verskeie

intervalle insluit, en kryons dus oorvleuende tydperke oor eenhede. Verder mag

die gebeurtenis van belang by sekere eenhede nie plaasvind binne die

voorafbepaalde tydperk van studie nie, en is dus gesensoreerd. Laastens, verskeie

gebeurtenisse van belang kan ondersoek word op In enkele eenheid. Die resultaat

is dan meervoudige falingstye wat uiteraard dan afhanklik is. Bogenoemde

situasie word dan beskryf as interval-gesensoreerde oorlewingsdata met

meervoudige falingstye.

Drie modelle vir die analise van interval-gesensoreerde oorlewingsdata met twee'

falingstye is toegepas op vier data stele. Vir verdelingsvrye metodes is Cox se

gevaarfunksie met of 'n log-log transformasie of 'n logit transformasie op die

basislyn voorwaardelike oorlewingswaarskynlikhede gebruik om die

aanneemlikheidsfunksie af te lei. Die Onafhanklikheidsaanname model (IW) neem

aan dat die leeftye inherent onafhanklik is en dat afhanklikheid slegs ingebring



word deur gemeenskaplike koveranderlikes. Die tweede model aanvaar nie

onafhanklikheid nie, maar bereken die gesamentlike falingswaarskynlikhede deur

die voorwaardelike waarskynlikheid vir die interval van een leeftyd gegee die

ander leeftyd se interval, te bereken. Dit is die Voorwaardelike tweeveranderlike

model (CB). Die Clayton en Farley-Morgenstern tweeveranderlike Copulas (CC)

met ingeboude afhanklikheidsparameters is die derde model. Vir parametriese

modelle is die lW en CC metodes toegepas op die data onder die aanname dat die

randverdelings van die leeftye Weibull is.

Die traditionele klassieke beramingsmetode van Newton-Raphson is gebruik om

die optimale beramers of modus van die afgeleide aanneernlikheidsfunksie te vind

waar moontlik. Bayes metodes kombineer die data met a priori informasie. Vir elk

van die twee transformasies is twee nie-inligtende prior verdelings algelei, wat se

kombinasie met die aanneemlikheidsfunksie lei tot 'n posterior funksie. Om die

volledige verdeling van 'n parameter te beraam uit nie-standaard posterior

funksies is twee Markov Ketting Monte Carlo (MCMC) metodes gebruik. Die

Gibbs steekproefnemingsmetode neem waarnemings uit die voorwaardelike

verdeling van 'n parameter, gegee die ander parameters. Vir nie-standaard

komplekse posterior funksies is die Metropolis-Hastings metode gebruik deur In

vector van moontlike parameter waardes in 'n blok uit 'n surrogaat verdeling te

trek.
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Die analise van ACTG175 dui aan dat toename in vlakke van MIV RNS die afname

van CD4 sell tellings voorafgaan. Daar is In sterk afhanklikheid tussen die twee

falingstye. wat dus die gebruik van die onafhanklikheidsaanname model beperk.

Die meer aanvaarbare modelle gebruik copulas en ook die voorwaardelike

tweeveranderlike model. Dit is aangetoon dat die gebruik van ARV In pasiënt se

leeftyd kan verleng, met kombinasie behandelings wat die beste resultate gee. In

Sorgwekkende resultaat is dat die MIV virus In weerstand teen die middels

ontwikkel. Dit blyk uit die nadelige effek wat vorige gebruik van ARV op In

pasiënt het, deurdat In nuwe middel dan minder effek het. Laastens is dit

belangrik dat In pasiënt op In vroë stadium behandeling begin aangesien pasiënte

wat al tekens van VIGS wys negatief kan reageer op behandeling.
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ABSTRACT

KEYWORDS: AIDS data, Bayes, Copula, dependence, hazard rate, Interval-censoring,

Multiple1ailure, Metropolis-Hastings Algorithm, Visiting-compliance, Weibull.

The measure of time to event (failure) for units on longitudinal clinical visits

cannot always be ascertained exactly. Instead only time intervals within which the

event occurred may be recorded. That being the case, each unit's failure will be

described by a single interval resulting in grouped interval data over the sample.

Yet, due to non-compliance to visits by some units, failure will be described by

endpoints within which the event has occurred. These endpoints may encompass

several intervals, hence overlapping intervals across units. Furthermore, some

units may not realize the event of interest within the preset duration of study,

hence are censored. Finally, several events of interest can be investigated on a

single unit resulting in several failure times that inevitably are dependent. All

these prescribe an interval-censored survival data with multiple-failure times.

Three models of analysing interval-censored survival data with two failure times

were applied to four sets of data. For the distribution free methods, Cox's hazard

with either a log-log transform or logit transform on the baseline conditional

survival probabilities was used to derive the likelihood. The Independence

assumption model (lW) work under the assumption that the lifetimes are

independent and any dependence exists through the use of common covariates.



The traditional classical estimation method of Newton-Raphson was used to find

optimum parameter estimates and their variances stabilized using a sandwich

estimator, where possible. Bayesian methods combine the data with prior

information. Thus for either transforms, two proper priors were derived, of which

their combination with the likelihood resulted in a posterior function. To estimate

the entire distribution of a parameter from non-standard posterior functions, two

Markov Chain Monte Carlo (MCMC) methods were used. The Gibbs Sampler

method samples in turn observations from the conditional distribution of a

parameter in question, while holding other parameters constant. For intractably

complex posterior functions, the Metropolis-Hastings method of sampling vectors

of parameter values in blocks from a Multivariate Normal proposal density was

used.

The second model that do not necessarily assume independence, computes the

joint failure probabilities for two lifetimes by Bayes' rule of conditioning on the

interval of failure for one lifetime, hence Conditional Bivariate model (CB).The use

of Clayton and Farley-Morgenstern bivariate Copulas (CC) with inbuilt

dependence parameter was the other model. For parametric models the lW and CC

methods were applied to the data sets on the assumption that the marginal

distribution of the lifetimes is Weibull.
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The analysis of ACTG175data revealed that increase in levels of HIV RNA precede

decline in CD4 cell counts. There is a strong dependence between the two failure

times, hence restricting the use of the independence model. The most preferred

models are using copulas and the conditional bivariate model. It was shown that

ARV's actually improves a patient's lifetime at varying rates, with combination

treatment performing better. The worrying issue is the resistance that HIV virus

develops against the drugs. This is evidenced by the adverse effect the previous

use of ARV's has on patients, in that a new drug used on them has less effect.

Finally it is important that patients start therapy at early stages since patients

displaying signs of AIDSat entry respond negatively to drugs.

203


