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CHAPTER 1
INTRODUCTION AND BACKGROUN"D TO STUDY
1.1 Introduction

One of the aims of statistical modelling is to predict relationships among events
in our surroundings. This is accomplished by finding predictive patterns that
relates quantities in the real world. Linear modelling is one such statistical tool
that is used to determine a linear function between the predicted and input
attributes, say Y and Z. The investigation may seek to establish a linear
relationship that exists between two phenomena thatv occurs naturally or by
experimental design. This is generally denoted as

Yi=wz) +¢& (i=12,...n) (1.1)
where u(zi) is a deterministic linear function of Z, while Y and € are stochastic
components. Y, also referred to as the response variable, is dependant on Z
while € is a latent variable whose distribution usually is assumed known. The
most commbnly used of which is the Normal distribution, thus rendering Y a
continuous random variable. Y as a response variable evolves in any of the
following scenarios: (1) As the actual response measure like weight in maize
yield after dosage of fertilizer, or amount of viral load in a blood specimen
taken from a patient who is undergoing anti-retroviral therapy. (2) Time-to-
realization of event of interest, like time to recuperation after undergoing
surgery. The two response situations, different as they are, address a common
phenomenon using diverse analytical approaches. In ordinary linear modelling

for instance, the response variable is a direct function of the linear combination




of explanatory variables. This method is well established and the abundance of
literature that discusses this field of study vindicates this statement. Meanwhile
analysis of response variable emanating from a lifetime requires the use of
survival analysis techniques that implicitly relate the time response to the
explanatory variables, resulting in departure from linear relationship. Since
time is the actual measure, the response is assumed continuous and can only
take positive values, thus normality assumptions no longer hold. Relaxing the
continuity assumption for the response variable in both cases lead to a discrete
Y as shall be elucidated in chapter 2, and when this happens, modifications of

standard techniques is a necessity.

One aspect of survival data is tﬁat some experimental units do not realize the
event of interest within the predetermined duration of study hence such
observations are censored. This is a fundamental characteristic of survival data.
A brief description of the kind of data and types of censoring prelude Chapter
2, with a subsequent review of literature that is related to the subject. It is
important to mention that the main focus of this research shall be on interval

right censoring for both grouped (disjoint) and overlapping intervals.

In Chapter 3 the likelihood functions are derived for both grouped and

overlapping data types using distribution-free methods for a single lifetime.

The results of using a non-parametric approach shall be compared to the

parametric approach to be discussed in chapter 4. Dependence between




compliance by study units and censoring can have adverse effect on estimation
of parameter values, thus as proposed by Finkelstein et al (2002), a likelihood
that conditions, hence eliminating the effect of such a phenomena, is also
derived. Still using non-parametric method, the ﬁnivariate likelihood is
extended to multiple failure time. Three methods are applied, these are by
deriving likelihood functions to be used to estimate parameters under the
independence working assumpﬁon method (IW), the Conditional Bivariate

(CB) method by conditioning on the coordinate of one lifetime against the other,

and use of Clayton Copula method (CC). In chapter 4 a Weibull distribution is
assumed to be the underlying distribution for interval-censored data sets, and
hence likelihood functions are derived for both univariate and multivariate

distributed lifetimes situation using IW and CC methods.

A fundamental objective of this research is to explovre the use of Bayesian
methods by estimating posterior distributions for the unknown parameters, and
where feasible, results from classical method of maximum likelihood estimation
will also be computed. Since the type of prior distribution used for the
parameters influences the final posterior function, our priority will be to derive

non-informative priors where possible. Depending on the resultant posteriors,

appropriate Monte Carlo Markov Chain methods like importance sampling,
Gibbs sampling and Metropolis Hastings algorithm "will be applied where

possible. This topic is covered in Chapter 5. Illustrative examples, using several

data sets, are given at the end of the chapter.




An alternative approach to survival analysis is explored in Chapter 6. The goal
is to see if the same conclusions drawn using survival analysis results can be
attained using other methods. The use of latent variables as illustrated by
Albert and Chib (1993) is used, but with a logistic distributed latent variable. All
statistical methods proposed for use undergo vigorous checking for estimation
adequacy using simulated data. In Chapter 7 a Matlab computer program to
simulate bivariate data using a Farlie-Morgenstern family of distributions, with
exponentially distributed marginals, is used. The use of bivariate distributions
is to depict the two lifetimes, and to address the question of multiple failure
times and the inherent problem of correlated responses. The task therefore is to
formulate stable parameter estimators in the presence of correlation on sparse
data points. Finally, having established the adequacy of the aforementioned
methods, they shall be applied on the estimation of parameters for explanatory

variables in the Aids Clinical Trial Group (ACTG 175) data set.

Finally a brief summary of all major findings emanating from this research, are

reported in Chapter 8.

1.2 Background Study and Variables of Interest
Human Immuno-deficiency Virus (HIV) and its related disease status Acquired

Immune Deficiency Syndrome (AIDS), threaten to decimate human population

from the face of the earth. Even though the pandemic is a universal tragedy, the




situation in Sub-Saharan Africa has reached genocide proportions, with some
countries experiencing estimated national HIV prevalence rate of over 30%
among the productive population (UNAIDS, (2002)), http://www.unaids.org.
Researchers world-over are devqting time and massive resources to investigate
the effect of AIDS on human kind. The recent development of antiretroviral
(ARV) drugs offers hope, temporary as it may, in that sero-cqnverted (HIV
positive) patients’ lifetime can be prolonged. Unfortunately the cost relating to
acquisition of these drugs are prohibitive to the majority of third world
countries. Thus to juggle the already over-stretched meagre resources to avail
these drugs at affordable price to the ailing population, it is very important that
the most potent and effective drugs are selected. Such information is not readily
available, but applying methods ﬁmooted in this research on data solicited from

a study conducted in the USA and described below, we partially address some

of the aforementioned issues.

The ACTG 175 is a clinical trial study to assess the effectiveness of nucleosides
on sero-converted or HIV positive patients, whose CD4 cell count just prior to
enrolment into the study was measured to be between 200 and 500 per cubic
millilitres. Patients were recruited from 43 Clinical Trials Units and 9 National
Haemophilia Foundation sites in the United States and Puerto Rico. The study
involved 2467 subjects whose time of enrolment varied between December 1991
and October 1992. Criterion for eligibility into the study were that subjects be of

age 12 years or more, having laboratory documentation of HIV-1 type infection,
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their CD4 cell count range between 200 and 500 per cubic millimetre within a
month prior to the date of trial treatment, have no AIDS defining illnesses, a
Karnofsky performance score of at least 70 and acceptable laboratory results.
All patients were randomly assigned to any of the two single nucleosides (600
mg of zidovudine or 400 mg of didanosine) or a combination of nucleosides
(600 mg of zidovudine plus 400 mg of didanosine or 600 mg of zidovudine plus
2.25 mg of zalcitabine). A monitoring and determination of CD4 cell levels were
done at week 8 and every 12 weeks thereafter, with a primary study endpoint
of 50% decline in CD4 cell count from the average of two pre-treatment counts,

development of AIDS or death (Hammer et al 1996).

Prior studies show thét plasrha HIV Ribonucleic Acid (RNA) léad (sée section
7.3) is increasingly being used as a measure of viral replication in order to
adequately evaluate the effect of antiretroviral 'drugs. Thus running
concurrently with this study, a virology subgroup of 391 patients from among
the main study patients were enrolled at 11 study sites and had their plasma
HIV RNA concentrations also monitored. A primary study endpoint of 1 unit
increase in the log base 10 of the number of copies per millimetre to the baseline
concentrations of plasma HIV RNA was used. The copies of RNA per

millimetre of blood were transformed in order to eliminate the wvariation

between measurements. For instance some patients had values below the limit

of detection (200 copies per millimetre), yet some had up to 1.45 million copies

per millimetre. The first two monitoring period were at week 8 and 20, which




synchronized with CD4 cell determination periods, but for viral load, the
monitoring was subsequently done every 36 weeks, provided the patients
continued to receive assigned treatment. Thus this provided a bivariate
measures of viral load and CD4 cell count as dependant variables, including the
time period at which these measurements were assessed. Also recorded for
each patient is the baseline demographic characteristics like age (years), race
(white, black, Hispanic and Other race), weight (pounds) and gender. Also
recorded were homosexual tendency, haemophilic, Karnofsky score, history of
anti-retroviral use (ZDV), intravenous drug use (IDU), assigned treatment and

presence or absence of syncytium-inducing phenotype. The study terminated in

February 1995.

Some of the statistical methods employed towards the analysis of the data from
ACTG 175 were univariate Cox’s proportional hazard model for time-to either

of the two variable end points, ANOVA with mean levels of CD4 cells and

plasma concentration of HIV RNA, log-rank tests and two sample t-tests

(Katzenstein et al 1996).




CHAPTER 2

LITERATURE REVIEW AND RESEARCH OBJECTIVES

2.1 Literature Review

Survival analysis is a special case of linear modelling which deals with time to
occurrence of an event of interest. This may be time to death, failure, detection
of some phenomena, etc. This inevitably renders a lifetime T non-negative and
continuous random variable. Available literature on survival analysis like,
Klein and Moeschberger (1997), Crowder (2001), Kalbfleisch and Prentice
(2002), etc, have all shown important functions that describe the distributions of
lifetime for both continuous and discrete variables. We shall only define the
continuous case as follows; the unconditional probability of event (say failure)
occurring at an infinitesimally small interval (t, t+At) gives a probability density

function;

im P<T<t+At)

f(t) =
(® At -0 At

(2.1)
Probability of event occurring at or prior to time t is the probability distribution
F(t)=P(T<t) = j.f(u)du : (2.2)
0
Probability that a subject survives beyond time t is the survival function:
St)=P(T>t)= Tf(u)du | (2.3)

The conditional probability of failure or the chance that a subject who has
survived to time t experiencing failure in the next instant, i.e. instantaneous rate

of failure at time t given the subject survives up until t, is called the hazard rate.




lim Pt<T<t+At|T>1)

h(t) = 2.4)
® At— 0 At 24)
Finally the cumulative hazard function is given by
H(t) = [h(u)du. (2.5)
0

Survival analysis literature elucidates the relationship that exists between all the

five functions. For instance, (2.6) shows the relation between all five functions.

¢ f
H(® -= J‘1—(I:l)u

0

fu=4ﬂ$m. (2.6)

Time to event data could be easy to manipulate if data was complete for all
subjects in the study, which is not the case in survival analysis. Instead, time-to-
event maybe known to have occurred prior to the inception of the study, or
certain subjects in the study may not have experienced failure at the time of
termination of the study. Furthermore a design of éfudy may militate that
subjects be observed for failure at predetermined intervals, hence the
occurrence of failure will only be known to have occurred between two time
points, all of which are not exact lifetime. The above situations give rise to what
is termed as censoring in survival analysis. There are three types of censoring.
Right censoring, assumes a fixed termination point of study C: and for each
subject determine a lifetime Ta. These are independent and identically
distributed with probability density function f(t) and survival function S(t).
Thus exact lifetime is realized if Ta < C;, otherwise it is censored. This arises due

to either subjects still surviving at termination period or some subjects moving




P A

away from study for other reasons. Data obtained from each subject is
represented as (t,8) where 3 is an indicator variable taki’ng value 1 if the subject
has an exact lifetime or 0 if the subject is censored, implying that T=min(Ta,Cr).
A subject displaying an exact lifetime provides information that the probability
of failure occurring is approximated by a density function of T at t, whilst a
censored subject shows probability of survival evaluated at the termination of
study.

P(T,6 = 0) = S(Cy).

P(T,6 =1) = f(t).
Thus

P(T,8) = [fOI" [S(t) I+ (2.6)
A subject whose failure time t is known to have occurred prior to inception of
study at time Ci is left censored. We observe that the exact event time is
unknown, but that Te[0,t] and is analogous to right censoring, hence when
contrasted with right censoring, T=max(Ta,C1). The third type, the one that this
research focuses on, is called interval censoring. It may not be feasible to
observe the actual time of occurrence of event of interest, instead a time of last
absence and first detection may be known, hence an interval. This happens in a

longitudinal study like in clinical trial studies where treatment effect on study

units are monitored and obtained periodically during clinic visits resulting in
either complete or incomplete data. Turnbull (1976), in the estimation of
distribution function for incomplete, censored and truncated data, proposed

letting the checking times form a grid of time points which are completely




covered by end points Te [L;,R;] for all participants. Finkelstein (1986) discussed
this scenario for fitting a proportional hazards regression model on a single
lifetime where the intervals are disjoint, while Guo and Lin (1994) illustrated

the same model for complete data situation.

Study design may vary, in that though predetermined clinic visits and study
termination period is common to all units and is strictly enforced, study units
may not commence study at the same time. A situation where study units start
at varying times results in varying duration of study after rescaling. Thus for
those units not having realized failure at termination point, will be censored,
but the censoring may occur at any of the intervals. Yet if all units had
commenced study simultaneouély and no units lost (attrition), then any
censoring will be at the last interval. A follow-up paper by Goggins and
Finkelstein, (2000) discussed multiple failure lifetimes for interval-censored
data with overlapping and non-disjoint intervals. In general, knowledge of type

of censoring enables one to compute a likelihood function, which is of the form:

La [Tt Ts@)[Ja-s@[]ew)-s®y) . (2.7)

i€E " ieG icH iel
E a subset of all individuals having exact lifetimes, G is all individuals whose
lifetime is right censored, H individuals whose lifetime is left censored and all

individuals whose lifetime is interval censored will belong in I, where L and R

is the lower and upper end points of an interval, respectively.




There exist two reasons that impede the use of ordinary linear models. First,
due to censoring, ordinary linear models will either omit those units that are
censored or subdivide units into two groups for analysis. Efromovich (1999)
illustrated the pitfalls of endeavouring to analyse survival data using the above
approach. Secondly the distribution of lifetime data deviate from the
accustomed normal distribution, hence conventional linear model results based
on normal assumption cannot hold. Moreover, censoriﬁg invalidates the use of
moments due to difficulty associated with estimation of right tail, which in
reality may have significant influence on the mean. It is plausible that the
distribution of a lifetime can be specified, resulting in parametric models as
discussed by Lawless (1982), Cox and Oakes (1984) and Kalbfleisch and Prentice
(2002). Not withstanding the difficulty associated with identifying a
distribution that closely fit the data at hand, due to their restrictive
distributional nature, lifetimes requires some transformations like logarithm,
etc. Cox’s (1972) proportional hazard model (PH), a distribution free method, is
championed as robust in that it is able to handle survival data without having
to resort to any of the afore-specified intervention. Its appeal is based on its
avoidance of assuming an underlying distribution for the data, yet through the
hazard function, is able to relate the response variable with the covariates.

At z) = do(t)h(t,z). (2.8)
Here Ao(t) is an arbitrary and unspeciﬁed baseline hazard function, and relative
risk function h(t,z) specifies the relationship between covariates and the hazard

function. When the covariates in the model are fixed so that Z(t) = Z for all t,

12




then the hazard function is independent of time, implying that the relative risk
for any two individuals with different covariates are proportional, hence
proportional hazard model. This model requires estimation of the baseline
hazard. Cox’s (1975) version of proportional hazards model is only partially
parametric in that baseline parameters take arbitrary values and do not feature
in the estimating equations, hence partial likelihood model. Satten (1996) also
showed an approach that used marginal likelihood on interval-censored data to

estimate parameters in the proportional hazard model without having to

estimate the baseline hazard.

Motivated by Satten’s paper, Pan and Chapell (2002) showed that the
nonparametric MLE of the regression coefficient from the joint likelihood works
well for the PH model with left truncated and interval censored data. If
covariates vary with time, then there exist models that allows for the time
variation in these variables, hence are called time-dependant covariates. It may
happen that there exist unobservable heterogeneity among units, and to
account for this random variability, frailty model discussed by among others,
Hougaard (2001) and McGilchrist and Aisbett (1991), has proved to yield good
results. Other suggested interventions to improve analysis of survival data
include data imputation using auxiliary variables (Faucett et al; 2002). In their

paper, Fleming and Lin (2000) outline what has been achieved in terms of

research on survival analysis, summarily giving potential future research areas.




The dominance by a classical approach in survival analysis cannot be ignored,

hence their call for contributions from a Bayesian perspective.

Yet there are other models which Fleming and Li_p (2000) termed semi-
parametric transformed models. 'These models depict lifetime as a function of
an unspecified link function h(T), which in turn is a linear function of the
covariates and random error term with a given distribution function F. If h(T) is
a log-log transform, resulting in F being an extreme value distribution, this
yields a proportional hazard model. Meanwhile a logit transformation h(T),
with a logistic distribution F, will result in Collett’s proportional odds (Collett,
(1994)) model discussed by Colosimo et al (2000) and Cheng, Wei and Ying
(1995). Lawless (1982) illustrated the use of both péoportional hazard and
proportional odds (PO) models for grouped interval censored data for a single
lifetime. The methods presented are subsequently used to make comparisons
between several independent cohorts. Even though the literature discusses both
the continuous and discrete cases for both parametric and distribution free
situation, we shall highlight the scenario for the interval data with both

grouped and overlapping time intervals since it epitomizes this research’s focal

interest.

On the issue of multiple failure lifetimes with interval censoring experienced by
an individual, the dependence that exists between the two measures cannot be

wished away. The dependence structure varies with field of study, for instance

14




the dependence between competing risks will differ from recurrent events
(Crowder, (2001)). Fleming and Lin once again mention the use of frailty
models on bivariate survival data from a parametric perspective. The deficiency
in exploring the use of non-parametric methods is apparent as amplified by
their comment “No such results are available for general interval-censored data,
although ad hoc methods (e.g. Finkelstein, (1986); Satten, (1996)) héve been
suggested”. Goggins and Finkelstein (2000) used an in;:lependence assumption
model (IW) approach to estimate the required parameters. The inherent
dependence structure between lifetimes is thus unaccounted for except through
the use of common covariates parameters between the marginal distributions of
lifetimes. Hougaard (2001) terms it ;1.'1arginal modelling. The model seems to
thrive in estimating the parameter values if the dependence between the failure
types is not so strong and for relatively large sample sizes, though the same
cannot be said with regard to variance estimation. Use of a ‘sandwich estimator’
to stabilize the variance is roped in as a mechanism to eliminate the
inconsistencies. A complementary approach to the marginal modelling is the
concept of using copulas. The problem of specifying a probability model for
independent observations from a bivariate population with non-normal
distribution function H(x,y) can be simplified by expressing H in terms of
marginal distributions and its associated dependence function implicitly
defined. (Genest and Rivest, (1993)) This assumes a uniform distribution on the
unit square hence, if the distributions are continuous, they are transformed to

the uniform case. The class of dependence functions or copulas are widely

15




available, as shown by Clayton (1978), Oakes (1982), Prentice and Cai (1992)
and Gumbel (1960), to name a few. Betensky and Firlkelstein (2002) made a
follow-up on the question of non-compliance on a single failure time to
illustrate how the dependence between failure time and visit compliance can
affect the estimation of parameters. Sinha et al (1999) put together several

Bayesian models which they compare using Bayes factors.

If all units realize the event of interest, i.e. in the absence of censoring, then
familiar methods are available for analysing this type of data, one of which is
the Generalized Linear models (GLM). The application of GLM, alongside with
details on the estimation of parameters is given by McCullagh and Nelder
(1989). The models involve a mean of observations given by the linear
combination of unknown parameters and covariates on a link function
transformed scale. Use of log-log, logit and probit link functions has been
illustrated for both nominal and ordinal responses, as shown by Amemiya
(1981), Agresti (1990) and Powers and Xie (2000). These models bear
resemblance to the semi-parametric models on lifetime data. A cumulative logit
on polychotomous responses is similar to proportional odds model on interval
complete survival data, yet log-log is similar to proportional hazard on the
sarﬁe scale. These treat the ordinal responses as emanating from an
unobservable latent lifetime variable. Mallick and Gelfand’s (1994) approach is -
to treat the link function as an unknown, thus estimate it jointly with mean

structure. Meanwhile Albert and Chib (1993) used data augmentation from a

16




Bayesian perspective to fit models on ordinal response variables. In their paper
(Albert and Chib, (2001)), they apply the logit model (sequential ordinal
modelling) to survival data. Earlier paper by Tanner and Wong (19987)
described the data-augmentation algorithm for - calculating marginal
distributions. A method similar to the one applied by Albert and Chib (1993)
will be applied to Tri-Continental AIDS data as an alternative to using survival

methods.

2.2 Research Objectives
1 An endeavour to develop methods for analysing multiple lifetime data
emanating from the same individual resulting in correlated failure time data.

This give rise to multiple and correlated failure times.
2 A Longitudinal study results in interval data if patients are monitored at
predetermined time periods. Overlapping intervals may arise and are difficult

to handle. Methods that address this situation shall be presented.

3 To assess the impact of baseline predictors (covariates) of participating units

on survival probabilities.

4 An exploratory investigation involving non-parametric methods with some

Copulas like Farlie-Morgenstein and Clayton combined with either Cox’s




Proportional Hazards or Proportional odds models will be closely scrutinized

for their efficiency in parameter estimation.

5 Augmentation estimation techniques will be used since there is a tendency for
methods to crash due to data scarcity. The method of Maximum Likelihood for
instance, has shown to be highly sensitive to small sample situation. A Bayesian
approach with good prior distributions for paramete£ and using Metropolis-
Hastings, a branch of MCMC methods, is presented as an alternative. This takes
centre stage in this research. Yet for large samples it will be shown that the two
methods complement each other by using the MLE estimate of the covariance

matrix for the covariance of the proposal distribution in posterior estimation.

6 The iterative process of cycling between parameters to simulate the next
single parameter value in the MCMC method can be slow if the number of
parameters involved is large. Suggested methods of alternating conditional

sampling using blocks of parameters will be used.

7 Check the asymptotic traits of the parameter estimates by bootstrap methods
for simulating pseudo samples and checking if the sampling distributions of the

estimators converge to the true population values. This calls for the writing of

appropriate computer programs to generate and analyse data.




8 Explore alternative methods to the survival ones that can be used to analyse

data sets available. This will be tied to existing Generalized Linear Models

techniques for categorical data, by adopting a Bayesian approach

9 Finally of profound interest is to assess the general applicability of the
methods developed on real data situations using the following data sets: Aids

Clinical Trials Group Study (ACTG 175) data, Mango data, Kidney data and

Tri-continental Aids data.




CHAPTER 3

NONPARAMETRIC SURVIVAL MODELS

3.1 Introduction

Measure of time to event (failure) for observations cannot always be ascertained
exactly. As indicated earlier, a clinical study where units are expected to be
checked at predetermined checking times O=to < t1 <....< trs1=ec is a good
example. Two scenarios arise when one views the regularity with which units
adhere to the clinic monitoring times. If units observe and attend at all
predetermined times, their failures will fail within two successive end points of

an interval I =(t.,t], this results in Grouped failure times (complete data),

with every unit descrjbed by a single interval within which failure/censoring
occurs. Grouping of observed time into categories according to intervals results
in discrete data. But any non-compliance results in failures stretching over
several intervals, resulting in overlapping and non-disjoint intervals over
individuals and are of varying lengths. This may be due to a subject missing
several visits such that by the time they return, their response status has

changed, hence their interval is now indexed by two end points L, and R, which
may encompass several of the predetermined intervals I,. Modification of

methods used to analyse complete interval data is necessary since interval
censoring of this nature is more intricate. To analyse this data, a distribution-
free approach of Cox’s proportional hazard and Collett’s proportional odds is

assumed, hence a non-parametric approach. Section 3.2 of this chapter shows
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methods applied if a single lifetime is involved, which is extended in

subsequent sections to address multiple failure time situations.

3.1.1 Proportional Hazards Models

Define the probability of an event occurring in time interval (tj1,t] , P(T € (j1,4])

as
A; =F(t) - F(tj1) j=1,2,...r+1
= S(tj-1) — S(tj). (3.1)
Survival function at t;, the probability of surviving interval (tj.1,t] is given by

S(t) = P(T > t)

=Y, | (32)

1>

The conditional probability of failure in interval (tj1,4] is

A
h(t) =P(t._, <T<t, | T>tq) = ——
(J) ( -1 Jl ]1) S(tj—l)

S(t)
=1-—=_, 3.3
S(tj-1) (3:3)

So A= h(t)S(t-1) is the unconditional probability of failure in interval (tjy,t].

Survival function can therefore be modified to (Cox and Oakes (1984) )
j
S(t) =] J(1-h(,)). (3.4)
s=]

Of fundamental importance is the conditional probability of survival beyond

interval I; given that one has survived to the interval. Let the conditional

probability of being free of failure at the end of the j* interval be
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P(T > 1) A

_ s=j+l

P(T >t-) iAs,

s=j

where upon the survivor function (3.4), can be written in terms of P;;

S(t) = iAs = PP, EAS (s<j)

s=j+] s=j-2

- Hps. (3.6)

s=|
Let the unconditional probability of failure at I,for a given unit rewritten in

terms of conditional survival probability be
A =a-P)[]P. (3.7)

Under proportional hazards model, the probability that a person characterized
by a vector of covariates z, survives beyond an interval is:
_ o _

S(t;) = (];[Pj] . (3.8)
Take a complementary log-log link function that-relates the monotone
differential function of the conditional survival probability P; to the linear term
composed of the explanatory variables, (Fahrmeir & Tutz (1994)). Then

Pj(z) = exp(-exp(y; + Bz)) (3.9)
The transformation yields ¥'s, which are known as baseline survivor
parameters. These parameters, unlike the conditional probability parameters,

have a support that belongs to a real line. The unrestrictive nature of the

parameters enhances easier estimation for any given likelihood function.




3.1.2 Proportional Odds Models

Collett’s Proportional Odds model is defined as

F(, | 2)
1-F(,, | 2)

= exp(B'z). | (3.10)
The proportional odds model is the odds ratio of failure at interval I ; given
survival to beginning of I;.
Let
T(z)= PY <L |Y>1 )

=1 -DPj(z).
By taking a logit transformation relating the conditional survival probability
and the linear parameter functién, we show that the resultant distribution is
Logistic. For z = 0, the baseline log odds of failure at Ij in terms of conditional

survival probability,

g(1—11(0)]
o, =lo ey (3.11)
P,(0)

can be written in terms of conditional failure probability,

7,(0)
1-1,(0)

=exp(a,).

We note then that if the effect of explanatory variables is included, then
1(z) Vi bz

1-1,(2)

=e , | (3.12)

hence
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E:<)Lj+[3z
a.+PBz
l+e B

1(z) = (3.13)

The conditional survival probability under proportional odds model is then

given as

P@=— (3.14)

l+e !

3.2 Univariate Failure Time
Suppose all the observations have a single lifetime with survival space sub-
divided into r intervals (j=1,2,...,r) denoting the checking times, then depending
on the choice of model we shall derive the appropriate likelihood. A univariate
model is defined using (3.6 and 3.7) where the conditional survival probability
Pj is replaced by (3.9) for a proportional hazard model or (3.14) for a
proportional odds model. Define a dichotomous random variable @; for each
observation taking the value 1 if the failure occurs at interval ] for it subject

!

and 0 otherwise, such that the contribution by ith unit to the likelihood is
. j-1
g®|z)={-Pz)f @ z)) ™ []P) (3.15)
s=1

where 0 is a vector of parameters to be estimated for a specific model, for
instance® = {B,7,,7,,...y,} for a PH likelihood. The above model applies if the
intervals at which failure occurs are disjoint, but a need for modification arises

if the intervals are non-disjoint and overlapping as described in section 2.1.

TurnBull (1976) proposed letting 0 = to < t1 <....< t: = = be a grid of time points
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which includes all Li and R; for all participants that experience failure. Inability
to know the single interval at which failure occurs, i;nplies that we need to
ascertain the failure probability by summing failure probabilities (3.7) over all
intervals falling within the two end points. Meanwhile for censored
observations, the potential intervals of failure are all intervals subsequent to the
lower censoring endpoint Li. Define an indicator y = 1 if the interval (t1, t] is
contained in the end points (Li, Ri] and 0 otherwise. Then the log likelihood for

ith unit is denoted as
001z)=logy wa,, (3.16)
=1

where Ajj is from (3.7) and is a function of Pj(z;) which can be derived from any
of the transformation models. The overall log likelihood is then the sum of

individual units’ log likelihood.

3.3 Failure Time Data with Dependent Interval Censoring

The use of informative censoriﬁg and its effect on tléle estimated parameter
values is important and feasible if the follow-up period is long enough. In this
section we explore the effect any dependence that exist between clinic visiting

times and failure intervals may have on the results. Generally it is assumed that

the true failure time is independent of censoring mechanisms that controls

visits. But that may not necessarily be the case in that for instance, if a study is

on deadly diseases, time to detection of disease preceded by symptoms compels

study units to see a doctor and have tests done without failure, resulting in
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some dependence between failure time and interval. Likewise, detection of the

disease may prompt a unit to strictly adhere to clinic checks thereafter for

treatment. (Finkelstein et al, (2002)).

Let’s assume that all units commence study at the same time with j=1,2,..r clinic
checks such that if any unit is censored at the termination of study, this will be
at the r"interval i.e. in the absence of units lost due to study attrition. To
analyse this kind of data, it is essential that information on visit compliance
before and after failure be taken into consideration. Let the unobservable

continuous failure time be denoted by T. Since we only observe

intervalI; within which failure occurred, all intervals preceding the j" include

units that have experienced failure, thus we can model the likelihood from the
interval perspective. Let v be a vector of binary indicator variables taking value
1if a visit is made and 0 otherwise. Let 75 be the probability of making the visit

in interval I; before the failure occurred, and ma;j be the probability of making
the visit in interval I;after the failure occurred. The probability of failure in
intervall;is Aj = P(ti1< T < tj). Let ngj be the number of patients who make the
visit in interval I,;and for whom that visit was one before they failed and naj be
the number of units who make the visit in interval I;and for whom that visit
was one after they failed. Also let d,be the number of units who failed at
interval I;. Finally, let rgj be the number of people who were under observation

and had not failed at time j whether or not they made their visit, while ra;j is the
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number of people who were under observation and had already failed by time j
whether or not they made their visit. By Bayes theorem, P(v,T) = P(v|T)P(T) is
the joint likelihood of failure time T and visit schedule. The joint conditional

probability of a unit making a visit is the product of individual conditional
probabilities at interval I;.

P(v|T) = P(vi| T)P(v2| T)...P(v: | T).
Probability of failure for a unit at interval I jis denoted as in (3.7) where P(z) is
as defined in (3.5). The probability of failure at interval I jis based on all 4, units

in that interval. The product of each unit’s failure probability therefore will
yield the necessary failure probability for that interval. If all units have
complied with clinic visit times, then such data is complete or grouped. To
derive likelihood for this data, we define the conditional probability of a unit

making a visit at interval before failure as:

My (L=1,) ™", | (3.17)
and the conditional probability of a unit making a visit at interval Ij after failure
is:

7 (L=7,) ™" (3.18)

if patienti makes j" visit before failure
otherwise,

and similarly

if patienti makes j* visit after failure

otherwise.




Hence at a given interval, the likelihood of a unit is described by the product of
probability of failure, probability of a unit making a visit prior to failure and
probability of making a visit after failure.

£y= Adry (=)™ e o (= my) ™ | (3.19)

For all patients in interval I, the likelihood is given by

d. ﬂgj rBj_“Bj nAj rAj'nAj
£,= A, ’{TIBj (1-mg) }JﬂIA}' (1-m,) }/
hence, the overall likelihood across all intervals is the product of individual

interval’s likelihood,
t= HAde {nlajnBj (1- nBj)rBj—nBj }{nAjnAj (1- nAj)rAj-nAj } (3.20)
j=1

However, if the intervals are non-disjoint and overlapping (incomplete) such
that are defined by lower and upéer endpoints, (L;,R,), modifications need be
made on the likelihood. Define an indicator variable wjas in section 3.2. Equally
vital to observe is the fact that units may have varying numbers of intervals in

the study due to study attrition, hence each unit will have its own rj, the last

checking interval. The likelihood then is

=TT o Tl 0-mo~ M T a-ry) G2y

i=l j=1 s=j

Under Cox’s proportional hazard model with individual units’ covariates,

failure probability is denoted by

j+pz| j_l st zl
Auz(l—e_ey )He‘e’ - (3.22a)
s=l|

whereas proportional odds model has




¥j+BZ,

e it 1
A, = . 3.22b)
13 1+eY,"’|3Z| Hl_i_ch*‘ﬁzl (

A logit transform for the uniformly distributed visit probabilities, yields a
logistic distribution that enable the inclusion of inciividual unit covariates
(Finkelstein et al 2002). Then, the probability of the ith patient making the jth
visit at st failure interval can be written as

M +AN vz,
€

Tci's = (323)
i 1+euj+}mjs+vzi

where ,is a constant for the j* visit time irrespective of failure time (baseline or
post-failure visits) and nis a binary variable taking value 1 if s<j and zero

otherwise, with a coefficient A. This coefficient therefo;e give a direction as to
whether a unit is likely to make more visits prior or after a failure. The presence
of such a coefficient in the model allows for the combination of the two
Bernoulli components into one Bernoulli with two inbuilt indicator variables
catering for visiting periods (before and after failure) and whether an interval is
contained by the upper and lower endpoints. Meanwhile v measures the effect

that covariates may have on probability of visit. The modified likelihood is

denoted by

n I

l= 04, | nijSVij(l_nijs)]—Vij . (3.24)
i s=1

i=l j=1

Application for this method is shown in chapter 7 where both simulated data is

generated and then an analysis of ACTG 175 AIDS data is used on CD4 failure

times.




3.4 Marginal Likelihood Model for Multiple Failure Interval-Censored Data

A phenomenon can be described by several events, thus rendering it a
multivariate type. For n observations, let there be M failure times (m=1,2,...,M)
with each having survival space sub-divided into rm intervals (jm=1,2,...,rm)
representing the checking times. Consequently the failure times may be

correlated to a reasonable degree since i" subject’s failure event at j" interval for

all lifetimes is defined as a hyperspace described by a vector {I“J.,Izij,...,lMij
depicting the intervals at which each lifetime event occurred. We shall restrict

our illustration to two lifetimes, (j=1,2,..r1;; q=1,2,..r2), hence a region [, = {I i1

Define for each subject an indicator variable

1 if m" failure lifetime occurs at j interval for patient i
Oy = ) ‘
0 if censored

The unconditional probability that a unit experiences b.oth failure events in the
intervals Iij and Ixgq assuming | the failure times are independent and the
intervals are disjoint, is a product of the marginal probabilities,

A =P, <T Syt <T,<t,). (3.25)
The conditional survival probability shown in (3.5) is subscripted by lifetimes

and interval at which the event of interest occurs, hence the overall likelihood

using appropriate conditional survival probabilities is denoted as

¢®2) = Zi[cpmlog(l ~Pi(z))+ (1~ @,;)logP,,(z,) + ZlongAzi)}, (3.26)

m=] i=1
where @_; =1 if i*h patient’s m® failure occurs in the jth interval and 0 otherwise.

Where it not for the common covariates, hence common parameter estimates




for the marginal, the model would be equivalent to simply combining the
marginal likelihood functions .used in the individual univariate lifetime
analysis. Thus the dependence, if any, is accounted for by the common effect of
the covariates. This model is called Independence assumption model with
proportional hazard (IWH) or proportional odds (IWO). In a similar fashion, if
the intervals are overlapping and non-disjoint, define an indicator variable omjj
(m=1,2) for each lifetime taking value 1 if the end points (L;Ri] contain the

i" failure interval. The overall log likelihood model is denoted by

£(9|z)—zz[logzwm(l P,(z, ))HP z, )} (327)

m=l i=]

3.5 Conditional Bivariate Model

When we analyse data from a bivariate distribution, the data set depicts two
failure times whose relation is brought about by a dependence parameter. An
example is the bivariate normal distribution. The parameter p measures the
dependence between the two variables involved. In the previous section we
analysed survival data using marginal likelihood because we assumed that data
would reveal its dependence through the explanatory variable parameter
estimates. We know that if the failure types are independent, then we have two
independent marginal distributions, hence their joint likelihood is a product of
individual marginal distributions. A deviation from the above expectation can
only be explained by existence of dependence between the data set. A weak

dependence may not be discernable by using marginal parameter estimates
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hence a need to apply a technique that would take cognisance of any prevailing

dependence between two failure types in the computation of the parameter
estimates. By conditioning on the coordinate of one lifetime, we compute the
joint likelihood using conditional survival probabilities as before,
simultaneously considering the position of failure of the other lifetime. This is

presented as one option described as follows. Define P, as a subject’s

conditional survival probability at interval (t _,,t,] for second lifetime, given

the first lifetime’s failure occurred at (tj_l,tj Lj=12,..n+l;,q=1.2,...n.
Let
Py=PIT, >t | T, >t ,t;, <T, <t] (3.28)

where for continuous T1 and Tz,

w b
PIT, > t,t,, < T, <t,] = [ [t t)dud, . (3.29)

e g
The conditional survival probabilities are easily extended to include the effect
of covariates using any of the transformations described in section 3.1. The

marginal failure probability at I; is as defined as (3.7), while the conditional
failure probability at interval (t,_,,t,] for the second lifetime, given that failure
for first lifetime occurred at (t_,,t;], is denoted by

B =Plty <T, <t |t <T, <t)]

q-1

= (1 -sz-) Py - (3.30)

1=1
Thus the unconditional joint failure probability at the intervals (ti1,] and

(t1oty] is by Bayes theorem, the product of A, and the marginal
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unconditional failure probabilities for the conditioning lifetime, A,;. We note
that if the two lifetimes are independent, then A= 4, for allj, hence the joint

unconditional probabilities will be the product of the marginal unconditional

probabilities, A i = B4, failure of which we conclude that the two lifetimes

are dependent. If a unit’s first lifetime is censored at the conditioning interval

I;, failure can only occur in one of the subsequent intervals, hence sum up all

the joint failure probabilities of those intervals for known intervals of second

lifetime. This gives the joint failure probability for this unit as

n+l

PIT, > 1, < Ty <t ] = a4, (3.31)

s=j+l
Then using (3.28), (3.30) and indicator variables in section 3.3, the likelihood for

a subject whose event of interest occurs at interval I, for first lifetime and

interval I, for second lifetime is given by

g0]z)=

Pij(1-ep2ig)

j—l q—l (plij(pliq j—l q
(1—P,,.<zi))HPlxzi)(1—P2cu.(zi))1‘[P2,,-<zi>] [(1—R,-(zi»I'[Rs(zJHPz,j(zi)}

r+l

s—| q-1 (1-@uij)gniq
> (1—P.s<zi))I_IPls(zi><1—P2qs(zi>>Hp2,s(zi)]

S:: - ol q (1—ii) (1—2ig)
SYli-r@) e )HPz.s(z )} (3.32)
s=jH[ 1=1

This gives the overall likelihood over all units to be the product of all
individual’s likelihood. The nurhber of baseline parameters to be estimated

depends on the predetermined intervals involved, i.e. including the covariates

parameters, there are ri(1+r2) + p parameters to be estimated.




]

3.6 Use of Copulas for Bivariate Models

The use of a conditional bivariate model approach presented in section 3.4
poses problems due to the number of parameters involved. Therefore with
small data sample, the method is bound to collapse, especially since some of the
intervals may be empty. An alternative would be to use models that are built
from the Copula distributions as per definition presented by Prentice & Cai
(1992), based on the ith subject’s joint survival or failure function for two failure

times. The method breaks away from the independence working assumption

adopted for univariate likelihood in section 3.3, in that this method introduces
dependence parameter between the two lifetimes. For example, a Clayton

copula is depicted in terms of marginal survival functions. (Prentice and Cai,

(1992))
Sty L) ={S<t,j)? +S(ty)* —1} , (333)

where (0<k<e) k—0 implies a perfect correlation between the two failure times
and absolute independence when k—oo. S(ty) is 'the marginal survival
probability for the first lifetime at interval L. For instance, under Cox’s
proportional hazard model, the it subject with a covariate z and discrete

random variable T whose marginal survival at the jth interval is as shown in

(3.8) contributes the following component to the joint survival:

Lo . Lhs(y,
S(t,,) K={HPIS(Z)} :Hex (YB),

s=]

where h (y,B) = e™~*%, yielding ajoint survival function




L2 R G A )
S(tyoto)=|JJe * +[[e ¥ -1 (3.34)

To write a joint likelihood, we use the same definition for the indicator variables

¢,;and @,;, as in previous sections. The likelihood of a unit who has bivariate

disjoint intervals for both lifetimes is given by

g(Y’ﬁ | Zi) = (I:S(tj’tq) +S([j—l’ t;q—l) _S(tj—htq) —S(tj9tq-—l)}p“j(p2iq [S(tj-—]’tq) _S(tytq )})“j(l_(pﬁq)
[S(tj, tq_] ) _ S(tj, tq )}l—(P”i)‘Pziq [S(tj, [q )}l-wlii)(’—(wiq) ) (335)

If the regions are non-disjoint and overlapping, let there be two indicator

variables ,,, for each lifetime as previously defined in section 3.3, also the
probability of failure at region I, (3.25) is given by
A, =S(t,t)+ S(ti-y tgy) — St ty)— S(tj, o)

Hence the overall log likelihood is the sum of each unit’s likelihood for each

lifetime as in (3.16);

ol

L@)z) =Y ilogz%pm . (3.36)

m=1 i=1

The Farlie- Morgenstein copula is in terms of marginal cdfs, hence of the form

F(t,,t,) = F(t,)F(t,)[1 + x(1 - F(t,) X1 - F(t,))], (3.37)
with x the measure of association between the two failure times such that
correlation between them is p= x/4. For this model the maximum k attainable is
1, representing a not so strong dependency. The failure probability (3.25) is then

defined in terms of joint CDF, not joint survival probabilities, as is the case with
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Clayton copula. Then use the function (3.37) to attain an overall likelihood

(3.36) for observations drawn from Farlie-Morgenstein distribution that has

overlapping intervals.

3.7 Chapter Summary

The standard distributions we could in most cases apply to other types of data
are not necessarily relevant to survival data. This is true especially with
interval-censored data with overlapping intervals. This chapter introduced two
types of interval-censored data in the grouped (disjoint) intervals and the
overlapping intervals data. The latt;r kind is complicated to handle and the
parameters estimated under this situation are susceptible to regularity of visits.
The Cox’s method of using distribution-free hazard function, make the non-
parametric method more preferaBle since the models have proved to be easier
to evaluate and can adjust to any kind of data distribution. Three non-
parametric models for survival data were introduced in this chapter. These are:
Independence assumption model, conditional bivariate model and the use of
copulas to allow for measure of association between failure times. For each of
the models, a likelihood function was derived after transforming the hazard
function by either a log-log transform to get a proportional hazard model or a

logit transform to get a proportional odds model, so as to facilitate for the use of

unrestricted parameters.




CHAPTER 4:

PARAMETRIC SURVIVAL MODELS

4.1 Introduction

The most extensively used methods in analysing lifetime data is the parametric
methods. The difficulty associated with these methods is of ascertaining that the
underlying distribution of the lifetime data is correctly specified. Failure to do
so would result in erroneous conclusions. Since lifetime is a time measure,
hence continuous, the distribution involved needs be chtinuous. Properties of
continuous distributions are weli documented and readily available such that
their use in modelling, if the data does comply, makes them more eligible for
use. Moreover, for parametric models all four functions characterizing lifetime
data, namely probability density function, probability distribution, hazard or
cumulative hazard rates and survivor functions, are of closed form for most of
these distributions. This renders estimation of a single failure time event more
feasible. These distributions include the Weibull, Exponential, Log-Logistic, etc.,

most of which emanate from the Generalized Gamma (GG) family of

distributions denoted as

Et*~'exp(- ﬁ)
A

f(t)zT((o) 0<t<oo, (41)

Extensions to multiple failure times employ the use of copulas with marginal

distributions from known univariate continuous distributions. Section 4.3

discusses the use of Farlie-Morgensten and Clayton distribution copulas the
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same way as outlined in section 3.5 for distribution-free situation, with built-in

relatedness measure to assess dependence between failure times, if it exists.

4.2 Weibull Distribution
One versatile distribution bearing some unique properties in the analysis of

lifetime data T is the Weibull (A,£) distribution (a special case of the GG when

r w=1) whose density and probability distribution are given by respectively

g
f(t) = %té‘lexp(—%) (4.2)

and
t&
Fi)=1- eXp(—I) ,

and itsk" moment is given by

z K
E(T) =A% 1+— .
r( %J

An Exponential (1) distribution is a special case of the Weibull when £=1, hence
most of the characteristics of a Webull distribution are easily extendable to the
exponential situation. A Weibull distributed lifetime with & not equal to 1 gives

a non-constant hazard function, a property better suited for certain lifetimes.

Let Y=log T, then

f(y) = —%eXP{éy —E}%éxf} (4.3)

Letp = —olog% and o = —1-, then
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Furthermore, a unique property which makes this distribution attractive to use
in survival analysis is that a log transformation of the original data distributed
as Weibull with both A and & equal to one, yields a standard Extreme Value
distribution with a survivor function S(y), similar to the Cox’s proportional
hazard sl:10wn in previous chapters:

S(y) = exp(- exp(y)) -0 <y < oo,

Our focus is to model the impact of a vector of explanatpry variables
z =(z,,2,,...,2,_,)on the lifetime. One way will be by fitting a linear model of the
form (1.1) to the transformed data Y, where the error component ¢, follows an
Extreme Value distribution and the mean p(z) is a function of explanatory
variables, i.e.

Wz) =y, +yz, (4.5)
where the vector y =(y1,y2,...,¥p-1) consists of regression coefficients. Suppose
the original untransformed data was used to fit a linear model with vector
B=(B..B,B,. ) being the regression coefficients, then the two sets of

regression coefficients relates through

=—-=. (4.6)

With a log transformation, the survival function of the i* unit is written as

S(y; | o,y,2) = exp{— CXP(Yi_—H(Zi))}, i=1,2,...,n. (4.7)
(6




The density is of the form defined in (4.4) with expected logarithm lifetime (z)
and standard deviation . It is vital to note that the resulting survivor function
has reduced number of parameters. Knowledge that some of the subjects
haven't realized the event of interest and hence are censored has to be taken
into consideration when analysing survival data. Maintaining the same
indicator variable as in section 3.2 to depict the censoring status of an

experimental unit characterized by a vector of covariates z, the general form of

the likelihood is
g@]z)= ﬂ{(f()ﬁ)(pi )(S(Yi)l_wi )}

Hence

20]2)= H[ { GbE, _exp ‘:(Zi))} {exp&xp&—(»} } (4.8)

Suppose the experimental units are observed only at intervals I i = (t.1,t;] such
that the event of interest is only known to occur in I;, then the likelihood for
interval-censored data has to be applied. Let L, and R, be the lower and upper

endpoints of the interval containing the i failure as previously defined, such
that the difference between survival probabilities at the endpoints yields the

failure probability for a unit in interval (L;,R,]. Then
P(y, € (L,.R,)| 2,8) —exp{— exp(i &) ”( J) } exp{—exp(mzﬁ)}. (49)
c

Since the afore-specified interval is composed of several sub-intervals,

Finkelstein (1986) showed that the contribution of the i”observation to the
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likelihood is the sum of all failure probabilities of sub-intervals enclosed within

the endpoints. The conditional survival probability at Iis given by

P(z) = exp{— {exp(yij_—';@)} - {exp(—yij—.(:ﬂ)}} (4.10)

Groenewald & Mokgatlhe (2002) have shown that the log-likelihood can be
written in terms of conditional survival probabilities hence write the

unconditional failure probability as

P(y,€1,16,2) = P(T > t,)(1-P(z,))

— eXp(— e&.,(}'ij—l -z, ))]{[1 _ e—e_gu(Z;) ]exc{eéyij—l _ e&_'yij ]} ’

where £ = L Thus the log likelihood is of form
G . .

£012) = YlogY 0, Py, € 1, 6,2,)], (4.11)

i=1 i=1
where w;1s as defined in section 3.3. This is a univariate failure time situation,

and is easily extended to multiple failures by using a multivariate family of

distributions, as shall be illustrated in the next section.

4.3 Use of Copulas with Weibull distribution
Assuming a Weibull distributed variable T, a log transformation results in a
variable Y with density as shown in (4.4). Its probability distribution is denoted

by
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F(y) =1- exp{— exp(%)}

Define Y={Y,;,Y,} as a matrix consisting of two vectors representing the two

failure times, (i=1,2,...,n). Then the joint distribution may be represented by a

Farlie-Morgenstern distribution, denoted by
F(y,,Yy) = (1 —e Vi Xl —e Vi 1:1 + Ke—(wli_f:wzi)i|, (4.12)

where K is the measure of association, and

To account for explanatory variables, the mean term is rewritten as a function of

Qovariates and their regression coefficients as in (4.5). The interval is now
described by four coordinates Lig={(t;j_;, t;;],(ty-,,t5, ]}, thus probability of failure
ininterval [jq is (j=1,2,...,r1; q=1,2,...r2)
A, =Py, el |2z)
=P(t,, <T, St,,t,, <T, <t | 2)
= Bty ty-) —Fty,, thy) — Bt ty ) + F(tyty,) (4.13

Note that F(t,y,t,,) = 0. Hence the log likelihood will be

00)2)= Y 10g> o, [P, 18.2)] (4.14)

i=1 j=1 q=1
Meanwhile the Clayton Copula (3.33), which is more tractable compared to the
Farlie-Morgensten copula, utilizes marginal survivor functions. Assume a

Weibull marginal density, and use the Extreme Value distribution marginal
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survival function from the transformation, as in (4.7). Then the Clayton copula
survivor function is given as

1 i

SOy ¥2g) =[S(y) *+(S(y,) * =11, A (4.15)
resulting in failure probability in interval [,in terms of joint survival
probabilities as follows, while log likelihood is denoted as in (4.14).

Bia =S ijoi Yaqr) =S(Y1jo10 Yaq) =S(Yj> Yag-1) +8(Y1j5 ¥aq) -

4.4 Chapter Summary

A relatively easier to use and involving fewer parameters, is the parametric
method. Its only weakness is that one can never be sure of which distribution to
assume for the data. A goodness-of-fit criterion test on interval-censored data
with overlapping intervals is not yet available. Likelihood functions derived for
the parametric model are the Weibull distribution based, and use of copulas

with either a Farlie-Morgenstern or a Clayton distributions for bivariate data,

all having Weibull marginal distributions.
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CHAPTER 5

PARAMETER ESTIMATION

5.1 Bayesian Approach
'5.1.1 Introduction

Bayesian prior probability of an event x is a person’s degree of belief in that
event, based on cumulative evidence and evidence baséd on practice. Whereas
a classical probability is a tangible property of the world, (e.g. the probability
that a coin will land head), a Bayesian probability is