

TCPlot - A network management tool to detect
and graphically display faulty TCP conversations

DJ Kotze

THESIS

I Submitted in accordance with the requirements for the degree

MAGISTER SCIENTIAE

in the Faculty of Science

Department of Computer Science and
Business Data Processing

of the

University of the Orange Free State

Supervisor : Prof T McDonald

October, 1994

I would like to thank -

Prof T McDonald, my supervisor, for his dedicated support and guidence,

I Hatting, for the use of the menu system developed by him,

Technikon OFS, for the use of their network and equipment whilst developing and
testing TCPlot,

and everyone involved in proof reading this thesis.

"Soli Deo Gloria."

Table of contents

CHAPTER 1

Network Management in Perspective
1. 1 Introduction

1.2 Management of a Computer Network

1.2.1 The OSI Management Framework

1.2.1.1 Systems Management Model

1.2.1.1.1 Configuration Management

1.2.1.1.2 Fault Management

1.2.1.1. 3 Performance Management

1.2.1.1.4 Security Management

1.2.1.1. 5 Accounting Management

1.2.1.2 OSI Layer Management

1.2.1.3 OSI Protocol Management

1.3 Towards standardization

1.3 .1 Simple Network Management Protocol (SNMP)

1.4 Why Another Network Management Tool?

1.4.1 Network monitors

l.4.2 Protocol Analyzers

1.4.3 Graphical Trace Representation

1. 5 Objective of this Thesis

1.6 Definition of the Problem

1. 7 Development Environment

1. 8 Organization of this thesis

1

l

1

2

4

5

6

7

8

9

10

10

10

11

12

13

15

16

17

18

19

20

21

CHAPTER2 22

TCP/IP an Overview 22

2.1 Introduction 22

2.1.1 Some services of TCP 23

2.2 Description of the TCP/IP Protocols 24

2.3 The TCP Segment Header 26

2.3 .1 Fields in the Header 26

2.3.1.1 Port Numbers 26

2.3.1.2 Sequence Number 27

2.3.1.3 Acknowledgement Number 27

2.3 .1.4 Window 28

2.3.1.5 Data Offset 28

2.3.1.6 Flags 28

2.3 .1. 7 Checksum 29

2.3.1.8 Urgent Pointer 29

2.3 .1. 9 Options 29

2.3.1.10 Padding 30

2.4 The Internet Protocol (IP) Header 30

2.4.1 Fields in the header of an IP datagram 31

2.4.1.1 Version 31

2.4.1.2 Header Length 31

2.4.1.3 Type of Service (TOS) 31

2.4.1.4 Total Length 31

2.4.1.5 The Identifier, Flags and Fragmentation offset fields 32

2.4.1.6 Time-to-live 33

2.4.1. 7 Protocol 33

2.4.1.8 Header Checksum 33

2.4.1.9 Source and Destination Addresses 33

2.4.1.10 Options 35

2.4.1.11 Padding and Data 35

2.5 The Ethernet header 35

2.6 Other Protocols 39

2.6.1 User Datagram Protocol (UDP) 40

2.6.2 Internet Control Message Protocol (ICMP) 41

2.6.3 Address Resolution Protocol (ARP) 41

2.6.3.1 Fields in the Header 42

2. 7 Port Addresses in Perspective 43

ii

·CHAPTERJ

Packet Drivers
3 .1 Introduction

3 .2 Packet Driver Specifications

3.3 Identifying network interfaces

3.3 Initiating Driver Operations

3.4 Programming Interface

3 .4.1 Driver Info

3.4.2 Access_type

3.4.3 Release_type

3 .4 .4 Send _pkt

3 .4. 5 Terminate

3 .4. 6 Get address

3.4.7 Reset interface

3 .4. 8 Set rev mode

3.4.9 Get_rcv_mode

3 .4. 10 Get statistics

3. 5 Using the programming interface

CHAPTER4

The TCPlot Monitor
4. 1 Introduction

4.2 Development Issues

4.2.1 Gathering Packets

4.2.2 Timestamps

4.2.3 On-line Processing

4. 3 Addressing the Issues

4.3.1 Memory utilization

4.3.1.1 Implementation of the TCPlot Monitor

4.3.1.2 Filters

4.3.2 Timers

4.3.2.1 Interrupts of the Interface Card

4.3.2.2 Timers of the IBM-compatible PC

4.3.2.3 High-Resolution Timers

4.3.3 On-line Processing

lll

45

45

45

47

47

48

50

51

52

54

54

55

55

56

56

57

58

59

60

60

60

61

61

62

62

63

63

64

65

67

67

68

70

73

4. 4 The TCPlot Monitor modes

4 .4 .1 Hash mode

4.4.2 Packet Display mode

4.4.3 Graphics Display mode

4.4.4 Store mode

4.4.5 Statistics

CHAPTERS

The TCPlot Analyzer
5. 1 Aims of Trace Analysis

5.2 Detecting problematic conversations

5 .2.1 Detecting duplicates

5.3 Displaying conversations graphically

5 .3 .1 Time-sequence plot

5.3.2 Implementation by TCPlot

5.3.2.1 Analysing the trace file

5.3.2.2 Plotting the conversation

5.3.2.3 Scaling the plot

5.3.2.4 Selecting conversation direction

5.3.2.5 Filters

5.3.2.6 Getting help

CHAPTER6

The TCPlot Program
6.1 Introduction

6.2 Structure

6.2.1 User Interface

6.2.1.1 The Main menu

6.2.1.2 The Capture traffic menu

6.2.1.3 The Analyser menu

6.2.1.3.1 Time-Sequence plot

6.2.1.4 The Options menu

6.2.1.5 Auto Mode

iv

74

74

74

75

78

79

80

80

80

81

82

84

84

89

90

91

93

96

96

97

98

98

98

98

98

100

100

102

104

107

109

6. 3 Technical Reference

6.3.1 The NetUW Unit

6.3.1.1 The AutoName procedure

6.3.1.2 The CalcBarDisp procedure

6.3.1.3 The DispStats procedure

6.3.1.4 The GetDispStr function

6.3.1.5 The GetName procedure

6.3.1.6 The GetPort procedure

6. 3 .1. 7 The InitDriver Procedure

6.3.1.8 The NetStart procedure

6. 3 .1. 9 The ProcessBuff procedure

6. 3 .1. 10 The RecvPkt procedure

6. 3 .1.11 The ReadIP procedure

6.3.1.12 The SekBar procedure (Interrupt)

6.3.1.13 The SetFilter procedure

6.3.1.14 The StoreBuff procedure

6.3.1.15 The StrAdr function

6.3.1.16 The StrIP function

6.3 .1.17 The StrClickTime Function

6.3.1.18 The WriteFile procedure

6.3.1.19 The WriteIP Procedure

6.3.2 The PlotU unit

6.3.2.1 The AutoFilter procedure

6.3.2.2 The AutoFilterSet procedure

6.3.2.3 The ConvToMenu procedure

6.3.2.4 The DispConvList and DispConvlnfo procedures

6.3.2.5 The FileList procedure

6.3.2.6 The FiveSec procedure

6.3.2. 7 The GetConversation procedure

6.3.2.8 The MakeList procedure

6.3.2.9 The MenuGraph procedure

6.3.2.10 The PackToLong procedure

6.3.2.11 The PackToWord procedure

6.3.2.12 The PrintConv procedure

6.3.2.13 The PrintGraph procedure

6.3.2.14 The ReadFile procedure

6.3.2.15 The SelectDisp procedure

6.3.2.16. The ShowConvs procedure

v

109

110

111

111

112

112

112

113

113

114

116

117

117

118

118

118

120

120

120

120

120

121

121

122

122

122

123

123

123

124

125

125

126

126

126

127

128

128

6.3.2.17 The StoreConv procedure

6.3.2.18 The WriteLstlP procedure

6.3.2.19 The XScaleBar and YScaleBar procedures

6.3 .3 The AsmTim unit

6.3.3.1 The GetOwnTime procedure

6.3.3.2 The _Hrt_Close procedure

6.3.3.3 The _Hrt_Open procedure

6.3.3.4 The HrTime function

6.3.3.5 The StopTimer procedure

6.3.3.6 The TimeExit procedure

6. 3 .4 The Library unit

6.3.4.1. The Beep procedure

6.3.4.2 DrawHorzSet

6.3.4.3 The Hex function

6.3.4.4 The HexWord function

6.3.4.5 The HexLong function

6.3.4.6 The KeyProc procedure

6.3.4.7 The NoCursor and NormCursor procedures

6.3.4.8 The StrXY procedure

6.3.4.9 The Scroll procedure

6.3.4.10 The procedure XYWrite

6.3.4.11 The GetMax function

6.3.4.12 The CBar procedure

6.3.5 The DRVU unit

6.3.5.1. The AccessType procedure

6.3.5.2 The Driverlnfo procedure

6.3.5.3 The FindPktlnt procedure

6.3.5.4 The SetRx.Mode procedure

6.3.5.5 The GetStats procedure

6.3.5.6 The DrvRelease procedure

vi

128

130

130

130

130

131

131

131

131

131

132

132

132

133

133

133

133

134

134

134

134

135

135

135

136

137

137

138

138

138

CHAPTER 7

TCPlot in Action
7. 1 Introduction

7.2 The Monitor at work

7.2.1 Using an 8-Bit Interface

7.2.2 Using a 16-Bit interface

7.2.3 The effect of filters

7.3 The Analyzer at work

7.3.1 The collected trace

7.3.2 Filtered trace

7.3.3. Time-sequence plot

7.4 The eflect of approximation

7. 5 Interesting plots

7.5.1 Packets outside the window

7.5.2 Normal time-sequence plots

7.5.3 Suspect time-sequence plots

7. 6 Getting the best results

7.6.1 Flat horizontal plot

7.6.2 Plot with only a vertical line

7.6.3 Scrolling through a conversation

CHAPTERS

Conclusion
8.1 Conclusion

8.2 Areas for future research

APPENDIX A

Trace of all packets in Fintest.cap

APPENDIX B

Filtered Trace

BIBLIOGRAPHY
ABSTRACT (IN AFRIKAANS)

vii

140

140

140

140

141

144

144

145

145

146

147

149

151

151

153

154

158

159

160

160

161

161

161

163

164

164

171

171

I

Network Management in Perspective

Chapter t

Network Management in Perspective

1.1 Introduction

In the past 5 years a tremendous growth rate in local

area networks have been experienced. This in turn has

brought the whole concept of managing such networks

sharply to the foreground. Furthermore, the demands

for communications to remote users, resources and

applications through local and remote network

facilities are growing. The provision of systems and

networks and the need to have them operational at all

times, yet keeping them cost effective, requires

effective and efficient network management.

As early as 1989 a study of American companies showed

that a large portion of the real cost of a PC LAN went

to Systems Management (Figure 1.1) . Prins loo

[Prins loo, 1991] feels that the cost curve will rise

sharply as the time that a system has been implemented

increases. It is also true that cutting corners on

systems management causes an exponential rise in cost

caused by unproductive downtime.

Effective management, however, requires information

and the network manager must rely on the availability

of tools to monitor traffic and diagnose faults on the

network. This thesis will therefore describe the

development of a PC based network monitor for an

Ethernet network running TCP /IP. The monitor will

apart from displaying network traffic on-line, also

collect total or filtered packet traces for off-line

1

Network Management in Perspective

processing. It will further describe an analyser to

plot indi victual packets graphically. These graphs

will enable the network manager to easily interpret

traffic patterns and diagnose problematic

conversations, without having to work through long

packet traces.

Figure 1.1

36%

34%

6%

Ill System management

m Hardware/software
installation

• Unproductive time

8 User training

11 LANspesialist

The Real Cost of PC LAN's

[Prinlsoo, 1991]

1.2 Management of a Computer Network

Defining network management as a process, like many

common activities, poses a problem in that most people

are fairly certain of what it is, but would be hard

pressed to provide a definition.

It is commonly accepted today that network management

involves the planning, organising, monitoring,

2

Network Management in Perspective

accounting and controlling of network activities and

resources [Black, 1992a]. However, the OSI management

structure is focused mainly on monitoring, accounting

and controlling of network activities and resources.

Held [Held, 1992 p35] provides the following

definition for network management:

'Network management is the process of using

hardware and software by trained personnel

to monitor the status of network components

and line facilities, question end-users and

carrier personnel, and implement or

recommend actions to alleviate outages

and/or improve communications performance as

well as conduct administrative tasks

associated

network.'

with the operation of the

From the above definition it is clear that network

management requires firstly human resources and

secondly it requires hardware and software to examine

network components. Kauffels [Kauffels, 1992], in his

description of the classical responsibility areas of

network management, divides the global management of

networks into external and internal functions. The

external functions are those which cannot be executed

in full by the system itself. It must be executed by

people such as administrators or technicians, while

the management system plays at best a supporting role.

The internal functions are executed by the system

itself and guarantee its efficiency in terms of its

functionality, reactions and reliability.

There are three factors critical to successful network

management: methods, tools and human resources. The

methods of network management differ widely with the

3

Network Management in Perspective

structure of the network, yet it should not be

influenced by the size of the network. With the rapid

growth of networks, the trusted 'manage by hand'

method is no longer appropriate. Fortunately network

management tools are becoming more powerful and

provide the network manager with an increasing amount

of information. This overload of unfiltered

information presently requires a highly trained

network manager to interpret. As the complexity of

networks increases, this will place an unbearable

burden on network managers. Future development of

network management tools should therefore be directed

towards tools that either interpret information using

an expert system or at least filter and present

information in a way that it can easily be interpreted

by network managers.

1.2.1 The OSI Management Framework

The OSI management framework (ISO DIS 7498/4, 1987),

al though applicable in the OSI environment, is

described here to place this thesis in perspective.

The OSI environment comprises all tools and services

that are used to control and manage connection

activities and managed objects. A managed object in

terms of OSI is an object with an identifier and

corresponding set of management information accessible

to the OSI network manager.

The framework defines the structure of the OSI

management in terms of three groups [Kauffels, 1992]:

• System management provides mechanisms for

monitoring, controlling and co-ordinating all

managed objects within an open system.

4

Network Management in Perspective

• Layer management provides mechanisms for monitoring,

controlling and co-ordinating each of the seven

layers of the OSI reference model.

• Protocol management provides

monitoring, controlling and

mechanisms

co-ordinating

for

an

individual communication transaction.

1.2.1.1 Systems Management Model

The definition of systems management describes three

conceptual models [Kauffels, 1992]:

• Functional model.

• Organisational model.

• Information model.

The organisational model describes the distributed

character of OSI and how network management tasks may

be distributed through the network. The information

model on the other hand, concerns

managed objects together with

itself more with

the attributes,

operations and reports of such objects.

This thesis, however, will concern itself more with

the functional model that introduces the five Specific

Management Functional Areas (SMFA's) [Black, 1992a,

Kauffels, 1992]:

• Configuration management

• Fault management

• Performance management

• Security management

• Accounting management

5

Network Management in Perspective

It is worth noting that al though the AT&T management

structure [Black, 1992a] varies from the above in that

it describes six major categories, these two

management structures are the same in essence. This

thesis will therefore only refer to the OSI network

management standards in its discussion.

1.2.1.1.1 Configuration Management

A computer network is by its very nature a dynamic

environment with changes occurring constantly.

Resources such as bridges, hubs, nodes and servers may

be added or removed from the network or their

relationship with each other may vary at any time.

For example a packet switch may be removed as a node

due to software or hardware failures. If the problem

is transient, the switch may be removed logically and

the traffic routed around that node. In such a case a

part of the network would be reconfigured to handle

the problem.

Configuration management must therefore include the

ability for managers to generate, observe and modify

operational parameters and conditions that govern the

mode of operation of components in the system. This

includes:

• The existence and names of network components

(adding/deleting).

• Relationship between network components.

• Addressing information.

• Operational characteristics of components (e.g.

transmission speed).

• Information regarding the

components

active).
(e.g.

• Routing control.

enabled,

6

usability state

disabled, busy

of

or

Network Management in Perspective

With support from other network management areas, the

planning and design of future extension to the network

or the partitioning the network with bridges, can be

seen as part of configuration management.

1.2.1.1.2 Fault Management

Fault management includes the detecting, diagnosing

and isolating of conditions in the network that would

prevent normal operation, as well as taking the

appropriate steps to correct these faults. The three

main areas here being:

Fault detection. Detecting faults on a network

requires monitoring the traffic on the network and

sounding an alarm if pre-set thresholds are exceeded.

Statistics of the number of frames transmitted, number

of collisions detected on the system and the number of

framing errors detected, must also be kept. From

these statistics deductions can be made to enable the

network manager to deal with and/or anticipate

problems before they cause deterioration of network

services.

Diagnosing faults. Further analysis of the traffic on

the network may be required to diagnose and isolate

the faults or the resources causing them. For example,

an analysis of duplicate or retransmitted frames on

the network may point to a resource not functioning as

expected for various reasons. Another diagnosing

method may be the running of a diagnostic program to

catch a network component in a particular act.

Finally, the process of error correction involves a

combination of measures that may include replacing the

7

Network Management in Perspective

hardware. This process is supported by configuration

management.

Michalski [Michalski, 1991] sees the fault management

area as an excellent candidate for the application of

an expert system. With a well-defined set of fault

management functions, a knowledge base and a set of

algorithms to analyse faults, such an expert system

could prove invaluable to network managers.

1.2.1.1.3 Performance Management

Performance management can be used to measure several

critical characteristics and operations of the network

in order to evaluate the efficiency of communication

activities. This management area requires a regular

provision of collected statistical data in order to

analyse performance and can therefore also be used to

predict trends in the network. In doing this, the

medium-to-long term functionality of the network can

be guaranteed by predicting and preventing bottle­

necks and thus supporting the design of extension to

the network.

The OSI standard defines the following measurements:

• Throughput.

• Workload.

• Propagation delay.

• Wait time (Connection establishment/release delay).

• Response time.

• Quality of service (QOS).

8

Network Management in Perspective

'
Set/modify

" measurement
criteria

L,
I'

Receive input
from user
devices

Criteria

N satisfactory

y

Performance Tune the

satisfactory N
resources

I y '- '" , 7

Figure 1.2 The Organisation of Performance Management

Functions.

Essentially

monitoring,

shows the

functions.

[Black, 1992a, p 217]

performance management is centred around

analysing and tuning functions. Figure 1.2

organisation of performance management

Although it is not explicitly mentioned in the above,

performance degradation may be due to faulty

conditions in the network and tuning must in such

cases include support from the fault management area.

1.2.1.1.4 Security Management

Security management varies in importance depending on

the specific network environment. It is concerned

with protection against random unauthorised access by

normal users in a relatively unimportant network, but

in a military or bank network, it may mean protection

against highly specialised attacks. Although network

9

Network Management in Perspective

security is a field on its own, it is the network

manager's responsibility to ensure that proper

measures are in place and that security breaches are

detected.

1.2.1.1.5 Accounting Management

The main purpose of accounting management is to

monitor and control information and resources that

concern individual users in the environment. This

enables network administrators to monitor the use (and

if necessary restrict the use) of resources by users

and where costs are incurred, to calculate and

allocate them appropriately.

1.2.1.2 OSI Layer Management

Layer management concerns all activities needed to

monitor all OSI resources belonging to a certain layer

(for example, routing in layer 3) . Layer management

is supported by layer management entities which permit

the observation of layer-specific information such as

protocol operations, events and parameters for

performance analysis. This model, however, requires

special protocols to recover from broken connections

in the network.

1.2.1.3 OSI Protocol Management

Protocol management concerns those protocol internal

mechanisms within one of the seven layers which are

used to monitor a specific instance of the

communication link. As protocol management is

described in the specification of each protocol, it is

not described in the OSI management framework.

10

Network Management in Perspective

1.3 Towards standardization

Due to the variety of user needs, LANs were

constructed more and more of heterogeneous network

products. The TCP/IP protocol suite took care of the

communication between the different equipment, but the

management of such equipment posed a problem. Most

vendors provided management functions for their own

products with little regard to other vendors'

products. IBM was the first major vendor to define a

strategy for integrated management of a heterogenous

network in 1986 (Open Network Management Strategy)
[Herman, 1990].

The need for a standard management platform soon

became clear. From the Internet side the Simple

Network Management Protocol (SNHP),

specifically for TCP/IP, was proposed,

designed

while the

OSI/Network Management Forum (OSI/NMF) proposed a

Common Management Information Protocol (CHIP) . To

accommodate TCP/IP they also endorsed CHO'J! (CMIP-over­

TCP/IP) [Sekkaki, 1991]. The Internet Activities

Board (!AB) , the internet' s governing body for

operational as well as research and development

issues, has developed both long- and short-term

solutions to help bridge the gap between the current

network needs and those for the future [Ben-Artzi,
1990]. In Request for Comment (RFC) 1067 [Case,

1988], the board approved SNMP as a short-term

solution for a standard platform, while ISO's CMOT was

seen as the long-term solution [Lew, 1989]. Late in

1989 , however, Fisher describes a swing towards SNMP

[Fisher, 1989], while Herman [Herman,1990] feels that

!MB' s SNA based management stategy has lost against

SNMP. Yet Perkins [Perkins, 1990] still saw a future

for CMIP, expecting local availability by 1992.

11

Network Management in Perspective

Towards the end of 1991 SNMP, which was supposed to be

a short-term solution only, has emerged as a powerful

standard in its own right while CMOT was losing ground

[J ander , 19 91] . Black [Black, 1992a], does not even
consider CMOT as a contender for network management.

SNMP on the other hand is now supported by most

vendor's [Greenfield, 1991] and will therefore be the

only management protocol discussed here.

1.3.1 Simple Network Management Protocol (SNMP)

The focus of this thesis is not the management of

network objects (or information obtainable from them),

but rather the analyses of TCP traffic (or

conversations) between two elements. Packets are

collected directly from Ethernet and SNMP is not used

at all. It is, however, for the sake of completeness,

necessary to describe SNMP briefly.

The purpose of SNMP is to allow a managing entity,

typically a network management station, to control and

retrieve information from managed objects. In an

Internet context these objects are referred to as

network elements. The network station communicates

with network elements through agents located in the

network element. Where a network element is not
sophisticated enough

(e.g. modems) or where

directly reachable by

to run

the network

the managing

SNMP software

element is not

station, proxy

agents are used. Proxy agents are the ref ore network

elements which can be reached by the managing station

and which will on its behalf, through convergence

functions such as protocol conversion, communicate

with the unreachable element and perform network
functions.

12

Network Management in Perspective

A network element contains a Management Information

Base (MIB), that is a database containing numbers and

flags reflecting both network and node performance.

Each value in the database is contained by an object

that can be updated, read or written to across the

network [White, 1989].

The management strategy of SNMP is through polling and

traps. The managing station polls network elements in

its Management Information Base (MIB) at certain times

requesting information. The network element on the

other hand may, in case of an urgent event, send an

interrupt (called a trap) to the managing station. The

station will then respond with an appropriate command

or control message[Black, 1992a].

To prevent the unauthorised control of network

elements, SNMP makes provision for SNMP communities

each with a unique Internet name. Access privileges

to entities and the MIB in a community are called a

community profile and is normally stored as a

configuration file within the system. SNMP further

provides an authentication scheme to ensure the

authenticity of SNMP messages originating in a SNMP

community.

1.4 Why Another Network Management Tool?

While information required to do planning and

organising is readily available with tools known as

network monitors or traffic analysers, problems on the

network are not so readily detected and diagnosed.

This is mainly due to the multi-layer approach of

TCP /IP. High level protocols shield the user from

activities occurring at lower levels. This is

generally a good idea as users do not want to be

13

Network Management in Perspective

burdened with topology, access methods, bandwidth and

reliability of the network. Unfortunately in this

scenario one also effectively shields the user from

problems in the network.

Due to these robust protocols, problems such as bad
connections,

collisions
malfunctioning

and partial

cards causing

failures may

excessive

manifest
themselves not as overt failures but as performance

degradations indistinguishable from each other.

Although traffic analysers mentioned in section 1.4.2

go a long way in helping the network manager to trace

these problems, they are typically only able to

produce traces of packets. Reports normally include

source and destination addresses, protocol type,

sequence numbers, packet length, etc.

Another major factor to be considered when evaluating

the performance in a network, is the fact that

protocols like TCP (Transport Control Protocol) were

developed to work over a variety of networks and

provide a variety of services (see Chapter 2) . The

specifications of such protocols thus leave some of

the details such as window size, how quickly segments

should be sent and whether to try and batch

acknowledgements by dallying,

designer of a particular

protocol [Shepard, 1991].

almost entirely to the

implementation of the

The performance of a connection between two different
implementations of TCP, is the collective result of
the performance of both implementations on their own
and together,

efficient use

lost packets.

different TCP

and can affect data throughput,

of bandwidth and timely recovery from

Although it is rare today to find two

implementations that are unable to

connect and carry data between them, it is not rare to

14

Network Management in Perspective

find TCP connections performing poorly. The cause of

this can be traced to the assumptions made by the

implementor which might not match the network being

used or the assumptions made by the implementor of the

other TCP implementation. Performance problems as

described above, can be pinpointed only by working

through packet traces of the connection and studying

the behaviour of both sides of the connection to

determine the reason for poor performance.

Tools in the fault and performance management areas
can be categorised into two main classes, namely
network monitors that are in essence only packet
counters [Derfler, 1990] and protocol analysers that

concern itself with the contents of packets and the

protocols generating them.

1.4.1 Network monitors

Development of tools in the monitor class was started

in the early 1980's by the Xerox Alto Research Centre

with products such as Ether Watch, that could display

packets in octal as they were received, PeekPup, an

off-line program that could capture packets in a text

file with headers in human-readable form for later

analyses and Etherload that displayed the average load

on an Ethernet as a bar graph [Mogul, 1990]. MIT

followed with an IBM-PC style package, later to be

known as LANwatch, that had the capabilities of

PeekPub and EtherWatch. The commercial product

LANWatch stores the first 300 bytes (including the

packet header) of packets in a trace file as default.

The source code of parser programs is supplied to

enable users to write their own parser programs to

analyse TCP/IP packets in depth.

15

Network Management in Perspective

At Stanford development was done on a generation of

monitors on the original Sun workstation and the

V-System. At least one of these monitors could

graphically display a matrix showing communicating
hosts [Mogul, 1990].

A monitoring tool described by Mogul [Mogul, 1990]

went further in aiding the network manager in the

configuration management area by, among other, giving

a graphical display of traffic on the network. This

was done by depicting all communicating systems as

nodes on a graph with the edges weighted according to

traffic. The development platform was a Sun

workstation and packets were captured

using the NIT (Network Interface Tap)

Microsystems Inc. Operating System.

passively by

of the Sun

During the last few years a host of other network

monitors have been developed, some with added

functions such as datalink fault detection and

management or packet traces with decoded header

information for protocol debugging [Sudama, 1990].

1.4.2 Protocol Analyzers

Nutcracker developed by Exelan Inc in 1984 can be seen

as the first of the protocol analysers

[Spanier, 1988]. Packets were timestamped to enable

performance calculation to be performed on traces.

The fact that it was CP/M based was a major

disadvantage and it was quickly followed by a second

generation product, EXSOOO. Although this product was

DOS based it used only the EXSOOO intelligent network
interface. It produced trace files as output and the
user could write his own parser programs as the file

16

Network Management in Perspective

formats of both statistical and trace files were

published [Spanier, 1988].

A traffic analyser described by Protogeros

[Protogeros, 1990] could be used in real time or off­

line mode, gathering statistics over a longer period.

In both these modes packet headers could be stored for

later examination. This product could further display

statistics per station in a table or in histogram

format, give statistics on all network traffic and

perform Time Domain Reflectometry tests to determine

the location of cable breaks.

Towards the end of 1990, Sniffer a product from

Network General Corp. , had become the most popular

protocol analyser. Although Sniffer is not a software

only solution and must be purchased with a network

interface card, it can decode various protocols,

including TCP /IP. The protocol decoders translate

binary data in packets to English words with the main

focus being on decoding the seven layers of

communication [Derfler, 1990, Miller, 1992]. Packets

can be filtered and captured for later analysis. The

way that Sniffer reports and displays this on screen,

however, is difficult to understand. In the middle of

1993 upgraded Sniffer software was used in Network

General's Internetwork Analyser. Again hardware and

interface came with the software, but the upgrade now

had the ability to analyse bandwidth usage according

to the protocol being used [Jander, 1993].

1.4.3 Graphical Trace Representation

Unfortunately all of the above concentrated primarily

on network traffic and considered the trace files with

decoded packet headers as sufficient. Even Halsall

17

Network Management in Perspective

[Halsall, 1990], while recognising the need to reduce

the level of detail presented to the user, did not

manage to address the problem completely in his

protocol analyser. The tedious task of manually

working through these trace reports, trying to

identify duplicate packets and interpret their

significance or detecting erratic protocol behaviour,

were still left to the network manager.

As an enhancement of the above, Shepard [Shepard,

1991], in his research on the behaviour of the TCP

protocol, proposed a graphic representation of the

above traces to aid network managers in analysing
traces.

The essence of Shepard's work was to analyse packet
traces collected on a MicroVAX-III computer running

4.3BSD UNIX by using an adapted version of the network

interface tap (NIT) found on Sun systems. In order to

analyse the TCP connection, the UNIX tools grep and

awk were used to extract only packets belonging to

that connection from the trace. These packets were

then plotted as a time-sequence plot where the

horizontal axis is indexed by time and the vertical

axis is indexed by sequence number. On this same

plot, Shepard also plotted the window and
acknowledgement numbers as a line.

1.5 Objective of this Thesis

This thesis will concern itself with the fault and

performance management areas of the OSI Systems

Management Model. The development of a network

monitoring tool to supply network managers with the

necessary information and statistics to detect and

diagnose faults on the network, will be described.

18

Network Management in Perspective

Such a monitor will be able to supply statistical

information in real time as well as collect packet

traces for off-line analyses.

As an enhancement of previous work, this thesis will

describe the development of an analyser capable of

analysing packet traces collected with the monitor,

automatically identifying problematic connections and

displaying them graphically. The graphical display is

based on a method proposed by Shepard [Shepard, 1991].

He, however, used the method to research the behaviour

of the TCP protocol suite, and did not implement it as

a network management tool.

1.6 Definition of the Problem

The solution to the problem as described above,

consists of the following basic steps:

• Developing a network monitor capable of operating

in promiscuous mode to monitor all traffic on the

Ethernet.

• Developing a timer for a PC with a high enough

resolution to timestamp packets on arrival

without taking up too much of the PC's resources.

• Developing

graphically
an analysing tool

display selected

to

TCP

analyse

traffic

and

and

thereby enabling network managers to interpret

traffic and trace faults easily.

• Developing a strategy and means to identify

problematic conversations automatically.

19

Network Management in Perspective

1. 7 Development Environment

The management tool described in this thesis was

developed on a 386DX 40Mhz DOS machine using an SMC

Ultra Ethernet Card. Tests were done on the Technikon

OFS campus educational Ethernet network. This network

consists of 170 PC workstations (DOS) in the academic

building, sharing programs and data on a HP 9837 UNIX

fileserver. The fileserver is situated in the computer

centre and LAN Hanager with TCP/IP as protocol is used

to access DOS-applications on the fileserver.

While the workstations are cabled with lOBase-T, the

connection between buildings is fibre optic. These

workstations account for traffic peaks with large

packets, typically when a class of 60 students

simultaneously load an application at the start of a

class.

Apart from the workstations, there are a further 36

terminals in the academic building. All terminals are

connected to the HP server using two terminal servers

with TCP /IP as protocol. This in turn provides a

steady stream of small telnet packets.

The development machine, together with seven other DOS

workstations, using TCP/IP, were situated on a 10Base2

Ethernet segment in the academic building and

the ref ore close to the terminal servers.

the time

mode are

accurate

stamps of

concerned,

when the

packets captured in

it might therefore

sender is one of

As far as

promiscuous

be assumed

the DOS

workstations or a terminal server. Packets sent from

the file server however, will have travelled some

distance and a propagation delay might be expected.

This should, however, have no serious effect as the

20

Network Management in Perspective

propagation delay for a signal to transverse a cable

of a 1000 meters, will only be 5µs [Falaki, 1992].

The whole network is connected to the Internet by a

SLIP-link, using PC-Route as software, situated in the

computer centre.

1.8 Organization of this thesis

Because the primary focus is on TCP/IP, this protocol

suite will be discussed in more detail in Chapter 2.

This is followed by a discussion of packet drivers in

Chapter 3. The development of a PC-based network

monitoring tool that was used to obtain packet traces

for analysis as well as the implementation of a high

resolution timer on the PC will be discussed in

Chapter 4. In Chapter 5 the graphical representation

of a TCP/IP connection, as well as the significance of

certain occurrences, will be discussed. The tool

developed to produce these plots will also be
described.

Chapter 6 is in the form of a technical reference

where procedures used in the tools described in the

previous chapters, are discussed individually. The

final chapter, Chapter 7 concerns itself with the

testing and evaluation of TCPlot.

21

TCP/IP an Overview

Chapter 2

TCP/IP an Overview

2.1 Introduction

The widely used DARPA Internet Protocols are a set of

protocols originally designed to allow various network

topologies to be interconnected into one large

internetwork, the DARPA Internet.

Although this protocol suite includes a selection of

protocols (some of which are described below), TCP

(Transmission Control Protocol) and IP (Internet

Protocol) are the best known and thus the whole family

of protocols became known as TCP/IP. This may

sometimes lead to confusion, for example, NFS (Network

File System) is sometimes described as being TCP/IP

based, yet it does not use TCP. It does use IP, but

instead of TCP it uses UDP (User Datagram Protocol).

TCP/IP is truly an Open System in that the definition

of the protocol suite and many of its implementations

are available at little or no cost [Stevens, 1993].

Where the OSI Reference Model divides the network

protocol in seven layers, TCP/IP is essentially a

four-layer system. The functions of the four layers
are:

The link layer (datalink) normally includes the device

driver and interface card of the computer

[Stevens, 1993]. Its function is to handle all the

details of physically interfacing the hosts.

22

TCP/IP an ()yenicw

The network layer handles the movement of packets

around the network. Al though routing of packet and

routing protocols are used in this layer, IP (Internet

Protocol) is the protocol that is used to transport

TCP packets and is therefore of interest.

The transport layer services the application layer

above and provides a flow of data between two hosts.

The TCP/IP protocol suite has two transport protocols:

TCP (Transmission Control Protocol) which provides a

reliable flow of data between two hosts. It does this

by dividing data in segments of the correct size,

acknowledging received packets and checking with the

help of timers that dispatched data is received and

acknowledged. UDP (User Datagram Protocol) on the

other hand, just sends data from one host to another

providing no guarantee of receipt.

The application layer handles the details of

applications such as Telnet or FTP (File Transfer
Protocol).

2.1.1 Some services of TCP

• File Transfer. The File Transfer Protocol (FTP)

allows any networked computer to get files from

or send files to another computer.

• Remote login. The Network Terminal Protocol

(Telnet), allows users to log into another remote

computer on the network. Using this protocol the

user's computer will send any character typed to

the remote computer and display any character

received (except control characters) on screen,

thus acting as a terminal connected to the remote

computer.

23

TCP/IP an Overview

• Electronic mail. The Simple Mail Transfer

Protocol (SMTP) allows mail messages to be sent

between users on different computers within a

network.

• Network File System (NFS). This protocol allows

a user to access a file system on another

computer with the illusion that the file system

is a local device.

• Terminal servers. Terminals can be connected to

a terminal server instead of directly to a

computer. A terminal server is a device (small

computer) that runs Telnet and can connect any of

these terminals to any computer on the network

using Telnet.

Al though some of the above are not protocols in the

TCP/IP suite, they are implemented using TCP/IP.

2.2 Description of the TCP/IP Protocols

In order to understand the purpose and design of the

monitoring tool developed here, it may be necessary to

give some attention to the protocols involved and the

format of the traffic that they generate.

TCP/IP is a layered set of protocols where one

protocol uses the services of another. Typically an

application such as mail (SMTP) will hand a message to

TCP for deli very. TCP provides for an end-to-end

reliable byte stream network connection over a

datagram network. Any TCP connection actually

provides a pair of byte streams, one in each

direction. Large messages are broken down by TCP into

24

TCP/IP an Overview

smaller segments which are carried between the TCP

modules at the end point of the connection by IP

(Internet Protocol). The TCP modules ensure a

reliable byte stream by arranging for transmission,

flow control, sequencing and acknowledgement of bytes.

Using the acknowledgements as well as timers to detect

lost packets, the TCP modules arrange for

retransmissions to recover.

IP on the other hand is a connectionless protocol that

uses a Datalink protocol such as Ethernet to transfer

datagrams from source to destination.

As mentioned before, TCP splits large messages into

manageable segments at the source and reassembles the

messages at the destination. To be able to do this,

there must be some indication in the TCP segment as to

which message a certain segment belongs and where in

that message it fits. This is done by placing a

header containing the necessary information in front

of the TCP data segment at the source and removing it

at the destination. As the segment is handed down

through the layers, each protocol places its header in

front of the Protocol Data Unit (PDU) of the previous

layer in this way. A datagram on the physical layer

in an Ethernet network would thus have

header, an IP header and a TCP header

used).

25

an Ethernet

(if TCP was

TCP/IP an Overview

2.3 The TCP Segment Header

Figure 2 .1

with the

brackets.

is a layout of the fields in a TCP header

number of bits comprising a field in

Source Port (16) Destination Port

Sequence Number (32)

Acknowledgement Number (32)

Data Reserved u A p R s F
OffS (6) R c s s y I Window

(4) G K H T N N

Checksum (16) Urgent Pointer

Options (Variable) l Padding

Data (Variable)

Figure 2.1 TCP Segment header
[Black (1992b), p 165]

2.3.1 Fields in the Header

2.3.1.1 Port Numbers

(16)

(16)

(16)

An eight bit unit in the header is referred to as an

octet and not as a byte. The reason for this is that

some systems do not work with 8 bit bytes. The first

two octets in the header are used for the source port

number and the next two for the destination port

number. These port numbers are assigned by TCP to keep

track of conversations going on between computers. If

three users at host A have TCP connections to a host

B, TCP on host A might allocate source port numbers

1201,1202 and 1203 to the three connections. At the

26

TCP/IP an Overview

destination (host B) the TCP module will allocate its

own port numbers which will be put in the destination

port number field after opening the connection. In

datagrams returned from host B to A the source and

destination port numbers will be reversed.

2.3.1.2 Sequence Number

Each TCP segment in a datagram has a sequence number

to enable the TCP module at the destination to rebuild

the message. TCP does not number the datagrams but

the octets. The number placed in this field will be

the number of the first byte in the user data field.

If there is no data to be sent in a segment, the

sequence number is set to the first byte not yet sent.

Packets with no data are sent when the sender needs to

convey the fact that there is no data, to the other

end of the connection. The sequence number is also

used during a connection establishment operation. If

a connection request is used between two TCP entities,

the sequence number specifies the initial send

sequence (ISS) to be used for subsequent numbering of

user data.

2.3.1.3 Acknowledgement Number

The acknowledgement number is set to a value which

acknowledges data previously received. The value in

this field is that of the next expected octet from the

transmitter. Since this value is set to the next

expected octet it provides an inclusive

acknowledgement capability in that it acknowledges all

octets up and including this number, minus 1.

27

TCP/IP an Overview

2.3.1.4 Window

The window field is used as a flow control mechanism.

This allows the sender to send more than one datagram

without awaiting the acknowledgement of the previous

one, yet prevents the sender to send so many datagrams

that the receiver can not cope. As the receiver

receives more data the amount in the window decreases

and if it reaches zero the sender must stop sending

until some data has been processed and the window

increases again. The value in this field is set to

indicate how many octets the receiver is willing to

accept. The window is established by adding the value

of the window field to the value in the

acknowledgement field.

2.3.1.5 Data Offset

This field specifies the number of 32-bit aligned

words that comprise the TCP header and is used to

determine where the data begins.

2.3.1.6 Flags

URG: Flag indicates that the urgent pointer is

significant.

ACK: Flag indicates that the acknowledgement field is

significant.

PSH: Flag specifies that the module is to exercise the

push function.

28

TCP/IP an Overview

RST: Flag indicates that the connection is to be

reset.

SYN: Flag indicates that the sequence numbers are to

be synchronised; it is used with the connection­

establishment segment as a flag to indicate that

handshaking operations are to take place.

FIN: Flag indicates that the sender has no more data

to send and is comparable with the end-of­

transmission (EOT) of other protocols.

2.3.1. 7 Checksum

This field contains the result of a checksum operation

done on the whole segment. The purpose of the

checksum is to enable the receiver to verify that the

segment was received without errors.

2.3.1.8 Urgent Pointer

If the URG flag is set this field is used to signify

the octet in which urgent data (also known as out-of­

band data) follows. This allows the receiver to skip

ahead in its processing to a particular octet and can

be handy in the handling of certain

characters.

2.3.1.9 Options

control

This field was conceived to provide for future

enhancements.

29

TCP/IP an ()yerview

2.3.1.10 Padding

The padding field is used to ensure that the header is

filled to an even multiple of 32 bits.

2.4 The Internet Protocol (IP) Header

The layout of the fields found in the IP header is

shown in Figure 2. 2 with the number of bi ts in each

field in brackets.

Version (4) IHead Length(4)

Type of Service (8)

Total Length (16)

Identifier (16)

Flag(3) 1Fragment Offset (13)

Time to Live (8)

Protocol (8)

Header Checksum (16)

Source Address (32)

Destination Address (32)

Options/Padding (Variable)

Data (Variable)

Figure 2.2 IP Header
[Black, 1992b, p 100]

30

TCP/IP an Overview

2.4.1 Fields in the header of an IP datagram

2.4.1.1 Version

The version field identifies the version of IP in use.

This is required as some network nodes may not have

the latest version available. The current version of

IP is 4.

2.4.1.2 Header Length

This field contains a value that indicates the length

of the IP header in 32-bit words. The value of this

field is typically set to 5 because the header without

Quality Of Service (QOS) options is 20 octets long.

2.4.1.3 Type of Service (TOS)

The first 3 bits of this field are used to indicate

the relative importance of this datagram while the

next 3 are used to select delay, throughput and

reliability parameters.

2.4.1.4 Total Length

This field specifies the total length of the datagram

in octets. This value includes the header as well as

data length. The length of the data thus is

calculated by subtracting the header length from total

length.

31

TCP/IP an Overview

2.4.1.5 The Identifier, Flags and Fragmentation offset fields

These three fields are discussed together as they are

used to control datagram fragmentation and assembly.

The need for IP to do fragmentation while TCP has

already segmented large messages into manageable

segments, needs to be explained first. When TCP

establishes a connection, the sizes of the segments

are decided upon by enquiring the maximum acceptable

size from both end-point systems and choosing the

smallest. In the Internet, however, it might happen

that the datagram is routed through a network that

cannot handle datagrams of that size. IP must then

fragment the datagram even further into smaller

fragments. As datagram fragments might not follow the

same route through this network it might leave the

network through a different gateway. The only place

where all the fragments are guaranteed to show up is

at the destination system where IP must reassemble

them to the original datagram. TCP will then

reassemble datagrams to the original message.

The identifier field is used to uniquely identify all

fragments of a datagram and it is used together with

the source address to identify fragments at the

destination. In the flag field, bit position o is

reserved, while bit position 1 is used to signify

whether the datagram can be fragmented (0) or not (1).

If fragmented, bit position 2 is used to mark the last

fragment (set to O).

The fragment offset field is used to indicate the

relative position of the fragment in the original

datagram. The value is initialised too and measured

in units of eight octets.

32

TCP/IP an Overview

2.4.1.6 Time-to-live

To prevent datagrams from staying in the network too

long, this field can be given a maximum value. It

acts as a hop counter and as datagrams pass through

the network each gateway will decrement this value.

When the value reaches zero the datagram is discarded.

2.4.1. 7 Protocol

The protocol field is used to indicate the protocol

above IP. It is quite similar to the type field found

in the Ethernet header (discussed later). The numbers

assigned by the Internet standards group are shown in

Table 2.1.

2.4.1.8 Header Checksum

This checksum is used to detect damage to the IP

header although no checks are made of the user data.

2.4.1.9 Source and Destination Addresses

The source and destination addresses are in the

Internet address format. This is a 32 bit field in

the format: IP Address= Address + Host Address.

The four octets of the address:

10000000 00000011 00001001 00000001

are written as 128. 3. 9 .1 and translates to network

128.3 and host 9.1 (B-Class address).

IP addresses are classified into five classes which

will not be discussed in detail here. It is

33

TCP/IP an Overview

Decimal Kev word Protocol
0 Reserved
l ICMP Internet Control Message Protocol
2 IGMP Internet Group Management Protocol
3 GGP Gateway-to-Gateway Protocol
4 Unassigned
5 ST Stream
6 TCP Transmission Control Protocol
7 UCL UCL
8 EGP Exterior Gateway Protocol
9 IGP Interior Gateway Protocol
10 BBN-MON BBN-RCC Monitoring
ll NVP-Il Network Voice Protocol
12 PUP PUP
13 ARGUS ARGUS
14 EMC ON EM CON
15 XNET Cross Network Debugger
16 CHAOS CHAOS
17 UDP User Datagram Protocol
18 MUX Multiplexing
19 DCN-MEAS DCN Measurement Subsystem
20 HMP Host Monitoring Protocol
21 PRM Packet Radio Monitoring
22 XNS-IDP XEROX NS IDP
23 TRUNK-1 Trunk-1
24 TRUNK-2 Trunk-2
25 LEAF-1 Leaf-I
26 LEAF-2 Leaf-2
27 RDP Reliable Data Protocol
28 IRTP Internet Reliable TP
29 ISO-TP4 ISO Transport Class 4
30 NETBLT Bulk Data Transfer
32 MERIT-INP MERIT International Protocol
33 SEP Sequens Exchange

34-60 Unassigned
61 Any host internal Protocol
62 CFTP CFTP
63 Any local network
64 SAT-EXPAK SA TNET and Backroom EXP AK
65 MIT-SUBN MIT Subnet Support
66 RVD MIT Remote Virtual Disk
67 IPPC Internet Plur. Packet Core
68 Any distributed file system
69 SATMON SA TNET Monitoring
70 Unassigned
71 IPCV Packet Core Utility

72-75 Unassigned
76 BRSAT-MON Backroom SA TNET Monitoring
77 Unassigned
78 WB-MON Wideband Monitoring
79 WB-EXPAK Wideband EXP AK

80-254 Unassigned
255 Reserved

Table 2.1 Internet Protocol Numbers [Black, 1992b]

34

TCP/IP an Overview

sufficient to say that classes A, Band Care used for

networks of different sizes. The D class (starts with

1110) is multi cast addresses while the address class

starting with 11111 is reserved for future use.

2.4.1.10 Options

This field is used for options selected by Upper Layer

Protocols (ULP) and includes security, loose or strict

source routing, record routing, stream identification

and timestamping.

2.4.1.11 Padding and Data

The padding field is used to ensure that the header

aligns exactly on a 32-bit word boundary while the

data field contains user data. IP stipulates that no

datagram (data and header) may be longer than 65535

octets.

2.5 The Ethernet header
As mentioned earlier, IP uses the services of a

datalink protocol to transmit datagrams on the

physical medium. One such protocol is Ethernet and as

the monitor was developed for Ethernet, it is

appropriate also to discuss Ethernet here. As with

other protocols, Ethernet adds a header in front of

the POU of IP to form an Ethernet packet. It is the

structure of this header that will be our main

interest in the discussion.

It is worth noting here that Ethernet, as originally

specified, and the IEEE 802.3 standard, as implemented

for TCP/IP (used in the test environment), differ as

will be shown later.

35

TCP/IP an Overview

Ethernet is a CSMA/CD (Carrier Sense Multiple Access

network with Collision Detection) and like other IEEE

802 standards the datalink layer is split into two

sublayers, MAC (Medium Access Control) and LLC

(Logical Link Control) . LLC is independent of a

specific access method while MAC is protocol specific.

This approach gives a 802 network a flexible interface

with upper layer protocols (ULP's) such as IP or the

OSI's connectionless network protocol.

Destination Address (Octets 0-1)

Destination Address (Octets 2-3)

Destination Address (Octets 4-5)

Source Address (Octets 0-1)

Source Address (Octets 2-3)

Source Address (Octets 4-5)

Ether Type

IP Header, TCP Header, Data

Checksum (Octets

Checksum (Octets

Figure 2.3 Ethernet Header
[Van Niekerk, 1991, p25.]

0-1)

2-3)

The fields of the Ethernet header (Figure 2.3) and the

SNAP header of 802.3 networks (Figure 2.4) will not be

discussed in detail, it is however necessary to note

that the source and destination addresses in these

headers are not Internet addresses but Ethernet

addresses.

36

TCP/IP an Overview

Ethernet addresses are six octet addresses permanently

configured into each Ethernet interface. To keep

these addresses unique, each Ethernet interface is

assigned a unique number by its manufacturer from a

range that was assigned to him.

Destination Address (Octets 0-1)

Destination Address (Octets 2-3)

Destination Address (Octets 4-5)

Source Address (Octets 0-1)

Source Address (Octets 2-3)

Source Address (Octets 4-5)

Data Length

DSAP = 170
I

SSAP = 170
I

CONTROL

Protocol ID or Org Code

Ether Type

IP Header TCP Header Data

Checksum (Octets 0-1)

Checksum (Octets 2-3)

Figure 2.4 The 802.3 Sub Network Access Protocol
(SNAP) Header

[Van Niekerk, 1991. p 25]

= 3

Another field worth looking at is Ethertype which

identifies the ULP. The IEEE assigned codes are given

in Table 2.2.

37

TCP/JP an Overview

Due to the separate evolution of Ethernet and TCP/IP,

it became necessary to define an additional RFC

(Request For Comment) to provide guidance on the use

of IP datagrams over Ethernet. The approach

recommended in RFC 1042 (Standard for the transmission

of IP datagrams over IEEE 802 network) [Postel, 1988]

is of interest to us.

In this approach the LLC destination and source

service access points (DSAP and SSAP) must be set to

170. The SNAP control field can be used to identify

the protocol but is usually set to an organisation

code of O.

Ethernet Hex Description
decimal.
512 0200 XEROX PUP
513 0201 PUP Address Translation
11536 0600 XEROX NS IPD
2048 0800 DOD Internet Protocol (IP)
2049 0801 X.75 Internet
2050 0802 NBS Internet
2051 0803 ECMA Internet
2052 0804 Chaosnet
2053 0805 X.25 level 3
2054 0806 Address Resolution Protocol
2055 0807 XNS Compatibility
4049 1000 Berkeley Trailer
21000 5208 BBN Simnet
24577 6001 DEC MOP Dump/Load
24578 6002 DEC MOP Remote Console
24579 6003 DEC DECnet Phase IV
24580 6004 DEC LAT
24582 6005 DEC
24583 6006 DEC
32773 8005 HP Probe
32784 8010 Exel an
32821 8035 Reverse ARP
32824 8038 DEC LANBridge
32823 8098 Apple talk

Table 2.2 EtherType Assignment

[Black, 1992b. p46]

38

(ARP)

TCP/IP an Overview

With this setting the Ethertype field is used to

identify the protocol according to the coding

convention shown in Table 2. 2. (Table 2. 3 is used

for coding the SAP (e.g. 170) for the SNAP

convention).

IEEE binary Internet Decimal Description

00000000 0 Null LSAP
01000000 2 Individual LLC Sublayer

Management
11000000 3 Group LLC sublayer Management
00100000 4 SNA Path Control
01100000 6 DOD Internet Protocol
01110000 14 Proway-LAN
01110010 78 EIA-RS511
01110001 142 Proway-LAN
01010101 170 Subnetwork Access Protocol

(SNAP)
01111111 245 ISO DIS 8473
11111111 255 Global DSAP

Table 2.3 The Link Service Access Point (LSAP)

[Black, 1992b. p45]

2.6 Other Protocols
In monitoring the network and analysing the traffic,

it is possible to come across packets sent by

protocols other than TCP or even IP. Al though all

these protocols and their headers will not be

discussed, it is imperative that the headers of a few

that might be encountered, are discussed.

39

TCP/IP an Overview

2.6.1 User Datagram Protocol (UDP)

Although both UDP and TCP are protocols used to

transfer messages across the network, TCP is a

connection orientated protocol that will split large

messages into smaller segments and ensure that these

segments are received and rebuilt into the original

message at the destination. UDP on the other hand is

a connectionless protocol with no facility to split

messages and providing no guarantee of delivery.

Many applications however just require a short request

to be sent to another machine, expecting only a short

(one datagram) reply. In this case UDP is used as the

complexity of TCP is not required. UDP fits in the

network system much like TCP. A UDP header

(Figure 2.5) is placed in front of the data (e.g. the

request) and the PDU is handed to IP which adds an IP

header. UDP's protocol identifying code is placed in

the IP header instead of TCP's code. The fact that no

guarantee of delivery is given presents no problem,

the application can time out and retransmit its

request if no answer is received within a reasonable

time.

Source Port (16) Dest Port (16)

Length (16) Checksum (16)

Data >>>>

Figure 2.5 UDP Header.

As can be seen from the header, UDP uses port numbers

in conjunction with IP addresses to identify a

conversation, the same as TCP. As UDP does not need a

sequence number, the only other fields are the length

field giving the length of the PDU (including the

header) and the checksum field.

40

TCP/IP an Overview

2.6.2 Internet Control ~lessage Protocol (ICMP)

Another alternative protocol is ICMP which handles

error messages and other messages intended for TCP/IP

software rather than some other program. Typically

messages such as, 'Host unreachable', if you are

trying to connect to a system, is handled by ICMP.

This protocol is also used to get information about

the network and applications. For example, PING uses

ICMP's Echo and Echo reply messages to verify the

presence of hosts on the network.

The header of ICMP is even simpler than that of UDP,

as the messages are interpreted by the network

software itself, there is no need for source and

destination port numbers in the header.

2.6.3 Address Resolution Protocol (ARP)

Al though ARP is not a TCP /IP protocol, it plays a

significant role in an Ethernet network running

TCP /IP. To understand its importance, take another

look at the type of addressing that IP uses. It can

be seen from the IP header that internet addresses are

used as source and destination addresses. The
Ethernet header on the other hand contains Ethernet

addresses. As there is no way to send a packet to a

system without knowing its Ethernet address, there

must be some way of translating IP' s internet

addresses to physical hardware Ethernet addresses.

The Address Resolution Protocol (ARP) is used to take

care of this translation.

41

TCP/IP an Overview

Generally ARP works with mapping tables (ARP Cache) .

In a local area network this table can be used to

resolve an IP address to a physical address. If the

required address is not in the ARP cache, the protocol

sends a broadcast to all systems. This broadcast is

called an ARP request and contains the IP address of

the target. The system that recognises the IP address

as its own will send an ARP reply containing its

physical address to the inquiring system. Upon

receipt of this reply the ARP cache is updated and

future datagrams for that IP address can be sent to

the physical address on Ethernet.

2.6.3.1 Fields in the Header

The fields of the ARP header are shown in Figure 2.6.

Hardware (16)

Protocol (16)

Hardware Address Length (8)

Protocol Address Length (8)

Operation Code (16)

Sender H/W Address (48)

Sender IP Address (32)

Target H/W Address (48)

Target IP Address (32)

Figure 2.6 The ARP Packet for Ethernet

[Van Niekerk, 1991]

Protocol Address Length
octets for the protocol
packet.

Specifies the length
address (e.g. IP) in

in
the

Operation Code Indicates an ARP request (1) or an ARP

reply (2).

42

TCP/JP an Overview

The various address fields in the header are self

explanatory. In a request packet all fields except

for the hardware address of the target are used while

all fields are used in the reply.

2.7 Port Addresses in Perspective

As previously described, TCP port numbers are used in

conjunction with IP addresses to identify a

conversation between two systems. Although TCP

assigns these numbers randomly, certain port numbers

(those between 1 and 255) have special meaning in the

network. The reason for this can be found in the fact

that a host A connecting to a host B must have some

way of informing TCP on host B to what application

program it wants to connect to. This is done by

having certain programs waiting at specified ports

(well-known ports) as specified in 'Assigned Numbers'

(RFC 1010) [Reynolds, 1987] of which a subset is

listed here in Table 2.4.

Echo

Discard

FTP (Data)

FTP (Command)

Telnet

SMTP

7

9

20

21

23

25

Table 2.4 Some of the Well Known TCP Ports

For example, if a file must be transmitted from host A

to host B, an FTP session must be started on host A

specifying host B as target. FTP (File Transfer

43

TCP/IP an Overview

Protocol) will now establish a connection with host B

using B's IP address and a port number of 21 as

destination. As port 21 is the official port number

for the FTP server, a connection will now be

established between the FTP program running on host A

and the FTP server on host B. It is important to note

that the port number used as source port by host A, is

a random number. As nobody is trying to find it, it

is not necessary to use a well-known port number, the

server on the other hand must use a well-known port

number.

If another user

file to host B,

different port

on host A also wants to transmit a

another connection is opened using a

number as source but the same
destination port (21).

The parameters of the connections might be:

Source Destination

IP Address TCP IP Address TCP

Con 1 198.54.58.6 1348 198.54.58.15 21

Con 2 198.54.58.6 1369 198.54.58.15 21

As illustrated above the destination parameters are

identical. Fortunately TCP can distinguish between

conversations if only one of the four parameters

differ and thus no confusion will arise.

Although it's not the intention to describe the

protocols in detail, it is worth noting that when

actually transmitting the file, FTP would open a

second connection with port 20, leaving the first open

as a command connection.

44

Chapter 3

Packet Drivers

Packet Drivers

3.1 Introduction

Ethernet is one of the most common network standards.

For this reason many vendors have developed interface

cards for Ethernet. Unfortunately each vendor

developed a different interface for the application

programs to access their interface cards. Most

developers of software therefore had to make provision

in their software to be able to access a variety of

interface cards. Apart from the inconvenience of

this, application programs had to be updated when a

new interface card appeared on the market.

Another drawback of this approach was that while one

application was using an interface card, the interface

was dedicated to that one application, with the result

that each application had to have its own network

interface. A workstation on an Ethernet backbone

could not use IPX to access a Novell server as well as

TCP/IP. A further problem was that when one

application program terminated, the computer had to be

reconfigured and rebooted in order to load the correct

software before another application, using a different

protocol stack, could access the network interface.

The solution to the above problems was to develop a

way to offer a standard interface to all application

programs. Each network interface card can therefore

have a software driver offering a standard interface

to the application program on the one side, while

45

Packet Drivers

addressing the interface card in its own unique way.

Such a driver could also allow different application

programs to share the same network interface at the

datalink level. Using the network media's standard

type or service access point fields in packets,

packets can be delivered to different applications

(IPX packets to Novell and TCP/IP packets to another

application).

Although Doepnik [1990] lists a host of other

advantages, the biggest advantage of such a driver is

probably the fact that applications could thus become

interface independent. Software developers could

develop their applications to address a standard

driver, leaving it to the vendors of interface cards

to supply drivers for new cards developed.

A packet driver can be described as a TSR program in

memory, ready to react on software interrupts from the

application program or hardware interrupts from the

interface card. Application programs communicate with

packet drivers by causing a software interrupt in the

range of Ox60 - Ox80 (hexadecimal notation) after

placing function numbers to be called and pointers to

data in specific registers. The interface on the

other hand communicates with the driver by causing a

hardware interrupt. As the driver is specific to the

interface card, further communication between

interface and driver is unique for each

interface/driver pair.

It is clear from the above that a packet driver must

be notified via parameters, during load time, as to

which hardware and software interrupts it should react

to. During initialisation of the interface for a

specific application, one of the functions provided by

46

Packet Drivers

the packet driver must be used to inform the packet

driver where to deliver packets for that application.

3.2 Packet Driver Specifications

From the above it is clear that a set of
specifications had to be developed to ensure a

standard interface to all applications. Development

of such a specification was done at FTP Software by

John Romkey [Romkey, 1989]. The specifications

document describes three levels of packet drivers, the

first being the basic packet driver, which provides

minimal functionality but uses very little of the host

resources and is fairly simple to implement. The
second level described is the extended packet driver.

These drivers are a superset of the basic driver,

supporting some of the less commonly used functions of

the network interface, such as multicast and

promiscuous mode. It also allows statistics to be

gathered on the use of the interface card. The third

level provides drivers supporting the high-performance

functions used for performance improvement and tuning.

The specifications deal with the identification of

network interfaces, the initial detecting and

initialisation of packet drivers as well as the
programming interface that drivers present to

application programs.

3.3 Identifying network interfaces

Network interfaces are identified by a triplet of

integers, (class, type, number). The first integer

(class) describes the media that the interface

47

Packet Drivers

supports: DEC/Intel/Xerox, Ethernet, IEEE 802.3

Ethernet, Tokenring, etc.

The second describes the type of the interface. The

type describes a specific instance of an interface

supporting a class of network medium [Romkey, 1989].

For Ethernet the type might be 3Com 3c503, 3Com 3c505,

etc. The last integer is used to distinguish between

two interfaces where a computer has more than one

interface of the same class. The first interface in a

class will have a value of o here, while the type

OxFFFF is a wildcard that matches any interface in the

class. Class and type constants are managed by FTP

Software and the type constants for class 1

(DEC/Intel/Xerox, "Bluebook" and Ethernet), are

shown in Table 3.1.

3.3 Initiating Driver Operations

As described earlier, applications invoke a packet

driver with a software interrupt in the range Ox60 to

Ox80. The packet driver is loaded specifying the

software interrupt to respond to as a parameter, but

the application, however, must determine for itself

which software interrupt to use in order to invoke the

driver. This is done by scanning through the handlers

for interrupt vectors Ox60 to Ox80.

The interrupt in use by the interface card will have

the string ''PKT DVDR'' in the first 12 bytes

immediately following the entry point. Once the

software interrupt has been determined, the functions

described later must be used to initialise the

interface for a certain type only.

48

Packet Drivers

INTERFACE TYPE CODE

3Com 3C500/3C50l 1
3Com 3C505 2
Interlan Ni5010 3
BICC Data Networks 4110 4
BICC Data Networks 4117 5
MICOM-Interlan NP600 6
Ungermann-Bass PC-Nie 8
Univation NC-516 9
TRWPC-2000 10
Interlan Ni5210 11
3Com 3C503 12
3Com 3C523 13
Western Digital WD8003 14
Spider Systems S4 15
Torus Frame Level 16
1 ONET communications 17
Gateway PC-Bus 18
Gateway AT-Bus 19
Gateway MCA-Bus 20
IMC PCNic 21
IMC PCNic II 22
IMC PCNic 8-bit 23
Tigan Communications 24
Micromatic Research 25
Clarkson Multiplexor 26
D-Link 8-Bit 27
D-Link 16-Bit 28
D-Link PS/2 29
Research Machines 8 30
Research Machines 16 31
Research Machines MCA 32
Radix Microsys. 16-Bit 33
Interlan Ni92 l O 34
Interlan Ni6510 35
Vestra LANMASTER 16-Bit 36
Vestra LANMASTER 8-Bit 38

Table 3.1 Interface Types of Media Class 1

[Romkey, 1989, pA.1]

49

Packet Drivers

3.4 Programming Interface

All functions of the programming interface are

accessed via the software interrupt determined as

discussed above. On entry, the register AH contains

the code (Table 3.2) for the desired function.

FUNCTION (+ only extended)

(* only high-performance)

driver_info

access_type

release_type

send_pkt

terminate

get_address

reset - interface

get_parameters *
as_send_pkt *
set_rcv_mode +
get_rcv_mode +
set multicast - list + -
get_multicast_ list +
get_statistics +
set_address +

Table 3.2 Function call numbers

[Romkey, 1989 pB.1]

CONSTANT

1

2

3

4

5

6

7

10

11

20

21

22

23

24

25

Handles referred to in the rest of this chapter, is an

arbitrary integer value associated with each MAC-level

type. It is assigned by the driver during the call to

the function access_type. No guarantee is given that

this is a unique value and applications using two

interfaces might find that the values returned from

the two drivers might be identical.

50

Packet Drivers

The functions described below show the entry

conditions (FTP's specifications of register contents

before the software interrupt is called) , the normal

return and the return after an error has been

encountered. As TCPl.ot requires the basic and some

extended functions, these functions will be described,

using the c-style notation as found ; in the original

specification [Romkey, 1989].

3.4.1 Driver Info

This function is used to get information about the

interface. The version is assumed to be an internal

hardware driver identifier, while the handle (optional

in this case) is obtained with the function

access_type

Entry:

int handle

AH== 1, AL==255

BX (optional)

Error return:

Non-error

carry flag set

error code

Possible errors:

BAD_HANDLE

return:

carry flag clear

version BX

class CH

type DX

number CL

name DS:SI

functionality AL

51

DH

\

Packet Drivers

Where the following type values are possible:

1 > Basic functions

2 > Basic and extended functions

5 > Basic and high-performance

6 > Basic, high-performance and extended

3.4.2 Access_ type

Entry:

int if_class

int if_type

int if_number

char far *type

unsigned typelen

int far (*receiver)

Error return

carry flag set

error code

possible errors:

NO_CLASS

NO_TYPE

NO_NUMBER

BAD_TYPE

NO_SPACE

TYPE_INUSE

Non-error return:

carry flag clear

handle

AH -- 2

AL

BX

DL

DS:SI

ex
ES:DI

DH

AX

This function initiates access to packets of a

specific type. The variable "type is a pointer to a

52

Packet Drivers

packet type specification while typelen is the length

in bytes of the type field. Receiver is a pointer to

a procedure or subroutine that must be called if

packets of the type as specified arrives. If typelen

is set to o, it indicates that the caller wants to

match all packets.

The call to the receiver has the following structure:

(*receiver) (handle, flag, len [,buffer])

int handle BX

int flag AX

unsigned len ex
if AX== 1,

char far *buffer DS:SI

When a packet of the specified type is received, the

receiver calls the application's receive procedure

twice. In the first call AX is set to o, thereby

requesting a pointer to buffer

application to copy the packet to.

space from the

The application

should return a pointer to buffer space in ES:DI (no

interrupt must be called). If the application places

o:o (no buffer space available) in ES:DI, the second

call will not be made and the packet is discarded.

The value in ex is the length of the packet including

the MAC header without the Frame Check Sequence and is

used by the application to allocate enough buffer
space.

On the second call to the receive procedure of the

application, AX is set to 1. This call indicates that

the packet has been copied into the specified buffer

and the application can now process it.

53

Packet Drivers

3.4.3 Release_ type

This function releases a handle and thus ends access

of packets as requested during the access_type call.

Entry:

int release_type

int handle

Error return:

carry flag set

error code

possible errors:

BAD_HANDLE

Non-error return

carry flag clear

3.4.4 Send _pkt

AH==3

BX

DH

The function is used to send length bytes of data

starting at buffer. The application must place the

packet, complete with all headers, in the buffer.

Entry:

int send_pkt

char far *buffer

unsigned length

Error return

carry flag set

error code

Possible errors:

CANT_SEND

Non-error return

carry flag clear

54

AH==4

DS:SI

ex

DH

Packet Drivers

3.4.5 Terminate

Terminate can be used to terminate the driver

associated with a handle and set memory free to DOS.

Entry:

terminate

int handle

Error return:

carry flag set

error code

Possible errors:

BAD_HANDLE

eANT_TERMINATE

Non-error return:

carry flag clear

3.4.6 Get address

Entry:

get_address

int handle

char far *buf

int len

Error return:

carry flag set

error code

possible errors:

BAD_HANDLE

NO_SPAeE

Non-error return:

carry flag clear

length

55

AH==5

BX

DH

AH==6

BX

ES:DI

ex

DH

ex

Packet Drivers

Get_address is used to place the current local network

address of the interface into buf. The buffer, buf,

is len bytes long and the actual length of the address

is returned in ex

3.4. 7 Reset interface

The interface associated with a given handle can be

reset to a known state, aborting transmits in progress

and reinitialising the receiver side, by using

reset_interface. The address of.the interface is set

to the ROM address and the receive mode is returned to

the default mode. If more than one application are

using the driver, a reset should not be allowed by the

driver and a CANT_RESET will be returned.

Entry:

int

Reset

handle

Error_return:

carry flag set

error code

Possible errors:

BAD_HANDLE

CANT_RESET

Non-error return:

carry flag clear.

3.4.8 Set rev mode

AH==7

BX

DH

This function is used to set the receive mode of the

interface associated with a handle. The following are

the possible modes:

56

Mode

Mode

Mode

Mode

Mode

Mode

Packet Drivers

1 > Turn receiver off

2 > Receive only packets sent to this

interface

3 > Mode 2 plus broadcast packets

4 > Mode 3 plus limited multicast packets

5 > Mode 3 plus all multicast packets

6 > All packets (promiscuous mode)

Entry:

int

int

set_rcv_mode

handle

mode

Error_return:

carry flag set

error code

Possible errors:

BAD_HANDLE

BAD_MODE

Non-error return:

carry flag clear.

AH==20

BX

ex

DH

As all interface cards and drivers do not support all

the modes, the application must check for a BAD_MODE

error return after calling the function set_rcv_mode

to ensure correct operation.

3.4.9 Get rev mode - -

Get_rcv_mode returns the current receive mode of the

interface associated with a handle.

57

Entry:

int

Error_return:

get_rcv_mode

handle

carry flag set

error code

Possible errors:

BAD_HANDLE

Non-error return:

carry flag clear.

3.4.10 Get statistics

AH==21

BX

DH

Packet Drivers

A call to this function returns a pointer to the

statistics structure of the interface associated with

the handle.

Entry:

Get_statistics

int handle

Error_return:

carry flag set

error code

Possible errors:

BAD_HANDLE

Non-error return:

carry flag clear.

Char far *stats

AH==24

BX

DH

DS:SI

The statistics structure of the interface consists of

seven 32-bit integers stored in the normal 80xx format

with the following layout.

58

struct statistics {

Unsigned long Packets_in;

Unsigned long
Unsigned long

Unsigned long

Unsigned long

Unsigned long

Packets_out;

Bytes_in;

Bytes_out;

Errors_in;

Errors_out;

Packet Drivers

/*Totals all handles*/

/*Including MAC header*/

/* All handles*/

Unsigned long Packets_lost;/*No buffer,card,etc.*/.};

3.5 Using the programming interface

When using the programming interface the programmer

must be aware of the fact that many networks and

protocol families use a byte ordering that differs

from that of the PC [Romkey, 1989]. This means that

with ethertype values passed to the function

access_type, the byte order must be swapped to · be

passed in the order as required by the network. This

is true for all numerical values in the packet and

care should be taken to swap bytes in such fields to

ensure correct interpretation.

While in the receiver procedure the programmer must

realise that this procedure is executed as an

interrupt and no interrupts may therefore be called

from this procedure. It must further be noted that

most packet drivers will save and restore some

registers., but as the values in registers may change,

the receiver procedure must save and restore the

necessary registers to be on the safe side. Rehmann

[Rehmann, 1993 J, also found that he had to set the

correct data segment for a variable before addressing

that variable in the receiver procedure.

59

The TCPlot Monitor

Chapter 4

The TCPlot Monitor

4.1 Introduction

Any monitoring or analysis of network traffic by a

network monitor, requires a monitoring device capable

of:

• Inspecting or capturing all packets on the network.

• Timestamping each packet with the exact time of

arrival.

Under normal operational conditions a network

interface card will only respond to packets addressed

to that interface while other traffic (except for

broadcasts) is ignored. Most network interface cards,

however, can be programmed to accept all packets on

the network, regardless of destination address. When

programmed like this, the interface card is said to be

operating in promiscuous mode and all packets are then

available to application programs to do monitoring and

analysis. Timestamping packets on the other hand

requires that the monitoring device keeps a clock with

a high enough resolution to differentiate between the

arrival of packets within microseconds of each other.

This chapter will describe the development of a

network monitor with the above capabilities to gather

packet traces for later analysis on a routine basis.

Although this was not the primary goal, some on-line

capabilities and graphic displays were also built in.

This was done because visualisation of LAN traffic

60

The TCPlot Monitor

with the aid of graphics is the most effective way for

the brain to capture the data [Likavec in Dallas,

1991]. The same principle applies when the analyser

described in the next chapter uses graphics to analyse

a TCP conversation.

4.2 Development Issues

4.2.1 Gathering Packets

IEEE 802.3 Ethernet networks operate at 10 MBit/s

(1. 25 Mbytes/s) and packets range in size between 64

and 1518 bytes, excluding the preamble. If allowance

is made for the minimum inter packet gap of

9.6 microseconds, this will account for 14200 minimum

sized or 812 maximum sized packets per second at 100%

network capacity. This can be halved as Ethernet will

saturate at traffic levels of 55% of the capacity

[Sudama, 1990].

Because of the high speed, monitors running in a DOS

environment are restricted in that DOS is not a multi­

user environment and incoming packets can therefore

not be written to disk without running the risk of

losing packets. The reason for this is simply that

during the I/0 time to write one packet to disk,

several more packets might arrive at the interface

card. Although the packets can be buffered at arrival

time, the interface card will ignore packets on the

network if there are no buffers available and will

only accept packets again after a packet has been

processed and a buffer was set free.

packets of a trace must be kept in

written to disk when available memory

61

To avoid this,

memory and only

has been filled.

The TCPlot Monitor

Keeping packets in memory poses yet another problem.

If the complete packets were to be kept in memory, the

memory will be full within a few seconds on a network

with a high load. The alternative is to store only

the first 64 bytes of each packet as all the relevant

information regarding the packet can be found in this

64-byte header. A monitor using this method can

unfortunately not replay a complete conversation, as

that would require it to have the data in the rest of

the packet. On the positive side it poses no security

problem, as no data or passwords can be collected from

the network with such a monitor.

4.2.2 Timestamps

The time-of-day clock of an IBM-compatible Personal

Computer is updated approximately every 55 ms. In a

worst case scenario (small packets and maximum load on

Ethernet), more than 780 packets can arrive in this

period. Even while such a load is not very practical,

the timer resolution might cause problems even at

moderate loads. A normal load of mixed packets on the

network in the test environment provided for 250

packets per second or approximately one packet every

four milliseconds. If the time-of-day clock is used

to times tamp the packets on arrival, at least ten

packets will thus be shown as having arrived at the

same time. To utilise a PC as network monitor,

alternative timing methods had to be found as will be
shown.

4.2.3 On-line Processing

On-line processing must be kept to a minimum to

prevent packet loss similar to that described in

4.2.1. This includes the filtering of packets, moving

of packet data from card to memory, timestamping

62

The TCPlot Monitor

packets, refreshing graphs as well as calculations

regarding traffic.

4.3 Addressing the Issues

The issues as mentioned above had to be addressed

during development of the TCPlot monitor. The fact

that disk I/0 will cause packet loss had to be

accepted, but by being selective about the data stored

in memory, the memory usage could be optimised and the

overheads minimised.

The approaches taken during the development of the

TCPlot monitor will be discussed here and a

description will be given of the functioning of the

monitor.

4.3.1 Memory utilization

As TCP lot was developed mainly with the purpose of

analysing TCP conversations on the Ethernet, it

follows that TCPlot only needs to collect traces of

TCP packets while all other packets can be ignored.

This approach not only reduces the amount of memory

used, but saves time, as not all packet arrivals need

to be attended to and no unnecessary packets are

copied from the interface to memory.

When addressing the interface card directly, as was

done with the original development of TCPlot, the full

benefit of this approach is not realised. The

application program must still inspect each packet's

type field to determine the protocol used and must

therefore accept all packets, even if they are not

copied out to memory.

63

The TCPlot Monitor

Later development of TCPlot improved on this by

implementing the use of a packet driver, which made it

possible to be selective about the packet type it

wants to attend to. When an application initialises a

packet driver, it specifies the type of packets that

should be handed to it. In TCPlot the packet driver

is therefore initialised to operate in promiscuous

mode, receiving all packets from Ethernet, but to hand

only TCP packets to TCPlot and discard all other

packets.

Overheads and memory usage can also be reduced by

reducing the amount of data moved to memory. As all

the information required to analyse TCP conversations

can be found in the packet headers, TCPlot only moves

the first 64 bytes of each TCP packet to memory,

discarding the rest of the data. This not only

reduces the time to move packets from the buffer to

memory, but greatly reduces the memory space required

for each packet.

4.3.1.1 Implementation of the TCPlot Monitor

During the initialisation of the packet driver by

TCPlot, the address of the procedure that must be

called when a packet arrives, is handed to the packet

driver. When a packet of the correct type (in this

case TCP) therefore arrives at the interface, the

packet driver calls the receiver procedure requesting

a buffer to copy the packet to. As there is no way to

specify at this point that only the headers are

required, this buff er is large enough to accept a

maximum size Ethernet packet.

64

The TCPlot Monitor

Once the packet is in the buffer, the packet driver

notifies TCPlot by calling the receiver a second time

with a value of 1 in the AX register. TCPlot now

moves the first 64 bytes of the packet to memory and

set the buffer free for the next packet to arrive.

Packets are stored in memory as a linked list with the

data in an array of 64 bytes.

To ensure that enough memory is available, the amount

of available memory is regularly checked and the

gathering of packets is suspended if the available

memory drops below a preset threshold. When the

threshold is reached, or the monitor suspended by the

user, the trace will be written to a file on disk. If

TCPlot is operating in single trace mode, a file name

for the packet trace will be requested from the user,

while in auto-trace mode TCPlot will assign a unique

sequentially numbered name to the file.

The auto mode of TCPlot was developed to enable the

network manager to get a better picture of the

network. The program must therefore set the memory

free immediately after the trace file has been written

out and start with the gathering of packets for a new
trace.

The filenames assigned to the traces in auto mode, is

such that the network manager, when using the analyser

part of TCPlot, can determine the sequence of the

traces.

4.3.1.2 Filters

During testing it was found that traces taken on a

busy network contained very short portions of

conversations due to memory filling too quickly.

65

The TCPlot Monitor

Although these conversation portions contained enough

packets to point out suspect conversations, it was

thought necessary to develop a way to filter excess

packets out and only collect packets of a specific

conversation, once it has been identified as suspect.

As all other packets can be ignored, traces of longer

duration are made possible by the use of filters.

Apart from the different modes in which the monitor

part of TCPlot can be started, provision has therefore

been made to allow filters to be set from the options

menu. These filters allow the user to enter an IP

number and optionally the port numbers of a single

conversation, that can be used as filter during packet

gathering. When these filters are set, the addresses

of packets in the buffer will be checked and only

those containing the filter IP number (and if set, the

filter port numbers) are moved to memory. Packets not

containing the selected IP number or IP number pair,

will be discarded and not moved to memory. It is

worth noting that while the IP numbers of stations are

known, the port numbers are (apart from a few well

known ports) assigned randomly. The user must.

therefore first analyse a trace of traffic on the

network to determine the port numbers of the

conversation of interest, before port number filters

can be set. This can be done by selecting Select Conv

from the Options menu. Such a selection will initiate

the capture of a short trace to determine the current

active conversations on the net. After analyses of

this trace a selection list containing the active

conversations is presented to the user. Selecting one

of the conversations in the list will set the filters

to collect only packets belonging to that

conversation.

66

The TCPlot Monitor

Another, not so specific, way to collect packets

belonging to a certain conversation, is to select the

two participants in the conversation of interest and

use the IP number of the one least likely to be

participating in another conversation, as filter. A

conversation between a workstation and a fileserver

can therefore effectively be filtered by using the

workstation's IP number as filter

4.3.2 Timers

As mentioned above, the normal time-of-day clock

provided in a PC does not have the resolution to

timestamp arriving packets and an alternative solution

had to be found. The different options that were

investigated will be described here together with

comments on their viability.

4.3.2.1 Interrupts of the Interface Card

The Ethernet Interface Card from !SOLAN that was

originally used in developing this monitor, can be

programmed to cause interrupts not only on receipt and

dispatch of packets, but also on certain given time

periods [BICC, 1986]. The interrupt enable register

of the card's bit setting corresponds to interrupts on

values of 5, 10, 20, 40 and 80 millisecond intervals

respectively. Even though a timer with a 5

millisecond timer was considered marginal in accuracy

as far as timestamps were concerned, this was the

first solution implemented and tested.

The card was programmed to cause interrupts by the

card every 5 milliseconds and the cause of interrupts

67

The TCPlot Monitor

were identified by reading the interrupt status

register to determine actions to be taken. If the

interrupt was a timer interrupt, a counter that rolled

over on 1000 was incremented and a second counter (for

seconds) was updated before the interrupt was cleared.

Although this appeared to work fine under low load,

packets were stamped with the same time at traffic

peaks. It was also felt that the processing of the

extra 200 interrupts per second placed an unnecessary

load on the resources of the computer and thereby

increasing the risk of losing packets. This approach

was therefore abandoned for a more accurate method.

4.3.2.2 Timers of the IBM-compatible PC

The IBM PC family of microcomputers incorporates a

high-resolution timer (the Intel 8254 Programmable

Interval Timer) which provides three independent 16-

bi t counters (timers) counting down in binary coded

decimal (BCD) or binary and each one can be operated

in six modes. These counters are normally used to

govern short-duration functions such as RAM refresh

and speaker-tone generation, and longer-duration

functions such as time-of-day determination [Intel,

1989].

The timer input frequency is 1.19318 MHz and any

frequencies that are integer quotients (up to 1/65536)

of the base frequency can be generated. The minimum

frequency is 18.2065 Hz (corresponding to

54.9 milliseconds) and this time period is known as a

tick. Each tick consists of 65536 timing periods and

Roden refers to these periods as ticklets [Roden,

1992]. To allow longer periods to be timed, the

68

The TCPlot Monitor

divisor of Timer-a is set to a (which is essentially

the same as 65536) and the output is connected to an

interrupt line (IRQa / INT 8). The PC responds to

this interrupt by simulating a 21-bit timer cascaded

from the 16-bit hardware timer. This 21-bit timer

(BIOS clock counter) is large enough to hold values up

to 24 hours. Interrupt lCh is also caused by this

timer and can be used by applications to execute a

routine every 54.9 milliseconds.

Timer-o is normally set to the minimum frequency as

above to allow the PC to spend as little time as

possible simulating the additional timer bi ts of the

BIOS timer. Timer-1 is normally used for OMA memory

refresh operations and should not be interfered with.

It uses a deviser of 18 which results in a frequency

of approximately 66267. 8 refreshes per second. This

is equivalent to a OMA interrupt being generated every

15. 086 microseconds. Timer-2 is most often used to

output frequencies to the speaker port but is also

available for general use [Whyatt, 1987].

The time-of-day functions normally only need

resolution up to the second. Some applications

however, require a higher resolution to which there

are a few approaches. When timing periods smaller

than one tick are required, Timer-a cannot be used but

Timer-2 can be set to the maximum frequency and

programmed to start and stop like a stopwatch.

Theoretically this provides resolution up to one

ticklet although in reality the time it takes to

access the timer gates and latencies in the control

software, degrade the resolution to about three

ticklets [Roden, 1992].

For timing of periods longer than one ticklet, Timer-a

can be set to a higher frequency causing the tick

69

The TCPlot Monitor

count to increase more quickly. Steps must be taken

to keep a separate tick count and the original IRQO

must be simulated at the correct intervals to preserve

the system's tick count. This method, however, has

the drawback that it increases system overhead and an

IRQO frequency to support a millisecond resolution

will seriously impact the systems performance. As

performance degradation could not be allowed in the

monitor this method could not be considered as a

possibility in solving the timestamping problem.

4.3.2.3 High-Resolution Timers

A technique to combine the normal system tick count

with the current state of Timer-0 to supply a timer

with a resolution up to 100 microseconds without

increasing system overhead was described by Jerry

Jongerius [Jongerius, 1991]. An improved approach to

high resolution timing as described by Thomas Roden

[Roden, 1992] was, however, implemented in the

monitor.

Roden's approach which combines Timer-0 readings with

the 8259 Programmable Interrupt Controller (PIC)

values, allows for a resolution of 16 microseconds.

The essence of high-resolution, non-destructive timing

is to combine the ticklet portion of the current time

with a tick count. This is done by reading Timer-0 to

determine the number of ticklets since the last tick

interrupt. This value is then used as the low word of

the result while the low word of the system tick count

is used as the high word of the result.

Normally Timer-o is loaded with a deviser of o

(or 65536) and set to mode 3 which generates a square

wave. In this mode the timer is initially loaded with

70

The TCPlot Monitor

O and the output starts high. The counter counts down

in two's to the value of two, it is then reloaded with

O and the output set low before it starts the

countdown for the second part of the tick. To convert

the current timer state to a ticklet count to use as

above, the countdown must be translated to an up count

while the fact that the count of O represents the

maximum value must be taken into consideration. Since

counting is in two's, the maximum

thus producing values from O to

repeated twice in one tick.

value is halved,

32767 which is

To resolve the ambiguity of the repeated count, the

value of the timer output is polled to determine

whether it is the first or second countdown. If the

value is high, it is the first countdown and the 15th

bit is set producing a ticklet count of Oto 65535.

Although the above produces the desired effect, some

precautions must be taken to ensure accuracy. The

first of these is to disable interrupts while polling

the timer to avoid inconsistencies between tick and

ticklet count. If the ticklet count was close to

maximum before interrupts were disabled, it could

overflow before reading Timer-o and would then be

combined with a tick count of one too low (causing an

error of 65536 ticklets). To prevent this error from

slipping through, the Programmable Interrupt

Controller is interrogated just after reading Timer-0

to see if there is an IRQO pending. If so, the tick

count may be too low, but as it is also possible that

the timer was read just before overflow (on 65535), it

is not safe to add to the tick count. The best

solution is to assume that the timer was about to

overflow and combine it with the tick count [Roden,

1992]. The counter can also be read at a null count

71

The TCPlot Monitor

4.4 The TCPlot Monitor modes

The different operating modes of the TCP lot monitor
can be selected from the Capture Traffic Menu after
the monitor (Capture Traffic) has been selected from
the Main Menu (Shown in Chapter 6 as Figure 6.4 and
Figure 6.5).

4.4.1 Hash mode

In this mode a hash is displayed with the arrival of

each packet. No on-line processing is required and no

packets are moved to memory in this mode. This mode

was implemented to give an indication of traffic on

the network while collecting statistics, it was also

found to be the easiest way to do a quick check to

determine whether the packet driver

configured correctly and that the
and card were

monitor is
functioning.

in this mode.
Figure 4 .1 shows the monitor in action

4.4.2 Packet Display mode

In this mode the on-line processing done is also

negligible. Addresses and packet sizes are read from

the buffer and displayed on screen with an indication

of the direction a packet was sent. This mode is

handy when the network is not very busy and the

network manager wants to ensure that the conversation

he is interested in, is taking place. For this reason

the filters set for packet trace collection, will also

be effective in this mode. Figure 4.2 shows the
display in this mode.

74

The TCPlot Monitor

Figure 4.1 The Hash display of the TCPlot monitor.

In this display, the first address shown is the

Ethernet address of the sender followed by the

Ethernet address of the receiver. This is followed by

the IP address of the sender and the IP address of the

receiver. The time column, shows the timestamp of the

packet as minutes, seconds and microseconds while the

last figure is the data length of the IP packet.

4.4.3 Graphics Display mode

Although no packets are moved to memory in this mode,

a fair amount of on-line processing is done. This

mode shows two bar graphs depicting the number of

packets as well as the number of bytes received for

the previous ten second period. A new bar is added to

each graph approximately every second using the timer

interrupt (INT $1C) of the PC. To save processing

time in updating the screen display, both graphs are

displayed with a vertical baseline. This way, by

75

The TCPlot Monitor

scrolling the screen one line, only the newest bar

needs to be drawn, where if the normal horizontal

baseline were used, TCPlot would have had to refresh

the whole graph.

Due to the quick fluctuation of traffic levels on the

Ethernet, provision had to be made to scale the graphs

according to the traffic level. This requires some

on-line processing and forces TCPlot to redraw the

whole graph every time the scale is changed. The

maximum value of the largest bar currently on screen

is shown at the top of the graph to indicate scale.

To give a clearer picture of traffic levels, the LAN

activity during the time period of the largest bar, is

displayed directly below the maximum bytes received.

Figure 4.2 The Packet display mode of the TCPlot
monitor

The LAN activity, as reported here, is determined by

the bytes received per second together with packet

overheads as a percentage of the Ethernet maximum

(1250000 bytes per second). overheads per packet can

76

The TCPlot Monitor

be calculated from the values in Table 4.2. The bytes

received as reported by TCPlot, include the MAC

header. It is therefore only neccesary to add 160

bytes as overheads to each packet received (preamble

of 64 bytes and seperation delay of 96 bytes).

The number of bytes and packets received in the second

immediately preceding the drawing of the newest bar,

is displayed at the bottom of each graph. The bottom

part of the screen in this mode is used to display

packets in a similar fashion as packet display mode as

shown in Figure 4.3. If the number of packets

received during a specific one second period is too

small to show on the current scale, an arrow point is

displayed instead of the bar. A dot instead of a bar

on the other hand, will indicate that no packets were

received during that period.

Minimum packet Maximum

size size

Preamble 64 Bytes 64

Address fiels and 144 Bytes 144

overheads

Data frame 46 Bytes 1500

Separation delay 96 Bytes 96

Table 4.2 Bytes of Ethernet bandwidth used per
packet. Adapted from Nemzow
[Nemzow, 1988, p228].

packet

Bytes

Bytes

Bytes

Bytes

With the three preceding modes, no packets were kept

in memory and the operation time is therefore not

limited. The fact that the timer will roll over in

approximately one hour is of little or no relevance

here.

77

• •• Graph Ma::L
As%of LAN

The TCPlot Monitor

$9J.Jrce~••••• ••••• Oest !th:•••••< ~·IPL ••••·oast u•••••••·•••• !f'in.••·•••••••••• Len····· ·
0$1.J009:415'l&lQ > OOQOC029DS.46 1!.18.54,58. z~ > i98.St~B6.io7. '46:iOt8J2920 1.073 •
()QuoeyQ~ar " oaaoo~u1~l!l •. 1!):a .. s,.sa~1:2~••> .. 1~a.is4~!5a>••·•i~ 4t:ioiaa~s,a•6-0••·•• ·

·· 11sc,ou,4sttt1n ;,,• oooocgooEtt2tBa~s~;ss~.•z~•·~··• i~s;54.stL•U~ ,td.ti::SJ!liis.Go•···
080®~481Bl0 •> OOOOCG29D54~1~~S4~SlL·2:;· > .198;;54~53'1.0'i'. 46:10:'.B439441MS••
IJ800094S1BJ!F > OOOCIC0'29DS46 i9.S,5h58t 2~ i • i!}.sL54~!S}lll'i'. 46~10!8t1l'l8 60

.• 0130009'431BJO > OMOBC9BBJEti i~II .. .S4-W$S, 1:l > l~El.,54,!:Ht:.l.6lh 4~fHh~t845 JJl'7i

Figure 4.3 The Graphics display mode of the TCPlot
monitor.

4.4.4 Store mode

Store mode is the mode for collecting packet traces.

Packets must therefore be filtered and moved to
memory. Although on-line processing is kept to a

minimum in this mode, ensuring maximum time for the

receiving and processing of packets, a hash is

displayed for each packet accepted as with hash mode.

As memory may fill up in this mode, available memory

is checked with each packet saved and in contrast with

previous modes, the limit on the duration of this

trace is a function of the traffic on the Ethernet and
filters set.

78

The TCPlot Monitor

4.4.5 Statistics

TCPlot makes use of the packet driver to report

statistics. Most of the more sophisticated packet

drivers gather statistics on packets arriving at the

interface from the time the packet driver is

initialised. These statistics include:

• Number of packets received and sent.

• Bytes received and sent.

• Faulty packets received or faulty transmission.

• Packets lost due to buffers not available.

In TCPlot statistics can be displayed at any given

time by selecting the function from the menu. It

should be noted though that statistics reported here

are for all packets, not only for the type selected,

and that filters as selected have no influence here.

Because the statistics are gathered by the packet

driver, collection starts as soon as the packet driver

has been loaded, irrespective of whether TCPlot is
running or not.

The monitor, when in store mode, will cause packets to

be lost due to the time the disk I/0 takes. Care must

therefore be taken when using the figures reported.

In testing the effectiveness of the monitor, TCP lot

must therefore be loaded directly after the packet

driver, and operated in hash or packet display mode.

If, however, effectiveness must be tested while in

store mode, the network connection must be removed

before ending the trace collection. This will prevent

packet loss and make the reported figures usable.

79

The TCPiot Analyser

Chapter 5

The TCPiot Analyzer

5.1 Aims of Trace Analysis

As discussed in previous chapters, many factors can

cause performance deterioration in the network.

Although some of the reasons for such deterioration

could be detected using a network monitor such as

described in Chapter 4, only a meticulous study of all

the packets passed between two hosts during a

conversation, can reveal reasons for poor performance

that is transparent to the user. Keeping in mind the

amount of packets that a network can carry every

second, this is no mean task. Such a meticulous study

can involve many hours of work, working through packet

traces containing many thousands of packets. Trying

to interpret their meaning and relation to each other,

is even worse. To alleviate the burden on network

managers there is a need for a tool to assist them in

this type of trace analysis.

Any such analysing tool should therefore be able to:

• Scan the packet trace for symptoms of problems.

• Separate the packets belonging to a certain

conversation from the rest of the trace.

• Present a conversation in such a way that the

network manager can identify suspicious situations

and determine the cause thereof.

80

The TCPlot Analyser

5.2 Detecting problematic conversations

To detect a certain condition, that condition must be

defined. As almost all reasons for transparent

performance deterioration cause duplicate packets to

be sent, any excess amount of duplicate packets could

be the symptom of a problematic conversation. If the

percentage duplicate packets in each conversation are

therefore reported, the network manager can identify

conversations that need closer scrutiny.

A condition that might cause performance deterioration

without initially causing duplicate packets, is the

Silly Window Syndrome (sws) described by David Clark

[Clark, 1982]. The SWS is a degeneration in the

throughput which develops over time, during long data

transfers. The acknowledgement of a small TCP segment

causes another segment of the same size to be sent

until some abnormality, or the end of data, breaks the

pattern. During large file transfers the SWS can clog

the network with many small segments and an equal

amount of acknowledgements. Fortunately from the

viewpoint of detection, the clogging of the network

eventually causes lost segments and therefore massive

retransmissions (duplicate packets) [Clark, 1982].

Certain problematic conditions, however, do not cause

duplicate packets. One such case would be where the

receiver offers a zero window after all packets have

been acknowledged. Although this is a perfectly valid

action on the part of the receiver when used as flow

control, this condition can sometimes arise from a

faulty TCP implementation [Shepard, 1991].

Conversations where such conditions exist, will not be

detected merely by inspecting conversations for

duplicates. If a TCP implementation is faulty,

81

The TCPlot Analyser

however, the subsequent plotting of any of its

conversations with TCPlot, will show this fault

clearly.

From the above it would appear that detecting

problematic conversations in most cases boils down to

detecting duplicate packets. We must therefore define

a duplicate packet to enable an analyser to detect it.

To expect the analyser to keep a copy of all packets

in memory and compare each packet with all previous

packets, seems like a waste of resources. An easier

way might be to keep track of the sequence number and

acknowledgement number of the last packet from each

side of the conversation. Any packet in the same

direction with the same or lower sequence number or

the same sequence number and acknowledging the same

packet, may be considered a duplicate for our

purposes. It is true that some packets, like control

packets to update a window, may satisfy the above

criteria without being duplicates. The purpose,

however, is not to get an exact duplicate count but

rather to pin-point problematic conversations (which

incidentally may include conversations where there are

excessive window updates without data being sent).

5.2.1 Detecting duplicates

Having established the above criteria to detect

duplicate packets and therefore problematic

conversations, the implementation in TCPlot can now be

described.

In TCPlot the trace file is processed sequentially and

a linked list is constructed containing a record for

each conversation found in the trace. Records of the

82

The TCPlot Analyser

trace (consisting of the full packet header) are read

and the fields relevant to TCP are extracted. These

values are placed in a conversation record in the

linked list of conversations.

A linked list as mentioned above must not only contain

information of individual packets, but of total

conversations. In TCPlot the following were

therefore included in this conversation record:

• The source and destination IP addresses.

• The source and destination port numbers.

• A packet counter to determine the total amount of

packets in the conversation enabling us to calculate

the percentage duplicate packets.

• A counter to keep track of duplicates.

• Previous sequence and acknowledgement numbers from

the side of the conversation with the lowest port

number.

• Previous sequence and acknowledgement numbers from

the side of the conversation with the highest port

number.

For each packet record read from file, the linked list

of conversations is scanned to determine if the packet

belongs to a conversation already in the list. If

such a record is found, the packet counter field of

that conversation's record is incremented and the

packet checked to see whether it is a duplicate

packet. This is done by di vi ding the conversation

into two one directional conversations based on their

IP numbers. Each packet is tested against the

criteria for duplicates as discussed above and if it

satisfies the criteria, the duplicate counter field of

the conversation's record is incremented. As a result

of the fact that only one counter is kept for

83

The TCPlot Analyser

duplicates, duplicate packets in any direction will

cause the counter to be incremented.

If the packet does not belong to a conversation

already in the list, a new conversation record is

added to the list. Once the end of the trace file is

reached, all the conversations can be reported by

reporting each record in the conversation list

together with number of packets and the percentage

duplicates found for each conversation. The number of

packets is reported here to show the significance of

the duplicate percentage (50 percent of two packets

will not carry the same weight as 50 percent of a

hundred packets).

5.3 Displaying conversations graphically

When faulty TCP conversations have been detected, the

problem must be analysed. In addition to the normal

packet trace, TCPlot endeavours to assist the network

manager with this tedious task by plotting the suspect

conversation on a graph. The theory behind such

graphical presentation will be discussed before its

implementation by TCPlot.

5.3.1 Time-sequence plot

In his research on the behaviour of the TCP protocol,

Shepard [Shepard, 1991] proposed a way to plot TCP .

conversations on a time-sequence plot. This type of

plot makes any malfunctioning of the TCP protocol easy

to spot. Using the same type of time-sequence plot, a

conversation between two hosts can be analysed down to

packet level to determine the cause of any problems.

Considering the number of packets that can be

84

The TCPlot Analyser

transmitted on Ethernet every second, it is clear that

even a trace of a relative short period, can contain

several thousands of packets. To analyse a

conversation of approximately one hundred packets

exchanged during that period, requires the network

manager to work through the whole trace. The fact

that sequence numbers of TCP packets are based on the

octets sent so far, makes it even more confusing.

Graphic representation simplifies this by showing only

the relevant packet and acknowledgement in such a way

that a holistic picture of the conversation can be
formed.

The following will illustrate how this method is used

to construct a graphical representation from the

packet trace in Table 5 .1. In this table the TO

column identifies the receiving host while the DIR

column can be interpreted as direction of traffic with

Host A to the left and Host B to the right. In a real

packet trace, this information must be derived from

IP-addresses and port numbers.

Shepard's method [Shepard, 1991] depicts only one

directional traffic, a full conversation like that

shown in Table 5.1 , must therefore be separated into

two conversations, that of Host A to Host Band that

of Host B to Host A. Only the first of these two will

be demonstrated. Table 5 . 2 shows the conversation

with all data not rel avant to the conversation half

from Host A to Host B removed.

In Figure 5.1 the packets sent by the sender are

plotted by placing a vertical line segment in the

time-sequence space starting at the sequence number

contained in the sequence number field of the packet

and extending upwards for the length of the packet.

Shepard ended these vertical line segments with

85

The TCPlot Analyser

inwards facing arrows, thus making it possible to

identify zero length packets as two arrows facing each

other (on the graph this looks like a character X).

Times tamp TO Dir Seq Ack Win Length

23:000 HOST A < 260 98 20 6

23:178 HOST B > 98 266 50 10

23:282 HOST A < 266 108 20 20

23:325 HOST B > 108 286 50 10

23:350 HOST B > 118 286 50 10

23:400 HOST A < 286 118 20 20

23:425 HOST B > 128 316 50 10

23:508 HOST A < 316 118 20 20

23:611 HOST B > 118 336 50 10

23:682 HOST A < 336 138 20 20

23:755 HOST B > 138 356 50 10

23:828 HOST A < 356 148 20 50

Table 5.1 A simplified example showing part
of a conversation between two TCP
hosts.

The acknowledgements are plotted using the values as

contained in the acknowledgement field of the packets

returned from the receiver (Host B) to the sender

(Host A) and the timestamp of the packet. By

connecting these points an acknowledgement line is

formed (Figure 5.2). The window line (topmost line on

the plot) is plotted by computing an end-of-window

value (as offered by the receiver) by adding the value

in the window field to the value in the

acknowledgement field. To make inbound packets,

containing the same acknowledgement or window values

as previously received packets, visible, a down tick

is placed on the acknowledgement line and an up tick

on the window line corresponding to the timestamp of

the packet.

86

The TCPlot Analyser

Times tamp TO Dir Seq Ack Win Length

23:000 HOST A < - 98 20 -
23:178 HOST B > 98 - - 10

23:282 HOST A < - 108 20 -
23:325 HOST B > 108 - - 10

23:350 HOST B > 118 - - 10

23:400 HOST A < - 118 20 -
23:425 HOST B > 128 - - 10

23:508 HOST A < - 118 20 -
23:611 HOST B > 118 - - 10

23:682 HOST A < - 138 20 -
23:755 HOST B > 138 - - 10

23:828 HOST A < - 148 20 -

Table 5. 2 TCP-trace as shown in table 5. 1
with all data not relevant to the
conversation of Host A (sender of
data) to Host B (receiver of
data), removed.

160

150 r 140

lx 130 x 120

110 x 100

23: .c 2 :30 23: 0 2 :70 23: 0

Figure 5.1 Time sequence plot showing six packets from

HOST A to HOST B

87

The TCPlot Analyser

Win
160

150 ,~ck
140

130

120

110

100

23: 0 23: 0 :70 23: 0

Figure 5.2 Time sequence plot showing the window and
acknowledgement lines for the packets in
Table 5.2

The space between these two lines can be thought of as

the window and whenever these lines touch, the window

is effectively closed and the sender must refrain from

sending new data before a window is offered again.

Under normal circumstances this will happen when

receipt of a previously sent packet (and therefore

octets contained in it) is acknowledged.

If both the packets as well as the window are plotted

together, a complete time-sequence plot (Figure 5. 3)

is the result. Note that all the important

information regarding the packets (Sequence number,

acknowledgement number, length, window and arrival

time) can readily be extracted from the plot. The

plot shows the duplicate packet sent at 23: 508 at

first glance, while even in this simple example, this

is not so readily seen in the trace itself. Of even

more importance is that the pattern of re-transmitted

88

The TCPlot Analyser

or duplicate packets can now be seen clearly. Even

more difficult to pick up in the trace will be packets

outside the window or a prolonged closed window, yet

in a plot as described above these situations will

stand out immediately.

Win
160

150
Ack

140

130

120

110

100

23: 0 2 :30 23: 0 2 :70 23: 0

Figure 5. 3 Complete time sequence plot showing six
packets from HOST A to HOST B within the
window

5.3.2 Implementation by TCPlot

With the development of TCPlot, the focus was on

alleviating the burden on network managers when

analysing trace files. For this reason the process of

analysing traces and plotting conversations, was

simplified to a great extent.

The first step in the analysis of traces by TCPlot is

to show the traces collected by the monitor part of

TCPlot to the user in the form of a selection list,

89

The TCPlot Analyser

enabling him to select the file of interest from the

list with the press of a key. The next step is to

analyse the selected trace file, isolating the

different conversations that are fully or partially

represented in the trace file and for each

conversation detecting the number of duplicate
packets.

This information is then displayed in a selection

list, showing the number and percentage of duplicate

packets next to each conversation. The user can now,

on the strength of these duplicate reports, decide a

conversation is suspect and can with the press of a

key plot the selected conversation on a time-sequence

plot. This time-sequence plot, while using the

principles of the method described under 5.3.1,

differs from that method in that packet-lines are not

terminated with arrow heads, nor is any indication

given for zero length packets. The reason for this

deviation from Shepard's method [Shepard, 1991] can be

found in the scale used. Where packets that arrived

close together were plotted on small scale, the arrow

heads tended to produce a confusing plot.

5.3.2.1 Analysing the trace file

When a trace file is selected for analysis, the file

is scanned for conversations and a linked list

containing one record for each conversation is built

in memory as discussed under 5.2.1. The logic of this

process is given in Figure 6 .15 where the procedure

handling this process is discussed.

Once this linked list has been created, it is

processed and a selection list is created containing

an entry for each conversation in the file.

90

The TCPlot Analyser

To allow the user to make printouts for record

purposes, TCPlot makes provision for printing a list

of conversations or full traces from a specified trace

file.

5.3.2.2 Plotting the conversation

When a conversation is selected from the list, TCPlot

breaks the display string for the conversation down

into the trace file name and the two port numbers of

the conversation. These are then used when calling

the procedure PrintGraph (see 6. 3. 2 .13) to plot the

conversation.

Before any plotting can be done, the conversation of

interest must be isolated. This is done by reading

through the trace file sequentially, using the port

numbers received from the selection as filter to

process all the packets belonging to the conversation.

Although the time-sequence plot will be for traffic in

one direction only, all packets, from A to Bas well

as B to A, are processed at this point. This is

because a time-sequence plot, as described above, does

not only need information about packets sent by the

source host. To be able to plot the acknowledgement

and window lines, it also needs information contained

in the packets returning from the destination host.

The first implementation of TCPlot attempted to plot

the time-sequence plot directly from the trace file.

It was soon realised, however, that rescaling and

scrolling through the plot requires the conversation

to be plotted numerous times with different scales.

Sequential processing proved too slow for this. The

answer lay in the construction of yet another linked

91

The TCPlot Analyser

list. This one containing information regarding all

the packets of the conversation to be plotted. The

records of this second linked list contains apart from

the information in the packet header, also the

timestamp given by TCPlot when the packet arrived.

Each record in the list contains the following:

• IP numbers

• Port numbers

• Sequence number

• Acknowledgement number

• Offered window size

• Data length of packet

• Arrival timestamp

As certain calculations must be done with the 32-bit

sequence and acknowledgement numbers, the most

significant bit of these numbers must be stripped to

allow the usage of the Longint data type of Pascal

(failing to do so will provide false negative

numbers). The probability of a conversation's

sequence number going from 31 to 32 significant bi ts

during the trace is low and it was considered safe to

strip bit 32 in this case.

The time-sequence plot is plotted by processing the

list in memory. The list is transversed and each

record plotted as it is processed. Depending whether

the record holds information about a packet from the

source or the destination, either both the window and

acknowledgement lines will be updated or a packet will

be plotted.

The first record in the list serves as a baseline for

the plot. If this record contains packet data from

92

The TCPlot Analyser

maximum sized packets or a mixture of the two, it is

clear that one scale cannot be used in all plots. To

plot packets with a size difference of more than 1400

bytes on a screen with a resolution of 480, while

ensuring that all packets stay visible, is not

possible. An even bigger problem is to show a window

of 4096 bytes on the same plot as telnet packets in

such a way that the plot shows the packets and

acknowledgement lines in enough detail to be of value.

While window size can be problematic in some cases, it

is clear that a window so large as described above,

would hardly pose a problem. For this reason no

effort was made during the development of TCPlot to

show the window line out of position just to make it

visible. Plots of telnet conversations will therefore

show no window line at normal scale, it will, however

show up if the scale is made small enough.

As far as the scaling of plots in general is

concerned, the approach taken by TCPlot is to try and

determine the type of conversation and by using set

parameters for conversation types, do some initial

scaling. The user can then adjust the scale to

display a proper plot or step through the trace by

using the arrows and function keys.

Detecting the most likely scale for a conversation is

done in two ways. The first test is to determine

whether the source port is 23. This would mean a

telnet session with known small packets and the scale

can be adjusted to show an initial plot of some value.

If the source port is not 23, then an average packet

size (determined while creating the linked list) is

used to estimate the best scale. Unfortunately this

approach is not so effective as a conversation may

very well contain 200 small packets and only one

94

The TCPlot Analyser

larger than a 1000 bytes. This may give an average of

500 bytes, which will not be representative of any of

the packets in the conversation. The user will

therefore be responsible for the final ajustments to

the scale as described below.

Provision has been made to allow the user to adjust

the X-scale by using the F5 and Shift-F5 keys.

Likewise the F6 and Shift-F6 keys are used to change

the Y-scale. Whenever one of these keys is pressed

with the plot on screen, the screen is cleared. The

linked list is processed again and a new plot is drawn

on screen using the new scale.

To allow the user to move between the beginning and

the end of the trace, the left and right arrows will

scroll the plot left or right. This works fine for

relative

increase

short traces, but as

with time (scrolling

the sequence numbers

the plot), the plot

tends to disappear off the top of the screen and the

scale must be adjusted to see it. Because adjustment

of the scale will strip detail from the plot, this is

not always the answer. TCPlot therefore also provides

a function key (F4) that will cause the plot to be

drawn of packets later in the trace ignoring those at

the beginning. The trace of later packets will now

start with a base of the first packet plotted,

eliminating the problem as described above. This

technique is especially handy in cases where one or

two packets were received at the beginning of the

trace and the rest towards the end, leaving a long

inactive period between the initial and later packets.

The time-sequence plot is discussed in more detail

under 7.3.3 (p 147).

95

The TCPlot Analyser

5.3.2.4 Selecting conversation direction

As mentioned before, a time-sequence plot shows only

the one half of a conversation. In the way the

plotting of a conversation was implemented in TCPlot,

the initial plot will be that of traffic going from

the host whose port number is first in the entry of

the selection list. The duplicate packets reported in

the selection list are, however, from both halves of

the conversation.

It might therefore be that when selecting a

conversation showing excessive duplicates, the initial

plot shows no problems. In such a case the problem is

with the other half of the conversation and a time­

sequence of that must be plotted. To plot the second

half of the conversation, a Reverse Direction function

has been implemented in TCPlot. The F2 function key

toggles TCPlot to plot the normal or reverse direction

conversation.

5.3.2.5 Filters

The filters set from the options menu of TCPlot is

meant to filter packets when collecting packets for a

trace file. In the analyser part of TCPlot, filter

settings have no relevance when plotting a

conversation. The filter setting does however

influence the printing of a complete trace file, thus

making it possible for the user to print a trace

containing only the packets in a certain conversation.

This is handy if a comparison is to be made between a

trace and the time-sequence plot on screen.

96

The TCPlot Analyser

5.3.2.6 Getting help

The standard Fl function key will provide a help

screen in TCPlot. This help function is context

sensitive to a certain extent. It will display

general help when in any part of the program, but when

in the graphic screen of a time-sequence plot, a
screen explaining the use of the function keys in the

plot, will be displayed.

97

The TCPlot Program

Chapter 6

The TCPlot Program

6.1 Introduction

The purpose of this chapter is twofold. The structure

of TCPlot will firstly be discussed to give the reader

insight into the program. This discussion will be

aided by a discussion of the different menus and

selections presented by the program.

In the second part of the chapter, the technical

detail of TCPlot will be discussed in the form of a

technical reference. This discussion will show the

different components of TCPlot and endeavour to

explain the functions and interface of each procedure.

Where the logic of a procedure requires it, algorithms

will be provided

6.2 Structure

The structure of TCPlot can be described best with a

structure chart. The chart in Figure 6 .1 shows how

the main TCPlot functions interact.

6.2.1 User Interface

When TCPlot is started, it tests for the presence of a

packet driver. If no packet driver is found in memory

the user is notified (Figure 6.2) and the program is

aborted.

98

The TCP!ot Program

I 1 . 0 TCPlot Main Module l

I
1.1 Monitor

1.1.1
Capture Data

J
1.1.1.1
Store

1.1.1.5
Statistics

1.1.2
Set Options

1.1.2.1
n> onlv

1.1.1.2
Hash

1.1.2.2
TP+Port

1.1.1.3
!Graphics

Figure 6.1 The TCPlot program

If, however, a packet driver

checks the driver and interface

capabilities thereof to the user

99

1.2 Analyser

1.2.1 List
Tracefiles

1.1.2.4
~uto

1.2.2 List
C:::onversations

1.2.3 Plot
Conversation

is detected, TCPlot

card and reports the

(Figure 6.3)

The TCPlot Program

Figure 6.2 Warning to user if no packet driver
present

6.2.1.1 The Main menu

Once the user accepts the initialization message, the

main menu of TCPlot (Figure 6.4) is displayed. From

here the user can select the capture traffic

(monitor), analyser or options menus, or TCPlot can be

started in continuous capturing mode by selecting the

auto mode.

6.2.1.2 The Capture traffic menu

The capture traffic menu (Figure 6.5) contains a

selection of all the functions of the monitor part of

TCPlot as described in Chapter 4. To return to the

main menu from any sub-menu, the user must press the

escape key.

100

Figure 6.3

Figure 6.4

The capabilities of the
reported to the user on

The TCPlot Main menu

101

The TCPlot Program

interface
start-up.

card as

The TCPlot Program

6.2.1.3 The Analyser menu

When the Analyser menu (Figure 6.6) is selected from

the main menu, the user is presented with three

choices. The first, Print Trace will display a list

of trace files and on selection of a file it will

print a list (trace) of all the packets in the

selected trace file. This trace contains the source

and destination addresses and port numbers as well as

sequence

As this

printer

printing

and acknowledgement numbers of

report

(or

is wider than 80 columns,

condensed print) must be

a trace file.

each packet.

a 132-column

used when

jdlrtfll~I~
,J .Hast .lh.splag ·,11::f:, ·,t,,~,fil,,tt,t,tt~;tJJ ,~;,,(,,f,~,:;,;, .,,t:;:

Figure 6.5 The Capture traffic menu

The second choice,

list of trace files

Print C-List, will again display a

and on selection of a file it will

print a list of all the conversations contained in the

selected trace file. This printout will also show the

number of packets as well as the percentage of

duplicates in each conversation. Examples of both the

trace and the conversation list are shown in

Chapter 7.

102

The TCPlot Program

If Select & Display is selected, a selection list of

all the in

displayed 6.7).

trace files

(Figure

the be

the current directory will

files Because the trace

the lines available

be

in

on

the

directory can

screen, this

more

selection

than

list will display the first

20 entries and allow the user to scroll to the others.

When enter

selection

displayed.

Figure 6.6

Figure 6.7

is

list

pressed on any of

of conversations

The Analyser menu

these entries,

(Figure 6. 8)

Selection list when Select & Display is
selected.

103

a

is

The TCPlot Program

Figure 6.8 Selection list of conversations.

This selection list has as header the name of the

trace file containing the conversations as well as a

legend to the columns of figures. The entry for each

conversation contains the last byte of the two IP

numbers in the addresses, the port numbers of the

conversation, the number of packets in the

conversation as well as the number and percentage of

duplicate packets in the conversation.

If any

suspect

context

of the conversations the list in

of duplicate

appears

packets in

packets), the user can move

the

(has a high percentage

with the number of

highlighted bar to that conversation and press

enter to see a time-sequence plot of that specific

conversation.

6.2.1.3.1 Time-Sequence plot

conversation consists of two Every

from A to B with acknowledgements

halves,

from B to

traffic

A and

traffic from B to A with acknowledgements from A to B.

104

The TCP!ot Program

Two time-sequence plots can therefore be derived from

each conversation. The time-sequence plot that will

be displayed first (Figure 6.9), is that of the

traffic moving from the left to the right port number

as displayed in the conversation entry.

,~~

639

638

637

636

635
I

634

633

632

631

630
I I

629 I
I

628

627

626

.I V'x.1000

,c,,.... -100-200-aoo-400-sao-600-?00-eoo-900-10001.1.0&12001300140&1soe1&001?0&

Figure 6.9 Time-sequence plot (Normal direction)

The second plot (Figure 6.10), called reverse

direction by TCPlot, can be displayed by pressing F2

with the first plot on screen. This will take the

user back to the conversation selection list and any

selection now made, will be of the reverse direction

plot. Pressing F2 again with a plot on screen, will

return the user to normal direction display.

The scale bar on the X-axis depicts microseconds in

increments of 100 microseconds. This scale is used to

plot the packet according to relative time of arrival

and do not refer to the time of a packet's timestamp.

The scale on the Y-axis refers to a sequence number

relative to the sequence number of the first packet of

the conversation contained in the trace file.

105

.1.004

.l.003

.t.002

.LOO.I.

.t.000
999

998
997
996
995
994

993
992

99.t.
990
989
988
987

:::~~~~~~~~~~~~~

984
983
982~~~~~~~~~~~_.....~

98.t.
980
979
978

977'
976
975
974
V><.t.000

The TCPlot Program

REVERSE DIRECTION

H=M~111ftQ12ft0.13l!I0.14ft0.15D0.1680.17nQ.18ft0.198CL20eKl.21ftll.221!Kl.23ft0.24nD.25EKl.26D0.27ftQ2B&

Figure 6.10 Time-sequence plot (Reverse direction).

As discussed in Chapter 5, scaling of a time-sequence

plot may present problems. Although adjustments to

the scale are made by TCPlot based on the data of the

conversation, the user must adjust the scale manually

to get the best results. This can be done by using

the special function keys while the plot is displayed

on screen to get the best plot. Provision has been

made to adjust the Y-axis scale (F6 and Shift-F6) and

the X-axis scale (F5 and Shift-F5). In addition to the

scale adjustments,

enlargement factor

provision has been

(Up/Down arrows) as

made

well.

for an

This

enlargement factor is required to be able to show

packets of 1500 bytes in some cases and packets of 64

bytes in others.

To follow the trace through from beginning to end, the

left and right arrows can be used. The legend for

these keys is available in the form of a help screen

(Figure 6.11) by pressing Fl with the plot on screen.

106

The TCPlot Program

6.2.1.4 The Options menu

The Options menu (Figure 6.12), when selected from the

main menu, allows the user to set, inspect or clear

the filters used to filter packets during the

capturing of traffic or printing of trace files. Of

the four options, only the set Filter and Select Conv

selections require some discussion.

Figure 6.11 The Time-sequence plot help screen.

When Set Filter is selected, the set filter window

(Figure 6.13) is displayed. The current filter

settings are displayed and the user is then required

to enter new settings. An IP number setting of zeros

will clear all the filters, while any invalid IP

number (containing numbers larger than 255) will be

set to zero.

If a valid IP number has been entered, the user is

requested to enter the port number filters.

107

The TCPiot Program

numbers of zero, will cause the Again,

filter

port

to be disabled, thus leaving only the

port

IP number

filter enabled.

The Select Conv selection is used to determine active

conversations currently on the network before allowing

the user to select a conversation to capture. The IP

and port filters will be set to the correct values

automatically on selection of a conversation. On

selection of this option, a red capture screen will be

displayed for approximately five seconds while a short

trace is collected from the network. The network

activity can be estimated from this screen.

After the trace has been captured, the temporary trace

file is

displayed

Figure 6.8.

selected.

Figure 6.12

analysed and active

list in a selection

The conversation of

The option menu

108

conversations

similar to that

interest can now

are

in

be

The TCPlot Program

6.2.1.5 Auto Mode

When Auto Mode is

store

selected, the monitor will start in
continuous

as packets

collected

mode,

arrive. In

and written

displaying asterisks on

this mode all packets

screen

will be

out

available memory drops below

to disk as

lOK. The

soon

file

as the

to store the trace under is a

time. As soon as disk IO

function of the

name used

date and

of packets for the next

until the will continue

key.

is completed,

trace

user

commences.

aborts it

the collection

This

by

process

pressing a

Figure 6.13 The Set filter window

6.3 Technical Reference

The TCPlot program was developed in such

main program, containing

a number of units. Some

a way that it

only the menu

of these units

will be mentioned

consists of a

and structure,

Turbo are

but not

public

Pascal standard units and

discussed here. The Pick

domain menu system, was

109

Unit,

used

which is

instead

a

of

The TCPlot Program

Pascal's Turbo Vision. Turbo Vision was found to be

too expensive with memory, thus leaving little memory

to collect and store packets. Because this unit was

not developed by the author and is only used as a menu

system, it will only be described where relevant but

its procedures and functions will not be discussed.

As the focus of TCPlot is on the collection of packet

traces and the analyses thereof, the uni ts dealing

with these functions will firstly be discussed.

6.3.1 The NetUW Unit

This unit handles all the functions related to

monitoring traffic on the network and capturing

packets for a trace file.

Although this unit only makes five procedures

available to other programs, it contains several

supporting procedures. The public procedures are:

DispStats

GetName

InitDriver

Netstart

SetFilter

Other procedures in the unit that fill a supporting

role are:

Auto Name

CalcBarDisp

DisplayShort

GetDispStr

GetPort

ProcessBuff

RecvPkt

110

ReadIP

SekBar

StoreBuff

StrAdr

Strip

StrClickTime

SekBar

WriteFile

WriteIP

6.3.1.1 The AutoName procedure

The TCPlot Program

AutoName uses values received from the procedures

Gettime and Getdate to construct a unique name string.

This string is used to name trace files when TCPlot is

operating in Auto Mode.

6.3.1.2 The CalcBarDisp procedure

The purpose of this procedure is to display a summary

string containing Ethernet address, IP address and

time of arrival for each packet. It uses the function

GetDispstr to build this string and displays it on the

bottom half of the screen while bar graphs are

displayed in the top half.

Because the graphs are displayed in the active window

on the top half of the screen, this procedure uses the

Scroll and StrXY procedures (discussed under the

Library unit) to scroll only the bottom part of the

screen. An absolute screen write displays the summary

string.

111

The TCPiot Program

6.3.1.3 The DispStats procedure

The Dispstats procedure calls the procedure Getstats

with a parameter of type DrvStatsRec. The structure

of DrvStatsRec is:

DrvstatsRec = Record

Packin Longint;

PackOut Longint;

Bytes In Longint;

Bytesout Longint;

Err In Longint;

Errout Longint;

PackLost Longint;

end;

Of the above, the number of packets, the number of

bytes received as well as the number of packets lost

(due to the lack of buffer space) are reported in a

window.

6.3.1.4 The GetDispStr function

This function is used by CalcBarDisp. It accepts the

packet length as parameter and returns a string

containing Ethernet address, IP address and time of

arrival. GetDispStr uses the functions strAdr, Strip

and StrClickTime to build the return string.

6.3.1.5 The GetName procedure

The GetName procedure is called by NetStart when

StoreMode for a single trace is selected. It requests

a file name for the trace and hands it back in the

parameter FName with the string '.cap' appended.

112

The TCPlot Program

6.3.1.6 The GetPort procedure

This procedure is used to read port numbers in the

address of packets in a specified buffer. GetPort

accepts three parameters. The first, Start, is of

type word and is used to indicate the position of the

required port number in the buffer. The second

parameter, Pac, is of type Ibuf f and specifies the

buffer while the third, WO, of type word is used to

return the port number.

6.3.1. 7 The InitDriver Procedure

The purpose of this procedure is to determine the

presence of a packet driver and interface card. It

will abort the program if no installed packet driver

is found. If a packet driver is found, it will

determine the type of interface card and if installed,

will report the capabilities of that card to the user.

If a valid packet driver and interface card was found,

this procedure will attempt to initialise the

interface card to operate in promiscuous mode and hand

all TCP packets to TCPlot. Failure to do so will be

reported to the user.

This procedure makes use of three procedures found in

the DrvU unit that will be discussed later. The first

of these is the procedure Driverinfo which will return

all information concerning a loaded packet driver in a

data structure Dinfo of the type DrvinfoRec.

The procedure AccessType is . called to initialise the

packet driver to hand TCP packets to TCPlot and to

inform the packet driver of the address of the

113

receiving procedure

placed in a data

The TCPlot Program

of TCPlot. Al 1 parameters are

structure AccRec of the type

AccessTypeRec before calling this procedure.

The procedure SetRxMode is called to set the operation

mode of the interface card. In TCPlot it is called

with '6' as a parameter, thus setting the operation

mode of the interface to promiscuous.

6.3.1.8 The NetStart procedure

This is the main procedure of the monitor part of

TCPlot and is called when a selection is made from the

Capture Traffic menu. A single parameter, FMode, is

used to determine the mode of operation of this

procedure. Al though four modes are possible, only

BarGraphMode and StoreMode cause direct action in this

procedure. The other modes determine actions to be

taken by the procedure ProcessBuff in the main loop of
the procedure.

The NetStart procedure forms the heart of the monitor

and therefore the logic of this procedure is shown in

Figure 6.14.

If BarGraphMode was selected this procedure sets

Interrupt $1C to the address of the procedure SekBar

on entry and resets it on exit. SekBar will then

update the graphs on screen every second. In this

mode the screen is also prepared for the graphic

display and cleared on exit.

When StoreMode is received as parameter, this

procedure will call the procedures GetName and

WriteFile to get a file name from the user and write

the trace to disk before terminating.

114

The TCPlot Program

1: if selected mode= BarGraphMode

2: prepare screen

3: point user interrupt to bar procedure

4: repeat { Wait for packets/ Start main loop}

5: if a packet in buffer

process the packet

6: if packet arrived {Packet driver called}

{receiver procedure}

7 copy packet to buffer

8: until memory full or a ESC pressed

9: Case selected mode of

10: BarGraphMode

reset user interrupt

11: StoreMode

Get name for file

Write packet headers to tracefile

12: end.

Figure 6.14 Algorithm of the NetStart procedure.

After the initial preparations, Netstart enters a loop

to wait for packets arriving at the interface card.

The loop will terminate only when the Escape key is

pressed or if the available memory drops too low. In

this main loop of the procedure, a constant check is

done to determine the presence of a packet in the

incoming buffer. If a packet is in the buffer, shown

by BuffAvail with a value of 1, the procedure

ProcessBuff is called to process this packet and make

the buffer available to incoming packets again.

Any packet arriving at the interface card during this

time will be handed to the packet driver. The packet

driver will determine if the packet should be handed

to TCPlot and cause a software interrupt if so. This

115

The TCPiot Program

interrupt will cause the receiver procedure (RecvPKT)

of TCPlot to copy the packet into the incoming buffer

(if it's available).

6.3. l.9 The ProcessBuff procedure

This procedure is called from within the main loop of

the NetStart procedure whenever a packet is placed in

the incoming buffer. The action of this procedure is

determined by the mode in which the Netstart procedure

was started.

ProcessBuff first checks whether any filters are set.

If no filters are set, processing is done as described

in the next paragraph. If the IP-filter is set,

however, the IP numbers of the packet in the incoming

buffer will be retrieved and compared with the IP­

filter. Should the packet's IP number satisfy the IP­

filter and the port number filter is set, the port

numbers are retrieved and compared with the filter.

Only packets satisfying the set filter are passed on

for processing, while all other packets are ignored

and the buffers set free without being processed. The

logic of this procedure is such that no IP number or

port number is retrieved from the buffer if it is not

required by the filter setting, thus ensuring the

smallest possible overheads.

In HashHode the only action is to write a hash

character to the screen. In the modes StoreMode,

PackDisplayMode and BarGraphHode, the procedures

StoreBuff, DisplayShort and CalcBarDisp respectively

will be called to process the packet in the incoming

buffer.

116

The TCPlot Program

Whether the buffer was processed or not (as in the

case of HashMode), it is released by setting BuffAvail

to o and the packet count is incremented before the

procedure is exited.

6.3.1.10 The RecvPkt procedure

This is an assembler procedure that is executed during

an interrupt from the packet driver. Because values

in registers can be changed by this procedure, the

registers AX, BX, ex and DX are saved on entry to this

procedure and restored on exit. On arrival of a

packet for TCPlot, this procedure is called once or

twice by the packet driver. On the first call the

packet driver indicates a new arrival with a value of

O in the AX register. In this case the RecvPkt

procedure will return a pointer to a buffer for the

packet (or O:O if no buffer is available).

If a buffer was not available, the packet driver will

discard the packet, otherwise it will call RecvPkt

again with the value 1 in the AX register. The

RecvPkt procedure will in this case copy the packet to

the buffer and set the value of the variable BuffAvail

to 1.

6.3.1.11 The ReadIP procedure

This procedure is used to enter an IP address from the

keyboard. The input is checked for validity and once

the four bytes of the address have been entered, the

values are moved to a Longint and handed back to the

caller in the parameter RIP of type Longint.

117

The TCPlot Program

6.3.1.12 The SekBar procedure (Interrupt)

The purpose of this procedure is to update the bar

graphs for both bytes per second and packets per

second.

When in BarGraphMode the interrupt vector of Interrupt

$1C points to this procedure and it will therefore be

executed approximately eighteen times per second.

Because the updating is required only every second, a

counter, Sekl8, is kept to ensure that the update is

done during every eighteenth interrupt. When updating

the graphs, the procedure DrawHorzset that will be

discussed later, is used.

6.3.1.13 The SetFilter procedure

This procedure accepts one parameter of type char. If

a 'F' is received as parameter, this procedure

displays a window showing the current filter setting

and requests new settings from the user. Depending on

the values of the input, global filters are set for IP

number or IP number as well as port numbers. The

input of zeros will clear all filters. A parameter

value of 'S' will only display current filters in a

window without the option to change them while a value

of 'C' will clear all filters.

6.3.1.14 The StoreBuff procedure

StoreBuff is called by ProcessBuff if the NetStart

procedure was started in storeMode. This procedure

stores information about packets in memory with the

purpose of creating a trace file. This is done by

firstly moving the first 64 bytes (the header) of the

118

The TCPlot Program

packet into a data structure of type PackHeadType.

PackHeadType has the following structure:

PackHeadType = Array [1 .. PSize] of byte

PSize is a constant set to 64, this value can be

changed if the need arises to develop TCPlot to also

store part of the data of packets.

This structure, together with a time record (TimeRec),

is then placed in a data structure of type PackRec. A

linked list is then formed consisting of structures of

type PackRec.

PackRec.

DataP is a pointer to a structure of

The structures of PackRec and TimeRec are shown below:

TimeRec = Record

Hours

Min

Sek

Hun

end;

PackRec = Record

PackHead

Time

Next

end;

Word;

Word;

Word;

Longint;

PackHeadType;

TimeRec;

DataP;

The time values placed

calling the procedure

in TimeRec are arrived at by

GetOWnTime that will be

discussed later. Once the required data has been

placed in the structure, the procedure Add, which is

internal to the storeBuff procedure, is called with a

pointer to the new structure as parameter, to place

the new structure in the linked list in memory.

119

The TCPlot Program

6.3.1.15 The StrAdr function

This function accepts the position in the buffer where

an address starts and returns the Ethernet address as

a string.

6.3.1.16 The StrlP function

This function takes as parameter a character 's' or

'D'. Depending on the parameter, the source or

destination IP address of the packet in the buffer,

will be returned as a string.

6.3.1.17 The StrClickTime Function

The function StrClickTime uses the procedure

GetOWnTime to obtain the time and returns a string

showing the time in minutes, seconds and microseconds.

6.3.1.18 The WriteFile procedure

This procedure is called to write the linked list of

packet records (PackRec) in memory to a file on disk.

It accepts a single parameter, CapFile, that is used

as file name.

6.3.1.19 The WriteIP Procedure

Wri teIP accepts a parameter WIP of type Long Int and

displays it on screen as a four byte IP address.

120

The TCPlot Program

6.3.2 The PlotU unit

This unit contains most of the procedures for the

analyser part of TCPlot. The public procedures of

this unit are:

ConvToMenu

FileList

GetConversation

Printconv

PrintGraph

ReadFile

SelectDisp

Other procedures in the unit that fill a supporting

role are:

AutoFilter

AutoFilterSet

DisposeConvList

DisposeConvinfo

FiveSec

MakeList

MenuGraph

PackToWord

PackToLong

Showconvs

StoreConv

WriteLstIP

XScaleBar

YScaleBar

6.3.2.1 The AutoFilter procedure

The purpose of the procedure is to provide the

procedure AutoFilterSet with the information regarding

121

The TCPlot Program

a TCP conversation, thus allowing AutoFilterSet to set

filters to collect only packets of that conversation.

On entry, AutoFilter starts the monitor in store mode

to collect a five second trace of packets on the

network. It then calls the procedures GetConversation

and ConvToMenu to analyse the trace and place

conversations in a selection list respectively.

6.3.2.2 The AutoFilterSet procedure

When called by AutoFilter, this procedure will extract

an IP number and port numbers from the selected menu

entry. These values are then used to set filters to

collect only packets of the selected conversation.

6.3.2.3 The ConvToMenu procedure

The procedure ConvToMenu receives a file name in the

parameter TFile. It then calls the procedure

Getconversation with TFile as parameter. The linked

list produced by the procedure GetConversation is then

used to create a selection list of conversations and

their statistics. Depending on the value received in

the parameter ConvMode, the procedure will either call

the procedure MenuGraph (if ConvMode = 'N') or the

procedure AutoFil terset (If ConvMode = 'A') , with a

pointer to the entry in the selection list.

6.3.2.4 The DispConvList and DispConvlnfo procedures

Both these procedure are used to dispose of linked

lists of conversations or conversation information

respectively, thereby setting the memory used by these

lists free.

122

The TCP!ot Program

values are then placed in a data structure of type

ConVRec.

As indicated in the data structure of ConvRec, values

are placed in the fields marked with an asterisk

before the procedure Storeconv is called with this

data structure as parameter.

The structure of ConVRec is:

ConVRec = Record

PCounter Word;

PrevseqNoL Longint;

PrevAckNoL Longint;

PrevseqNoH Longint;

PrevAckNoH Longint;

PackDup Word;

* PackSeqNo Longint;

* PackAckNo Longint;

* Source IP Longint;

* DestIP Longint;

* SourcePort Word;

* DestPort Word;

* PWindow Word;

Next Word;
end;

6.3.2.8 The MakeList procedure

This procedure is local to the procedure PrintGraph

and is used to extract only packet records belonging

to a certain conversation. Information of each packet

is placed in a data structure of the type CVRec which

in turn is placed in a linked list in memory. The

structure of CVRec is shown below with CVP as pointer

124

The TCP!ot Program

to a structure of type CVRec while TimeRec has the

same structure as discussed under StoreBuff.

The structure of CVRec is:

CVRec

end;

= Record

Source IP

Dest IP

SourcePort

DestPort

PackSeqNo

PackAckNo

PWindow

DLen

T

Next

Longint;

Longint;

Word;

Word;

Longint;

Longint;

Word;

Word;

TimeRec;

CVP

6.3.2.9 The MenuGraph procedure

This procedure is called by ConvToMenu when an entry

is selected. MenuGraph calls the procedure PrintGraph

with the file name and two query port numbers as

parameters. The port numbers used in the cal 1 are

extracted from the item that the menu entry points to.

The order of the two query ports in the parameter list

depends on the value of the boolean variable Reverse.

This variable is set by pressing F2 on the graphics

screen and determines which half of the conversation

is plotted.

6.3.2.10 The PackToLong procedure

As with the procedure PackToWord (6.3.2.11), this

procedure is used to extract 32 bit values from packet

structures and returns it as a value of the type

Longint.

125

The TCPlot Program

6.3.2.11 The PackToWord procedure

The need for this procedure arises from the fact that

values are stored with the low byte first in the

packets. Three parameters are accepted, Pac, which is

the packet data structure containing the value, Wo, in

which the value is returned as a word and Start, which

is used to indicate the position of the value in Pac.

6.3.2.12 The PrintConv procedure

This procedure accepts a single parameter, FName of

type string. The procedure firstly calls the

procedure DisposeConvList to dispose any existing

conversation lists in memory. It then calls the

procedure GetConversation to analyse the trace file

named in FName and build a new linked list, containing

all the conversations and statistics of FName.

Once this list has been constructed, it is transversed

and a list containing all conversations, as well as

the percentage duplicate packets in each conversation,

is printed.

6.3.2.13 The PrintGraph procedure

The procedure PrintGraph is responsible for plotting a

specific TCP conversation on a time-sequence plot. It

accepts as parameters the two TCP ports numbers of the

conversation to be plotted as well as the name of the

trace file.

It first calls the local procedure MakeList to extract

information relevant to the conversation from the

trace file. Information thus extracted is placed in

126

The TCPlot Program

memory to enhance drawing and rescaling of the time­

sequence plot. The second action is to call the

procedure DetectScale to determine the initial scaling

and enlarging factors for the plot.

The local procedures XScaleBar and YScaleBar are used

to draw the scale on the x and Y axis respectively.

If rescaling is done, these procedures are called

again to draw the new scales.

The linked list in memory is processed sequentially

and the packets, acknowledgement line and window lines

are plotted. The variables PreVWin, PrevP, PrevAck

and PrevAckP are used to store values of the previous

packet, thus making it possible to draw a line, like

with the acknowledgement line, from the previous value

to the new value. Values used for the window line are

arrived at by adding the offered window of the

acknowledging packet to the acknowledgement number.

The procedure also provides for rescaling by scanning

the keyboard in a loop until either escape, or one of

the rescaling function keys, is pressed. If a

function key is pressed, the scale is adjusted and the

time-sequence plot redrawn.

6.3.2.14 The ReadFile procedure

This procedure's main function is to print a hard-copy

of the packet trace file whose name is received in the

parameter FName. If the variables IPFilterSet and

PortFilterset are TRUE, the values in the global

variables OptIP, OptPortl and OptPort2 are used as a

filter. In such a case, a trace containing only

packets belonging to the selected TCP conversation,

will be printed.

127

The TCPlot Program

6.3.2.15 The SelectDisp procedure

This procedure accepts the parameter SMode of type

char. It produces a menu with all the trace files

(ending with .cap), in the current directory, as

entries. When one of these entries is selected, one

of the FileList procedures (see 6.3.2.5) is called

with pointers to the selected menu entry.

Corresponding to the values 'P', 'T' and 'C' in SMode,

one of the procedures Filelist, FileList2 or FileListJ

will be called by this procedure.

6.3.2.16. The ShowConvs procedure

When called Showconvs accepts a file name as parameter

and calls three procedures with this file name as

parameter. To get the conversations in the trace

file, the procedure Getconversation is firstly called.

ConvToMenu is then called to process the link list

produced by Getconversation, creating a menu with

these conversations and their statistics as entries.

Finally the procedure DisposeConvList is called to

dispose the linked list and set the memory free.

6.3.2.17 The StoreConv procedure

This procedure is called by the procedure

GetConversation and accepts a data structure of the

type ConVP (a pointer to type ConVRec) as parameter.

The purpose of this procedure is to keep record of

each conversation found in the trace file. It must

also detect duplicate packets in conversations and

keep track of the number of packets as well as the

128

2
Start new

list

Packet i record

~ YES·,, First Rec.
',~ .. -"'//

f NO • 3

Start at
list beginning

10
Inc Dup Count

Inc Pack

7

Goto next
in the list

The TCPlot Program

·~~ ---··

11
Inc Pack

-·-·-Count __ J
----------~

12
Update conv

record

Figure 6.15 Logic of the storeconv procedure

129

The TCPlot Program

number of duplicate packets in each conversation. All

this information is kept in a linked list consisting

of a data structure, of the type ConVRec, for each

conversation. The logic of this procedure is depicted

in Figure 6.15.

6.3.2.18 The WriteLstIP procedure

This procedure accept an IP address as a Longint in

the parameter WIP. The IP number is then printed in

the format xxx.xxx.xxx.xxx, as used in the printing of
traces.

6.3.2.19 The XScaleBar and YScaleBar procedures

These procedures are responsible for displaying the

scale bars of the X and Y axis of the time-sequence

plot respectively.

6.3.3 The AsmTim unit

This unit is the implementation of the high resolution

timer discussed in Chapter 4. Its only two public

procedures are GetOWnTime and stopTimer. Other

procedures and functions of this unit are declared as

external and are located in the object file Astim.obj

which is linked into this unit.

6.3.3.1 The GetOwnTime procedure

When called this procedure gets the system time and

then calls the _HrTime function of the timer to get

the microsecond count. The time is returned as Hour,

Min, and Sek of type word, while the ticklet count

130

The TCPlot Program

from _HrTime is converted to microseconds and

returned in Mil as type Longint.

6.3.3.2 The _ Hrt_ Close procedure

_Hrt_Close is an external procedure that unhooks all

interrupts installed by _Hrt_Open.

6.3.3.3 The _ Hrt_ Open procedure

This is an external initialisation procedure for the

timer that will install the interrupt and clear the

tick count.

6.3.3.4 The HrTime function

This external function determines the high resolution

time. It returns the ticklet count (accumulated since

the first call to _Hrt_open), in a 32 bit variable.

6.3.3.5 The StopTimer procedure

StopTimer's only function is to stop the high

resolution clock by calling the external procedure

_hrt_close. This procedure must be called when TCPlot

terminates, failing to do so will cause the computer

to hang because the timer will update memory locations

now used for other purposes.

6.3.3.6 The TimeExit procedure

This is an exit procedure that will call StopTimer

when the TCPlot terminates for whatever reason.

131

The TCPlot Program

6.3.4 The Library unit

This unit contains an assortment of supporting

procedures and functions that are used throughout the

program. The procedures and functions used by TCPlot

will be discussed in alphabetical order with the

public procedures and functions first, followed by the

local ones.

6.3.4.1. The Beep procedure

This procedure accepts two parameters, Hz and Ms.

When called the procedure will cause a sound with Hz

as frequency for Ms long.

6.3.4.2 DrawHorzSet

The DrawHorzset procedure is used to display a bar

graph of the number of bytes and number of packets

that arrived each second, for the previous ten

seconds.

As parameters it accepts and returns a data array,

BarN, in which the values of the past ten seconds are

stored. The other parameters are HewH, in which the

value of the new bar to be added is placed and two

values (BaseLine and YPos) that are used to locate the

graph on screen.

On entry the new value is shifted into the data array,

shifting the oldest value out, and then scanned to

determine the maximum value in the array. This

maximum value is then passed to the function GetMax to

determine the scaling factor now required.

132

The TCPlot Program

If there was no change from the previous scale, the

graph is scrolled one line up and the new bar added at

the bottom. If, however, the new value caused a

change in scale, the whole graph is redrawn on the new

scale. The maximum height is shown in the right hand

corner.

6.3.4.3 The Hex function

This function takes a byte as parameter and returns

the hexadecimal value as a string;

6.3.4.4 The HexWord function

This procedure takes a word as parameter and returns

its hexadecimal value as a string.

6.3.4.5 The HexLong function

This procedure takes a Longint (32 bit) value as

parameter and returns its hexadecimal value as a
string.

6.3.4.6 The KeyProc procedure

The KeyProc procedure reports the keyboard scan code

and the ASCII code of a character in the parameters

_KeyPos and _Ascii respectively, when a key has been
pressed.

133

The TCPlot Program

6.3.4. 7 The NoCursor and NormCursor procedures

These two procedures are used to hide and redisplay

the cursor. They are called when a message is

displayed in a window to prevent the displaying of a

flashing cursor as well.

6.3.4.8 The StrXY procedure

The procedure StrXY accepts as parameters absolute

screen co-ordinates in X and Y. The string passed to

the procedure in the parameter st, is then displayed

at the absolute co-ordinates, regardless of any active

window.

6.3.4.9 The Scroll procedure

This procedure is used to scroll a selected part of

the screen,

direction.
a variable number of lines in a given

The area to be scrolled is determined by

values received in the parameters X, Y, X1 and Y1,

while the number of lines scrolled are determined by

the value of the parameter Lines.

The parameter, Direction, can have the values UpDir or

DownDir and determine the direction of scrolling while

the parameter, Attribute, determines the characters in
new lines.

6.3.4.10 The procedure XYWrite

XYWrite is procedure used to display the value of the

variable at the screen co-ordinates received in

parameters X and Y. By using an un-typed parameter,

strings as well as numbers in variables of different

134

The TCPlot Program

types, can be displayed. The type of the variable

passed to the procedure is indicated in the
parameter T.

6.3.4.11 The GetMax function

This function returns the highest value in an array of

Num values. The array (Data) as well as Num are
accepted as parameters.

6.3.4.12 The CBar procedure

This procedure is used to display a bar in the two

sets of bar graphs that are used by the monitor part

of TCPlot. It accepts as parameters the Height of the

bar to be drawn as well as the position where the bar

must be placed. The position is indicated as X and Y

co-ordinates in the parameters BaseLine and YPos

respectively.

Because this procedure is internal to DrawHorzSet and

is used to draw the newest bar of a set of bars, the

block of the screen reserved for the bar graph is

scrolled one line before the new bar is drawn on the

new line.

6.3.5 The DRVU unit

This is a unit containing all the procedures required

to address the packet driver discussed in chapter 3.

All the procedures in this unit are publicly known

with the exception of the procedure TestVec. The unit

contain declared constants for all the possible return

codes by the packet driver as well as constants for

the implemented initiation values.

135

The TCPlot Program

Where the logic of the procedures were discussed in

chapter 3, the discussion here will only show its

implementation in Pascal

6.3.5.1 The AccessType procedure

This procedure initiates access to the packet driver.

It has one parameter, AccRec of the type AccessRecType

which is used to specify the type of packet TCPlot

requires from the packet driver. The same parameter

is used to hand the address of the receiving procedure

to the packet driver. The handle used for this

agreement is handed back to TCPlot in the same
structure.

In TCPlot this procedure is called by InitDriver with

the Type_ field set to point to the variable TypeField

and Receiver to point to procedure RecvPkt. As TCPlot

must operate in promiscuous mode, If_Type is set to

AnyType and TypeLen to O. The If_Class field is set

according to the Dinfo.Class field received from

calling the procedure Driverinfo.

The structure of AccessRecType is:

AccessRecType = Record

If - Class Byte;

If _Type Word;

If _No Byte;
Type_ Pointer;

Type Len Word;

Receiver Pointer;

end;

136

The TCPlot Program

6.3.5.2 The Driverlnfo procedure

The Driverinfo procedure is called by InitDriver when

TCPlot starts. It provides information about the

interface card in the parameter Dinfo of type
DinfoRec. TCPlot uses this information to determine

whether the functions needed, are offered by the

interface or whether to abort.

The structure of DinfoRec is:

DinfoRec = Record

Vers Word;
Class Byte;
Type_ Word
Number Byte;

NameP Pointer;
Fun ct Byte;

end.

In the structure above, TCPlot uses the Class field

for the AccessType procedure and the Funct field to

determine the functions available on the interface
card.

6.3.5.3 The FindPktlnt procedure

This procedure is used to determine whether a packet

driver is loaded and if so to determine the software

interrupt to address it. The procedure is called when

TCPlot is started before any other procedures and

returns values in two global variables. The first,

DrvintFound, is a boolean variable that is set to true

if a driver is present. TCPlot will abort if this
procedure returns with DrvintFound set to false. The

second variable, Pckint, is set to the value of the

137

The TCP!ot Program

interrupt vector of the packet driver and is used by

other procedures when addressing the packet driver.

FindPktint starts at the lowest possible interrupt

vector (60H) and calls the internal procedure Testvect

to determine whether this is the interrupt for the

packet driver. If not, the next interrupt vector will

be tested until the correct one is found or 80H is

reached in which case it sets DrvintFound to false.

When called, the TestVec procedure checks for the

string 'PKT DRVR' in the first 12 bytes following the

entry point of the interrupt. If this sting is found,

it returns with DrvintFound set to true, if not

DrvintFound is set to false.

6.3.5.4 The SetRxMode procedure

This procedure is used to set the receive mode of the

interface card. The required mode setting is handed

to SetRxMode in the parameter Mode, of type word, when

called. In the case of TCPlot, the procedure is

called with the value 6 as parameter. Thus setting

the interface card to promiscuous mode.

6.3.5.5 The GetStats procedure

When called, the procedure Getstats returns the

statistics of packets received by the interface card

in the variable DStats of type DrvStatsRec. The

structure of DrvStatsRec is discussed under 6.3.1.3.

6.3.5.6 The DrvRelease procedure

This procedure is called before TCPlot terminates to

notify the packet driver that TCPlot no longer

138

The TCPlot Program

requires packets of the type specified in AccessType,

to be handed to it. If this is not done, other

applications trying to use the packet driver, will not

operate correctly.

139

TCPlot in Action

Chapter 7

TCPlot in Action

7.1 Introduction

In this chapter, a trace file is analysed to show the

effectiveness of the TCPlot analyser. Several tests,

done to evaluate TCPlot's ability to collect all

packets from the Ethernet, are also discussed. These

tests were done under a variety of conditions and

using different interface cards, to determine the

influence on TCPlot's operation.

7.2 The Monitor at work

The primary function of the monitor part of TCPlot is

the collection of packets. It is therefore necessary

to test TCPlot's ability to keep up with the rate of

traffic on the network without losing packets. The

various factors that can have an influence on this

ability were therefore examined and the tests done are

discussed in this section.

As part of the evaluation, tests were done with

different packet drivers. It was found that the older

packet drivers for the Western Digital and SMC

Ethernet interface card (WD800 series), do recognise

the card and its capabilities but do not operate

correctly in promiscuous mode. The driver, typically

used with Western Digital and SMC interface cards in

Novell networks, (SMCSOOO.com), does not report an

error when TCPlot requests promiscuous mode, but does

140

TCPlot in Action

not initialise the card to the correct mode. When

using TCPlot with one of the above drivers, only

packets directed to the management station as well as

broadcasts will be seen. The packet drivers available

in the CRYNWR packet driver collection PKTD11C.zip,

seem to be able to switch the interface card to

promiscuous mode. For Western Digital and SMC

interface cards, the SMC_WD driver has been used in

all the tests. PKTD11C. zip is available with

anonymous ftp, but will also be included with the
electronic version of TCPlot.

7.2.1 Using an 8-Bit Interface

This test was done to determine how a 386DX 40 MHz

computer with an 8-Bit SMC Ethernet adapter will

handle various levels of traffic on the network whilst

running TCPlot.

The first test was done when traffic consisted of

mostly small sized packets (Telnet) at a rate of

approximately 96 packets per second. During the six

minutes the test lasted, an average of 106016 bits/s

were transmitted on the network with peaks not much

higher. If this is expressed as a percentage of the

Ethernet bandwidth, the traffic was a little more than

2% of the bandwidth (determined as discussed in

Chapter 4) . The test was done with TCPlot in the

BarGraphMode to allow for the maximum on-line

processing by TCPlot. As was expected, no packets

were reported lost by the packet driver in the six

minute test.

It was found, however, that if the packet driver is

loaded and not initialised, as would happen if the

computer is booted and left idle or loaded with

141

TCPlot in Action

another application, the packet driver registers lost

packets. This is probably due to the way that the

packet driver initialises itself during loading. The

test results as reported by TCP lot after reading the

packet drivers' statistics, are shown in Table 7.1.

The test was repeated during a time that the activity

on the network was higher. The traffic on the network

during this test consisted of small Telnet as well as

maximum sized Ethernet packets in a ratio of

approximately 1:1. The average packet count was

196 packets per second while 1619183 bits per second

were received.

Values of various After running TCP lot
counters six minutes BarGraphMode for
after packet driver was minutes
loaded (machine idle)

Packets 4010 Packets 37489

Bytes In 1475239 Bytes In 6245980

Lost 131 Lost 131

LAN activity 2%

Table 7.1 Results of an 8-bit interface with low
traffic load.

in
six

This accounted for an average use of about 18% of the

Ethernet bandwidth. As can be expected, there were

peaks of traffic as well as fairly idle times during

the sample period. The results are shown in Table

7.2.

The final test reported on here, was a prolonged test

lasting 30 minutes, with the TCPlot monitor operating

in BarGraphMode. During this test period, the classes

in the computer laboratories of Technikon OFS started

and large numbers of student loaded applications from

142

TCPlot in Action

the file server simultaneously. This caused LAN

activity peaks of 35% of the Ethernet bandwidth.

Values of various After running TCP lot in
counters six minutes BarGraphMode for six
after packet driver was minutes
loaded (machine idle)

Packets 4781 Packets 75446

Bytes In 1902097 Bytes In 74765349

Lost 55 Lost 55

LAN activity 18%

Table 7.2 Results of an 8-bit interface with moderate
traffic load.

The average LAN activity during the test period was

19%, with an average of 405 packets per second

arriving at the interface. The results of this test

are shown in Table 7. 3. As can be seen, no packets

were lost even with these high traffic levels and

prolonged test.

Values of various After running TCP lot in
counters before start BarGraphMode for thirty
of test minutes

Packets 1271 Packets 730031

Bytes In 523854 Bytes In 298839660

Lost 2 Lost 2

Average LAN activity 19% - Peak LAN activity 35%

Table 7.3 Results of an 8-bit interface with high
traffic load after 30 minutes.

Al though the LAN activity during these tests was far

from the theoretical maximum of Ethernet, an Ethernet

network will become saturated at approximately 55% LAN

activity [Nemzow, 1988]. This, together with Sudama's

143

TCPlot in Action

statement [Sudama, 1990] that even the most heavily

loaded LANs at DECNet was found to carry less than a

thousand of the theoretical eight thousand packets per

second, led the author to believe that TCPlot will be

able to handle most network traffic without packet

loss.

7.2.2 Using a 16-Bit interface

Given that any 16-Bit interface should out perform an

8-bit interface, together with the fact that no

packets were reported lost with the 8-bi t interface,

made testing with this interface redundant.

7 .2.3 The effect of filters

The use of filters cause additional overheads that can

have an influence on the ability of TCPlot to capture

packets. The additional overheads are due to the fact

that addresses and port numbers of all arriving

packets must be retrieved from the buffer and compared

with the filter values. Only then can a decision be

made to ignore the packet or to move it to memory.

Values of various After running TCP lot in
counters before start BarGraphMode for six
of test minutes

Packets 37489 Packets 147649

Bytes In 6245980 Bytes In 32794540

Lost 61 Lost 61

Average LAN activity 10%

Table 7.4 Results of an 8-bit interface with moderate
traffic load after TCPlot has been in action
for six minute with IP and Port filters set.

144

TCPlot in Action

To reduce the overheads, the implementation of filters

in TCPlot will only retrieve an address if the

corresponding filter is set. To determine the effect

of filters in the worst case therefore, the test

described here was done with both the IP as well as

the port filters set. As can be seen from the results

in Table 7.4, no packets were reported lost during the

six minutes test on a network with moderate traffic,

even with the use of filters.

7 .3 The Analyzer at work

To illustrate the time saving capabilities of the

TCPlot analyser, a trace file taken on a relative

quiet network for approximately 20 seconds, is shown

in Appendix A. This trace was intentionally taken on

a quiet network (24 packets per second or

approximately 0.2% of the bandwidth), to show the need

for a tool such as TCPlot even when traffic is
minimal.

7.3.1 The collected trace

The format of this trace is typical of traces produced

by most network management packages. It shows the

time of arrival of each packet in seconds and

microseconds, the source and destination IP addresses

and the source and destination port addresses. In

addition to this, some will report the sequence and

acknowledgement numbers and the offered window and

data length of the packet.

TCPlot's analysis of the trace file, showing the

conversations that took place during the time packets

were collected, is shown in Figure 7.1. This analysis

145

TCPlot in Action

of conversations shows only one conversation with

duplicates, but as that conversation consists of only

six packets, it is not deemed of interest. For the

sake of this illustration we will focus our attention

on the conversation with the most packets. This is

the telnet (port 23) conversation between a file

server {198.54.58.2) and port 5579 of a terminal

controller (198.54.54.12).

An attempt to follow this conversation in the above

trace, is difficult and time consuming. (If the trace

was taken on a busy network, it would have been even

worse.) Even when irrelevant data is filtered from

the trace, leaving only packets of the conversation as

in Appendix B, the task of interpreting the trace is

not simple.

7 .3.2 Filtered trace

As the IP addresses of the hosts are known, the trace

file is normally reduced to relevant data by removing

all packets except those between two specified hosts.

In the trace as shown in Appendix A, this strategy

would have been of little value, as terminals

connected to a terminal controller (multiplexer), do

not have their own IP addresses. It will correctly

reduce the trace to a trace containing only packets

sent between the controller and the f ileserver, but

the trace will still contain numerous conversations.

The ability of TCPlot to analyse a trace file and

report on the different conversations contained

therein, makes it possible for TCPlot to use the port

numbers of conversations as filter. The trace can now

be reduced to a trace containing only packets

belonging to the conversation of interest.

146

TCPlot in Action

Figure 7.1 Analyses of the conversations in

Fintest.cap

IP number The effect of

port numbers

using a

is shown

both

B.

filter for

in Appendix Of the

and

471

packets contained in the trace file, the 123 packets

belonging to

the f i 1 tered

this reduced

the conversation of interest remains in

trace. It is clear that even by using

trace, it still remains a formidable task

to work through this trace to detect any problems.

7.3.3. Time-sequence plot

With the use of TCPlot's plotting feature, however,

the above can be done in a matter of seconds. Once

the conversation to be plotted has been selected, the

plot will be displayed and can be scaled.

For the purpose of this illustration, the plot of the

reverse direction conversation is discussed here.

After

plot

the

was

reverse direction

scaled down (F6) and

147

has been

scanned

selected, the

from beginning

TCPlot in Action

to end (using the right arrow). The time-sequence

plot in Figure 7.2 shows the time slice 2s 297892µs to

Js 416222µs. Due to the small scale the first packet

visible on the plot, is the packet that arrived at 2s

697972µs with a data length of 19 bytes. As can be

clearly seen on the plot, the packets sent to the

terminal were acknowledged promptly, and no duplicates

were sent. The terminal, however, closed its window

briefly (window and acknowledgement lines meet) during

this time (between the packet that arrived at Js

188372µs and the packet at Js 416222µs), an indication

that the terminal was busy and could not accept any

data. The zero window offered can also be seen in the

filtered trace (Appendix B).

1004

1003
1002
1001
1000

999

998
997
996
995
994
993
992

991
990
9-
988
987

906_~~~~~~~~~~~~
985
984
983
982~~~~~~~~~~_,.~

981
980
97'3
978

977
976
975
974
V><1000

REUERSE DIRECTION

X=ns'111'Kl12tltl13B0.141!1G15DG1680.17DG18'1G1980.200Cl21'1G22B0.23afl241Ml25B0.261Ml27'J0.28&

Figure 7.2 Time-sequence plot of trace in Appendix B.

Although this is normal and of no consequence in this

trace, prolonged or frequent zero windows might point

to a faulty station. This illustrates the ease of

148

TCPlot in Action

detecting and inspecting such occurrences, in context

with the other packets in the conversation, using the

plotting facility of TCPlot.

7.4 The effect of approximation

When scaling down packet sizes

display them on the screen,

divided by the scaling factor

produce a whole number screen

to enable TCPlot to

sequence numbers are

and rounded off to

co-ordinate. This

rounding off has the effect that when the screen co­

ordinate is multiplied with the original scaling

factor, the result will differ from the original

sequence number.

V>c.1000

x~s -100-200-aoo-400-500-600-?oo-eoo-900-1ooe1~0&120&130&140&150&160&1?0&

Figure 7.3 A Time-sequence plot enlarged in the
correct way.

In TCPlot this has an effect when a plot is scaled

down and then enlarged using the enlargement factor.

When a time-sequence plot is therefore displayed as
automatically scaled by TCPlot and the user wants to

enlarge it, care must be taken to do this in the

149

TCPlot in Action

correct order. The scaling factor must be reduced

first (Shift-F6) until a beep indicates that no

further reduction is possible. Only then should the

enlargement factor be used as shown in Figure 7. 3.

Figure 7. 4 shows the effect of enlarging the time­

sequence plot first. Here the rounded off co­

ordinates has been multiplied by an enlargement factor

resulting in a value that differs from that of the

original sequence number to such an extent that

packets are shown at half their size. As the scale is

now reduced (Shift-F6) keeping the enlargement the

same, packets and acknowledgements will vary between

half and full size (due to rounding off).

Al though the effect described above can cause

confusion, it can be avoided by using the scale

reduction first.

YKJ.000

X="s -1.00~200-300-400~500-600~70o~soo~900~1.0001.1.0&1.2001.3001.40&1.5oDJ.600J.7o&

Figure 7.4 The effect of using the enlargement
factor before reducing the scale

150

TCPlot in Action

7 .5 Interesting plots

During the testing

were inspected and

period

checked

many time-sequence plots

against the traces. In

this section a few interesting plots are discussed.

7 .5.1 Packets outside the window

In Figure 7.5 the trace of a short conversation, taken

from a fairly busy network, is shown. On the

resulting time-sequence plot (Figure 7.6), the second

packet shown is clearly outside the window. In the

trace that is the packet that arrived at 56s 67603µs.

Sek Micros Source IP Dest IP SPort DPort Seq Ack Win DLen

49 226685 198.54.58.2 198.54.58.107 10283 4377 510856235 42571 8192 1024
49 229229 198.54.58.107 198.54.58.2 34377 1028 42571 510857259 1024 0
49 235082 198.54.58.107 198.54.58.2 34377 1028 42571 510858283 1024 0
49 238075 198.54.58.2 198.54.58.107 10283 4377 510858283 42571 8192 824
49 239921 198.54.58.107 198.54.58.2 34377 1028 42571 510859107 1024 0
56 47192 198.54.58.107 198.54.58.2 34377 1028 42571 510859107 1024 55
56 49118 198.54.58.2 198.54.58.107 10283 4377 510859107 42626 8192 49
56 57792 198.54.58.107 198.54.58.2 34377 1028 42626 510859156 1024 55
56 62696 198.54.58.2 198.54.58.107 10283 4377 510859156 42681 8192 1024
56 67603 198.54.58.2 198.54.58.107 10283 4377 510860180 42681 8192 474
56 85459 198.54.58.107 198.54.58.2 34377 1028 42681 510860654 1024 55
56 90504 198.54.58.2 198.54.58.107 10283 4377 510860654 42736 8192 1024
56 93080 198.54.58.107 198.54.58.2 34377 1028 42736 510861678 1024 0
56 94944 198.54.58.2 198.54.58.107 10283 4377 510861678 42736 8192 310
56 359311 198.54.58.107 198.54.58.2 34377 1028 42736 510861988 1024 0
59 166150 198.54.58.107 198.54.58.2 34377 1028 42736 510861988 1024 55
59 169861 198.54.58.2 198.54.58.107 10283 4377 510861988 42791 8192 697
59 172160 198.54.58.107 198.54.58.2 34377 1028 42791 510862685 1024 0

Figure 7.5 Filtered trace showing a packet
arriving outside the window.

151

TCPlot in Action

I

I
~

Vx.1.000

-.1..1.00 -.1.200

Figure 7.6 Time-sequence plot showing a packet
outside the window.

On closer inspection it is clear that al though this

packet was sent outside the window, the receiver

accepted the packet. This can be deducted from the

acknowledgement number in the next packet. If we

presume that the TCP implementations of both the

receiver and sender are not at fault, the sender would

not have sent and the receiver would not have accepted

the packet outside of the offered window.

The only explanation therefore is that there was an

acknowledgement packet from the receiver acknowledging

the packet

acknowledgement

at

was

56s 62696µs

received by

and

the

that

sender,

this

thus

allowing him to send the next packet. The fact that

this packet apparently arrived at the sender but not

at the TCPlot station, could be due to the fact that

the sender and receiver were close to each other while

the TCPlot station was monitoring the network on a

distant segment. The packet could therefore have been

received by the sender, but lost before it reached the

152

TCPlot in Action

TCPlot station. The only other explanation would be

that the packet arrived at the monitoring station, but

this station failed to collect the packet from the

network interface.

7.5.2 Normal time-sequence plots

A trace taken of a conversation whilst a large file (1

Mb) was copied to a file server from a slow PC­

workstation produced the time-sequence plot shown in

Figure 7.7.

993
992
99.1.
990
989
998
98?
986
985
984
983
982
98.1.
980
979
978
977
976
975
974
973
972
971
970
969
968
967
966
965
964
963
962
961
960
V><.1.000

k~s -.1.400 -.l.'500

Figure 7.7 Time-sequence plot of a file copied from a
slow PC to a file server.

The plot clearly shows that whilst the file server

offers a large window (SK), the PC manages to send

only two packets (lK each) before an acknowledgement

is received.

153

Figure 7. 8 shows

taken whilst a

server to a PC.

TCPlot in Action

the time-sequence plot of a trace

large file was copied from a file

Here it is clear that the PC offers a

fairly small window and the file server transmits a

full window of data at a time. The two horizontal

steps in the figure shows that the PC delayed

acknowledgement of packets on those occasions. This

could have been caused by disk IO when data was

written away to a file. The small packets in the

beginning of the trace are the keystrokes to initiate

the file transfer.

454
453
452 REUEASE DIRECTION

4~U.
450
449
448
44?
446
445
4-
443
443
44J.
440
439
438
43?
436
435
434
433
432
43J.
430
429
42:8
42:?
42:6
42:S
424
423
422
42J.
V><J..000

>C=t"IIS -.1.100 ~1.200

Figure 7.8 Time-sequence plot of a file copied from a
file server to a PC.

7.5.3 Suspect time-sequence plots

While the plots as described under 7.5.2 are the

normal plots expected, tests with a fast PC as

workstation produced completely different results.

The conversation when a large file was copied from a

154

TCPlot in Action

file server to a 486DX PC produced a plot similar to

that in Figure 7.8. The conversation between a 486DX

PC and a file server whilst a large file was copied

from the PC to the file server, however, produced

results as shown in Figure 7.9.

At first glance this pointed to a TCP implementation

that was not functioning correctly. Similar results

were, however, obtained with different TCP

implementations (NCSA's ftp and LANMAN). Inspection

of the trace used to produce the plot in Figure 7. 9

showed that the plot was a true reflection of the

packets in the trace file. In the trace it can be

seen that after a window of 8K was offered by the

fileserver, up to sixteen lK packets were transmitted

by the PC before waiting for an acknowledgement.

274
273 _J
272
27.1.

i1 270
269 i' 268
267 i' 266
265 (___
264
263

i' 262
26.1. I
260
259
258 I
257

i' 256
ass

,' 254
253

r7 252
25.1.
250
249

,1 248
247

,' 246
245
244
243 I
242 i' 24.1.
V>c.1.000

X:=:Hs. ~.1.700 -.1.eoo

Figure 7.9 Time-sequence plot of a file copied from a
486DX PC to a file server

155

TCPlot in Action

In Figure 7.9 it can be seen that an acknowledgement

packet, offering a new window, should have been

received before the Y-axis value (Sequence number) of

253. As there were no such acknowledgement in the

trace file, together with the fact that several traces

showed similar discrepancies, led the author to

believe that packets were lost despite the reports by

the packet driver as discussed under 7.2.1.

To determine the integrity of the trace file, the

trace file was printed showing the values in the ID­

field of each packet. As the ID-field values of

packets from the PC to the file server can be expected

to be sequential in this case, any missing numbers

indicated packets not represented in the trace.

Inspection of the trace showed that approximately 2%

of the packets were not recorded in the trace and

could therefore be seen as lost by the monitoring

station.

The fact that packets were lost but not reported as

lost by the packet driver, indicated that the packet

driver might be at fault. Van Niekerk [Van Niekerk,

1994] confirmed that the loss of packets is eminent

when using packet drivers in promiscuous mode on a

busy network. In his experience in developing

commercial network software, this loss can be reduced

or eliminated by addressing the interface card

directly. (TCPlot was originally developed to address

the interface card directly but was modified to use

packet drivers in order to enable testing with

different interface cards.)

According to Van Niekerk, memory management software

such as EMM386, also contributes to the loss of

packets due to their utilisation of interrupts. To

determine the effect of the EMM386 program, tests were

156

done on

EMM386.

the same monitoring

The resulting plot

marked improvement

62
61
60
59
SB
57
56

SS
54
53
52
51
50
49
48
47
46
45
44
43
42
4l.
40
39
38
37
36
35
34
33
32
31
30
29
V><l.000

TCPlot in Action

station after removing

(Figure 7 .10) showed a

-.1000

Figure 7.10 Time-sequence plot of a file copied from
a 486DX PC to a file server after EMH386
has been removed from the monitor station.

Another possible explanation for the lost packets can

be found in studies done at Xerox PARC by Westley

Irish [Irish, 1994]. In his studies of the Ethernet

network at Xerox PARC, Irish found that most network

interface cards adhere to the specification of a 9.6

microsecond gap between frames (IFG) when transmitting

normal packets. The same could, however, not be said

when a card transmitted a packet directly after a

collision was detected. He found that a number of

interface card types allowed for a much too short IFG

after a collision was detected, while others will

inject a short signal burst into the network, thus

damaging the IFG.

157

TCPlot in Action

The net result of situations described above is that

the receiving interface cards will not be able to

retrieve packets, following a too short IFG, from the

network. As the controller does not see the packet,

it will not be reported as a lost packet, thereby

causing ''undetected'' packet loss. According to

Irish, this is particularly true for an interface card

operating in promiscuous mode. Using a digital

oscilloscope, Irish determined that with an Ethernet

load of 25%, a packet loss of between 1% and 5% is

possible.

Comparison between Figure 7. 8 and Figure 7. 9 shows

that when the server was transmitting, all packets

arrived safely, while when the workstation were

transmitting, packets were lost. This leaves the

possibility that a situation as described by Irish

could be a role player here.

7 .6 Getting the best results

When using TCPlot for the first time to display a

conversation, the user may be confronted with a single

line that does not seem to represent anything. In

this section a few of these cases will be discussed.

An important fact to note is that when capturing

traffic on a very quiet network, a single conversation

consisting of one packet every second or so, can show

up as containing 3 o packets in the trace after 3 o
seconds. On a time sequence-plot, however, where the

X-axis scale is in microseconds, two packets will have

to be shown as arriving ten screens apart, thus

showing a horizontal line. Extensive scaling would

be required to show these packets on one screen. The

158

TCPlot in Action

normal conversations of TCP, where there will be

several packets within microseconds of each other,

however, will produce a workable initial plot.

Another cause for concern is that the number of

packets shown on the plot seem less than that reported

when analyses of the trace was done. Remember that

the analyses also reports acknowledgements as well as

zero length packets as belonging to the conversation.

Although these packets have an effect on the

acknowledgement and window lines, they will, for

obvious reasons, not show up as packets on the plot.

A few initial plots and the actions required to scale

them properly will be discussed below.

7 .6.1 Flat horizontal plot

This might be the plot of acknowledgements only. If

the acknowledging host has no data to send, only zero

length packets will be sent, giving a horizontal line.

With this plot on screen, press F2 (selecting reverse

direction). Press enter again to display the reverse
plot.

On the other hand it might be the plot of a quiet time

in the conversation. Press the right arrow a few

times and scroll through the conversation to see if

there was any activity within the next period.

A nearly straight horizontal line (with small steps)

might indicate a wrong scale. In this case the scale

can be adjusted by pressing Shift-F6 a few times. If

this results in a beep, enlarge the plot by pressing

the up arrow.

159

TCPlot in Action

7.6.2 Plot with only a vertical line

As explained earlier in the thesis, plots might start

in the middle of a conversation, thus causing a faulty

line at the beginning of the plot. A vertical line

across the screen can be a manifestation of this.

Scale the plot by pressing F6 until other lines appear

and use the right arrow to scroll into the

conversation

7 .6.3 Scrolling through a conversation

To scroll through a conversation, press the right

arrow. As sequence numbers increase, the plot will

tend to disappear from the top of the screen. By

alternatively pressing F6 and right arrow, the plot

can be kept on screen, although smaller.

Alternatively the F4 key can be used to start the plot

later into the trace.

7.7 Areas for future research

TCPlot was developed to demonstrate the possibility to

alleviate the task of the network manager with the use

of graphics to display conversations. Determination

of faulty conversations by TCPlot, however, rests

mainly on the detection of duplicate packets.

An expert system developed to analyse conversations,

using a set rule base, would complement the technique

as described in this thesis and should be considered

for further research.

160

Conclusion

Chapter 8

Conclusion

8.1 Conclusion

Development of TCP lot was started with the goal of

using graphics to enable network managers to diagnose

faulty TCP conversations. The basic steps required to

reach this goal were listed in section 1.6.

Reaching the first of these milestones provided two

options, namely using packet drivers or addressing the

interface card directly. Technical information

regarding the interface cards from different

manufacturers, are hard to

was first explored and

successfully developed for

card.

come by, yet this option

a network monitor was

an 8-bi t !SOLAN interface

Al though this monitor performed well, this approach

was abandoned and another monitor, using packet

drivers, was developed. The need to evaluate and use

the monitor on different networks with a variety of

interface cards, prompted this change. For the same

reason the final version of TCPlot uses the monitor

with packet drivers. While the use of packet drivers

had distinct advantages, later evaluation has shown

possible disadvantages especially where lost packets

are concerned. It can be concluded that with any

future development of similar network tools, serious

consideration should be given to addressing the

interface card directly.

161

Conclusion

The high resolution timer described in section 4.3.2.3

proved effective al though the running of TCPlot in

automatic mode for prolonged time, produced strange

timestamps. This is due to the resolution range

selected when implementing the timer (see Table 4.1).

Although this places a restraint on the use of TCPlot,

normal use should not require moni taring sessions of

more than an hour. If the monitor part is used on its

own to display packets on screen (Packet Display

Mode), however, TCPlot must be terminated and

restarted hourly.

The strategy developed to identify problematic

conversations depends on the detection of duplicate

packets. While the duplicate packet count produced

with TCPlot is not accurate, it serves the purpose of

pointing out suspicious TCP conversations.

The last of the milestones were reached with the

development of the analyser part of TCPlot. During

evaluation, it was proven that by plotting a

conversation on a time-sequence plot, TCPlot not only

saves the network manager time, but makes it possible

to detect patterns in the conversation easily. It was

shown that to do the same from a trace file, would, if

possible at all, require extensive analyses of the
trace file.

Apart from the above, the ease with which TCPlot can

identify faulty conversations, giving the percentage

of duplicates for each conversation, also makes it

valuable as a first line monitor and fault detection
tool.

Al though the loss of packets (see section 7. 5. 3) is

cause for concern, refining the interface between

TCPlot and the interface card should solve this

162

Conclusion

problem. If, on the other hand, lost packets are

caused by situations as described by Irish [Irish,

1994], the whole network will be suffering from this

undetected lost packet syndrome. This could be the

cause of throughput degradation and should be

addressed.

8.2 Areas for future research

TCPlot was developed to demonstrate the possibility to

alleviate the task of the network manager with the use

of graphics to display conversations. Determination

of faulty conversations by TCPlot, however, rests

mainly on the detection of duplicate packets.

An expert system developed to analyse conversations,

using a set rule base, would complement the technique

as described in this thesis and should be considered

for further research.

With the development of switching hubs to minimise

traffic on Ethernet segments, a tool such as TCP lot

may be isolated from problematic conversations.

Future research can be directed towards developing

remote stations to monitor the network on different

segments. These remote stations could be SNMP

manageable to make the monitoring from a central
station possible.

Future research could also be directed towards the

development of tools to represent other traffic of

protocols where applicable.

163

Appendix A

Appendix A

Trace of all packets in Fintest.cap

Sek Micros Source IP Dest IP SPort DPort Seq Ack Win DI.en

46 520607 198.54.58.13 198.54.58.2 6041 23 97220939 90351867 512 1
46 586391 198.54.58.12 198.54.58.2 5580 23 96017216 682910547 384 0
46 6298 198.54.58.2 198.54.58.12 23 5580 682910547 96017216 8192 65
46 16704 198.54.58.2 198.54.58.12 23 5580 682910612 96017216 8192 162
47 76169 198.54.58.2 198.54.58.12 23 5580 682910774 96017216 8192 24
47 186325 198.54.58.12 198.54.58.2 5580 23 96017216 682910798 384 0
47 330902 198.54.58.12 198.54.58.2 5632 23 97333781 219471615 384 1
47 336086 198.54.58.2 198.54.58.12 23 5632 219471615 97333782 8192 1
47 409863 198.54.58.12 198.54.58.2 5632 23 97333782 219471616 384 1
47 416097 198.54.58.2 198.54.58.12 23 5632 219471616 97333783 8192 1
47 587353 198.54.58.12 198.54.58.2 5632 23 97333783 219471617 384 0
47 596267 198.54.58.2 198.54.58.12 23 5580 682910798 96017216 8192 68
47 676304 198.54.58.2 198.54.58.12 23 5580 682910866 96017216 8192 22
47 730475 198.54.58.12 198.54.58.2 5626 23 97044397 2033906804 384 1
47 732185 198.54.58.12 198.54.58.2 5628 23 97257532 119757789 384 1
47 736158 198.54.58.2 198.54.58.12 23 5628 119757789 97257533 8192 1
47 786503 198.54.58.12 198.54.58.2 5580 23 96017216 682910888 384 0
47 811216 198.54.58.12 198.54.58.2 5626 23 97044398 2033906804 384 2
47 816082 198.54.58.2 198.54.58.12 23 5626 2033906804 97044400 8192 8
47 896742 198.54.58.12 198.54.58.2 5628 23 97257533 119757790 384 1
47 898451 198.54.58.12 198.54.58.2 3308 2907 42131138 910247824 0 1
47 899471 198.54.58.2 198.54.58.12 2907 3308 910247824 42131139 8192 0
47 901870 198.54.58.12 198.54.58.2 3309 1832 44255417 923763643 384 1
47 902878 198.54.58.2 198.54.58.12 1832 3309 923763643 44255418 8192 0
47 906036 198.54.58.2 198.54.58.12 23 5628 119757790 97257534 8192 1
47 971032 198.54.58.12 198.54.58.2 5626 23 97044400 2033906812 384 3
47 976147 198.54.58.2 198.54.58.12 23 5626 2033906812 97044403 8192 8
48 87822 198.54.58.12 198.54.58.2 5628 23 97257534 119757791 384 0
48 370366 198.54.58.12 198.54.58.2 5626 23 97044403 2033906820 384 3
48 376138 198.54.58.2 198.54.58.12 23 5626 2033906820 97044406 8192 3
48 487088 198.54.58.12 198.54.58.2 5626 23 97044406 2033906823 384 0
48 529857 198.54.58.12 198.54.58.2 5632 23 97333783 219471617 384 1
48 536145 198.54.58.2 198.54.58.12 23 5632 219471617 97333784 8192 1
48 690926 198.54.58.12 198.54.58.2 5626 23 97044406 2033906823 384 3
48 692636 198.54.58.12 198.54.58.2 5632 23 97333784 219471618 384 0
48 696200 198.54.58.2 198.54.58.12 23 5626 2033906823 97044409 8192 3
48 891470 198.54.58.12 198.54.58.2 5626 23 97044409 2033906826 384 0
49 90362 198.54.58.12 198.54.58.2 5626 23 97044409 2033906826 384 3
49 96228 198.54.58.2 198.54.58.12 23 5626 2033906826 97044412 8192 3
49 287546 198.54.58.12 198.54.58.2 5626 23 97044412 2033906829 384 0
49 326443 198.54.58.2 198.54.58.13 23 6050 306562434 97432524 8192 7
49 336634 198.54.58.2 198.54.58.13 23 6050 306562441 97432524 8192 129
49 347083 198.54.58.2 198.54.58.13 23 6050 306562570 97432524 8192 240
49 356413 198.54.58.2 198.54.58.13 23 6050 306562810 97432524 8192 42
49 410778 198.54.58.12 198.54.58.2 5579 23 96015081 683097129 384 1
49 416298 198.54.58.2 198.54.58.12 23 5579 683097129 96015082 8192 1
49 426338 198.54.58.2 198.54.58.13 23 6050 306562852 97432524 8192 22
49 491384 198.54.58.12 198.54.58.2 5632 23 97333784 219471618 384 1
49 496264 198.54.58.2 198.54.58.12 23 5632 219471618 97333785 8192 1
49 519430 198.54.58.13 198.54.58.2 6050 23 97432524 306562874 230 0
49 570332 198.54.58.12 198.54.58.2 5579 23 96015082 683097130 384 1
49 576272 198.54.58.2 198.54.58.12 23 5579 683097130 96015083 8192 1
49 687064 198.54.58.12 198.54.58.2 5632 23 97333785 219471619 384 0
49 688777 198.54.58.12 198.54.58.2 5579 23 96015083 683097131 384 0
49 729897 198.54.58.12 198.54.58.2 5579 23 96015083 683097131 384 1
49 736272 198.54.58.2 198.54.58.12 23 5579 683097131 96015084 8192 1

164

49 839347 198.54.58.13 198.54.58.2 6050
49 895883 198.54.58.12 198.54.58.2 5579
49 969860 198.54.58.12 198.54.58.2 5579

23
23
23

97432524 306562874
96015084 683097132
96015084 683097132

512
384
384

49 973213 198.54.58.12 198.54.58.2
49 976317 198.54.58.2 198.54.58.12
50 16302 198.54.58.2 198.54.58.12
50 50587 198.54.58.12 198.54.58.2
50 56316 198.54.58.2 198.54.58.12
50 86841 198.54.58.12 198.54.58.2

5626 23 97044412 2033906829 384
23 5579 683097132 96015085 8192
23 5626 2033906829 97044413 8192

5628 23 97257534 119757791 384
23 5628

5579 23
50 187089 198.54.58.12 198.54.58.2 5628
50 371078 198.54.58.12 198.54.58.2 5626

23
23

119757791
96015085

97257535 8192
683097133 384

97257535 119757792 384
97044413 2033906829 384

0
0
l
1
l
0
l
1
0
0
1

50 372792 198.54.58.12 198.54.58.2 5632 23 97333785 219471619 384 1
50 376417 198.54.58.2 198.54.58.12 23 5632 219471619 97333786 8192 1
50 376816 198.54.58.2 198.54.58.12
50 450167 198.54.58.12 198.54.58.2
50 453520 198.54.58.12 198.54.58.2
50 456394 198.54.58.2 198.54.58.12
50 456783 198.54.58.2 198.54.58.12
50 530892 198.54.58.12 198.54.58.2
50 536375 198.54.58.2 198.54.58.12
50 586860 198.54.58.12 198.54.58.2
50 609922 198.54.58.12 198.54.58.2
50 613275 198.54.58.12 198.54.58.2
50 616481 198.54.58.2 198.54.58.12
50 616893 198.54.58.2 198.54.58.12
50 787545 198.54.58.12 198.54.58.2
50 789258 198.54.58.12 198.54.58.2
50 850084 198.54.58.12 198.54.58.2
50 856481 198.54.58.2 198.54.58.12
50 965531 198.54.58.13 198.54.58.2
50 966599 198.54.58.2 198.54.58.13
50 988157 198.54.58.12 198.54.58.2
51 116491 198.54.58.2 198.54.58.12
51 251044 198.54.58.12 198.54.58.2
51 410401 198.54.58.12 198.54.58.2

23 5626 2033906829 97044414
5626 23 97044414 2033906830
5632 23 97333786 219471620

23 5632 219471620 97333787
23 5626 2033906830 97044416

5626 23 97044416 2033906832
23 5626 2033906832 97044418

219471621 5632
5579
5626

23
23
23

97333787
96015085 683097133
97044418 2033906834

23 5626 2033906834 97044420
23 5579 683097133 96015086

5626 23 97044420 2033906836
5579 23 96015086 683097136
5628 23

23 5628
97257535

119757792
119757792

97257536
3309 1903 52259942 1636621444
1903 3309 1636621444 52259943
5628 23 97257536

23 5626 2033906836
119757793

97044420
5626
5626

23
23

97044420 2033906837
97044421 2033906837

8192
384
384

8192
8192

384
8192

384
384
384

8192
8192

384
384
384

8192
512

8190
384

8192
384
384

1
2
1
1
2
2
2
0
1
2
2
3
0
0
1
1
1
0
0
1
1
1

51 416481 198.54.58.2 198.54.58.12 23 5626 2033906837 97044422 8192 0
51 571461 198.54.58.12 198.54.58.2 5579 23 96015086 683097136 384 1
51 576545 198.54.58.2 198.54.58.12
51 688184 198.54.58.12 198.54.58.2
51 896819 198.54.58.12 198.54.58.2
51906643198.54.58.2 198.54.58.12

23 5579
5579 23
5628 23

23 5628
51 964509 198.54.58.13 198.54.58.255 513 513
52 51402 198.54.58.12 198.54.58.2 5579 23

683097136
96015087
97257536

119757793

96015087
683097137
119757793

97257537

8192
384
384

8192
4456448 16842752 13548

96015087 683097137 384

1
0
1
1

48
l

52 56611 198.54.58.2 198.54.58.12 23 5579 683097137 96015088 8192 l
52 87661 198.54.58.12 198.54.58.2 5628 23 97257537 119757794 384 0
52 130429 198.54.58.12 198.54.58.2 5626
52 133783 198.54.58.12 198.54.58.2 5628

23
23

97044422 2033906837
97257537 119757794

384
384

52 136593 198.54.58.2 198.54.58.12
52 136993 198.54.58.2 198.54.58.12

23 5628 119757794
23 5626 2033906837

97257538 8192
97044425 8192

52 188168 198.54.58.12 198.54.58.2 5579
52 291697 198.54.58.12 198.54.58.2 5628

23
23

52 293410 198.54.58.12 198.54.58.2
52 296672 198.54.58.2 198.54.58.12

5626 23
23 5628

96015088 683097138
97257538 119757795
97044425 2033906838

119757795 97257539

384
384
384

8192

3
1
1
1
0
1
0
1

52 370724 198.54.58.12 198.54.58.2 5626 23 97044425 2033906838 384 3
52 376622 198.54.58.2 198.54.58.12 23 5626 2033906838 97044428 8192 l
52 487464 198.54.58.12 198.54.58.2 5628
52 489154 198.54.58.12 198.54.58.2 5626

23
23

97257539 119757796
97044428 2033906839

384
384

0
0

52 610753 198.54.58.12 198.54.58.2 5626 23 97044428 2033906839 384 3
52 616663 198.54.58.2 198.54.58.12 23 5626 2033906839 97044431 8192 l
52 691347 198.54.58.12 198.54.58.2 5626 23 97044431 2033906840 384 3
52 696681 198.54.58.2 198.54.58.12 23 5626 2033906840 97044434 8192 5
52 720201 198.54.58.13 198.54.58.2 6041 23
52 816654 198.54.58.2 198.54.58.13 23 6041

97220947
90351875

90351875 512
97220948 8192

1
0

52 850767 198.54.58.12 198.54.58.2 5626 23 97044434 2033906845 384 3
52 856677 198.54.58.2 198.54.58.12 23 5626 2033906845 97044437 8192 5
52 931365 198.54.58.12 198.54.58.2
52 933088 198.54.58.12 198.54.58.2
52 936702 198.54.58.2 198.54.58.12
52 937102 198.54.58.2 198.54.58.12
52 987473 198.54.58.12 198.54.58.2
53 90999 198.54.58.12 198.54.58.2

5579 23
5580 23

23 5580
23 5579

5626 23
5579 23

53 92708 198.54.58.12 198.54.58.2 5580 23

165

96015088 683097138
96017216 682910888

682910888 96017217
683097138 96015089

97044437 2033906850
96015089 683097139
96017217 682910889

384
384

8192
8192

384
384
384

l
1
l
1
0
1
0

Appendix A

23 5579
6041 23

23 6041
5579 23
6041 23

23 6041
23 6041
23 6041

6041 23
23 6041

6041 23

683097139
97220948
90351875
96015090
97220949
90351876
90351889
90351926
97220950
90351933
97220950

96015090
90351875
97220949

683097140
90351876
97220950
97220950
97220950
90351933
97220950
90351940

53 96696 198.54.58.2 198.54.58.12
53 200266 198.54.58.13 198.54.58.2
53 206738 198.54.58.2 198.54.58.13
53 288257 198.54.58.12 198.54.58.2
53 364310 198.54.58.13 198.54.58.2
53 366826 198.54.58.2 198.54.58.13
53 446872 198.54.58.2 198.54.58.13
53 516850 198.54.58.2 198.54.58.13
53 600014 198.54.58.13 198.54.58.2
53 626881 198.54.58.2 198.54.58.13
53 839904 198.54.58.13 198.54.58.2
53 895933 198.54.58.12 198.54.58.2
53 917137 198.54.58.2 198.54.58.12
54 88286 198.54.58.12 198.54.58.2
54 480461 198.54.58.13 198.54.58.2
54 486948 198.54.58.2 198.54.58.13
54 691023 198.54.58.12 198.54.58.2
54 696967 198.54.58.2 198.54.58.12
54 720573 198.54.58.13 198.54.58.2
54 726992 198.54.58.2 198.54.58.13
54 800627 198.54.58.13 198.54.58.2
54 806921 198.54.58.2 198.54.58.13
54 852087 198.54.58.12 198.54.58.2
54 856934 198.54.58.2 198.54.58.12
54 893281 198.54.58.12 198.54.58.2
54 988596 198.54.58.12 198.54.58.2
54 40075 198.54.58.13 198.54.58.2
55 92120 198.54.58.12 198.54.58.2
55 96944 198.54.58.2 198.54.58.12
55 200552 198.54.58.13 198.54.58.2
55 207028 198.54.58.2 198.54.58.13

5626 23 97044437 2033906850
23 5626 2033906850 97044438

5626 23
6041 23

23 6041
5580 23

23 5580
6041 23

23 6041
6041 23

23 6041
5632 23

23 5632
5580 23
5632 23
6041 23
5580 23

23 5580
6041 23

23 6041
55 287665 198.54.58.12 198.54.58.2 5580 23
55 410908 198.54.58.12 198.54.58.2 5580 23

97044438 2033906959
97220950 90351940
90351940 97220951
96017217 682910889

682910889 96017218
97220951 90351941
90351941 97220952
97220952 90351942
90351942 97220953
97333787 219471621

219471621 97333788
96017218 682910890
97333788 219471622
97220953 90351943
96017218 682910890

682910890 96017219
97220953 90351943
90351943 97220954
96017219 682910891
96017219 682910891

8192
512

8192
384
512

8192
8192
8192

512
8192

512
384

8192
384
512

8192
384

8192
512

8192
512

8192
384

8192
384
384
512
384

8192
512

8192
384
384

55 417055 198.54.58.2 198.54.58.12 23 5580 682910891
55 440129 198.54.58.13 198.54.58.2 6041 23 97220954

96017220 8192
90351944 512

55 491495 198.54.58.12 198.54.58.2 5634 23
55 497125 198.54.58.2 198.54.58.12 23 5634
55 572121 198.54.58.12 198.54.58.2 5632 23
55 577034 198.54.58.2 198.54.58.12 23 5632
55 588681 198.54.58.12 198.54.58.2 5580 23
55 651158 198.54.58.12 198.54.58.2 5579 23
55 654509 198.54.58.12 198.54.58.2 5626 23
55 657082 198.54.58.2 198.54.58.12 23 5579

5634
5632

23
23

97430456 299397593
299397593 97430459

97333788 219471622
219471622 97333789

96017220 682910892
96015090 683097140
97044438 2033906959

683097140
97430459
97333789

55 687482 198.54.58.12 198.54.58.2
55 689195 198.54.58.12 198.54.58.2
55 787802 198.54.58.12 198.54.58.2
55 817021 198.54.58.2 198.54.58.12
55 920662 198.54.58.13 198.54.58.2
55 927160 198.54.58.2 198.54.58.13
55 971851 198.54.58.12 198.54.58.2
55 973563 198.54.58.12 198.54.58.2

5579 23 96015091
23 5626 2033906959

96015091
299397636
219471623
683097141

97044439
90351944
97220955

6041 23
23 6041

5580 23
5626 23

97220954
90351944
96017220 682910892
97044439 2033906959

384
8192

384
8192

384
384
384

8192
384
384
384

8192
512

8192
384
384

1
1
1
0
1

13
37

7
0
7
0
1

109
0
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
3

43
1
1
0
1
1
1
0
0
0
0
1
1
1
1

55 977005 198.54.58.12 198.54.58.2 5634 23 97430459 299397636 384 4
55 987179 198.54.58.2 198.54.58.12 23 5634 299397636 97430463 8192 12
55 987621 198.54.58.2 198.54.58.12 23 5626 2033906959 97044440 8192 36
56 51094 198.54.58.12 198.54.58.2 5579 23 96015091 683097141 384 1
56 54458 198.54.58.12 198.54.58.2 5634 23 97430463 299397648 384 7
56 57160 198.54.58.2 198.54.58.12 23 5634 299397648 97430470 8192 17
56 57578 198.54.58.2 198.54.58.12 23 5579 683097141 96015092 8192 1
56 67184 198.54.58.2 198.54.58.12 23 5634 299397665 97430470 8192 35
56 87578 198.54.58.12 198.54.58.2 5580 23 96017221 682910893 384 0
56 117596 198.54.58.2 198.54.58.12 2907 3308 910247824 42131139 8192 1
56 132048 198.54.58.12 198.54.58.2 5632 23
56 133771 198.54.58.12 198.54.58.2 5634 23

97333789 219471623 384
97430470 299397700 384

56 137204 198.54.58.2 198.54.58.12
56 147636 198.54.58.2 198.54.58.12
56 164251 198.54.58.13 198.54.58.2
56 188270 198.54.58.12 198.54.58.2
56 189982 198.54.58.12 198.54.58.2
56 211406 198.54.58.12 198.54.58.2
56 214760 198.54.58.12 198.54.58.2
56 217227 198.54.58.2 198.54.58.12
56 217582 198.54.58.2 198.54.58.12

23 5632 219471623
23 5634 299397700

97333790
97430477

6041 23 97220955 90351945
5626 23 97044440 2033906995
5579 23 96015092 683097142
5626 23 97044440 2033906995
5634 23 97430477 299397853

23 5626 2033906995 97044441
23 5634 299397853 97430480

166

8192
8192

512
384
384
384
384

8192
8192

1
7
1

153
0
0
0
1
3

37
0

Appendix A

56 227294 198.54.58.2 198.54.58.12 23 5634 299397853 97430480 8192 49
56 240706 198.54.58.13 198.54.58.2 6041 23 97220955 90351945 512 l
56 247102 198.54.58.2 198.54.58.13 23 6041 90351945 97220956 8192 l
56 292256 198.54.58.12 198.54.58.2 5579 23 96015092 683097142 384 l
56 293969 198.54.58.12 198.54.58.2 5634 23 97430480 299397902 384 6
56 297226 198.54.58.2 198.54.58.12 23 5579 683097142 96015093 8192 l
56 299098 198.54.58.12 198.54.58.2 5632 23 97333790 219471624 384 0
56 307395 198.54.58.2 198.54.58.12 23 5634 299397902 97430486 8192 104
56 391272 198.54.58.12 198.54.58.2 5626 23 97044441 2033907032 384 0
56 480746 198.54.58.13 198.54.58.2 6041 23 97220956
56 487109 198.54.58.2 198.54.58.13 23 6041 90351946

90351946 512
97220957 8192

56 488234 198.54.58.12 198.54.58.2 5579
56 489946 198.54.58.12 198.54.58.2 5634

23 96015093 683097143
23 97430486 299398006

5580 23
23 5580

5579 23
23 5579

5632 23
5580 23

23 5632
6041 23
5579 23

23 5579
6041 23

23 6041
5632 23

23 5632
5579 23
5632 23
6041 23

23 6041
23 6041

5626 23

96017221
682910893

96015093
683097143

97333790
96017222

219471624
97220957
96015094

683097144
97220957
90351947
97333791

219471625

682910893
96017222

683097143
96015094

219471624
682910894

97333791
90351947

683097144
96015095
90351947
97220958

219471625
97333792

96015095 683097145
97333792 219471626
97220958 90351948
90351948 97220960
90352188 97220960
97044441 2033907032

23 5626 2033907032
6041 23 97220960

97044444
90352231
97220961 23 6041

5580 23
23 5580

5626 23
6041 23

23 6041

90352231
96017222

682910894
682910894

96017223
97044444 2033907035
97220961 90352232
90352232 97220963

23 6041 90352472 97220963
5580 23 96017223 682910895
5634 23 97430486 299398006

23 5634 299398006 97430489
5626 23 97044444 2033907035

23 5626 2033907035 97044447
6041
5634

23
23

97220963 90352616
97430489 299398053

5579 23 96015095 683097145
5626 23 97044447 2033907038

384
384
384

8192
384

8192
384
384

8192
512
384

8192
512

8192
384

8192
384
384
512

8192
8192

384
8192

426
8192

384
8192

384
512

8192
8192

384
384

8192
384

8192
323
384
384
384

56 531075 198.54.58.12 198.54.58.2
56 537132 198.54.58.2 198.54.58.12
56 611672 198.54.58.12 198.54.58.2
56 617209 198.54.58.2 198.54.58.12
56 692268 198.54.58.12 198.54.58.2
56 693981 198.54.58.12 198.54.58.2
56 697154 198.54.58.2 198.54.58.12
56 720314 198.54.58.13 198.54.58.2
56 771288 198.54.58.12 198.54.58.2
56 777182 198.54.58.2 198.54.58.12
56 800868 198.54.58.13 198.54.58.2
56 807151 198.54.58.2 198.54.58.13
56 851888 198.54.58.12 198.54.58.2
56 857232 198.54.58.2 198.54.58.12
56 893075 198.54.58.12 198.54.58.2
56 988387 198.54.58.12 198.54.58.2
57 40840 198.54.58.13 198.54.58.2
57 48097 198.54.58.2 198.54.58.13
57 57290 198.54.58.2 198.54.58.13
57 172381 198.54.58.12 198.54.58.2
57 187321 198.54.58.2 198.54.58.12
57 280994 198.54.58.13 198.54.58.2
57 287243 198.54.58.2 198.54.58.13
57 331810 198.54.58.12 198.54.58.2
57 337290 198.54.58.2 198.54.58.12
57 391055 198.54.58.12 198.54.58.2
57 441030 198.54.58.13 198.54.58.2
57 448097 198.54.58.2 198.54.58.13
57 457757 198.54.58.2 198.54.58.13
57 491293 198.54.58.12 198.54.58.2
57 571839 198.54.58.12 198.54.58.2
57 577471 198.54.58.2 198.54.58.12
57 650822 198.54.58.12 198.54.58.2
57 657322 198.54.58.2 198.54.58.12
57 680588 198.54.58.13 198.54.58.2
57 688716 198.54.58.12 198.54.58.2
57 731485 198.54.58.12 198.54.58.2
57 734848 198.54.58.12 198.54.58.2
57 737342 198.54.58.2 198.54.58.12
57 747359 198.54.58.2 198.54.58.12

23 5579 683097145
23 5626 2033907038

96015096 8192
97044454 8192

1
l
0
0
1
1
1
l
l
0
l
0
l
l
l
l
1
l
0
0
2

240
43

3
3
l
1
l
l
0
2

240
144

0
3

47
3
3
0
0
1
7
3
6

57 812224 198.54.58.12 198.54.58.2 5626 23 97044454 2033907044 384 5
57 817416 198.54.58.2 198.54.58.12 23 5626 2033907044 97044459 8192 3
57 827376 198.54.58.2 198.54.58.12 23 5626 2033907047 97044459 8192 3
57 897807 198.54.58.12 198.54.58.2 5579 23 96015096 683097148 384 1
57 899521 198.54.58.12 198.54.58.2 3310 4709 51456317 673009922 384 1
57 900612 198.54.58.2 198.54.58.12 4709 3310 673009922 51456318 8192 0
57 907360 198.54.58.2 198.54.58.12 23 5579 683097148 96015097 8192 3
57 971965 198.54.58.12 198.54.58.2 5634 23 97430489 299398053 384 3
57 977461 198.54.58.2
57 988550 198.54.58.12
58 51026 198.54.58.12
58 54379 198.54.58.12
58 57453 198.54.58.2
58 67631 198.54.58.2
58 131908 198.54.58.12
58 133620 198.54.58.12

198.54.58.12
198.54.58.2
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.12
198.54.58.2
198.54.58.2

58 136974 198.54.58.12 198.54.58.2
58 137748 198.54.58.2 198.54.58.12
58 138146 198.54.58.2 198.54.58.12

23 5634
5626 23
5579 23
5632 23

23 5579
23 5634

5580 23
5632 23
5634 23

23 5632
23 5580

167

299398053 97430492
97044459 2033907050
96015097 683097151
97333792 219471626

683097151 96015098
299398102 97430498

96017223 682910895
97333793 219471626
97430498

219471626
682910895

299398211
97333795
96017224

8192
384
384
384

8192
8192

384
384
384

8192
8192

49
0
1
l
3

109
1
2
6
3
l

Appendix A

Appendix A

58 147737 198.54.58.2 198.54.58.12 23 5634 299398211 97430504 8192 117
58 164531 198.54.58.13 198.54.58.2 6041
58 188227 198.54.58.12 198.54.58.2 5579

23
23

97220963 90352616
96015098 683097154

512
384

0
0

58 212925 198.54.58.12 198.54.58.2 5634 23 97430504 299398328 384 3
58 217400 198.54.58.2 198.54.58.12 23 5634 299398328 97430507 8192 12
58 291892 198.54.58.12 198.54.58.2 5632
58 295244 198.54.58.12 198.54.58.2 5634

23
23

58 296958 198.54.58.12
58 307554 198.54.58.2
58 372723 198.54.58.12
58 374446 198.54.58.12
58 377455 198.54.58.2
58 387593 198.54.58.2
58 387936 198.54.58.2
58 451919 198.54.58.12
58 457508 198.54.58.2
58 532547 198.54.58.12
58 537508 198.54.58.2
58 588511 198.54.58.12
58 611575 198.54.58.12
58 617439 198.54.58.2
58 692169 198.54.58.12
58 697474 198.54.58.2
58 789187 198.54.58.12
58 894355 198.54.58.12
58 932201 198.54.58.12
58 937443 198.54.58.2
59 91618 198.54.58.12
59 172154 198.54.58.12
59 177488 198.54.58.2
59 288880 198.54.58.12
59 412110 198.54.58.12
59 417523 198.54.58.2
59 492706 198.54.58.12
59 497542 198.54.58.2
59 588093 198.54.58.12
59 652201 198.54.58.12
59 653913 198.54.58.12
59 657585 198.54.58.2
59 657986 198.54.58.2
59 688602 198.54.58.12
59 731363 198.54.58.12
59 737652 198.54.58.2
59 788977 198.54.58.12
59 790691 198.54.58.12

198.54.58.2
198.54.58.12
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.12
198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.12
198.54.58.2
198.54.58.2

198.54.58.12
198.54.58.2
198.54.58.2

5580 23
23 5634

5632 23
5634 23

23 5634
23 5634
23 5632

5634 23
23 5634

5632 23
23 5632

5634 23
5580 23

23 5580
5632 23

23 5632
5580 23
5632 23
5580 23

23 5580
5580 23
5579 23

23 5579
5579 23
5579 23

23 5579
5580 23

23 5580
5579 23
5579 23
5632 23

23 5632
23 5579

5580 23
5580 23

23 5580
5632 23
5579 23

97333795 219471629
97430507 299398340
96017224

299398340
97333798
97430513

299398401
299398415
219471632

97430519
299398466

97333801
219471635

97430522
96017224

682910896
97333804

219471638
96017225
97333807
96017225

682910897
96017226
96015098

683097154
96015099
96015099

683097155
96017226

682910898
96015100
96015100
97333807

219471641
683097156

96017227
96017227

682910899
97333808
96015101

682910896
97430513

219471632
299398401

97430519
97430519
97333801

299398466
97430522

219471635
97333804

299398512
682910896

96017225
219471638

97333807
682910897
219471641
682910897

96017226
682910898
683097154

96015099
683097155
683097155

96015100
682910898

96017227
683097156
683097156
219471641

97333808
96015101

682910899
682910899

96017228
219471652
683097157

384
384
384

8192
384
384

8192
8192
8192

384
8192

384
8192

384
384

8192
384

8192
384
384
384

8192
384
384

8192
384
384

8192
384

8192
384
384
384

8192
8192

384
384

8192
384
384

3
6
0

61
3
6

14
51

3
3

46
3
3
0
1
1
3
3
0
0
1
1
0
1
1
0
1
1
1
1
0
1
1

11
1
0
1
1
0
0

59 897502 198.54.58.12 198.54.58.2 5580 23 96017228 682910900 384 0
0 51940 198.54.58.12 198.54.58.2 5579 23 96015101 683097157 384 2
0 57714 198.54.58.2 198.54.58.12
0 97855 198.54.58.2 198.54.58.12
0 188426 198.54.58.12 198.54.58.2
0 197719 198.54.58.2 198.54.58.12
0 267705 198.54.58.2 198.54.58.12
0 292098 198.54.58.12 198.54.58.2
0 297692 198.54.58.2 198.54.58.12
0 347845 198.54.58.2 198.54.58.12
0 353076 198.54.58.12 198.54.58.2
0 371217 198.54.58.12 198.54.58.2
0 377694 198.54.58.2 198.54.58.12
0 398592 198.54.58.2 198.54.58.12
0 488191 198.54.58.12 198.54.58.2

23 5579 683097157
23 5579 683097161

96015103 8192
96015103 8192

5579 23
23 5579
23 5579

5580 23
23 5580
23 5579

5579 23
5632 23

23 5632
23 5579

5580 23

96015103 683097168 384
683097168 96015103 8192
683097175 96015103 8192

96017228 682910900 384
682910900 96017229 8192
683097193 96015103 8192

96015103 683097245 384
97333808 219471652 384

219471652 97333811 8192
683097245 96015103 8192

96017229 682910901 384
0 489904 198.54.58.12 198.54.58.2 5632 23 97333811 219471655 384
0 588500 198.54.58.12
0 590316 198.54.58.2
0 772753 198.54.58.12
0 787778 198.54.58.2
0 789311 198.54.58.12
0 791033 198.54.58.2
0 932487 198.54.58.12
0 947785 198.54.58.2

198.54.58.2
198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12

5579 23
23 5579

5632 23
23 5632

5579 23
23 5579

5632 23
23 5632

96015103
683097485

97333811
219471655

96015103
683097741

97333814
219471658

683097485
96015103

219471655
97333814

683097741
96015103

219471658
97333817

256
8192

384
8192

256
8192

384
8192

4
7
0
7

18
1
1

52
0
3
3

240
0
0
0

256
3
3
0

234
3
3

0 966548 198.54.58.13 198.54.58.2 3308 3986 42842917 1725165637 512 1
0 967627 198.54.58.2 198.54.58.13 3986 3308 1725165637 42842918 8189 0
0 988460 198.54.58.12 198.54.58.2 5579 23 96015103 683097975 256 0

168

1 11518 198.54.58.12 198.54.58.2 5580 23
1
1
1
1

17857 198.54.58.2 198.54.58.12
41486 198.54.58.13 198.54.58.2
47958 198.54.58.2 198.54.58.13
93758 198.54.58.12 198.54.58.2

l 107871 198.54.58.2 198.54.58.12
l 120962 198.54.58.13 198.54.58.2
1 189129 198.54.58.12 198.54.58.2
1 251606 198.54.58.12 198.54.58.2
l 257914 198.54.58.2 198.54.58.12
1 289503 198.54.58.12 198.54.58.2
l 391392 198.54.58.12 198.54.58.2
1 528006 198.54.58.2 198.54.58.12
l 558760 198.54.58.2 198.54.58.12
l 568091 198.54.58.2 198.54.58.12

23 5580
6050 23

23 6050
5632 23

23 5632
6050 23
5580 23
5632 23

23 5632
5579 23
5632 23

23 5580
23 5580
23 5580

1 689111 198.54.58.12 198.54.58.2 5580
1 731879 198.54.58.12 198.54.58.2 5579

23
23

96017229 682910901
682910901

97432524
306562874

97333817
219471661

97432525
96017231
97333820

219471664
96015103
97333823

682910905
682910918
682911158

96017231
306562874

97432525
219471661

97333820
306562926
682910905
219471664

97333823
683097975
219471667

96017231
96017231
96017231

384
8192

512
8192

384
8192

512
384
384

8192
384
384

8192
8192
8192

96017231 682911216 256
96015103 683097975 384

2
4
l

52
3
3
0
0
3
3
0
0

13
240

58
0
3

1 737855 198.54.58.2 198.54.58.12 23 5579 683097975 96015106 8192 3
1 897868 198.54.58.12 198.54.58.2 5579 23 96015106 683097978 384 0
l 988258 198.54.58.12 198.54.58.2 5580
2 211670 198.54.58.12 198.54.58.2 5579

23
23

2 217909 198.54.58.2 198.54.58.12
2 292265 198.54.58.12 198.54.58.2
2 297892 198.54.58.2 198.54.58.12
2 372863 198.54.58.12 198.54.58.2
2 374581 198.54.58.12
2 377991 198.54.58.2
2 387918 198.54.58.2
2 451957 198.54.58.12

198.54.58.2
198.54.58.12
198.54.58.12
198.54.58.2

2 457912 198.54.58.2 198.54.58.12
2 532551 198.54.58.12 198.54.58.2
2 537928 198.54.58.2 198.54.58.12
2 588513 198.54.58.12 198.54.58.2
2 611573 198.54.58.12 198.54.58.2
2 618015 198.54.58.2 198.54.58.12
2 692178 198.54.58.12 198.54.58.2
2 697972 198.54.58.2 198.54.58.12
2 772785 198.54.58.12 198.54.58.2
2 788533 198.54.58.2 198.54.58.12
2 851881 198.54.58.12 198.54.58.2
2 858068 198.54.58.2 198.54.58.12
2 868208 198.54.58.2 198.54.58.12
2 932609 198.54.58.12 198.54.58.2
2 948332 198.54.58.2 198.54.58.12
3 13299 198.54.58.12 198.54.58.2
3 17964 198.54.58.2 198.54.58.12
3 28584 198.54.58.2 198.54.58.12
3 92456 198.54.58.12 198.54.58.2
3 98087 198.54.58.2 198.54.58.12
3 108209 198.54.58.2 198.54.58.12
3 173197 198.54.58.12 198.54.58.2
3 188372 198.54.58.2 198.54.58.12
3 252240 198.54.58.12 198.54.58.2

23 5579
5579 23

23 5579
5579 23
5632

23
23

5579

23
5579
5632

23
23 5579

5579 23
23 5579

5632 23
5579 23

23 5579
5579 23

23 5579
5579 23

23 5579
5579 23

23 5579
23 5579

5579 23
23 5579

5579 23
23 5579
23 5579

5579 23
23 5579
23 5579

5579 23
23 5579

5579 23

96017231 682911216
96015106 683097978

683097978
96015112

683097981
96015118
97333823

683097985
219471667

96015121
683097988

96015127
683097993

97333824
96015133

683097997
96015140

683098002
96015146

683098021
96015151

683098202
683098215

96015157
683098306

96015163
683098419
683098419

96015169
683098610
683098623

96015175
683098719

96015181

96015112
683097981

96015118
683097985
219471667

96015121
97333824

683097988
96015127

683097993
96015133

219471668
683097997

96015140
683098002

96015146
683098021

96015151
683098202

96015157
96015157

683098306
96015163

683098419
96015169
96015169

683098610
96015175
96015175

683098719
96015181

683098837

384
384

8192
384

8192
384
384

8192
8192

384
8192

384
8192

384
384

8192
384

8192
384

8192
256

8192
8192

256
8192

256
8192
8192

128
8192
8192

128
8192

0

0
6
3
6
4
3
1
3
1
6
5
6
4
0
7
5
6

19
5

181
6

13
91

6
113

6
0

191
6

13
96

6
118

6
3 332779 198.54.58.12 198.54.58.2 5579 23 96015187 683098837 128 6
3 405989 198.54.58.4 198.54.58.255 520 520 33554432 33619968 0 492
3 407164 198.54.58.4 198.54.58.255 520 520 33554432 33619968 0 492
3 408330 198.54.58.4 198.54.58.255 520 520 33554432 33619968 0 492
3 409508 198.54.58.4 198.54.58.255 520 520 33554432 33619968 0 492
3 410695 198.54.58.4 198.54.58.255 520 520 33554432 33619968 0 492
3 412015 198.54.58.4 198.54.58.255 520 520 30932992 33619968 0 452
3 414350 198.54.58.12 198.54.58.2 5579 23 96015193 683098837 256 6
3 416222 198.54.58.2
3 493503 198.54.58.12
3 498055 198.54.58.2
3 588876 198.54.58.12
3 689120 198.54.58.12
3 989711 198.54.58.12
3 991047 198.54.58.2
4 118347 198.54.58.2

198.54.58.12
198.54.58.2

198.54.58.12
198.54.58.2

23 5579
5632 23

23 5632
5579 23

198.54.58.2 5632 23
198.54.58.2 5579 23

198.54.58.12 23 5579
128.100.75.10 4968 70

4 188658 198.54.58.12 198.54.58.2
4 453117 198.54.58.12 198.54.58.2
4 458167 198.54.58.2 198.54.58.12

5579 23
5632 23

23 5632

169

683098837
97333824

219471668
96015199
97333825
96015199

683099093
180416027

96015199
97333825

219471669

96015199
219471668

97333825
683099093
219471669
683099093

96015199
507257430
683099229
219471669

97333826

8192
384

8192
128
384
384

8192
8192

384
384

8192

256
l
l
0
0
0

136
0
0
1
l

Appendix A

Appendix A

4 565997 198.54.58.13 198.54.58.2 6050 23 97432525 306562926 512 l
4 568276 198.54.58.2 198.54.58.13 23 6050 306562926 97432526 8192 4
4 589548 198.54.58.12 198.54.58.2 5632 23 97333826 219471670 384 0
4 612611 198.54.58.12 198.54.58.2 5632 23 97333826 219471670 384 l
4 618216 198.54.58.2 198.54.58.12 23 5632 219471670 97333827 8192 1
4 693205 198.54.58.12 198.54.58.2 5632 23 97333827 219471671 384 l
4 698199 198.54.58.2 198.54.58.12 23 5632 219471671 97333828 8192 l
4 801479 198.54.58.13 198.54.58.2 6050 23 97432526 306562930 512 0
4 893678 198.54.58.12 198.54.58.2 5632 23 97333828 219471672 384 0
4 967201 198.54.58.13 198.54.58.2 6050 23 97432526 306562930 512 l
4 978236 198.54.58.2 198.54.58.13 23 6050 306562930 97432527 8192 l
5 201531 198.54.58.13 198.54.58.2 6050 23 97432527 306562931 512 0
5 282089 198.54.58.13 198.54.58.2 6050 23 97432527 306562931 512 l
5 288309 198.54.58.2 198.54.58.13 23 6050 306562931 97432528 8192 1
5 442141 198.54.58.13 198.54.58.2 6050 23 97432528 306562932 512 l
5 448276 198.54.58.2 198.54.58.13 23 6050 306562932 97432529 8192 1
5 493138 198.54.58.12 198.54.58.2 5579 23 96015199 683099229 384 l
5 494849 198.54.58.12 198.54.58.2 5634 23 97430522 299398512 384 3
5 498384 198.54.58.2 198.54.58.12 23 5634 299398512 97430525 8192 3
5 618322 198.54.58.2 198.54.58.12 23 5579 683099229 96015200 8192 0
5 652698 198.54.58.12 198.54.58.2 5579 23 96015200 683099229 384 l
5 658325 198.54.58.2 198.54.58.12 23 5579 683099229 96015201 8192 l
5 682150 198.54.58.13 198.54.58.2 6050 23 97432529 306562933 512 l
5 688320 198.54.58.2 198.54.58.13 23 6050 306562933 97432530 8192 1
5 688957 198.54.58.12 198.54.58.2 5634 23 97430525 299398515 384 0
5 789193 198.54.58.12 198.54.58.2 5579 23 96015201 683099230 384 0
5 812255 198.54.58.12 198.54.58.2 5579 23 96015201 683099230 384 l
5 818358 198.54.58.2 198.54.58.12 23 5579 683099230 96015202 8192 l
5 921683 198.54.58.13 198.54.58.2 6050 23 97432530 306562934 512 0
5 973320 198.54.58.12 198.54.58.2 5634 23 97430525 299398515 384 6
5 978435 198.54.58.2 198.54.58.12 23 5634 299398515 97430531 8192 6
5 989878 198.54.58.12 198.54.58.2 5579 23 96015202 683099231 384 0
6 2187 198.54.58.13 198.54.58.2 6050 23 97432530 306562934 512 1
6 8412 198.54.58.2 198.54.58.13 23 6050 306562934 97432531 8192 l
6 52350 198.54.58.12 198.54.58.2 5632 23 97333828 219471672 384 l
6 55699 198.54.58.12 198.54.58.2 5634 23 97430531 299398521 384 6
6 58395 198.54.58.2 198.54.58.12 23 5634 299398521 97430537 8192 4
6 58795 198.54.58.2 198.54.58.12 23 5632 219471672 97333829 8192 1
6 68427 198.54.58.2 198.54.58.12 23 5634 299398525 97430537 8192 6
6 133132 198.54.58.12 198.54.58.2 5632 23 97333829 219471673 384 l
6 134845 198.54.58.12 198.54.58.2 5634 23 97430537 299398531 384 3
6 138424 198.54.58.2 198.54.58.12 23 5634 299398531 97430540 8192 5
6 138823 198.54.58.2 198.54.58.12 23 5632 219471673 97333830 8192 1
6 241684 198.54.58.13 198.54.58.2 6050 23 97432531 306562935 512 0
6 292690 198.54.58.12 198.54.58.2 5634 23 97430540 299398536 384 0
6 294403 198.54.58.12 198.54.58.2 5632 23 97333830 219471674 384 0
6 318450 198.54.58.2 198.54.58.12 23 5579 683099231 96015202 8192 1
6 452189 198.54.58.12 198.54.58.2 5579 23 96015202 683099232 384 l
6 455541 198.54.58.12 198.54.58.2 5634 23 97430540 299398536 384 3
6 458498 198.54.58.2 198.54.58.12 23 5634 299398536 97430543 8192 3
6 532855 198.54.58.12 198.54.58.2 5579 23 96015203 683099232 384 l
6 538452 198.54.58.2 198.54.58.12 23 5579 683099232 96015204 8192 12
6 588821 198.54.58.12 198.54.58.2 5634 23 97430543 299398539 384 0
6 608506 198.54.58.2 198.54.58.12 23 5579 683099244 96015204 8192 7
6 613589 198.54.58.12 198.54.58.2 5634 23 97430543 299398539 384 3

L70

Appendix B

Filtered Trace

Sek Micros Source IP Dest IP SPort DPort Seq Ack Win DLen

49 410778 198.54.58.12 198.54.58.2 5579 23 96015081 683097129 384 1
49 416298 198.54.58.2 198.54.58.12 23 5579 683097129 96015082 8192 1
49 570332 198.54.58.12 198.54.58.2 5579 23 96015082 683097130 384 1
49 576272 198.54.58.2 198.54.58.12 23 5579 683097130 96015083 8192 1
49 688777 198.54.58.12 198.54.58.2 5579 23 96015083 683097131 384 0
49 729897 198.54.58.12 198.54.58.2 5579 23 96015083 683097131 384 1
49 736272 198.54.58.2 198.54.58.12 23 5579 683097131 96015084 8192 1
49 895883 198.54.58.12 198.54.58.2 5579 23 96015084 683097132 384 0
49 969860 198.54.58.12 198.54.58.2 5579 23 96015084 683097132 384 1
49 976317 198.54.58.2 198.54.58.12 23 5579 683097132 96015085 8192 1
50 86841 198.54.58.12 198.54.58.2 5579 23 96015085 683097133 384 0
50 609922 198.54.58.12 198.54.58.2 5579 23 96015085 683097133 384 1
50 616893 198.54.58.2 198.54.58.12 23 5579 683097133 96015086 8192 3
50 789258 198.54.58.12 198.54.58.2 5579 23 96015086 683097136 384 0
51 571461 198.54.58.12 198.54.58.2 5579 23 96015086 683097136 384 1
51 576545 198.54.58.2 198.54.58.12 23 5579 683097136 96015087 8192 1
51 688184 198.54.58.12 198.54.58.2 5579 23 96015087 683097137 384 0
52 51402 198.54.58.12 198.54.58.2 5579 23 96015087 683097137 384 1
52 56611 198.54.58.2 198.54.58.12 23 5579 683097137 96015088 8192 1
52 188168 198.54.58.12 198.54.58.2 5579 23 96015088 683097138 384 0
52 931365 198.54.58.12 198.54.58.2 5579 23 96015088 683097138 384 1
52 937102 198.54.58.2 198.54.58.12 23 5579 683097138 96015089 8192 1
53 90999 198.54.58.12 198.54.58.2 5579 23 96015089 683097139 384 1
53 96696 198.54.58.2 198.54.58.12 23 5579 683097139 96015090 8192 1
53 288257 198.54.58.12 198.54.58.2 5579 23 96015090 683097140 384 0
55 651158 198.54.58.12 198.54.58.2 5579 23 96015090 683097140 384 1
55 657082 198.54.58.2 198.54.58.12 23 5579 683097140 96015091 8192 1
55 787802 198.54.58.12 198.54.58.2 5579 23 96015091 683097141 384 0
55 51094 198.54.58.12 198.54.58.2 5579 23 96015091 683097141 384 1
56 57578 198.54.58.2 198.54.58.12 23 5579 683097141 96015092 8192 1
56 189982 198.54.58.12 198.54.58.2 5579 23 96015092 683097142 384 0
56 292256 198.54.58.12 198.54.58.2 5579 23 96015092 683097142 384 1
56 297226 198.54.58.2 198.54.58.12 23 5579 683097142 96015093 8192 1
56 488234 198.54.58.12 198.54.58.2 5579 23 96015093 683097143 384 0
56 611672 198.54.58.12 198.54.58.2 5579 23 96015093 683097143 384 1
56 617209 198.54.58.2 198.54.58.12 23 5579 683097143 96015094 8192 1
56 771288 198.54.58.12 198.54.58.2 5579 23 96015094 683097144 384 1
56 777182 198.54.58.2 198.54.58.12 23 5579 683097144 96015095 8192 1
56 893075 198.54.58.12 198.54.58.2 5579 23 96015095 683097145 384 0
57 731485 198.54.58.12 198.54.58.2 5579 23 96015095 683097145 384 1
57 737342 198.54.58.2 198.54.58.12 23 5579 683097145 96015096 8192 3
57 897807 198.54.58.12 198.54.58.2 5579 23 96015096 683097148 384 1
57 907360 198.54.58.2 198.54.58.12 23 5579 683097148 96015097 8192 3
58 51026 198.54.58.12 198.54.58.2 5579 23 96015097 683097151 384 1
58 57453 198.54.58.2 198.54.58.12 23 5579 683097151 96015098 8192 3
58 188227 198.54.58.12 198.54.58.2 5579 23 96015098 683097154 384 0
59 172154 198.54.58.12 198.54.58.2 5579 23 96015098 683097154 384 1
59 177488 198.54.58.2 198.54.58.12 23 5579 683097154 96015099 8192 1
59 288880 198.54.58.12 198.54.58.2 5579 23 96015099 683097155 384 0
59 412110 198.54.58.12 198.54.58.2 5579 23 96015099 683097155 384 1
59 417523 198.54.58.2 198.54.58.12 23 5579 683097155 96015100 8192 1
59 588093 198.54.58.12 198.54.58.2 5579 23 96015100 683097156 384 0
59 652201 198.54.58.12 198.54.58.2 5579 23 96015100 683097156 384 1
59 657986 198.54.58.2 198.54.58.12 23 5579 683097156 96015101 8192 1
59 790691 198.54.58.12 198.54.58.2 5579 23 96015101 683097157 384 0
60 51940 198.54.58.12 198.54.58.2 5579 23 96015101 683097157 384 2
60 57714 198.54.58.2 198.54.58.12 23 5579 683097157 96015103 8192 4
0 97855 198.54.58.2 198.54.58.12 23 5579 683097161 96015103 8192 7
0 188426 198.54.58.12 198.54.58.2 5579 23 96015103 683097168 384 0

171

0 197719 198.54.58.2 198.54.58.12 23 5579 683097168 96015103 8192 7
0 267705 198.54.58.2 198.54.58.12 23 5579 683097175 96015103 8192 18
0 347845 198.54.58.2 198.54.58.12 23 5579 683097193 96015103 8192 52
0 353076 198.54.58.12 198.54.58.2 5579 23 96015103 683097245 384 0
0 398592 198.54.58.2 198.54.58.12 23 5579 683097245 96015103 8192 240
0 588500 198.54.58.12 198.54.58.2 5579 23 96015103 683097485 256 0
0 590316 198.54.58.2 198.54.58.12 23 5579 683097485 96015103 8192 256
0 789311 198.54.58.12 198.54.58.2 5579 23 96015103 683097741 256 0
0 791033 198.54.58.2 198.54.58.12 23 5579 683097741 96015103 8192 234
0 988460 198.54.58.12 198.54.58.2 5579 23 96015103 683097975 256 0
1 289503 198.54.58.12 198.54.58.2 5579 23 96015103 683097975 384 0
1 731879 198.54.58.12 198.54.58.2 5579 23 96015103 683097975 384 3
1 737855 198.54.58.2 198.54.58.12 23 5579 683097975 96015106 8192 3
1 897868 198.54.58.12 198.54.58.2 5579 23 96015106 683097978 384 0
2 211670 198.54.58.12 198.54.58.2 5579 23 96015106 683097978 384 6
2 217909 198.54.58.2 198.54.58.12 23 5579 683097978 96015112 8192 3
2 292265 198.54.58.12 198.54.58.2 5579 23 96015112 683097981 384 6
2 297892 198.54.58.2 198.54.58.12 23 5579 683097981 96015118 8192 4
2 372863 198.54.58.12 198.54.58.2 5579 23 96015118 683097985 384 3
2 377991 198.54.58.2 198.54.58.12 23 5579 683097985 96015121 8192 3
2 451957 198.54.58.12 198.54.58.2 5579 23 96015121 683097988 384 6
2 457912 198.54.58.2 198.54.58.12 23 5579 683097988 96015127 8192 5
2 532551 198.54.58.12 198.54.58.2 5579 23 96015127 683097993 384 6
2 537928 198.54.58.2 198.54.58.12 23 5579 683097993 96015133 8192 4
2 611573 198.54.58.12 198.54.58.2 5579 23 96015133 683097997 384 7
2 618015 198.54.58.2 198.54.58.12 23 5579 683097997 96015140 8192 5
2 692178 198.54.58.12 198.54.58.2 5579 23 96015140 683098002 384 6
2 697972 198.54.58.2 198.54.58.12 23 5579 683098002 96015146 8192 19
2 772785 198.54.58.12 198.54.58.2 5579 23 96015146 683098021 384 5
2 788533 198.54.58.2 198.54.58.12 23 5579 683098021 96015151 8192 181
2 851881 198.54.58.12 198.54.58.2 5579 23 96015151 683098202 256 6
2 858068 198.54.58.2 198.54.58.12 23 5579 683098202 96015157 8192 13
2 868208 198.54.58.2 198.54.58.12 23 5579 683098215 96015157 8192 91
2 932609 198.54.58.12 198.54.58.2 5579 23 96015157 683098306 256 6
2 948332 198.54.58.2 198.54.58.12 23 5579 683098306 96015163 8192 113
3 13299 198.54.58.12 198.54.58.2 5579 23 96015163 683098419 256 6
3 17964 198.54.58.2 198.54.58.12 23 5579 683098419 96015169 8192 0
3 28584 198.54.58.2 198.54.58.12 23 5579 683098419 96015169 8192 191
3 92456 198.54.58.12 198.54.58.2 5579 23 96015169 683098610 128 6
3 98087 198.54.58.2 198.54.58.12 23 5579 683098610 96015175 8192 13
3 108209 198.54.58.2 198.54.58.12 23 5579 683098623 96015175 8192 96
3 173197 198.54.58.12 198.54.58.2 5579 23 96015175 683098719 128 6
3 188372 198.54.58.2 198.54.58.12 23 5579 683098719 96015181 8192 118
3 252240 198.54.58.12 198.54.58.2 5579 23 96015181 683098837 0 6
3 332779 198.54.58.12 198.54.58.2 5579 23 96015187 683098837 128 6
3 414350 198.54.58.12 198.54.58.2 5579 23 96015193 683098837 256 6
3 416222 198.54.58.2 198.54.58.12 23 5579 683098837 96015199 8192 256
3 588876 198.54.58.12 198.54.58.2 5579 23 96015199 683099093 128 0
3 989711 198.54.58.12 198.54.58.2 5579 23 96015199 683099093 384 0
3 991047 198.54.58.2 198.54.58.12 23 5579 683099093 96015199 8192 136
4 188658 198.54.58.12 198.54.58.2 5579 23 96015199 683099229 384 0
5 493138 198.54.58.12 198.54.58.2 5579 23 96015199 683099229 384 1
5 618322 198.54.58.2 198.54.58.12 23 5579 683099229 96015200 8192 0
5 652698 198.54.58.12 198.54.58.2 5579 23 96015200 683099229 384 1
5 658325 198.54.58.2 198.54.58.12 23 5579 683099229 96015201 8192 1
5 789193 198.54.58.12 198.54.58.2 5579 23 96015201 683099230 384 0
5 812255 198.54.58.12 198.54.58.2 5579 23 96015201 683099230 384 1
5 818358 198.54.58.2 198.54.58.12 23 5579 683099230 96015202 8192 1
5 989878 198.54.58.12 198.54.58.2 5579 23 96015202 683099231 384 0
6 318450 198.54.58.2 198.54.58.12 23 5579 683099231 96015202 8192 1
6 452189 198.54.58.12 198.54.58.2 5579 23 96015202 683099232 384 1
6 532855 198.54.58.12 198.54.58.2 5579 23 96015203 683099232 384 1
6 538452 198.54.58.2 198.54.58.12 23 5579 683099232 96015204 8192 12
6 608506 198.54.58.2 198.54.58.12 23 5579 683099244 96015204 8192 7

172

173

Bibliography

Bibliography

Ben-Artzi, A., Chandna,A. & Warrier, U. (1990, July) Network Management of

TCP/IP Networks: Present and Future. IEEE Network Magazine, Vol 4

(4), pp 35-43.

BICC Data Network Limited. (1986, June) The 4100 series Controller interface

Manual. Hemel Hempstead, United Kingdom.

Black, U. (l 992a). Network Management Standard,;;. New York: McGraw-Hill.

Black, U. (1992b). TCP;JP and Related Protocols.

New York: McGraw-Hill.

Case, J.D.; Fedor,M.; Schoffstall,M.L.; Davin,J (1988, August) Simple Network

Management Protocol. Request For Comment 1067, DDN Network

Information Centre,. SRI International.

Clark, D.C.(1982, July) Window and Acknowlegment Stategy in TL""'P. Request

For Comment 813, DDN Network Information Centre, SRI International.

Comer, D.E. & Stevens, D.L. (1991) lnternetworking with TCP/IP Volume II.

New Jersey: Prentice Hall.

Dallas, I.N.; Spratt.E.B & Cabanel, J.P. (1991) Issues in LAN Management, II.

(Procedings of the IFIP TC6/WG6, 4a International Symposium on the

management of Local Communications Systems, Canterbury, U.K., 18-19

September, 1990) North-Holland: Elsevier Science Publishers.

Derfler, F.J. (1990, June) Lan Analyzers. PC Magazine, Vol 9 (12), pp 205-241.

Doepnik, JR (1990). Packet Vrivers made simple

PktDrv9.zip). Utah State University, Utah.

(File Packet_d.109 m

Falaki, S.O. & Sorensen, S.A. (1992) Traffic Measurement on a Local Area

Computer Network. Computer Communications, Vol 15 (3), pp 192-197.

Fisher, S. (1989, December) lhe debate between SNMP and CMIP rolls on.

Lantimes. pp 192-197.

Greenfield, D. (1991, September) Network Management Filters Down to the

Desktop. Datacommunications, Vol 20, pp 39-42.

Halsall, F. & Modiri, M. (1990) Protocol analyser for the monitor and analysis

of OSI networks. Computer Communications, Vol 13(9), pp 533-541.

Herman, J. (1990, November) Enterprise Management Vendors Shoot it out.

Datacommunications, Vol 19, pp 92-110.

Held, G (1992) Network Management: Techniques, Tools and Systems.

Chicester, England: John Wiley and Sons Ltd.

ISO DIS 7498/4, (1987). Information Processing System - Open System

Interconnection - Basic Reference Model Part 4. OSI Management

Framework. Geneva: ISO.

Intel Corporation. (1989) Intel 386 Board Technical Reference Manual, Santa

Clara, California.

ii

Bibliography

Irish, W. (1994) Performance problems on high utilization Ethemets,

Electronic ariticle to be published as : Investigations into observerved

performance problems on high utilization Ethernet networks, PARC Blue

White Report. Avaliable from wirish@parc.xerox.com.

lander, M. (1991, September) (MJP Gets a New Chance. Datacommunications,

Vol 20, pp 51-56.

lander, M. (1993, January). Diagnosing and Test Equipment.

Datacommunications, Vol 22, pp 104-106.

Jongerius, J. (1991, July). Accurately Timing Window Events Without Timer

Reprogramming. Microsoft Systems Journal.

Kauffels, F. (1992) Network Management (translated from German by S.S.

Wilson). Workinham: Addison-Wesley. (Original work published 1992).

Lew, H.K & Robertson, J. (1989, August) TCP/IP network management with an

eye towards OSI. Datacommunications, Vol 18, pp 123-130.

Michalski, A (1991) Managing the Allay of rings in Local Communication

Systems.. Issues in LAN Management, II.

Miller, M.A. (1992) Troubelshooting TL"'PIIP : Analizing the Protocols of the

Intemet. San Mateo : M&T Books.

Mogul, J.C. (1990) Efficient Use of Workstations for Passive Monitoring of

Local Area Networks. Palo Alto : Digital Equipment Corporation

Western Research Laboratory.

iii

Nemzow, M. (1988) Keeping the Link: Ethernet installation & Management.

New York: McGraw-Hill.

Perkins, C. (1990) Managing Stuctured Networks. Paper presented at the Data

Communications Technology Update International Conference in Pretoria.

Postel, J.B.; Reynolds, J.K. (1988, February) Standard.for transmission of IP

datagrams over JE'EE 802 networks. Request For Comment 1042. DDN

Network Information Centre, SRI International.

Prinsloo, P.W. (1991) Modern Hardware and Software Techniques for managing

Ethernet (JEEA' 802.3) Local Area Networks Paper presented at the joint

SAIEE/CSSA Symposium in Pretoria.

Protogeros, A. & Ball, E. (1990) Traffic Analyser and Generator. Computer

Communications, Vol 13(8), pp 469-477.

Rehmann, 0 (1993) PKTDRVR Interface for Turbo Pascal 7.0. (Public Domain

file available on Internet).

Reynolds, J.K; Postel, J.B. (1987, May) Assigned Numbers. Request For

Comment 1010. DDN Network Information Centre, SRI International.

Roden, T. (1992, September) High-Resolution Timing, Dr.Dobbs Journal,

Vol 7 (9), pp 42-48,110.

Romkey, J. (1989). PC/TCP Packet Driver Specification Version 1. 09,

Wakefield: FTP Software, Inc.

Sekkaki, A & Westphall, C.B. (1991) Heterogeneous LANs Management. Issues

in LAN Management, II.

iv

Bibliography

Shepard, T.J. .(1991) TCP Packet Trace Analysis. Unpublished Masters Thesis,

Massachusetts Institute of Technology, Cambridge.

Spanier, S. (1988) Designing and implementing af a LAN monitoring tool.

Computer Communications, Vol 11(2), pp 85-89.

Stevens, W.R. (1993) TCP/JP illustrated, Volume 1: The Protocol. New York:

Addison-Westley.

Sudama, R. & Dah-Ming, C. (1990) Experiences of Designing a Sophisticated

Network Monitor. Software-Practice and Experience, Vol. 20(6), pp 555-

570.

Van Niekerk, G.P. (1991) TCP/JP. (based on Introduction to Internet Protocols.

Hendrick, C.L. Rutgers University). Unpublished seminar.

Van Niekerk, G.P. (1994), Personal communication, 13 September.

White, D. (1989, July) internet Management SNMP and CMOT: Two ways to

do the same thing. Lan Magazine pp 147-150.

Whyatt, AL. (1987) Using assembly Language. Carmel, Indiana. Que

Corporation.

v

Samevatting

Waar hoevlak protokolle die gebruiker

afskerm van onderliggende probleme in die

netwerk, is dit vir die netwerkbestuurder

juis nodig om vroegtydig bewus te wees van

sluimerende probleme. Alhoewel daar
hulpmiddels, in die vorm van netwerk-

bestuurspakkette, bestaan om horn behulpsaam

te wees met die identifisering en ontleding

van netwerkfoute, is hulle dikwels

ontoereikend.

Bestaande netwerkbestuurspakkette maak tot

'n mate voorsiening vir die ontleding van

verkeer op 'n netwerk. Waar 'n enkele

verbinding egter as 'n geheel beskou moet

word, word verslae van alle pakkies op die

netwerk as voldoende beskou. Die verant­

woordel ikheid vir die ontleding van hierdie

verslae bly die van die netwerkbestuurder.

Hierdie tesis beskryf die ontwikkeling van

'n program wat die moni tering en ontleding

van 'n enkele TCP gesprek op 'n Ethernet-
netwerk moontlik maak. Deur die

identifisering van foutiewe verbindings te

vergemaklik en die grafiese voorstelling

daarvan moontlik te maak, lewer TCPlot 'n

bydrae tot netwerkbestuur.

