
 

SECONDARY STAR SURFACE MAGNETIC ACTIVITY AND MASS 

TRANSFER IN CATACLYSMIC VARIABLES 

 

 

 

 

 

By 

Edward Jurua 

B.Sc. Hons  

 

This dissertation is submitted in accordance with the requirement for the  

Degree of Master of Science 

in the 

Faculty of Natural and Agricultural Sciences 

Department of Physics 

at the University of the Free State 

South Africa. 

 

 

 

 

 

 

Supervisor: Prof. P.J. Meintjes 

 

May 30, 2005 



  ii 

 

To Nathan Bright Yikki 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  iii 

 

Acknowledgement 

 

I wish to extend my sincere gratitude and deepest appreciation to my supervisor Prof. P.J. 

Meintjes for his great ideas and from whom I have learnt so much. 

 

I am also grateful to the NASSP
1
/Ford Foundation, for the scholarship and other financial 

support, without which I wouldn’t have done this study. 

 

I also extend my sincere gratitude and appreciation to Mbarara University of Science and 

Technology, University of Cape Town and the Department of Physics, University of the 

Free State for their financial and moral support. 

 

I would also like to thank the following for their valuable inputs into this study: 

 

Prof. Peter Dunsby, the NASSP coordinator, for his advice and encouragement. 

 

Simon Anguma Katrini, for his support and encouragement. 

 

All my friends, for their moral support. 

 

I also extend my heartfelt respect and deepest love to my family for their continued 

support and encouragement throughout my studies. 

 

Above all, I must thank the Almighty God for blessing me abundantly and providing me 

with everything I needed throughout my studies. “How we praise God, the Father of our 

Lord Jesus Christ, who has blessed us with every blessing in heaven because we belong 

to Christ” (Ephesians 1:3). 

 

 

                                                 
1
 National Astrophysics and Space Science Programme. 



  iv 

 

Abstract 
 

 

In this study it is shown that secondary star magnetic fields influence the mass transfer 

process in close interacting binaries, especially cataclysmic variables (CVs) and thus play 

a fundamental role in the whole mass transfer process, and evolution of these systems.  

 

The Mestel and Spruit (1987) stellar wind theory is used to model the surface magnetic 

field of the secondary star in CVs, particularly the intermediate polars, constraining the 

angular momentum that is required to drive the observed mass transfer rate through 

Roche lobe overflow. This in turn allows solving for the mass transfer rates, via magnetic 

braking, and the surface polar magnetic field of these stars. These field strengths are used 

to study and constrain magnetic advection from the secondary star to the primary star, 

and its effect on the mass flow in the funnel in magnetic CVs. This has important 

consequences for the so-called magnetic viscosity in the accretion discs of disc accreting 

magnetic cataclysmic variables, which are fed by these magnetic secondary stars. 

 

It is shown that the mass transfer rates in these systems vary with orbital period, with 

lower mass transfer rates in more compact systems than in the wider systems. It is also 

shown that advection of magnetic flux into the funnel results in severe magnetic viscosity 

at the L1 region. The advected magnetic field into the funnel flow results in a magnetized 

flow and enhanced magnetic pressure in the L1 region. Since the magnetic pressure in the 

L1 region exceeds the flow ram pressure, continuous flow of material through the L1 

region is prevented. It is shown that matter can easily cross the funnel if pressure builds 

up behind the barrier. This therefore implies that the mass transfer in these systems is not 

continuous but fragmented in the form of blobs. 

 

 

Key words: Cataclysmic variables, Mass transfer, Angular momentum, Surface polar magnetic 

field, Magnetic advection and Magnetic viscosity, 
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Chapter One 

 

 

1.1   Introduction 

 

The aim of this study is an in-depth investigation of the influence of the secondary star 

magnetic field on the mass transfer process in close interacting binaries, especially the 

cataclysmic variable stars. Since the secondary star magnetic field plays a fundamental 

role in the whole mass transfer process (magnetic braking), which will be discussed in 

detail later, as well as the evolution of these systems as a whole, a detailed investigation 

is certainly appropriate. Of particular interest is the process of magnetic transport from 

the secondary star to the accretion disc of the primary star, which may have important 

consequences towards the so-called magnetic viscosity facilitating rapid accretion in 

some of these systems. To put everything in context, the general properties of close 

binaries, in particular cataclysmic variables, will be reviewed briefly.  

 

1.2   Cataclysmic variables 

 

Cataclysmic variables (CVs) are binary systems that come in many flavors. It sometimes 

seems that each cataclysmic variable defines its own class, but the underlying structure 

remains similar for most of them, namely a binary system comprising of a cool late-type 

main-sequence star (the secondary star) orbiting a compact white dwarf (the primary 

star). They are typically small; a typical binary system is roughly the size of the earth-

moon system, with orbital periods of 1 – 10 hours (e.g. Warner 1995, p.29). 

 

Due to the proximity of the two stars, the secondary star is distorted into a tear-shape, as 

a result of the strong gravitational pull of the compact white dwarf on the secondary star. 

This usually results in the tenuous gas being brought into contact with a region of zero 
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gravity between the two stars, resulting in thermal motions carrying the material into the 

gravitational potential well of the white dwarf. Depending on the physical size of the 

white dwarf’s magnetosphere, this transferred material can either interact directly with 

the magnetosphere, e.g. in AM Her stars, or result in the formation of an accretion disc, 

e.g. in intermediate polars. The accretion disc can be thought of as a machine, facilitating 

the extraction of angular momentum from the material, allowing it to accrete onto the 

white dwarf where gravitational potential energy of the gas is released as heat and 

radiation resulting in interesting observational properties of these systems (outbursts and 

brightening). Based upon the observational properties of these systems, cataclysmic 

variables can be grouped into several categories (see e.g. Warner 1995, p.27 - 28 for an 

extensive review) e.g. classical novae, dwarf novae, recurrent novae, nova-like variables 

and Magnetic Cataclysmic Variables (MCVs). 

 

Since the secondary star magnetic field plays an intimate role in the mass transfer process 

in the broad class of the MCVs, they form the basis of our theoretical investigation, and 

therefore their properties will be reviewed in more detail later.         

 

1.2.1 Formation of cataclysmic variables 

 

Stars are born from gravitationally collapsing molecular and interstellar dust clouds. The 

collapse is induced through an instability in the cloud which could be due to shock waves 

from a nearby supernova. A star develops when the core of the contracting protostar 

reaches temperatures for ignition of nuclear fusion reactions. Less massive clouds require 

high densities to collapse while more massive clouds require lower densities to collapse 

(Kippenhahn & Weigert 1990). Thus more massive clouds collapse first. As the density 

of the gas cloud increases, small parts of the cloud would collapse independently. 

Ultimately the cloud would fragment into many parts forming a whole cluster of stars. 

Stars therefore form in clusters finding themselves gravitationally bound in binaries, 

triples, pairs of binaries or similar combinations. 
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Stars destined to become CVs begin as binaries separated by a few hundred solar radii, 

orbiting each other approximately every ten years (e.g. Hellier 2001, p.45). One of the 

stars must be less than a solar mass and the other more massive. The more massive star 

evolves more rapidly, since the greater weight on its core ensures a higher pressure and 

temperature, and therefore a more vigorous nuclear burning rate. The more massive star 

eventually expands and becomes a red giant (e.g. Hellier 2001, p.45). At this stage it 

overflows its Roche lobe, and transfers its outer layers to the less massive companion. 

 

The more massive star is closer to the centre-of-mass (CM) of the binary, and material 

transferred to the less massive companion star therefore moves further from the CM. This 

results in increase of angular momentum of the material being transferred. Conserving 

the overall binary angular momentum will result in a decrease in the binary separation if 

the mass transfer is conservative (e.g. Frank, King & Raine 1992, p.52). This decrease in 

binary separation decreases the Roche lobe size. The more massive star then finds itself 

overfilling its Roche lobe, yet more material is being transferred. This results in a run-

away feedback as the whole envelope of the red giant is dumped onto the companion star, 

limited only by the speed at which the material can flow (e.g. Frank, King & Raine 1992, 

p.53; Hellier 2001, p.45 - 46). This dynamical mass transfer to the companion star will 

have dramatic consequences that will sculpture the further evolution of this system.  

 

This influx of material cannot be assimilated by the companion star, and the material 

overfills both Roche lobes forming a cloud surrounding the two stars. This is the 

“common envelope” phase in which the pre-cataclysmic variable is effectively orbiting 

within a massive red giant. The drag on the stars as they orbit drain their orbital energy 

causing them to spiral inwards, reducing their separation from about one hundred solar 

radii to about one solar radius in approximately one thousand years (e.g. Hellier 2001, 

p.46). This results in a tidal back reaction on the envelope, propelling it outwards into 

interstellar space, forming a planetary nebula. The new-naked binary is either a 

cataclysmic binary, or if the separation is still too large for mass transfer, a detached 

binary (e.g. Hellier 2001, p.46).  
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1.2.2 Roche lobe geometry 

 

Most stars are spherical, pulled by gravity into the most compact configuration. Stars in 

wide binary systems where the separation is much greater than their sizes are also 

spherical. In CVs the white dwarf, with a radius of about 0.02 of the binary separation, is 

compact and spherical while the less dense red dwarf is greatly distorted by the gravity of 

the compact white dwarf which acts on the secondary star (e.g. Frank, King & Raine 

1992, p.50; Warner 1995, p.30). 

 

   

Figure 1.  Contours of equal gravitation potential drawn for a binary system (Adopted 

from Hellier 2001, p.20). 

 

If the two stars move closer, the secondary star becomes increasingly distorted since the 

material nearest the primary experiences a greater gravitational attraction towards the 

compact object than the material at the back of this star. Stellar material would then flow 

from the secondary star, a characteristic of cataclysmic variables. The outline of a star at 

the critical point when it is just possible to transfer mass to the companion star is called 

the Roche lobe. The apex of the Roche lobe, called the inner Lagrangian point (L1 point), 

is the easiest path by which material can be transferred between the two stars (see Figure 

1). The inner Lagrangian point basically constitutes a region of zero effective gravity, 

allowing thermal motions to carry the gas from the outer envelope of the secondary star 

across L1 towards the gravitational potential well of the white dwarf. This will be 

discussed briefly in the next section. 
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The immediate consequence of binary motion on a red dwarf star filling its Roche lobe is 

that tidal locking ensures that its spin period is equal to the orbital period. Otherwise 

there would be continuous tidal flow of material into and out of the bulge of the Roche 

lobe dissipating an enormous amount of energy. The star therefore quickly adjusts its spin 

period so that the same material remains in the bulge. The distorted Roche lobe of the red 

dwarf is often detected directly in the light curve of cataclysmic variables. 

 

1.2.3 Mass transfer  

 

For a stable long-lived mass transfer, the secondary star must fill its Roche lobe. There 

are two ways in which the secondary star can fill its Roche lobe (King 1988; e.g. Frank, 

King & Raine 1992, p.46): 

(i) The star expanding i.e. R2 →  RL. 

(ii) The Roche lobe shrinking i.e. RL →  R2, 

where R2 is the radius of the secondary star and RL the Roche lobe radius. The first case 

occurs in any reasonably close binary once one star evolves off the main sequence and 

climbs the giant branch. To reach this stage within the life time of the Galaxy requires a 

mass greater or equal to one solar mass for this star at the onset of mass transfer. This 

mechanism cannot be invoked for compact binary stars as the masses of the secondaries 

are too low for them to have evolved off the main sequence (King 1988). The alternative 

process of shrinking RL must therefore occur in compact binary stars. 

 

If the secondary star fills its Roche lobe, stellar material will be in contact with the L1 

point.  This is pushed from behind by the pressure of the stellar atmosphere and it finds 

itself in the empty space of the Roche lobe of the primary star. Thermal motions allow 

particles to cross over the L1 point with a velocity of the order of sound speed in gas (cs 

~10 km s
-1
, i.e. sound speed in an astrophysical environment at a temperature of the order 

of 10
3
 K), falling into the potential well of the primary in form of a narrow stream and 

subsequently accelerated by the effective gravitational field of the binary system. In the 
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Roche lobe of the primary, the dominant contribution towards the effective gravity is the 

compact white dwarf.  

   

Figure 2. Plane view of the trajectory of a gas stream emanating from the secondary star 

(left) (Adopted from e.g. Hellier, 2001, p.25). The dotted ring forms the circularization 

radius. 

 

The L1 point itself is orbiting perpendicular to this motion at a speed more than ~ 1000 

km s
-1
 (e.g. Frank, King & Raine 1992, p.81). Injected with this orbital motion, the 

stream swings into an orbit around the compact star rather than flowing directly towards 

it due to the conservation of angular momentum in conjunction with the coriolis force 

(e.g. Frank, King & Raine 1992, p.54). The stream then follows a trajectory determined 

by the injection velocity and gravity of the primary star and sweeps past a radius of 

closest approach  with respect to the white dwarf, looping around to cross its earlier path 

(see Figure 2) (Lubow & Shu 1975). A continuous stream following this orbit will 

therefore intersect itself, resulting in dissipation of energy via shocks (e.g. Frank, King & 

Raine 1992, p.57). On the other hand, the stream has little opportunity to rid itself of the 

angular momentum it had on leaving the L1 point and will tend to settle into the orbit of 

lowest energy for a given angular momentum, i.e. a circular orbit (see Figure 2) (e.g. 

Frank, King & Raine 1992, p.55). The stream will therefore settle in an orbit at a radius 

conserving its initial angular momentum at the L1 point, the so-called circularization 

radius ( circR ) (e.g. Frank, King & Raine 1992, p55 - 56).  The physical size of the orbit at 

circR  is determined by the intrinsic specific angular momentum of the material leaving the 

L1 region. 
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1.2.4 Accretion Disc formation 

 

The circularization radius is always smaller than the Roche lobe radius of the primary star 

(RL,1), typically a factor of 2-3 smaller, except for very small mass ratio, e.g. 12 MM ≤ 

0.005 (e.g. Frank, King & Raine 1992, p.56). The captured material would therefore orbit 

the primary well inside its Roche lobe (see Figure 2). This would be prevented however, 

if the primary star, or its magnetosphere had already occupied this space (i.e. if 

circmagcirc RRRR >> ;1 ), where 1R and magR  are the radii of the primary star and the 

magnetosphere respectively. However for CVs, where the compact object is a white 

dwarf, circRR <<1 . 

 

Within the ring of material orbiting at the circularization radius, blobs of material closer 

to the primary star will orbit faster (Kepler’s law) causing friction as they slide past blobs 

further out. Within such a ring there are dissipative processes, e.g. collisions between gas 

elements, shocks, viscous dissipation etc, which convert some of the energy of the 

ordered bulk orbital motion about the primary into thermal energy (heat energy), being 

radiated away (e.g. Frank, King & Raine 1992, p57). The gas can only meet this drain of 

energy by moving deeper into the gravitational potential of the primary star; and some of 

the material would move into smaller orbits in the process. The spiralling-in process 

entails a loss of angular momentum, being transferred outwards by internal torques (e.g. 

Frank, King & Raine 1992, p.57; Hellier 2001, p.25). The ring thus spreads out into a thin 

disc which continues spreading until the inner edge meets the compact star; or in the case 

of a magnetized primary, the radius where the disc ram pressure balances the 

magnetospheric pressure. This defines the so called magnetospheric radius of the white 

dwarf. 

 

The interaction of the disc with the primary star may lead to a spin-up or spin-down 

torque that affects the rotating compact star (Wang 1987). Angular momentum flowing 

outwards through the disc enables the inward flow of material thereby releasing energy. 

At the outer edge of the disc tidal interactions with the secondary star soak up the angular 
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momentum and return it to the orbit of the secondary; limiting the outward spread of the 

disc (e.g. Hellier 2001, p25). This is replenished by the mass transfer from the secondary 

star. Material will continue to flow inwards towards the white dwarf (e.g. Frank, King & 

Raine 1992, p.57) if:  

(i) Material in the disc loses angular momentum. 

(ii) The primary star rotates slow enough allowing inflow of material instead of 

expelling it centrifugally. 

 

                   

 Figure 3. Schematic view of cataclysmic variables viewed from the pole of the orbit 

(Adopted from e.g. Warner 1995, p.11). 

 

When a disc has been formed, the stream of material from the secondary star hits the 

edge of the disc, forming a “bright spot” (see Figure 3). At this spot, the stream of 

material falling radially, encounters material moving across its path in a circular orbit. 

Not much is understood about the turbulent encounter, however, computer simulations 

suggest that the dense core of the stream punches a hole in the disc and is gradually 

assimilated into the circular flow (e.g. Hellier 2001, p.27).  

 

The stream is slightly wider than the disc edge and some of the material flows over the 

disc continuing onto the original trajectory. Kinetic energy of the stream is converted to 

heat and radiated away during the encounter. In some CVs this region emits about 30% of 

the total light of the system (King & Losata 1979; Lamb & Masters 1979, King & 

Watson 1987; e.g. Warner 1995, p.38). This is known through the observation of orbital 
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humps (e.g. Warner 1995, p.10), that are caused by the additional light seen when the 

bright spot is on the side facing the observer (e.g. Hellier 2001, p.27). 

 

This study investigates the influence of the secondary star magnetic activity on the mass 

transfer in CVs, i.e. those systems where mass transfer is driven by magnetic braking of 

the secondary star. This includes the majority of the MCVs with orbital period 3>orbP  

hours, i.e. the so called intermediate polars and DQ Her systems. Therefore their 

properties will be reviewed. 

 

1.3 Magnetic Cataclysmic Variables (MCVs) 

 

1.3.1 Magnetic accretion 

 

In MCVs the white dwarf usually has a substantial magnetic field that can either intercept 

the mass flow from the secondary, preventing the formation of an accretion disc, or 

disrupting the disc if present, preventing it from reaching down to the surface of the white 

dwarf. The magnetospheric field also facilitates the mass inflow onto the surface of the 

compact white dwarf, a process called magnetic accretion. This is the direct result of the 

complex interaction of ionized (or partially ionized) gas with the magnetic field. Two of 

the most important fluid-field interactions responsible for dynamical effects resulting in 

interesting observational consequences are: 

(i) In most astrophysical environments of interest the field is frozen into the 

plasma (e.g. Jackson 1975, p.473). The thermal charged particles in plasma 

are tied to the field via the Lorentz force ( Bv
vv

× ), resulting in particles not 

being able to cross the field readily. However, they can migrate along the field 

lines following a helical path. 

(ii) Effective motion of the gas across the field results in a viscous drag, and 

under certain conditions magnetic field may also be advected with the flow  

(e.g. Jackson 1975, p.478) 
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These processes both have far reaching consequences. The motion of trapped thermal 

plasma in a magnetic field allows determining the field strength through the emission of 

cyclotron emission. The frequency with which the electrons orbit the field, i.e. the 

Larmor frequency (e.g. Frank, King & Raine 1992, p.130) implies that most of the 

radiation is emitted as a spectral line centered on the fundamental frequency 

  







×==

Gauss

B

cm

eB

e

cyc 7

13

10
108.2

2π
ν  Hz.    (1.1) 

The second process, i.e. viscous drag, is the process leading to the loss of orbital angular 

momentum of orbiting satellites as they cross the earth’s magnetic field lines. In 

astrophysical environments this process is almost a neglected process which has a very 

important effect on the flow dynamics of material from the secondary star, if it is 

magnetic, as well as in the accretion process of accreting compact objects. This may be 

the origin of the mysterious anomalous disc viscosity which is orders of magnitude 

higher than the kinematic viscosity. 

 

The scale of the magnetosphere of the compact accreting object is usually expressed by 

the dipole moment 

  3~ ∗∗RBµ  (Gauss cm
3
),      (1.2) 

where ∗B  and ∗R  represent the surface field and white dwarf radius respectively. Some 

of the properties of MCVs will be reviewed briefly. 

 

1.3.2 Polars 

 

Polars or AM Hercules (AM Her) stars are MCVs in which the white dwarfs have very 

strong magnetic field strengths (Schmidt 1999) which are confirmed by the Zeeman 

splitting and polarization measurements, revealing magnetic field strengths that are 

between 15 and 56 MG. Zeeman splitting is the broadening or splitting of spectral lines 

into several components when the source is in a strong magnetic field. The amount of 

Zeeman splitting and polarization depends on the magnetic field strength, and this effect 

therefore provides a powerful tool for investigating magnetic field strengths (e.g. Hellier 
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2001, p.118). The strong magnetic field of the white dwarf has the following important 

implications: 

(i) Polars are synchronously rotating systems ( orbrot PP = ), with orbital periods 

lying between ~ 81 and 222 minutes (e.g. Chanmugam & Ray 1984). The 

phase locked interaction is caused by the strong magnetic interaction between 

the white dwarf and the low mass magnetic secondary star. 

(ii) The formation of the disc is prevented (i.e. discless accretion) since the small 

orbital period ( 3≤P  hours), implies small binary separation and an extended 

magnetosphere, resulting in the mass transfer stream to ram directly into the 

magnetosphere of the white dwarf. The stream punches through the 

magnetosphere until the magnetospheric pressure starts to dominate, from 

where the flow is channeled along the field lines onto one or both poles of the 

white dwarf. 

Evolutionary models (see e.g. Warner & Wickramasinge (1991) for a discussion) 

describe the condition for synchronization and discless accretion which are set by the 

ratio of the magnetic moment of the white dwarf to the mass accretion rate onto the white 

dwarf. For discless accretion to occur the following precondition must be satisfied: 
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Θ
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P
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where 1M  is the mass of the white dwarf,  ΘM  the solar mass, 34µ  the magnetic moment 

of the white dwarf in units of 10
34
 Gauss cm

3
 and 18

•

M (max) is the maximum mass 

accretion rate in units of 10
18
 g s

-1
, for a discless accretion to occur. For orbital periods 

4≤  hours and mass accretion rates 1810≤  g s
-1
, synchronism can be achieved if 

74.0 34 ≤≤ µ , which is in fact observed from most polars. This range of magnetic 

moments determines synchronization timescales which are short compared to the spin-up 

timescale. For effective synchronism and discless accretion the ratio of the 

synchronization timescale to the spin-up timescale must be 

     1≤
−upspin

syn

t

t
.      (1.4) 
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Close to the white dwarf surface, matter falling in with supersonic velocities is 

decelerated and heated to approximately 10
8 
K in a stand-off shock (e.g. Warner 1995; 

Boris 1998) resulting in a release of kinetic energy as flux distribution from the accretion 

column (Kuijper & Pringle 1982; Done, Osborne, Beardmore 1995; Beardmore, Done, 

Osborne, Ishida 1995; Gansicke, Beuermann, de Martino 1995) (see Figure 4). These are 

characterized by 

(i) Strong polarized emission at optical/IR wavelengths. 

(ii) Intense soft and in some cases hard X-ray emission. 

(iii) An emission line spectrum of excitation which reflects the large streaming 

motion of accreted matter in the magnetosphere of the white dwarf (see e.g. 

Beuerman 1988). 

                                   

 

 Figure 4. Schematic picture of a standard accretion column geometry for a magnetized 

white dwarf (Adopted from e.g. Frank, King & Raine, 1992, p.137). 

 

1.3.3 Intermediate Polars 

 

In intermediate polars the white dwarfs rotate asynchronously ( orbrot PP ≠ ) (Chanmugam 

& Frank 1987), with rotation periods >>rotP  100 s and orbital periods > 3 hours (e.g. 

Warner 1983; Chanmugam & Ray 1984), except for EX Hya which has 2<orbP  hours 

(e.g. Warner 1995, p.370) The white dwarfs in these systems have magnetic field 

strengths B ≤ 10 MG (i.e. ≤34µ 0.4). In terms of evolutionary models (e.g. Warner & 

Wickramasinghe 1991) they may oscillate between disced and discless states since 
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variations in the mass accretion rate from the secondary star influences the distance scale 

over which mass and angular momentum can be transferred to the white dwarf. Two 

scenarios are applicable for these systems (see e.g. Warner & Wickramasinghe 1991 for 

detailed discussion) 
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h
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where 16

•

M (min) is the minimum mass accretion rate in units of 10
16
 g s

-1
, for a disc 

accretion to occur. This limit is only valid if the variation in 
•

M  exceeds a factor of 100, 

which is observed from those systems with orbital periods ≤ 6 hours. A high accretion 

rate 1~(max)18

•

M  causes a decrease in the magnetospheric radius of the white dwarf to a 

value which is small enough to allow matter to form a disc around the white dwarf. A 

significant decrease by a factor ~100 in 
•

M  will lead to an increasing magnetospheric 

radius which will capture the accretion stream from the companion star and no disc can 

develop in this case. 

 

The spin periods of the white dwarfs are usually prominent in hard X-rays (Ex > 4 KeV). 

Hard X-ray emitters may be discless systems accreting matter directly onto restricted 

regions of the white dwarf. Some evolutionary models (e.g. Norton & Watson 1988) 

suggest that polars and intermediate polars are similar systems observed during different 

stages of their evolution. These models imply that in some stage of the life cycle of disc 

accreting intermediate polars, the system may loose angular momentum due to magnetic 

braking and gravitational radiation of the secondary star, causing the binary separation to 

shrink. For white dwarf magnetic fields 6103×≥∗B  Gauss, a point in orbital evolution 

will be reached when the magnetospheric radius of the white dwarf will extend to the 
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companion causing synchronism over some timescale (e.g. Chanmugam & Ray 1984) 

depending on the magnetic field strength. 

 

1.3.4 DQ Hercules (DQ Her) stars 

 

DQ Her stars constitute a subset of intermediate polars. The observed rotational period of 

white dwarfs in these systems are shorter ( 100<rotP s) than the period of intermediate 

polars, with orbital period lying in the range between 4.65 hours and 9.88 hours (e.g. 

Chanmugam & Ray 1984). The large orbital periods of these systems imply a wide 

binary separation which improves the chance for the formation of an accretion disc 

(Harmeury, King & Lasota 1986). These conditions are summarized (e.g.  Warner & 

Wickramasinghe 1991) 
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and 
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M

orbµ
     (1.7) 

implying that permanent discs may develop due to the wide separation between the white 

dwarf and the secondary star providing a mechanism for reducing the angular momentum 

of the accretion from the secondary star before it accretes onto the white dwarf. The 

evolution of these systems (see e.g. Warner & Wickramasinghe 1991) is described in 

terms of large initial accretion rates ( 118

1 10~(max) −
•

sgM ) from the companion star. 

Under these conditions, the disc which lies close to the white dwarf exerts a torque on the 

white dwarf causing a spin-up over timescales of 

    yrMt upspin

73

17
78

33

5105.4~
−•

−
− × µ     (1.8) 

By fitting the best parameter for DQ Her systems which are 16.033 =µ  and 1017 =
•

M
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(e.g. Warner &Wickramasinghe 1991), a spin-up timescale of  6104.1~ ×−upspint yr is 

estimated. Hameury, King & Lasota (1989) found that the variations in 
•

M  over 

timescales similar to the spin-up timescale can be as large as 

   5

max

min
10~ −

•

•

≥
M

M
α       (1.9) 

and will influence any further evolution of the system. A significant drop in the mass 

transfer rate from the secondary star after the white dwarf has been spun-up will cause 

the disc inner edge to be pushed out by the magnetic pressure of the rotating white dwarf. 

If the disc is pushed out to regions outside the corotation radius, the disc torque on the 

faster rotating white dwarf will gradually spin the white dwarf down. This will cause the 

white dwarf to enter the propeller phase. If the inner disc edge radius  cori rr ≤  (where corr  

is the corotation radius), the white dwarf and the disc torque will be balanced, and the 

system will be in equilibrium. In the Warner & Wickramasinghe (1991) discussion of the 

period evolution of these systems, the most prominent parameter influencing the 

evolution of the period of the white dwarf is the mass transfer rate from the secondary 

star, implying that stellar evolution of the secondary star will determine whether the 

white dwarf will spin-up, spin in equilibrium or spin-down. 

 

1.4 Objectives of the study 

 

Magnetic activity among rotating stars with convective envelopes is widespread and 

this includes the secondary stars in CVs (Collier 2002). The importance of dynamo-

generated magnetic fields on the secondary stars has long been recognized, and their 

effects have played an important role in the development of theories for both long-term 

evolution of CVs and the short-term variations in mass transfer rate through the L1 

point (Collier, 2002). However, little has been known about the magnetic activity on 

the secondary stars from direct observation (Collier, 2002). This could be because most 

CVs are considerably fainter than the nearby stars on which most magnetic-field studies 

have been performed, and partly because the spectrum of the secondary star is strongly 
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diluted by the accretion driven radiation emanating from other parts of the system 

(Collier 2002).   

 

Ritter (1988) showed that the surface magnetic field of a secondary star in cataclysmic 

variables has a significant influence on the mass transfer variations if the average field 

strength near the L1 region exceeds the equipartition value, i.e. when the magnetic 

pressure exceeds the gas pressure in that region. Meintjes (2004) showed that the 

surface magnetic field of the secondary star in AE Aquarii, which applies to all 

cataclysmic variables in general, influences the mass transfer; supporting the idea that 

magnetic field variation across the surface of the star can have a dramatic effect on the 

mass transfer from the secondary star to the white dwarf primary star. Meintjes (2004) 

further showed that if the surface magnetic field of the secondary star in cataclysmic 

variables is below a critical value near the L1 region, the magnetic field can be advected 

with the flow of material into the funnel (towards the white dwarf). This process of 

magnetic advection from the secondary star into the funnel acts as a mechanism of 

magnetizing the mass transfer through the funnel. Magnetic flux advection is effective 

if the surface magnetic field of the secondary star is such that the ratio of the magnetic 

Reynolds number to the Hartmann number of the flow is greater than one (e.g. Jackson 

1975, p.478). This means that the flow viscosity in the funnel exceeds the magnetic 

viscosity, i.e. implying that the flow ram pressure significantly exceeds the magnetic 

pressure, as expected. 

 

The surface magnetic field of secondary stars can be modelled using the Mestel and 

Spruit stellar wind theory (1987) and estimating the amount of angular momentum 

required to drive the observed mass accretion rate through Roche lobe overflow, and 

solving for the surface polar magnetic field. This modelling allows for a search for 

systematic trends in the surface polar field strength of mass transferring secondary stars 

in CVs. Magnetic braking of the secondary star (e.g. Campbell 1997, p.268 - 278) can 

also be used to constrain the surface magnetic field of the secondary star. This can then 

be compared with typical fields needed for effective magnetic advection in the flow 

from the secondary star.   
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Therefore, the main objectives of this study are: 

(i) The systematic modelling of the mass transfer in intermediate Polars that is 

driven by magnetic braking and calculating the surface polar magnetic field 

strength of the secondary stars. This will be used to search for possible 

relationships between surface polar magnetic field and orbital period for 

different dynamo laws. 

(ii) To investigate the effect of advected magnetic field on the mass flow in the 

funnel in some intermediate polars. This can be generalized to other MCVs. 

 

1.5 The outline 

 

This dissertation consists of four chapters. 

 

Chapter two briefly presents the stellar wind theory. In this chapter orbital angular 

momentum losses are reviewed and their influence on secular evolution and mass transfer 

from the secondary star is discussed. Mass transfer and angular momentum losses by 

stellar winds for the inferred dynamo laws are also presented here. 

 

In chapter three the models for determining the surface polar magnetic fields of mass 

transferring secondary stars are developed using the stellar wind theory and this is used to 

calculate the surface polar magnetic field of some intermediate polars with known orbital 

periods. The influence of the secondary star magnetic field on mass transfer in 

intermediate polars is also investigated in this chapter. 

 

The conclusions will be presented in chapter four. 
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Chapter Two 

 

Stellar wind theory  

 

2.1 Introduction 

 

One of the characteristics of CVs is the mass transfer from the secondary star to the white 

dwarf primary star. For a continuous and stable mass transfer through the L1 region, the 

Roche lobe of the secondary star must shrink at least as fast as the stellar surface; which 

is achieved through loss of angular momentum via a suitable mechanism. Short-period 

( 3<orbP  hours) binary systems generate gravitational waves which remove orbital 

angular momentum (Kraft, Mathews, Grennstein 1962; Paczyñski 1967). Observations of 

binary systems with orbital periods > 3 hours often suggest higher mass transfer rates 

than that determined by gravitational radiation (Verbunt & Zwaan 1981). Mestel (1968) 

pointed out that a main-sequence secondary star in a binary system would have a wind 

flow from its surface similar to that of a single star. The presence of a magnetic field 

would result in channelling the flow, with a consequent braking torque on the star (Weber 

& Davis 1967). In binary systems, however, tidal torques keep the secondary star rotation 

close to orbital synchronism. This magnetic braking torque removes orbital angular 

momentum from the star, thus driving it towards an under-synchronous state. Tidal 

coupling to the orbit replaces this loss in keeping the star near corotation. This results in a 

continuous removal of orbital angular momentum. A detailed review of orbital angular 

momentum losses, and their influence on the secular evolution and mass transfer from the 

secondary star, will therefore be presented. 
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2.1.1 Angular momentum loss 

 

In the most simple scenario consider a body of mass m  moving with velocity v  in a 

circular orbit of radius a around a mass M  at the centre. The centripetal force on m  

directed towards the centre is given by 

a

mv
F

2

= .        (2.1) 

This centripetal force is supplied by the gravitational attraction between the two masses 

given by 

  
2a

GMm
F = ,        (2.2) 

where G  is the gravitational constant. Equating equations (2.1) and (2.2) gives 

21








=
a

GM
v ,        (2.3) 

where v is the Keplerian velocity. The orbital period is given by 

  
v

a
Porb

π2
= ,        (2.4) 

where aπ2  is the circumference of the orbit. Substituting equation (2.3) into (2.4) gives 

  
GM

a
Porb

32
2 4π
= .        (2.5) 

The same principle can  be applied to describe binary motion: 

 

               

Figure 5. Two stars of masses M1 and M2  orbiting in a plane about the centre-of-

mass X (Adopted from Hellier 2001, p.189). 
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Consider two stars of masses 1M  (primary) and 2M  (secondary) separated by a distance 

a , and let 21 MMM += . Equation (2.5) can then be written as 

  ( ) 2

21

324 orbPMMGa +=π .      (2.6) 

Equation (2.6) is referred to as Kepler’s law (the third law). If the distances of 1M  and 

2M  from the centre-of-mass (CM) are 1a  and 2a respectively (see Figure 5), where 

aaa =+ 21 ; then from the definition of angular momentum, mavJ = , the total orbital 

angular momentum of the system can be expressed as 

  222111 vaMvaMJ orb += .      (2.7) 

From equation (2.4), the orbital velocity can be expressed in terms of 

 
orb

i

i
P

a
v

π2
= , 

and substituting this in equation (2.7) gives 

  
orborb

orb
P

a
aM

P

a
aMJ 2

22
1

11

22 ππ
+= .     (2.8) 

From equation (2.6), the orbital period can be presented as 

  

21

2 






=
GM

a
aPorb π . 

Substituting for orbP  in equation (2.8) gives 

  ( )222

2

11

21
1

aMaM
aa

GM
J orb +







= .     (2.9) 

For a binary system aaa =+ 21  and 2211 aMaM = , and 1a  can be expressed in the form  

  
( )21

2
1

MM

aM
a

+
=        (2.10) 

and equation (2.9) can then be expressed as 

  ( ) ( )[ ]222111

21
1

aaMaaM
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GM
J orb +







=      

  ( )[ ]2111

21
1

aaaM
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GM
J orb +







=   



  21 

            ⇒   11

21

aM
a

GM
J orb 







= .      (2.11) 

Substituting equation (2.10) into equation (2.11) gives 

  

21

21 






=
M

Ga
MMJ orb .      (2.12) 

Equation (2.12) gives the total orbital angular momentum of the binary system. From 

equations (2.3) and (2.12) it is noted that there are three concepts involved: 

(i) Material in smaller orbits move faster (Kepler’s law). 

(ii) Material in smaller orbits have lower angular momentum (increase in speed is 

not enough to offset the decrease in radius). 

(iii) By transferring into smaller orbit material liberates gravitational energy. 

 

Logarithmic differentiation of equation (2.12) gives 
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•••••

M

M

a

a

M

M

M

M

J

J

orb

orb

2

1

2

2

1

1 .     (2.13) 

If it is assumed that all the mass lost by the secondary star is accreted by the primary star, 

i.e. 
••

−= 21 MM  and 0=
•

M , then equation (2.13) can be expressed as 

  







−

−
+=

•••

1

2

2

2 1
)(

22
M

M

M

M

J

J

a

a

orb

orb .     (2.14) 

In the equation above the meaning of the various terms are: 

 aa
•

 is the rate of change of the binary separation. 

 orborb JJ
•

 is the rate of change of orbital angular momentum (note 0<
•

orbJ ). 

 22 MM
•

−  is the rate of mass transfer from the secondary star. 

Therefore, if angular momentum is also conserved, i.e. conservative mass transfer 

( 0=
•

M  and 0=
•

orbJ ), mass transfer from the secondary star 
•

− 2( M > 0) results in an 

increase in a  (
•

a  > 0) provided that 2M < 1M . In cataclysmic variables, material is 

transferred from a low mass secondary star to a more massive white dwarf. Assuming a 



  22 

conservative mass transfer, more material is placed near the centre-of-mass and the 

remaining mass 2M  must move to a wider orbit in order to conserve the total angular 

momentum. In the opposite case where mass is transferred from the more massive star to 

the less massive star, the centre-of-mass is losing mass, transferring the remaining mass 

to a smaller orbit to conserve the total angular momentum (e.g. Frank, King & Raine 

1992, p.52). 

 

For a mass ratio in the range 8.01.0 12 ≤≤ MM , the mean radius of the secondary star’s 

Roche lobe obeys the equation (e.g. Frank, King & Raine 1992, p.51; Campbell 1997, 

p.269) 

   1.0

3

2,

2

≈








a

R

M

M L
,      (2.15) 

where 2,LR  is the Roche lobe radius of the secondary star. Logarithmic differentiation of 

equation (2.15) gives  
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.     (2.16) 

For a conservative mass transfer, i.e. 0=
•

M , equation (2.16) becomes 

   
2

2
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2,

3

1

M

M

a

a

R

R

L

L

•••

+= .      (2.17) 

Substituting for aa
•

 from equation (2.14) into (2.17) gives 
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−

−
+=

•••

1

2

2

2

2,

2,

6

5)(
22

M

M

M

M

J
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L

L
.    (2.18) 

For conserved angular momentum ( 0=
•

orbJ ), mass transfer from the secondary star 

causes the Roche lobe of the secondary star to expand ( 02, >
•

LR ) provided 
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6512 <MM , effectively increasing the binary separation causing the secondary to 

detach itself from the Roche lobe, inhibiting further mass transfer (King 1988; e.g. Frank, 

King & Raine 1992, p.53). Sustained and stable mass transfer requires a gradual loss of 

angular momentum from the binary system, grinding down the orbit and hence the 

secondary star’s Roche lobe, re-establishing Roche lobe contact, enabling further transfer 

of material. The ultimate driving mechanism for mass transfer in compact   binaries is 

therefore the angular momentum loss process of the binary system. Given such a process, 

it can be assumed 2,2 LRR =  at least in a long-term average sense ( 2R  is the radius of the 

secondary star). If mass loss is sufficiently gentle the star will stay close to thermal 

equilibrium, allowing the secondary star remain on the main sequence, i.e. obeying the 

inferred main-sequence mass-radius relation 22 MR ∝  (King 1988; e.g. Frank, King & 

Raine 1992, p.54). Therefore the relationship 

  
2

2

2

2

M

M

R

R
••

=          (2.19) 

holds. Substituting equation (2.19) into (2.18) for a lobe filling secondary star (i.e. 

22, RRL = ), it can be shown that 

  
122

2

34 MM

JJ

M

M orborb

−

−
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−
••

.      (2.20) 

Logarithmic differentiation of equation (2.6) gives 
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P
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a
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3

2
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= .        (2.21) 

From equations (2.20) and (2.14) it can be shown that 
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Using equation (2.21), it can be shown that an evolution equation is given by  

  














−
==

•••

12343

2

3

2

MM

JJ

P

P

a

a orborb

orb

orb .      (2.22) 

This results in a converging binary evolution with time for all 3412 <MM , since mass 

transfer and orbital evolution are driven by angular momentum loss ( 0<
•

orbJ ) on a 

characteristic timescale determined by specific angular momentum loss mechanisms 

(Meintjes 2002a). 

 

From equation (2.14), for 112 <MM , it is clear that binary systems experiencing quasi-

conservative evolution where mass transfer dominates angular momentum loss 

)( 22 orborb JJMM
••

>>−  will likely evolve according to 0>
•

aa  (diverging binary) 

(Meintjes 2002b). The binary will shrink (converging binary) if 112 <MM  and 

orborb JJMM
••

<<− 22  (Meintjes 2002b). From equation (2.18), for 6512 ≤MM , the 

effective mass transfer between a main sequence secondary star and a white dwarf is only 

driven effectively if 0>−
•

orborb JJ . This causes the binary to evolve such that 0<
•

aa  

for all 3412 <MM  (converging binary). In the absence of angular momentum losses, 

mass transfer can only be driven by an evolving secondary star (King 1988; e.g. Frank, 

King & Raine 1992, p.53 - 54). In this scenario, the binary will expand ( 0>
•

aa ) for all 

6512 <MM . The timescale for this to occur, especially in CVs where the secondary is 

a low mass star ( Θ< MM 2  where ΘM  is the solar mass), is billions of years, resulting in 

this mode of mass transfer to be insignificant. 

 

Mass transfer flow from the secondary star to the primary star in intermediate polars and 

polars may be clumpy or blob-like (King & Lasota 1991; King 1993; Wynn & King 

1995). It was shown (King 1993) that the rotating magnetosphere of an intermediate polar 

accretes blobs with mechanical energies less than a certain critical value depending on its 

spin rate, and expels blobs with higher mechanical energy. In this blob accretion model 
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orbital angular momentum is carried away by any blob expelled from the system; and this 

may result in a dynamically unstable mass transfer process if the Roche lobe of the 

secondary star shrinks down into the surface layers of the secondary star, causing a run-

away mass transfer (Wynn & King 1995). A discussion of the condition for stable mass 

transfer in terms of the Roche lobe behavior will now be presented. 

 

 

2.1.2 Stable mass transfer  

 

The equation of state of a star with a fully convective envelope is (King 1988): 

  35ρKP = ,        (2.23) 

where P  is the gas pressure and ρ  the density. The condition for hydrostatic equilibrium 

for such a star is given by the familiar mass-radius relation applicable to ordinary main-

sequence stars (King 1988) 

  31
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K
R .       (2.24) 

Logarithmic differentiation of equation (2.24) gives  
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R
.       (2.25) 

To avoid a run-away mass transfer, the Roche lobe of the secondary star must grow faster 

than the star, i.e. 22,

••

> RR L  for 2,2 LRR = ; and therefore 

  0
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2,
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>−
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R

R

L

L
.       (2.26) 

Equation (2.13) relates the orbital evolution ( aa
•

) with mass transfer (
22 MM

•

), mass 

accretion ( 11 MM
•

) and angular momentum loss from the system. By combining it with 

equation (2.16), i.e. 
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it can be shown that an expression relating the mass transfer (
22 MM

•

) and mass 

accretion ( 11 MM
•

)  to the orbital angular momentum evolution of the system is given by 
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Re-arranging terms and grouping together similar terms results in 
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which can be written as follows 
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1

1

2,

2,
.    (2.27) 

Equation (2.27) is independent of the nature of angular momentum mechanism, but 

expresses the influence of angular momentum evolution ( orborb JJ
•

), mass transfer   

(
22 MM

•

) and mass accretion ( 11 MM
•

) on the Roche lobe evolution, which in turn 

facilitates the mass transfer from the secondary star over a long timescale. 

 

From equation (2.27) it is clear that the total binary angular momentum ( orborb JJ
•

) 

evolution, among other parameters, has a direct influence on the Roche lobe dynamics 

( 2,2, LL RR
•

) of the secondary star, which in turn facilitates the long term mass transfer 

from the secondary to the primary. A significant contribution towards the angular 

momentum evolution is the mass-loss of the secondary star through the L1 point, resulting 

in a drain of angular momentum of the secondary star. This, in turn, feeds back to the 

dynamics of the Roche lobe of the secondary which has to stay in close contact with the 

stellar photosphere to secure stable mass transfer. Since the mass loss of the secondary 
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star provides the dominant contribution towards the angular momentum drain in the 

system, a brief discussion towards its quantification will be presented. 

 

The Roche lobe overflow from the surface of the secondary star through the L1 region 

results in a drain of angular momentum 

   orbov bMJ Ω≈
••

2

12 ,      (2.28) 

where 1b  represents the distance of L1 point from the centre of the primary star. Since the 

material at the L1 region has the same specific angular momentum as the material orbiting 

at the so-called circularization radius, defined earlier (p.6), it allows the quantification of 

1b , which is 

   )(2

1 circvRb Kcircorb =Ω  

                
( )

orb

circRGM
b

Ω
=⇒

21

12

1 .     (2.29) 

In this expression ( ) 21

1)( circK RGMcircv =  is the Keplerian velocity at the 

circularization radius. Therefore the angular momentum loss as a result of material lost 

by the secondary star via Roche lobe overflow, 
•

ovJ , results in loss of angular momentum 

at the rate 

   ( ) 2112 circov RGMMJ
••

= . 

Assuming that the binary as a whole loses a fraction, η , of this angular momentum, we 

get 

   
orb

ov

orb

orb

J

J

J

J
••

=η  

               ⇒  
( )

orb

circ

orb

orb

J

RGMM

J

J
21

12

••

=η .     (2.30) 

Some of the mass lost by the secondary star will be accreted by the primary star and the 

rest lost from the system. In this case the rate of mass-loss of the secondary star is given 

by 
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•••

−=− MMM 12 . 

If a fraction, β , of this mass is lost from the system, then 

  
••

= 2MM β  and 
•••

−=− 212 MMM β ; therefore 

           ⇒  ( )
••

−−= 21 1 MM β .       (2.31) 

Substituting equations (2.30) and (2.31) into equation (2.27) gives 
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Comparing the expression above with the reaction of the secondary star’s envelope, i.e. 

equation (2.25), if its equilibrium has been distorted, i.e. equation (2.26), can reveal the 

condition for stable mass transfer. Substituting equations (2.25) and (2.32) into the 

condition for stable mass transfer, i.e. equation (2.26), it can be shown that  
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From Kepler’s law, equation (2.6), it can be shown that 
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Substituting for 2

orbΩ  in equation (2.29) gives 
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Using equations (2.12) and (2.34) in equation (2.33) gives 
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a

b

M

M

M

M

M

M
ηββ .    (2.35) 

The quantity ( )ab1  can also be expressed as a function of mass ratio ( )12 MM ,  which 

is  (e.g. Warner 1995, p.33) 

  







−=

1

2
10

1 log227.05.0
M

M

a

b
.      (2.36) 

Equation (2.35) gives the condition for stable mass transfer; and can be used to evaluate 

the stability of mass transfer during different phases of evolution. 

   

If the binary evolution conserves mass, i.e. ( 0=
•

M ) the white dwarf will accrete all the 

gas that is crossing the L1 region (Wynn & King 1995). This is only possible if the 

circularization radius, where material initially settles, is inside the so-called corotation 

radius of the magnetized white dwarf, i.e. in regions where the Keplerian motion exceeds 

the angular velocity of the white dwarf. This results in the orbiting material being able to 

attach to the field lines, resulting in effective accretion onto the white dwarf. In this case 

the white dwarf is acting as a sink (e.g. drain) for the angular momentum lost by the 

secondary star. This results in a conservative evolution of the system ( 1;0 == ηβ ). The 

opposite scenario, i.e. the circularization radius being outside the corotation radius, 
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results in a spectacular propelling of the material from the system, leading to a non-

conservative evolution ( 1;1 == ηβ ). The condition for conservative ( 1;0 == ηβ ) and 

non-conservative ( 1;1 == ηβ ) evolution can be summarized as follows: 

     
3

2
1

2

1

1

2

1

2 <















++

a

b

M

M

M

M
  [ 1;0 == ηβ ] 

   
3

2
1

3

1
2

1

1

22 <















++

a

b

M

M

M

M
   [ 1;1 == ηβ ] 

These equations can be used to evaluate the stability of mass transfer in different phases 

of the spin history of the white dwarf. 

 

In reality the orbital evolution of the binary system is not only sculptured by the angular 

momentum loss from the secondary star through the L1 region, but magnetic braking of 

the secondary results in mass and angular momentum loss from the rotating binary 

system as a whole, while gravitational radiation is also in some cases an effective drain of 

orbital angular momentum. Gravitational radiation is predominantly effective in short 

period systems ( 3<orbP  hours) and falls outside the scope of this study. Since this study 

is focusing on the influence of the secondary star’s magnetic field on the mass transfer in 

the system, the focus will be mainly on the other dominant drain of orbital angular 

momentum, i.e. magnetic braking. Before the mechanism itself is going to be discussed, 

the combined effect of magnetic braking and Roche lobe overflow will be investigated. 

This will be used to obtain an equation relating the orbital evolution ( aa
•

), mass transfer 

(
22 MM

•

) and mass accretion ( 11 MM
•

) to the total angular momentum lost from the 

binary. By quantifying the magnetic braking of the secondary star through a suitable 

model, the magnetic profile of the secondary star and its influence on mass transfer can 

be constrained. Mestel & Spruit (1987) developed a magnetohydrodynamic model 

quantifying the angular momentum losses from a rotating magnetized main-sequence 

star, which will be discussed in detail in the following section. However, to allow the 

investigation of magnetic braking on the binary evolution ( aa
•

), mass transfer (
22 MM

•

) 
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and mass accretion ( 11 MM
•

), the equation has to be modified somewhat. The effect of 

magnetic braking and Roche lobe overflow will now be considered, i.e. 

  
orb

ov

orb

mb

orb

orb

J

J

J

J

J

J
•••

+= . 

From equations (2.12) and (2.30), the rate of loss of angular momentum of the secondary 

star as a result of Roche lobe overflow can be expressed as 
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Therefore, the total angular momentum loss of the system is given by 
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From equations (2.13) and (2.37) it can be shown that 
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For the case where 0≥
•

aa  gives 
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Substituting for 
•

1M from equation (2.31), equation (2.38) can be expressed as 
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.  (2.39) 

This equation allows constraining the mass transfer from the secondary star driven by 

magnetic braking of the secondary star; and also the evaluation of the conditions for 

stable mass transfer for various scenarios in a binary system. The condition for stable 

mass transfer in converging ( 0<
•

aa ) and diverging ( 0>
•

aa ) binaries can be 

determined for systems following a conservative and non-conservative evolution. In the 

case of binaries following a conservative evolution, i.e. white dwarf accreting all the 

mass and angular momentum fed to it from the secondary, i.e. 1;0 == ηβ , the condition 

for stable mass transfer for a converging and diverging evolutions are respectively  

         0<
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a

a
 ⇒  
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A typical example of a non-conservative evolution is a system in a propeller phase of its 

evolution. An example is the nova-like variable AE Aquarii (AE Aqr) which is propelling 

the full load of mass transfer and angular momentum from the binary, i.e. 1;1 == ηβ . 

The condition for stable mass transfer in this case requires 
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For the sake of comparison the nova-like variable AE Aqr has been selected to illustrate 

the condition for stable mass transfer for a source that is currently in the propeller phase, 

i.e. 1==ηβ  (Meintjes & Venter 2003); 

 hP
M

M
MMMM orb 88.9,6667.0,6.0,9.0

1

2
21 ==≅≅ ΘΘ  

The binary separation a can then be expressed in the form (e.g. Frank, King & Raine 

1992, p.47) 
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Θ h
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a orb  cm. 

Substituting for a  in equation (2.36) gives 
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Substituting for 1b  and a  in equation (2.34) gives 
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        ⇒   101061.2 ×=circR  cm. 
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=
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×
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a
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For the propeller source, i.e. 1==ηβ , and the parameters applicable to AE Aqr gives  
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.    (2.42) 

Equation (2.42) gives the required rate of angular momentum drain through magnetic 

braking that will drive a stable mass transfer in a propeller source like AE Aqr. In a 

similar fashion, equations (2.40a), (2.40b) and (2.41a), (2.41b) can be applied to 

constrain the required magnetic braking able to drive stable mass transfer for all systems, 

i.e. conservative and non-conservative. Most of the review in the rest of this chapter is 

taken from Campbell (1997) 

 

2.2 Stellar wind  

 

This discussion has been aimed at providing a theoretical framework used to constrain 

the angular momentum drained from a system through magnetic braking that will enable 

a stable mass transfer from the secondary to the primary. Since the main focus of this 

study is the investigation of magnetic profile of the secondary star on mass transfer and 

secular evolution, magnetic braking from the magnetic wind of a secondary star will be 

implemented to constrain the angular momentum under consideration and hence the 

required surface field for stable mass transfer. Therefore a detailed discussion of the 

process of magnetic braking through a magnetized stellar wind will now be presented. 

 

Parker (1963) formulated the basic wind theory for single stars. A hot stellar corona 

cannot be contained by the pressure of the surrounding interstellar medium, and thus 

flows away from the star. This leads to mass loss driven by a thermal pressure gradient 

and centrifugal acceleration (e.g. Campbell 1997, p.251). A small coronal mass flux and a 

moderate magnetic field result in the highly conducting material being channelled along 

field lines which are slightly distorted by the flow near the star. When the kinetic energy 

density of the outflowing material becomes comparable to the poloidal magnetic energy 

density, the distortion of the field becomes large (e.g. Campbell 1997, p.251). 

Equipartition of magnetic and fluid energy density occurs at the Alfvén surface (see 

Figure 6) where the wind speed approaches the so-called Alfvén speed, i.e. 
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21

0
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=

ρµ
p

A

B
v  .       

Here pB  represents the poloidal magnetic field, 0µ  the permeability and ρ  the plasma 

density. If the wind speed becomes a significant fraction of Av  before a magnetic coronal 

loop starts to close, the field is dragged out with the flow and these open fields form the 

so-called “wind zone”. The closed coronal loops near the stellar surface trap hot gas, 

which is not able to overcome the magnetic pressure, constituting the so-called “dead 

zone” (Mestel & Spruit 1987; e.g. Campbell 1997, p.260). A strong stellar magnetic field 

keeps a wind corotating with the star through magnetic torques out to large distances, 

carrying away more angular momentum per unit mass than in a non magnetic wind, in 

which the gas conserves its angular momentum (Schatzman 1962). This occurs in the 

wind zone. 

 

 

Figure 6. Schematic magnetic field model. (Adopted from e.g. Campbell 1997, 

p.260). In this figure r represents the equatorial boundary of the dead zone, C 

the cusp and SA the Alfvén surface.  

 

The structure of a magnetically channelled wind in a single star may not be the same as 

that in a binary star. In the case of a binary system, the presence of a primary star would 

mean that even if the secondary star had a magnetic field symmetric about its rotation 

axis, the wind would not be axisymmetric due to the azimuthal dependence of the total 

gravitational field. Despite this, the fundamental effect of a magnetically influenced wind 
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from a binary star and a single star is the removal of stellar angular momentum (e.g. 

Campbell 1997, p.268). The secondary star in a binary system is kept close to 

synchronism by tidal torques, which result in a continuous removal of orbital angular 

momentum with consequent mass transfer; which has to be discussed in more detail.  

 

2.2.1 Mass transfer and angular momentum loss by stellar wind 

 

The focus of this study is primarily on the evolution of CVs where the binary mass 

remains constant, i.e. conserving binary mass ( 0=
•

M ). This is to avoid having to deal 

with guessing the amount of angular momentum drained from the system as a result of 

propeller induced mass loss. To restrict the number of “unknowns” to a minimum, only 

conservative systems are considered. However, since most of the MCVs are disc 

accretors, for which 0≈β  applies to a large extend, this selection is appropriate.  

  

For a conservative evolution, the total binary mass remains constant and the rate of 

change of the Roche lobe radius of the secondary star is given by equation (2.18) where 

(
•

− 2M ) is the mass loss rate of the secondary star due to Roche lobe overflow. The 

orbital evolution timescale, given by 

    
•

=

orb

orb

ev

J

J
τ ,      (2.43) 

is comparable to the mass transfer timescale, given by 

    
•

=•

2

2

2

M

M

M

τ .      (2.44) 

For typical mass transfer rate and secondary star mass (e.g. 17
2 10~

•

M  g s
-1
, 

ΘMM 6.0~2 ), 1610~
2

•
M

τ  s. For a constant 21 MMM +=  over the binary life time  

    
••

<< 2MM w ,      (2.45) 
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where 
•

wM  is the wind mass loss rate. A lower main sequence secondary star, in thermal 

equilibrium, satisfies 

    







=

ΘΘ M

M
q

R

R 22 ,     (2.46) 

with q = 1.1 (e.g. Campbell 1997, p.269) where ΘR  represents the solar radius. For the 

secondary star to continuously transfer mass to the primary star, 2,LR   must shrink as fast 

as 2R  to keep matter in contact with the L1 region (e.g. Frank, King & Raine 1992). From 

equation (2.18) it is noted that 

   0
2,

2,
<

•

L

L

R

R
 if 0
6

5

1

2 ≥−
M

M
 and 0<

•

orb

orb

J

J
. 

It is required that orborb JJ ||
•

 be sufficiently large to yield 02,2, <
•

LL RR  and 

|||| 22,

••

≥ RR L . The secondary star will remain in thermal equilibrium as long as 

th
M

ττ >>•

2

, where thτ  is the thermal adjustment timescale. 

 

Loss of orbital angular momentum is caused by magnetic braking in conjunction with 

strong tidal coupling and gravitational radiation. In long period binaries, gravitational 

radiation will not be a dominant mechanism (e.g. Campbell 1997, p.270). Magnetic 

braking theory can be used to obtain expressions for 
•

2M  (L1 overflow) and the rate of 

loss of stellar angular momentum (e.g. Campbell 1997, p.268 - 278). This will be 

discussed briefly in the following discussion.  

 

For a secondary star being kept close to orbital corotation by tidal forces, the stellar 

angular velocity 2Ω is essentially the same as orbΩ  (orbital angular velocity). Therefore  

    
3

22

2
a

GM
orb =Ω=Ω .     (2.47) 

It can be shown (Mestel & Spruit 1987; e.g. Campbell 1997, p.270) that the stellar 

angular momentum loss rate is given by 
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A

mb

v
J

0

2

2

6πµ
ΩΦ

=−
•

,     (2.48) 

where Br 24π=Φ  represents the magnetic flux cutting through a surface of radius r . It 

can also be shown (Mestel & Spruit 1987; e.g. Campbell 1997, p.270) that the magnetic 

flux cutting through the stellar surface in the wind zone (see Figure 6) can be expressed 

as 

    0
22

22 B
r

R
R 








=Φ π .     (2.49) 

In this expression the magnetic field is assumed to be dipolar, i.e. ( )( )320 2 rRBB =  

were r  represents the radius which corresponds to the equatorial boundary of the dead 

zone (Figure 6).  The Alfvén surface occurs in the radial field region of radius Ar , and 

therefore the magnitude of the wind mass loss rate is given by 

   AAAw vrM ρπ 24=
•

,      (2.50) 

where Aρ  is the wind density within the Alfvén surface. Over the Alfvén surface 

bounding the wind zone, it can be shown (e.g. Campbell 1997, p.264) that 

   ( ) 2

2

24
3

2
AAAAmb rrvJ Ω=−

•

πρ .     (2.51) 

Substituting equation (2.50) into (2.51) gives 

   2

2
3

2
Awmb rMJ Ω=−

••

.      (2.52) 

From equations (2.48) and (2.52) it can be shown that the Alfvén surface is given by 

   
A
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v

rM
0

2

2
2

2
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||
3

2

πµ
ΩΦ

=Ω
•

 

   ⇒   

Aw

A

vM

r
•

Φ
=

0

2
2

4πµ
.     (2.53) 

In the fast rotator limit, applicable to most short period binaries (e.g. Campbell 1997, 

p.270) the Alfvén speed can be approximated by 

   2
2

1
Ω≈ AA rv .       (2.54)  
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Substituting equation (2.54) in equation (2.53) gives 
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Φ
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       ⇒   
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.     (2.55) 

Substituting for Ar  from equation (2.55) into equation (2.52) gives 
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Substituting for Φ  from equation (2.49) into equation (2.56), it can be shown that 
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,  (2.57) 

where ΘB  is the coronal base value of the sun’s magnetic field and 
•

ΘM  the solar wind 

mass loss rate. For a more complicated field than dipolar, ΘB  and 0B  would essentially 

be mean surface values. 

 

The rate of angular momentum loss ( orbmb JJ
•

) can be derived by evaluating the orbital 

angular momentum of a lobe-filling secondary star. Substituting for the binary separation 

a  from equation (2.47) into equation (2.15) gives  
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M L
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A lobe-filling secondary star has 2,2 LRR =  and therefore equation (2.46) can be re-

arranged in the form, 
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M
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M
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1

2,

2  = constant.      (2.59) 

 From equation (2.58), 2

2

2

2, ΩLR  is also a constant as the orbit evolves. Substituting for 

2,LR  from equation (2.59) into equation (2.15) gives  
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Substituting for a  in equation (2.12) the expression for orbital angular momentum can be 

obtained as 
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=

Θ

Θ .     (2.60) 

This allows the determination of  orbmb JJ
•

 for various inferred dynamo models 

responsible for the generation of the stellar field. The expressions for mass loss rate by 

the secondary star for various dynamo laws can now be derive. For consistency, 

|||| 2

••

<< MM w  and thermal equilibrium holds for || 22

•

<< MMthτ . Therefore the 

effect of stellar wind mass loss rate and thermal adjustment timescale will first be 

discussed. 
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2.2.2 Stellar wind mass loss rate 

 

The Virial theorem gives an approximate scaling for characteristic temperature and 

densities in a star according to (e.g. Campbell 1997, p.271)  

   
2

2

R

M
T ∝  and 

3

2

2

R

M
∝ρ . 

If the stellar corona also follows these scaling, then the sound speed cd in the dead zone 

can be written as 
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, 

where HmkTP µρ= . Therefore this gives 
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∝∝

R

M
Tcd ,     (2.61) 

and from equation (2.58), for a lobe-filling secondary star the coronal base density ( )d0ρ  

in the dead zone scales as 

    ( ) 2

23

2

2
0 Ω∝∝

R

M
d

ρ .     (2.62) 

If the magnetic field is assumed to be dynamo generated, the pole strength value 0B   is 

related to 2Ω  by the dynamo law (e.g. Campbell 1997, p.274) 

    

n

BB 








Ω

Ω
=

Θ
Θ

2
0 ,     (2.63) 

with 21 ≤≤ n  , and the magnetic flux in the dead zone is given by  

    
( ) 2

00

2

0

2 dd

d
c

B

ρµ
ξ = .     (2.64) 

From equations (2.62), (2.63), and (2.64) it can be shown that 
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B

ρµ
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and it is noted that 6
1

dξ  is weakly dependent on 2Ω . Since the radial field region begins 

at rr =  (outside the dead zone), the wind mass loss rate is given by 

   vrM w ρπ 24−=
•

.      (2.65) 

Conservation of mass and flux along a poloidal flux tube yields 

   ==
B

v

fluxmagnetic

fluxmass ρ
 constant. 

Conservation of mass flux between surface (near surface) and dead zone gives 

    
B

v

B

v ρρ
=

0

00  

         ⇒   







=

0

00
B

B
vv ρρ . 

Since  

3

2
0

2

1








=

r

R
BB , 

the average mass flux is 

3

200

2








=

r

Rv
v

ρ
ρ ,     (2.66) 

where 0v  is the coronal base flow speed and 0ρ  the wind density at the coronal base. 

Substituting equation (2.66) into equation (2.65) gives 

    

3

2002

2
4 








−=

•

r

Rv
rM w

ρ
π  

    2

2
2

002 R
r

R
vM w 








−=

•

ρπ .    (2.67) 

The wind speed at the coronal base is taken as (e.g. Campbell 1997, p.272) 

    wcv 15.00 = ,      (2.68) 

where cw is the sound speed in the wind zone. 
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For ( ) ≈rR2  constant, an expression for the wind mass loss rate can be obtained as 

follows:  

From equations (2.61) and (2.68) it follows that, 

   

21

2

2
0 








∝∝

R

M
cv w and 23

2

2
0 Ω








∝

R

M
ρ . 

Therefore, from equation (2.67), for ( ) ≈rR2 constant, it is seen that  

   2

200|| RvM w ρ∝
•

 

   2

2

21

2

2
23

2

2|| R
R

M

R

M
M w 








Ω







∝

•

 

            ⇒   2

23

2

2|| Ω







∝

•

R

M
M w .      (2.69) 

Since the ratio ( ) ( )ΘΘ= RMRM 22  = a constant, 
•

wM  evolves with the orbit as 

2ΖΩ=
•

wM  and also Θ

•

Θ ΖΩ=M , where Z is a constant. 

Hence 

   
ΘΘ

•

Θ

•

Ω

Ω
=

ΖΩ

ΖΩ
= 22

M

M w .      (2.70) 

From equation (2.64), the wind zone equivalent of dξ  is given as  

   
( ) 2

00

2

0

2 ww

w
c

B

ρµ
ξ = .      (2.71) 

This represents the ratio of the magnetic energy density to the thermal wind pressure at 

the coronal base. From equation (2.71) 

   
www

w
c

B
c

ξρµ )(2 00

2

0= .      (2.72) 

From equation (2.67), an equivalent for 
•

ΘM  is given as 

   ( ) 22
,0,02 ΘΘΘ

•

Θ 







−= R

r

R
vM

w
ρπ .    (2.73) 

Substituting equations (2.68) and (2.72) in equation (2.73), gives  
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  ( ) ( ) 22
,,0 15.02 ΘΘΘ

•

Θ 







−= R

r

R
cM ww

ρπ  

( ) ( )
( ) ΘΘΘ

Θ
ΘΘ

•

Θ 







−=

,,,00

2

,0

22

2
15.02

www

w
c

B
R

r

R
M

ξρµ
ρπ  

             ⇒   

























−=

ΘΘ

ΘΘ
•

Θ
r

R

c

BR
M

ww

2

,,

22

0

15.0

ξµ
π

.     (2.74)) 

Substituting for 
•

ΘM  from equation (2.74) into (2.70) gives 

  
•

Θ
Θ

•










Ω

Ω
= MM w

2   

        ⇒   

























−









Ω

Ω
=

ΘΘ

ΘΘ

Θ

•

r

R

c

BR
M

ww

w
2

,,

22

0

2 15.0

ξµ
π

.    (2.75) 

Using equations (2.15) and (2.47), 2Ω  can be expressed in the form 

  

21

32 






=Ω
a

GM
 

  

21

32 






















=Ω Θ
Θ

M
M

M

a

G
 

  
( ) 21

3

2

2

2

1.0








=Ω ΘΘ

R

MMMG
 

        ⇒  

21

2

3

2

2

1.0




























=Ω Θ

Θ

M
M

M

R

G
.     (2.76) 

Substituting for 2R  from equation (2.46) into equation (2.76) gives 

  
( )

( )Θ
Θ

−
Θ=Ω
MM

MRG

q 2

212321

23

21

2

1.0
 

  
( ) ( )

( )
( )
( )Θ

ΘΘ

Θ

Θ=Ω
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G

q
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2
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23

21

2

1.0
 

  
( ) 2123

2
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23
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2

1.0
Θ

−
Θ

Θ 















=Ω MR

M

M

M

M
G

q
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  ⇒    
( ) 212321

23

21

2

11.0
Θ

−
Θ

Θ 















=Ω MR

M

M
G

q µ
,    (2.77) 

where MM 2=µ . From equation (2.76), it follows that  

   

21

3

1.0








=Ω

Θ

Θ
Θ

R

GM
.       (2.78) 

Using equations (2.77) and (2.78) gives 

   
( )( ) ( )( )

( ) 212

2123212321

2

1.0

11.0

ΘΘ

Θ
−
ΘΘ

Θ

=
Ω

Ω

RGM

MRMMGq µ
 

        ⇒    







=

Ω

Ω Θ

Θ M

M

q µ
11

23

2 .      (2.79) 

Substituting equation (2.79) into equation (2.75), it can be shown that 

   

































−= Θ

ΘΘ

ΘΘ
•

M

M
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R

c

BR
M

ww

w µξµ
π 1115.0

23

2

,,

22

0

 kg s
-1
. 

The solar constants are approximately given by (e.g. Campbell 1997, p.274) 

6105.2 −
Θ ×=Ω  s

-1
, 2=ΘB Gauss, 101096.6 ×=ΘR  cm, 81067.6 −×=G  cm

3
 g
-1 
s
-1 

7102.1 ×=wc  cm s
-1
, 33102×=ΘM g and 6

, 10≈Θwc  cm s
-1 

Substituting for these constants gives       

 12

2

,

23

11 11102 −
Θ

ΘΘ

Θ

−•
































×
−≅ yrM

M

M

r

R
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B

q
M

w

w µξ
   (2.80) 

      ⇒    12

2

,

23

15 11103.1 −ΘΘ

Θ

•
































×
−≅ sg

M

M

r

R

Gauss

B

q
M

w

w µξ
.   (2.81) 

 

2.2.3 Thermal timescale 

 

The Kelvin timescale for thermal adjustment of the secondary star is given by 

  
2L

Eth

th =τ         (2.82) 

where thE  is the total thermal energy and 2L  the surface luminosity of the secondary 

star. From the Virial theorem, the condition for hydrostatic equilibrium requires 
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  gth EE
2

1
−= ,  

where gE  is the gravitational potential energy. The gravitational potential energy of a 

polytrope of index n  is given by (Kippenhahn & Weigert 1990) 

  















−

=
R

GM

n
Eg

2

5

3
. 

For ordinary main sequence star, 3=n  (King 1988) and therefore 

    














=
R

GM
Eg

2

2

3
.     (2.83) 

Since the contributions of rotational and magnetic energies are negligible Eth can be 

expressed as 

    














−=
2

2

2

4

3

R

GM
Eth .     (2.84) 

From the approximate main-sequence mass-luminosity relation (e.g. Campbell 1997, 

p.274) 

    Θ
Θ








= L

M

M
L

5

2
2 .     (2.85) 

Using equations (2.46) and (2.85), equation (2.82) can be expressed after simplification 

as 

    

4

2

2

4

3








= Θ

ΘΘ

Θ

M

M

RL

GM

q
thτ  

    

4

2

42

4
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= Θ

ΘΘ

Θ

M

M

M

M
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GM

q
thτ  

       ⇒    

442
1

4

3
















= Θ

ΘΘ

Θ

µ
τ

M

M

RL

GM

q
th . 

Substituting for the constants and taking, 331086.3 ×=ΘL  erg s
-1
, 33102×=ΘM  g gives 

    s
M

M

q
th

4414 11045.7















×
= Θ

µ
τ  
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          ⇒    

447 1103.2















×
= Θ

µ
τ

M

M

q
th  yr.   (2.86) 

This discussion has been included aiming at illustrating the preservation of the 

condition
22

•

<< MMthτ , s
M

1610~
2

•τ   (e.g. p.37) required to keep the star in thermal 

equilibrium during the mass transfer process. A brief discussion of the inferred dynamo 

laws responsible for stellar magnetic field production in stars, and their influence on mass 

transfer via magnetic braking, will now be presented.   

 

2.3 Mass transfer rates via magnetic braking 

 

2.3.1 Linear dynamo law 

 

From equation (2.63), the linear dynamo law (n = 1) is given by 

  
ΘΘ Ω

Ω
= 20

B

B
.        (2.87) 

Using equations (2.87) and (2.70) in equation (2.57) gives     
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34
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     ⇒    
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•

Θ
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r

R
J mb

µ
π

.   (2.88) 

From equations (2.20) and (2.60) the rate of loss of orbital angular momentum can be 

expressed as 

  










































−=

Θ

Θ

•
•

6121

31

34

21

21

2

2

1

2 10
3

4
q

M

MM

M

GR

M

M

M

M
J orb .  (2.89) 

Since it has been assumed that the secondary star is kept close to orbital corotation by 

tidal forces, then mborb JJ
••

=  and from equations (2.88) and (2.89) the following 

expression is obtained 
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 6121
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34

21

2

2

1

2

35

38

2

2

2

31
3434

2

32

0

10
3

42

3

2
q

M

MM

M

GR

M

M

M

MRMB

r

R































−=

Ω

Ω
















−

Θ

Θ

•

Θ

Θ

•

Θ

µ
π

  

   ⇒   

( )( ) ( )
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ΘΘΘ
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ΩΩ−

=

µπ

. 

Substituting for 22 , ΩR  and 
•

ΘM  from equations (2.46), (2.58) and (2.74) respectively 

gives the equation 

( )( ) ( ) ( ) ( )
( ) 3531

,

31

,

6165

112

3131

2

261652135

2

31

0

32

0

2
1034

1.015.0223

ΘΘΘ

Θ
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ΘΘ

•
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−
=

wwcqMMM

MMBRMGrR
M

ξ
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But since    
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M

M

M 2
1

1

2 7
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          ( )µ74
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4
1

1

2 −=







−

M
M

M

M
, 

it reduces to 

( )( ) ( ) ( )
( )µξ

µπµπ
7410

1.015.02323
65
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2
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3531

,
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,
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ΘΘΘΘ
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c

G
M
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. 

Substituting for the constants gives 

 Θ
ΘΘ

Θ

−•
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×
−= M

M

M
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B

r

R

q
M

w
µ

µ
ξ 74

108.7 3131235

2
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,

65
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-1
.  (2.90) 

But  ΘM yr
-1
 = 6.3376 × 10

25
 g s

-1
, and therefore 
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×
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Θ

•

µ
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ξ 74

1094.4 3131235

2

31

,

65
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2
M

M
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B

r

R

q
M

w

 g s
-1
. 

Taking ΘΘ = ,, 2 dw ξξ  for 8, =Θdξ  and 42 =Rr  (for a fast rotator) and 1.1=q  (e.g. 

Campbell 1997, p.274 - 275) gives the expression 

 

1

2

31

2

31

15

2 741019.7
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Θ
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×−=
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M
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M
M  g s
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.   (2.91) 
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The ratio of the wind mass loss rate to the mass transfer rate of the secondary can be 

estimated by taking the ratio of equation (2.80) to (2.90) which gives 

 
( )
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3232

2
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,

32

2

2
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×
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Θ
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•

•

M
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q
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w .     (2.92) 

The ratio of mass transfer timescale to the thermal timescale follows from equations 

(2.44), (2.86) and (2.90), i.e. 
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2

447

2

1103.2

2

M
M

M

q

M

th

M

µ

τ

τ
      (2.93) 
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      ⇒   ( ) 314
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Θ
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B
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M .  (2.94)  

Taking 16, =Θwξ  (e.g. Campbell 1997, p.274 - 275) gives 

 ( ) 314
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τ

τ
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−

Θ

−−

Θ
•

M
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R

Gauss

B
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M .   (2.95) 

 

2.3.2 Inverse Rossby number law 

 

The depth of a star’s convective envelope increases as its mass decreases towards 

~ ΘM3.0  (e.g. Campbell 1997, p.276). At this mass, i.e. ΘM3.0 , a star will be fully 

convective. This change may influence the value of 0B  in addition to the effect of a 

change in 2Ω . There is observational evidence that 0B  scales according to the inverse 

turbulent Rossby number (e.g. Campbell 1997, p.276) 

  2

1 Ω∝−
TTR τ , 

where Tτ  is the convective turnover timescale and is given by 
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Tτ . 
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In this case the following scaling is obtained 

  
ΘΘΘ Ω

Ω
=

,

20

T

T

B

B

τ
τ

. 

The main-sequence mass-luminosity relation, equation (2.85), therefore leads to 
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B
.     (2.96) 

The rate of orbital angular momentum loss is obtained by substituting equations (2.70) 

and (2.96) into equation (2.57), which gives 

 31

2

38

2

31

2

34

2

31

4

2

2

2

31

2

434

2

31

34

32

2

3

2
Ω









Ω

Ω





















Ω

Ω
































−=

ΘΘΘ

Θ
Θ

•

Θ
Θ

•

R
M

R

R

M

r

R
MBJ mb

µ
π

 

      ⇒   98916

2

916

2

616

2

35

2

2

34

2

31
34

32

2

3

2
Θ

Θ

−

ΘΘ

Θ

•

Θ
Θ

•


























Ω

Ω
















−= RR

R

R

M

M

r

R
MBJ mb

µ
π

. 

Substituting for ΘRR2 from equation (2.46) gives 
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2
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Substituting for mbJ
•

 and orbJ  from equations (2.97) and (2.60) respectively into equation 

(2.20) gives 
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. 

Substituting for 2R  from equation (2.46) and 2

2Ω  from equation (2.58), for 22, RRL = , it 

can be shown that 
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ΘΘ
−

Θ

−•

−























×
−= M

M

M

r

R

Gauss

B

q
M

w

95

91135

2

2

8131

,

10

2
74

1107.7

µµξ
yr
-1
 (2.98)  
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Substituting for ,q  Θ,wξ  and ΘB , also taking 42 =Rr  gives the expression 
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The ratio of the wind mass loss rate to the mass transfer rate from the secondary star is 

obtained by taking the ratio of equation (2.80) to equation (2.98) which gives 
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and the timescale ratio is obtained by substituting equation (2.98) into (2.93) which gives  
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M
.   (2.101) 

 

2.3.3 Non-linear law 

 

The non-linear law is given by (e.g. Campbell 1997, p.277) 
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Ω

Ω
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B
.       (2.102) 

Substituting equations (2.70) and (2.102) in equation (2.57), it can be show that the rate 

of angular momentum loss is expressed as 
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Substituting for 2Ω  from equation (2.58) into (2.103) gives 
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Substituting for mbJ
•

 and orbJ  from equations (2.104) and (2.60) respectively and for 

•

ΘM from equation (2.74) into equation (2.20), the mass transfer rate is obtained as 
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Substituting for the constants and re-arranging this equation gives  

    Θ

−−

ΘΘ

Θ

−•









−































×−
= M

M

M

M

M

M

M

r

R

Gauss

B

q
M

w

1

2

32

2

3435

2

2

3731

,

8

2 74
102.6

ξ
yr
-1
 (2.105)

 Θ

−−−

Θ

−
•









−
















×−= M

M

M

M

M

M

M
M

1

2

32

2

34

9

2 741082.7 yr
-1 

    ⇒   

1

2

32

2

34

17

2 741096.4

−−−

Θ

•









−
















×−=

M

M

M

M

M

M
M  g s

-1
.   (2.106) 

Considering the case for field saturation at cΩ , the mass transfer rate is given by (e.g. 

Campbell 1997, p.278 - 279)  
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Substituting for q , Θ,wξ  and taking ΘΩ=Ω 80c  for the field saturation case gives 
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.  (2.108) 

The ratio of the wind mass loss rate to the mass transfer rate, for unsaturated field, is 

obtained from equations (2.80) and (2.105), i.e. 
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while the timescale ratio is obtained from equations (2.105) and (2.93), i.e. 
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For the case of saturated field the ratio of wind mass loss rate to the mass transfer rate is 

obtained from equations (2.80) and (2.107), i.e. 
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353432
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and the timescale ratio is obtained from equations (2.93) and (2.107), i.e. 

  ( ) 3
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R
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q
. (2.112) 

In all the three scenarios that have been discussed it has been illustrated that all the three 

dynamo laws satisfy the condition )( 22

•

<< MMthτ , s
M

1610~
2

•τ  (e.g. p.37), the 

required condition for thermal equilibrium of the secondary star. 

 

The detailed discussion presented in this chapter is aimed at providing a theoretical 

framework to evaluate the detailed calculations that will be presented in the next chapter. 
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Chapter Three 

 

Calculations and investigations 

 

3.1 Introduction 

 

The majority of secondary stars in cataclysmic variables, especially MCVs have a 

convective envelope, implying a distinct possibility of the presence of significant surface 

magnetic fields generated through some internal dynamo mechanism. Since this study is 

aiming at investigating the influence of the secondary star magnetic field on the mass 

transfer process, the magnetic profile of the secondary star has to be determined. Using 

the stellar wind theory and the dynamo laws discussed in the previous chapter the surface 

polar magnetic field of the secondary stars can be determined for the various dynamo 

laws. This will be reviewed in the following section. 

 

3.2 Model for estimating the surface polar magnetic fields of mass 

transferring secondary stars   

 

Before developing the models for calculating the surface polar magnetic field of the 

secondary stars, the general expressions for orbital angular momentum and rate of loss of 

angular momentum via magnetic braking derived in the previous chapter have to be 

modified. Taking q = 1.1 (e.g. Campbell 1997, p.269) the orbital angular momentum, 

equation (2.60), can be expressed to take the form 
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3134

2123212154.1
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ΘΘΘ
ΘΘ 
























=

M
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M

M

M

M
MRGJ orb .   (3.1) 

Using equations (2.70) and (2.63), the rate of loss of angular momentum via magnetic 

braking, i.e. equation (2.57), can be expressed in the form 

 3831
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ΘΘΘ
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•
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−= R

R
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r
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B

B
MBJ mb

µ
π

. (3.2) 

Equations (3.1) and (3.2) can be used to develop a suitable model for calculating the 

surface polar magnetic field of secondary stars in CVs using the different dynamo laws. 

This will be discussed for each dynamo law in the following sections. The general 

approach will be to develop basic equations for the surface polar magnetic field for the 

various dynamo laws, and then using these, the surface polar field for individual systems 

with known mass transfer rate and orbital period will be determined. These expressions 

are at first normalized with respect to the binary parameters of the nova-like variable AE 

Aqr for comparison. 

 

3.2.1 Linear dynamo law 

 

First an expression for the rate of loss of angular momentum via magnetic braking, using 

the linear dynamo law, has to be obtained. From the dynamo law, equation (2.63), i.e. 

( )nBB ΘΘ ΩΩ= 20 , equation (3.2) can be expressed as 
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.  (3.3) 

The period-radius relation, for period in hours, is given by (e.g. Frank, King & Raine 

1992, p.51) 
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Substituting equations (2.74) and (3.4) into equation (3.3), gives 
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Using equations (3.1) and (3.5) an expression for the rate of loss of angular momentum 

through magnetic braking can be expressed as 

( )
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Substituting for the constants into this equation and taking 2=ΘB Gauss (solar value for 

polar field) gives    
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. (3.6) 

 

From equations (2.42) and (3.6) an expression for the surface polar magnetic field of the 

secondary star scaled according to the corresponding solar value is obtained as  
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For the linear dynamo law 1=n , and taking 42=Rr  (for a fast rotator) and 2=ΘB  

Gauss an expression for 0B  can be obtained as  
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3.2.2 Inverse Rossby number law 

 

The inverse Rossby number law, equation (2.96), can be expressed in the form 
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Substituting equation (3.8) into (3.2) gives 
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Substituting for 
•

ΘM  from equation (2.74) into (3.9) gives 
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Using equation (3.4) and substituting for the constants, equation (3.10) can be expressed 

in the form  
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From equations (3.1) and (3.11) the rate of loss of orbital angular momentum via 

magnetic braking can be expressed in the form 
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From equations (2.42) and (3.12) and taking 42 =Rr  an expression for 0B  for the case 

of the inverse Rossby number law can be obtained, i.e.  
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3.2.3 Non-linear law 

 

Using the non-linear law, equation (2.102), i.e. ( ) 47

20 ΘΘ ΩΩ=BB , equation (3.2) can 

be expressed in the form 
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Substituting equations (2.74) and (3.4) into (3.14) gives 
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From equations (3.1) and (3.15) it can be shown that 
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From equations (2.42) and (3.16) the following expression is obtained  
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Again taking 42 =Rr , this equation can be expressed as 
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The equations developed in this section can be used to estimate the surface polar 

magnetic field of the secondary stars. This is possible if the rate of mass transfer from the 

secondary star is known, and this will be calculated in the following section. 

 

3.3 Mass transfer rates 

 

Using an empirical relationship from observations, it is shown that the period-mass 

relationship for a lobe-filling secondary star close to the lower main-sequence is given by 

(King 1988; Frank, e.g. King & Raine 1992, p.51) 

   )(11.02 hPM orb= .      (3.18) 

This can be used to calculate the mass of a lobe-filling secondary star whose orbital 

period is known. Using this relation, the mass transfer rates can be calculated using 

equations (2.91) and (2.99) for the linear dynamo law (LDL) and the inverse Rossby 

number law (IRNL) respectively; while for the non-linear law (NLL) equations (2.106) 

and (2.107)  can be used for the case of unsaturated field (USF) and saturated field (SF) 

respectively. The orbital periods of some intermediate polars can be obtained (e.g. 

Warner 1995, p.370; Campbell 1997, p.264). The results obtained are shown in Table 1. 
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Name )(hPorb  •

− 2M (gs
-1
) 

 LDL 

  (× 10
15
) 

•

− 2M (gs
-1
) 

 IRNL 

  (× 10
15
) 

•

− 2M (gs
-1
) 

 NLL (USF) 

  (× 10
17
) 

 
•

− 2M (gs
-1
)  

  NLL (SF) 

  (× 10
17
) 

BG CMi 3.24 1.94 
 

5.17
 

3.72 
 

0.36
 

V1223 Sgr 3.37 1.98  5.16 3.70  0.39 

AO Psc 3.59 2.07 
 

5.14 3.66  0.44 

YY Dra 3.91 2.26 
 

5.14 3.60 
 

0.57 

DQ Her 4.65 2.67 
 

5.22 3.60  0.89 

FO Aqr 4.85 2.78 
 

5.26 3.62  0.99 

V533 Her 5.04 2.90 
 

5.31 3.64  1.10 

PQ Gem 5.18 3.05  5.36 3.66  1.21 

TV Col 5.49 3.22 
 

5.46 3.70  1.45 

TX Col 5.72 3.44  5.57 3.76  1.63 

XY Ari 6.06 3.75 
 

5.76 3.86  1.97 

 

Table 1.  Showing mass transfer rates calculated using different dynamo laws. 

 

In calculating the mass transfer rates above it is assumed that the average mass of the 

white dwarfs Θ≈ MM 11 , i.e. it is assumed that the systems are so much evolved that the 

white dwarfs have accreted a substantial amount of material (e.g. Warner 1995, p.399). 

The period range 7)(3 ≤≤ hPorb  (above the period gap) is of interest in close binaries, 

and this corresponds to the mass range 7.03.0 2 ≤≤ ΘMM . Over this mass range 

1||||
2
<<

••

MM w  for all the cases considered above, i.e. mass loss due to the secondary 

star’s wind is negligible, and the total mass of the systems can therefore be taken to be 

conserved. The mass transfer rates (i.e. Table 1) for the various dynamo laws are plotted 

against orbital period, i.e. Figure 7 (a) for LDL and IRNL and Figure 7 (b) for NLL for 

the case of USF and SF. 
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Graph of mass  transfer against orbital period
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Figure 7 (a). Graph of mass transfer rate against orbital period for the linear dynamo law and 

the inverse Rossby number law. 

 

Graph of mass transfer rate against Orbital period for the NLL
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Figure 7 (b). Graph of mass transfer rate against orbital period for the non-linear law 

(NLL) for the case of unsaturated field (USF) and saturated field (SF). 
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A loss of orbital angular momentum caused by gravitational radiation losses leads to 

mass transfer rate, representative of systems in the period gap, given by (e.g. Campbell 

1997, p.269) 

    
( )
( )

132

2

16
2

4

1
102.1 −−

•

−
−

×−= sgM µ
µ
µ

.    (3.19) 

where MM 2=µ . 

 

From equation (3.19) it is noted that the mass transfer rates obtained using the linear 

dynamo law are at most comparable to those driven by gravitational radiation; and thus 

cannot explain the observed high mass transfer rates above the period gap. The mass 

transfer rates obtained using the inverse Rossby number law exceed those driven by 

gravitational radiation, but are still not high enough to explain the inferred mass transfer 

rates above the period gap. The non-linear law, for the case of unsaturated field produces 

mass transfer rates which are rather high, while the case with field saturation produces 

mass transfer rates in best agreement with observation. The observed mass transfer rates 

above the period gap, i.e. for orbital periods in the range 3 hrs – 6 hrs, is ~ 2 × 10
16 
-         

2 × 10
17
 g s

-1
 (e.g. Warner 1995, p.471; Campbell 1997, p.279; Hellier 2001, p.51). It is 

obvious from these model calculations that the mass transfer rates, driven by magnetic 

braking, decrease towards decreasing orbital period. Since there is an obvious relation 

between mass transfer rate and orbital period in systems where mass transfer is driven by 

magnetic braking, the corresponding relation between the inferred surface polar magnetic 

field and orbital period will determine any possible dependence. Using the mass transfer 

rates calculated in Table 1, the surface polar magnetic fields of the secondary stars can 

now be calculated. 

 

3.4 Surface polar magnetic field 

 

Using the results obtained in Table 1, the surface polar magnetic fields of the secondary 

stars can be calculated using equations (3.7), (3.13) and (3.17) for the linear dynamo law, 

inverse Rossby number law and the non-linear law respectively. The results are shown in 

Table 2.  
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It is believed that the surface polar magnetic field ( 0B ) of secondary stars in cataclysmic 

variables is of the order of 310  Gauss (Meyer-Hofmeister, Vogt & Meyer 1996; Meintjes 

2004). From the results obtained in Table 2, it is noted that the surface polar magnetic 

field values obtained using the LDL and the IRNL are much lower than the expected 

values. However, in general, they decrease with increasing orbital period except for the 

non-linear law with field saturation. The lower values obtained for the LDL and the 

IRNL could be as a result of the low mass transfer rates obtained for these dynamo laws. 

The surface polar magnetic field (i.e. Table 2) for the various dynamo laws are plotted 

against orbital period, i.e. Figure 8 (a) for LDL and IRNL and Figure 8 (b) for NLL for 

the case of USF and SF. 

 

 

Name )(hPorb  )(0 GaussB  

LDL 

)(0 GaussB

IRNL 

0B (Gauss) 

NLL (USF) 

0B (Gauss) 

NLL (SF) 

BG CMi 3.24 241 497 11499 2954 

V1223 Sgr 3.37 232 471 10824 2905 

AO Psc 3.59 219 431 9821 2862 

YY Dra 3.91 207 379 8632 2934 

DQ Her 4.65 182 298 6743 2984 

FO Aqr 4.85 176 282 6367 2989 

V533 Her 5.04 172 268 6045 3008 

PQ Gem 5.18 170 258 5837 3061 

TV Col 5.49 162 240 5400 3076 

TX Col 5.72 160 228 5144 3159 

XY Ari 6.06 156 213 4810 3249 

 

Table 2. Showing minimum surface polar magnetic field calculated using different 

dynamo laws.  
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Graph of surface polar magnetic field against orbital period
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Figure 8 (a). Graph of surface polar magnetic field against orbital period for the linear dynamo 

law and the inverse Rossby number law. 

 

Graph of surface polar  magnetic field against Orbital period for the NLL

1000

3000

5000

7000

9000

11000

13000

2.5 3 3.5 4 4.5 5 5.5 6 6.5

Orbital period (Hours)

S
u
rf
a
c
e
 p
o
la
r 
m
a
g
n
e
ti
c
 f
ie
ld
 (
G
a
u
s
s
)

USF

SF

 

 

Figure 8 (b). Graph of surface polar magnetic field against orbital period for the NLL for 

the case of unsaturated field (USF) and saturated field (SF). 
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The following analysis and discussion will concentrate on the non-linear law for the case 

with field saturation since it gives mass transfer rates in best agreement with observation, 

consistently higher than the other dynamo laws, resulting in correspondingly higher 

surface polar magnetic fields for the secondary star. If it is assumed that the 0B -values 

obtained in this case are representative of tidally locked secondary stars in MCVs, then 

an average value of  30000 ≈B  Gauss can be assumed for all the systems considered.  

These fields are similar to the inferred fields on the secondary stars in magnetically 

locked polars (AM Her stars) which strengthens the conjecture that the intermediate 

polars evolve into polars if the binary loses the required angular momentum (Norton & 

Watson 1988; e.g. Hellier 2001, p.149). Although 0B  can be assumed to be constant for 

the systems considered, it is noted that there is a difference in mass transfer rates by a 

factor of approximately 10 between the most compact and least compact systems 

considered in this study. Secondary stars in some CVs may have magnetically active 

equatorial belts (Meintjes 2004) and this may apply to the systems considered here. The 

magnetic field lines close to the stellar surface may therefore influence the mass flow 

through the funnel. Therefore the mass transfer through the L1 region and the possible 

influence of the surface magnetic field on the mass transfer rate has to be investigated. 

 

3.5 Mass transfer through the L1 region 

 

Considering a funnel of cross-sectional area ∆S, the instantaneous mass transfer rate 

through the L1 region for a fluid flowing at the local sound speed sc  can be estimated as 

   ScM sL ∆≈−
•

1ρ       (3.20) 

where 1Lρ  is the fluid density at the L1 region. The funnel width H, can be approximated 

in terms of the orbital angular velocity orbΩ  (e.g. Frank, King & Raine 2002, p.352) as   

   
orb

sc
H

Ω
≈  

   s

orb c
P

H 







≈

π2
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        ⇒   ( )[ ] sorb chPH
π2

3600
≈ cm.     (3.21) 

Approximating the funnel cross-section area as 2HS π≈∆ , equation (3.20) can be 

express in the form 

   

2

12

2 







≈−

•

s

orb

sL c
P

cM
π

πρ  

   23

12

4

1
orbsL PcM ρ

π
≈−

•

.     (3.22) 

It is obvious from this equation that the mass transfer rate from the secondary star 

depends on the fluid ram pressure ( 2

1 sL cρ ), the temperature and the orbital period, i.e. 

   ( )( ) ( )sorbsL cPcM
22

12 ρ∝−
•

.     (3.23) 

The orbital period is a measurable quantity but some knowledge of the general properties 

of stellar atmospheres is required to estimate the fluid density 1Lρ . It has been shown 

(Ritter 1988; e.g. Warner 1995, p.34-35) that atmospheric density of mass transferring 

stars at the L1 region can be estimated as 

   














 −
−≈ ∗

P

L

photL
H

RR

e

,21,2

1 exp
1
ρρ     (3.24) 

where 610~ −
photρ  g cm

-3
 (e.g. Frank, King & Raine 2002, p.352), and 1,2 LR , ∗,2R  and 

PH  represent respectively the Roche lobe radius of the secondary star at L1, the 

photospheric radius of the secondary star and the pressure scale height  

    
2

2

,2

2

GM

Rc
H

s

P

∗≈ .      (3.25) 

It has been shown (Meintjes 2004) that for AE Aqr the ratio 

    43
,21,2 ≤

−
≤ ∗

P

L

H

RR
, 

and this may be representative for most mass transferring stars in close binaries. Then the 

density of the secondary star’s atmosphere at the L1 region, i.e. 

   







×≈

−−
−

36

8

1
10

102
cmg

phot

L

ρ
ρ  g cm

-3
   (3.26) 
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may be a representative value for most secondary stars in MCVs. The ram pressure of the 

flow through the L1 region is then basically determined by the photospheric temperature 

of the secondary star. Using equation (3.22) the density of a fluid flowing through the L1 

region for any orbital period and appropriate mass transfer rate above the period gap can 

be estimated. Since the secondary stars in the systems considered in this study are 

magnetized, this may have an effect on the mass transfer inflow and hence the difference 

in the mass transfer rates obtained, which is now investigated.  

 

For a magnetically controlled mass transfer through the L1 region, the magnetic pressure 

in the nozzle must dominate the ram pressure of the fluid. If the flow speed through the 

nozzle is of the order of local sound speed, the resulting ram pressure is given by 

   2

1 sLram cP ρ= .       (3.27) 

The minimum magnetic field required to influence the fluid flow through the L1 region is 

given by (Ritter 1988) 

   ( ) 21

1 8 ramL PB π= .      (3.28) 

If it is assumed that the region of the atmosphere of the secondary star close to the L1 

region is isothermal, then the isothermal sound speed in this region is given by (Ritter 

1988; e.g. Campbell 1997, p. 64) 

   

21









=
ρ
P

cs  

      ⇒   

21








 ℜ
= Tcs γ

       (3.29) 

where ℜ  is the gas constant, T  the effective temperature and γ  the mean molecular 

weight. Since the secondary stars in CVs are mainly cool late-type main-sequence stars, it 

can be assumed that KT 3000≈  for these systems. Taking 6.0≈γ  (e.g. Campbell 1997, 

p.64) and 710314.8 ×=ℜ  cm
2
 s
-2
 K

-1
, it can be shown that 510447.6 ×≈sc cm s

-1
. The 

values of H , 1Lρ , ramP  and 1LB  can then be calculated using equations (3.21), (3.22), 

(3.27) and (3.28) respectively. The results obtained are shown in Table 3. 
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Name )(hPorb  H  (cm) 

   (× 10
9
) 

1Lρ (g cm
-3
) 

(× 10
-8
) 

ramP (erg cm
-3
) 

(× 10
3
) 

1LB (Gauss) 

BG CMi 3.24 1.197 1.248
 

5.187 361 

V1223 Sgr 3.37 1.245 1.236 5.137 359 

AO Psc 3.59 1.326 1.241 5.158 360 

YY Dra 3.91 1.444 1.340 5.570 374 

DQ Her 4.65 1.718 1.489 6.189 394 

FO Aqr 4.85 1.792 1.523 6.330 398 

V533 Her 5.04 1.862 1.567 6.513 404 

PQ Gem 5.18 1.913 1.632 6.782 412 

TV Col 5.49 2.028 1.741 7.236 426 

TX Col 5.72 2.113 1.803 7.494 433 

XY Ari 6.06 2.238 1.941 8.068 450 

   

Table 3. Showing calculated values of the funnel width (H), density at L1 ( 1Lρ ), ram 

pressure (Pram) and magnetic field at L1 (BL1). 

 

If a secondary star has magnetic activity in the equatorial region, prominences drifting 

across the stellar surface to the L1 region can result in strong magnetic fields influencing 

the mass flow through the L1 region. From the results obtained in Table 3, the magnetic 

field at the L1 region 400~1LB  Gauss. The model calculations performed and illustrated 

in Table 2 show that the secondary stars in MCVs may have surface polar field ranging 

between 32002900~0 −B  Gauss for the non-linear law with field saturation. This 

demonstrates that there is a distinct possibility that the equatorial belt may also be 

magnetically active like the sun. This could mean that there may be some equatorial 

magnetic field structures (prominences or star spots) having 400>eqB  Gauss. It is also 

noted that, for these systems, the funnel width for the widest system is approximately 

twice that of the most compact system. This could also mean that the field density in the 

funnel for the compact systems exceeds that of the wider systems resulting in a higher 
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magnetic viscosity experienced by the flow in the compact systems. This may in fact 

explain why the mass transfer rate decreases with decreasing orbital period, which is 

implicated by the results obtained earlier. Therefore the physical process resulting in the 

enhanced magnetic viscosity and decreasing mass transfer in the short period systems has 

to be investigated. 

 

3.5.1 Magnetic viscosity  

 

In a fluid magnetic fields act on both electrons and ionized atoms to produce dynamical 

effects which affect the bulk motion of the medium itself. For a conducting fluid flowing 

across magnetic field lines, the electromagnetic influence is driven by the magnetic 

component of the Lorentz force due to its dominance over the electric component (e.g. 

Jackson 1975, p.471). In the presence of electromagnetic fields, the behaviour of a 

conducting fluid is governed to a large extend by the magnitude of the conductivity 

whose effects are both electromagnetic and mechanical.  

 

Considering, for simplicity, a non permeable fluid described by matter density ),( tx
vρ , 

velocity ),( txv
vv

, pressure ),( txP
v

, and conductivity σ , the equation of motion of a fluid 

is given by (e.g. Jackson 1975, p.471) 

( ) gfBJ
c

P
dt

vd
v

vvvvv
v

ρρ ++×+∇−=
1

,     (3.30) 

which in addition to pressure and magnetic forces includes gravitational force, g
vρ  and 

the viscous force, vf
v
 given by  

   vf kv

vv
2∇= µ ,       (3.31) 

in the case of an incompressible fluid, where kµ  represents the coefficient of kinematic 

viscosity. Neglecting the displacement current, the electromagnetic field in the fluid is 

described by the equations (e.g. Jackson 1975, p.471) 

   0
1

=
∂
∂

+×∇
t

B

c
E

v
vv

,      (3.32) 
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   J
c

B
vvv π4

=×∇ .       (3.33) 

For a one-component conductivity, Ohm’s law can assume the form 

   






 ×+= B
c

v
EJ

v
v

vv
σ .      (3.34) 

Assuming that the conductivity of the fluid is effectively infinite, then under the action of 

the fields E
v
 and B

v
 the fluid flows in such a way that 

   ( ) 0
1

=×+ Bv
c

E
vvv

.      (3.35) 

From equations (3.32), (3.33), (3.34) and (3.35), the evolution of the magnetic field in the 

fluid is determined by  

   ( )BvB
c

t

B vvvv
v

××∇+∇=
∂
∂ 2

2

4πσ
      

( )BvB
t

B vvvv
v

××∇+∇=
∂
∂ 2η ,     (3.36) 

where  
σπ

η
4

2c
=        (3.37) 

represents the resistive diffusion coefficient of the fluid. For a fluid at rest, i.e. 0=v , 

equation (3.36) reduces to 

   B
t

B v
v

2∇=
∂
∂

η .       (3.38) 

If L is a length-scale of the magnetic field, from equation (3.38), an initial configuration 

of the magnetic field will decay in a diffusion time 

   
η

τ
2

~
L
.       (3.39) 

The magnetic Reynolds number mR  is defined as 

   Lv
c

Lv

L

v
Rm 2

4 σπ
η

τ
=== .     (3.40) 

The magnetic Reynolds number mR  is useful in distinguishing between situations in 

which diffusion of field lines relative to the fluid occur and those in which the lines of 

force are frozen into the fluid. From equation (3.40), ∞→mR  as ∞→σ , resulting in 
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the diffusion term being zero. In this case the magnetic field is frozen into the fluid, 

implying that the magnetic field cannot easily diffuse into or out of the fluid. This implies 

that a moving fluid will advect the field with it if the fluid ram pressure significantly 

exceeds the magnetic pressure. 

 

In CVs the effective gravity at the L1 region is zero. In this case the gravitational term in 

equation (3.30) can be neglected and for a steady state, i.e. 0=dtdv , it takes the form 

   ( ) vBJ
c

P k

vvvv
21

∇+×=∇ µ .     (3.41) 

In the following discussion, consider an incompressible, viscous conducting fluid flowing 

in the x-direction between two non conducting boundary surfaces at 0=z  and Lz = , 

representing the edges of the funnel across L1. Also assume a uniform magnetic field  aB  

in the z-direction, acting as a barrier for the flow along the x-direction. In this case the 

only non varnishing component of J
v
 is given by (e.g. Jackson 1975, p.476) 

   






 −= vB
c

EzJ ay

1
)( 0σ , 

where oE  is the only component of the electric field and is in the y-direction, and must 

therefore be constant. In the expression above v  is the flow velocity in the x-direction. 

The x-component of the equation of motion, equation (3.41), is therefore given by 
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.    (3.42) 

Assuming that the pressure gradient in the x-direction, i.e. 0→∂∂ xP  at a localized 

position (i.e. L1, if it is significantly removed from the photosphere), equation (3.42) can 

be expressed in the form 
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21

2

22









=

c

LB
M

k

a

H µ
σ

      (3.44) 

is the Hartmann number, i.e. the ratio of the magnetic viscosity to the fluid kinematic 

viscosity ( kµ ). If 1>>HM  the flow will ram into a rigid magnetic obstruction, resulting 

in the fluid experiencing severe effect of magnetic viscosity (e.g. Jackson 1975, p.477), 

forcing it to decelerate across the field lines. 

 

The interaction of magnetic field with the fluid mainly occurs through the Lorentz 

interaction with the electron-ion population. It has been shown (Meintjes 2004) that the 

plasma population in the envelope of the secondary star may be weakly ionized, resulting 

in a large discrepancy between the electron-ion and neutral atom concentrations. This 

may result in ambipolar diffusion which occurs readily in low-density plasma with a low 

degree of ionization. In the solar photosphere ( KTphot 6000= ) where the ratio of ions to 

neutrals is one part in 10
4
 (e.g. Parker 1979, p.46) ambipolar diffusion across a magnetic 

field of magnitude 410~B Gauss is negligible. This result should hold for the secondary 

stars considered here, where the ion-neutral ratio and magnetic fields may probably not 

be drastically different from the solar photospheric values mentioned above. The 

ambipolar diffusion timescale of the ion population with magnetic field tied to them, 

through the sea of neutral atoms, represents essentially the timescale of diffusion of the 

neutral population through the field. Meintjes (2004) showed that the ambipolar diffusion 

timescale for the secondary star in AE Aqr is of the order of  

   

2

1

2

300
20

−
















≥
Gauss

B

H

L L
ADτ yr, 

and this diffusion timescale is most probably representative for the secondary stars 

considered here. This timescale is significantly higher than the timescale of interest in 

this study. This result seems to confirm that for all practical purposes the flow across the 

fields is stopped by the strong magnetic viscosity. The flow can only slip through the grip 

of the magnetic field over the timescale of interest when the ram pressure across the 
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magnetic barrier is strong enough, exceeding the magnetic pressure. In the case of a 

decelerated fluid, the necessary momentum density to traverse the magnetic region may 

be supplied if the fluid density increases significantly. 

 

The effect of magnetic viscosity on the fluid flow in the funnel critically depends on the 

presence of magnetic field in the funnel region. Drifting star spots in the equatorial belt 

may eventually come in contact with the funnel region at L1. The rapid diffusion of 

magnetic field into the flow is however prevented unless the flow may be turbulent. It can 

be shown that the Reynolds number of the flow, i.e. 
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L
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vH
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µ
ρ 1=  

  

1

3938
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105.31010
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−−− 
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cm

H

cmg
R

µρ
,  (3.45) 

where 3105.3 −×≈µ  g cm
-1
 s
-1
 represents the coefficient of kinematic viscosity. Flows 

with such high Reynolds number may be highly turbulent at times (e.g. Tritton 1973) 

since laboratory experiments seem to suggest that turbulence may set in at 

5101000~ −mR . The onset of turbulence may result in a rapid break down of standard 

MHD which prevents rapid diffusion as a result of high magnetic Reynolds number in the 

flow. The onset of turbulence results in ordinary resistive diffusion coefficient being 

replaced by turbulent diffusion coefficient which is defined as (e.g. Campbell 1997, p.42) 

      LcsT
3

1
=η .      (3.46) 

From equations (3.37) and (3.46) the conductivity in this case can be expressed as 

 

    
Lc

c

sπ
σ

4

3 2

= .      (3.47) 

The turbulent viscosity Tν  can be expressed in the form (e.g. Campbell 1997, p.64) 

    LcsT )1.0(=ν .     (3.48) 

Using the equations above, the values of σ , Tν , kµ , HM  and mR  can be calculated. The 

results obtained are shown in Table 4. 
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Name )(hPorb  σ  (s-1) 

(× 10
5 
) 

Tν  (cm
2
 s
-1
) 

(× 10
14 
)
 

kµ (g cm
-1
s
-1
) 

(× 10
6 
) 

HM  mR  

BG CMi 3.24 2.784 0.772
 

0.963
 

7.74 3.00 

V1223 Sgr 3.37 2.677 0.803 0.992 7.74 3.00 

AO Psc 3.59 2.513 0.855 1.061 7.74 3.00 

YY Dra 3.91 2.308 0.931 1.247 7.74 3.00 

DQ Her 4.65 1.940 1.108 1.650 7.73 3.00 

FO Aqr 4.85 1.860 1.155 1.759 7.74 3.00 

V533 Her 5.04 1.790 1.200 1.880 7.73 3.00 

PQ Gem 5.18 1.742 1.233 2.012 7.74 3.00 

TV Col 5.49 1.643 1.307 2.275 7.74 3.00 

TX Col 5.72 1.577 1.362 2.456 7.73 3.00 

XY Ari 6.06 1.489 1.443 2.801 7.74 3.00 

 

Table 4. Showing calculated values of conductivity (σ ), turbulent viscosity (vT) 

kinematic viscosity (µk), Hartmann number ( MH ) and magnetic Reynolds number (Rm). 

 

From the results obtained in Table 4, MH ~ 7.74 and mR ~3.00. As mentioned earlier, the 

effect of magnetic viscosity is severe if MH >> 1 and fast diffusion of magnetic field is 

possible when 1→mR . The results are promising since the presence of turbulence in the 

flow results in 1→mR , facilitating the fast diffusion of magnetic field into the funnel 

from the photospheric region surrounding it. The presence of turbulence results in the 

Hartmann number, i.e. the ratio of magnetic to particle viscosity MH ~ 1 - 10, which 

opens-up the possibility of magnetic advection and accompanying magnetic reconnection 

in the funnel. The advection of flux along the funnel will have a significant influence on 

the mass transfer from the secondary star, and will be discussed briefly in the following 

section.  
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3.5.2 Magnetic advection with the fluid flow 

   

In an earlier analysis (section 3.5), it was noted that there was variation in mass transfer 

in the systems considered in this study, which could be as a result of magnetic viscosity 

in the funnel. If magnetic field is advected with the fluid flow into the funnel, it may have 

severe effect on the mass flow through the funnel, and this could explain the mass 

transfer variation obtained in the systems considered in this study. In this section it will 

therefore be investigated if the results obtained in the previous discussions can account 

for magnetic field advection along the flow. As mentioned in the previous section, the 

condition for advection of magnetic flux with the fluid flowing across a magnetic field 

can be determined by the ratio of magnetic Reynolds number and Hartmann number 

which is now discussed in more detail. 

 

The solution to equation (3.43), assuming boundary conditions 1)0( vv =  and 2)( vLv =  is 

readily found to be (e.g. Jackson 1975, p.477) 
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Since the condition for magnetic viscosity to dominate the flow is 1>>HM , and also 

from the calculation it is found that 1>HM , the limit of 1>>HM  will therefore be 

considered, in which case it is expected for the magnetic viscosity to dominate and the 

flow to be determined almost entirely by the BE
vv

×  drift. Since the flow is considered to 

be in the x-direction, the magnetic field in the x-direction )(zBx  can be determined from 

equations (3.33) and (3.34), i.e.     









−=

∂

∂

c

vB
E

cz

B ax
0

4πσ
.     (3.50) 

Substituting equation (3.49) for velocity into equation (3.50), it can be shown (e.g. 

Jackson 1975, p.478) that 
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From equation (3.51) the term ( ) 212 vv −  is a typical velocity and L  is a typical length. 

The dimensionless quantity in the square brackets can therefore be identified as the 

magnetic Reynolds number mR . Therefore in the limit of 1>>HM  equation (3.51) 

reduces to  
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,  (3.52) 

where the radial distance zr = . Expressing r  as a fraction of the funnel width, i.e. Lr  

where HL = , values of ax BrB )(  can be calculated, from which values of the magnetic 

field at the various radial distances advected into the funnel with the fluid flow can be 

determined. A graph of ax BrB )(  against Lr  is shown in Figure 9. 
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Figure 9. Radial component of magnetic field advected into the funnel (for 

Hartmann number, MH = 7.74 and magnetic Reynolds number, Rm = 3.00).  
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From the graph above (Figure 9), it is noted that there is appreciable advection of 

magnetic field into the funnel which results in the flow having to cross a magnetic 

barrier. This forms the basis of magnetic viscosity in the funnel. This could be the cause 

for the mass transfer variation obtained for the systems considered. The tension in the 

advected field in the funnel will provide a resistance in the opposite direction to the fluid 

flow and this will break the flow of fluid across L1. For the fluid to be able to flow freely 

across the L1 region, the ram pressure, ramP  must significantly exceed the magnetic 

pressure in the L1 region, i.e. magram PP > . The ratio ax BrB )( is representative of the 

ratio eqL BB 1 , where eqB  represents the value of magnetic structures in the equatorial 

belt close to the stellar surface. Therefore eqB  is representative of the average limiting 

field strength of magnetic prominences which can allow mass transfer to proceed. From 

the ratio eqL BB 1  the values of eqB  can be determined and is shown in Table 5. It can be 

seen from the results that an average field strength 1000≈eqB Gauss is required for mass 

transfer to proceed in these systems.  

 

 Name 
orbP (hours) eqB (Gauss) 

BG CMi 3.24 972 

V1223 Sgr 3.37 967 

AO Psc 3.59 969 

YY Dra 3.91 1007 

DQ Her 4.65 1061 

FO Aqr 4.85 1072 

V533 Her 5.04 1088 

PQ Gem 5.18 1109 

TV Col 5.49 1147 

TX Col 5.72 1166 

XY Ari 6.06 1212 

                     

Table 5. Showing calculated values of eqB . 
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To conclude this study, the influence of the advected magnetic field into the funnel on the 

nature of mass transfer through the L1 region will be investigated. The equation of motion 

of a fluid parallel and perpendicular to a magnetic field, grouping all the non-

electromagnetic forces under f
v
, are given by (Meintjes 2004) 

   ||

||
f

dt

dv
=ρ        (3.53) 

 

   ( )wv
c

B
f

dt

dv
−−= ⊥⊥

⊥
2

2σ
ρ ,     (3.54) 

where ⊥v  represents the flow speed across the magnetic field, and ( )( )BEBcw
vvv

×= 2  is 

the drift velocity of the individual particle guiding centre in the presence of combined 

electric and magnetic field across the funnel. From equations (3.53) and (3.54), it is noted 

that only non-electromagnetic forces can drive the fluid parallel to the magnetic field, 

while a combination of both non-electromagnetic and electromagnetic forces have to 

drive the fluid across the magnetic field. As mentioned earlier, the magnetic field in the 

funnel will provide a barrier to the flow, i.e. magnetic viscosity, forcing the fluid to 

decelerate across the field lines. The viscosity component which provides the 

deceleration of the fluid across the magnetic field is manifested in the second term in 

equation (3.54), and therefore it can be taken as 
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where scv =⊥  and scw=α . The speed of a particle at time t  can be expressed as 

   t
dt

dv
tvtv ∆+== )0()( .     (3.56) 

Using equation (3.55), equation (3.56) can be expressed in the form 

   ( ) t
c

ctv s
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s
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c

L
ctv ,     (3.57) 

where sctv == )0(  and scLt =∆ . The rate of mass flow across the barrier (i.e. the L1 

region) for a fluid flowing at a speed given by equation (3.57) can be calculated from 

    )(2 tvAM ρ=−
•

,     (3.58) 

where A  is the cross-sectional area of the funnel at the L1 region. Using equation (3.58) 

and approximating 2LA π≈  and taking 1Lρρ = , the mass transfer rate for a fluid 

flowing at a speed given by equation (3.57) can be calculate. The results obtained are 

shown in Table 6. 

    

Name 

 

orbP (hours) 
2

•

−M ( 1−sg )  

(× 10
16
) 

BG CMi 3.24 1.45
 

V1223 Sgr 3.37 1.56 

AO Psc 3.59 1.77 

YY Dra 3.91 2.27 

DQ Her 4.65 3.57 

FO Aqr 4.85 3.99 

V533 Her 5.04 4.42 

PQ Gem 5.18 4.87 

TV Col 5.49 5.82 

TX Col 5.72 6.57 

XY Ari 6.06 7.89 

 

Table 6. Showing mass transfer rates calculated in a case where there is 

magnetic viscosity. 

 

From the results obtained in Table 6, it is noted that the mass transfer rates obtained in 

this case are approximately 40% of the observationally confirmed mass transfer rates 
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calculated earlier for these systems using the non-linear dynamo law for the case with 

field saturation (see Table 1).  This is due to the magnetic viscosity at the L1 region, 

resulting in a low fluid flow rate across the magnetic barrier, i.e. the effect of magnetic 

viscosity. The fluid pressure required to drive the fluid at the rates obtained using the 

non-linear dynamo law for the case with field saturation can be calculated from the 

results above. The required condition that has to be satisfied is given by 

   
π

ρ
8

)(

2

2

1

eq

L

B
tv >  

       ⇒   
)(8 2

2

1
tv

Beq

L π
ρ > . 

The results are shown in Table 7. 

 

 

 

Table 7. Showing the fluid density required for the mass transfer rates calculated in Table 1 for 

the non-linear dynamo law with field saturation, for fluid flowing with speed given by equation 

(3.57). 

 

Name 

 

orbP (hours) ρ  (g cm-3) 

(× 10
-8
) 

BG CMi 3.24 3.116
 

V1223 Sgr 3.37 3.082 

AO Psc 3.59 3.101 

YY Dra 3.91 3.347 

DQ Her 4.65 3.711 

FO Aqr 4.85 3.781 

V533 Her 5.04 3.900 

PQ Gem 5.18 4.054 

TV Col 5.49 4.336 

TX Col 5.72 4.475 

XY Ari 6.06 4.845 
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From the results obtained in Table 7, it is also noted that the required fluid density is 

appreciably higher compared to the density of the fluid at L1 calculated earlier, which is 

approximately 40% of the required fluid density. This would mean that the pressure 

required for the fluid to flow freely though the magnetic barrier has to significantly 

exceed the magnetic pressure, i.e.  magram PP >  (e.g. Davidson & Ostriker 1973). Thus for 

the mass to flow at the rate determined by the non-linear law with field saturation (see 

Table 1), the fluid pressure must build up in order to break through the magnetic barrier. 

This would therefore mean that the mass flow in these systems is not continuous but 

probably fragmented in the form of blobs. This blob accretion at the L1 point therefore 

gives an alternative to blob accretion due to Rayleigh-Taylor instability at the threading 

point between the magnetic field of the white dwarf and the accretion stream (Kuijper & 

Pringle 1982). The result obtained is however consistent with the inferred mode of mass 

transfer in MCVs (King & Lasota 1991; King 1993; Wynn & King 1995).  It has been 

pointed by these authors that the spin-up relation observed in the intermediate polars, i.e.  

   orbspin PP 1.0~ , 

and the shot noise observed in ASCA X-ray data of AM Her may be the direct result of a 

blob-like fragmented mass transfer and accretion in MCVs. This may be the direct result 

of mass transfer from a magnetized secondary star, resulting in magnetic viscosity to 

fragmentize (break-up) the flow through the funnel at L1. The result above is consistent 

with the fact that the more compact systems are more affected by magnetic viscosity in 

the funnel, as a result of a more significant portion of the funnel being occupied by 

magnetic flux from star spots that diffused in as a result of turbulent flow.  
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Chapter Four 

 

 
Conclusions 

 

 
This study aimed to investigate the influence of the secondary star magnetic field on mass 

transfer in cataclysmic variables, particularly the intermediate polars whose orbital 

periods are known. The mass transfer rates and surface polar magnetic fields of these 

systems were calculated using the stellar wind theory and the inferred dynamo laws 

responsible for the stellar magnetic field production in stars. For all the dynamo laws 

considered, it was found that the mass loss rate of the secondary star due to its stellar 

wind is negligible over the lifetime of the system, and therefore the total mass of these 

systems can be considered to be conserved. All the three dynamo laws also satisfy the 

condition for thermal equilibrium of the secondary star. 

 

The mass transfer rates obtained using the linear dynamo law are at most comparable to 

the mass transfer rates driven by gravitational radiation, while the inverse Rossby number 

law gives mass transfer rates slightly higher than those driven by gravitational radiation. 

In both cases the mass transfer rates obtained cannot explain the high mass transfer rates 

observed for these systems above the period gap. For the non-linear law, two cases were 

considered: the case with field saturation and unsaturated field. It is only the case with 

field saturation that gives mass transfer rates most consistent with the theories of the 

period gap. However, in general, the mass transfer rates driven by magnetic braking 

increase with increasing orbital period for all the three dynamo laws. 
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From the values of the surface polar magnetic field of the secondary stars determined for 

the three dynamo laws, both the linear dynamo law and the inverse Rossby number law 

produce values of the surface polar magnetic field which are lower than the expected 

values, while the non-linear law, with saturated field, gives values in the correct order of 

magnitude. In the case of field saturation, the values obtained are representative of tidally 

locked secondary stars in MCVs, and therefore it can be assumed that these systems have 

an average value of surface polar magnetic field, 0B  ~ 3000 Gauss. This could mean that 

the intermediate polars may evolve into polars if the orbital separation has shrunk enough 

to be comparable to the magnetospheric radius. In general, for the other dynamo laws the 

surface polar magnetic field decreases with increasing orbital period.  

 

Based on the results for the non-linear law for the case with field saturation, these 

systems have an average surface polar magnetic field of  0B  ~ 3000 Gauss, while the 

mass transfer rates increase with increasing orbital period.  For these systems it is also 

shown that there is probably a magnetic field of ~ 1000 Gauss on the surface which can 

significantly influence the flow. Magnetic viscosity has a significant effect on the mass 

flow if the Hartmann number, 1>>HM . But for the systems considered it is found that 

1→HM , i.e. 74.7~HM  meaning that it is possible for magnetic field to be advected 

with the flow into the funnel. This is also possible if the magnetic Reynolds number, 

1→mR , which is confirmed by the result obtained, 00.3~mR , i.e. a small magnetic 

Reynolds number results in a more effective advection of magnetic field with the flow. 

As a result of the advected field, the fluid will be trapped in a rigid magnetic obstruction, 

resulting in a severe magnetic viscosity that results in a significant deceleration of the 

fluid across the magnetic barrier. This therefore explains the low mass transfer rates in 

the more compact systems since they are more affected by magnetic viscosity at the L1 

region, as a result of the advected magnetic field into the funnel due to turbulent flow. 

 

For the systems considered here the magnetic pressure at the L1 region exceeds the fluid 

pressure, i.e. the advected magnetic field in the funnel results in the magnetic pressure at 

the L1 region exceeding the ram pressure. In this case the fluid can not easily flow across 
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the magnetic barrier. For the fluid to flow across the magnetic barrier, the fluid pressure 

must build up until it is high enough to break through the barrier. Each time the fluid has 

broken through the barrier, the ram pressure decreases below the equipartition value, 

preventing continuous flow of the fluid. This therefore means that the mass transfer in 

these systems is fragmented in form of blobs, which is consistent with the inferred mode 

of mass transfer in MCVs. This blob accretion at the L1 point provides an alternative to 

the blob accretion due to Rayleigh-Taylor instability at the threading point between the 

magnetic field of the white dwarf and the accretion stream.  

 

The advection of magnetic field with the flow may also provide a seed for accretion disc 

magnetic field in cataclysmic variables. This magnetic field can be amplified by dynamo 

mechanisms in the accretion disc. The presence of magnetic fields in the accretion disc 

play a significant role on the flow of material through the disc, i.e. so-called magnetic 

viscosity, which influences the mass accretion rate onto the white dwarf. 

 

The advent of the SALT
2
 era opens-up possibility for observational Astronomy in South 

Africa and Africa in general. The availability of a 10 m class telescope with sensitive 

photometric (SALTICAM
3
) and spectrophotometric and spectropolarimetric (PFIS

4
) 

capabilities will allow detailed observations of MCVs to identify possible short timescale 

variability of the red component possibly related to magnetic activity. The polarimetric 

capabilities of PFIS may be used to constrain magnetic fields on the secondary star which 

will constrain the dynamo mechanism at work in these systems. High time resolution 

photometry may also result in the detection of time variability associated with fragmented 

magnetized mass transfer.  

 

 

 

 

                                                 
2
 Southern African Large Telescope  
3
 SALT Optical Imaging Camera 
4
 Prime Focus Imaging Spectrograph  
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